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Cambridge, MA 02139 United States 

Abstract 

The mixing of a single-component or multi-component hydrocarbon (HC) droplet in 

supercritical or near-critical water (SCW/NCW) is modeled. Transport, thermodynamics, 

and phase equilibrium sub-models are used to estimate the relevant physical properties. 

We use a generalized Maxwell-Stefan (MS) expression to model the multi-component 

mass transfer and a diffusion driving force expressed in terms of fugacity gradients to 

account for effects of non-ideality on mass fluxes. We compare the ideal and non-ideal 

diffusive driving forces for different mixing conditions and different HCs, and show that 

when the mixing temperature is close to or greater than the upper critical solution 

temperature (UCST), the non-ideal driving force model predicts a much slower mixing 

process and higher concentrations of the heavier HC than the ideal driving force, due to 

the presence of a diffusion barrier captured by the non-ideal driving force model.  

Keywords: Supercritical or near-critical water, Multi-component, Maxwell-Stefan 

equations, Hydrocarbon droplet, Phase equilibrium 
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Nomenclature 

Latin letters 

𝑎, 𝑏  parameters for Peng-Robinson equation of state 

𝐴, 𝐵  constants for the PPR78 model 

𝑐  molar concentration 

𝑐𝑝  constant pressure specific heat 

𝒅  vector of the diffusive driving force 

𝐷𝑖𝑗  binary diffusion coefficient 

𝐷𝑇  thermal diffusion coefficient 

𝑓  objective function for minimization of phase equilibrium under transport 

constraints 

𝑓  fugacity 

𝒈  vector of the external body force 

𝐺  Gibbs energy 

ℎ  thermal enthalpy 

𝐽  radial mass flux 

𝑱  mass flux vector 

𝑘𝑖𝑗  binary interaction parameter 

𝐿  droplet radius 

�̇�  total mass flux across an interface 

𝑀  molecular weight 

𝑛  total number of species 

𝑁𝑔  total number of functional groups in PPR78 

𝑃  pressure 

𝑞∗  difference of the total enthalpy flux across an interface 

𝑟  radial coordinate 

𝑅  universal gas constant 

𝑆  entropy 

𝑡  time 

𝑇  temperature 

𝑢  velocity 

𝑉  molar volume 

𝑥  molar fraction 

𝑦  mass fraction 

𝑍  compressibility factor 

 

Greek letters 

𝛼  occurrence of a functional group in a molecule 

𝜔  acentric factor 

𝜌  density 
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𝜅  association parameter 

𝜆  thermal conductivity 

𝜇  kinetic viscosity 

𝜇𝑟  dipole moment 

�̂�  fugacity coefficient 

𝜏  viscous stress 

 

Subscripts 

0  initial value 

1, 2  two sides of an interface 

𝑐  critical value 

𝐻  hydrocarbon 

𝑖, 𝑗  the 𝑖th or 𝑗th species 

𝑚  mixture value 

𝑠  surface value 

𝑊  water 

𝑟, 𝜃, 𝜙 spherical coordinates 

 

Superscripts 

bar  partial molar quantities 

𝐼𝐺  ideal gas 

 

1. Introduction 

Supercritical-fluid (SCF) processes such as supercritical fluid extraction (SFE), 

supercritical water oxidation (SCWO), supercritical water reforming and gasification, etc. 

show advantages due to the special properties of SCF compared to regular fluids. 

Because of the strong coupling of thermodynamics, transport phenomena, and chemical 

kinetics (for reacting systems) in SCF processes, modeling of resulting phenomena has 

been the subject of a sustained effort in this field. The motivation of the current and our 

previous studies [1, 2] originates from an emerging refinery technology of upgrading 

heavy crude oils using SCW [3, 4]. In this process, heavier crude fractions in the 
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low-value petroleum feedstocks are upgraded, and sulfur and metal contents are reduced 

at the same time. However, as in most thermal treatments of heavy crude oils, coking 

might occur. Modeling the transport and mixing process can provide a way of 

optimization to inhibit coking reactions. 

 Modeling the complete transport and mixing process in an engineering application is 

computationally expensive due to the coupling of turbulence, multi-phase flow, phase 

equilibrium, and chemical reactions. In the literature, two methodologies have been 

utilized: 1) modeling turbulent mixing in the absence of phase boundaries [5-13], and 2) 

microscale modeling of individual droplets immersed in supercritical or near-critical 

fluids [1, 2, 14-22]. The former applies only to fully miscible conditions. Although the 

latter neglects turbulence and the geometric complexity, it can provide insight into the 

local heat and mass transfer across the interface. 

 In the transport and thermodynamics studies of mixing of SCFs, mass transfer is an 

important process to govern species fractions at each location. Mass transfer models are 

based on the Fick’s law or the Maxwell-Stefan (MS) expressions. Curtiss and Bird [14] 

proved that the generalized forms of the Fick’s law and the MS expressions were 

equivalent, while MS expressions were simpler in multi-component cases. The given 

relation defines the dependency of mass flux on a diffusive driving force. The driving 

force can be calculated using the ideal fluid assumption, that is −𝑐∇𝑥𝑖 (where  𝑐 is the 

concentration, and 𝑥𝑖 is the mole fraction of species 𝑖). This ideal driving force has been 
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commonly used in the diffusion study. However when non-ideal fluid behavior becomes 

important, Krishna and co-workers [15] proposed a formulation of the non-ideal diffusive 

driving force without derivations. Recently, Bird and co-workers [14, 16] re-derived the 

same formulation based on a thorough foundation using the molecular theory of gases 

and liquids (MTGL, 1954 [17]). The non-ideal driving force is not only related to the 

concentration gradient, but also to the partial fugacities. 

 Prior studies [1, 2, 5, 7, 9-13, 18-21] used the ideal fluid model in computing the 

diffusive driving force, although the equation of state, thermodynamic and transport 

properties, etc., took account of the non-ideality in these studies. On the other hand, the 

following numerical studies used the non-ideal driving force for SCF mixtures. Werling 

and Debenedetti [22, 23] studied the mixing of a toluene droplet with supercritical CO2. 

Bellan et al. studied the mixing of H2 and O2 [8, 24-26], and heptane and N2 [6], in which 

the fluctuation theory was used to calculate the mass and heat fluxes from a transport 

matrix [27]. The fluctuation theory is a generalized Fick’s law approach, and is equivalent 

to the generalized MS approach. The derivations were documented in MTGL [17], and a 

recent summary can be found in [14], in which Curtiss and Bird state that the MS 

approach is easier for use in multi-component mixtures because the coefficients were 

concentration-independent, while in binary mixtures the two approaches are the same. 

In prior studies using the non-ideal driving force, the importance of the non-ideality 

had not been explored. Our previous studies on mixing of the HC droplet and NCW/SCW 
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using the ideal driving force revealed that the non-ideal thermodynamic properties, e.g. 

the upper critical solution temperature (UCST), played an important role in the mixing 

process. A question arises naturally: is the non-ideality also important in the mass transfer 

model? In this study, we answer this question and aim to reveal the importance of 

non-ideal driving force in the problems dealing with highly non-ideal SCF mixtures. 

 In this paper, we study a HC droplet, either single-component or binary-component, 

immersed in a bulk of NCW/SCW under a constant high pressure 24MPa. The ideal and 

non-ideal diffusive driving forces are compared for different HC species and mixing 

conditions in order to give modeling recommendation for engineering designs. The rest 

of the paper is organized as follows. In Sect. 2, the physical problem is defined, the 

governing equations are presented, and specially, the coupling of phase equilibrium and 

transport constraints developed in this study is discussed. In Sect. 3, the numerical 

methods are briefly introduced as well as the simulation configurations. In Sect. 4, the 

simulation results are presented with extensive discussions. Finally, our conclusions are 

presented in Sect. 5. 

2. Formulation 

The problem studied here consists of a single- or binary-HC droplet in a reservoir of 

supercritical or near-critical water (with specified far field conditions). Spherical 

symmetry is assumed, making the problem one-dimensional. The radial velocity of the 
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droplet interface is non-zero because of the thermal expansion and the mixing of water 

and hydrocarbon phases. 

2.1 Governing equations 

The governing equations are the mass, momentum, species, energy conservation 

equations in 1-D spherical coordinates, and the equation of state (presented in Sect. 2.3) 

𝜕𝜌

𝜕𝑡
+
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝜌𝑢) = 0 (1) 
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1
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 (4) 

where 𝜌, 𝑢, 𝑃, 𝑦𝑖, 𝐽𝑖 and 𝑇 are the density, radial velocity, pressure, mass fraction of 

species i, radial mass flux of species i, and temperature; 𝑐𝑝, 𝜆, ℎ̅𝑖, and 𝑀𝑖 are the 

specific heat, thermal conductivity, partial molar enthalpy, and molecular weight, 

respectively. The details of mass flux calculations are provided in Sect. 2.2. The temporal 

and spatial coordinate variables are represented by 𝑡 and (𝑟, 𝜃, 𝜙). The shear stress 

components are given by 

𝜏𝑟𝑟 =
4

3
𝜇 (
𝜕𝑢

𝜕𝑟
−
𝑢

𝑟
) ,  𝜏𝜃𝜃 = 𝜏𝜙𝜙 =

2

3
𝜇 (
𝜕𝑢

𝜕𝑟
−
𝑢

𝑟
) . 

