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Abstract

The gut microbiome is a dynamic system that changes with host development, health,

behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series

has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that

most of the variance in microbial time series is non-autoregressive. In addition, we show

how community state-clustering is flawed when it comes to characterizing within-host

dynamics and that more continuous methods are required. Most organisms exhibited stable,

mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were

largely shared across individuals. This mean-reverting behavior allowed us to apply sparse

vector autoregression (sVAR)—a multivariate method developed for econometrics—to

model the autoregressive component of gut community dynamics. We find a strong phylo-

genetic signal in the non-autoregressive co-variance from our sVAR model residuals, which

suggests niche filtering. We show how changes in diet are also non-autoregressive and that

Operational Taxonomic Units strongly correlated with dietary variables have much less of

an autoregressive component to their variance, which suggests that diet is a major driver of

microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery

from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal

redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely

driven by external environmental fluctuations, and the other by internal processes.

Author summary

Dynamics reveal crucial information about how a system functions. In this study, we

develop an approach for disentangling two types of dynamics within the human gut

microbiome. We find that autoregressive dynamics involve recovery from large deviations

in community structure. These recovery processes appear to involve the blooming of fac-

ultative anaerobes and aerotolerant taxa, likely due to transient shifts in redox potential,

followed by re-establishment of obligate anaerobes. Non-autoregressive dynamics carry a

strong phylogenetic signal, wherein highly related taxa fluctuate coherently. These non-

autoregressive dynamics appear to be driven by external, non-autoregressive variables like

diet. We find that most of the community variance is driven by day-to-day fluctuations in
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the environment, with occasional autoregressive dynamics as the system recovers from

larger shocks. Despite frequently observed disruptions to the gut ecosystem, there exists a

returning force that continually pushes the gut microbiome back towards its steady-state

configuration.

Introduction

The dynamic microbiome

Microbial ecology has become an important branch of medical science [1]. Recent work has

shown how each person maintains a fairly unique microbial fingerprint [2–4], and that micro-

bial dysbioses are often associated with shifts in health-status [5–8]. We now recognize that

our microbiota are highly dynamic, and that these dynamics are linked to ecological resilience

and host health [9–11]. The field has not yet settled upon whether gut microbial community

structure varies continuously or if it jumps between discrete community states, and whether

these states are shared across individuals [12–14]. In particular, some researchers suggest that

gut communities can be binned into discrete ‘enterotypes’ [12], while others argue that gut

communities vary along multidimensional continua [13]. If the ultimate goal of microbiome

research is to improve human health by engineering the ecology of the gut, we must first

understand how and why our microbiota vary in time, whether these dynamics are consistent

across humans, and whether we can define ‘stable’ or ‘healthy’ dynamics.

Gut microbiota are continually buffeted by external factors like diet and host behavior [10,

15]. Internal species-species (e.g. cross-feeding or successional turnover) and host-species (e.g.

immune system regulation or host physiology) interactions can also influence the structure

and stability of the gut ecosystem [16–18]. Lotka-Volterra (LV) models, which predict changes

in community composition through defined species-species or species-resource interaction

terms, are popular for describing these internal ecological dynamics [19–22]. LV models are

deterministic and fairly straight-forward to interpret, but little is known about the relative

importance of these purely autoregressive factors in driving gut microbial dynamics (see Theo-
retical Considerations section below for a more detailed comparison of LV and VAR models).

More recently, a model-free approach to forecasting non-linear dynamics—called convergent

cross-mapping (CCM)—has been applied to ecological time series data [23]. While extremely

useful, CCM can be difficult to interpret [24, 25], and may not be appropriate for high-dimen-

sional systems with weak coupling between components (e.g. the gut).

Long, dense time series data are becoming increasingly available to microbial ecologists [10,

11, 26]. These temporal data are invaluable for understanding the behavior of microbial com-

munities but require special care during analysis due to the non-independence of temporally

adjacent samples [27]. In this paper we conduct a meta-analysis of the four longest, densest

human gut time series currently available [10, 11].

Time series analysis approach

We separated microbial dynamics into autoregressive and non-autoregressive components by

applying vector autoregressive (VAR) models, which were originally developed for economet-

rics [28–30]. We took this approach because we found that substantial autocorrelation per-

sisted in most microbial time series for at least 3 days (i.e. past values of an OTU were

predictive of its current value), which meant that temporally adjacent samples were not inde-

pendent. VAR models are standard for analyzing stationary multivariate time series with
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autocorrelation, cross-correlations, and noise. Time series are considered to be stationary if

they appear to be sampled from the same probability distribution through time (i.e. the mean

and variance, along with the other moments of the distribution, do not change through time;

Fig 1). VARs model each element as a linear function of lagged values of other elements in the

time series [29]. In order to reduce the number of coefficients generated by classical VAR

models (i.e. with n species in a VAR model with p lags, n2 x p coefficients are generated) and

avoid over-fitting we apply regularized estimation, resulting in a sparse VAR (sVAR) [30, 31].

The residual variation of an sVAR model is stripped of much of its autoregressive structure,

which allows for the application of standard statistical techniques that assume sample-to-sam-

ple independence. sVARs have the benefit of explicitly modeling error, unlike LV-type models

[32], and are more straightforward to interpret than CCM forecasting [25].

Multiple possible drivers of dynamics

We suggest that there are two differentiable sets of drivers generating autoregressive and non-

autoregressive microbial community dynamics in the gut. The first set of drivers induce multi-

day recovery processes, where the past state of the system is predictive of the future state [33].

As mentioned above, LV models are differential equations that can incorporate species-species

and species-resource interactions. These models are inherently autoregressive and are the

dominant workhorses of ecological time series modeling [19, 26, 34]. The second type of driver

is non-autoregressive, and likely includes dietary factors and other external perturbations [10].

In this paper, we show that there are indeed two dynamic regimes: auto-regressive and non-

autoregressive. These dynamic regimes appear to reflect internal and external drivers, respec-

tively. The emerging picture of the gut microbiome shows a dynamically stable system, contin-

ually buffeted by internal and external forces and recovering back toward a conserved steady-

state.

