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Abstract
Crystal dislocations govern the plasticmechanical properties ofmaterials but also affect the electrical
and optical properties.However, a fundamental and quantitative quantumfield theory of a dislocation
has remained undiscovered for decades. Herewe present an exactly-solvable one-dimensional
quantumfield theory of a dislocation, for both edge and screw dislocations in an isotropicmedium, by
introducing a newquasiparticle whichwe have called the ‘dislon’. The electron-dislocation relaxation
time can then be studied directly from the electron self-energy calculation, which is reducible to
classical results. In addition, we predict that the electron energywill experience an oscillation pattern
near a dislocation. Comparedwith the electron density’s Friedel oscillation, such an oscillation is
intrinsically different since it exists evenwith only single electron is present.With our approach, the
effect of dislocations onmaterials’ non-mechanical properties can be studied at a full quantum field
theoretical level.

1. Introduction

Crystal dislocations are a basic type of one-dimensional topological defects in crystallinematerials [1]. Since
Volterra’s ingenious prototype in 1907 [2], andTaylor, Orowan and Polyani’s simultaneous formal introduction
in 1934 [3–5], a dislocation has been shown to have strong influences onmaterial properties, including the
governing role in the plasticmechanical process, and thewidespread impact on the thermal, electrical and
optical properties [1, 6]. Since a dislocation can strongly scatter an electron and thereby changesmaterial
electrical properties, such as reduces the electronmobility or increases the electrical resistivity, it is of central
importance to obtain a theory describing the electron-dislocation interaction, to understand the role of a
dislocation in the electronic properties ofmaterials.

In general, the theoretical approaches of studying electron-dislocation interactions can be divided into the
followingmainstream categories:

(1) Classical scattering theory: dislocation can be modeled by its partial feature (e.g. dislocation modeled as
charged line in certain semiconductors) [7–10]. This allows one to study the electron-dislocation scattering
using classical theory, but suchmodeling has a pure electrostatic origin and does not capture the scattering
processes that occurwith a genuine dislocation, which contains both strain scattering effects and vibration
scattering effects [1, 6].

(2) Geometrical approach: dislocated crystal is treated as amanifold in a curved space (e.g. spacetime in general
relativity) [11–15]. This approach can describe the single electronmotion quite well near a dislocation
under the framework of the one-particle Schrödinger equation, yet it also experiences some problems such
as the cumbersomemathematics caused by a curvedmetric, limiting this approach to thefirst-quantized
single particle level without a generalization tomany-body cases.
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(3) First-principles density functional theoretical calculations: in principle the electronic structure near a
dislocation core can be studied.However, due to the long-range nature of a dislocation, it requires one to
build a supercell leading to an exceedingly high computational cost. To the best of our knowledge, only
ground-state properties such as the atomic configuration near a dislocation core can be studied using this
approach [16, 17].

(4) The classical affine gauge theory of dislocations [18–20]: structurally similar to quantized gauge theory, but
is limited only to a classical elasticityfield, without being quantized at the time of this study. Since the step of
quantization is necessary in order to study the electronic properties properly, the investigation of electronic
properties using this approach have not started yet.

However, despite thewide variety of approaches to study electron-dislocation interaction, a unified
electron-dislocation interacting theory at a quantummany-body level is still not available. Such a theory is
essential to go beyond single-electron picture by taking into account the electron exchange and correlation, and
othermany-body effects, and is also essential to properly considering the higher-ordermultiple scattering
events. If fact, unlike the case of the electron-point defect interactionwhere the complete impurity interacting
field theory is well established [21], the lack of afield theory of dislocations not only impedes a further
understanding of dislocations onmaterial electronic properties at a fundamentalmany-body level, but also
limits the usage of the terms ‘impurity’ and ‘disordered systems’ referring to quenched, point defect-related
properties undermany circumstances [22].

Here, we take a very different approach to study the electronic behavior in a dislocated crystal. Instead of
treating a dislocation line as a charged line, or strainfield, or a quenched defect, we treat the dislocation itself as a
fully quantized object. Based onwell-established classical dislocation theory and a canonical quantization
procedure, we provide an exact andmathematicallymanageable quantumfield theory of a dislocation line.We
find that in an isotropicmedium, the exactHamiltonian for both the edge and screw dislocations can bewritten
as a new type of harmonic-oscillator-like Bosonic excitation along the dislocation line, hence the name ‘dislon’.
Just as a phonon is a quantized lattice displacementwith both kinetic energy and potential energy, a dislon is
similar in the sense that it is also a lattice displacementwith both kinetic and potential energy, but further

satisfies the dislocation’s topological constraint = -∮ u bd ,
L

whereb is the Burgers vector, L is a closed

contour enclosing the dislocation line (denoted asD infigure 1(a)), andu is the lattice displacement vector, i.e.
the atomic position deviation occurs after the crystal is dislocated, and du is the differential displacement along
the contour L. Using this approach, the scattering between an electron and the 3Ddisplacement field induced by

the dislocation can easily be solved via amany-body approach, with the topological constraint = -∮ u bd
L

respected all along this study.