The interface between the hydrocarbon-rich phase and the water-rich phase is advected at 

speed 𝑢𝑠, which is calculated from the mass and species balance across the interface 

�̇� = 𝜌1(𝑢1 − 𝑢𝑠) = 𝜌2(𝑢2 − 𝑢𝑠) (5) 
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𝜌1(𝑢1 − 𝑢𝑠)𝑦1,𝑖 + 𝐽1,𝑖 = 𝜌2(𝑢2 − 𝑢𝑠)𝑦2,𝑖 + 𝐽2,𝑖 (6) 

where “1” and “2” denote the conditions at the interface on the hydrocarbon-rich side and 

the water-rich side, respectively. The temperature at the interface 𝑇𝑠 is determined by the 

energy balance at the interface 

−𝜆1(∇T)1 = −𝜆2(∇T)2 + 𝑞
∗ (7) 

where 𝑞∗ = ∑ [𝜌1(𝑢1 − 𝑢𝑠)𝑦1,𝑖 + 𝐽1,𝑖](ℎ2,𝑖 − ℎ1,𝑖)𝑖 . The compositions at the interface on the 

hydrocarbon-rich side {𝑦1,𝑖} and the water-rich side {𝑦2,𝑖} are taken as the equilibrium 

compositions at the local temperature and pressure, which are calculated using an 

equation-of-state (EoS) approach (Details are provided in Sect. 2.3). The fluid velocity 

(𝑢1, 𝑢2) , temperature 𝑇𝑠 , and compositions {𝑦1,𝑖, 𝑦2,𝑖}  at the interface are used as 

Dirichlet boundary conditions for solving the conservation equations on each side of the 

interface. Neumann and Dirichlet boundary conditions are applied at the end of the 

domain (denoted by “ED”), i.e. (𝜕𝑢/𝜕𝑟)|𝐸𝐷 = 0, (𝜕𝑦𝑖/𝜕𝑟)|𝐸𝐷 = 0, and T|𝐸𝐷 = 𝑇𝑊,0. 

Spherical symmetry is enforced at the center of the droplet (denoted by “CD”), i.e. 

𝑢|𝐶𝐷 = 0 , (𝜕𝑦𝑖/𝜕𝑟)|𝐶𝐷 = 0 , and (𝜕𝑇/𝜕𝑟)|𝐸𝐷 = 0 . The droplet has an initial 

temperature of 𝑇𝐻,0 and initial compositions of {𝑦𝐻,𝑖}, where “H” denotes hydrocarbon 

and “W” denotes water in the following. The water reservoir has an initial temperature of 

𝑇𝑊,0. 𝑇𝐻,0 is smaller than 𝑇𝑊,0, which is a technique used in engineering applications to 

prevent hydrocarbon coking. 

2.2 Generalized Maxwell-Stefan expression for multi-component diffusion 
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In this study, we use MS expression to calculate diffusive flux as suggested by Curtiss 

and Bird [14] because the linear combination coefficients in the MS expression are 

concentration-independent, while those combination coefficients in the generalized Fick’s 

law are strongly dependent on concentrations. The generalized MS equations and the 

diffusive driving forces are valid to arbitrary numbers of species. 

2.2.1 Generalized Maxwell-Stefan equations and derivation of driving forces 

Generalized MS equations [14] are 

∑
𝑥𝑖𝑥𝑗

𝐷𝑖𝑗
(
𝑱𝑗

𝜌𝑦𝑗
−

𝑱𝑖
𝜌𝑦𝑖

)

𝑗≠𝑖

= 𝒅𝑖 −∑
𝑥𝑖𝑥𝑗

𝐷𝑖𝑗
(
𝐷𝑗
𝑇

𝜌𝑦𝑗
−
𝐷𝑖
𝑇

𝜌𝑦𝑖
)

𝑗≠𝑖

𝛻ln𝑇 (8) 

where 𝑥𝑖 is the mole fraction, Ji is the mass flux vector, 𝐷𝑖𝑗 is the binary diffusion 

coefficient, 𝐷𝑖
𝑇 is the generalized thermal diffusion coefficient, and 𝒅𝑖 is the diffusive 

driving force. In this study, the thermal diffusion term in Eq. (8) is neglected. The driving 

force was formulated by Curtiss and Bird as 

𝑐𝑅𝑇𝒅𝑖 = 𝑐𝑥𝑖𝑇∇(
�̅�𝑖
𝑇
) + 𝑐𝑥𝑖ℎ̅𝑖∇ln𝑇 − 𝑦𝑖∇𝑃 − 𝜌𝑦𝑖𝒈𝑖 + 𝑦𝑖∑𝜌𝑦𝑗𝒈𝑗

𝑗

 (9) 

where 𝑐 is the total molar concentration, 𝑅 is the gas constant, �̅�𝑖 is the partial molar 

Gibbs energy (the chemical potential), ℎ̅𝑖 is the partial molar enthalpy, and 𝒈𝑖 is the 

external body force (Note that the external force is neglected in this study). The term 

𝑇∇(�̅�𝑖/𝑇) can be written as follows [16] 



10 
 

𝑇∇(
�̅�𝑖
𝑇
) = ∇�̅�𝑖 − �̅�𝑖∇ln𝑇

=∑(
𝜕�̅�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

+ (
𝜕�̅�𝑖
𝜕𝑇

)
𝑥,𝑃

∇𝑇 + (
𝜕�̅�𝑖
𝜕𝑃

)
𝑥,𝑇

∇𝑃 − �̅�𝑖∇ln𝑇

=∑(
𝜕�̅�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

− 𝑇𝑆�̅�∇ln𝑇 + �̅�𝑖∇𝑃 − �̅�𝑖∇ln𝑇

=∑(
𝜕�̅�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

− ℎ̅𝑖∇ln𝑇 + �̅�𝑖∇𝑃 

(10) 

where 𝑆�̅�  is partial molar entropy, and �̅�𝑖  is partial molar volume. Canceling the 

temperature gradient term and neglecting the external body force, the driving force 

becomes 

𝑐𝑅𝑇𝒅𝑖 = 𝑐𝑥𝑖∑(
𝜕�̅�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

+ (𝑐𝑥𝑖�̅�𝑖 − 𝑦𝑖)∇𝑃 (11) 

The partial molar Gibbs energy can be expressed using fugacity coefficients 

�̅�𝑖 = 𝐺𝑖
𝐼𝐺 + 𝑅𝑇ln(𝑥𝑖�̂�𝑖) (12) 

where 𝐺𝑖
𝐼𝐺 is the molar Gibbs energy of pure species i in the ideal gas state, and �̂�𝑖 is 

the fugacity coefficient of species i. Substituting Eq. (12) into Eq. (11), the driving force 

is further reduced 

𝑐𝑅𝑇𝒅𝑖 = 𝑐𝑥𝑖𝑅𝑇∑*
𝜕ln(𝑥𝑖�̂�𝑖)

𝜕𝑥𝑗
+
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

+ (𝑐𝑥𝑖�̅�𝑖 − 𝑦𝑖)∇𝑃 (13) 

In this study, the pressure gradient term is neglected, and the driving force becomes 

𝒅𝑖 = 𝑥𝑖∑*
𝜕ln(𝑥𝑖�̂�𝑖)

𝜕𝑥𝑗
+
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

= ∇𝑥𝑖 + 𝑥𝑖∑(
𝜕ln�̂�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

 (14) 

The derivation of the generalized driving force presented above is summarized from Bird 
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and co-workers’ works [14, 16]. The same expression has been proposed by Krishna et al. 

[15], but without a theoretical derivation. The notations in this study are different from 

the cited works, and the Appendix shows that these notations are essentially the same. 

Note that our notations are easier for use in computations. The fugacity coefficients and 

their partial derivatives are presented in Sect. 2.3.1-2.3.3. 