Fig 1. Time series stationarity and non-stationarity. Grey lines depict time series, with the mean plotted in

red. The top left time series is stationary, with a stable mean (i.e. mean-reverting) and variance (i.e. non-

heteroskedastic). The top right trace shows a non-stationary time series where the mean and variance

change monotonically. The bottom left trace shows a time series with non-stationary variance (i.e. a sudden

bloom event). The bottom right trace shows a non-stationary time series with both a changing variance and a

non-monotonically changing mean.

doi:10.1371/journal.pcbi.1005364.g001
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Theoretical considerations

In this section, we directly compare our VAR modeling approach to the more common gener-

alized Lotka Volterra family of models (gLV). gLVs are first-order differential equations that

model growth rates as a non-linear function of community composition, and thus assume the

existence of mechanistic coupling between variables in the system. VAR models, by contrast,

assume linear dynamics, but can only be applied when the observed data are, or have been

transformed such that, the time series are stationary. In both gLV and VAR models, dynamics

are defined by species-species (or species-resource) interaction terms. In this study, we find

that a linear VAR-based approach was sufficient to extract essential dynamics of the system

without the need for a nonlinear mechanistic framework (i.e. as implemented in gLV).

gLVs have the following structure:

dXi

dt
¼ aiXi tð Þ 1 �

XiðtÞ
K

� �

þ Xi tð Þ
Xn

j¼1ðj!¼iÞ

BijXjðtÞ

where t is time, ai is the self-interaction term for organism i, Xi is the abundance of organism i,
Bij is the interaction term between organisms i and j in a community composed of n
organisms.

Dividing by abundance and converting to difference equation form allow for gLV parame-

ters to be solved with a system of linear equations as for a VAR(1) process [22]:

log Xi tð Þð Þ � logðXiðt � 1ÞÞ ¼ ai �
ai

K
� Xi t � 1ð Þ þ

Xn

j¼1ðj!¼iÞ

BijXjðt � 1Þ

We can now compare this linearized gLV to a corresponding VAR(1) process:

XiðtÞ ¼ qi þ si � Xiðt � 1Þ þ
Xn

j¼1ðj!¼iÞ

RijXjðt � 1Þ þ ei ðtÞ

where ei(t) is the error term. Thus, both gLV and VAR(1) can be solved using systems of linear

equations, but the interpretation of the coefficients will be different. For instance, we can com-

pare ai (1/time) and for qi (abundance), to see that VAR models directly model data on

observed data, whereas gLV models assume that a more appropriate model maps observed

abundance data to differenced log-transformed data.

Further, VAR(p) models can include an arbitrary number of time lags (i.e. autoregressive

processes can extend further back in time). gLVs do not allow for explicit inclusion of histori-

cal time series data beyond one time lag. In considering the appropriate approach for analysis

of microbial community time series, we created a decision tree to guide appropriate modeling

strategies (Fig 2).

Methods

Data processing

Sequence data. Raw 16S (V4-V5) amplicon sequence time series data were obtained from

David et al. (2014) [10] and Caporaso et al. (2011) [11]. The four data sets from these two

papers are the longest, densest human gut time series currently available. Having long, dense

time series is crucial for gaining an understanding of autocorrelation decay timescales and

for fitting models to these large multivariate systems. 16S (V3-V5) amplicon data was also

obtained from the Human Microbiome Project [1]. Raw data was quality filtered and demulti-

plexed using Quantitative Insights into Microbial Ecology (QIIME) default settings [35]. In

Two dynamic regimes in the human gut microbiome
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order to compare across studies and reduce technical variance between studies, closed refer-

ence Operational Taxonomic Units (OTUs) were clustered at 99% identity against the Green-

genes database v. 13_5 [36]. Open reference OTU picking was also run [37], in order to look

for non-database OTUs that might contribute substantially to community dynamics. Time

series OTU tables (i.e. n x m matrices, with n OTUs and m samples) were normalized by

random sub-sampling to contain 10,000 reads per sample. Alpha and beta-diversity metrics

(Shannon entropy and Jensen-Shannon divergence) were calculated with custom Python

scripts using normalized OTU tables. To reduce noise from sequencing or PCR artifacts in

further downstream analyses and to reduce the complexity of our models, only the top 50

most abundant OTUs or the 76 OTUs common across all time series were analyzed. The time

series from donors A and B in the David et al. (2014) paper had significant diarrheal events

resulting from travel abroad and food poisoning. We wanted to focus on the dynamics of nor-

mal, healthy gut communities. Thus, for donor A we focused on days 150–365 (after return

from traveling abroad) and for donor B we focused on days 0–150 (prior to food poisoning

event). No significant perturbations were reported in the Caporaso et al. (2011) study, so all

time points were used in the analysis. 268 HMP samples were sub-sampled to contain 1,000

sequences per sample and OTUs that occurred in fewer than 10 samples were removed.

We included analyses on two non-gut time series from a marine and a freshwater ecosys-

tem. OTU tables and metadata for these studies obtained from the Earth Microbiome Project

(EMP) [38]. The EMP study numbers were 1240 (English Channel marine time series) and

1242 (Lake Mendota freshwater time series). The OTU tables and metadata files from these

Fig 2. Flow chart indicating what time series modeling approach is appropriate given the structure of a data set.

doi:10.1371/journal.pcbi.1005364.g002
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studies can be downloaded from FigShare: https://figshare.com/articles/Time_Series_Meta-

Analysis_Files/3581616

Interpolation between missing time points and first-differencing. Each of our time

series data sets had a few gaps (i.e. missing days). These gaps needed to be filled in order to

apply our autoregressive modeling approach. Thus, missing data points were filled in using the

SciPy [39] implementation of piecewise cubic interpolation (PCHIP). There are many alterna-

tive methods for interpolation that can be used (e.g. see SciPy documentation on interpolation

methods: http://docs.scipy.org/doc/scipy/reference/interpolate.html) [40], but PCHIP had cer-

tain properties that were desired: abundances stay above zero; monotonicity is preserved; does

not overshoot when data is not smooth [41].

