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Abstract

The Reliable Router advances the state-of-the-art in high-speed, fault-tolerant com-
munication. It does so through novel ideas in the following areas: router architecture,
fault-tolerant networks, interchip signalling, and data retiming (synchronization).

The Reliable Router is a VLSI device implementing a message-passing communi-
cation substrate for parallel computers and other micro-area networks. The network
topology is a 2-dimensional mesh. It uses wormhole routing, 5 virtual channels per
physical channel, 2 priority levels, minimally adaptive and one-fault-tolerant routing.
Bandwidth between routers is 3.2Gbit /s, each way. Router latency is about 70ns. The
router has been fabricated on a 13.5mm by 15mm die, packaged in a 463-pin PGA,
and partial testing performed. A description of the architecture and schematics are
given. The design methodology is presented.

‘The Unique Token Protocol is used to provide fault-tolerance in the network.
The protocol keeps two copies of a message in the network, obviating the need for
source buffering. A token is used to determine the unique (exactly-once) delivery
of a message, nearly completely eliminating the need for duplicate detection at the
receiver. Details of the protocol under wormhole-routing are also provided.

Simultaneous Bidirectional Signalling is used for high-performance interchip com-
munication, 200Mbit/s each way per wire. A single wire carries full duplex com-
munication concurrently through the use of waveform superposition. Circuits, noise-
reduction techniques, and analysis are given.

Low-Latency Plesiochronous Data Retiming is used for interchip communication.
Each router operates in a separate clock domain. Latency is minimized by placing
the synchronizer out of the data path. The basic retiming method is fully described,
along with circuits and constraints for correct operation. Average latency is one-half a
clock period. Extensions for integral subrates and cascaded timing circuits are given.

Thesis Supervisor: William J. Dally
Title: Professor, Artificial Intelligence Laboratory



Acknowledgements

“It’s a long hard climb, but I'm gonna get there.”

from a Sesame Street song

I've relied on many people over the years. I would like to say thank you to the
following people:

Bill Dally, for getting me started, for all his support along the way, and for bringing
this project to a successful completion.

My thesis readers, Gill Pratt and Tom Knight, who supplied energy to a rather tired
student.

Scott Furman, a great officemate.

The people who worked on the router over the years, Whay Lee, Kin Hong Kan, Ivan
Oei, Jonathan Rosenberg, Dan Hartman, Jeff Bowers, and Dave Harris.

Eileen Neilson for getting the no-cost extensions through.

Tom Blackadar for understanding “I gotta get done.”

The CVA group, for all their moral support.

Duke Xanthopoulos, officemate, fellow router designer, and among the best of men.

My father and mother, Daniel and Dolores, who encouraged me to succeed by teaching
me not to fear failure.

My father-in-law and mother-in-law, James and Lee Moses, for their support (and
child-watching).

My children, Daniel, Kathryn, Larry, and Timothy, for their patience while Dad did
this.

My wife Judy, who has done more for me than I ever had any right to ask and yet
still loves me.

God in heaven, who watches over all I do.



For Judy,
My one and only.



Contents

1 Introduction 20
2 Prior and Related Work 23
2.1 Fault Tolerance . . .. ... ... ... ... ... ... . ...... 23
2.1.1 Routing Around Faults . . . ... ... ............. 23

2.1.2  Fault Tolerant Protocols . . . . ... .............. 26

2.2 Interchip Signalling . . . . ... .. ... ... ... . ... ..., .. 26
2.3 Low-Latency Plesiochronous Retiming . . ... .......... .. 26
2.4 Router Architecture. . . . . ... ... ... ... L 27

3 Overview of the Reliable Router 29
3.1 Routing . ... ... ... ... ... 31
3.1.1 Minimally Adaptive Routing . . . . ... ... ... ...... 31

3.1.2  Dimension-Ordered Routing . . . . ... ... ... ...... 33

3.1.3 Fault-Handling Routing . . .. ... .............. 34

3.2 Network Construction . . ... ..................... 35
321 Messages. . . ... ..... .. ... .. 36

3.22 Processor Port .. ............. ... .. .. .. .. 37

33 Summary ... .. ... 38

4 The Unique Token Protocol 40
4.1 Goals of Network-Level Fault Tolerance . . . . .. ........... 40
4.2 Overview of the Unique Token Protocol . . . . .. ... ........ 41
4.3 Keeping Multiple Copies in the Network . . .............. 41
4.3.1 Correctness of the Flow-Control Algorithm . . . . ... .. .. 41

4.3.2  The Unique Token Protocol Flow-Control Protocol Using Permits 45

44 TheToken . .. ... ... ... ... . .. .. . . . . .. .. ... 45
4.4.1 Correctness of the Token Passing Algorithm . ... ... ... 47

4.4.2 Token-Passing Pragmatics . . .. ................ 49

4.5 The Unique Token Protocol Using Wormhole Routing . . . . . . . .. 50
4.5.1 Packet Format and Reconstruction . . ... .......... 50

4.5.2 Flow Control . . ... ... .. ... ... .. ... .. .. .. 51

4.5.3 Restarting a Message Aftera Fault . . .. ... ... ..... 51

4.54 Completing a Message Aftera Fault . . ... ... ...... 51

4.6 Summary . .. ... ... ... 51



5 Simultaneous Bidirectional Signalling

5.1 Fundamentalsof Signalling . . . . . ... ... ... ..........
8.2 Noise. ... ... .
5.2.1 Noise in the Interconnect . . . . .. ... ... ... ......
5.2.2 Noise in the Transmitter . . . . .. .. ... ... .......
5.2.3 Noiseinthe Receiver . . . . .. ... ... ... ... .....
5.3 Circuit Techniques . . .. ... . ... ... ... .. ... ......
5.3.1 Transmitter . . .. ... .. ... ... .. ... .......
5.3.2 Transmission line and termination . . . . . ... .. ... ...
533 Receiver . . . . . . .. ...
5.3.4 Undirectional Signalling Summary. . . . ... ... ... ...
5.4 Bidirectional Signalling . . . . . ... ... ... .. ..., .. ...,
5.4.1 Additional Bidirectional Noise Factors . .. ... ... .. ..
5.4.2 Driver Output Impedance . . ... .. ... ..........
5.4.3 Termination Nonlinearity . . . . . ... ... .. ........
5.4.4 Large Common-Mode Signal . . . . .. ... ..........
5.4.5 Discrepencies between the line and reference waveforms . . . .
5.4.6 Additional Noise Sources . . . . .. .. ... ..........
5.4.7 The Noise Margins . .. .....................
5.4.8 Summary of Bidirectional Signalling . ... ... ... .. ..
8.5 Summary . . ... ...
5.6 Schematics. . ... ............. e e e e e e e
6 Low-Latency Plesiochronous Data Retiming
6.1 Background . ... ..... ... . ... ... .. ...
6.2 Plesiochronous Requirements . . . ... ... ... ..........
6.3 Retiming. ... ... ... .. .. .. ... ...
6.3.1 Mesochronous Retiming . . . ... ...............
6.3.2 Plesiochronous Retiming . . . . . ... ... ..........
6.3.3 Correct Plesiochronous Retiming . . . ... ..........
6.4 Circuit Pragmatics . . . ... ... ... ... .. ... . .......
6.4.1 Modeling Flip-Flops . ... ...................
6.4.2 CircuitDetails . ... ......................
6.5 Latency .. ... ... ... ... ...
6.6 Non-Data Transmission Rate. . ... ... ...............
€.6.1 Best Case Non-Data Transmission Rate. . . . ... ... ...
6.6.2 The Effectof Jitter . . . . ... .. ... ............
6.7 Cascading Plesiochronous Retiming Stages . . . ... ... ... ...
6.7.1 The Need for Local Timing Requirements . .. ... ... ..
6.7.2 The Source DataRate . . . ... ... .............
6.8 Integral Subrate Extensions . ... ...................
6.9 A Comparison to Mesochronous Techniques . . ... ... ... ...
6.10 Summary . .. .. .. ...



7 The Microarchitecture of the Reliable Router 106

7.1 Top Level Organization . . . . . .. ... ............ ... . 106
7.2 Clocking and Pipelines . . . ... ... ... ... ... ... ... .. 108
73 Global Signals . . . ... ..., .. ... ... ... 110
7.3.1 General Signals . . ... .. ... ... ... . ... ... . . 112

7.3.2 Routing Signals . . . ... ... .. ... . ... ... ... . . 112

7.3.3 Flow Control Signals . . . . ................. .. 112

734 Crossbar Signals . . ................... . . . . 113

74 Top-levelModules. . . .. ... .. ... ... . ..., .. ... .. . 115
741 I/OPads . ............. ... ... .. .. ... 115

742 ClockBuffers . ... ... ... ... ... ... ... .. .. 116

743 JTAGModules . . ... .. .. ... 116

744 Mask Generation . . ... ... ........... ... ... 116

745 WinEnable . . ... ... .. .. ... ... ... ... ... 117
7.4.6 Crossbar to Processor . . ... ............... .. 117

75 Ports . . ..o L 117
75.1 Frontend ... ... ....... ... .. ... ... .. ... 118

752 Glue .. ... L 123
7.5.3 Compute Routing Problem . . . . ... ... ..... ... .. 123
7.5.4 Virtual Channel Slice . . . . ................... 125
135 FIFO. ... .. .. 130
7.5.6 FIFO Interface to the Crossbar .. .. ............. 131
75.7 UpperLeft. .. ...... ... ... .. ... .. ... ... 131

76 Processor Port. .. .......... ... ... .. ... ... ... 133
7.6.1 Processor Frontend . . . .. ... ........... ... .. 133
7.6.2  Processor Output Controller . . . . .. ... ........ .. 134

7.7 Diagnostic Port . . .. ... ... ... ... .. .. ... ... ... . 135
7.7.1 Diagnostic Frontend . ... ... ... ... .. ... .. . .. 135
7.1.2 Diagnostic Output Controller . . ... ... .......... 135

78 Summary . . ... ... 136
8 Design Methodology 137
81 Standard Cells . . .................. . ... .. ..., 138
8.1.1 Standard Cell Generation . .. ................ . 138

8.2 Standard Cell Placement and Routing . . .. ... .......... 138
821 Routing . ... ..... ... .. ... ... ... 140
8.2.2 Multiple-Channel Router . . . . .. .. ... .. ... .. . ... 141

8.3 Powerand Ground Router . . . . ... ... ...... . ... . .. .. 142
8.4 Module-Generator Generator . . . . ... ............ ... . 142
85 Validation . .. ... ... ... ... .. ... ... 142
8.6 Top-Level Powerand Ground . ... ............. ... .. 143
87 Other Tricks. . . . ...... ... .. .. ... ... . . . ... ... 143
8.7.1 Technology File . . . ... ... .. ..... .. ... ... .. 143
8.7.2 Standard SKILL Library . . .. ... ... .. ... ... .. . 144
8.7.3 Schematic Capture . . ... ......... .. ... . ... . 144



8.74 Miscellaneous . . . . . . . . . . . i e e e
88 Summary . .. .. ... e e e

9 Testing
9.1 Errata . . . . . . .
9.2 Desitata . . . . . . .t e e

10 Conclusion
A Reliable Router Schematics

B Reliable Router Standard Cell Schematics

149
155

372



List of Figures

3-1
3-2
3-3
3-4
3-5
3-6
3-7

4-1

4-2
4-3
4-4
4-5

5-1
5-2
5-3
9-4
3-8
3-6
9-7
5-8
9-9
5-10
5-11
9-12
5-13
5-14
5-15
9-16
5-17
5-18
5-19
5-20
5-21

Two-dimensional mesh interconnection . . ............. 30
Minimally adaptive routing . . . .. .. ... ... ... .. ... . 32
Dimension-ordered routing . . . . ... ... .. .. ... ... . 33
Router-to-routersignals . . . .. ... ... ... ...... ... . 35
Physical interconnect between routers . . . . ... ... ... .. . 35
Processor input signals . . ... ... ........... ... .. 38
Processor output port signals . . . . . ... ......... ... . 39
Simplified Packet-oriented Flow Control for the Unique Token Protocol 42
The two foremost nodes in a route always have a copy of the packet 44
Packet-oriented Flow Control for the Unique Token Protocol . .. 46
The lack of a complete nodeorder . . . .. ........... .. 48
The conversion of the unique token to a replica, along with the
generationofatoken . . . .. ... . L L. 49
Noise and Gain in an Inverter Circuiiv . .. ............. 54
Ideal Unidirectional Communication . . . . .. ... ... ... .. 55
Package Model . . . . .. ... ... . ... . .. ... .. .. ... 55
Interconnect transfer characteristic at the transmitter . . . . . . . 56
Interconnect impedance characteristic at the receiver . . . . . . . . 57
The interconnect structure driven by a 100ps edge . . . . . . . . . 58
The interconnect structure driven by a Insedge . . ... ... .. 58
The interconnect structure driven by a 2nsedge . .. ... .. .. 59
Unidirectional Transmitter with Current Return Paths . . . . . . . 60
Unidirectional Transmitter with Current Return Paths . . . . . . . 60
Receiver Noise Model . . . . .. .. ... ... ......... .. 61
Receiver Transfer Characteristic . . . ... ............. 62
Receiver Transfer Characteristic . . ... ............ .. 63
Basic Current-Mode Driver . . . . .. ... ... ...... .. .. 64
Current Sources with Steering . . . . ... ............ . 64
Transmitter Transient Response, 200Mbit . . . . ... ... .. .. 65
Supply Currents, 200Mbit . . . . ... ... ... ......... . 66
Termination resistance measured at DC . . . . ... ... ... .. 66
Termination Transient Response, 100ps Edges . . ... ... ... 67
Receiver Transient Response, 200Mbit, 250mV . . . .. . ... .. 68
Receiver Transient Response, 200Mbit, 100mV . . . .. . ... .. 69

10



5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
9-32

5-33

5-34

5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15

7-1
7-2
7-3

Receiver Transient Response, 200Mbit, 20mV . . . . . . . ... ..
Receiver Supply Current, 200Mbit, 250mV . . . . . .. . ... ..
Unidirectional Signalling . . .. ... ... ... ..........
Simultaneous bidirectional signalling . . . . . ... ... ... ...
Waveforms for bidirectional signalling . . . . ... ... ... ...
Driver output current . . . . . . .. ... ... L.
Termination under larger current swing . . . .. .. ... ... ..
Buffer Transfer Curve . . . . . . . ... ... ... ... ......
Common mode response to a 250mV common mode signal

Common mode response to a 250mV common mode signal

Common mode response, 250mV common mode signal, 50mV dif-

ferentialsignal . . . . . .. .. ... ... ... L 0L .

Common mode response, 250mV common mode signal, 50mV dif-

ferentialsignal . . . . . .. ... .. ... ... ... ... ..
Differences between the line and reference waveforms owing to pack-
ageparasitics . . . . ... ... e e

Separating out the return current . . ... ... .. ... ... ..
Noise on VT clean, VT dirty . . .. .. .. ... ... .......
Bidirectional signalling with no int<:rconnect parasitics . . . . . . .
Bidirectional signalling with interconnect parasitics. . . . . .. ..
Transmitter . . . ... ... . ... . e
Transmitter Stage . . . . . ... ... ... . ... ... ...
The initial differential buffer used in the transmitter . . . . . . ..
Termination Resistor . . . . . . .. ... ... ... ... ....
Differential Receiver . . . . . . . ... ... ... ... ... ...,

Valid and Exclusion Regions . . . . . ... .............
Qand Rwaveforms . ... ... .. .................
Mesochronous Retiming Circuit . . . ... ... ... ... .. ..
Cell Oversampling . . . . .. .. ... ... ... ..........
Cell Undersampling . . . .. ... ... .. ... ..........
Multiplexor Control Switching Time . . . . . . . .. ... ... ..
RxClkfast, R—Q . . ... .. ... . ... .. ...
RxClkfast, @ = R . . . .. . . ... . i
RxClkslow, R = Q . . ... .. .. . . ... ...
RxClkslow,@ — R . . . . . . . . i i i i i i
Cellreassembly . ... ... ... ... .. ... ... .......
Waveforms derived from transmit clock . . .. ... ... ... ..
Select @ « R Finite State Diagram . . .. ... ..........
Ideal Waveforms . . . . ... .. ... ... .. ... ........

Top-level block diagram of arouter . . .. ... ..........
Top-level block diagram of the reliable router . . . . . . .. .. ..
The relationship between clk and clk50 . . ... ... ... ....

11



7-4  The dynamic flip-flop used throughout the router . . . . . ... . . 110
7-5 The timing pipeline through the frontend . . . . .. .. .. .. .. 111
7-6  The timing pipeline through the input controller, crossbar, and out-

put controller . . . . ... ... .. ... 111
7-7 Block diagram of aport . . . . ... .. ... ... ......... 118
7-8 Clock phase generation . . ... ................. . . 121
7-9  Latch structures for assembling a frame . . . . ... ... ... .. 121
7-10  Differential ripple parity generation cell . . . ... ... .. ... . 122
7-11  Q and R waveform generation, multiplexor . . . ... ... .. .. 122
7-12 The virtual channelslice .. ... ... ... ... . ... ... . 126
7-13  Route finite-state machine . . ... ... ... ... .. .. .. . . 129
8-1 Layoutofan AND4 . . ... ... ... . ... ... ... ... .. 139
A-1  Library arbiter, cell clkbuf . . . .. . ... ... ... .. ..., . 156
A-2  Library arbiter, cell e-windogic . . . . ... ............ . 157
A-3  Library arbiter, cell Ird_arbiter . . . .. ... ... .. ...... . 158
A-4  Library arbiter, cell new_ bid.and2 . .. .............. . 159
A-5  Library arbiter, cell new_bidlogic . .. ............... 160
A-6  Library arbiter, cell new_bid_nand2_invert . . . . ... ... .. .. 161
A-7  Library arbiter, cell new_priority . . . . .. ... ... ... ... . 162
A-8  Library arbiter, cellno.bids . . . .. .. ............... 163
A-9  Library arbiter, cell win0 . . . .. ... ... ...... . .. ... 164
A-10 Library arbiter,cellwinl . . .. .. ... ... ... ... .. ... 165
A-11 Library arbiter, cellwin2 . . .. ... ... ... .. .. .. .. .. 166
A-12  Library arbiter, cellwind . . . . . . .. ... ... ... ... ... 167
A-13 Library arbiter, cell wind . . . . . ... ... ... . ... . ... . 168
A-14 Library arbiter, cellwin . . .. .. ... ... ........ ... 169
A-15 Library arbiter, cell winxenlogic . ................. 170
A-16 Library bidir3v, cellbiasblk . . .. .. ............... 171
A-17  Library bidir3v, cell chappel . . . ... ............... 172
A-18 Library bidir3v, cellclkdelay . . . . .. ............... 173
A-19  Library bidirdv, cellhsport . . . .. ... ... ... ..... ... 174
A-20 Library bidir3v, cellresiselt . . .. ................. 175
A-21 Library bidir3v, cell resiseltclk . . .. .............. . 176
A-22 Library bidir3v, celixcvr . . . . .. .. ... ... ... ... 177
A-23 Library bidir3v, cell xevrclk . . . ... .. ... ... ... ... . 178
A-24 Library bidir3v, cell xmitdiffBuff . .. .. ... ... ... ... . 179
A-25 Library bidir3v, cell xmitstage . . . .. .. ... .. ... .. ... 180
A-26 Library bidir3v, cell xmitter . . . .. ... ... .. ... .. .. . 181
A-27 Library busy, cellbusy ... ... ... ............... 182
A-28 Library busy, cell busy_rs_lbit . . ... ............ ... 183
A-29 Library busy, cell clock buffers . . . ... .............. 184
A-30 Library busy, cell free.encoder . . ... .. ... ...... ... . 185
A-31 Library busy, cell free.encoderpd . ... .............. 186