2.2.2 Driving forces for the ideal mixture 

To evaluate the mass-flux model introduced in the previous subsection, we compare 

the above model with a simpler model, in which the concentration gradients are used as 

the only driving force. The driving forces in Eq. (14) based on the ideal gas assumption 

�̂�𝑖 ≡ 1 is 

𝒅𝑖 = ∇𝑥𝑖 (15) 

The non-ideality in the generalized driving force is given by 

∆𝒅𝑖
non-ideal = 𝑥𝑖∑(

𝜕ln�̂�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

∇𝑥𝑗

𝑛

𝑗=1

 (16) 

Note that in our previous work [2], a bulk diffusion coefficient for each species is 

approximately estimated using 

𝐷𝑖 =
1 − 𝑥𝑖

∑ 𝑥𝑗/𝐷𝑖𝑗𝑗≠𝑖
 (17) 

and the Fick’s law is used to calculate the mass flux 

𝑱𝑖 = −𝜌𝐷𝑖∇𝑦𝑖 (18) 

In this study, MS equations (Eq. (8)) are used instead of Eq. (17)-(18). We denote the 
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model using the ideal driving force as “the ideal fluid model” for simplicity, and 

correspondingly the model using the non-ideal driving force introduced in Sect. 2.2.1 is 

denoted as “the non-ideal fluid model”. 

2.3 Phase equilibrium and physical properties 

Phase equilibrium calculation is an important part of the modeling. Most 

hydrocarbons have only limited miscibility in water at standard conditions (i.e., 20 
o
C and 

1 bar). However, as the temperature and pressure are raised toward the water’s critical 

point (374 
o
C, 221 bar), the mutual solubility of hydrocarbons and water increases. Rich 

experimental data on the phase equilibrium of water and hydrocarbons exist in the 

literature [28-33]. However, the data are only available at certain pressures and 

temperatures and for a limited number of components. Specifically, LLE (liquid–liquid 

equilibrium) data are limited to temperatures near the mixture critical solution point.  

The upper critical solution temperature (UCST) is the critical point above which there 

is no phase separation. Because there is no clear definitions for ternary systems or 

systems with more than three species and similar to what was done in our previous work, 

following the definitions used by Costa and Freitas [34], and Koningsveld and Staverman 

[35], we use the term UCST to refer a certain temperature point where a certain 

composition of hydrocarbons can be mixed with water in any ratio. 

In our previous studies, the cubic Peng-Robinson EoS with standard van der Waals 
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mixing rules, and the temperature-dependent binary interaction parameters (BIP) were 

used for the computationally efficient calculation of the LLE for hydrocarbon-water 

binary and ternary systems. Here we extend our model for multi-component (n>3) 

systems of hydrocarbons and water, and we use predictive, Peng-Robinson 1978 EoS 

(PPR78) model [36-38] to calculate BIPs of two species, e.g. HC-water, and HC-HC. 

2.3.1 Peng-Robinson EoS with mixing rules 

The cubic Peng-Robinson EoS with standard van der Waals one-fluid mixing rules 

[39] is given by 

𝑃 =
𝑅𝑇

𝑉 − 𝑏𝑚
−

𝑎𝑚(𝑇)

𝑉2 + 2𝑏𝑚𝑉 − 𝑏𝑚2
 (19) 

𝑎𝑚 =∑∑𝑥𝑖𝑥𝑗(1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗
𝑗𝑖

  

𝑏𝑚 =∑𝑥𝑖𝑏𝑖
𝑖

  (20) 

where 𝑅 is the universal gas constant, 𝑉 is the total molar volume, and 𝑘𝑖𝑗 is the BIP. 

𝑎𝑖  and 𝑏𝑖  are calculated from critical temperature (𝑇𝑐 ), critical pressure (𝑃𝑐 ), and 

acentric factor (ω) 

𝑎𝑖 = 0.457236
𝑅2𝑇𝑐,𝑖

2

𝑃𝑐,𝑖
*1 + 𝑚𝑖 (1 − √

𝑇

𝑇𝑐,𝑖
)+

2

  

𝑏𝑖 = 0.0777961
𝑅𝑇𝑐,𝑖
𝑃𝑐,𝑖

 (21) 

where for ω𝑖 ≤ 0.491, 
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𝑚𝑖 = 0.374640 + 1.54226ω𝑖 − 0.26992ω𝑖
2   

and for ω𝑖 > 0.491 [40],  

𝑚𝑖 = 0.379642 + 1.48503ω𝑖 − 0.164423ω𝑖
2 + 0.0166667ω𝑖

3   

Note that for molecules with ω𝑖 > 0.491, Robinson and Peng have made a correction on 

𝑚𝑖 to achieve more accurate predictions on vapor pressures of heavy hydrocarbons. 

2.3.2 LLE criteria 

The fugacity coefficient calculated from the Peng-Robinson EoS and the one-fluid 

mixing rules is [41] 

ln(�̂�𝑖) = − ln [𝑍 (1 −
𝑏𝑚
𝑉
)] +

𝑏𝑖
𝑏𝑚

(𝑍 − 1) 

−
𝑎𝑚

√8𝑏𝑚𝑅𝑇
[
1

𝑎𝑚

𝜕𝑎𝑚
𝜕𝑥𝑖

−
𝑏𝑖
𝑏𝑚
] ln *

𝑉 + (1 + √2)𝑏𝑚

𝑉 + (1 − √2)𝑏𝑚
+ 

(22) 

where 
𝜕𝑎𝑚
𝜕𝑥𝑖

= 2∑𝑥𝑗(1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗
𝑗

 (23) 

and 𝑍 = 𝑃𝑉/𝑅𝑇 is the compressibility. The fugacity criteria for phase equilibrium is 

𝑓1,𝑖 = 𝑓2,𝑖  or  𝑥1,𝑖 �̂�1,𝑖 = 𝑥2,𝑖 �̂�1,𝑖 (24) 

where “1” denotes the hydrocarbon-rich phase and “2” the water-rich phase in the 

equilibrium state. In a binary system, the equilibrium compositions are well defined, and 

can be calculated using Eq. (24) and unity conditions (∑𝑥1,𝑖 = ∑𝑥2,𝑖 = 1). Unlike a 

binary system, there are infinite numbers of equilibrium compositions for a 

multi-component (𝑛 ≥ 3) system at a given pressure and temperature. Solving the transit 

equilibrium compositions of a multi-component system during a transport process 
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requires transport constraints as formulated in Eq. (5) and (6). 

2.3.3 Partial derivatives of the fugacity coefficients 

(
𝜕ln�̂�𝑖

𝜕𝑥𝑗
)
𝑇,𝑃

 is used in the non-ideal driving force accounting for the non-ideality. We 

derive its formulation from the Peng-Robinson EoS and the one-fluid mixing rules 

(
𝜕ln�̂�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

= −

𝜕𝑉

𝜕𝑥𝑗
− 𝑏𝑗

𝑉 − 𝑏𝑚
−
𝑏𝑖𝑏𝑗

𝑏𝑚
2
(𝑍 − 1) +

𝑏𝑖𝑍

𝑏𝑚𝑉

𝜕𝑉

𝜕𝑥𝑗

−

𝑎𝑚 (𝑏𝑗𝑉 − 𝑏𝑚
𝜕𝑉

𝜕𝑥𝑗
) (

1

𝑎𝑚

𝜕𝑎𝑚
𝜕𝑥𝑖

−
𝑏𝑖
𝑏𝑚
)

𝑅𝑢𝑇𝑏𝑚𝑉
∗

− 
1

2√2𝑅𝑇𝑏𝑚
*
𝜕2𝑎𝑚

𝜕𝑥𝑖𝜕𝑥𝑗
−
𝑏𝑗

𝑏𝑚

𝜕𝑎𝑚

𝜕𝑥𝑖
−
𝑏𝑖

𝑏𝑚

𝜕𝑎𝑚

𝜕𝑥𝑗

+
2𝑎𝑚𝑏𝑖𝑏𝑗

𝑏𝑚
2 + ln

𝑉 + (1 + √2)𝑏𝑚

𝑉 + (1 − √2)𝑏𝑚
 

(25) 

where 
𝜕2𝑎𝑚
𝜕𝑥𝑖𝜕𝑥𝑗

= 2(1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗 (26) 

 𝑉∗ = 𝑉2 + 2𝑏𝑚𝑉 − 𝑏𝑚
2
 (27) 

and 
𝜕𝑉

𝜕𝑥𝑖
=
𝑉∗
𝜕𝑎𝑚
𝜕𝑥𝑖

− [2𝑎𝑚(𝑉 − 𝑏𝑚) +
𝑅𝑇𝑉∗

(𝑉 − 𝑏𝑚)2
] 𝑏𝑖

2𝑎𝑚(𝑉 + 𝑏𝑚) −
𝑅𝑇𝑉∗

(𝑉 − 𝑏𝑚)
2

 (28) 

2.3.4 Predictive, Peng-Robinson 1978 model 

BIP 𝑘𝑖𝑗 in the one-fluid mixing rules is critical in predicting the phase equilibrium. 

In this study, predictive, Peng-Robinson 1978 (PPR78) model is used to calculate BIPs of 
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HCs and water. PPR78 model is a group contribution method used to calculate the 

temperature-dependent BIPs in PR-EoS with one-fluid mixing rules between any two 

species among alkanes, cycloalkanes, alkenes, aromatics, CO2, H2S, H2, N2, water, etc. 