Figure 1. (a)The equivalent definitions of a generic dislocationD, which is denoted as a loop. A dislocation line can be regarded a

special case of the dislocation loop. Onone hand, a dislocation lineD can be defined as = -∮ u bd ,
L

where L is the loop enclosing the

dislocation lineD. On the other hand, an equivalent definition is based on an arbitrary surface S (blue)with lineD as its boundary. A
dislocation can be defined as an overall shift of surface S by a constant amount of the Burgers vector b (blue surface is shifted to the
yellow one). V is the coordinate perpendicular to the surface S, and is convenient for defining the strain tensor u .ij (b)A long
dislocation line along z-direction vibratingwithin slip plane (xz)with ( )Q z the transverse displacement. Such vibration shares

similarities with a phonon as it is also a quantized lattice displacement, but is constrained by = -∮ u bd
L

where L is an arbitrary loop

circling dislocation. An electron located at position rwill be scattered by dislocations. (c)Quantized vibrational excitation dispersion
relations along dislocation line (‘dislon’) for both edge (hot-colors) and screw (cool-colors) dislocations at various Poisson ratios ν.
The classical shear wave is shown as a linear-dispersive black-dotted line. The classical shear wave is shown as a linear-dispersive black-
dotted line, and the arrows indicate a decreasing trend of Poisson ratio for edge (red arrow) and screw (blue arrow) dislons,
respectively.
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2. The classical foundation prior to dislocation quantization

To beginwith, we provide a self-contained review of the classical dislocation’s theory following the logic in [23]
and [24]. In spite of thewell establishment of the classical dislocation theory, we feel such an introduction
necessary since this particular classical theory which facilitates the quantization is not commonly introduced in
textbooks or articles inmaterial sciences journals. Defining ( )u R as the atomic lattice displacement at spatial
pointR, the spatial derivative tensor ofu, namely the distortion tenstor, can bewritten as w º ¶ ¶u R ,ij i j from
whichwe define the strain tensor eij as

e w w= + =
¶
¶

+
¶

¶
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

u

R

u

R

1

2

1

2
, 1ij ij ji

i

j

j

i

where =i j, 1, 2, 3 are theCartesian components. The relation between the stress sij tensor and strain tensor
ekl can be found by the generalizedHooke’s law as

s e= ( )c , 2ij ijkl kl

where Einstein’s summation convention is adopted. In an isotropicmedium, the elastic stiffness tensor cijkl

( = )i j k l, , , 1, 2, 3 is given by

ld d m d d d d= + +( ) ( )c , 3ijkl ij kl ik jl il jk

whereλ andμ are 1st and 2nd Lamé constants, respectively.
At equilibrium, the internal stress in each directionmust balancewith the external force f ;i hence the local

force equilibriumof the ith component can bewritten as

s e
= -

¶

¶
= -

¶
¶

= -
¶

¶ ¶
( )f

R
c

R
c

u

R R
. 4i

ij

j
ijkl

kl

j
ijkl

k

j l

2

Equation (4) is a 2nd order linear inhomogeneous differential equationwith respect to the displacementfield
vector component u ,k which can readily be solved using theGreen’s functionmethod. Defining theGreen’s
function of equation (4) as

d d - ¢ = -
¶ - ¢

¶ ¶
( ) ( ) ( )( ) c

G

R R
R R

R R
. 5im ijkl

km

j l

3
2

Then the solution of the corresponding inhomogeneous equation (4) can bewritten from equation (5) as
[23, 24]

ò ò e= - ¢ ¢ ¢ = - ¢
¶ - ¢

¶
¢( ) ( ) ( ) ( )

( )
( )u G f c

G
R R R R R R

R R
Rd

R
d , 6i ij j jklm lm

ij

k

3 3

where i, j, k, l,m=1, 2, 3 are theCartesian components. The 2nd equality can be obtained by substituting
equation (4) to the 1st equality in equation (6), and using integration by parts. This gives the generic
displacementfield using theGreen’s function’s approach.

For the convenience of later computation, the Fourier transformedGreen’s function is also defined as

òº - ⋅( ) ( )G Gk R Re d ,ij ij
k Ri 3 which can be obtained by taking the Fourier transformof equation (5) as

m
d

n
= -

-
( )

( )
( )

⎡
⎣⎢

⎤
⎦⎥G

k

k k

k
k

1 1

2 1
, 7ij

ij i j

2 4

where n
l

l m
º

+( )2
is the Poisson ratio.