12



A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43
A-44
A-45
A-46
A-AT
A-48
A-49
A-50
A-51
A-52
A-53
A-54
A-55
- A-56
A-57
A-58
A-59
A-60
A-61
A-62
A-63
A-64
A-65
A-66
A-67
A-68
A-69
A-70
A-T1
A-72
A-73
A-74
A-75
A-76

Library busy, cell jtag.bit . . . . .. .. ... ... ......... 187

Library busy,cellmx6 . . . . ... ... ... ............ 188
Library chip, cell clk50 buffer . . . . ... ... ... ........ 189
Library chip, cellclk buffer . . . ... ... ... .. ........ 190
Library chip, cell clocksfinal . . .. ... .............. 191
Library chip,cellcore . . . . .. ... ... ... ... ....... 192
Library chip, cell mask.gen . . . .. .. ... ... ......... 193
Library chip,cellnchip . .. ... ... ... ... ... ...... 194
Library chip, cell proclk buffer . . . ... ... ... ........ 195
Library chip, cell reset_buffer . . . . .. ... ... ... ...... 196
Library chip, cell winenable . . ... ... ... .......... 197
Library chip, cell xbartoproc . ... ... ... .......... 198
Library diag, celldiag_in2 . . . . .. .. ... ... .......... 199
Library diag, cell diagin2np . . . ... .. ............. 200
Library diag, cell diagout2 . . . . ... ... ............ 201
Library diag, cell diagout2np . . ... ... ... ... ...... 202
Library diag, cell diagoutcell . .. .. .. ... .......... 203
Library diag, cell edge.detect . . . . . ... ... .......... 204
Library diag, cell flit . . . . . ... ... .. ... .......... 205
Library diag, cell flitout ... ... .. ... ............ 206
Library fifo5, cell4tol6 . . . .. ... ... ... .. .. ...... 207
Library fifo5, cell billxnor2 . . . .. ... ... ... .. ...... 208
Library fifo5, cell bitdriver . . . . . . ... ... ... ....... 209
Library fifod, cell bitdrivercell . .. .. ... ... ......... 210
Library fifo5, cell channel . . . . .. .. ... ... .. ...... 211
Library fifo5, cell clk50buffer . . . . . . . ... ... .. .. .... 212
Library fifo5, cell clk buffer . . . ... ... ... .......... 213
Library fifo5, cellentrflop . . . . . . . . . . . ... L L. 214
Library fifo5, cell entrlogic . . . .. .. ... ... ... ...... 215
Library fifo5, cellcomp . .. .. ... ... ... ... ....... 216
Library fifo5, cell copdrivercell . . . .. .. ... ... ....... 217
Library fifo5, cellcopied . . . . . .. ... ... ... ........ 218
Library fifo5, cellcounter . . . . . . .. ... ... ... ...... 219
Library fifo5, cell decodernand . . . . . ... ... ... ...... 220
Library fifo5, cell dslatch . . . . ... ... ... .......... 221
Library fifo5, cellevenbuf . .. ... ... ... .......... 222
Library fifob, cellfifo . .. ... ... ... ... .......... 223
Library fifod, cell fifonp. . . . . . .. ... .. ... . ... ... 224
Library fifo5, celllogic. . . . .. .. ... ... ... ......... 225
Library fifo5, cellmemory . . . . .. .. .. ... .......... 226
Library fifo5, cellmyand2 . . . . . ... ... .. .......... 227
Library fifo5, cell myinv . . . . . ... ... ... ... ... .... 228
Library fifo5, cell mynand2 . . . . .. ... ... .......... 229
Library fifo5, cell mynand3 . . . . . ... ... ... ........ 230
Library fifo5, cellmynor2 . . . . .. ... ... ... ........ 231



A-T7
A-78
A-79
A-80
A-81
A-82
A-83
A-84
A-85
A-86
A-87
A-88
A-89
A-90
A-91
A-92
A-93
A-94
A-95
A-96
A-97
A-G8
A-99
A-100
A-101
A-102
A-103
A-104
A-105
A-106
A-107
A-108
A-109
A-110
A-111
A-112
A-113
A-114
A-115
A-116
A-117
A-118
A-119
A-120
A-121

Library fifo5, cell myxor2 . . . . .. ... .. .. ... ... .... 232

Library fifo5, celloutbuf . . .. ... ... ... ..... ..... 233
Library fifo5, cell outbufbit . . . . . ... ... ... ... ..... 234
Library fifo5, cellptrs . . . . .. ... ... .. ... .. .... .. 235
Library fifos, cellram . . . . . . ... ... ... ... ....... 236
Library fifo5, cellramcell2 . . . .. ... ... ... ........ 237
Library fifo5, cell read_decodegated. . . . . . ... ... ... ... 238
Library fifo5, cell read_decodegatehead . . . . . .. ... ... ... 239
Library fifo5, cell read_decodegatetok . .. ... .......... 240
Library fifo5, cell read decoder . . . .. .. ... .......... 241
Library fifod, cell welkgen . . . .. ... ... . ... ....... 242
Library fifo5, cell write_.decodegated . . ... ... ... ... ... 243
Library fifo5, cell write_decodegatehead . . . . . ... .. ... .. 244
Library fifo5, cell write_decodegatetok . . . . ... ... ... ... 245
Library fifo5, cell write.decoder . . . . . .. .. ... ... ... .. 246
Library fifo5, cell xbarackdatch. . . . . ... ... ......... 247
Library frontend, cell clock phase . . ... ... .......... 248
Library frontend, cell ctlpath . . . . .. ... ... ......... 249
Library frontend, cell datapath . . ... .. ... .. e e e 250
Library frontend, cell final parity . . . . .. ... ... ....... 251
Library frontend, cell frontfsm . . . .. .. ... ... ....... 252
Library frontend, cell frontfsm3 . . .. .. ... ... .. ... .. 253
Library frontend, cellgenbad . .. ... ... ... ........ 254
Library frontend, cell getfour.0 . . . ... ... ........... 255
Library frontend, cell getfour.1 . . . .. .. ... ... ... .... 256
Library frontend, cell getfour.2 . . . . . .. ... ... ... .... 257
Library frontend, cell getfour.3 . . . . . . ... .. ... ...... 258
Library frontend, cellinvfe . . .. ... .. ... ....... ... 259
Library frontend, cell latch.and_mux . . . . ... .. ... ..... 260
Library frontend, cell latch.and_muxctl . . . .. ... ... . ... 261
Library frontend, cell new frontend . . . . . . ... ... ... ... 262
Library frontend, cell parity horx8 . ... ............. 263
Library frontend, cell phitd . . . . ... .. ... .......... 264
Library frontend, cell phitOctl. . . . . . ... .. ... ... .... 265
Library frontend, cell phitl . . ... .. ............... 266
Library frontend, cell phitlctl. . . . .. .. ... ... ....... 267
Library frontend, cell phit2 . . . .. . ... ... .......... 268
Library frontend, cell phit2<tl. . . . . . .. ... ... ... . ... 269
Library frontend, cell phit3 . . . .. ... ... ... .. ... ... 270
Library frontend, cell phit3ctl. . . . . . .. ... ... ....... 271
Library inctl2, cell FlitMungerDX . . ... ... .. ........ 272
Library inctl2, cell FlitMungernp . . . . ... ... ........ 273
Library inctl2, cell computerp . . . ... ... ... ........ 274
Library inctl2, cellcrpjt . . . . ... ... .. L L 275
Library inctl2, cell jtag decode . . . . ... ............. 276

14



A-122
A-123
A-124
A-125
A-126
A-127
A-128
A-129
A-130
A-131
A-132
A-133
A-134
A-135
A-136
A-137
A-138
A-139
A-140
A-141
A-142
A-143
A-144
A-145
A-146
A-147
A-148
A-149
A-150
A-151
A-152
A-153
A-154
A-155
A-156
A-157
A-158
A-159
A-160
A-161
A-162
A-163
A-164
A-165
A-166

Library inctl2, cell jtag.generic . . . .. ... ... ......... 277

Library inctl2, cell jtag register . . . . . . ... ... ........ 278
Library inctl2, cellIrdcc . . .. ... ... ... ... ... ..... 279
Library inctl2, cell Irdccencode . . . . .. ... ... ....... 280
Library inctl2, cell Ird_ccpriority . . . . . . ... ... ... .. .. 281
Library inctl2, cell Ird_ccslice . .. .. ............... 282
Library inctl2, cell Irdccsliced . . . .. .. ... .......... 283
Library inctl2, cell Ird_ccslicel . . . ... ... ........... 284
Library inctl2, cell Ird ccslice2 . . . . . ... ... ......... 285
Library inctl2, cell Irdccsliced . . . .. ... ............ 286
Library inctl2, cell Irdccsliced . . . .. .. ... .......... 287
Library inctl2, cell Irdccvepri. . . .. .. .. ... ... ..... 288
Library jtag, cell bitrw . . . . . .. .. ... ... . ... ... 289
Library jtag, cell chipreg8 . . ... ... ... ... ........ 290
Library jtag, celldrclks. . . . . .. ... ... ... ........ 291
Library jtag, cell instructionReg . . . . .. ... .. ........ 292
Library jtag, cell tapctl . . . . . .. .. ... ... .. ....... 293
Library outctl, cell control . . . . ... .. ... ... ....... 294
Library outctl, cell datamux . . . . .. .. ... .. ........ 295
Library outctl, cell input.mux6 . ... ............... 296
Library outctl, cell outetlnew . . . .. .. ... .. ........ 297
Library outctl, cell paritymux . . ... ... ............ 298
Library outctl, cell paritytree . ... ... ... .......... 299
Library outctl, cell tx.phase . ... ................. 300
Library outctl, cell xbarmux . . . . ... ... ... ........ 301
Library p_frontend, cell flow.control . . ... ... ... ... ... 302
Library p_frontend, cell flow_controlcell . . . . ... .. ... ... 303
Library p_frontend, cell freesync . . . . .. ... .. ... ..... 304
Library p_frontend, cell freesyncslice . . . ... ... ... .... 305
Library p_frontend, cellfsm . . . . . .. .. ... .. .. ...... 306
Library p_frontend, cellgettwo . . . . . ... ... ... ...... 307
Library p_frontend, cell pfrontend . . . . . .. ... ... ... .. 308
Library pfrontend, cell retime . . . .. ... ... ... ...... 309
Library p_frontend, cell retimectl . .. .. ... .. ... ..... 310
Library p_frontend, cell retimedp . .. .. ............. 311
Library pad, cellin . . .. ... ... ... ... ......... 312
Library pad, cellin_jt . . ... ... .. ............... 313
Library pad, cell jtag_buffers . . . ... .. ... .......... 314
Library pad, cell jtag_inOut . . . ... ... ... .......... 315
Library pad, cell keeperl . . ... ... ... ............ 316
Library pad, cell keeper2 . . .. ... ... ... .......... 317
Library pad, cell keeper3 . . .. ... ... ... .. ........ 318
Library pad, cell leftSide . . .. ... ... ............. 319
Library pad, celiout . . . . . ... ... ... ... ......... 320
Library pad, cellout_jt . . ... ... ... ... .......... 321



A-167
A-168
A-169
A-170
A-171
A-172
A-173
A-174
A-175
A-176
A-177
A-178
A-179
A-180
A-181
A-182
A-183
A-184
A-185
A-186
A-187
A-188
A-189
A-190
A-191
A-192
A-193
A-194
A-195
A-196
A-197
A-198
A-199
A-200
A-201
A-202
A-203
A-204
A-205
A-206
A-207
A-208
A-209
A-210
A-211

Library pad, cell rightSide . . . . ... ... ... ......... 322
Library ports, cell bid_decoding . . ... .............. 323
Library ports, cellglue . .. .. ... ... .. ... ... ..... 324
Library ports, cell nportQ (sheet 1) . . . . . . ... ... ...... 325
Library ports, cell nport0 (sheet 2) . . . .. ... .......... 326
Library ports, cell nport0 (sheet 3) . . . .. ... .......... 327
Library ports, cell nportl (sheet 1) . . . .. ... .. ........ 328
Library ports, cell nportl (sheet2) . . . . ... ... .. .. .... 329
Library ports, cell nportl (sheet 3) . . . . . ... .. ........ 330
Library ports, cell nport2 (sheet 1) . . . . . ... ... ....... 331
Library ports, cell nport2 (sheet 2) . . . .. ... .. ........ 332
Library ports, cell nport2 (sheet 3) . . . .. .. .. ......... 333
Library ports, cell nport3 (sheet 1) . . . .. .. ... . ... .. .. 334
Library ports, cell nport3 (sheet 2) . . . .. ... .. ........ 335
Library ports, cell nport3 (sheet 3) . . . .. ... .......... 336
Library ports, cellnportd . . . . .. .. .. ... ... ... 337
Library ports, cell nport (sheet 1) . . . .. .. .. ... ...... 338
Library ports, cell nport5 (sheet 2) . . . .. ... .. ........ 339
Library ports, cell nport5 (sheet 3) . . . . . ... .. ........ 340
Library ports, cell upperLeft . . . . .. ... ... ......... 341
Library ports, cell upperLeft.diag . .. .. ... .......... 342
Library ports, cell upperLeft_proc . . . .. ... .......... 343
Library pr_out, cell bitslice . . . . .. ... ............. 344
Library pr_out, cell bitslicefv . . ... .. ... .......... 345
Library prout, cell clk buffers . . . .. .. ............. 346
Library pr_out, cell clkdogic . .. ... .. ............. 347
Library prout,cellcts . ... ... .. .. . . 348
Library prout, cell datapath . . . ... .. ............. 349
Library proout,cellfc . . . ... .. .. ..o oo 350
Library prout,cellprout ... ... ... ... ......... 351
Library vc,celladdocalc . . . . .. .. .. ... ... ...... 352
Library vc, cell control_vcislice. . . .. .. ... .......... 353
Library vc, cell faultcale . . . ... ... . ............. 354
Library vc,cell faultcts . . . . . . ... .. ... .. o 355
Library vc, cell fifo_.countcellDX . . . . .. ... .......... 356
Library vc, cell flow_controlDX . . . . ... ... .......... 357
Library vc, cell flow.ctlmux . . .. .. ..... ... ...... 358
Library vc, cell opt_router . . . . . . . ... ... oo 359
Library vc, cell prdiagcalc . . . . ... .. .. .. . o 360
Library vc,cellroute . . . ... ... .o 361
Library vc, cell routefsm_jt . . . .. . ... ... .o oo 362
Library vc, cell routes_mx5 . . . . . . . .. .. o 363
Library vc, cell routes.mx6 . . . .. .. .. ... ... ..., 364
Library vc, cell routing_problem . . . ... ... .......... 365
Library vc, cell saf_route . . . . .. .. .. ... oL 366



A-212
A-213
A-214
A-215
A-216

B-2
B-3

B-5
B-6

B-8

B-9

B-10
B-11
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-30
B-31
B-32
B-33
B-34
B-35
B-36
B-37
B-38
B-39

Library vc, cell selroute_priority . . . . . .. ... ... ...... 367
Library ve,cellve . . . . . oo o oo L 368
Library vc,cell veread data . . ... ... ... .......... 369
Library vc,cell veread head . . .. .. ... ... ......... 370
Library vc, cell veread_.mk token. . . . .. ... ... ... .... 371
Library ghost, cell adder5 . . . . . . ... ... ... ........ 373
Library ghost,celland2 . . . . . .. .. .. ... .......... 374
Library ghost, celland3 . . . . . .. .. ... ... ... ...... 375
Library ghost, celland4 . . . . . ... ... ... .. ........ 376
Library ghost, celland5 . . . . . .. .. .. ... .. ........ 377
Library ghost, cellaol2 . . . . ... ... ... . ... ...... 378
Library ghost, cellaoil2 . . . . . .. ... ... ... .. ...... 379
Library ghost, cellacild . . . . . .. .. .... ... .. ...... 380
Library ghost, cellaoi22 . . . . . . ... ... ... ... ...... 381
Library ghost, cell buffer . . ... ... ... .. .......... 382
Library ghost, cell bufferdl . . . . . .. ... ... ......... 383
Library ghost, celldf . ... ... ... ... ............ 384
Library ghost,celldf2c . . . . . ... ... ... ... ....... 385
Library ghost, celldf 2cmin . . . . .. .. ... .. ........ 386
Library ghost, cell dfland2.2c . . . . .. .. .. ... ........ 387
Library ghost, cell dfc2¢ . ... .. .. e 388
Library ghost, celidfe2¢ . ... .. .. ... ............ 389
Library ghost, celldfs.2¢ . ... ... ... .. ........... 390
Library ghost, cell diffbuff . . . . . . .. ... ... ... ...... 391
Library ghost, cell diffbuff9x . . .. ... ... ... .. ...... 392
Library ghost, celldl2c . . . . ... .. .. ... ... ....... 393
Library ghost, cell dl.2c.min . . .. ... ... ... .. ...... 394
Library ghost, celldlland 2¢ . ... .. ... ............ 395
Library ghost, celldlm . . ... ... ... ............. 396
Library ghost, celldsf2¢ . ... ... ... ... .. ... .... 397
Library ghost, celldsfc2c . . . . . ... ... ... ... .. .... 398
Library ghost, celldsfm2c . .. .. ... ... ... ... ... .. 399
Library ghost, celldsfs.2c . . . . ... ... .. ... ........ 400
Library ghost, celldsl.2c . ... ... ... ... ... ....... 401
Library ghost, celldslc2c . . . . ... ... ... ... ....... 402
Library ghost, cellinv . . . . .. ... ... ... .. .. ...... 403
Library ghost, cellinvlOx . . . . ... ... .. ... .. ...... 404
Library ghost, cellinvi2x . . . . .. ... ... ... . ... .... 405
Library ghost, cellinvldx . . . . .. .. .. ... . ... ...... 406
Library ghost, cellinv18x . . . . ... ... ... ... ....... 407
Library ghost, cellinv2lx . . . . ... ... ... ... ....... 408
Library ghost, cell inv27x . . . . ... ... ... ... ....... 409
Library ghost, cellinv2x . ... ... ................ 410
Library ghost, cellinv3x . . .. ... ... .. ............ 411



B-40
B-41
B-42
B-43
B-44
B-45
B-46
B-47
B-48
B-49
B-50
B-51
B-52
B-53
B-54
B-55
B-56
B-57
B-58
B-59
B-60
B-61
B-62
B-63
B-64
B-65
B-66
B-67
B-68
B-69
B-70
B-71
B-72

Library ghost, cell invddx . . . . .. ... ... ... ... ..... 412
Library ghost, cellinvdx . . ... ... ... ..., . ... .... 413
Library ghost, cellinvdx . . ... ... ... ............ 414
Library ghost, cellinvbx . . . ... ... .............. 415
Library ghost, cell inv7x . ... .. ... ... ........... 416
Library ghost, cellinv8x . . ... ... ............... 417
Library ghost, cellinv9x . . ... ... ... ............ 418
Library ghost, cell invhalf . . ... ................. 419
Library ghost, cell invweak 5x . . . ... ... ... ........ 420
Library ghost, cell jk2c . . . .. ... ... ... .. ... ....... 421
Library ghost, cellmx2cover . . . . ... ... ... ........ 422
Library ghost, cell mx2.covermin . . . ... ... ... ...... 423
Library ghost, cell mx2mand . . . . . ... ... .......... 424
Library ghost, cellnand2 . . .. ... ... ............. 425
Library ghost, cellnand3 .. ... ... ... ... ......... 426
Library ghost, cellmandd . . .. . ... ... ............ 427
Library ghost, cellnand5 . . .. ... ... ............. 428
Library ghost, cellnand6 . .. ... ................. 429
Library ghost,cellnor2 . . . .. ... ... ... .......... 430
Library ghost,cellnor3 . .. .. .. ... ... ........... 431
Library ghost, cellnord . . . ... ... ... ... ......... 432
Library ghost, cellnord . . ... ... e e e e e e e e e e 433
Library ghost, cellmor6 . . . .. ... ... ... .......... 434
Library ghost, cellor2 . . . . .. ... ... .. ... ......... 435
Library ghost,cellord . . . . .. ... ... ... .. ......... 436
Library ghost, cellord . . . . .. .. .. .. ... .. .. ... ... 437
Library ghost, cellor6 . . . . . . .. ... ... ... ........ 438
Library ghost, cell parity hor . . . . . ... ... .......... 439
Library ghost, cellrsf . . . . . ... ... ... ... ... ... .. 440
Library ghost, cell xnor2 . . .. ... ... ............. 441
Library ghost, cell xnor2new . . . . . ... ... .......... 442
Library ghost, cellxor2 . .. ... ... .. ............. 443
Library ghost, cell xor2new . . ... ... ............. 444

18



List of Tables

3.1 Frame format . ................
3.2 Processor input port signals. . . . . .. ...
5.1 Total Noise Contributions . . . . .. ... ..
7.1 Top-level modules found in the router . . . .
7.2 General top-levelsignals. . . ... ... ...