[38]. This model has correlated a large amount of phase equilibrium experimental data of 

species and covered a wide temperature and pressure range. Using PPR78, a BIP is 

calculated using the follow equation 

𝑘𝑖𝑗 =

−
ℱ𝑖𝑗
2 − (

√𝑎𝑖
𝑏𝑖

−
√𝑎𝑗
𝑏𝑗
)

2

2
√𝑎𝑖𝑎𝑗
𝑏𝑖𝑏𝑗

  (29) 

w

where 
ℱ𝑖𝑗 =∑ ∑ (𝛼𝑖𝑘 − 𝛼𝑗𝑘)(𝛼𝑖𝑙 − 𝛼𝑗𝑙)𝐴𝑘𝑙 (

298.15

𝑇
)
(𝐵𝑘𝑙/𝐴𝑘𝑙−1)𝑁𝑔

𝑙=1

𝑁𝑔

𝑘=1
 (30) 

𝑁𝑔 = 21 is the total number of functional groups defined in PPR78, 𝐴𝑘𝑙 and 𝐵𝑘𝑙 are 

constants correlated from experimental data by the authors of PPR78, and 𝛼𝑖𝑘 is the 

occurrence of group k in molecule i. 

2.3.5 Solving the multi-component LLE under transport constraints 

Infinite equilibrium points exist for multi-component LLE problems. The transport 

constraints are used to find the correct equilibrium point at each HC-water interface in the 

mixing and transport simulation. The following equation is formulated from Eq. (5) and 

(6) 

𝜌1(𝑢1 − 𝑢𝑠) = 𝜌2(𝑢2 − 𝑢𝑠) =
𝐽2,𝑖 − 𝐽1,𝑖
𝑦1,𝑖 − 𝑦2,𝑖

=
𝐽2,𝑗 − 𝐽1,𝑗

𝑦1,𝑗 − 𝑦2,𝑗
 (31) 
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Let 𝐹𝑖𝑗 = (𝑦1,𝑗 − 𝑦2,𝑗)(𝐽2,𝑖 − 𝐽1,𝑖) − (𝑦1,𝑖 − 𝑦2,𝑖)(𝐽2,𝑗 − 𝐽1,𝑗), based on which we define 

an objective function 𝑓 of transport constraints 

𝑓 =∑ ∑ 𝐹𝑖𝑗
2

𝑗≠𝑖𝑖
 (32) 

When 𝑓 = 0 (note that zero is the minimum), the transport constraints (Eq. (5) and (6)) 

are satisfied. The Nelder-Mead method is used to minimize this objective function 𝑓 

among all equilibrium points according to the fugacity criteria (Eq. (24)). The 

minimization results fulfill Eq. (31), which is used to calculate the interfacial velocity 𝑢𝑠 

𝑢𝑠 = 𝑢1 −
𝐽2,𝑖 − 𝐽1,𝑖

𝜌1(𝑦1,𝑖 − 𝑦2,𝑖)
 (33) 

2.3.6 Physical properties 

The Tracer Liu–Silva–Macedo (TLSM) equation [42] is used to compute tracer 

binary diffusion coefficients, and Wesselingh and Krishna model [43] is used to construct 

binary diffusion coefficients based on tracer values. Chung’s method [44] is used to 

calculate the viscosity and thermal conductivity. This method is applicable for dense 

fluids with pressures up to thousands of bar for a wide range of temperatures including 

those examined in this study. Input parameters (critical constants 𝑃𝐶 , 𝑇𝐶 , and 𝑉𝐶 , 

acentric factor 𝜔, dipole moment 𝜇𝑟, and association parameter 𝜅) of molecules used in 

this study are listed in Table 1. Heat capacities and molar enthalpies are calculated from 

departure functions using the EoS approach (formulations are listed in our previous work 

[1]). Ideal gas state heat capacities and molar enthalpies (not listed here) are also from 
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[45]. 

Table 1. Values of critical constants (𝑃𝐶 , 𝑇𝐶 , and 𝑉𝐶), acentric factor (𝜔), dipole moment (𝜇𝑟), and 

association parameter 𝜅 for molecules used in this study from Yaws’ Handbook [45]. 

 𝑃𝐶 (bar) 𝑇𝐶 (K) 𝑉𝐶 (cm
3
/mol) 𝜔 𝜇𝑟 

(Debye) 
𝜅 

Water 220.6 647.0    57.1 0.344 1.8 0.076 

n-decane 21.2 618.5   603.1 0.484 0 0 

n-hexadecane 14.0 723.0   593.0 0.717 0 0 

n-triacontane 8.0 844.0 1805.0 1.307 0 0 

Benzene 49.0 562.1 256.0 0.210 0 0 

Toluene  41.4 591.8 316.0 0.264 0.360 0 

1,3,5-trimethylbenzene  31.3 637.3   433.0 0.399 0.561 0 

1-butylbenzene  28.9 660.5   497.0 0.394 0.369 0 

1-decylnaphthalene  15.8 859.0 1070.0 0.642 0 0 

1-dodecylnaphthalene  13.04 854.7 1081.5 0.807 0 0 

2.3.7 Phase Equilibria in Binary HC-water systems 

Table 2. UCST of binary HC-water systems at 24MPa for HC species used in this study. Measured data are 

from [28, 31]. Note that n-C10, n-C16, and n-C30 represent n-decane, n-hexadecane, and n-triacontane, 

respectively. 

 n-C10 n-C16 n-C30 benz. toluene trimethyl

-benz. 

butyl- 

benz. 

decyl- 

naph. 

dodecyl

-naph. 

Calculated 

UCST (K) 
649.0 651.7 653.7 584.0 594.6 609.1 630.5 652.0 652.6 

Measured 

UCST (K) 
632.0 638.8 655.6 569.1 586.3 603.2 N/A N/A N/A 

Phase equilibria of binary HC-water systems have been calculated at 24MPa for the 

species in Table 1 using the fugacity criteria (Eq. (24)) and the PPR78 model (Eq. 

(29)-(30)). The UCSTs are listed in Table 2 with experimental data from the literature. 

Because PPR78 has not included the critical locus in their datasets because of technical 

difficulties [38], UCST results deviate by <20K from the measurements. The phase 
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equilibrium water compositions are shown in Figure 1 with experimental measurements 

from the literature. The water mole fractions of n-decane match well with the 

measurements, but those of toluene have deviations of ~20% (Note that using a 

cubic-plus-association EoS [46], which is compatible with PPR78, improves the phase 

equilibrium calculations). As a group contribution method, PPR78 yields phase 

equilibrium results with correct trends and tolerable errors. 

 

Figure 1. Equilibrium water compositions of (a) PPR78 results of n-decane and water at 23MPa (solid blue 

line), 24MPa (dashed blue line), and 25MPa (dash-dot blue line), toluene and water at 23MPa (solid red 

line), 24MPa (dashed red line), and 25MPa (dash-dot red line); and experimental data of n-decane and 

water at 23MPa (circle sign) and 25MPa (plus sign) [47], and experimental data of toluene and water at 

25MPa (cross sign) [48]; (b) PPR78 results of binary HC-water systems at 24MPa: solid blue line for 

n-decane, dashed blue line for n-hexadecane, dash-dot blue line for n-triacontane, solid red line for benzene, 

dashed red line for toluene, dash-dot red line for 1,3,5-trimethylbenzene, solid magenta line for 

1-butylbenzene, solid black line for 1-decylnaphthalene, and dashed black line for 1-dodecylnaphthalene 

(color figure online). 

3 Numerical methods and simulation configurations 

The governing equations ((1)–(4)) are solved using a 2
nd

 order explicit Runge-Kutta 

scheme for temporal derivatives, 2
nd

 order upwind schemes for advective terms, and 2
nd

 

order central difference schemes for other spatial derivatives, over the droplet domain and 
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a surrounding domain of 10 times the droplet radius which approximates the water 

reservoir. The phase boundary is tracked instantly: 𝐿(𝑡 + ∆𝑡) = 𝐿(𝑡) + 𝑢𝑠∆𝑡, where ∆𝑡 

is the time step, and 𝐿(𝑡 + ∆𝑡) and 𝐿(𝑡) are the droplet radius at a new time step and 

its previous time step, respectively. 

A staggered uniform grid with the grid size ∆𝑟 = 5μm is used. The time step size is 

∆𝑡 = 10μs. Grid size and time-step solution independence have been tested, and these 

values are found to give a good balance between solution accuracy and computational 

economy. Time-step independence also indicates convergence at each time step for which 

no iteration is required for convergence. Each case requires about 10-24 hours of 

computer time, depending on the species number, on a single Pentium based personal 

computer. 