The above theory equations (1)–(7) is valid for all types of lattice displacements within the framework of
elasticity. For the case of a dislocation as one special type of displacement, we need to introduce a generic and
rigorous definition of the dislocation in order to formulate a quantized theory. In realisticmaterials, dislocation
can either form a self-terminated loop, or form a line terminated at crystal surface [6]. In particular, a line can be
considered as a special case of an arbitrary loopwith the both ends at¥ joint together [25]. Therefore, we still
could picture this generic dislocation as an arbitrary loop, as shown infigure 1(a) and elaborated in [26]. The
arbitrary dislocation loop is denoted as the loopD (black circle), with S is an arbitrary surface (blue surface)
whose boundary gives this dislocation loopD, and the local tangent vector of the dislocation loopD is denoted
by t.The dislocation is defined as a global shift of thewhole surface S by an amount of the Burgers vector b (blue
surface shifted to the yellow surface nested above, as indicated by the orange arrows). Defining the coordinate z
along the surface normaln (i.e. locally z is always perpendicular to the surface element ¢Sd on the surface S),
thenwe have the distortion w d z= ( )n bij i j on the discontinuity surface S, where ni denotes the projection along
the surface normal, bj is the component of the discontinuous shiftb, and d z( ) comes from the fact that the

3
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discontinuity caused by the shift of the surface will be located right at and only at the surface S; hence from
equation (1), we have

e d z¢ = +( ) ( ) ( ) ( )n b n bR
1

2
. 8lm l m m l

Substituting equation (8) back into equation (6), and noticing the fact that z¢ = ¢SRd d d3 since z is defined as the
direction perpendicular to the local surface element ¢Sd , the displacementfield ( )u Ri caused by a dislocation
loopwith Burgers vector b canfinally be re-written as a surface integral over the surface S as

= -
¶
¶

- ¢ ¢∯( ) ( ) ( )u c b n
R

G SR R R d , 9i jklm m
S

l
k

ij

where ¢Sd is a surface area element on the chosen surface S, ¢R is a spatial point on the surface S, whileR is an
arbitrary spatial point which can bewell outside the surface S.

To further simplify equation (9), we consider a long, straight dislocation line instead of an arbitrary loop, as
shown infigure 1(b)where a long, straight dislocation line extends along the zdirectionwith a core position
located at (x0, y0)=(0, 0). This dislocation linewould vibrate within a plane called slip plane, whichwe have
defined it as xz plane. Noticing the fact that the discontinuity surface S now evolves into the slip plane xzwithin
which the discontinuity is generated: for an edge dislocation the discontinuity is created along the x-direction,
while for a screw dislocation the discontinuity is created along the z-direction. Such vibration has the formof an
atomicmotion, similar to phonons but they cannot be described as a collection of propagating planewaves. For
an edge dislocation, the slip plane isfixed, i.e. an edge dislocation keeps slip within the same plane, while for a
screw dislocation, the slip plane is not fixed, i.e. a screwdislocation can slip along different directions atmultiple
slip steps. However, the dynamic process we are considering in this study is the local vibrationalmodes before it
starts to slip, with a timescalemuch faster than an actual slip process which requires the shift of an array of
atomic positions. Defining ( )Q z to be the transverse displacement of the dislocation linewithin the slip plane,
along the x-direction at position z, as infigure 1(b), hence the surface area element ¢Sd then satisfies

¢ = ( )S Q z zd d , and equation (9) can be further rewritten as [24, 27]

òº = -
¶
¶

- ¢ ¢ ¢
-¥

+¥
( ) ( ) ( ) ( ) ( )u u z b c n

R
G z z Q z zR r r, , d , 10i i m jklm l

k
ij

where º ( )x yr , and º ( )zR r, are 2D and 3Dposition vectors, bm is themth component of the Burgers vector
andn is the direction perpendicular to the slip planewith the lth component nl. To understand the significance
of the dislocation displacement ( )Q z ,we need to bear inmind that ( )Q z is not the displacement of the lattice
displacement vector ( )u R , but a displacement caused by the overallmovement of the dislocation line. In fact, the
dislocation displacement ( )Q z causes the lattice displacement ( )u R in thewhole crystal. For a vanishing
dislocation displacement ( )Q z 0, the lattice displacement still remainsfinite due to the topological behavior
of a dislocation, and a resulted singular behaviorwhich is discussed in detail at the end of this section. Now
mode-expanding the dislocation displacement as a Fourier series

å=
k

k
k( ) ( )Q z Q e , 11zi

whereκ is thewavenumber along the z-direction, we can then express the displacement ( )u R as [25]

å k= º
k

k
k( ) ( ( ) ) ( )u F x y QR r , ; e , 12i i

zi

where k( )F x y, ;i is an expansion coefficient to be determined. Substituting equation (11) back into
equation (10), and comparing the result with equation (12), we have obtained the coefficients

òk = -
¶
¶

- ¢ ¢k

-¥

+¥
-( ) ( ) ( )( )F b c n

R
G z z zr r; , e d . 13i m jklm l

k
ij

z zi ’

Nowdefining the 2DFourier transformed coefficient k( )B s;i of the expansion coefficient k( )F r;i as

ò
å

k k

k k

º º

º =

- ⋅

+ ⋅

( ) ( ( ) )