7.3 Top-level signals used in routing . . . . . ..
74 Global signals used in flow control . . . . . .

7.5  Crossbar datapath signals . . . . . ... ...
7.6  Crossbar control and arbitration signals . . .
7.7 Types of digital I/O pads used in the router

7.8  Top-level JTAG registermap . . .. ... ..
7.9 JTAG register map for standard ports . . . .
710 FrameFormat . .. ..............
7.11  Frame Field Descriptions . . ... ... ...
712 FlitKinds ... ................
7.13 Head Flit Format . ..............
7.14 Routing Problem. . . ... ... .......
7.15 Routing Answer Decomposition . ... ...
7.16  Processor Input Frame Format . . . .. . ..
8.1 Rectangle Routines . . . ... ... .. ...

19



Chapter 1

Introduction

Parallel computers have always needed fast, robust communication between process-
ing elements. The computation being performed usually can not be done by many
processors operating in isolation. Intermediate results are shared, work is produced
and consumed, and resources are shifted. This is true even when the processors do
not directly communicate with each other, as in a shared memory machine.

The flexibility of that communication depends on the agility of the communication
fabric. Delay or latency in the communication path often means that processors will
go idle while waiting for a piece of information. Low bandwidth, relative to the
processors ability to produce or consume it, will result in the processors exchanging
less information and recomputing more. The effective utilization of the processors
depends on the existance of a high-performance communication fabric.

That same communication fabric could stop the construction of a large parallel
machine, owing to the complexity and/or undependability of its realization. System-
wide clock skew, exotic cabling, and monolithic power supply distribution will either
preciude a large machine on technical grounds or simply cause it to be financially
impractical. The communication network needs to be reliable and composable into
larger networks, yet be relatively inexpensive.

This thesis covers the design, construction, and testing of a VLSI communication
device, the Reliable Router. The Reliable Router project was formed to meet the
needs outlined above.

The Reliable Router Project

The theme of the Reliable Router project is the development of ideas and techniques
which will enable the coustruction of large, high-performance, reliable parallel com-
puters. That theme implies that there are obstacles to overcome and these should be
explicitly stated:

e As a class, larger machines tend to be less reliable than smaller machines.
Siewiorek and Swarz define reliability as a probability function of time [33].
This function R(t) gives the conditional probability at time ¢ that the machine
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has remained operational in the interval [0, ¢], given that the machine was oper-
ational at time ¢ = 0. For large parallel computers, a noticable amount of VLSI
and nearly all of the system wiring goes into the interprocessor interconnect. If
care is not taken, the expected failures in the interconnect fabric can severely
reduce the expected reliability of the entire machine.

o The difficulty to physically realize and maintain a large machine is often over-
looked. The router should be designed to facilitate the construction of large
machines by limiting the number of global resources such as clocks or power
supply voltages required.

e Performance is always an issue. If a machine has a mean-time-between-failures
(MBTF) of 1 hour but is ten times as fast as a machine which fails every two
hours, the faster machine is still more likely to complete any given computa-
tion. Thus, a better metric when evaluating alternative designs is useful work
accomplished between failures.

e Interprocessor signalling is limited by the number of physical wires passing
through some interface. The interface could be a chip package, a PC board con-
nector, or the number of wires in a cable. Increasing the number of bits/second-
wire is always important.

The Reliable Router addresses these obstacles through the following feature set:

o It provides a reliable communication substrate through the use of the Unique
Token Protocol. Single point failures do not cause messages to be lost or dupli-
cated.

e The raw communication channel is high-performance. Peak bidirectional (full-
duplex) bandwidth between two routers is 6.4 gigabits per second. Latency is
approximately 70ns.

e Minimally adaptive routing is coupled with virtual channels to provide addi-
tional hot-spot and contention avoidance.

e Deep message buffers help free up virtual channel resources when a message is

blocked.

® The number of I/O’s is reduced through the use of simultaneous bidirectional
signalling.

e The router is designed to obviate the need for a global system clock through
the use of plesiochronous data retiming.
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Thesis Outline

The router draws inspiration from many sources. This thesis begins with a discussion
of prior and related work, presented in Chapter 2.

Chapter 3 gives an overview of the Reliable Router. It provides the context for
the presentation of the key contritutions which occur in later chapters. The ideas
for a fault tolerant protocol, improved interchip signalling, and better data retiming
resulted from solving the router design problem.

The first contribution is the Unique Token Protocol. In Chapter 4, the protocol
is described as the composition of two components, flow-control and token passing.
These components are proven/argued to be correct in the packet-case and then im-
plementation details for wormhole routing are given.

Simultaneous Bidirectional Signalling is the second contribution. Chapter 5 begin
with a discussion of signalling and noise sources and works through the problems and
solutions of unidirectional signalling. Those basic techniques are then adapted for
bidirectional signalling. Finally, a comparison of unidirectional versus bidirectional
is made.

The third contribution is Plesiochronous Data Retiming. In chapter 6, the con-
cepts are developed for point-to-point retiming. Timing constraints are given. Finally,
the retiming strategy is extended to allow cascaded connections.

The last contribution is the detailed microarchitecture of the Reliable Router,
presented in Chapter 7. There is no better way to understand the complexity of a
routing algorithm or flow-control policy than to look at the detailed design. The
design methodology used to construct the chip is described in Chapter 8.

The Reliable Router has fabricated and designed into a test board. Chapter 9
briefing describes the testing results, as well as the chip errata and desirata. Finally,
Chapter 10 summarizes the results and gives future directions.
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Chapter 2
Prior and Related Work

The thesis is composed of several ideas from different areas. The areas are fault
tolerance, interchip signalling, data retiming, and router architecture. Each of these
will now be explored in turn.

2.1 Fault Tolerance

There are two basic requirements for a fault-tolerant network. The first is a routing
algorithm which will go around faults. The second is a protocol for failure recovery.

2.1.1 Routing Around Faults

Xanthapoulos[37] describes the routing algorithm used in the Reliable Router, Reli-
able Adaptive Routing. It is worth restating the routing algorithm evaluation criteria
and reviewing the algorithms which influenced Reliable Adaptive Routing.

The following properties are desired in a routing algorithm:

Stateless The routing algorithm should not modify the contents of the message. It
is important that the destination be able to verify the message contents using
simple mechanisms such as checksums. Altering the message contents invariably
leads to more complex verification schemes.

Efficient The routing algorithm should be fast and not occupy a large amount of
silicon area.

Dependence on Local Information The routing decision should be based on local
information. Global knowledge distribution takes time and resources.

Reasonable Virtual Channel Requirements It should not require large amounts
of virtual channels{10]. Virtual channels do not come cheaply?,

1At least, high-performance implementations do not.
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Minimality A routing algorithm is miminal if it only allows routing steps which
bring it closer to its destination[28, 16]. Minimality is a desirable property for
two reasons. In conjuction with

[fairness|, minimality will guarantee freedom from livelock and starvation. Min-
imality also conserves network resources such as link bandwidth and buffers[6].

Full Adaptivity Full adaptivity implies that the routing algorithm can choose any
of the possible paths between source and destination, subject to the minimality
constraint[28, 18, 17, 1]. It is useful for networks under load imbalance, as the
adaptivity allows a wider range of possible paths.

Fault Tolerance Fault-tolerance is the ability of a routing algorithm to bypass
faulty communication links. The Reliable Router requires a particular form
called One-Fault-Tolerant Routing[18], where the algorithm tolerates at least a
single network failure.

DPimension Reversals

Dally and Aoki[7] developed two types of adaptive algorithms (static and dynamic)
based upon the concept of dimension reversals. Both algorithms use multiple virtual
channels. One of the virtual channels is reserved for dimension ordered routing. A
dimension reversal occurs whenever a message in one of the non-dimension-ordered
virtual channels changes dimension opposite the dimension order. The dimension
reversal count is kept in the message and begins at 0.

The static version divides the virtual channels into 7 classes where 7 is the max-
imum number of allowed dimension reversals. A message with dimension reversal
count less than or equal to a, a < 7, is allowed to use the virtual channels in class
a. Once a message’s dimension reversal count reaches 7, it mustbe routed in class 7
using dimension ordering.

The dynamic version divides the virtual channels into adaptive and dimension-
ordered classes. Messages originate in the adaptive class. While in the adaptive class,
the dimersion reversal count is kept as before. When a virtual channel is allocated to a
message, it is tagged with a dimension-reversal count of that message. A message with
a dimension reversal count of a cannot wait for virtual channels tagged « or lower. If
all possible virtual channels are tagged a or lower, the message must be routed using
the dimension-ordered channels. The message cannot re-enter the adaptive class.

As the algorithm stands, it is not suitable for use in the Reliable Router, as it
modifies the message and is not fault-tolerant. Early work on the Reliable Router
extended the dynamic algorithm to include fault-tolerance. However, it kept multiple
virtual channels in reserve for fault handling. Further, the computation and commu-
nication requirements to determine when to shift to the dimension-ordered network
proved to be unwieldly. This led the router team to look for other alternatives.

Dimension reversals did provide an important insight. One could divide the virtual
channels into two virtual networks, one adaptive, the other dimension-ordered. One
could perform any sort of routing in the adaptive network one wished, as long as the

24



routing algorithm noticed the conditions for deadlock and shifted to the dimension-
ordered network.

The Linder-Harden Algorithm

Linder and Harden([23] took a different approach to provide adaptive routing. They
divide the network into several virtual networks. Messages cannot transition between
virtual networks. Each virtual network has no cycles in the channel dependency
graph and is therefore deadlock-free. A mesh-connected k-ary n-cube requires 2"-!
virtual networks. Each virtual network requires either 1 or 2 virtual channels in each
direction. Thus, a 2D mesh would require 4 virtual channels in the Y-dimension, and
two virtual channels in the X-dimension.

This approach was seen to use far too many virtual channels and to use them in
an unbalanced way. The insight gained from Linder-Harden was that it was possible
to convert algorithms with deadlock into deadlock-free algorithms by partitioning the
domain of the routing function, where each partition would use a different virtual
network.

Duato’s Contribution

For combined adaptive/dimension-ordered networks, Duato’s contribution was to
note that messages did not have to remain in the dimension-ordered network, they
could freely return to the adaptive network[13, 14]. He noted that messages in the
dimension-ordered channels always include other dimension-ordered channels in their
“wait-for” graph, serving as an escape hatch.

Most of the problems with dimension-reversal counting ensued because the mes-
sage was unable to return to the adaptive network. It was therefore desirable to
postpone the entry into the dimension-ordered network as long as possible. Under
Duato’s model, simple deadlock detection mechanisms can be used in the adaptive
network, as the performance penalty of shifting to the dimension-ordered network is
slight.

Duato’s model does not by itself provide fault-tolerance. The concept of shift-
ing the message from virtual network to virtual network led to the search for the
least expensive fault-tolerant routing algorithm which could be grafted on the adap-
tive/dimension ordered substrate.

Turn Model

The Turn Model[18, 17] was the least expensive algorithm, as it could adaptively
route mecssages in a single virtual channel and was provably deadlock-free. Glass and
Ni observed that it takes 4 turns in a plane to make a cycle and hence have a cyclic
dependency. By prohibiting a routing algorithm from having a complete set of turns,
they could prove the algorithm to be deadlock-free. This model is the basis for the
fault-handling algorithm used in Reliable Adaptive Routing.
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Planar Adaptive

Planar-adaptive routing[3] provided the ability to route around faults. It requires
that the routing region be convex, which is difficult to ensure for faults on the edge
of the network.

2.1.2 Fault Tolerant Protocols

The bulk of the dynamic fault-tolerant protocols are exemplified by the end-to-end
(or point-to-point) variety [36]. These rely on the source keeping a copy, the destina-
tion performing duplicaie elimination on incoming packets. Wide-area networks are
typically composed of routers performing this level of fault-tolerance at the link-level.
This link-level retry capability allows them to avoid end-to-end retries in the event
of line noise. However, an upper level of end-to-end fault-tolerance is still required to
tolerate a hard link failure or the failure of a router.

Simple end-to-end fault recovery mechanisms are assumed by Glass and Ni[18].
The uniform end-to-end nature allows the “goodness” of a routing algorithm to be
measured by the number of virtual channels it uses and the number of faults the
algorithm is able to route around.

Eslick et al. reduce the duplicate elimination problem by converting messages to
idempotent forms[15]. The problem still exists for non-idempotent messages.

A brief discussion of a possible method for dynamic fault recovery can be found
in [16]. Here, pipelined circuit switching (PCS) is used to route around static faults.
Upon encountering a dynamic fault, the circuit is torn down and special flits are sent
toward the sender and receiver indicating that a failure has occurred. The authors
mention that this is an active research area, so no further details of the recovery
mechanism are given.

2.2 Interchip Signalling

Simultaneous Bidirectional Signalling was developed by Dennison et al[20, 12, 22].
This technique for interchip signalling is fairly unique. Recently, several other re-
searchers have extended our ideas. Intel and Hitachi both use series-terminated
drivers|25, 35]. Lee et al. employ differential bidirectional signalling over twin-axial
cable [21].

2.3 Low-Latency Plesiochronous Retiming

Plesiochronous retiming has been around for a while, although the solutions have had
fairly large latency owing to a synchronizer delay. Related work:

e A retiming method where the synchronizer is moved out of the data path is
described by Stewart and Ward[34]. They rely on the clock waveforms be-
ing periodic signals. Delay lines are used to anticipace the future interactions
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between the data and the clocks. Transitions on the data signal are kept one-
for-one between the domains. However, cells will be stretched and shortened
by this retiming circuit. A flip-flop clocked using the local clock will still un-
dersample or oversample the cells. In effect, the circuit repositions the data
transitions to meet the setup and hold time rqeuirements for the local clock
domain.

o Mesochronous retiming by insertion of delay in the receiver[30]. This technique
creates various delayed versions of the incoming data. It then chooses one of
the delayed versions to actually sample using the on-chip clock. The delay
adjustment must take place while no data is being transferred. This scheme is

also described by Cordell[4].

o Mesochronous retiming by insertion of delay in the transmitter[19]. Here, the
delay is inserted by the transmitter instead of the receiver. The transmitter
determines the correct amount of delay through either feedback from the receiver
or by measuring the actual delay of the transmission line. The delay adjustment
should take place while no data is being transferred.

e Rational clocking is a scheme for moving data between two devices whose clccks
F,, and F, are related F,, = %Fn, where M and N are integers[29]. The ob-
servation is that data movement between some pairs of clock edges will satisfy
setup and hold times, other pairs of edges will not. Since the edge phase re-
lationship is periodic, the determination of good edge pairs can be done in
advance of the data movement and avoid synchronizer penalties.

2.4 Router Architecture

This section gives examples of router architectures and summarizes their features.
There are a tremendous number of router/communication devices described in the
literature, this sample only includes those deemed interesting.

Ariadne

The Ariadne router is an asychronous, adaptive, pipelined circuit-switched
router(l]. Since it is circuit-switched, no data is transferred until the circuit
is set up. The delay per node is thus the route of the head + ack + forward

data.
Forward Going Header | 13.75ns + 14.5ns + 2 X 4.0ns = 36.25ns
Acknowledgement 13.75ns8 + 7.5ns + 2 x 4.0ns = 29.25ns
Data path 8.5ns +4.0ns = 12.5ns
Total 78.0ns

The data bandwidth is 57TMB/s for a byte-wide data path, or a byte every
17.5ns. Ariadne is implemented in the same 0.8 micron process as the Reliable
Router. Thus, it can be seen that the Reliable Router is comparable in terms
of message latency and offers about 7x the bandwidth.
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CHAOS Router

Bolding et al.[2] propose to augment a CHAOS router to detect and route
around failures. They point out that the derouting capability of the chaotic
algorithm is well-suited for routing around faults. However, the base Chaos
router needed to be modified for fault-detection and recovery. The Chaos router
uses virtual cut-through, messages can be cut in two during a dynamic fault.
They then rely upon end-to-end mechanisms to recover from the failure.

Torus Routing Chip

The Torus Routing Chip (TRC) was the first routing chip designed for mesh and
K-ary n-cube networks[9, 5]. It was intended for 2-dimensional networks, but
2 TRCs per logical node could be used to const.uct an n-dimensional network.
Dally[5] points out that the TRC is self-timed to avoid problems with global
distribution. [nterchip datapaihs were byte-wide and operated at about 4MHz
in a 3p CMOS process.

Mosaic

The Mesh router family from Caltech is one of the more dominant/popular
router families [32). Fundamentally, these are asynchronous 2D mesh routers.
They have either byte-wide or 16-bit wide data paths. They typically have
oblivious X-then-Y routing and no virtual channels. Peak performance is about
100M data transfers per second per link, with node latency around 20ns.

J-Machine

The J-Machine router [27, 26, 8] was the direct ancestor of the Reliable Router.
It features byte-wide data paths at 40Mbit/sec-wire, two priority levels, oblivi-
ous X-then-Y-then-Z routing.

Cray T3D

The Cray T3D(31] is a 3-dimensional torus. It uses ECL gate arrays clocked
at 150MHz. The datapath is 16 bits wide and operates at 150Mbit/wire-sec.
Latency is extremely low, about 2 clock periods or 13.3ns.
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Chapter 3

Overview of the Reliable Router

The word router means different things to different people. The Reliable Router
described in this thesis is a VLSI device to facilitate low-latency, high-bandwidth
communications between “processors” in a multiprocessor system.

These processors communicate via messages and the principal function of the
router is to transport these messages from one processor to another. This implies
that the processors are all physically interconnected in some way. Further, physical
limitations preclude all processors from being directly connected to all other proces-
sors. Instead, some sort of communication network is provided where processors share
the communication resource.

The Reliable Router is designed to be the physical building block for a commu-
nication network. In particular, it can be used to construct two-dimensional mesh
networks such as the one shown in Figure 3-1. Section 3.2 will describe how routers
are physically interconnected to form a network.

One of the other functions of the router is to navigate the communication network
during message transport. This function is implemently differently in other networks.
The message may be explicitly routed by the sending processor (source routing), or
the processor may simply provide an address for the message to be delivered to and
rely upon the network to choose the route through the network (network routing).
The Reliable Router adopts the second model and uses network routing. Section 3.1
will provide further details of the routing algorithm.