4 Results and discussion 

The transport and mixing processes are simulated for a single- or binary-HC droplet 

in a reservoir of water at supercritical or near-critical conditions. The system pressure is 

maintained at 24MPa. The droplet has an initial radius of 𝐿0 = 250 𝜇m, and an initial 

temperature of 𝑇𝐻,0 = 100°C (if not otherwise specified). The initial water temperature 

𝑇𝑊,0 is also used as the Dirichlet boundary condition at 𝑟 = 2500 𝜇m. Single- and 

binary-HC droplets have been studied to compare the results for non-ideal and ideal 

diffusive driving forces, and results are presented in the following. 
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4.1 Cases of a single-HC droplet 

4.1.1 Partially miscible conditions 

 A 1-decylnaphthalene droplet mixing with water is studied for different initial water 

temperatures 𝑇𝑊,0 = 580 − 700K. The UCST of 1-decylnaphthalene and water system is 

652K. For cases of 𝑇𝑊,0 < 652K, HC and water will have a distinct interface all the time. 

The case of 𝑇𝑊,0 = 620K is selected to represent the partially miscible conditions. The 

evolutions of the flow velocity, temperature and water mole fraction for the case of 

𝑇𝑊,0 = 620K are shown in Figure 2, Figure 3 and Figure 4, respectively. The velocity 

profiles (cf. Figure 2) show that the convection is weak during the mixing process. The 

average velocity is �̅�~5𝜇m/s, and the entire process takes 𝑡~2s. Thus the average 

convection distance �̅�𝑡 is on the order of 10𝜇m, which is smaller than the droplet radius 

𝐿0 = 250𝜇m. The velocity fields also show that the HC and water body experiences an 

expansion (𝑢 > 0) for most of the time. There is a small reverse flow of water (flow 

towards the droplet center) only in the early stage of mixing at 𝑟~600𝜇m. This is due to 

the condensed water near the HC-water interface, where the water temperature is cooled 

down by the HC droplet. We expect to see larger reverse flows in the water near the 

HC-water interface when 𝑇𝑊,0 is raised. Also note that the ideal and non-ideal fluid 

models predict close results in this case. 
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Figure 2. Evolution of flow velocity profiles in the case of a 1-decylnaphthalene droplet mixing with 

SCW at initial water temperature 𝑇𝑊,0 = 620K (results using ideal driving force in solid blue lines and 

those using non-ideal driving force in dashed red lines): (a) profiles at 0.1s, 0.5s and 2s, (b) an enlarged 

view at 0.1s, and (c) an enlarged view at 0.5s. 

 Because convection is weak in this case, heat conduction is the major mechanism in 

the heat transfer process. Temperature profiles show that water near the droplet is cooled 

down ~30K, and the droplet’s temperature increases quickly in 0.5s. Both models yield 

almost the same temperature profiles. Temperature profiles also show that in the early 

stage of the mixing process (𝑡 = 0.1s), the thermal diffusivities are distinctively different 

on the two sides of the HC-water interface.  

 
Figure 3. Evolution of temperature profiles in the case of a 1-decylnaphthalene droplet mixing with 

SCW at initial water temperature 𝑇𝑊,0 = 620K (results using ideal driving force in solid blue lines and 

those using non-ideal driving force in dashed red lines). 
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Figure 4. Evolution of water mole fraction in the case of a 1-decylnaphthalene droplet mixing with SCW at 

initial water temperature 𝑇𝑊,0 = 620K (results using ideal driving force in solid blue lines and those using 

non-ideal driving force in dashed red lines). 

Diffusion barrier. Mole fraction results show that the non-unity fugacity has small 

effect on the mass diffusion in the beginning (e.g. 𝑡 = 0.1s) and the end (e.g. 𝑡 = 2s) of 

the process, and relatively large differences (~0.04 in mole fractions at 𝑡 = 0.5s) occurs 

in the middle of the process. The non-ideal fluid model predicts slightly slower mass 

diffusion process than the ideal fluid model at 𝑇𝑊,0 = 620K (lower than the UCST), 

which indicates that the non-ideality (Eq. (16)) in the diffusion driving force acts as a 

diffusion barrier to slow the mixing process. Figure 5 shows that the non-ideal fluid 

model predicts smaller water mass flux than the ideal model in the early stage of mixing 

at temperatures lower than the UCST in this case, and the diffusion barrier is still small. 
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Figure 5. Water mass flux at t=0.1s in the case of a 1-decylnaphthalene droplet mixing with water at 

initial water temperature 𝑇𝑊,0 = 620K (results using ideal driving force in solid blue lines and those using 

non-ideal driving force in dashed red lines). 

Heat transfer and mass transfer occur at similar rates as shown in the temperature and 

water mole fraction profiles. This is confirmed in the ratio of thermal diffusivity 

𝛼 = 𝜆/ρ𝐶𝑝 and mass diffusivity 𝐷12 as shown in Figure 6. This ratio is ~2 in the HC 

droplet. Although in water this ratio is large, the heat transfer and mass transfer rates are 

small in the water-rich phase. The overall rates of heat transfer and mass transfer in the 

entire domain are on the same order of magnitude. 

 

Figure 6. Ratio of thermal diffusivity and mass diffusivity at 0.2s in the case of a 1-decylnaphthalene 

droplet mixing with water at initial water temperature 𝑇𝑊,0 = 620K (results using ideal driving force in 
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solid blue lines and those using non-ideal driving force in dashed red lines). 

4.1.2 Fully miscible conditions 

In the case of 𝑇𝑊,0 = 660K, initial water temperature is slightly above the UCST. 

Because the HC droplet’s initial temperature is 100ºC, the temperature at the HC-water 

interface is lower than the UCST for most of the time of the mixing process. The 

HC-water interface exists until the interfacial temperature reaches the UCST. The 

evolutions of the flow velocity, temperature and water mole fraction of this case are 

shown in Figure 7, Figure 8 and Figure 9, respectively.  

The velocity profiles show that the convection becomes larger than that in the case of 

𝑇𝑊,0 = 620K, and the convection distance is on the order of 100𝜇m. Similar to the case 

of 𝑇𝑊,0 = 620K, both the HC and water experience an expansion during most of the time. 

However, because the difference between HC and water initial temperatures is larger, the 

reverse flow is ~2x larger at the early stage, e.g. 𝑡 = 0.1s. The ideal and non-ideal fluid 

models predict similar results in the beginning. But the difference increases with time. At 

𝑡 = 0.5 and 0.8s, the non-ideal case has smaller velocity than the ideal case, which 

indicates that the mole fractions and/or temperature have large differences. The jump 

conditions at the HC-water interface become large at 𝑡 = 0.8 for both models, which 

indicate the increase of mass flux across the interface. Figure 7d shows that the ideal case 

reaches equilibrium earlier than the non-ideal case. 
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Figure 7. Evolution of flow velocity profiles in the case of a 1-decylnaphthalene droplet mixing with 

SCW at initial water temperature 𝑇𝑊,0 = 660K (results using the ideal driving force in solid blue lines and 

those using the non-ideal driving force in dashed red lines). 

 Figure 8 shows the temperature profiles for the same case. The temperature profiles 

are similar to those in the case of 𝑇𝑊,0 = 620K, and both models predict similar results 

in the temperature. 

 

Figure 8. Evolution of temperature profiles in the case of a 1-decylnaphthalene droplet mixing with 

SCW at initial water temperature 𝑇𝑊,0 = 660K (results using the ideal driving force in solid blue lines and 
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those using the non-ideal driving force in dashed red lines). 

Figure 9 shows the water mole fractions for the case of 𝑇𝑊,0 = 660K. In the early 

stage (cf. Figure 9a), ideal and non-ideal fluid models yield similar results. The 

differences increase quickly. At 𝑡 = 0.5s, the non-ideal fluid model predicts ~0.1 

smaller water mole fractions than the ideal model. At 𝑡 = 0.8s, the difference of water 

mole fractions increases to ~0.15. Moreover, the non-ideal model predicts the formation 

of a thin mixing front with a large gradient at 𝑟~300𝜇m in the HC-rich phase (cf. Figure 

10), which largely differs from that predicted by the ideal model. The reason of the 

formation of this mixing front is the “diffusion barrier” associated with the fugacity term 

in the non-ideal fluid model. 

 

Figure 9. Evolution of water mole fraction in the case of a 1-decylnaphthalene droplet mixing with SCW at 

initial water temperature 𝑇𝑊,0 = 660K (results using the ideal driving force in solid blue lines and those 

using the non-ideal driving force in dashed red lines). 
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Figure 10. Water mole fraction at 𝑡 = 0.8s in the case of a 1-decylnaphthalene droplet mixing with SCW 

at initial water temperature 𝑇𝑊,0 = 660K (enlarged view of Figure 9c). The water-HC interface locates at 

359𝜇m for the ideal model and 345𝜇m for the non-ideal model. 