OTU relative abundance matrices (m time points x n OTUs) were converted into rate

matrices (m-1 time points x n OTUs) by subtracting the relative abundance of each OTU at

time t from its abundance at time t+1 (i.e. first-differencing). The rate matrix (i.e. the first-dif-

ference or first-derivative matrix) shows the dynamics in rates between adjacent time points

for each OTU in the data set.

Data analyses

State clustering. In order to determine whether microbial communities clustered into

discrete states (i.e. community configurations that are non-continuously distributed through-

out state-space), we fit a Dirichelet multinomial mixture model (DMM) to the data [42].

The DMM clustering null model assumes that the data are pulled from the same Dirichelet

multinomial distribution, and increases the number of parent distributions depending on the

heterogeneity of the input data. The default Laplace method was used to penalize model com-

plexity (http://bioconductor.org/packages/release/bioc/manuals/DirichletMultinomial/man/

DirichletMultinomial.pdf) [42]. We sampled each time series at different levels of temporal

resolution (i.e. every time point, every other time point, every third time point, etc.) to deter-

mine whether the number of states was influenced by over- or under-sampling of the state

space. We restricted the analysis to the top 50 most abundant OTUs within each time series or

the 76 abundant OTUs that occurred across all time series.

Abundant, conditionally rare taxa. We looked for organisms that were transiently abun-

dant across the time series by filtering for OTUs with coefficients of bimodality > 0.8 and

whose peak abundance was� 10% of the total community [43]. These conditionally rare taxa

(CRTs) are rare or undetected across most time points, but occasionally bloom into high-

abundance (i.e.� 10% of the community sequence reads).

Autocorrelation, cross-correlation, and stationarity. Autocorrelation decay was deter-

mined for each OTU using the autocorrelation function (i.e. acf) in the StatsModels package in

Python (http://statsmodels.sourceforge.net/stable/index.html) [44]. Stationarity (i.e. whether a

time series is sampled from the same statistical distribution along its entire trajectory) was

assessed using the combined results of Augmented Dickey-Fuller (ADF) [45] and Kwiat-

kowski-Phillips-Schmidt-Shin (KPSS) tests (both TREND and LEVEL) [46]. The ADF test

from the StatsModels package was used. An implementation of the KPSS test, written by

Deniz Turan (http://denizstij.blogspot.co.uk/), was used (see Supplemental Materials for KPSS

code).

Time series model. For each time series, the top 50 most abundant OTUs were fit to a

lag-3 sparse vector autoregressive model (i.e. sVAR(3), where ‘(3)’ indicates that 1–3 day lags

were considered) using the sparsevar package in R v.3.2.8 (https://github.com/svazzole/

sparsevar) (Fig 3) [30]. Elastic Net regularization was used for the sVAR fitting [47]. Thresh-

olding was enforced so that very small coefficients were converted to zeros. Autocorrelation or
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cross-correlation structure was reduced in the sVAR(3) residuals, which allows us to more

confidently apply standard statistics (i.e. methods that assume sample-to-sample indepen-

dence) to the model residuals (Fig 3). Higher-order lags and rare taxa were not considered in

order to minimize the number of estimated parameters. Granger causality coefficients were

calculated for each non-zero sVAR coefficient [29], and significance was assessed using a chi-

squared test (p< 0.05). Granger causality is based on linear time-lagged prediction: if time

series A is predictive of the future values of time series B, it is said that A Granger causes B

[48]. Granger causal interactions do not imply direct causality, as these associations may arise

due to indirect influences.

Correlation and phylogenetic structure. OTU-OTU Spearman’s rho matrices were com-

puted from the OTU matrices (i.e. relative abundances, rates, and rate residuals from the

sVAR model) using Pandas [49]. Pairwise phylogenetic distances between OTU representative

sequences were calculated using the dnadist function (default settings) in PHYLIP [50]. Spear-

man coefficients between OTUs were combined into phylogenetic distance bins, and the aver-

age coefficient for each bin was calculated.

Analysis code and notes. The data files and python code used to carry out the analyses

presented in this manuscript, along with notes showing commands run in R, are available on

FigShare: https://figshare.com/articles/Time_Series_Meta-Analysis_Files/3581616

Results and discussion

Community stability

Database (Greengenes) OTUs accounted for 95–99%, 93–99%, 83–97%, and 83–96% of all

sequences per time point in the F4, M3, DA, and DB time series, respectively. The proportion

Fig 3. Two dynamic regimes in the gut microbiome. The top panel shows the relative abundance trace

for an OTU. The second panel shows the same time series after first-differencing (i.e. taking the derivative

to obtain the rate). In this data set, first-differencing ensured that each time series was stationary and

appropriate for sparse vector autoregressive (sVAR) modeling. The third row of plots shows autoregressive

and non-autoregressive rate dynamics, based on fitting the sVAR model. Autoregressive model coefficients

(bottom left) provide information on time-lagged interactions between OTUs within the model (i.e. equivalent

to partial Granger coefficients). OTU-OTU covariance (bottom right) of non-autoregressive dynamics provides

information on co-fluctuating taxa.

doi:10.1371/journal.pcbi.1005364.g003
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of non-database OTUs was quite stable over time. Furthermore, the 50 most abundant OTUs

in each time series were all Greengenes OTUs. Non-database OTUs tended to be low-abun-

dance taxa.