Allowing the network to handle the details of the routing is important for fault
handling. In the case of source routing, knowledge of the fault would have to prop-
agate back to the sending processor. Under network routing, the network is able to
route around a fault using only local information. The advantage is that the network
routing should be able to respond to a failure much more quickly. Further, the “local
knowledge” only approach should provide better scalability for large machines.

The one feature which sets the Reliable Router apart from other routers is that
it implements a link-level fault-tolerant protocol, the Unique Token Protocol. Fault
recovery is handled by the routers physically near the point of failure. The sending
processor is not involved and only minimal work is required by the receiving proces-
sors. Details of the protocol are provided in Chapter 4.

The remaiader of this chapter focuses on describing the Reliable Router from

29



Router 1 Router Router Router |« =i Router
("") (3'4) [
Ro R '

uter Router outer ' Router
(0,3) (1,3) (2.3) (3.3)

Router
32)

Router }
22)

Router
(1.2)

Router =~ Router Router
(0,1) (1.1 @

Router
(4,1)

> Router
(4,0)

Figure 3-1: Two-dimensional mesh interconnection. Two-dimensional mesh intercon-
nection. Here, 25 routers are arranged in a 5 x 5 mesh. The routers have addresses
corresponding to their (X,Y) location in the mesh.
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a interface perspective. Details of the processor interface are provided. Internal
implementation details of the router are postponed until Chapter 7.

3.1 Routing

The network routing function is one of the more important aspects of the router from
a user’s perspective. It determines how the network responds to different traffic pat-
terns. However, the ways in which the network may route a message are constrained
by its deadlock avoidance technique. The ability to bypass faults further complicates
matters.

Fortunately, there are several good techniques to help build good routing func-
tions which meet the constraints. These techniques all view the physical network as
several virtual networks, each with the same topology. However, different routing
functions can be used for each virtual network and rules are applied which govern the
ability of a message to move from one virtual network to the other. For example, a
simple dimension-ordered mesh network can deadlock when transporting messages for
a request/response protocol. The deadlock can be avoided by transporting requests
in one virtual network, responses in a second virtual network.

An additional level of abstraction, virtual channels, may be useful in understand-
ing the overall routing function. When two virtual networks both use the same rout-
ing function and impose no restriction on the movement of messages between those
networks, it may be easier to think of those two as being a single virtual network.
This single network would then have two virtual channels in which one could place
messages.

The Reliable Router uses four virtual networks for routing. They are called min-
imally adaptive,dimension ordered 0,dimension ordered 1, and fault handling. Each
network performs local routing, i.e. each router examines the address of the message
and makes a decision based only on that address and the local state of the router.

3.1.1 Minimally Adaptive Routing

The minimally adaptive network is intended to carry the bulk of the network traffic.
When a messages is first sent by a processor, it goes into this virtual network. Most
the time, a message has to travel both in X and Y directions to reach its destination.
The minimally adaptive network chooses either the X or Y direction, depending on
the local congestion. It is called minimally adaptive because each individual routing
step must always result in the message being closer to the destination. The message
can never be routed away from the destination.

This virtual network has two virtual channels to help mitigate head-of-queue
blocking delays. In the Reliable Router, the minimally adaptive network is biased
toward using Y channels over X channels. Thus, even if one Y channel is in use and
both X channels are free, the router will choose the second Y channel®.

1This simplified the implementation.
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Figure 3-2: Minimally adaptive rduting. Suppose router (0,0) is sending to router
(3,3). Under minimally adaptive routing, the message could travel over any of the
channels shown. Since the message has to travel over a total of 6 channels, 3 in X, 3

in Y, there are ( g ) = 20 different paths possible.
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Figure 3-3: Dimension-ordered routing. Suppose router (0,0) is sending to router
(3,3). Under dimension-ordered routing, the message travels over the path shown in

black.

3.1.2 Dimension-Ordered Routing

By themselves, minimally adaptive networks are not deadlock free. A second deadlock-
free network is added to allow messages to “drain” when they are blocked in the
minimally adaptive network. This network uses dimension-ordering, X then Y, as its
routing function. Note that its bias is reversed from the minimally adaptive router
to help avoid congested spots.

As was noted earlier, dimension-ordered networks can deadlock on request-response
protocols. The dimension-ordered network is therefore split into two distinct dimension- -
ordered networks. A message traveling in the minimally adaptive network is assigned
to one of the two dimension-ordered networks based on its priority level.

The two priority levels can used for multiple purposes. In a pure message-passing
paradigm, they can be used to separate system traffic from regular traffic. In a
request-response paradigm, such as reading from shared memory, the two priority
levels are used to break the resulting resource dependency cycle. Requests travel at
priority 0, responses travel at priority 1.

When a message is first injected into the network, it uses the minimally adaptive
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virtual network, irrespective of the priority of the message. The priority is only used
when the message is blocked.

Priority does not give a strict ordering to the messages. If it did, it would be
possible to construct traffic patterns with starvation. Rather, priority is treated as a
hint when arbiting for a given physical channel. When lower-priority messages have
waited too long for a physical channel, their priority level is momentarily elevated.

3.1.3 Fault-Handling Routing

X-then-Y dimension ordering assigns X to dimension 1, Y to dimension 0.

The Reliable Router is designed to detect and recover from link failures between
any two routers. The fault model is single-wire failures and is detected using parity
checking. The faults are presumed to be non-transient so the link is marked as fzulty
as soon as an error is detected. Further, the fault model assumes that there is at
most one fault in the network at any point in time.

Fault handling routing is invoked when:

o the message is unable to make progress on an adaptive channel, either due to
congestion or fault, and

o the message can never make progress on a dimension-ordered channel due to a
fault.

The fault handling algorithm is:

_ 1. Attempt a route in a productive direction using a fault-handling virtual channel.
This step fails only if a productive direction does not exist. i.e. the message
needs to travel in only one dimension to reach the destination.

2. If the unmatched dimension is non-zero (X), route in a non-productive direction
along dimension 0 using a fault-handling channel. In other words, take a side-
step Y. Resume regular routing.

3. If the unmatched dimension is zero (Y), route on a fault-handling channel in di-
mension 1 (side-step in X). Route in productive dimension 0 (Y) fault-handling
channels until the dimension 0 (Y) address is reached. Route in a dimension 1
(X) fault-handling channel until the dimension 1 (X) address is reached.

The two fault handling cases complicate the router somewhat. The first fault han-
dling step could be undone by a subsequent adaptive routing step. This is prevented
by precluding backtracking in the adaptive routing.

The second case seems to imply that state is carried along the message. This
state is carried by keeping the message in fault-handling channels until it is finally
delivered. In the second case, the side-step occurs in X. Any message arriving on an
X fault-handling channel must exit on a fault handling channel. The message then
travels a step in Y. The router notices that it is one hop away in X, so it continues
to use Y fault-handling channels until the proper Y address is reached. Finally, it
completes the route in X.
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Signal Direction | Description

Data[15:0] Bidir Data wires for transporting user data

DataParity[1:0]| Bidir Intended for byte-wise parity on user data

Control[4:0] Bidir All the control information

Parity Bidir Parity over the Data, DataParity, and Control fields.

Phase Bidir Used to extract time-division multiplexed data and
control.

TxClk+,TxClk—{ Output A differential clock used for retiming the data

RxClk+ ,RxClk— | Input A differential clock used for retiming the data

Figure 3-4: Router-to-router signals.

Router Router
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[

Yy VvV VvV VY
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Clk+,Clk-

RxClk TxClk
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Figure 3-5: Physical interconnect between routers.

3.2 Network Construction

The Reliable Router can be used to construct a two-dimensional mesh network. Each
router has four ports, which are the physical interfaces to other routers. These ports
are known as X+,X—,Y+,Y— and correspond the directions in which a message
travels to reach a neighboring router. The physical interface is comprised of 26 wires
(see Table 3-4). The electrical signalling is accomplished using simultaneous bidirec-
tional signalling for all wires except the clocks. The clocks use the same signalling
levels and are both differential and unidirectional. Additional details of the electrical
signalling are provided in Chapter 5.

The clocks are sent along with the data to allow the network to be plesiochronously
timed. Each router has its own clock reference which is approximately the same
frequency as that used by the other routers. This converts the clock from a single
global resource into a plurality of local resources. A network built out of Reliable
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Bit Field
22 21 20:18 17 16 15:0
Subframe 0 | pe USRO | VCI DP1 | DPO | Data[15:0]
Subframe 1 | Copied Kind | Copied VCI | DP3 | DP2 | Data[31:16
Subframe 2 | U/D | USRI | Kind DP5 | DP4 | Data[47:32
Subframe 3 Freed DP7 | DP6 | Data[63:48

Table 3.1: Frame format.

Routers does not have a common clock, thus there is no need for a clock distribution
network. Further information on plesiochronous retiming is found in Chapter 6.

The actual format of the information passed between routers is shown in Table 3.1.
These field are not visible to the user. A detailed description will be postponed until
Section 7.5.1.

3.2.1 Messages

Messages, as the fundamental object transported, are visible to the user. From the
user’s perspective, a message consists of some amount of data and an address to
deliver the data to. Messages can vary in size and ideally would not have any length
restrictions.

The Reliable Router efficiently copes with variable size messages by using worm-
hole routing. In wormhole routing, a message is decomposed into smaller pieces.
Rather than waiting for a complete message to arrive, a router is now able to forward
these smaller pieces as they arrive. As flow control is now implemented at the level
of these pieces, they are known as flow control digits or flits.

A user of the Reliable Router must be aware of the flit-level partitioning of the
message. The Reliable Router implements a link-level fault-tolerant protocol known
as the Unique Token Protocol. This protocol keeps two copies of a message in the
network at all times. The Reliable Router implementation keeps two copies of each
message flit in the network at all times. However, if a network fault occurs, messages
can be cut in two along a flit boundary. Both pieces will be delivered to the destination
but it is up to the user to paste the message back together. The unique token protocol
is more fully described in Chapter 4.

The protocol requires that messages be partitioned into a head flit, some number
of data flits, a tail flit, and a token flit. The head flit contain the destination address,
the sender’s address, and a sender-relative sequence number. All of these fields must
be provided by the user.

Both data and tail flits are handled in an identical fashion by the router. The data
flits hold the user’s data payload. The tail flit should contain the length of message
and is given a separate flit type for the convenience of the user. The length could be
kept in the head flit if desired, however the full message length may be not be known
in advance in all cases.
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Signal _| Direction | Description

pr-clk Tnput Processor Clock

pr-ctl[4:0] Input Control inputs

pr-data(31:0] Input Data input

pr_par(3:0] Input Data parity input

pr-phase Input Phase, used to identify flit boundarys
cts_to_proc([4:0]| Output Clear-to-send output

free_out(4:0] Output Virtual channel is free

Table 3.2: Processor input port signals.

The token flit cannot contain any meaningful user data, as it will be lost in the
event of network failure. Its sole purpose is to assist the destination with duplicate
message elimination.

3.2.2 Processor Port

Processors inject messages into the network and extract messages out of the network
via the router’s processor port. The processor port is full-duplex. Messages can
be sent at the same time as messages are received. Physically, there is a processor
input port and a processor output port. Each has a 32-bit wide data bus, byte-
wise parity signals, and several control signals. Both input and output ports are
plesiochronously timed. However, it is assumed that processor/router interface will
most often be operated mesochronously.

The processor port interface is fairly simple. Each data wire can operate at
100Mbits/sec. To ease processor interface timing constraints, the plesiochronous in-
put section adjusts for the mesochronous clock skew automatically. The processor
output section is also plesiochronously timed.

There is a complication, which is that the flow control information goes opposite
the data direction. These flow control signals are treated as asynchronous signals.

Sending a Message

The interface signals for the processor to send a message are shown in Table 3.2. The
processor provides a clock to the router to retime the control, data, parity, and phase
inputs. All processor inputs to the router are sampled at the positive edge of the
clock.

All flits are 64 bits. Since the data path width is 32 bits, the flit is clocked in on
two successive clock edges. Figure 3-6 shows the relationship between phase, control,
and data. The router determines that it is has been presented with a flit by inspecting
the virtual channel field (control lines when phase=1). If the field is 0, there is no
flit. Otherwise, exactly one of the lines should be a 1 to indicate the virtual channel
number.
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Figure 3-6: Processor input signals.

There are five virtual channels and all are equivalent in function. It is the respon-
sibility of the processor to know which virtual channels are busy and which are free.
Since the processor knows the state of all the channels, it can begin sending on any
free virtual channel. Once the router receives a flit, the channel should be considered
busy. The processor can then supply the remainder of the message, finally ending the
message with a token. At this point, the processor is done, but the virtual channel
may not be free. Flits may still be in the input buffer within the router, waiting to
be forwarded. When the router has finally forwarded the token, it sends a pulse on
the virtual channel’s free_out signal, indicating that the virtual channel is now free.

Very long messages could overflow the router’s input buffer if flow control were
not provided. Flow control is handled using a simple clear-to-send for each virtual
channel. The router has 16-flit deep input FIFOs per virtual channel. Clear-to-send
is negated whenever the FIFO depth exceeds 8 elements.

Receiving a Message

Receiving a message is straightforward. Table 3-7 gives the interface signals used.
When the router has a flit for the processor, it asserts pr_valid for one clock period
(while pr_phase is high). The first half of the flit is clocked out during that clock
period, the second half during the following clock period. While phase is high, the
control field gives the encoded virtual channel number. While phase is low, the control
gives the flit kind.

3.3 Summary

The Reliable Router offers several distinctive features. It provides fault-tolerance,
adaptive routing, virtual channels, deep input buffers, high bandwidth and low-
latency. Three of the key technologies, the Unique Token Protocol, simultaneous
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Signal Direction | Description

cts_fromproc |Input Clear-to-send

pr-usr Output extra user data bits

prctlout(2:0] |Output Virtual channel, flit kind
pr-parout(3:0] |Output Byte-wise parity

pr_dataout[31:0}| Output Data

pr-valid Output Valid flit

pr-phase_out Output Used in the time-multiplexing of the flit.

Figure 3-7: Processor output port signals.

bidirectional signalling, and plesiochronous data retiming are discussed in the follow-
ing chapters.
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Chapter 4
The Unique Token Protocol

The concept of the Unique Token Protocol was previously introduced in [11]. The
explanation focused on a particular implementation and was thus somewhat clouded
by that implementation. In this chapter, a different approach is taken. The general
goals of providing fault tolerance in the network are stated. The protocol is first
described in terms of packets, then proofs of correctness of the packet-oriented pro-
tocol are given. Once the underlying protocol is shown to be correct, the protocol is
extended to cover wormhole routing.

4.1 Goals of Network-Level Fault Tolerance

A general critique of end-to-end fault-tolerant protocols produced the following ob-
servations:

o The sender must keep a copy of the packet until it knew that the destination
had a copy. This added both bookkeeping and storage overheads.

e An explicit acknowledgment must be sent, which used network bandwidth and
careful handling to ensure freedom from deadlock.

o Bookkeeping is needed at the destination to perform duplicate elimination.

® A time-out is required in order tc detect when things didn’t get through the
network. For example, if the sender did not receive an acknowledgment within
a certain amount of time, it needed to resend the packet.

The Unique Token Protocol was developed to address these issues. Using the
Unique Token Protocol, the sender does not retain a copy of the packet as the network
keeps at least two copies at all times. No acknowledgement is sent, the protocol
guarantees that at least one copy will be delivered. Duplicate elimination is greatly
reduced through the use of a token. Network-level timeouts are no longer required.
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4.2 Overview of the Unique Token Protocol

The Unique Token Protocol consists of two distinct components: a method of keeping
at least two copies of a packet in the network at all times, and a method of notifying
the destination after it has gotten the packet that no additional copies of the packet
exist in the network. The first component drops the need for the sender to keep a copy
and the need for acknowledgments. The second component helps with the amount of
bookkeeping at the destination as well as reducing the need for network-level timing
parameters.

The two components are truly distinct and may be used independently. The flow-
control protocol which keeps two copies in the network is useful only if one expects
node failures. Otherwise, a link-level acknowledgment would suffice. This flow-control
algorithm can be used without the token-passing component, an ordinary duplicate
elimination approach would work (but not as efficiently).

Similarly, the token-passing passing protocol could be used without keeping two
copies in the network. This would result in a system which was tolerant of link
failures, yet did not need heavy-weight duplication elimination at the destination.

4.3 Keeping Multiple Copies in the Network

The flow-control protocol used in the Reliable Router is quite simple: copy forward,
free backward. When a node sends a copy of the packet, the node does not imme-
diately free the packet’s storage. The node instead tells the node it had gotten the
packet from to free its storage. Figure 4-1 shows the complete protocol.

4.3.1 Correctness of the Flow-Control Algorithm

In order for the Unique Token Protocol to operate correctly, it must be shown that at
least two copies of a packet are kept in the network at all times using this flow-control
algorithm. During the following proof, it will be assumed that the routing algorithm
is non-backtracking and will make forward progress.

Theorem 4.1 The Unique Token Protocol flow-control algorithm maintains at least
two copies of a packet in the network on different nodes at all times.

The path that the packet travels from source to destination through the network
is called a route. Since the routing algorithm is non-backtracking, each nede visited
along the route appears in the route exactly once. Thus the route forms a complete
order of the nodes in the route, from source to destination. These nodes can then
be assigned distinct integral values, with the lowest at the source and the highest at
the destination such that the complete ordering of the values matches the complete
ordering of the route. Further, the desired trivial assignment 0,1,2,3...m also sat-
isfies the ordering criteria. At any point in time, some of the nodes along the route
may have copies of the packet, others will not.
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Figure 4-1: Simplified Packet-oriented Flow Control for the Unique Token Protocol.
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A way of expressing the state of a route as the packet travels along it is now
needed. This is done by coloring the nodes. A node which has never had a copy of
the packet is colored white, a node which has a copy of the packet is colored black,
and a node which had a copy but no longer does is colored gray.

Observation 4.1 If node N; is colored white and i < m, then node Niy, is colored
white. This follows from the definition of the route.

Observation 4.2 If node N; is colored non-white and i > 1, then node N;_, is colored
non-white. This too follows from the definition of the route.

Lemma 4.1 If node N; is colored white, then Vj,i < j < m, N; is colored white.

Proof By induction using Observation 4.1. a

Lemma 4.2 If node N; is colcred non-white, then V3,0 < j < ¢, N; is colored non-
white.

Proof By iuduction using Observation 4.2. [

Lemma 4.3 Let N; be the highest numbered node which is non-white, if such an N;
exists. If N; exists and i < m, node N; is colored black.

Proof A non-white node is either black or gray. The proof that it not gray is
by contradiction. Suppose that it is gray. Node N; then had a copy of the packet
but erased it. By examination of the flow control algorithm, this could occur only
if node N;;; had sent node N; a freed message. This implies that node N;;; has or
had a copy of the packet. Therefore, node N;;, must be non-white. But, node N; is

the highest numbered non-white node, which contradicts. Therefore, node N; must
be black. =

Lemma 4.4 Let N; be the highest numbered node which is colored black, if such an
N; exists. If N; exists and 1 < i < m, then node N;_, is colored black. (Figure 4-2).

Proof By Lemma 4.2, N;_; must be non-white, i.e gray or black. Suppose that
it is gray. This would imply that it had gotten a freed message from node N; allowing
it to erase its copy. But, N; hasn’t yet copied the packet forward to Ny, as Ny is
white. This contradicts, so therefore N;_; is black. [ ]

The correctness of the flow-control protocol is almost done. From Lemmas 4.1,4.2,
and 4.4, one can see that good route colorings consist of 0 or more non-white nodes,
followed by 2 black nodes, followed by 1 or more white nodes.
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Figure 4-2: The two foremost nodes in a route always have a copy of the packet.
Empty squares indicate nodes which have not gotten a copy, filled circles indicate a
copy of the packet, empty circles indicate that a copy may or may not be present.