( ( ) ) ( )
( )

⎧
⎨
⎪⎪

⎩
⎪⎪

B F x y

F x y
A

B

s r r

r s

; , ; e d ,

, ;
1

; e ,
14

i i

i i

s r

s

s r

i 2

i

whereA is the sample area perpendicular to the dislocation direction, and º ( )k ks ,x y is the 2Dwavevector.
Substituting the 2nd formula in equation (14) back into equation (12), and comparing the result with the Fourier
transformof equation (13), we finally obtain

4

New J. Phys. 19 (2017) 013033 MLi et al



k m

n

º = + +

= + ⋅ + ⋅ -
-

⋅ ⋅
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where the 3Dwavevector is defined as kº ( )k s, .Nowusing equations (12) and (14), the displacement field can
then bewritten in terms of ( )B ki as

åº =
k

k
º

⋅( ( )) ( ) ( )
( )

u x y z
A

B QR k, ,
1

e . 16i i
k s

k R

,

i

Nowwe are ready to encapsulate the classical kinetic and potential energies due to the dislocation displacement

field. Substituting equation (16) into the expressions for the classical kinetic energy ò å
r

= = ( )T u r V
2

d
i i1

3 2

and potential energy ò s=U u d R
1

2
,ij ij

3 the classical Hamiltonian can finally be rewritten in terms of a 1D

effectiveHamiltonian [27],

ò òå å år
s k k k= + = + = +

k
k k

k
k k

=
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L

m Q Q
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i
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1

3
2 3 2  

where L is the sample length along the dislocation direction, k( )m and k k( )K2 are the classical linearmass
density and tension, respectively, and can bewritten down from a classical theory straightforwardly aswas done
in [27]. For an edge dislocation, we have the effectivemass density and the tensionwritten as

k
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while for a screw dislocation, we have
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where kD is theDebye cutoff in the in-plane xy direction. Before proceeding to the quantized dislocation theory
part, wewould like to clarify the implications of the classical dislocationHamiltonian in equation (17). One
might bewondering why a dislocation, which is usually considered as a type of quenched defect without
excitation, can bewritten down through aHamiltonian form as equation (17). In particular, it appears that for a
static, quenched dislocation in the longwavelength limit, there is no displacement with ( )Q z 0, and the
dislocationHamiltonian equation (17) simply vanishes. However, this is not true since a dislocation is a
topological defect which cannot be simply canceled by a local variation of ( )Q z .This can be seen from
equation (15). In the long-wavelength k 0 limit, the expansion coefficient  ¥( )B k .i Hence in the static
limit, despite the vanishing kQ according to equation (11), the divergent expansion coefficient ( )B ki will
compensate and bring the lattice displacement ( )u Ri back to afinitemagnitude, according to equation (16). In
otherwords, theHamiltonian equation (17) describes a dislocation as amathematical entity of the lattice

displacementfield satisfying its rigorous definition = -∮ u bd ,
L

regardless of the static quenched dislocation

or the dynamic vibrating dislocation.Wehave to admit that if one insists on taking the static limit, the dislocation
Hamiltonian equation (17), instead of simply vanishing, becomes ill-defined, since =k k Qlim 00 while

k = ¥k ( )mlim 0 simultaneously. To separate the contribution from the static electron-dislocation scattering
from the dynamic electron-dislocation scattering and determines the sole contribution from the static
dislocation, a different approach using the boundary operatormethod has been implemented [28]. It is also
worthmentioning that, contrary tomanywould naturally expect, a dislocation ismore than a quenched defect.
For instance in somematerials when considering thermal transport, the dynamic scattering can even dominate
over the static scattering [29, 30], which have been explained using classical vibrationmodels [27, 31].

3. Canonical quantization of crystal dislocation

After reviewing the classical dislocation theory, we nowproceed to the quantization procedure. For a canonical

coordinate kQ ,we could define its canonical conjugatemomentum as k=
¶
¶

=k
k

k( ) *
P

Q
Lm Q ,

 inwhich
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= - T U is the Lagrangian. Now imposing the following canonical quantization condition between the
canonical coordinate kQ and conjugatemomentum kP , that

d=k k k k¢ ¢[ ] ( )Q P, i . 20,

Then the classical dislocationHamiltonian in equation (17) can be quantized by recognizing kQ and kP as first-
quantized quantummechanical operators satisfying equation (20), instead of the classical dynamic variables.
TheHamiltonian equation (17) can nowbewritten as

å åk
k k= +

k

k k

k
k k( )

( ) ( )*
*H

L

P P

m

L
K Q Q

1

2 2
. 212

To readily study the effect of a dislocation on the electronic properties at a fullmany-body level, a second-
quantized dislocationHamiltonian is needed. By defining the creation and annihilation of quantized dislocation
modes k

+a and ka satisfying the canonical commutation relation d=k k k k¢
+

¢[ ]a a, ,, equation (20) can further be
written as the following equivalent form as

= +

= -

k k k k

k
k

k k
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+
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[ ]