Microbial community alpha diversity showed stable, mean-reverting behavior across all

four time series (Fig 4). The average effective number of species (Neff = e[Shannon diversity]) was

between 28–50 for each time series, which indicated that compositional effects (i.e. spurious

correlations caused by non-independence between relative abundances) were not a major con-

cern in this analysis (Fig 4) [51]. Friedman and Alm (2012) found that, in simulated data, for a

Neff of ~30 or more, conventional statistics gave the same result as their compositionally aware

method. We found that large deviations in alpha diversity were strongly correlated with a set

of conditionally rare taxa (CRTs) that occasionally bloomed to as much as ~30% of the com-

munity (dominant taxa at steady-state were usually between 10–20% of the community), but

were usually found at very low abundances (Fig 4). In order to test whether CRT blooms drove

significant compositional effects in the correlation structure of our time series, we calculated

Spearman’s correlations between the 100 most abundant taxa in the M3, DA, and DB time

series with and without the CRT time points (i.e. time points where CRTs rose above 10% rela-

tive abundance were removed; S1 Fig). Overall, we saw no compositional effects due to CRT

blooms (S1 Fig). A recent meta-analysis by Shade and Gilbert (2015) found that CRTs are

responsible for a significant fraction of overall community dynamics in many different ecosys-

tems [43]. Abundant gut CRTs—Prevotella, Bacteroides fragilis, Akkermansia muciniphila,

Lachnospiraceae, Enterobacteriaceae and Haemophilus parainfluenzae—were present in M3,

DA, and DB time series (S1 Table; Fig 4). Abundant CRTs (i.e. peak abundance� 10% of

Fig 4. Alpha diversity is correlated with conditionally rare taxa (CRT) blooms. Black lines show the Shannon

effective number of species (i.e. Neff, a measure of alpha diversity) for each time series used in this analysis. The red

dashed lines show the average Neff for each time series. The average Neff is between 28–51 across the time series,

which is high enough that compositional effects are expected to be negligible (Freidman and Alm, 2012). Major

perturbations in alpha diversity are associated with CRT blooms (orange lines = sum of CRT abundances).

doi:10.1371/journal.pcbi.1005364.g004
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sequence reads) were not identified in the F4 time series, consistent with its relatively stable

alpha-diversity trace (Fig 4). However, there were several Enterobacteriaceae blooms in the F4

time series that fell beneath our abundance threshold. The M3 time series was an outlier, with

much more frequent CRT blooms than the other time series. These bloom events likely repre-

sent opportunistic or pathogenic organisms that are either the cause or symptom of a disrup-

tion in the normal steady-state gut environment. Many CRT OTUs are facultative anaerobes

or aerotolerant taxa (e.g. Enterobacteriaceae OTUs and other Proteobacteria or OTUs in the B.

fragilis group, like B. uniformis, B. ovatus), which are probably responding to changing redox

potential in the gut following some disturbance (e.g. inflammation) [52].

After first-differencing (i.e. differencing OTU abundances at adjacent time points), abundant

OTUs showed completely stationary dynamics, implying that the mean, variance, and autocor-

relation structure do not change over time (ADF and KPSS tests; Table 1). Both ADF and KPSS

Level tests (Table 1) assess whether or not a process has a unit root, which implies that the mean

changes through time and that the system does not recover to the mean trend in the presence of

a shock (i.e. the process is integrated). The KPSS Trend test (Table 1) assesses whether or not a

process is trend-stationary, which implies a mean trend with stationary error that is capable of

recovering to the trend line following a shock. Non-stationary OTUs are likely not stable mem-

bers of the steady-state community. Prior to first-differencing, most OTU trajectories showed

ADF-stationary dynamics (Table 1). There was no apparent enrichment for particular taxo-

nomic groups among non-stationary OTUs. In addition to OTU abundance trajectories being

largely stationary, we also saw a range of autocorrelation decay curves for the top 50 most abun-

dant OTUs (Fig 5). Some OTUs showed strong, persistent autocorrelation, while others did not

(Fig 5). The amount of autocorrelation decay also varied across time series. In particular, the

DA time series showed much less autocorrelation than the other three time series (Fig 5).

Stationarity implies that there is a restoring force on an OTU’s abundance over time, so

that it returns to a mean value after a perturbation (i.e. a steady-state population size, or ‘carry-

ing capacity’). Indeed, we found a significant negative correlation between the change in OTU

abundances between time t and time t+1 and the abundances of OTUs at time t (Fig 6). Thus,

by converting abundance dynamics to rate dynamics, we can achieve stationarity across all

abundant time series in the system and preserve correlation structure between OTUs, as long

as we exclude non-stationary windows that contain large disturbances (e.g. food poisoning in

the DB time series on day 150). Furthermore, the strong correlation between rates and OTU

abundances at the prior time step indicates that much of the variance in these data is linear

(Fig 6). The fact that these rate dynamics can be modeled as linear, stationary processes opens

up a wide array of time series models to gut data sets.

Table 1. Percentage of abundant OTUs (50 most abundant OTUs from each time series) that show sta-

tionary dynamics before (raw) and after (delta) first-differencing. Three tests of stationarity were used:

the augmented Dickey-Fuller (ADF) test, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) trend test, and the

KPSS level test.

ADF KPSS Trend KPSS Level

M3 raw 92.0 26.0 34.0

M3 delta 100.0 100.0 100.0

F4 raw 80.0 44.0 40.0

F4 delta 100.0 100.0 100.0

DA raw 100.0 48.0 90.0

DA delta 100.0 100.0 100.0

DB raw 88.0 22.0 44.0

DB delta 100.0 100.0 100.0

doi:10.1371/journal.pcbi.1005364.t001
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Discrete vs. continuous dynamics in the gut microbiome

Prior work has argued for the existence of discrete gut community configurations across

humans, termed ‘enterotypes’, that may be associated with health and disease [12, 14]. How-

ever, longitudinal data has provided evidence that these enterotypes may arise from undersam-

pling individuals through time. For example, the M3 time series is known to moved fluidly

through all three putative enterotypes from Arumugam et al. (2010) during the course of a

year [13], which suggests that gut communities vary along a continuum. We expanded upon

this analysis using an improved Dirichlet multinomial mixture model (DMM) clustering

method [14, 42], which assesses whether samples appear to be pulled from a common Dirichlet

multinomial distribution. In general, clustering methodologies are plagued by over- and

under-sampling issues. In a time series, samples that are taken close together in time are likely

to be similar to one another (i.e. they are autocorrelated). If the community is sampled densely

enough as it moves through state space, then packets of samples that happen to be temporally

adjacent may be grouped into pseudo-clusters (i.e. over-sampling). On the other hand, if only

a handful of samples are taken from an individual, then outlier points may give rise to pseudo-

clusters because the state space was not sufficiently sampled (i.e. under-sampling). If there are

no discrete states to be found, then the number of states should decay smoothly to 1 as the

sampling sparcity is increased. However, if discrete states do exist, then the number of states

should reach a plateau that is stable across a range of sampling densities.