Define m — 1 equivalance classes of route colorings, Ey, Es, E3...Eq,_;, where
equivalance class E; contains all possible route colorings having node NV; as the highest
numbered black node. Observe the class E; has a single coloring, node Ny and N;
black, node N; ... N, white. This coloring corresponds to the initial condition.

To show the correctness of the flow control protocol, one needs to show that all
possible colorings produced by the protocol from the initial coloring belong to one of
the equivalence classes.

Consider a route coloring belonging to equivalence class E;. Since it is in the class,
nodes Ny through N;_; are non-white, nodes N;_; and N; are black, and Nj;; ... Ny
are white. Under the protocol, only a single node changes color at a time, so consider
how a node might change color.

Observe that the node color changes are ordered: white to black to gray. Once
non-white, a node stays non-white. Once gray, a node stays gray. This implies that
the initial sequence of non-white nodes Nj ... N;_; is preserved under all orderings
of applications of the protocol. That leaves nodes Nj_; ... Ny. Under the protocol,
the only possible color change is for node Nj, to change from white to black. This is
acceptable as long as j # m — 1. Thus, for a given route coloring, any valid protocol
step produces a coloring in one of the equivalence classes.

By induction starting from the base class E;, one sees that the set

is closed under all possible protocols steps. Therefore, each coloring has at least two
black nodes, i.e. two copies of the packet are kept in the network at all times. [ |

Theorem 4.1 had two caveats. The first was that it had to begin in a state where
there were already two copies in the correct positions. This condition is met in
practice by the originator of the message being No. It highlights the vunerablity of
the network to the loss of the message originator before it has injected the message.

The second caveat had to do with the final recipient of the message, node Np.
Once N,, had a copy, it was no longer possible to guarantee that the network had
additional copies. Indeed, one wants the network to dispose of its copies.
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Backtracking Routing

In a backtracking network, some of the nodes can be revisited. As long as a node
cannot send the packet to itself, any two adjacent nodes in the route will be physically
different nodes. In the proof of lemma 4.4, it was shown that the two foremost nodes
will have copies of the packet. Since these are known to be physically different nodes,
the flow-control algorithm will keep two copies on different nodes at all times.

4.3.2 The Unique Token Protocol Flow-Control Protocol Us-
ing Permits

To implement the Unique Token Protocol, at least two copies of the packet must be
kept in the network at all times. In the reliable router, this is done as part of the flow
control algorithm. For most ordinary networks, flow control is implemented using a
clear-to-send signal which indicates that there is storage for another packet.

Higher performance flow-control systems are typically permit-based. The sender of
a packet knows how much packet storage the receiver has. When the packet is sent,
the transmitter decrements the available storage count (its supply of “permits”).
When the number of permits reaches zero, the transmitter is blocked and will not
send any more packets.

At some point, the receiver of the packet decides that the storage occupied by the
packet can be reclaimed. It notifies the transmitter that it has freed up the storage.
The transmitter then increments its permit count and transmission continues.

In these permit-based systems, only one copy of a packet is guaranteed to be kept
in the network as the receiver of a packet will release the storage as soon as the
packet is successfully forwarded. In the reliable router, the storage is released when
the packet has been forwarded to two other routers. Figure 4-3 shows how the entire
process is implemented.

4.4 The Token

The unique token is a mechanism for reducing the processing load at the destination
by explicitly telling the destination that the packet arrived exactly once. Before
explaining the token portion of the protocol, a lemma is needed.

Lemma 4.5 In order for a destination node to get duplicates of a packet, some node
in the network transmitted more copies of the packet than it received. It is presumed
that no node can simply make up a copy of the packet it hasn’t received.

Proof The proof is by counting the total transmits and receives for a packet.
Each packet receive must have a corresponding transmit. The destination node had
at least two receives in order for it to see duplicates. The source node should have
transmitted only once. This leaves an imbalance of more receives than transmits.
Suppose for each of the remaining nodes the number of transmits is less than or
equal to the number of receives. Then the total transmits is strictly less than receives,
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Figure 4-3: Packet-oriented Flow Control for the Unique Token Protocol.
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which violates the correspondance rule. Therefore, some node must have transmitted
more times than it received. -]

The concept behind the unique token protocol is that it is possible to verify that
for each of the nodes along a route, that that node transmitted the packet no more
than it was received. This is especially trivial when the router is non-backtracking.
The node should receive the packet at most once, so all that is needed is a check to
see if the packet was transmitted more than once. The token-passing component of
the protocol works as follows:

The sender of the packet generates a unique token.
Until the token reaches the destination or is lost, do:
Wait for the node which has the token to erase all copies of the packet.
Has the node which has the token transmitted more than it received?
Yes. Discard the unique token.
No. Forward the token to the next node on the route.
If the next node on the route is unreachable, discard the token.

4.4.1 Correctness of the Token Passing Algorithm

The general proof of the token passing passing algorithm is not yet complete. How-
ever, a proof when the routing algorithm is non-backtracking is possible. For some
network topologies, such as toruses, it should be possible to construct routing algo-
rithms which are non-backtracking in the presence of faults. In 2D meshes, this is
not possible in all cases. However, the proof still holds in the cases when the router
does not have to backtrack to get around a particular fault.

Lemma 4.6 (The unique token constructs an ordered list of nodes, Fig-
ure 4-4) Let No, Ny, ... N; be the nodes over which a unique token has traveled. The
route from Ng to N; is then a complete order.

Proof By construction of the trivial route labeling. Set i=0. Make the source
node the current node and label it Ny. Label the node the current node sent the to-
ken to N;4,. Since it sent the token to one node, there will be only one node labeled
Nit1. Make this the new current node. Repeat until all nodes have been labeled.
Since there is no backtracking, there is no conflict of label assignments. This labeling
forms a complete ordering. ]

Lemma 4.7 In a non-backtracking network, if N; has a unique token, then nodes
No, Ny, ...N;_y do not have copies of the packet.
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Source Destination

Figure 4-4: The lack of a complete node order. Beginning at the source and continuing
up to the point of the fault, it is possible to describe the exact order the unique token
traversed the network. After the fault, the graph branches. Between the branches,
no temporal ordering relationship exists.

Proof From lemma 4.6, if node N; has the token, then the trivial labeling exists,
1t corresponds to the order the token traversed the nodes, and is a complete order.
The complete order allows the induction to be well-founded.

Base step: Node N; has a copy of the token.

Induction hypothesis: If node N; has a unique token, then N;_; does not have
a copy of the packet and N;_; had the token. By definition of the route, the only
way for N; to obtain the token is from N;_;. Therefore, node N;_; must have had
the token. By inspection of the protocol, node N;_; must have erased its copy of the
packet.

Inductive Step: Since N; has the unique token, N;_; does not a copy of the packet
and it also had the token. Since it had the token, node N;_; also does not have copy
of the packet and had the token. By induction, nodes Ny, Ny,... Nj_, do not have
copies of the packet. [ ]

Theorem 4.2 In a non-backtracking network, if the destination has a unique token
for a packet, then it will receive no more than one copy of the packet.

Proof In lemma 4.5, it was established that some node in the system had to
transmit more times than it received in order for the destination to receive multiple
copies. Since the token passing algorithm verifies the (transmits < receives) property
for all nodes which had a copy of the packet, the destination received at most one
copy by the time of the unique token arrival.

From lemma 4.7, if the destination has the token, no other nodes in the network
have copies of the packet, so the destination cannot receive any more copies after the
arrival of the token. [
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Figure 4-5: The conversion of the unique token to a replica, along with the generation
of a token.

4.4.2 Token-Passing Pragmatics

In the previous section, the unique token was following behind the packet, ensuring
that no extra copies of the packet were generated. This implies that each of the nodes
was keeping some state information around after the packet has been transported,
just so the unique token can check it. However, the unique token was simply discarded
when it was found that some node transmitted more packets than it received, so the
state information was never freed. :

This can easily be fixed. Logically, the unique token is freeing up the state infor-
mation as it is being passed from node to node. If it becomes necessary to discard the
unique token, only the uniqueness property of the token is discarded, not the entire
token. The non-unique token can then be sent along to all the nodes, freeing up the
state information. This non-unique token is called a replica token, as its arrival at the
destination indicates that multiple copies or replicas of the packet could be delivered.

There is one other complication. When a failure occurs, some of the nodes will
lose contact with the source node. These nodes will be unable to get a token which
originates at the source. They will not free up the state information. To handle this,
a node which is waiting for a token and is unable to receive one because of a failure
must generate its own replica token. Figure 4-5 shows how replica tokens are both
converted and generated.

Theorem 4.3 (Ezclusivity of token types) For a given packet, either there will
be one copy of the packet delivered with a unique token, or one or more copies of the
packet delivered with replica tokens.

Correctness The argument is subtle, as both types of tokens can exist at the
same time. In particular, a replica token can be generated before the source node
injects the unique token!

The argument looks at the creation of replica tokens, as they have to be created
in order for the destination to see both kinds of tokens. One way they are created is
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when the unique token comes to a node which has transmitted twice. In this case,
the unique token is converted to a replica token, so locally the exclusivity property is
maintained.

The other way in which replica tokens are created is when a node becomes severed
from the source before it has gotten a token. In a single-point-of-failure model,
the route leading up to the point of severage is a chain originating at the source.
Therefore, the unique token must encounter the severage point. One of two cases
must be true. Either that last node had a copy of the packet after the severage
occurred, or it didn’t.

If it did not have a copy after the severage happened, that node would not have
transmitted twice. In essence, that node has become cut off from the destination, so
the unique token will be discarded at that node and the exclusivity is maintained.

If it did have a copy, it would have been transmitted to another node. When
the unique token arrives at the node, it detects the transmitted twice case and the
uniqueness is discarded. B

4.5 The Unique Token Protocol Using Wormbhole
Routing

The reliable router uses wormhole routing, not packet switching. As such, the book-
keeping becomes a bit more complicated. Packets can be sliced in two by a network
failure, so mechanisms must be provided to allow the packet to be put back together.

4.5.1 Packet Format and Reconstruction

A packet consists of a head flit, some number of data flits, a tail flit, followed by a
token. Head, data and tail flits come in flavors original and restarted. The token is
either unique or replica.

The head flit contains the destination node address, the source node address, and
a sequence number. The data flits contain user data. The tail flit contains the length
of the packet.

The flit flavors, along with the length field in the tail, allow the message to be
put back together after a fault. A head flit of type original is always followed by the
data flits from the start of a message. A head flit of type restarted indicates that the
data flits may have come from the middle of message. A head flit of type restarted
will always eventually be followed by a tail flit.

The reconstruction is then simple. Allocate a buffer of the size found in the tail
flit. Fill in the starting flits from the message tagged as original. Fill in the ending
flits from the message marked as restarted. The message is now reconstructed.
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4.5.2 Flow Control

In the router’s input controller, explicit storage for head and token flits is provided.
If a failure occurs, the head flit must be present to allow the remainder of the message
to be rerouted. The storage is explicit for the token, as it requires special handling.

Logically, the arrival of a head flit at a node allocates the storage needed to
wormhole route the remainder of the message. That storage and state is called a
virtual channel, and the allocation persists until the node forwards the token. In
the reliable router, the allocation state for a virtual channel is kept in the previous
node’s output controller. Tlie sending of the head flit causes the virtual channel to be
allocated. However, in order to deallocate the virtual channel, the node forwarding
the token notifies the previous node that the virtual channel should be freed.

Data flits are kept in a ring buffer. A copy of each data flit must be on at least
two nodes at all times. The flow control algorithm described in section 4.3 is used to
ensure this. The actual implementation in the router is complicated by the permit-
based flow control. Each time a data flit is copied forward which has not previously
been copied, a copied message is sent backward. The arrival of that copied message
“frees” the storage in that node, and a corresponding freed message is send to the
node before that. This creates another “permit” for the first node.

The qualifier of “not previously copied” is required to keep the counts correct
after a fault occurs. Otherwise, the upstream node would have counted more “freed”
messages than data flits sent.

4.5.3 Restarting a Message After a Fault

When a fault occurs, the message must be rerouted to a different node. That rerouting
causes the type of flits passing through the virtual channel to be changed from flavor
original to flavor restarted, and the token to change to type replica. The head flit and
all data flits are tagged as needing transmission. The transmission of the message
then begins again.

4.5.4 Completing a Message After a Fault

A node may receive part or all of a message and then experience a fault which pre-
cludes completion of the message. The recovery procedure is very simple. The node
sends as much of the message as it received. If it received the token, it can be
forwarded “as is”. If it has no token, it generates one of type replica and sends that.

4.6 Summary

This chapter presented the Unique Token Protocol in terms of a flow-control com-
ponent and a token-passing component. The flow control component was shown to
have the property that at least two copies of the packet are kept in the network at
all times. The token passing component was shown to properly indicate that the
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arrival of a unique token meant that the packet was delivered once, subject to the
non-backtracking restriction.

The protocol was then presented in the context of a wormhole-routed implemen-
tation. A network implementing the Unique Token Procotol has some costs over a
non-reliable network. Chief among these is the storage requirement for two copies of
every flit. Additional costs are the complexity of the flow control management and
the needs for adequate firewalls.

The protocol does have its benefits. It eliminates the need for source buffering
and duplicate elimination. It uses very little extra network bandwidth. Perhaps most
importantly, the error recovery takes place around the failure point. This minimizes
the amount of time required between the detection of the failure and the invocation
of the recovery procedure.
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Chapter 5

Simultaneous Bidirectional
Signalling

The Reliable Router is designed for high-performance communications. The perfor-
mance of the router is measured in terms of its bandwidth and its latency. Within
the router, one the components critical to obtaining both high bandwidth and low
latency is the I/O pad design. The router uses Simultaneous Bidirectional Signalling
to achieve its communications performance goals.

Several chips implementing bidirectional signalling have been built and tested over
the past 5 years. One of the more astonishing results (at least to the experimenters)
was that the later test chips were successfully recovering signals out of some truly
awful-looking interchip waveforms. Was this a fluke, or was the design really that
noise tolerant? What are the real noise margins? To answer those questions, this
chapter begins with a general discussion of signalling and noise in the simple uni-
directional case. It explores how noise is created in one part of the system and is
then coupled into other parts of the system. Once a good understanding of noise is
achieved, components of a signalling system are designed and analyzed. The opera-
tional characteristics of the entire unidirectional system are determined.

Once unidirectional behavior is fully understood, those components are incorpo-
rated into a bidirectional system. Other operational characterizations, such as the
common-mode rejection of the receiver, are performed. The additional noise suscep-
tibility of bidirectional signalling over unidirectional signalling is clarified.

5.1 Fundamentals of Signalling

Electrical signals are continuous waveforms. The digital logic abstraction maps the
waveform values into discrete 1’s and 0’s. This mapping of continuous waveforms
onto discrete values implies that there are electrical values which are mapped into
one logic value which are extremely near other electrical values which map into the
other logic value. As an example, consider an ideal CMOS inverter. Electrical voltage
values between Ov and VDD/2 result in in a logic 1 output, values greater than VDD/2
and less than or equal to VDD result in a logic 0 output.
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Figure 5-1: Noise and Gain in an Inverter Circuit.

Two real-world effects mar this abstraction. First, the ideal inverter transfer
function cannot be built. The inverter itself produces a continuous output, so it is
possible to provide an input signal which results in the output being in the middle
of its range. An ideal inverter is a perfect “voltage arbiter”, the real inverter has a
fixed point which is neither a logic 1 nor a logic 0.

The second real world effect is noise. All electrical waveforms have some form
of noise which is added to the signalling waveform. The signalling waveform must
be kept sufficiently far from the logic decision point such that the probability of the
noise causing the signal to be misinterpreted is acceptably low.

Figure 5-1 shows a simple inverter circuit. There is an input signal Vin, a noise
source Vy, and a voltage inverter with gain a whose output is Voyr. If this to form
the basis of a composable logic family, Vour is the next gate’s Vin, so it is required
that:
| a([Vin| = |Vx]) 2 [Vin| (5.1)

Treating all quantities as positive and rewriting:

Vin >

V; 5.2
2 vy (52)
The required signal level is a function of the amount of noise and a function of the
gain of the circuits. Very high gain circuits can operate at signal levels near the noise
level, while low gain circuits need much higher margins. The next section will explore
how noise enters into the interchip signalling system.

5.2 Noise

If one had ideal current sources, power supplies, transmission lines, termination re-
sistors, and no parasitics, some truly remarkable bandwidths could be achieved and
there would be no need for this chapter. However, the real world deviates from
the ideal in many ways and the art of high-speed I/O design is all about knowing
where the deviations are and how to either avoid them or compensate for them. The
following effects are modeled as noise sources:

e Classical noise sources such as thermal noise and shot noise
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Figure 5-2: Ideal Unidirectional Communication.

Bonding Bonding Wire Leadirame Package
Pad Pin

I

Yy ololo R

N
+—H
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e Crosstalk

e Non-linear circuit elements

e Non-ideal voltage and current sources
e Parasitics

e Manufacturing variations

The ideal unidirectional communication system is shown in Figure 5-2. It consists
of a transmitter, a transmission line, and a receiver. Subsequent sections will explore
the sources of noise in each part of the communication system.

5.2.1 Noise in the Interconnect

The ideal communication system uses ideal transmission lines. A more accurate
model of the world needs tc account for all of the parasitic and non-transmission line
elrments. These elements alter the signal and can be modeled as a source of noise.
They are physically found between the bonding pad on the die and the attachment to
the transmission line. The model shown in Figure 5-3 shows the following elements:

Bonding pad capacitance. The bonding pad is a large area of metal. It has
a capacitance to the substrate. In nddition, input protection structures add
parasitic diffusion capacitances. Unless otherwise noted, all the analysis in this
chapter will model this capacitance as 5pF to chip “ground”.
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Figure 5-4: Interconnect transfer characteristic at the transmitter. Below 100MHz, very
little signal attenuation is seen. At 1GHz, significant attentuation exists.

Bonding wire. The bond wire has boih a resistance and an inductive component.
The series resistances tend not have as strong an effect as the series inductances
at high frequencies and will be omitted from the circuits shown. The inductance
will be modeled as 3nH.

Package lead-frame. The term lead-frame is a bit misleading, but it used to
describe the wiriug from the bond site to the pin of the package. Depending on
the type of package, it may or may not be controlled impedance.

Package Pin. The pin going from the package to the board has a parasitic capac-
itance. This will be modeled as a 5pF capacitor to board “ground”.

These additional elements canse the interconnect to behave differently at different
frequencies. Figure 5-4 shows th: frequency dependence of the transfer curve. The
transmitter in this case is trying to drive a 5mA sinusoid into the package model.
One can see that the package begins to attenuate the transmitted waveform around
100MHz. Interestingly, the waveform seen a. the bonding pad suffers less attenuation
than the waveform on the line!. :

The effective input impedance of the package model is shown i1n Figure 5-5. The
roll-off of the impedance above 100MHz is what causes the transfrr fuaction to roll-off.
By expressing it as an impedance, one realizes that the package is cver terminated
at high frequencies. Since very sharp signal 2dges have strong high-frequency compo-
nents, one would expect some reflections in the transient analysis. Figure 5-6 shows
a current driver driving a 100ps edge into the interconnect model. By slowing the

'In section 5.4.5, this effect will be shown to reduce the bidirectional noise margin.
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Figure 5-5: Interconnect impedance characteristic at the receiver. For frequencies below
16MHz, essentially of the impedance is caused by the 50 ohm termination. Above 100MHz,
the capacitors in series with the termination resistor begin to dominate, causing the imped-
ance to drop.

edge rate down, the amplitude of the reflection can be reduced. Figure 5-7 shows
the effect of 1ns edge and Figure 5-8 shows the effect of a 2ns edge. The amplitude
of the reflection has been reduced from 45mV to 15mV. Since the magnitude of the
refection is proportional the magnitude of the applied signal, the 100ps edge has a
35% reflection, the 2ns edge has a 12% reflection.