The formation of a mixing front can be explained using the water mass flux profiles 

as shown in Figure 11. At 𝑡 = 0.5s, the non-ideal fluid model predicts the water mass 

flux on the HC-rich side of the interface −0.0085kg/m
2
s, while the ideal model shows 

−0.0142kg/m
2
s, that is 40% smaller water mass flux. The non-ideality also predicts a 

large gradient change inside the HC-rich phase near the interface on the water mass flux 

profile at 𝑡 = 0.5s. The sharp gradient in the flux profile predicted by the non-ideal fluid 

model directly causes water mole fractions to increase quickly in the HC-rich phase but 

limited in a short distance near the interface. But the diffusion in the bulk of the HC-rich 

phase remains slow in the non-ideal case. The difference between the diffusion at the 

interface and that in the HC-phase bulk initiates the formation of a large gradient in the 

water mole fraction near the interface (𝑟~300𝜇m) at 𝑡 = 0.5s. Thus a thin HC mixing 

front is formed. 
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Figure 11. Water mass flux at (a) 𝑡 = 0.8s, (b) 𝑡 = 0.8s, and enlarged views at (c) 𝑡 = 0.5s and (d) 

𝑡 = 0.8s in the case of a 1-decylnaphthalene droplet mixing with SCW at initial water temperature 𝑇𝑊,0 =

660K. 

Figure 11b shows that at 𝑡 = 0.8s, the large gradient in the water mass flux profile 

remains close to the interface location at 𝑡 = 0.5s (𝑟~300𝜇m was the interface location 

at 𝑡 = 0.5s but at 𝑡 = 0.8s it is inside the HC-rich phase – this is because the convection 

is small), and the non-ideal fluid model predicts mass fluxes of less than 50% as 

compared to the ideal model. Thus in this case, the non-ideality forms a strong diffusion 

barrier resisting the water diffusing into the HC-rich phase beyond the thin mixing front 

(𝑟 < 300𝜇m). Figure 11b also show that the variations of the water mass flux in the thin 

mixing front (300𝜇m < 𝑟 < 350𝜇m) become small, which indicates that in the thin 

mixing front, the diffusion process is negligible and the mass transfer is dominated by the 

slow convection. 

 In this case (TW,0 = 660K), the heat transfer process occurs faster than the mass 

transfer process, which is confirmed in Figure 12. Results show that the ratio of thermal 

diffusivity and mass diffusivity at 𝑡 = 0.5 and 0.8s reaches 5−6 at the interface on the 

HC side, decreases to 2−3 in the bulk of the HC-rich phase, and remains a relatively 
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small value of ~1 in the water-rich phase.  

 

Figure 12. The ratio of thermal diffusivity and mass diffusivity at (a) 𝑡 = 0.8s, and (b) 𝑡 = 0.8s in the 

case of a 1-decylnaphthalene droplet mixing with SCW at initial water temperature 𝑇𝑊,0 = 660K. 

4.1.3 Water diffusion time 𝑡𝑊 

 The two cases discussed above show different mixings in the ideal and non-ideal 

models. The partially miscible case (𝑇𝑊,0 = 620K) show that ideal and non-ideal models 

yield similar results, but the fully miscible case (TW,0 = 660K) show that the non-ideal 

model predicts a slower diffusion process. To quantify the diffusion process, a time scale, 

water diffusion time 𝑡𝑊, is defined as the time required for the water mole fraction at the 

droplet center to reach 80% of its equilibrium value. Figure 13 shows the profiles of the 

water mole fraction at the droplet center. In the case of 𝑇𝑊,0 = 620K, the water’s 

equilibrium mole fraction is 60%, thus its water diffusion time 𝑡𝑊 is defined as when 

the water mole fraction at the droplet center reaches 48%. Similarly in the case of 

𝑇𝑊,0 = 660K, the water’s equilibrium mole fraction is 100% (fully miscible), and 𝑡𝑊 

is defined as when the value reaches 80%. The water diffusion time indicates how fast a 

HC-water system reaches its equilibrium state. 
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Figure 13. Evolution of water mole fractions at the droplet center for mixing of 1-decylnaphthalene 

droplet with water at different initial water temperatures: (a) 𝑇𝑊,0 = 620K, and (b) 𝑇𝑊,0 = 660K. 

 Figure 14a shows the water diffusion times for the case of a 1-decylnaphthalene 

droplet mixing with water using different water initial temperatures 𝑇𝑊,0 = 580 − 700K. 

Results show that when 𝑇𝑊,0 below the UCST, the ideal and non-ideal models predict 

similar water diffusion times. When 𝑇𝑊,0 approaches the UCST, water diffusion time 

increases because more water can diffuse into the HC droplet. In this case, specifically 

when the water temperature reaches 646K, both the ideal and non-ideal models predict a 

sudden increase in the water diffusion time, but the non-ideal model predicts a much 

larger jump. As we discussed in the case of 𝑇𝑊,0 = 660K, the non-ideal model captures a 

strong diffusion barrier resisting water diffusion into the HC-rich phase. The sudden 

increase between 644K and 646K indicates that the non-ideal diffusive force has a sudden 

increase. This sudden change is also revealed in the water equilibrium compositions as 

shown in Figure 14b. The equilibrium water composition increases quickly from 82.7% 

at 644K to 95.2% at 646K. The strong diffusion barrier for water is captured by both the 

phase equilibrium calculation and the non-ideal diffusive driving force. As 𝑇𝑊,0 

increases past the UCST, the water diffusion time decreases as well. This is because that 



32 
 

the temperature on the interface reaches the UCST more quickly. The maximum relative 

difference of water diffusion times between the two models is 70.2% at 660K. 

 

Figure 14. (a) Water diffusion times for mixing of 1-decylnaphthalene and water at different initial water 

temperatures 𝑇𝑊,0 using ideal (blue) and non-ideal (red) diffusive driving forces (the dashed line shows 

the UCST); (b) equilibrium water compositions in the binary mixutre of 1-decylnapthalene and water at 

24MPa (an enlarged view of Figure 1b for 1-decylnapthalene), and the dashed line shows the approximate 

turning point at 645K. 

In conclusion, the cases of a single-HC droplet show that when the system 

temperature is lower (e.g. 10K) than the system UCST in a HC/water mixing case, both 

models yield similar results. When the water temperature approaches the system UCST, 

the non-ideal model predicts a much slower mixing due to the strong diffusion barrier. 

4.2 Cases of a binary-HC droplet (ternary systems) 

 In Sect. 4.2.1, a binary-HC, 50%  benzene and 50%  (mole fractions) 

1-decylnaphthalene, droplet is studied for the cases in which the initial water and HC 

temperatures are different, and in Sect. 4.2.2, the same system is studied for equal initial 

temperatures. To investigate the effects of different HC-HC interactions on the mixing 

process, several HC pairs are studied in Sect. 4.2.3. 
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4.2.1 Cases of different initial temperatures 

 The cases studied in this subsection have the same configurations as those in Sect. 

4.1 except the ingredients of the HC droplets. The benzene and water system has a low 

UCST (584K), which is noted as UCST1, and the 1-decylnaphthalene and water system’s 

UCST (652K) is noted UCST2. Our previous study [2] showed that the (ternary) system 

UCST is close to UCST2 at this ratio, and fractionation is important when the system 

temperature is below the system UCST. Fractionation describes the process in which the 

light HC fraction, benzene, gradually diffuses into the water-rich phase, while the heavy 

fraction, 1-decylnaphthalene, remains in the HC-rich phase. In this subsection, first we 

revisit and present the fractionation in the case of 𝑇𝑊,0 = 620K; then we investigate the 

fully miscible conditions; and finally, water diffusion times of different initial water 

temperatures is presented. 

 Partially miscible case. Figure 15 shows mole fraction profiles for the binary-HC 

droplet case of 𝑇𝑊,0 = 620K. The velocity and temperature profiles are similar to those 

in the single-HC case of 𝑇𝑊,0 = 620K, and they are not presented here. The mole 

fraction profiles are also similar to the single-HC case, but with the fractionation as 

shown in Figure 15. The mole fraction of benzene decreases continuously during the 

process until it reaches ~0 at the end of the mixing process. The equilibrium results of 

this binary-HC case are the same as its corresponding single-HC case. The ideal and 

non-ideal fluid models yield similar results in this case. The diffusion barrier in the 
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non-ideal model predicts lower mass fluxes (cf. Figure 16), and thus slower mixing 

process. 

 
Figure 15. Evolution of mole fractions in the case of a 50% benzene and 50% 1-decylnaphthalene 

droplet mixing with SCW at initial water temperature 𝑇𝑊,0 = 620K (Results using the ideal driving force 

are benzene in solid blue lines, 1-decylnaphthalene in dashed purple lines, and water in dotted black lines. 

Those using the non-ideal driving force are benzene in solid red lines, 1-decylnaphthalene in dashed orange 

lines, and water in dotted magenta lines. Color figures online.) 