[ ]
( )

⎧
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a a

,

i

2
,

22

where k w k=k ( ) ( )Z Lm2 .Thefirst-quantizedHamiltonian equation (21)now can be rewrittng using
equation (22) as the followingHamiltonian

å w k= +
k

k k
+( ) ( )

⎡
⎣⎢

⎤
⎦⎥H a a

1

2
23D

with eigenfrequencies w k k k k=( ) ( ) ( )K m .Equation (23) has a form as a collection of non-interacting
Bosonic excitations. Despite the observation that such an excitation shares the similarity with phonon excitation

as a type of quantized lattice vibration, the topological constraint here = -∮ u bd
L

leads to a different

excitation quantum along the dislocation line and decay away from the dislocation core, whichmay suitably be
called the ‘dislon’, to distinguish the dislon fromanon-interacting phonon. In particular, by imposing the in-
planeDebye cutoff kD, in xy plane for both an edge dislocation ( ^ = )z b bb , x and a screw dislocation
( = )z b bb , z the dispersion relation w k( ) can bewritten in a closed form as
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where m r=vs is the shear velocity, and the four relevant coefficients are
n
n

º
-
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C
1 2

2 1
,1

n
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4 1
,2

n
n

º
-
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C
4 3

8 1
3 2

and
n
n

º
+
-( )

C
1

2 1
.4 The dislon dispersion at various Poisson ratio ν values and constant

shear velocity =v 1s are plotted infigure 1(c), where the classical shear wave, or equivalently the transverse
acoustic phononmode w k k=( ) vs (black-dotted line) serves as a pre-factor in quantum–mechanical version of
dislocation excitation in equation (24). The higher excitation energy of the edge dislon relative to the screw
dislon is reasonable, since even in the pure classical picture, the edge dislocation energy density is higher than
that of the screw dislocation by a factor of / n-( )1 1 [32]. Substituting equation (22) back into equation (16),
the displacementfield ( )u Ri caused by a dislocation canfinally bewritten in a second-quantized form as

å k w k
= +

k
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25i i
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k R

s,

i

which is themain result of this section 3 andwill be used in section 4.
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4. Electron-quantized dislocation interaction

The introduction of the quantized dislocation in section 3 enables us to treat the electron-dislocation scattering
at a full second-quantized level by taking advantage themany-body theory as the electron-dislon interaction.We
start from a latticemodel, where = +R R u ,j j j

0 so that R j
0 is the equilibriumposition of an ionwith label j, and

we assume that there areN atomic sites in the system. Assuming the electron charge density is r ( )R ,e the
electron–ion interactionHamiltonian expanding to the 1st-order approximation can bewritten as [33, 34]

ò

ò ò

å

å å
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r r

= -
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R R R R R R R R u

d

d d , 26

j

N

j

j

N

j
j

N

j jR

e ion
3

e
1

ei

3
e

1
ei

0 3
e

1
ei

0

where the 1st term gives the ion potential functionwhich describes the electrons travelingwithin the periodic
potential of a crystal, i.e. Blochwaves, and the 2nd termdescribes the scattering by a generic displacement field,

ò år=  - ⋅
=

( ) ( ) ( )H VR R R R ud . 27
j

N

j jRint
3

e
1

ei
0

To further simplify equation (27), we note that the electron charge density r ( )Re can bewritten in terms of the
number density ( )n Re as

år r= =
s

+ ⋅( ) ( ) ( ) ( )en
e

V
R R qe , 28

kp

p R
e e

i

where r ( )q is the Fourier-transformed electron number density. In addition, the ionic potential -( )V R R jei
0

can also be expanded in terms of Fourier components by
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where q is within 1st Brillouin zone, the Fourier component of a screenedCoulombpotential gives
p

=
+

V
Ze

q k

4
,q 2

TF
2

inwhich kTF is defined as the Thomas–Fermi screeningwavenumber, andG denotes the

reciprocal lattice vectors. Now substituting equations (25) and (29) into the term  - ⋅( )V R R uj jR ei
0 in

equation (27), we obtain (supplementarymaterial A)
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wherewe have used the fact thatå d==
- - ⋅

+
( ) Ne ,

j

N k q G R
k q G1

i
,j

0
whereN denotes the total number of atoms.

Nowwe further substitute equations (15), (28) and (30) back into the interactingHamiltonian equation (27),
andmoreover by assuming a non-Umklapp normal scattering process (G=0), the electron-dislocation
interactionHamiltonian equation (27) can further be rewritten in a second-quantized form as (supplementary
material A)

ån
n

r
k w k
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( ) ( )
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b q n q1 2

1
e

2
. 31

q
qe dis 2 2

This equation (31) gives a reasonable prediction. In particular, at /n = 1 2, both the dislon excitation

equation (24) and electron-dislon interaction equation (31) vanish due to the pre-factor
n
n

-
-

1 2

1
.This is

consistent with the fact that a systemwith /n = 1 2 corresponds to a purely elastic systemwithout shearmodulus
(an intuitive examplewith /n = 1 2 is like rubber), where dislocations simply do not exist.