Note that the interconnect noise is predominately self-induced noise and is not
random. The magnitude of the noise injected is very predictable and the probability
distribution for noise magnitude tends to roll off sharply.? Further, the magnitude of
interconnect noise is directly proportional to the applied signal and is a function of
the signal frequency.

5.2.2 Noise in the Transmitter

The role of the transmitter is convert the internal representation of the logic 0-1 into
its external form. In this ideal transmitter, a logic 1 is converted into -+ current,
a logic 0 is converted into —: current. The ideal transmitter shown in Figure 5-2
cannot be realized, as not all supply and signal voltages are referenced to each other
via circuit elements, nor are return paths provided for all currents.

Figure 5-9 gives a more complete picture. The internal logic signal to be transmit-
ted is represented by a voltage referenced to the internal logic ground. The voltage

*Interconnect noise is like a dog tied to a stake. It can usually be found operating at the limit of
" its rope.
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Figure 5-6: The interconnect structure driven by a 100ps edge. The 100ps edge has strong
components above 100MHz, resulting in the waveforms displaying noise which resembles a

decaying sinusoid.

: —— Driver
...... Midpoint
-~- Recsiver

20.0

0.0

Millivolts

-20.0
-40.0
-60.0
-80.0
-100.0
-120.0

-140.0
0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0

Time (ns)

1ns Edge

Figure 5-7: The interconnect structure driven by a lns edge. The reduction in high-
frequency components eliminates the decaying sinusoid noise. There still is a substantial
reflection back to the transmitter. The transmitter is terminated, but the first backward
reflection is not completely damped, resulting in receiver noise at t=18ns.
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Figure 5-8: The interconnect structure driven by a 2ns edge. The reflection is now about
10% of the signal. The signal at the receiver is quite clean. The receiver still sees a reflection
at t=18ns, but is now less than 5% of the signal.

can range from Ov to VDD . The internal logic uses a single VDD supply.

The actual transmitter also uses a single Vdd supply and its own ground. The
transmitter’s ground must be referenced to the logic ground via a circuit element (e.g.
voltage supply, resistor, inductor).

The transmitter’s output current must return somehow. The “shield” or return
on the transmission line is therefore connected via some circuit elements to one of the
transmitter’s power supplies.

Transmitter Parasitic Circuit Elements

The next step in the modelling of the transmitter is to insert as many of the known
parasitic elements and noise sources as possible. All wires which cross a chip boundary
are converted into an inductor with a capacitor to “ground” on each end. These wires
include the transmitted signal and its return, and all of the power supplies. Note that
the internal logic and the transmitter use different supply wires. Lastly, voltage noise
sources are inserted in series with all voltage supplies. Figure 5-10 shows the complete
model.

Manifestations of Noise in the Transmitter

Noise is introduced when the signal crosses from the internal logic domain to the
transmitter domain. The two domains are coupled via inductors and resistors. Since
the current drawn through those inductors/resistors is not typically correlated, there
will often be a ground differential between the domains. If the system is to function
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at all, the worst-case differential cannot cause a constant logic 0 to be interpreted by
the transmitter as a 1, nor should a constant 1 be seen as a 0.

The non-ideal nature of the physical circuits will always have an effect on signal
transitions. If the signal edge rate is fast compared with the change in ground differ-
ential, the transmitter circuit will always see a monotonically increasing (decreasing)
input signal. Provided that nothing else is drastically wrong, the transmitter should
produce a clean but temporally modulated output edge. When the signal edge rate is
slow compared to the change in ground differential, it is possible for the transmitter
to see and produce a glitch in addition to temporally modulating the signal.

The connection from internal logic to the transmitter has one other subtle effect.
In a CMOS transmitter circuit, the input structure is often an inverter. The NMOS
transistor has its back-gate connected to ground, the PMOS transistor has its back-
gate connected to Vdd. When the input signal changes, these capacitors must be
charged and discharged, with the return current flowing through the power/ground
wires. I 'hat change in current causes some amount of supply noise in the transmitter.

The last cause of transmitted signal noise is power supply noise. The transmitter
is to be a current source, but the parasitic capacitances will allow high-frequency
power supply noise to directly couple into the output. In addition, changes in the
power supply voltage will modulate the circuit delay characteristics of the transmitter,
resulting in additional output timing modulation.

5.2.3 Noise in the Receiver

Many of the same types of noise sources found in the transmitter can also be found
in the receiver. The basic receiver model is shown in Figure 5-11.
The receiver output to internal logic signal suffers from the same sorts of noise
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Figure 5-12: Receiver Transfer Characteristic.

problems as its counterpart in the transmitter did. These are mainly affiliated with
“ground” differences between the receiver and internal logic. Ideally, the receiver
circuit would draw constant current to avoid injecting power supply noise.

Most receiver circuits connect the inputs directly to the gate of a MOS transis-
tor. For high gain amplifiers, the transistor is very wide, resulting in a large input
capacitance. Capacitance on a signal is usually bad, as it makes the system frequency
dependent. Figure 5-12 illustrates the frequency dependent transfer curves. One can
see that the roll-off begins around 20MHz and is fairly substantial by 300MHz.

The parasitic elements will cause a glitch during the transient response. If the
return current paih is shared amoung several receiver sections, the glitch can be
fairly substantial. Here, as with all of the interconnect examples, slowing the edge
rate reduces the glitch. Figure 5-13 shows the result of a 2ns edge arriving at the
receiver.

5.3 Circuit Techniques

Now that the major sources of noise are understood, circuit techniques can be devel-
oped to compensate.

5.3.1 Transmitter

The router uses current mode signalling. A basic current-mode output driver is shown
in Figure 5-14. Transistors m1 and m4 act as current sources, m2 and m3 as switches.
Relative sizings for m1 through m4 are 4x, 1x, 2x, 8x. Overall sizing is chosen to keep
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ml and m4 in saturation at the target current level.?

Current Steering

One of the problems with the current sources shown in Figure 5-14 is that the nodes
nl and n2 tend to have large parasitic capacitances. When decoupled from the line,
these capacitances are charged to the rails. Later, when the output switches, the
drive transistor sees the parasitic capacitor, not the current source. This results in
undesirable initial current overshoot.

A solution is to steer the current from the current sources into either the line or
a dummy load. This results in a constant voltage on all nodes in the current source,
eliminating the initial overshoot.

The current steering driver has two other beneficial properties. First, it draws
constant current from both the VDD and GND supplies, irrespective of the output
state. This reduces the self-induced power supply noise which in turn reducing the
required number of supply pins and the noise effects on the system logic. Second, the
total current supplied from an output driver into VT is zero. This suggests that the
VT supply could be as simple as a capacitor and a resistor divider.

In the discussion of the imperfect interconnect (section 5.2.1), it was mentioned
that the edge rate of the driver needed to be limited to reduce high-frequency com-
ponents. This is done by splitting the driver into several small parallel drivers, as
shown in Figure 5-39. The turn-on of each driver is then staggered via a buffer chain.
This technique allows the construction of not only a slow straight edge, but also a
piece-wise approximation to more elaborate curves. These could more more closely
match the desired low-pass characteristic.

3For those of us who are forgetful, the saturation region is when Vpg > Vgs — V.
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Figure 5-16: Transmitter Transient Response, 200Mbit.

Figure 5-40 show the detail of a transmitter stage. Each stage has a delay of about
2 gate delays. Delay characteristics can be adjusted by varying the voltage on the
delay signal.

Figure 5-16 shows the transient response of the slew-rate limited driver. The
input to the driver was a full CMOS signal with 200ps edge rates. As can be seen,
the driver produces a nearly perfect trapezoidal waveform. Figure 5-17 shows the
amount of supply current.

5.3.2 Transmission line and termination

There is very little one can do with circuit techniques to improve the transmission
line. To minimize crosstalk, the line is terminated at both ends. The termination
resistor is constructed using a CMOS gate. Figure 5-18 shows the effective termination
resistance, measured at DC, VDD = 3.3V, VT = 1.65V. The resistance does vary as
much as 15% over the range. Ideally, the resistance curve would be centered about
50 ohms for a +7% deviation.

The resistance values were obtained at DC. Figure 5-19 shows the transient re-
sponse of the termination to 100ps edges. One observes that waveforms look fairly
ideal.

Due to process variations, the on-chip resistor needs to be tuned to match the
line impedance. The router uses 14 discrete CMOS gates to implement a termination
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Figure 5-18: Termination resistance measured at DC.
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Figure 5-19: Termination Transient Response, 100ps Edges. The terminations are imple-
mented using CMOS transistors. The parasitic capacitors do not affect the quality of the
termination.

resistor. These are turned on and off under control from a JTAG register. The
capacitances which slowed the very fast edge also allow the terminated signal to
couple back into the control voltage. To mininize inter-pad effects, each resistor
section buffers the control signal before applying it the the CMOS gate. Figure 5-42
show the circuit used in the router.

To summarize, the implementation of an on-chip termination does not significantly
limit the acheivable edge rate, nor does it cause substantial reflective noise due to
impedance non-linearities.

5.3.3 Receiver

The Reliable Router’s current mode signalling results in the voltage swing on the line
being £125mV while the voltage swing out of the receiver is still full CMOS levels.
In doing so, the required gain-bandwidth product of the receiver was increased. The
input voltage swing of the differential amplifier is 250mV, ignoring noise. The gain
required is then 20 (26dB). To achieve a 200Mbit signalling rate, the receiver should
have a gain-bandwidth product of 2GHz.

The gain-bandwidth product must be measured large-signal, as the high-frequency
output swing must maich the low-frequency output swing to avoid inter-symbol ef-
fects. Using a good CMOS process, it is fairly easy to construct a standard transcon-
ductance amplifiers with a unity-gain frequency near 2GHz. For a standard transcon-
ductance amplifier, these gains are only for a limited output range which is typically
+1V. Outside of that range, the transistors in the output stage come out of satu-
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Figure 5-20: Receiver Transient Response, 200Mbit, 250mV. The output of the first yields
stage nearly 1.2V of swing.

ration and enter the triode region. Once in triode, they supply less current and the
output slew rate falls off.

The transconductance amp used in the router is a standard Chappel differential
receiver. it is followed by two inverters which provide the full restoration to CMOS
levels. The schematic is shown in Figure 5-43.

The transconductance amplifier can be adjusted to give large output swings by
allowing one of the two output drive transistors to enter cut-off. This produces the
rail-to-rail swings shown in Figure 5-20. The input waveform (labeled “input”) is
250mV peak-to-peak, with 1ns edges. The waveform labeled “difftamp” is the output
of the differential amplifier. This output is then cleaned up using a buffer whose
output is labeled “output”.

The receiver’s gain is further illustrated in Figure 5-22. The input waveform has
been reduced to 20mV peak-to-peak with 1ns edges. The output waveform shows
a bit of intersymbol interference, yet the output waveform is still clean enough to
operate at 200Mbit/sec. This implies that over 90% of the input waveform can be
noise and the receiver will still extract the correct value.

The receiver does draw variable amounts of current, depending on the input signal
and the input edge rates. Figure 5-23 shows the supply current drawn while a 250mV
signal is applied. The current spiking is comparable to that in the transmitter.

5.3.4 Undirectional Signalling Summary

This section explored the physical and the circuits used to construct a high-performance,
unidirectional signalling system. The circuits developed show excellent performance,
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Figure 5-21: Receiver Transient Response, 200Mbit, 100mV. The output of the first stage
is reduced. Most of the level restoration is now handled by the buffer.
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Figure 5-22: Receiver Transient Response, 200Mbit, 20mV. The differential amplifier is
providing some gain, but now it is primarily level-shifting the voltage to allow the buffer tc
do the amplification.
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Figure 5-23: Raceiver Supply Current, 200Mbit, 250mV. The average current draw is about
ImA, with peaks to 2.8mA.

yet the Jimiting factor has been the pecrasitic circuit elements that come with the
physical interconnect. Figure 5-24 shows the waveforms as produced by the -urrent
mode transmitter and then as seen by the receiver. The signal quality And noise
margins are excellent and the receiver should have no difficult restoring the signal to

full CMOS levels.

5.4 Bidirectional Signalling

The basic circuits described thus far can be used to implernent simultaneous bidirec-
tional signalling. The signalling concept is to treat the terminated transmission as
a summing junction for the currents supplied by two drivers. The voltage seen on
the junction should be Rie;m(I4 + Ig). Each driver/re~eiver pair knows the amount
of current it sent into the junction and sees the resultant voliage. By constructirg a
reference waveform and a differential amplifier, the receiver substracts off its contri-
bution, resulting in the signal sent by the other driver. Figure 5-25 shows the circuit
lopology and Figure 5-26 gives some example waveforms.

The same circuits used in the unidirectional case can used for bidirection signalling.
The current-steering current sources can be used to construct he drive and reference
waveforms, the termination resistor will convert it into a voltage, and the differential
amplifier can be used to subtract off the reference waveform.
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Figure 5-25: Simultaneous bidirectional signalling. This is accomplished by transmitting
signals in both directions across a transmission line. At each end, the received signal is
recovered by subtracting out the effects of the transmitted signal. A current source scaled
by factor k is used to subtract out the transmitted signal to reduce power dissipation.
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delayed version of signal B gives the waveform on the left end of the transmission line.

5.4.1 Additional Bidirectional Noise Factors

Since the same circuit components are used for bidirectional signalling, one would
expect that a bidirectional system could achieve the same bandwidth each direction
as a unidirectionai system. However, there are some additional limiting factors:

e In the unidirectional case, the actual output impedance of the driver was not
much of a concern. In the bidirectional case, the impedance should be high
enough to avoid improperly terminating the line.

e The signalling range is twice as large. The inaccuracy of the termination grew
with the amplitude of signalling voltage.

® The driver and reference waveforms essentially create a large common mode
signal at the receiver’s input. This signal must be rejected by the receiver.

o The package parasitics will cause a transient mismatch between the waveform
on the line and the reference waveform.

These will now be explored in turn.

5.4.2 Driver Output Impedance

Figure 5-27 shows how the output current changes when an offset voltage is applied.
The current changes by 0.2mA over a 300mV range. The effective output impedance
is then .3/.0002 = 1500 ohms. This should not any significant impact on the 50 ohm
termination. It will change the amplitude of the added voltage by about 5%.
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Figure 5-27: Driver output current.

5.4.3 Termination Nonlinearity

The termination resistance was plotted over the entire operating range in Figure 5-
18, However, the transient analysis needs to be adjusted for a larger current swing.
Figure 5-28 shows the effect of increasing the signal swing to +£10mA, which is a small
amount of overshoot.

5.4.4 Large Common-Mode Signal

The large common signal will feed through the differential amplifier onto the gate of
the first inverter in the output stage. Figure 5-29 shows the effective logic threshold
voltage as being in the range 1.5 to 1.6 volts. As long as the common mode signal does
not cause the amplifier to cross that threshold, the correct value will be recovered.
Figure 5-30 and Figure 5-31 show the effect of 250mV of common mode noise applied
to a 125mV positive and 125mV negative differential input respectively. As can be
seen, the amplifier output stays below 0.9V and above 2.7V, resulting in a worst case
noise margin of 0.6 volts.

Figure 5-32 and Figure 5-33 reduce the differential voltage to +50mV. Here, the
amplifier output stays below 1.25V and above 2.1V, resulting in a worst case noise
margin of 0.2 volts. This ought not to be troublesome, as the buffer is physically next
to the differential amplifier and shares the same supply rails. If a fifth of a volt of
noise is coupling onto that node, the system is already non-functional.
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Figure 5-29: Buffer Transfer Curve. Not surprisingly, a CMOS buffer shows very large
gains in its DC transfer function.
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Figure 5-30: Common mode response to a 250mV common mode signal. The differential
input corresponds to logic one. The output of the first stage of receiver stays well above
the input threshold of the buffer.
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Figure 5-31: Common mode response to a 250mV common mode signal. The differential
input corresponds to logic zero. The output of the first stage of receiver stays well below
the input threshold of the buffer.
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Figure 5-32: Common mode response, 250mV common mode signal, 50mV differential
signal. The differential input corresponds to a logic one. The output of the first stage is

about .2V above the buffer’s threshold.

2 . Plus Input
S : ¢ : : Minus Input
14 _....:::::::::é::::::.::::_...,-,,;.......m...,./;...,,..: ................. : ............................... ,;.‘...,._.,.,..“““.\fs... ~....,._.....§ - Output
B N OO SO SO S S S e Diffamp

................ fivvrereeeinened
] i
18.0 21.0
Time (ns)

Receiver Common Mode Response, -50mV diff.
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about .2V below the buffer’s threshold.
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Figure 5-34: Differences between the line and reference waveforms owing to package para-
sitics.

5.4.5 Discreperncies between the line and reference waveforms

The receiver used in the router has been shown to operate correctly with a differential
signal of £50mV and a common mode signal of £125mV. Since the intended signal
is £125mV, over hal: the signal can be lost to noise. Part of this noise margin is lost
to a discrepency between the transmitted and reference waveforms. Owing to all the
parasitic inductors and capacitors in the system, there will be a transient differen-
tial error introduced betweer the reference waveform and the waveform on the line.
The summing node is connected to an on-chip terminator and to an inductor to the
transmission line, while the reference waveform merely has the on-chip termination.
Figure 5-34 shows the effect of the lead inductance.

The amount of the error is about 15% of the signal amplitude. In Figure 5-34,
the error waveform is reflected back to the transmitter. This reflection is already
accounted for in the interconnect analysis, it does not need to be accounted for here.

5.4.6 Additional Noise Sources

In bidirectional signalling, a reference waveform is subtracted from the line waveform.
These waveforms are constructed by injecting current into resistors; the resistors are
tied to the termination voltage, VT . Any noise on VT will manifest itself as common
mode noise to the receiver. This noise should be minimized.

The noise on VT is the result of changing the amount of current carried by the
VT supply leads. The transmitter steers current, under ideal conditions it draws
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Figure 5-35: Separating out the return current. No current should be flowing across
inductor L2, resulting in a clean VT signal on-chip.

no current from the VT supply. The receiver has high-impedance inputs and also
draws no current from VT supply. The change in current over the VT supply leads
is caused by the return current - current frst sent as signal by the transmitter to the
receiver and is now returning to the transmitter via the VT supply.

This return current thus causes noise in both transmitter and receiver sections.
Within a transceiver, the transmitter section can reduce the common-mode noise it
causes in the receiver section by separating out the signalling return current from its
other currents and sending the return current over a different supply lead. The circuit
is shown in Figure 5-35.

Note that some of the signalling current will be shunted through inductor L2.
Inductor L1 is resisting the change in current across it caused by the signal, so the
current from the transmitter travels through the local termination, into the VT clean
node and out through inductor L2. Without this separation, the change of 5mA
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Figure 5-36: Noise on VT dlean, VT dirty. Owing to the inductor in the signal path, some
current flows briefly through VT clean, resulting in common mode noise.

_Cause Amount Total
Transmit reflection 12mV 12mV
Line, reference differences 12mV : 12mV
Transmit current imbalance 2mV * xmits per VT clean 10mV
Termination mismatch 5mV SmV
Receiver parasitics 3mV + 3mV * recvs per VT dir.y 18mV
Total 5TmV

Table 5.1: Total Noise Contributions.

in 2ns through a 3nH inductor would have resulted in 7.5mV of noise added to the
internal VT node. Figure 5-36 shows the separation of the currents reduces the noise
to around 2mV.