We aimed to address whether gut communities can be grouped into discrete states and

whether these states are shared across individuals given a range of intra-individual sampling

Fig 5. Autocorrelation decay plots for the 50 most abundant OTUs in each time series. Each black line represents

the autocorrelation for a single OTU over different time lags (in days). The top row of plots shows autocorrelation (y-axis)

for up to 50-day lags (x-axis). Orange dashed lines indicate an autocorrelation coefficient of 0.0. Dashed grey lines show

the zoom-in region from the upper row of plots presented in the second row of plots (lags up to 10 days).

doi:10.1371/journal.pcbi.1005364.g005
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effort. DMM states were fit to the full-length time series, which included the food poisoning

event in the DB time series. Independent of our OTU filtering method (50 most abundant

OTUs in each time series, or 76 abundant OTUs shared across all time series), we found that

the number of DMM states decayed rapidly from 15 to a plateau of 6 (Fig 7A). These states

were almost entirely unique to individuals (Fig 7B). There was only one case where a sample

from DA was assigned to a state largely associated with DB. In addition, only DB and M3 time

series harbored multiple states, which is consistent with major perturbations in the gut com-

munity within these time series (i.e. food poisoning and frequent CRT blooms, respectively).

Overall, barring major perturbations, we conclude that individual humans—given sufficient

sampling density—can be distinguished by unique Dirichelet multinomial distributions (Fig

7). Because almost every time point from a subject’s time series is assigned to the same one or

two DMM states, continuous methods are necessary for exploring the dynamics of microbial

communities within an individual. We believe this result will hold as larger numbers of long-

term human gut time series become available.

Despite the clustering of individuals into unique states, we identified 956 OTUs that were

present across all four individuals. These organisms tended to be found at similar median

abundances across individuals (Fig 8). In addition, these shared OTUs made up 70–80% of the

sequences in each data set (Table 2). Furthermore, a single OTU (from the genus Bacteroides;
Greengenes ID 850870) was the most abundant taxon in M3, F4 and DB, and was the second

most abundant organism in DA (Fig 6). Thus, despite the fact that most OTUs appear to be

Fig 6. OTUs in the time series data show a propensity for mean-reversion. The top row of plots shows the change in

relative abundance from time t to time t+1 (y-axis) vs. the relative abundance (x-axis) for OTU 850870 (Greengenes ID;

Bacteroides spp.; the most abundant OTU in M3, F4 and DB time series and 2nd most abundant OTU in DA time series).

The bottom plot summarized the ordinary least-squares (OLS) regression coefficient (R) for the top 50 most abundant

OTUs from each data set. In general, there is a negative association between an OTU’s change in abundance and its

current abundance level, suggesting that OTUs have fixed carrying capacities. The average magnitude of the regression

coefficient appears to be an indicator of the returning force. These results are consistent with stationarity.

doi:10.1371/journal.pcbi.1005364.g006
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unique to an individual’s gut, there is a set of abundant core taxa that are present at similar

abundances across people. It is unlikely that compositional effects are responsible for the exis-

tence of these carrying capacities, due to the fact that there is a wide-range in of abundances at

which OTUs appear to persist (Fig 8). With similar carrying capacities not only within but also

across individuals, these core OTUs likely occupy similar metabolic niches across humans.

Sparse vector autoregression (sVAR) and granger causality

We employ an analytical approach based on continuous, multivariate, linear, autoregressive

modeling tools developed for econometrics to pull apart two independent dynamic regimes in

the human gut microbiome (Fig 3). Each regime, autoregressive and non-autoregressive, tells

a unique story about the gut ecosystem.

OTU abundance trajectories showed fairly strong autocorrelation structure (Figs 5 and S2),

although there was no evidence for auto-covariance in a limited set of dietary metadata from

the DB time series (S3 Fig). The autocorrelation decay curves showed that most of the auto-

correlation was gone after a lag of 3 or 4 days in the abundance data, and most of the autocor-

relation was gone from the differenced time series after 1 or 2 days (S2 Fig). Thus, we chose to

fit a lag-3 sparse vector autoregressive model to all the data to account for this autoregressive

signal. sVAR(3) models produced residuals with reduced autocorrelation structure (S2 Fig).

The sVAR models (i.e. the linear autoregressive components of the variance) accounted for a

minority of the total community variance (0–50% for any given OTU; Fig 9). The set of OTUs

with strong autoregressive signals were phylogenetically heterogeneous (S4 Fig). OTUs from

the Enterobacteriaceae family tended to have larger amounts of their variance explained by

the sVAR than other taxa (Fig 9). These Enterobacteriaceae OTUs were also often identified

as CRTs, blooming periodically from low to high abundance. The most abundant taxa also

tended to show more autoregressive structure than lower-abundance taxa (Fig 9).

Many sVAR coefficients showed significant Granger causal associations (i.e. the past abun-

dances of one OTU predict the future abundances of another OTU; Fig 10; Chi-Squared test,

p< 0.05). The M3 time series had the sparsest Granger network, with no significant relation-

ships for 3-day lags. This lack of significant Granger relationships at 3-day lags may be due to

the higher frequency of CRT blooms in that time series, which may have continually disrupted

Fig 7. (A) shows decay in the number of Dirichelet multinomial mixture model (DMM) states as the sparcity of the time

series is increased for the top 50 most abundant OTUs from each time series and for the 76 abundant OTUs shared across

all four time series. The plateau is at 6 states for both methods (grey dashed line). (B) shows state classifications for

samples taken from all four individuals (top 50 OTUs from each time series sampled at every 11th time point). States are

largely unique to individuals (i.e. colors indicate unique states), with the exception of a single time point in the DA series that

was assigned to a state (blue) that is dominant in DB.

doi:10.1371/journal.pcbi.1005364.g007
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community recovery and obscured successional trends. A B. fragilis OTU had the largest num-

ber of connections in the M3 Granger network. B. fragilis, B. ovatus, and Enterobacteraceae
OTUs had the largest numbers of connections in the F4 Granger network. In the DA and DB