Nownoticing the fact that the creation and annihilation operators k
+a and ka have onlymomentum indices

κ along the dislocation direction, and using the fact that k q q k= =( ) ( )s sq s, cos , sin , , then equation (31)
can further be simplified by performing a summation in the 2D s plane perpendicular to theκ direction
(supplementarymaterial B)
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Equation (32) is capable of treating the interaction between one dislocation andmultiple electrons bymodeling
the election density r k( )s, . For a single electron located at f f= =( ) ( )z r r zR r, cos , sin , , as shown in
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figure 1(b), we have the Fourier transformed electron density r k k= ⋅ +( ) ( )zs s r, exp i i , and equation (32)
can be further simplified as (supplementarymaterial B)
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e 33z
b re dis

i
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inwhich the position-dependent electron-dislon coupling coefficient k( )Mb r, is defined as
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where ( )J rsn is the nth order Bessel function of the 1st kind, which emerges due to the angular integration of q in
equation (32). In particular, when the electron is far away from the dislocation core, equation (34) can further be
simplified by taking the  ¥r limit. Using the asymptotic formof the Bessel function

p
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The electron-dislon coupling coefficient k( )Mb r, has the following asymptotic form
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Nowassuming aweakCoulomb screening k 0,TF which corresponds to the low electron density limit, and
assuming a highDebye cutoff,  ¥k ,D which corresponds to the strong interatomic bond limit (which also
results in a small lattice parameter, a higher sound velocity and a larger bulkmodulus), then the asymptotic
coupling coefficient has a closed form for edge and screw dislocations, respectively, as given by equation (37)
(supplementaryMaterial B)
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which shows an exponential-like decay of the electron-dislon coupling strength at long distances, where the
decay constant k=kr 1 2 .The - k( )r rexp exponential decay behavior is quite reasonable, since the electron-
dislocation interaction is generally considered as short-range interaction [1], even though the strain field of a
dislocation is long-range. Intuitively speaking, an electron is weakly scattered by a dislocation hence the electrical
conductivity does not change toomuch, which is in sharp contrast with the case of the dislocation-phonon
interaction, where dislocation can dramatically change the thermal conductivity in a dislocated crystal [35].

At this stage, we have obtained a complete electron-dislocation interacting system at a full second
quantization level. In principle, we should be able to compute any electronic properties caused by a dislocation
based on the standardmany-body approach usingfinite-temperatureMatsubaraGreen’s function formulism
[34].Matsubara formulism is amethod by treating time t as a complex number of temperature, allowing one to
treat temporal evolution e Hti and thermal average b-e H of a quantum systemwithHamiltonianH and at
temperatureT from equal footingwith only one S-matrix expansion. By noticing that a dislon quantized in 1D
resembles a phonon as a Bosonic quasiparticle, we couldwrite down the Feynman rules for an electron-dislon
interacting systemdirectly by following the same logic used for an electron–phonon interacting system [34], as
listed below:

(a) Each electron propagator has a usual form
e

=
-

( )( )G p
p

p, i
1

i
,n

n p

0 where
p

b
=

+( )
p

n2 1
n is the

FermionicMatsubara frequency (inwhich n is an integer) and ep is the non-interacting electron dispersion
relation.

(b) Each dislon propagator gives k w
w

w w
= -

+
k

k
( )( )D , i

2
,m

m

0
2 2

where w
p

b
=

m2
m is the Bosonic Matsubara

frequency (inwhichm is an integer) . This dislon propagator resembles the form for a free-phonon
propagator since they both are non-interacting Bosons, but the dispersion wk here denotes the dislon
excitation energy (supplementarymaterial C).
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(c) Each internal electron-dislon coupling vertex gives k k w∣ ( )∣ ( )( )M D , i ,mb r,
2 0 where the position-dependent

coupling is given in equation (36). Unlike the electron–phonon couplingwhich is only dependent on
momentum transfer, here it depends on the relative position r between an electron and the dislocation’s
location.When the election is away from the dislocation core, the coupling strength decays accordingly.

(d) Sum over all internal degrees of freedom under the constraint ofmomentum and energy conservation. This
rule remains the same as an electron–phonon interacting system.

(e) Multiply the expression of the electron-dislon Feynman diagram obtained from rules (a)–(d) by

b
- ++( ) ( )

( )
S

L

1 2 1
,

K F F

K
where F is the number of closed Fermion loops,K is the diagramorder: for electron

self-energy,K is the number of internal phonon lines, for dislon self-energy, andK is the half number of
vertices. This rule remains the same as an electron–phonon interacting systemby noticing the similarity
between a dislon and a phonon.