5.4.7 The Noise Margins

The preceeding sections have generated a large amount of numbers. Putting it all
together results in Table 5.1. Some of the noise figures depend on the number of
transceivers sharing the VT pin. The Reliable Router has 5 transceivers per VT clean
or dirty pin. The sum of the noise sources amounts to 57mV. The overali signal swing
is =2126mV, leaving 68mV for the gain-bandwidth of the receive amplifier.

In the simulations, it was shown that 50mV was sufficient to provide a bandwidth
of 200Mbit/sec. Further, a 50mV differential input on the receiver was not perturbed
by a 250mV common mode signal at 200Mbit /sec. From this, one can conclude that
the system should indeed function with around 13mV of noise margin to spare.
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Figure 5-37: Bidirectional signalling with no interconnect parasitics. The received wave-
form has been scaled down by a factor of 10. When the line is below the transmitted
waveform, the received data is a zero. When it is above, the data is a one.

5.4.8 Summary of Bidirectional Signalling

In the previous sections, circuit techniques were explored to implement simultaneous
bidirectional signaliing. In this sectior, these techniques are put together and tested.

Figure 5-37 shows the simulatio: result of a complete system. Two bidirectional
transceivers are interconnected wit a transmission line. The delay of the transmission
line is 2ns. No interconnect parasitics are included in this simulation to show how
the circuits wovld work under ideal conditions. The “transmitted” waveform is the
transmitted reference waveform. The “line” waveform is the superposition of the two
transmitted waveforms. The recovered data is shown in the “received” waveform and
is scaled down in the plot by a factor of ten to match the interchip signalling levels.
To 2void occasional HSpice problems* with the transmission line and inductor, the
voltages are measured relative to VT .

One can see the transmitted waveforms from both tranceivers being added, form-
ing the line waveform. Data is being recovered quite cleanly.

Figure 5-38 shows the simulation result of the above circuit with the parasitic
circuit elements added. The waveforms are still fairly clean and the data is being
recovered correctly.

“The initial voltage condition on the transmission line shield would be 0 volts, not VT as intended.
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Figure 5-38: Bidirectional signalling with interconnect parasitics. [The received waveform
has been scaled down by a factor of 10.

5.5 Summary

High-performance simultaneous bidirectional signalling is acheivable. Through the
analysis presented in this chapter, one can see that most of the techniques described
are applicable to all types of signalling, not just bidirectional signalling. The key
techniques are:

o Accurate modeling of the physical interconnect. Understanding both the tran-
sient response and the frequency response of the interconnect. Preconditioning
the transmitted waveform to avoid the poorer response areas of the interconnect.

e Knowing where the signal and return currents flow and keeping those paths
clean.

e Steering current to avoid supply rail bounce.
e When noise is self-induced and unavoidable, inducing equal and opposite noise.

These techniques make bidirectional signalling practical, but there can be a per-
formance difference between the peak performance of a unidirectional system and the
peak one-direction performance of a bidirectional system. The difference stems from
the need in a bidirectional system to accurately duplicate the transmitted waveform
and the need for large signal, wide-band common mode rejection in the receiver. In
today’s CMOS processes and packaging technclogies, the interconnect effects are the
primary limiting factor. One is able to design very good receivers for the signalling
frequencies of interest. The interconnect parasitics cause the line waveform to differ
from the reference at the transmitter, which results in a bidirectional system having
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a somewhat lower noise margin than the corresponding unidirectional systern at a
given signalling rate.

5.6 Schematics
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Figure 5-39: Transmitter.
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Figure 5-41: The initial differential buffer used in the transmitter.
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Chapter 6

Low-Latency Plesiochronous Data
Retiming

One of the many problems facing the designer of a large digital system is clock distri-
bution. A large system is typically composed of communicating subsystems. These
subsystems are internally synchronous and clocking uncertainty within a subsystein is
well-controlled. Between subsystems, communications becomes more difficult, owing
to larger amounts of clock uncertainty. As clock speeds increase or the number of
subsystems increase, the uncertainty in the clock distribuvion network becomes the
performance limiting factor.

In addition, the large clock tree is a single point of failure. The builder of a large
system tries to aveid single points of failure wherever possible. The designer may
not be trying to achieve complete fault-tolerance, but the goals of graceful degrada-
tion and hot-plug-in are very important and conflict with a single clock distribution
system.

This chapter describes a new approach, low-latenry plesiochronous data retiming,
to the problem of clock distribution and data communication in large systems. The
chapter begins with some background into timing methods and then develops the
concept of low-latency plesiochronous data retiming. The circuits used to implement
the :etiming within the Reliable Router are described. Next, the latency and band-
width reduction for a low-latency plesiochronous tystem are computed. The effect
of timing jitter is considered and shown to cause an additional bandwidth reduction.
Two extensicns, cascadsd retiming stages and integral subrates, are then presented.

6.1 Background

Existing solutions to the clock distribution problem include asynchronous and meso-
chronous (same clock source, unknown clock phase) timing methods. Messerschmitt
[24] offers a good discussion of these terms. None of these methods seemed par-
ticularly well-suited for use in the reliable router. Asynchronous timing requires a
synchronizer delay for each data item. Mesochronous timing involved some small
amount of delay but still required a single system clock source.
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A third method, plesiochronous timing, looked promising, as demonstrated in
well-known embodiments such as SONET. It removed the need for a single clock
and requires no flow control handshaking. The diffculty with plesiochronous timing
is keeping the data items transferred one-for-one between transmitter and receiver.
Dependent on the relative rates, transmitted data may be either undersampled or
oversampled by the receiver. Previous designs used fairly deep FIFOs (> 4 elements!)
and had complex finite state machines. In general, prior designs use FIFOs of a depth
large enough to compensate for a synchronizer delay.

The sclution described in this chapter separates the synchronizer from the data
retiming, giving minimum data latency and minimum data storage requirements. By
carefully chosing the point at which a data retiming adjustment takes place, data
items are kept one-for-one without requiring any additional circuitry.

This solution does differ from other synchronizer-avoidance methods, as it ad-
dresses the issue of keeping the data items one-for-one between transmit and receive
clock domains. Glasser and Rettberg [30] use dynamic delay adjustment to avoid the
synchronizer penalty on the data path, but rely on mesochronous timing to keep the
data one-for-one. Stewart and Ward [34] extend the idea of synchronizer avoidance to
cover plesiochronous timing, but do not address the issue of keeping data one-for-one
while providing minimal latency.

6.2 Plesiochronous Requirements

A pleisochronous system is one where all the clocks operate at approximately the same
frequency, fo. In point-to-point communications, there is a transmitter operating at
frequency f, and a receiver operating at frequency f.. Both f, and , are in the
interval [fo — Af, fo+ Af].

If the transmitter were to send data to the receiver at the transmitter’s clock rate,
one of two things will eventually happen, dependent on the relative speeds of th~ two
clocks. If the transmitter is running faster than the receiver (f, > f,), the receiver will
be presented with more information than it can handle causing an overrun condition.
If the receiver is running faster (f, < f.), it becomes starved resulting in an underrun
condition.

To avoid underruns and overruns, the transmitter and receiver agree that the
transmitter will not always send data. The transmitter simply sends data at rate
lower than the receiver is operating. The receiver distinguishes between data and non-
data, and only processes data. More formally, the transmitter produces a constant
stream of cells, where each cell can contain either data or non-data. The rate at which
the stream of cells is produced is defined to be the transmitter's frequency. The rate
at which the receiver is able to consume data cells is defined to be the receiver’s
frequency. As long as the transmitter does not send data cells at rate fascer than
the receiver’s consumption rate, no overrun condition will exist. If the receiver can
tolerate an occasional delay in the arrival of the next data cell, no underrun condition
will exist.

In a systein where communication sccurs by linking up several point-to-point haps,
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all transmitters in the system must produce data at a rate lower than the slowest
receiver frequency. This is not as bad as it sounds, as this is usually nothing morz
than the worst-case transmitter/receiver hequency mismatch. Since the transmitter
does not know the relative frequencies, it presumes that its clock is fast and the
receiver is slow (f; = fo+ Af, fr = fo — Af). To avoid the overrun, the transmitter
sends data at the rate

fo—Af

fa= ftm (6.1)

When f; > f;, the transmitted data rate exactly matches the receiver’s consumption
rate. When f; < f,, the data rate is not matched and a degradation occurs which is
approximately 2A f.!

6.3 Retiming

Retiming is the movement of a cell from the transmitter’s clock domain to the re-
ceiver’s clock domain. The incoming cells have a portion of the cell time (¢.) where
their value is stable and can be sampled by a flip-flop using some clock edge. This is
called the valid region, t,;. Over the rast of the cell, either the value of the cell is
changing or the value has not met the setup or hold timcs of a flip-flip. This r:gion
is called the exclusion region, t.;.. By definition,

Ltk = tyal + texe

For ease of explanation, the width of the valid region is assumed to be much larger
than the width of the exclusion region ({1 > tezc). A waveform with both regions
illustrated is shown in Figure 6-1

In a synchronous system, the cell can be safely retimed into the receiver’s cleck
domain if the receiver’s clock edge occurs during the valid region. The design of a
correct synchronous system is guaranteeing that the clock edge occurs exactly in that
region.

LA practical implementation will typically guarantee a a minimurn rate of non-data transmissions.
This is dcne by running a counter and stopping data transmission when the counter wraps.
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6.3.1 Mesochronous Retiming

For a mesochronous system, the placement of the receiver’s clock edge relative to the
valid region is not controlled. In fact, the clock edge could occur during the exclusion
region. To get around this, a waveform is const.icted which is simply the transmitted
waveform delayed by half a clock period. For notational ease, the original transmitted
waveform will be called the Q-waveform, the delayed will called the R-waveform?.

It easy to see that if t,q > t.x/2, at any point in time either the original waveform
or the delayed waveform are in the valid region. Now, if the receiver clock edge occurs
in the exclusion region of the () waveform, the R waveform is sampled instead. To
build a complete mesochronous retiming circuit, one needs to construct a subcircuit
which delays the transmitted cell, a circuit for detecting sampling during the exclusion
region, and a multiplexor. A block diagram is shown in Figure 6-3.

When t,o < tax/2, muliiple delayed versions of the incoming waveform are re-
quired. In general, one needs [{<] versions.

2Q because it comes from the Q output of a flip-flop in the implementation, R because it came
after Q
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6.3.2 Plesiochroncus Retiming

Plesiochronous retiming looks very similar to mesochronous retiming, except the rel-
ative phase ) between the trausmit and receive clocks will vary with time

O(t) = Oo + 27 (fi — f;)t (6.2)

To extend the mesochronous case to the plesiochronous case, one could simply
allow dynamic switching between the Q and R waveforms. However, indiscriminate
switching can result in either duplicate cells or missing cells. Figure 6-4 shows a case
where the receiver has been sampling the Q /aveform. The receive clock is running
slower than the transmit clock, so the receive clock edge encounters Q’s exclusion
region on the right hand side. The receiver then shifts to sampling the R waveform,
resulting in cell 1 appearing twice at the ouput of the receiver.

Similarly, figure 6-5 shows a case where the receiver has been sampling the R
waveform. The receive clock is running fast relative to the transmit clock, so the
rece.e clock bunips into R’s exclusion region on the left hand wide. 1'he receiver then
shifts to sampling the Q waveform, causing the receiver output to skip over cell 1.

6.3.3 Correct Plesiochronous Retiming

Suppose one wanted to control the switching between the Q and R waveforms using an
automaton clocked in the transmit domain. The phase of the transmit clock relative
to the receive clock is unknown, so the best time to flip the control input to the
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multiplexor is when both Q and R are valid and have the same value. This occurs at
92,1 of the way into a cell, mcasured on the Q waveform. Figure 6-6 shows the correct
point. Of course, the multiplexor should be hazard free. When the circuits are done
properly, the receiver is always sampling a waveform during its valid region.

To solve undersampling/oversampling, recall that cells are either data or non-
data. It is perfectly acceptable to ins=rt or delete non-data cells, but it would be bad
form to insert or delete data cells. If one restricts switching between the Q and R
waveforms to the times when both QQ and R contain a non-data cell, only non-data
cells will be undersampled or oversampled.

There are fcur cases to consider:

o The receive clock is faster than the transmit clock, and the automaton switches

from R to Q.

"o The receive clock is faster than the transmit clock, and the automaton switches

from C to R.

o The receive clock is slower than the transmit clock, and the antomaton switches

from R to Q.

e The receive clock is slower than the transmit clock, and the automaton switches
from Q to R.

The case of f, > f;, R — @ is shown in Figure 6-7. The fast receive clock implies
that the sampling edge will encounter R’s exclusion region on the right hand side. The
figure shows that as the switchover is made, no cells are added or dropped. Figure
6-8 illustrates f. > f;, @ — R. The fast clock implies that the sampling edge will
encounter ’s exclusion region on the right hand side. The figure shows that as the
switchover 1s made, the non-data celi is duplicated. In combination, these two cases
show that when the receive clock is faster than the transmit clock, extra non-data
cells are generated by the receiver to compensate.

The case of f, < fi, R — @ is shown in Figure 6-9. The fast receive clock implies
that the sampling edge will encounter R’s exclusion region on the left hand side. The
figure shows that as the switchover is madz, the non-data cell is dropped. Figure
6-10 illustrates f. < f;, @ — R. The fast clock implies that the sampling edge will
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encounter Q’s exclusion region on the right hand side. The figure shows that as the
switchover is made, no cells are added or dropped. In combination, these two cases
show that when the receive clock is slower than the transmit clock, non-data cells are
deleted by the receiver to compensate.

Knowing when Q aud R contain non-data implied that the automaton was oper-
ating in the transmit clock domain, hence the reason for the earlier supposition.

6.4 Circuit Pragmatics

This section describes the circuits used in the Reliable Router. There are many
possible good implementations of plesiochronous communications, so this should be
used as guidance only. The circuits involved are used to regain timing margin between
devices, to construct the Q and R waveforms, to detect the exclusion region, and to
control waveform selection.
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6.4.1 Modeling Flip-Flops

Before getting into the circuit details, one needs to have a good understanding of
flip-flops. Many VLSI designers pattern their mental inodel of flip-flops after the
ones encountered in standard board-level digital designs. This is a useful model, but
it can lead to rather pessimistic designs.

Board-level flip-flips are modeled using setup and hold times. The ob:ucrvation
is that those numhb.-s were derived for a number of different devices over process
corners, for a number of different signal edge rates, using a range of power supply
voltages. One often finds exclusion region widths in the 2-3ns range for TTL devices
and in the 5-10ns range for CMOS devices.

However, when one characterizes an individual CMOS flip-flop using HSpice with
constant voltage and constant edge rates, one finds that the width of the exclusion
region is very small, on the order of of a lightly-loaded inverter delay®. As one varies
process corners, supply voltage, and edge rate, the exclusion region will shift relative
to the clock edge but the overall width val! remain small.

One can use this “knife edge” sampling effect in the construction of retiming
circuits. Within the area of the retiming circuit, there is little process variation
(channel width, length, oxide thickness, etc.) so the flip-flips tend to be matched.
The remaining factors are edge rate and power supply voltage. Since the flip-flops
tend to use the same clock wire and use the same portion of the power distribution
system, the edge rate and supply effects also tend to match. Thus, the location of
the exclusion region will match from flip-flop to flip-flop.

One has to be carefur with supply voltage, as it varies with time. If one uses
techniques which measure the position of the exclusion region at one time and use
that measurement at a different time, one must account for the worst case diiference
in supply voltage between those times.

6.4.2 Circuit Detalils

Please note that the unit of transfer commonly used by communication engineers is a
cell. Cells typically do not have flow control*. In the parallel processing community,
the unit of transfer is usually the flow control control digit or flit. Descriptions of link-
level router operations are presented in terms of cells rather than flits, to emphasize
that flow control is not needed.

Between reliable routers, a transmit clock is sent along with a cell. As mentioned in
the retiming section, several timing events in the transmit clock domain are required
per cell. Needcd are:

e ( goes into valid

o () goes into exclusion

3This is about 100ps in the 0.8 micron process used to fabricate the Reliable Router
4For example, constant bit-rate streams in ATM. The waters start to muddy with variable and
available bit-rate types of traffic.
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e R goes valid
e R goes into exclusion

e Change between Q and R now.

For maany reasons unrelated to plesiochronous communications, in the router a
cell is broken into four smaller pieces, each transmitted on four subsequent transmit
clock edges. Both positive and negative edges are used, so a cell time is two transmit
clock periods (the router uses a 100MHz transmit clock). A transmit phase signal is
used to distinguish piece number zero from piece number two, and piece number one
from piece number three. The edge of the transmit clock indicates whether the piece
is even or odd. These pieces are reassembled by the receiver into a complete cell. A
sketch of the waveforms in shown in Figure 6-11.

When the cell is fiaally reassembled, the actual exclusion region for the Q waveform
is relatively small and straddles a transmit clock edge. The other three transmit clock
edges can be used to construct the R waveform and control the @ «— R cros<: -3 point.

The discussion of the exclusion region detection was a little simplifierd One does
not want to wait until the receive clock is sampling in the exclusion region before
deciding to change! Instead, a keep-out region which encompasses the exclusion region
is constructed using transmit clock edges. The transmit clock edges thus represent:

e R goes into keep-out, Q goes into valid
e R changes
e () goes into keep-out, R goes into valid, change mux control here.

e () changes

Figure 6-12 shows the waveforms and their relative timing.
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To determine if a change between Q and R waveforms is required, the keep-out
regions are first sampled using the receive clock. The output of these sampling flip-
flops are then fed back into the transmit clock domain using a synchronizer for use
by the automaton.

The entire automaton has two states: select-Q and select-R, and is shown in
Figure 6-13.

Note that the synchronizer delay does not delay the movement of data. “Stale” in-
keepout information is perfectly okay, as long as the relative clock drift is not too fast.
Since the delay is out of the critical path, fast metastability resolution is not required
of the synchronizer. In the router, 100ns are alloted to synchronizer resolution.

One of the nice features of this implementation is that no circuit tricks were
required. Slowing down the clock will improve timing margins, just in case one
missed a critical path.

6.5 Latency

An optimal low-latency synchronous retiming is one where the receive clock samples
the transmit data at the very beginning of the valid region. The latency for such a
retiming is defined to be zero.

A plesiochronous retiming circuit samples either the Q or R waveforms uniformly
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along their valid regions. When the width of the valid region approaches the entire
cell-time, the average latency sampling the Q waveform is 0.5 cell-times. Similarly,
the average latency sampling the R waveform is 1.0 cell-times. Thus, the average
latency is 0.75 cell-times.

However, when the width of the valid region drops to about half a cell-time, the
latency for sampling the Q waveform drops to 0.25 cell-times and the latency for
sampling the R waveform drops to 0.75 cell-times. The average drops to .5 cell-times.

A biased waveform selection finite state machine would try to use the Q waveform
whenever possible. Under these conditions, the average latency is 0.5 cell-times.

6.6 Non-Data Transmission Rate

In the previous section, a distinction between the exclusion region and the keep-out
region was made. A non-data cell must be received somewhere in the time it takes
the receive clock edge to drift from the edge of the keep-out region to the edge of
the exclusion region. This time is the maximum amount of time allowed between
transmission of non-data cells.

To begin the calculation, the time from keepout region edge to exclusion region
edge, tx—., is expressed as a phase angle:

U = 2rtirefs (6.3)
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From equation 6.2, the change in phase angle with respect to a change in time is:
AO(AL) = 2n(f, — fr)At
For worst case f; and f:
AO(At) = 4rAfAL (6.4)
Setting 6.3 and 6.4 equal
ArAfAL = mti_e fr
S
2A
(fo—Af)
2Af

At = tg_.e

At = tg_e

Assuming Af < fo:
fo

txtie—
AL troeg

(6.5)

Converting into transmit cell times:

fo

# cell times = t"""EZ? ¢
fo?
2Af

For example, suppose that the keep-out region exceeds the exclusion region by
2ns, the base frequency is 50MHz (i.e. 50 million cells per second), and that the
accuracy is & 5KHz (100 ppm).