Granger networks, F. prausnitzii OTUs had the largest number of significant Granger inter-

actions (Fig 10). Overall, Bacteroides, Faecalibacterium, and Enterobacteriaceae OTUs were

prevalent in all the Granger networks (Fig 10). In each Granger network, there were several

Granger-causal OTUs that influence multiple downstream responder OTUs, but there were

only a few responder OTUs (e.g. B. fragilis, in the F4 time series) that integrate multiple

upstream Granger signals. This pattern is consistent with cascading dynamics that result from

perturbing a highly connected/central node in a network with an external shock [53]. In gen-

eral, facultative aerobes (e.g. Enterobacteraceae OTUs) and aerotolerant taxa (e.g. Bacteroides)

Fig 8. Scatter plots of the log median abundances of shared 99% OTUs across time series. Taxa that are

present across time series show a positive correlation in their median abundances.

doi:10.1371/journal.pcbi.1005364.g008

Table 2. Number of OTUs shared across the time series (M3, F4, DA, and DB) and human microbiome

project (HMP) data sets. The 956 OTUs shared across all four time series make up the following percent-

ages of total abundances in each time series: M3 = 69.9%; F4 = 77.2%; DA = 76.9%; and DB = 79.9%. The

percent of total community abundance made up by the 308 OTUs shared across all data sets (including HMP)

are as follows: M3 = 61.1%; F4 = 70.0%; DA = 61.7%; DB = 59.1%; and HMP = 39.3%.

M3 F4 DA DB HMP

M3 7260

F4 3436 4334

DA 2109 1431 4839

DB 1796 1234 2804 3910

HMP 1214 820 855 788 3293

*shared across 4 time series: 956

*shared across all data sets: 308

doi:10.1371/journal.pcbi.1005364.t002
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were more likely to Granger-cause obligate anaerobes (e.g. most Firmicutes OTUs) than the

reverse (Fig 10). These intrinsic dynamics suggest a successional process that might follow a

spike in luminal oxygen levels [52].

Non-autoregressive dynamics contain phylogenetic structure

sVAR(3) residuals showed reduced autocovariance and could thus be more appropriately ana-

lyzed using standard statistical methods that assume independence. Closely related gut bacteria

were generally positively correlated with one another, but this coherence decayed rapidly with

phylogenetic distance (Fig 11). There was a significant anti-correlation between OTU-OTU

phylogenetic distance and OTU-OTU correlations in abundances and abundance rates

through time (i.e. highly related taxa tended to be positively correlated; Spearman’s p< 0.001).

This phylogenetic coherence is conserved in the sVAR(3) residuals, but is completely absent in

the sVAR(3) coefficients (Fig 11). Moreover, although we did not identify strong correlations

between the set of dietary variables measured for the DB time series and the DB gut commu-

nity, these dietary variables showed little-to-no autocorrelation structure (S3 Fig; and see

Additional File A8 in David et al., 2014) [10]. Furthermore, we fit an sVAR(3) model to the

original 97% OTUs from the DA time series paper and found that none of the OTUs that had

previously been shown to correlate with dietary variables had any autoregressive signal (i.e.

sVAR coefficients = 0; S1 File). We suggest that unmeasured dietary variables and host behav-

ior/physiology are the non-autoregressive drivers responsible for the pronounced phylogenetic

signal in OTU-OTU residual correlation structure (i.e. related taxa are positively correlated

because they share a similar host/dietary niche, which fluctuates stochastically in time). In

addition to phylogenetic coherence in the correlation structure within a gut time series, we

find the same phylogenetic coherence in the correlations between OTU abundances across

Fig 9. Amount of variance explained by sVAR(3) model for top 50 OTUs in each time series. Bars are

colored by order: blue = Bacteroidales, red = Clostridiales, black = Enterobacteriales, pink = Verrucomicrobiales,

yellow = Erysipelotrichales, olive = Bifidobacteriales, silver = Pasteurellales, cyan = Synergistales.

doi:10.1371/journal.pcbi.1005364.g009
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people from the HMP gut data set (S5 Fig). Thus, microbial phylogeny is strongly coupled to

host niche in the human gut. In order to assess the generality of this relationship between phy-

logeny and correlation, we analyzed two time series from the English Channel and from Lake

Mendota (marine and freshwater environments, respectively). We found the same pattern in

these non-host associated environments, suggesting that niche filtering is a strong driver of

dynamics across different ecosystems (S6 and S7 Figs).

Conclusion

Despite distinct differences in community composition across humans, the dynamics of the

gut microbiota are stable and highly conserved. Dominant microbes in the gut appear to have

fixed carrying capacities (i.e. their dynamics are stationary), which opens the door to many

classical time series modeling approaches. Significant time-lagged interactions between OTUs

often include opportunistic, facultative anaerobic organisms like Enterobacteraceae, and obli-

gate anaerobes like F. prausnitzii [54, 55]. These autoregressive interactions appear to be due

to succession and recovery of the gut community from CRT blooms, which may result from a

disruption in the luminal redox balance [52]. The largest component of community variance is

non-autoregressive and appears to be driven by non-autoregressive environmental forces, like

pH [56] or fiber intake [10]. Unlike the autoregressive dynamics, these non-autoregressive

Fig 10. Granger causal networks for each time series. Trees show phylogenetic relationships between taxa. Edges are interactions identified in the sVAR

(3) model that also show significant Granger causality (p < 0.05). Symbols indicate oxygen tolerance and growth traits. CRT stands for ‘conditionally rare

taxon’, which is defined by a coefficient of bimodality > 0.8 and a maximum abundance of > 10% of the community. CRTs are organisms that are usually rare,

but occasionally bloom to very high abundance. CRTs tend to be facultative aerobes, or aerotolerant taxa.

doi:10.1371/journal.pcbi.1005364.g010
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dynamics carry a strong phylogenetic signal, indicative of niche filtering. Our results, based on

a limited number of individuals, paint a coherent picture of the gut ecosystem and the major

forces underlying its structure and stability, with two distinct dynamic regimes: one driven by

external factors (e.g. diet) and the other by internal autoregressive processes (e.g. recovery fol-

lowing a disturbance). Moving forward, it will be important to collect more time series data,

from both healthy and diseased individuals, to determine how general these dynamics are and

whether or not they are observed in dysbiotic gut communities.