 Reverse diffusion. Figure 16 shows the mass fluxes for TW,0 = 620K at 0.2s and 

0.5s. Reverse diffusion, defined as the diffusion of a species against its concentration 

gradient by Toor in 1957 [49], occurs here for the heavier HC fraction 

1-decylnaphthalene in both the ideal and non-ideal models. Reverse diffusion occurs in 

the multi-component mass transfer due to the differences in the binary diffusion 

coefficients. Molecules with relatively small binary diffusion coefficients, e.g. the heavier 

HC component 1-decylnaphthalene, tend to move slower. When the concentration 

gradients are not large, the smaller diffusion velocity of the heavier HC component then 
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exhibits a reverse diffusion against its concentration gradients, because the diffusion flux 

is defined on the relative molecular velocity. 

 
Figure 16. Evolution of species mass fluxes in the case of a 50% benzene and 50% 1-decylnaphthalene 

droplet mixing with SCW at initial water temperature 𝑇𝑊,0 = 620K (Results using the ideal driving force 

are benzene in solid blue lines, 1-decylnaphthalene in dashed purple lines, and water in dotted black lines. 

Those using the non-ideal driving force are benzene in solid red lines, 1-decylnaphthalene in dashed orange 

lines, and water in dotted magenta lines. Color figures online.) 

We also observe that the diffusion barrier, which is caused by the non-ideality in the 

diffusive driving force, enhances the reverse diffusion. At and near the HC-water 

interface (200𝜇m < 𝑟 < 250𝜇m), the ideal and non-ideal fluid models predict similar 

reverse diffusions. At 𝑡 = 0.2s, the non-ideal model predicts reverse diffusions in the 

bulk of the HC droplet (𝑟 < 200𝜇m), but not the ideal model. This indicates that the 

non-ideality tends to concentrate the heavier HC fraction toward the center of the 

HC-rich phase. However, the extra reverse diffusion predicted in the non-ideal model 

does not last long. At 𝑡 = 0.5s, the mass flux difference between the ideal and non-ideal 

models vanishes and the two models yield similar mass flux results. 

Fully miscible case. Figure 17 shows the evolution of mole fraction profiles for the 
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binary-HC droplet case of 𝑇𝑊,0 = 660K. The velocity and temperature profiles not 

presented here because they are similar to the single-HC case. Figure 17 shows that at 

𝑡 = 0.2s, the mole fractions of 1-decylnaphthalene and water predicted by the non-ideal 

model are smaller than those predicted by the ideal model. The maximum difference 

increases to > 6% at 𝑡 = 0.5s. However, the mole fractions of the light HC fraction 

benzene are almost the same for the two models during the entire process. These indicate 

that the non-ideality in the diffusive driving force has the least effect on the light HC 

fraction, which is confirmed in the mass flux profiles as shown in Figure 18. 

 
Figure 17. Evolution of mole fractions in the case of a 50% benzene and 50% 1-decylnaphthalene 

droplet mixing with SCW at initial water temperature 𝑇𝑊,0 = 660K (Results using the ideal driving force 

are benzene in solid blue lines, 1-decylnaphthalene in dashed purple lines, and water in dotted black lines. 

Those using the non-ideal driving force are benzene in solid red lines, 1-decylnaphthalene in dashed orange 

lines, and water in dotted magenta lines. Color figures online.) 

 In the case of a higher temperature TW,0 = 660K, the mass flux differences of 
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1-decylnaphthalene between two models last for almost the entire process. Figure 18 

shows the mass fluxes at 0.2, 0.5, 0.8 and 2s. Strong reverse diffusions (−0.003 kg/m
2
s) 

of 1-decylnaphthalene occurring at 𝑟~200𝜇m predicted by the non-ideal at 𝑡 = 0.2s 

indicate a strong diffusion barrier, while the ideal model misses this effect (positive 

values ~0.001 kg/m
2
s) in the same region. The reverse diffusion of 1-decylnaphthalene 

predicted by the non-ideal model is −0.0025 kg/m
2
s at the interface 𝑟~250𝜇m when 

𝑡 = 0.2s, which is close to that formed in the lower TW,0 case (TW,0 = 620K). In the 

case of TW,0 = 660K, the reverse diffusion of 1-decylnaphthalene spreads to almost the 

entire HC droplet region (cf. the dashed orange line in Figure 18a). However, in the case 

of TW,0 = 620K, the reverse diffusion of the same species decreases quickly with the 

radial distance, and at 𝑟~200𝜇m, the reverse diffusion of 1-decylnaphthalene is only 

−0.0005 kg/m
2
s (cf. Figure 16a). 

 At 𝑡 = 0.5s, the reverse diffusion decreases due to the increase of the concentration 

gradient of the species. The diffusion barrier captured by the non-ideal model exhibits 

itself as the large gradients in the mass flux profile (cf. Figure 18b). The same 

phenomenon has been discussed in the single-HC case of TW,0 = 660K. Because of the 

strong diffusion barrier, at 𝑡 = 0.5s, a mixing front begins to form with a large gradient 

change in the mole fraction profiles in the non-ideal model.  

 At 𝑡 = 0.8 s, the mixing front is apparently formed. The mole fraction of 

1-decylnaphthalene reaches 0.05 at the interface but remains as large as 0.3 in the droplet 
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center in the non-ideal model (cf. Figure 17b). Large gradients in the mole fractions of 

1-decylnaphthalene and water are observe at 𝑟~290𝜇m. The same location is at 300𝜇m 

in the single-HC droplet case of TW,0 = 660K. The difference is caused by the large 

diffusion rate of benzene in the binary-HC case. Because benzene diffuses quickly from 

the HC droplet into the water-rich phase, the expansion of the HC droplet is slower than 

in the single-HC case. Due to the presence of a diffusion barrier, the non-ideal model 

predicts a much higher mole fraction (> 10%) of 1-decylnaphthalene inside the HC 

droplet at 𝑡 = 0.8s. At 𝑡 = 5s, the mole fractions of benzene reach almost zero for both 

models. The mole fraction of 1-decylnaphthalene predicted by the non-ideal model now 

is much higher (18%).  

 

Figure 18. Evolution of mass fluxes in the case of a 50% benzene and 50% 1-decylnaphthalene droplet 

mixing with SCW at initial water temperature 𝑇𝑊,0 = 660K (Results using the ideal driving force are 

benzene in solid blue lines, 1-decylnaphthalene in dashed purple lines, and water in dotted black lines. 

Those using the non-ideal driving force are benzene in solid red lines, 1-decylnaphthalene in dashed orange 
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lines, and water in dotted magenta lines. Color figures online.) 

  Water diffusion times of the binary-HC droplet case are shown in Figure 19. 

Similar to the single-HC droplet, the non-ideal model predicts similar water diffusion 

times to those predicted by the ideal model when water temperature is lower than the 

system UCST, but much longer times when water temperature is close to or greater than 

the UCST. Sudden rises of water diffusion times are observed between 642K and 646K 

for both models. But the gradient is sharper in the single HC component case shown in 

Figure 19a, because benzene works as a buffer and smears off the sudden changes of the 

non-ideal diffusive driving force. In addition, benzene enables the reverse diffusion of 

1-decylnapthalene in both models as shown in Figure 16 and Figure 18, because reverse 

diffusion only occurs in multi-component mixtures and when the driving force is 

relatively large. The reverse diffusion of the heavier HC fraction (1-decylnaphthalene) 

has two main effects as shown in Figure 20: 1) it reduces the diffusion rate of water at the 

HC/water interface, and 2) it enhances the diffusion rate of water in the bulk of the HC 

droplet.  

 
Figure 19. Water diffusion times for mixing of (a) a HC droplet of 1-decylnaphthalene (re-presenting Fig. 

14a for comparison), and (b) a HC droplet of 50% benzene and 50% 1-decylnaphthalene with water at 

different initial water temperatures 𝑇𝑊,0 using ideal (blue) and non-ideal (red) diffusive driving forces (the 

dashed line show the UCST). 
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Because the ideal model does not compute the correct diffusion rates, the 2
nd

 effect is 

not apparent, and hence the 1
st
 effect causes the diffusion time to increase compared to 

the single-HC case. However the non-ideal model shows the opposite behaviors: the 1
st
 

effect is not apparent but the 2
nd

 effect is important, and thus the diffusion time is 

decreased compared to the single-HC case. This comparison reaffirms the importance of 

the non-ideal diffusion model in accurately capturing the diffusion process of non-ideal 

mixtures. 

 

Figure 20. Mass fluxes of single- and binary-HC cases at 0.5s using (a) the ideal model, and (b) the 

non-ideal model: the dashed purple line is for 1-decylnaphthalene in the single-HC case, the dotted black 

line is for water in the single-HC case, the solid red line is for benzene in the binary-HC case, the dashed 

orange line is for 1-decylnaphthalene in the binary-HC case, and the dotted magenta line is for water in the 

binary-HC case. 