Therefore, to compute the election energy changewhen an electron is interacting with a dislon to the lowest
order, in otherwords, to compute the election self-energywith the one-loop correction, where an electron emits
and re-absorbs a virtual dislon, we could apply the above Feynman rules andwrite down the position dependent
electron self-energy as follows:

å
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,
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m

where the 2nd equality is obtained through frequency summation technique (supplementarymaterial D), nB

and nF denote the Bose and Fermi occupation factor, respectively. Nowwe assume that atT=0, where there is
only spontaneous emitted dislonwithout any thermally excited dislon occupancy, w =k( )n 0B and

e =k+( )n 0,pF then the electron self-energy caused by the electron-dislon interaction can bewritten as

ò
k
p

k
e e w d

S =
- - +k k+

( ) ∣ ( )∣ ( )( ) M
r p,

d

2 i
39b r

p p

1 ,
2

herewe have used the e d +pi in p to analytically continuing theMatsubara frequency expression back to real
frequency [34], where d is a positive infinitesimal number. The electron energy ( )E rp and relaxation rate to
1-loop correction can bewritten as

e

t
e

= + S

= S

( ) ( )

( )
( ) ( )

( )

( )
E r r p

p r
r p

Re , ,

2 ,
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p p

p
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dis
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Wenow take germanium as a prototype example since it has simple isotropic electronic energy bands, butwe do
not have the intend to compute any realmaterial electronic properties, given the simple free-electronmodel that
was adopted. To facilitate the computation the dimension of each parameter appeared are listed in
supplementarymaterial E. AtT=0 K and assuming reasonable elastic parameters forGermanium [36]
( =b 0.4 nm, r = -5.3 g cm ,3 m = 67 GPa, n = 0.28, cutoff k = -0.05 nmmin

1 and k = - )10 nm ,max
1 the

electron real part self-energy to the 1-loop correction is plotted infigure 2, for edge (figures 2(a), (c), (e)) and
screw (figures 2(b), (d), (f)) dislocations, using full coupling constants equation (34) (figures 2(a), (b)) and
asymptotic form equation (37) (figures 2(c), (d)), which is an indication of electron energy change in the
presence of the dislocation, in the unit of electron energy e = 1 eVp and in log scale. Note S <Re 0 in all cases,
indicating a decrease of the electron energy, hence an increase of the electron effectivemasswhen being scattered
by a dislocation, similar to the polaron problem and to electron–phonon scattering. The 4-fold self-energy
symmetry for an edge dislocation and the corresponding 2-fold symmetry for a screw dislocation is also
reasonable, with the classical displacement field distribution ( )u R having 2-fold and 1-fold symmetry,
respectively, since the energy~∣ ( )∣u R 2 doubles the symmetry of the displacementfield.

Themost prominent feature is that the electron real part of self-energy SRe shows an anisotropic single-
electron energy oscillation behavior as an angle fwith respect to the glide plane (xz plane infigure 1(b)), as
shown infigures 2(e) and (f). Since a single dislocation is a 1Ddefect, the traditional electron density oscillation,
namely the Friedel oscillation, is easily pictured as a direct generalization to the 0Dpoint-defect Friedel
oscillation [37, 38]. However, what is striking here is that the oscillation here is not an electron density
oscillation, but a pattern of electron energy oscillation instead. Such an oscillation can be traced back from
equation (34) due to the oscillating Bessel functions in the coupling strength, instead of any artifacts caused by
the procedure related toDebyewavevector k .D Unlike the traditional Friedel oscillationwhich occurs only with a
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bunch of electrons forming an electron liquid, here the energy oscillation can emergewhen only one single
electron is present. Such an energy oscillation does not indicate that the electron energy will constantly vary
when traveling nearby a dislocation core. Under the 1-loop correction (supplementarymaterial D), such an
oscillation can be understood as an electron-dislon interaction event taking place at a spatial position r, where an
electron emits and reabsorbs a virtual-dislon for once. Due to the extended nature of the quantized dislocation,
the interaction event can happenwhen the electron is away from the dislocation core. Such an interaction event
has the effect to change electron energy, according to the 1st formula in equation (40). The amount of the energy
change, though, depends on the location r of the interaction event, and is a function of r in an oscillatory instead
ofmonotonic way. Therefore, this energy oscillation behavior is indeed an overall spatial pattern away near the
dislocation region, or distribution of the energy change of an electron caused by electron-dislon interaction,
instead of a single particle trajectory alongwhich the electron energy keeps changing.

Another feature is that the oscillation caused by an edge dislocation (figure 2(e)) ismuchmore drastic than
that caused by a screw dislocation (figure 2(f)). This can be understood from the distinct electrostatic effect
contributing to the Friedel oscillation. For an edge dislocation there is afinite inhomogeneous lattice dilatation

p
n
n

q
D = -

-
-

b

r2

1 2

1

sin
, leading to a compensating electrostatic potential to reach a uniformly distributed

Fermi energy at equilibrium,while for a screw dislocation, the linear elasticity gives no dilatation and hence no
electrostatic effect emerges [1]. In order for such an observation, high-resolution, low-temperature scanning
tunneling spectroscopy can be performed, where a single electron can be injected from the tip at different
positions away from the dislocation core, with its energy derived indirectly from themeasured spectroscopies.
The observation of the predicted self-energy’s single-electron energy Friedel oscillationmay provide strong
evidence of the existence of the dislon and thereby the quantumnature of crystal dislocations. In fact, a recent
simulation indicates the necessity to incorporate the quantization of the crystal vibrationalmodes in considering
the plastic deformation process [39]. The dislon theorymay thus serve as an analytical framework to account for
the vibrationalmodes in a dislocated crystal.