Supporting information

S1 Table. Abundant CRTs (max abundance� 10%; coefficient of bimodality� 0.8) across

the four time series.

(DOCX)

S1 Fig. OTU-OTU correlation coefficients (Spearman’s rho) of first-differenced data are

not strongly impacted by CRT blooms in the DA, DB, and M3 time series (i.e. time series

Fig 11. Phylogenetic relatedness corresponds to similarity in dynamics for top 50 most abundant OTUs. Each plot is a heatmap showing the density

of pairwise OTU-OTU correlation or sVAR coefficients (y-axes) vs. pairwise phylogenetic distances (x-axes). The red lines show the mean coefficient along

phylogenetic distance windows. Top row shows Spearman correlations calculated based on raw count data. Second row shows Spearman correlations

calculated based on the first-difference (delta) of the count data. The third row shows the Spearman correlations performed on the residuals of a sVAR(3)

model fit to the deltas. The bottom row shows the sVAR(3) coefficients. The heatmap colors denote the density of OTU-OTU pairs at a given hexagonal pixel

on the plot.

doi:10.1371/journal.pcbi.1005364.g011
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where CRTs rise above 10% relative abundance). The x-axis shows the correlation coeffi-

cients for all time points and the y-axis shows the coefficients calculated with CRT time points

removed. Red lines show linear regression fits (R2 > 0.9 across all three time series).

(TIF)

S2 Fig. Autocorrelation structure in four long-term gut time series. First-differencing

(i.e. calculating the rate, or delta) and subsequent sparse VAR (sVAR) modeling removes

most of the autocorrelation from the data. Most autocorrelations decay to zero within 2–3

days (i.e. for the raw abundance counts), so a maximum time lag of 3 days was chosen for

sVAR fitting.

(TIF)

S3 Fig. Autocorrelaion decay for ten quantitative dietary variables (e.g. carbohydrate

intake, fiber intake, fat intake, etc.) from the DB time series.

(TIF)

S4 Fig. The top 50 most abundant OTUs in each time series plotted on phylogenetic trees.

Black circles denote amount of variance explained by an sVAR(3) model. Larger circles indi-

cate OTUs with a larger autoregressive component to their variance. Tips of trees are labeled

with the Family-level taxonomic annotation for each OTU.

(TIF)

S5 Fig. Hexagonal 2-D heatmap showing OTU-OTU Spearman correlation coefficients (y-

axis) vs. OTU-OTU phylogenetic distances (x-axis) for the 50 most abundant taxa in the

Human Microbiome Project (HMP) gut data set. The heatmap colors denote the density of

OTU-OTU pairs at a given hexagonal pixel on the plot.

(TIF)

S6 Fig. Hexagonal 2-D heatmap showing OTU-OTU Spearman correlation coefficients (y-

axis) vs. OTU-OTU phylogenetic distances (x-axis) for the English Channel marine time

series data (Earth Microbiome Project Study #1240). The heatmap colors denote the density

of OTU-OTU pairs at a given hexagonal pixel on the plot.

(TIF)

S7 Fig. Hexagonal 2-D heatmap showing OTU-OTU Spearman correlation coefficients (y-

axis) vs. OTU-OTU phylogenetic distances (x-axis) for the Lake Mendota freshwater time

series data (Earth Microbiome Project Study #1242). The heatmap colors denote the density

of OTU-OTU pairs at a given hexagonal pixel on the plot.

(TIF)

S1 File. Percent of variance explained by an sVAR(3) model for the original 97% OTUs

from the DA time series paper. OTUs that had previously been shown to correlate with

dietary variables (highlighted in yellow) had no autoregressive signal (i.e. sVAR coeffi-

cients = 0).

(XLSX)
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21. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, et al. Ecological modeling from

time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol.

2013; 9(12):e1003388. doi: 10.1371/journal.pcbi.1003388 PMID: 24348232

22. Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical Systems

INference Engine for microbiome time-series analyses. Genome Biol. 2016; 17(1):121. doi: 10.1186/

s13059-016-0980-6 PMID: 27259475

23. Sugihara G, May R, Ye H, Hsieh C-h, Deyle E, Fogarty M, et al. Detecting Causality in Complex Ecosys-

tems. Science. 2012; 338(6106):496–500. doi: 10.1126/science.1227079 PMID: 22997134

24. McCracken JM, Weigel RS. Convergent cross-mapping and pairwise asymmetric inference. Phys Rev

E. 2014; 90(6):062903.

25. Mønster D, Fusaroli R, Tylén K, Roepstorff A, Sherson JF. Inferring causality from noisy time series

data. arXiv preprint arXiv:160301155. 2016.

26. Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis: unraveling

microbial community dynamics. Curr Opin Microbiol. 2015; 25:56–66. doi: 10.1016/j.mib.2015.04.004

PMID: 26005845

27. Chen EZ, Li H. A two-part mixed-effects model for analyzing longitudinal microbiome compositional

data. Bioinformatics. 2016.

28. Wang Y, Hu X, Jiang X, He T, Yuan J, editors. Predicting microbial interactions by using network-con-

strained regularization incorporating covariate coefficients and connection signs. IEEE International

Conference on Bioinformatics and Biomedicine (BIBM); 2015.

29. Asteriou D, Hall S. Vector Autoregressive (VAR) Models and Causality Tests. Applied Econometrics.

London: Palgrave MacMillan; 2011.

30. Basu S, Michailidis G. Regularized estimation in sparse high-dimensional time series models. Ann Stat.

2015; 43(4):1535–67.

31. Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S, Sogayar MC, et al. Modeling gene

expression regulatory networks with the sparse vector autoregressive model. BMC Syst Biol. 2007; 1

(1):1.

32. Wangersky PJ. Lotka-Volterra population models. Ann Rev Ecol Syst. 1978; 9:189–218.

33. Volterra V. Variations and fluctuations of the number of individuals in animal species living together. J

Cons Int Explor Mer. 1928; 3(1):3–51.

34. Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human

microbial dynamics. Nature. 2016; 534(7606):259–62. http://www.nature.com/nature/journal/v534/

n7606/abs/nature18301.html—supplementary-information. doi: 10.1038/nature18301 PMID: 27279224

35. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows

analysis of high-throughput community sequencing data. Nat Meth. 2010; 7(5):335–6.

Two dynamic regimes in the human gut microbiome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005364 February 21, 2017 19 / 20

http://dx.doi.org/10.1016/j.chom.2014.09.013
http://www.ncbi.nlm.nih.gov/pubmed/25299329
http://dx.doi.org/10.1038/nature13178
http://www.ncbi.nlm.nih.gov/pubmed/24739969
http://www.nature.com/nature/journal/v505/n7484/abs/nature12820.html&mdash;supplementary-information
http://www.nature.com/nature/journal/v505/n7484/abs/nature12820.html&mdash;supplementary-information
http://dx.doi.org/10.1038/nature12820
http://dx.doi.org/10.1038/nature12820
http://www.ncbi.nlm.nih.gov/pubmed/24336217
http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x
http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x
http://www.ncbi.nlm.nih.gov/pubmed/17472627
http://dx.doi.org/10.1016/j.chom.2007.09.013
http://www.ncbi.nlm.nih.gov/pubmed/18005754
http://dx.doi.org/10.1371/journal.pone.0102451
http://dx.doi.org/10.1371/journal.pone.0102451
http://www.ncbi.nlm.nih.gov/pubmed/25054627
http://dx.doi.org/10.1371/journal.pcbi.1003388
http://www.ncbi.nlm.nih.gov/pubmed/24348232
http://dx.doi.org/10.1186/s13059-016-0980-6
http://dx.doi.org/10.1186/s13059-016-0980-6
http://www.ncbi.nlm.nih.gov/pubmed/27259475
http://dx.doi.org/10.1126/science.1227079
http://www.ncbi.nlm.nih.gov/pubmed/22997134
http://dx.doi.org/10.1016/j.mib.2015.04.004
http://www.ncbi.nlm.nih.gov/pubmed/26005845
http://www.nature.com/nature/journal/v534/n7606/abs/nature18301.html&mdash;supplementary-information
http://www.nature.com/nature/journal/v534/n7606/abs/nature18301.html&mdash;supplementary-information
http://dx.doi.org/10.1038/nature18301
http://www.ncbi.nlm.nih.gov/pubmed/27279224


36. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Green-

genes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.

ISME J. 2012; 6(3):610–8. doi: 10.1038/ismej.2011.139 PMID: 22134646

37. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, et al. Subsampled open-ref-

erence clustering creates consistent, comprehensive OTU definitions and scales to billions of

sequences. PeerJ. 2014; 2:e545. doi: 10.7717/peerj.545 PMID: 25177538

38. Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol.

2014; 12(1):69.

39. Jones E, Oliphant T, Peterson P. {SciPy}: Open source scientific tools for {Python}. 2014.

40. Bressert E. SciPy and NumPy: An Overview for Developers: " O’Reilly Media, Inc."; 2012.

41. Fritsch FN, Carlson RE. Monotone piecewise cubic interpolation. SIAM J. 1980; 17(2):238–46.

42. Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metage-

nomics. PLoS One. 2012; 7(2):e30126. doi: 10.1371/journal.pone.0030126 PMID: 22319561

43. Shade A, Gilbert JA. Temporal patterns of rarity provide a more complete view of microbial diversity.

Trends Microbiol. 2015.

44. Seabold S, Perktold J, editors. Statsmodels: Econometric and statistical modeling with python. Pro-

ceedings of the 9th Python in Science Conference; 2010.

45. Fuller WA. Introduction to statistical time series: John Wiley & Sons; 2009.

46. Syczewska EM. Empirical power of the Kwiatkowski-Phillips-Schmidt-Shin test. 2010.

47. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Series B Statist

Methodol. 2005; 67(2):301–20.

48. Granger CW. Some recent development in a concept of causality. J Econ. 1988; 39(1):199–211.

49. McKinney W, editor Data structures for statistical computing in Python. Proceedings of the 9th Python

in Science Conference; 2010.

50. Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladistics. 1989; 5:163–6.

51. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;

8(9):e1002687. doi: 10.1371/journal.pcbi.1002687 PMID: 23028285

52. Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013; 7

(7):1256–61. doi: 10.1038/ismej.2013.80 PMID: 23677008

53. Jordán F, Scheuring I. Network ecology: topological constraints on ecosystem dynamics. Phys Life

Rev. 2004; 1(3):139–72.

54. Khan MT, Duncan SH, Stams AJM, van Dijl JM, Flint HJ, Harmsen HJM. The gut anaerobe Faecalibac-

terium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J.

2012; 6(8):1578–85. doi: 10.1038/ismej.2012.5 PMID: 22357539

55. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muci-

niphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol. 2008; 74(5):1646–

8. doi: 10.1128/AEM.01226-07 PMID: 18083887

56. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of

the human colonic microbiota. Environ Microbiol microbiology. 2009; 11(8):2112–22.

Two dynamic regimes in the human gut microbiome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005364 February 21, 2017 20 / 20

http://dx.doi.org/10.1038/ismej.2011.139
http://www.ncbi.nlm.nih.gov/pubmed/22134646
http://dx.doi.org/10.7717/peerj.545
http://www.ncbi.nlm.nih.gov/pubmed/25177538
http://dx.doi.org/10.1371/journal.pone.0030126
http://www.ncbi.nlm.nih.gov/pubmed/22319561
http://dx.doi.org/10.1371/journal.pcbi.1002687
http://www.ncbi.nlm.nih.gov/pubmed/23028285
http://dx.doi.org/10.1038/ismej.2013.80
http://www.ncbi.nlm.nih.gov/pubmed/23677008
http://dx.doi.org/10.1038/ismej.2012.5
http://www.ncbi.nlm.nih.gov/pubmed/22357539
http://dx.doi.org/10.1128/AEM.01226-07
http://www.ncbi.nlm.nih.gov/pubmed/18083887