4.2.2 Cases of equal initial temperatures 

The same cases are also computed using equal initial temperatures for the HC and 

water 𝑇 = 580 − 660K to study the effects of temperature gradients. Similar results are 

found as before. The water diffusion times are presented in Figure 21. Because of the 

higher initial temperature of the HC droplet, the mixing times are much shorter, and no 

sudden increase of the water diffusion time is observed. But the same trend is captured 
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here as regards the two models, that 1) both models yield similar results when the system 

temperature is lower than the UCST, 2) the non-ideal model gives larger water diffusion 

time than the ideal model when the system temperature is close to or greater than the 

UCST. The heavier HC, 1-decylnaphthalene, is also observed to highly concentrate in the 

HC-rich phase as that in the previous cases at high temperatures. 

 

Figure 21. Water diffusion times for a 50% benzene and 50% 1-decylnaphthalene droplet mixing 

with water at different equal initial temperatures using ideal (blue) and non-ideal (red) diffusive driving 

forces (the dashed line show the UCST). 

4.2.3 Cases of different HC species 

 We have studied the transport and mixing process of the binary and ternary systems 

of benzene, 1-decylnaphthalene, and water. Now we use different HC species in binary 

and ternary mixing cases with NCW/SCW. The mixing conditions are the same as those 

in Sect. 4.2.1 except for the HC species. The HC droplet has an initial temperature of 

100℃, and the initial water temperature 𝑇𝑊,0 varies for cases. The HC species and UCST 

details are listed in Table 3.  

We observe that the heavy HC, e.g. n-decane in the single-HC case, and 

n-hexadecane in binary-HC cases as shown in Figure 22, concentrates in the HC-rich 
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phase predicted by the non-ideal model, but the concentrating rates are lower than 

1-decylnaphthalene in previous cases (cf. Figure 9 and Figure 17). Results indicate that 

HC species with lower water equilibrium compositions and larger sudden changes in 

phase equilibrium profiles (cf. Figure 1), e.g. 1-decylnaphthalene, have greater degrees of 

non-ideality. The concentration rate of the heavier HC as well as the increase of mixing 

times depend strongly on the degree of non-ideality. The UCST of n-hexadecane and 

water is close to that of 1-decylnaphthalene and water. But because n-hexadecane are less 

non-ideal than 1-decylnaphthalene, Figure 22 shows that the mixing front with large 

gradients in the mole fraction profiles are not formed as in the cases using 

1-decylnaphthalene. 

Table 3. HC species and binary UCST with water in different cases studied in Sect. 4.2.3 

Case No. Species 1 Species 2    T1(K)    T2(K) 

1 n-C10 N/A 649 N/A 

2 n-C10 n-C16 649 651.7 

3 Benzene n-C16 584 651.7 

 

Figure 22. Mole fractions at t = 1s in mixing of n-decane, n-hexadecane and water at TW,0 = 660K. 

Figure 23 shows the water diffusion times calculated using the ideal and non-ideal 
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models for these cases. Similar results are observed for all 3 cases: when the water 

temperature approaches the system UCST, the non-ideal model predicts higher water 

diffusion time. The maximum relative differences of water diffusion times between the 

ideal and non-ideal models are > 30% for all cases, which are caused by the diffusion 

barrier captured by the non-ideal diffusive driving force. However, no sudden increase of 

water diffusion times is found in the non-ideal model as in the previous cases using 

1-decylnaphthalene (cf. Figure 14 and Figure 19), because benzene, n-decane and 

n-hexadecane have less degrees of non-ideality than 1-decylnaphthalene (Figure 1).  

 

Figure 23. Water diffusion times for cases using different HC species. 

5 Concluding remarks 

The mixing process of a single-HC droplet (1-decylnaphthalene or n-decane), or a 

binary-HC droplet (various HC species) in a much larger reservoir of near-critical or 

supercritical water is examined. This study is an extension of our pervious works on a 
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single-HC droplet and a binary-HC droplet mixing in SCW. In this study, a more accurate 

diffusive driving force model is used to account for the non-ideality in the mass transfer 

process. This non-ideal diffusive driving force is compared with the ideal driving force 

which was used commonly in several mass transfer problems of supercritical fluids 

including our previous studies. The non-ideal model gave similar mixing results to the 

ideal model in low temperatures (lower than the system UCST). Nevertheless, the 

non-ideal model predicted a much slower mixing process in high temperatures 

(approaching to or greater than the system UCST). Moreover, the non-ideal model 

predicted a significant sudden increase of mixing time for mixtures containing 

1-decylnaphthalene, which has a sudden change in phase equilibrium results too. This 

sudden change may be a characteristic of mixing of polyaromatic hydrocarbons with 

NCW/SCW. Further experimental studies are needed to explore this phenomenon with 

polyaromatic hydrocarbons. 

The non-ideal model captures an interesting mechanism in the mass transfer of 

highly non-ideal mixtures of HCs and water, i.e. the diffusion barrier. The term diffusion 

barrier was first defined by Toor in 1957 [49] to describe the zero diffusion flux of a 

species where its concentration gradient was non-zero in multi-component gas mixtures. 

But in this study, we re-define the diffusion barrier based on Toor’s concept, in which he 

depicted features in the multi-component diffusion process that a small change of the 

concentration gradient might cause a large change of the diffusion rate. We discover that 
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by introducing the non-ideal driving force into the mass diffusion problem, even in a 

binary but highly non-ideal mixture, a small change of concentration gradients does cause 

a large change of the diffusion rate. The sharp gradient of the mass flux initially occurring 

in the HC-rich phase near the interface has two effects: 1) to enhance the mixing in the 

immediate region in the HC-rich phase near the interface, and 2) to slow down the mixing 

in the bulk of the HC-rich phase shortly away from the interface. Because the overall 

effect clearly exhibits a slower mixing process as shown in the results of both single- and 

binary-HC cases, we define this phenomenon as the diffusion barrier. We note that the 

diffusion barrier used in our study does not mean that the diffusion of water into the HC 

droplet is inhibited. The diffusion barrier caused by the non-ideality in the driving force 

strongly slows down the diffusion process. 

Reverse diffusion, a species’ diffusion against its concentration gradient (defined by 

Toor as well), was observed for the heavier HC species in binary-HC droplet cases 

studied here, because the heavier HC had the largest binary diffusion coefficients than the 

light HC species. We find that the non-ideal driving force enhances the reverse diffusion 

due to the presence of the diffusion barrier. However, the reverse diffusion itself does not 

slow down the diffusion process, and it actually enhances the mixing process slightly 

when the non-ideal driving force is used.  

This work examined the ideal and non-ideal diffusive driving forces systematically 

for different temperatures and species. Results of mixing simulations indicate that 
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whenever a mixture becomes highly non-ideal, the non-ideal driving force is a necessity 

to correctly describe the mass transfer process. Results show that 1) in binary mixtures of 

HCs and water, the non-ideality forms a diffusion barrier for water diffusion into the HCs, 

and increases the mixing time; 2) in ternary mixtures, the diffusion barrier of non-ideality 

enhances the reverse diffusion of the heavier HC, which does not only resist water 

diffusion, but also drives the heavier HC towards the droplet center. As a result, the 

heavier HC is concentrated in the HC-rich phase at high temperatures. The concentration 

rate of the heavier HC strongly depends on the degree of non-ideality. Our mixing results 

and phase equilibrium calculations show that 1-decylnaphthalene is more non-ideal than 

n-hexadecane, n-decane and benzene, etc. 
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Appendix 

In Krishna and his co-workers’ works, the activity coefficient was defined as 

𝛾𝑖(𝑥1, 𝑥2, … , 𝑥𝑛−1), and 𝜵𝑇,𝑃ln𝛾𝑖 were calculated as 

𝜵𝑇,𝑃ln𝛾𝑖 =∑(
𝜕ln𝛾𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

𝑛−1

𝑖=1

𝜵𝑥𝑗 (34) 

In this study, fugacity coefficients are used, which are equivalent to activity coefficients 

in the gases. The fugacity coefficient is defined as �̂�𝑖(𝑥1, 𝑥2, … , 𝑥𝑛). Because there are 

n − 1 independent mole fractions, the relation between the two variables are 

𝛾𝑖(𝑥1, 𝑥2, … , 𝑥𝑛−1) = �̂�𝑖(𝑥1, 𝑥2, … , 𝑥𝑛−1, 1 − 𝑥1 − 𝑥2 −⋯− 𝑥𝑛−1) (35) 

As a result, the relation between their partial derivatives is 

(
𝜕ln𝛾𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

= (
𝜕ln�̂�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

− (
𝜕ln�̂�𝑖
𝜕𝑥𝑛

)
𝑇,𝑃

 (36) 

Eq. (34) is thus essentially the same as 

𝜵𝑇,𝑃ln�̂�𝑖 =∑(
𝜕ln�̂�𝑖
𝜕𝑥𝑗

)
𝑇,𝑃

𝑛

𝑖=1

𝜵𝑥𝑗  (37) 
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