To test the power of this theoretical framework, we compare the relaxation rate
t e= S( ) ( ) p r r p2 , Im , , pdis from equation (39) to thewell-known semi-classical results as reported in [40].

Despite the differentmethods, our one-loop result shares an identical prefactor t
n
n

µ
-
-

( ) ⎜ ⎟
⎛
⎝

⎞
⎠ bp r,

1 2

1
dis

2
2 and

Figure 2.The self-energy of an electron away from adislocation linewith a dislocation core =( ) ( )x y, 0, 0 .0 0 The ratio between the
modulus of the self-energy real part S∣ ∣Re and electron energy ep is plotted on the log scale, as a function of 2D coordinate
= ( )x yr , , for edge (a), (c), (e) and screw (b), (d), (f) dislocations. The self-energy decays in an exponential way away from the

dislocation core, indicating a short-range interaction. Comparedwith simpler asymptotic exponential decay behavior (a), (b), full
coupling constants (c), (d) calculations indeed reveal an exotic Friedel oscillation, which is anisotropic and can occurwith only single
electron at present. This can be seenmore clearly on linear scale waterfall plots (e), (f). Themuchmore drastic oscillation for edge
dislocation (e) than screw dislocation (f) is caused by dilatation effect and resulting electrostatic potential.
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the same temperature dependence /t µ( ) Tp r, 1dis with the semi-classical relation
t

n
n

µ
-
-

⎜ ⎟
⎛
⎝

⎞
⎠

N

T
b

1 1 2

1dis

dis
2

2

(Ndis is the number of dislocations) [40], but ourmethod has a stronger capability to compute the position and
energy dependence of the relaxation time, for electronswith different energies, at different spatial points.

Assuming a roughly averaged dislocation-electron distance =r̄ N1 ,dis the comparison (normalized at
1012 cm−2) of the relaxation rate between our theory and the semi-classical theory is plotted infigure 3 and
shows very similar trends. Due to the explicit position dependence of the relaxation time t ( )p r,dis in our theory,
it is not an easy task to compute the total relaxation time t .dis Without any position dependence, a simple
relation based onMatthiessen’s rule / /åt t= ( )p1 1

pdis dis might be a reasonable starting point summing over

degenerate electrons. However, / /åt t= ( )p r1 1 ,
p rdis , dis does notmake sensewith the presence ofmultiple

dislocations even if they are not interactingwith each other, since an election far away fromone dislocationmay
be closer to another dislocation. The relation between the theoretical computable relaxation time t ( )p r,dis and
the total election-dislocation relaxation time tdis remain an interesting open question, however.

5. Conclusions

In summary, we have developed a fully-quantized theory of crystal dislocations in order to describe the effect of a
dislocation on the electronic properties ofmaterials at amany-body level. Upon quantization, a type of effective
1DBosonic excitation, whichwe have called the ‘dislon’, is developed, whose excitation spectra are obtained in
closed-form in an isotropicmedium. Such a framework allows one to study the classical electron static-
dislocation scattering at a full dynamicalmany-body quantum–mechanical level. This quantumapproach is
expected to greatly facilitate the study of the effects of non-interacting dislocations on the electrical properties of
materials because the effects of an isolated dislon can be incorporated into existingmany-body theories without
loss of rigor. In fact, the power of a quantized dislocation is not only restricted to the prediction of the electron
energy oscillation. Using this approach, it can be shown that amulti-decade—long debate of the nature of the
dislocation-phonon interaction-whether a static strain scattering process or a dynamic fluttering dislocation
scattering process—shares the same origin as phonon renormalization [35].What’smore, since the dislon is a
type of Bosonic excitation, the dislonmay also couple 2 electrons to form aCooper pair, becoming an extra
contributor to superconductivity besides a phonon. Thismay seem counterintuitive since dislocations are
defects, which tend to only shorten the electronmean free path and lead to aweakening of superconducting
coherence phenomena; yet early experimental evidence did show a sample annealing temperature dependent
superconducting transition temperatureTc, whereby different samples having identical stoichiometry but
different dislocation densities, and showed a slight increase ofTc under plastic deformation in another
experiment [41]. Amore profound role of dislocations on superconductivity was suggested as the competition
between two different types of interaction based on the dislon theory [28].

Figure 3.Comparison of normalized relaxation rate using classical result [40] (dashed lines) and equation (39) (solid lines).
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