2e-9 x 50e6 x 50e6
2 x 5ed

In this example, 0.2% of the available bandwidth must be given over to non-data.

# cell times = t;_.. (6.6)

= 500 cell times

6.6.1 Best Case Non-Data Transmission Rate

For an ideal circuit, the width of the exclusion region is 0 and the keepout exactly
straddles it (Figure 6-14). The amount the keepout region exceeds the exclusion is
then 1/4 of a cell period. Expressed as a phase angle:

s
v=73
Setting this equal to equation 6.4:
5 = 4rAfAL
1
At = —
8Af

All plesiochronous retiming methods require sending non-data to prevent queue
overflows. These must be inserted at a rate of 2A f. Even when using ideal circuits,
plesiochronous data retiming requires non-data cell transmission rate 4 times higher,

8Af.
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6.6.2 The Effect of Jitter

No electrical signal is without some noise component. With edge times being non-zero,
all signals will have some amount of timing jitter which will reduce timing margins.
Plesiochronous retiming relies upon timing relationships between transmitter and
receiver being stable for many clock periods. However, plesiochronous retiming will
work when both transmitter and receiver frequencies are slowly varying within their
limits. Plesiochronous retiming works by adapting to the phase angle differences
between the transmitter and the receiver. Slowly varying the frequency amounts to
altering the phase angles. As long as the change does not happen too quickly, the
system will track the changes.

For example, one could be moving data over a many-kilometer-long coaxial cable
hung on some telephone poles. Over the course of a day, the heating and cooling
will change the physical length of the cable, resulting in the receiver seeing lower
frequencies when the cable is heating, higher frequencies when the cable is cooling.
The bandwidth of the noise is very low and should be easily tracked.

When the jitter is at a high frequency, the system cannot track it and instead must
reject it by accounting for it in the system timing margins. High-frequency jitter can
affect a plesiochronous system in two ways:

e the jitter of the data currently being moved from the transmit to receive clock
domains, and

o the validity of the use_q/use.r signal.
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The jitter on the data can be modeled as decreasing the time from the exclusion
region to the keepout region by the amount of the jitter. Replacing t;_.. with (tx_. —
tjitter) 1N equation 6.5 yields:

o
2A

This causes an increase in the amount of non-data transmissions. Similarily, jitter
can cause an error in the use_q/use_r signal by shifting the keepout signal slightly.
What can happen is that this error takes place at the time when a non-data cell
arrives. The nominal position of the keepout would cause the waveform select state
machine to change states, but the actual jittered version left the FSM in its current
state. The sampling edge must drift solidly into the keepout by the amount of the
jitter before it is certain the state machine machine is in the correct state. Again this
can be modeled by further reducing the time from an edge of keepout region to an
edge of the exclusion region.

# cell times & (tx—c — tjirter) (6.7)

fo’
2A

To summarize, jitter not only increases the latency of a system by decreasing the
eye opening, it will also necessitate a reduction in the data cell rate.

# cell times ~ (tk_.e — Qtjmer) (68)

6.7 Cascading Plesiochronous Retiming Stages

One of the nice features of plesiochronous retiming is that it can move data from
transmitter to receiver “open-loop” - all signals travel from transmitter to receiver.
Plesiochronous retiming can be extended to allow cascading many stages as shown in
Figure 6-15.

6.7.1 The Need for Local Timing Requirements

When several stages are cascaded, each section must ensure that the local plesiochronous
timing requirements are met. For example, the stage S, transmitter must guarantee
that there are enough non-data cell transmissions to allow the clock adjustments in
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the S; receiver to take place. These local requirements commit each stage to send
cells at a rate slightly higher than the data-cell rate.

Consider a long string of m nodes. Let Sy be operating at the maximum rate,
rmax. Let nodes S, (for 1 < n < m) be operating at rate rmaz(l — ¢)". That is,
each node is very nearly at the maximum rate, but each one is just slightly slower
then the node before it. Let node S,, be operating at very, very near the minimum
rate, rmin(1 + ¢).

Observe that all nodes (> 0) consume non-data items, none generate them, as all
links go from fast to slow.

Suppose that S,,—; is not locally enforcing the insertion of non-data items, and
is instead relying on Sy for their generation. Then, one could construct an phase
alignment case using nodes 1...m — 1 such that the series of nodes consumed the
next m — 1 non-data items. This would result in node S,, not receiving a non-data
item for a very long time, causing the retiming to fail.

Therefore, node S,,—; must be locally enforcing the plesiochronous interarrival
requirement. Since the system has no global knowledge (it is all unidirectional com-
munication), all nodes must be enforcing the timing constraint.

Now add a node Sp,4; to the end of the chain, operating at the minimum rate,
rmin. Node S, is enforcing the plesiochronous interarrival time for non-data items.
Node S, is the bottleneck stage. Therefore, Sy must send sufficient non-data for its
local requirement, and additional non-data to prevent queue overflows at node S,,4,.

6.7.2 The Source Data Rate

- In a cascaded system, one of the stages will have a physical transport frequency lower
than all of the other stages. This stage will be the data transport bottle-neck. It
can send data cells no faster than the transport rate, derated by the insertion of non-
data cells. Let M be the maximum number of data cells allowed to be transmitted
between non-data cells. The slowest transport frequency is fo — Af. Then, the
maximum sustainable data-cell rate is:

M
o= A (69)

To prevent a queue overflow in the bottle-neck stage, the transmitter in stage S,
must send data cells at a rate less than ML_H( fo— Af). Since the Sy transmitter does
not know whether it is operating slow or fast, it must presume that it is operating
fast. The number of cells between non-data transmissions is then:

fo—Af
Mfo+Af

Note that gg%ﬁ% term came from the worst-case timing mismatch. From the
discussion of best-case non-data insertion:

M fo—Af
M+1$4fo+Af

(6.10)

(6.11)
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Therefore, cascaded plesiochronous data retiming suffers at most a 25% additional
degradation in data bandwidth.

6.8 Integral Subrate Extensions

The method may be extended to allow retiming between clock domains where the
frequency of one domain is an integral multiple of the other domain. That is, either
fixix for f, &1 x f; must hold.

When f, = ¢ x f;, the circuit changes are fairly minor. The receiver must sample
both the keep-out windows and the incoming Q or R cell once every ¢ periods. For
clock periods when the incoming cell is not sampled, the receiver creates a non-data
cell.

If fi = i x f., the transmitter must drastically reduce its sending of data to
one of i cells. Note that it still must occasionally insert non-data cells to meet the
plesiochronous requirements.

This technique is used in the Reliable Router to allow slower-speed processors to
interface easily to a higher speed router.

6.9 A Comparison to Mesochronous Techniques

Mesochronous is defined as having the same frequency, but an unknown phase re-
lationship. A stronger definition of mesochronous retiming is needed, which is that
the cells going into the retiming circuit are one-for-one with the cells leaving the
retiming circuit (ignoring the latency through the circuit). This will called a pure
mesochronous circuit.

In most systems, the phase angle between the clock domains will vary as a function
of time. If the phase angle varies significantly, it should be tracked. In general, this
implies the use of a slack buffer or FIFO to make up for the variation in cell delay.
The slack buffer must be able to handle both minimum and maximum delays. As
result, pure mesochronous retiming circuits will have an additional latency penalty.
The penalty depends on the actual distribution of the delay function, but for most
circuits is about one-half the overall delay variability. Note that this penalty is paid
on top of the mesochronous phase-alignment delay. Therefore, for systems with any
phase variability, plesiochronous retiming will offer lower latency.

Of course, a plesiochronous solution works only if the cell stream can be partitioned
into data and non-data. This comes at the expense of a small amount of bandwidth
and some additional system complexity in the transmitter. A mesochronous trans-
mitter can send anything at any time. The plesiochronous transmitter must be able
to occasionally stall in order to send non-data.

The receiver circuits for plesiochronous retiming will tend to be less complex.
It was shown that the control circuit for plesiochronous retiming is fairly simple.
Mesochronous retiming still needs to determine the relative phase of the incoming
data. However, it may also have the added complexity of the slack buffer.
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In general, pure mesochronous retiming should be used when it not possible to in-
sert non-data items or when the delay variability is low. Otherwise, the plesiochronous
technique outlined in this chapter should be used, even when the system is actually
mesochronous.

6.10 Summary

A new technique for plesiochonous data retiming has been described. This technique
offers latencies on the order of a fraction of a cell-time as well as modest implementa-
tion requirements. These achievements were gained by moving the synchronizer out
of the data path and carefully choosing the time to make a phase adjustment.

In addition, the technique allows true unidirectional retiming. The transmitter
can send information to a receiver without any flow control information sent back to
the transmitter from the receiver.

Extensions include the ability to handle integral subrates and to cascade several
stages. Subrates should prove to be useful in the design of systems where multiple
clock rates are present. Cascading is useful in systems requiring repeaters.
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Chapter 7

The Microarchitecture of the
Reliable Router

This chapter describes the overall microarchitecture of the router. It is organized into
the following sections: top-level description, clocking and pipelines, global signals, and
a detailed description of all modules.

The schematic description of the Reliable Router uses 288 pages, of which 72 pages
correspond to the standard cells. At 216 pages, there are simply too many schematics
to include in this chapter’. To cover all of the material, the subsequent descriptions
are purposefully abstract and omit many of the circuit details and logic equations.

7.1 Top Level Organization

Most router block diagrams resemble the one shown in Figure 7-1. There is a cross-
bar switch in the middle, with some number of input controllers on the left and a
corresponding number of output controllers on the right.

The organization of the reliable router is similar and is shown in Figure 7-2. The
I/0O pads and support logic have been made explicit. Input and output controllers
have been grouped together into a port module. The reliable router transmits a
moderate amount of control information between input controllers. That information
has to flow out of the output controller, so the input and output controllers are more
tightly coupled.

The reliable router does not have a crossbar per se. All the data lines from all
input controllers are bussed to all output controllers. The selector function is carried
out in the output controller itself. The actual output-controller arbitration functions
are stuffed unceremoniously in a corner of the input controller. None the less, there
is logically a crossbar function which is referenced in subsequent logic descriptions.

The entire list of top-level modules is given in Table 7.1. Many of the top-level
modules are quite simple and are at the top-level to make the layout and validation
processes easier. The hierarchy is mostly natural, but there are exceptions. Detailed
module descriptions will be given in Section 7.4.

1 All of the schematics may be found in Appendix A.

106



| Module

| Description

core All six of the router’s ports.

leftSide I/O pads on the “left” side of the chip. Corresponds to the pro-
cessor input pads.

rightSide I/O pads on the “right” side of the chip. Corresponds to the pro-

cessor output pads, JTAG boundary scan pads, and clock input
pads.

pr_clk_buffer

The clock buffer for the processor clock.

tap_ctl The JTAG tap controller.

instructionReg | The JTAG instruction register.

mask_gen Generates a random number for the crossbar arbitration.
win_enable Occasionally turns off the crossbar to satisfy plesiochronous

contraints.

xbar_to_proc

Handles the case where the processor’s clock is slower than the
router’s clock.

clocks_final Derives the 50MHz clock from the 100MHz input clock.
clk_buffer Buffers the 100MHz clock.

clk50_buffer Buffers the 50MHz clock.

Reset_buffer Buffers the reset signal.

hs_port A complete set of bidirectional I/O pads for a port.

bias_blk Supplies the various analog voltages to the birectional I/0O pads.

Table 7.1: Top-level modules found in the router.
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Figure 7-1: Top-level block diagram of a router.

7.2 Clocking and Pipelines

The router requires a 100MHz clock to operate at full speed. Hcwever, based upon
several factors, it was decided to operate most of the internal logic at 50MHz. The
reasons included that the input queues were most naturally a full flit wide (74 bits)
as they were storing a total of 90 flits. Further, the control was much simplified when
the basic clock rate matched the overall flit processing rate.

To avoid timing problems between the 100MHz and 50MHz clock domains, the
edges of the 50Mhz clock occur just after the positive edge of the 100MHz clock. In
particular, it is easy to go from the from the 50MHz domain to the 100MHz domains?.
Figure 7-3 shows the relationship between the two clocks.

The clocking methodology varies from module to module. All control and state
changes on the positive edge of c1k50. Most datapath modules make extensive use
of latches.

The basic positive-edge triggered flip-flop is shown in Figure 7-4. The static form
is derived by added inverters with weak feedback. This flip-flop has the advantage of
being = NORA structure. As long as the clocks edges are sharp and the signal between
flip-flops non-inverting, the flip-flop will tolerate clock-skew between the positive and
negative clocks.

Communication between routers is done plesiochronously. There are two distinct
timing pipelines in the router, corresponding to the different clock domains. One

2This occurs when sending a flit from the input controller to the output controller
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Figure 7-2: Top-level block diagram of the reliable router.
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Figure 7-4: The dynamic flip-flop used throughout the router.

pipeline is the the frontend module of the input controller, the other pipeline corre-
sponds to the remainder of the flit forwarding.

The frontend module reassembles a frame from four 23-bit subframes. The fron-
tend pipeline is shown in Figure 7-5. Four transmit clock edges are used to reassemble
the 23-bit subframes into a frame. An additional transmit clock period is used to
check parity on the subframes. If any subframe fails parity checking, the entire frame
is squashed. Additional delay occurs due the generation of the Q and R signals for
plesiochronous retiming. Total delay is an average of 4 transmit clock periods, or
about 40ns.

The second pipeline begins when the frame is transferred into the router’s c1k50
timing domain and is shown in Figure 7-6. One c1k50 period is used to handle all of
the control functions such as routing, resolving input virtual channel contention, and
resolving crossbar contention. A second c1k50 period is used to transfer the flit across
the crossbar. The flit is moved in two pieces, one on each half c1k50 cycle. The flit
movement and outgoing parity computation takes place at the same time. Finally, the
outgoing half-frames are again multiplexed into subframes for transmission. Overall
delay through this portion of the pipeline is about 3 clk periods, or about 30ns.

7.3 Global Signals

This section presents most of the top-level signals used in the reiiable router. The
descriptions are intended to give the reader a feeling of the communications between
major modules and are therefore organized by functional group.
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Stgnal| Source Description

clk |clocks The 100MHz clock
c1k50| clocks The 50MHz cloc

reset| clocks Global reset, active high

Table 7.2: General top-level signals.

Signal Source Description

ad_or_do JTAG Ctlr | Adaptive or dimension-ordered
x_.addr_minus JTAG ctlr | The arithmetic negative of the X-address
y-addr minus JTAG ctlr | The arithmetic negative of the Y-address
port_status[3:0] | Input ctlr | The state of each of the ports
vc_free[29:0] Output The state of each virtual channel

ctlr

Table 7.3: Top-level signals used in routing.

7.3.1 General Signals

There are three general signals listed in Table 7.3. Clk and clk50 were covered in the
preceding section. Reset is the global asynchronous reset signal.

7.3.2 Routing Signals

The routing logic requires information beyond that found in the header of the message.
It needs to know the X and Y address of this router, which of the standard ports
are connected and up, and the allocation state of all virtual channels. Further, it is
possible to specify that either minimally-adaptive or dimension-ordered routing is be
used. The set of routing signals is shown in Tabie 7.3.

The vc_free signals are maintained by the output controllers. A vc_free signal is
cleared whenever a flit is sent across the crossbar on that particular virtual channel.
It is set when the output controller received a “copied-token” indication from the
upstream router.

7.3.3 Flow Control Signals

Virtual channel flow control is one of the more complicated aspects of the reliable
router. The standard ports (X+,X-,Y+,Y-) use permit-based flow control. As a
result, there is a backward flow of permits along the circuit created by the forward
movement of the message. This circuit logically connects output virtual channels
back to input channels. The signals used are given in Table 7.4.
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Signal Source Description
gbl_copied([29:0]| Output Global “data flit copied” bus

ctlr
gbl freed(29:0] | Output Global “data flit freed” bus

ctlr
diag.cts Diag port [ Clear-to-send to the diagnostic port
proc.cts Proc port | Clear-to-send to the diagnostic port
xb_to_pr_ok Clocks Crossbar to processor processor “Okay”

Table 7.4: Global signals used in flow control.

The explicit knowledge of the circuit connection is kept in the input controller.
As a result, when output controllers receive notification of a flow-control event, they
simply broadcast the event on either of the gbl_copied or gbl freed busses. It is
the responsibility of the input controller to monitor the correct bit on these busses.

Consider an input controller in router R2 which has just sent a data flit to the
next router (R3). It tells the previous router’s (R1) output controller that it has
just copied a data flit. This flow-control event is broadcast throughout router R1
on one of the gbl_copied signals. One of the input controllers within R1 has been
monitoring that particular gbl_copied signal. At this point, routers R1, R2, and
R3 all have copies of the same flit, so the input controller in R1 can free that flit’s
storage. However, the permits for this circuit are kept in router RO, not R1. The
" input controller in R1 therefore sends a freed signal back to router R0. The output
controller in RO broadcasts this freed flow-control event on one of the gbl _freed
signals. Again, one the input controllers in R0 has been monitoring that particular
signal. When the event occurs, the input controller increments its supply of permits.

The diagnostic and processor ports use a simpler clear-to-send mechanism. In
addition, the processor port may be operating at a slower clock rate than the router.
The xb_to_proc_ok qualifies the clock periods in which it is safe to send data to the
processor port.

7.3.4 Crossbar Signals

The data and control signals make up the “datapath” from input to output controller
and are shown in Table 7.5 and Table 7.6. Datapath signals change on both edges of
clkb50.

Crossbar allocation is mostly straightforward and occurs in the c1k50 period prior
to data movement. Each input controller wishing to send data to a particular output
controller sends a bid to that output controller. The output controller examines all
of the bids and determines a winner.

The bids have three levels of priority. Levels 0 and 1 correspond to message levels
0 and 1. Level 2 is the bumped priority. When a particular flit is unable to advance
across the crossbar for seven consecutive attempts, its priority is bumped up to level
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bid_ovci[4:0]
bid_ovc2[4:0]
bid_ovc3[4:0]
bid_ovc4[4:0]
bid_ovc5([4:0]
win_en
mask(5:0]

win0([5:0]
wini[5:0]
win2[5:0]
win3[5:0]
win4(5:0]
win5[5:0]

Input ctlr 1
Input ctlr 2
Input ctlr 3
Input ctlr 4
Input ctlr 5
Clocks

Clocks

Port 0
Port 1
Port 2
Port 3
Port 4
Port 5

Signal Source Description 1
d0[35:0] Port 0 Port 0 data
d1[35:0] Port 1 Port 1 data
d2(35:0] Port 2 Port 2 data
d3[35:0] Port 3 Port 3 data
d4{35:0] Port 4 Port 4 data
d5[35:0] Port 5 Port 5 data
ct10[3:0] Port 0 Port 0 control
ct11(3:0] Port 1 Port 1 control
ct12[3:0] Port 2 Port 2 control
ct13[3:0] Port 3 Port 3 control
ct14(3:0] Port 4 Port 4 control
ct15[3:0) Port 5 Port 5 control

Table 7.5: Crossbar datapath signals.
Signal Source Description ~
0c0_bid[17:0] All ports [ bids for output controller 0
oc1 bid[17:0] All ports | bids for output controller 1
0c2.bid[17:0] All ports | bids for output controller 2
0c3.bid[17:0] All ports | bids for output controller 3
0c4 bid[17:0] All ports | bids for output controller 4
0c5_bid[17:0] All ports | bids for output controller 5
bid_ovcO[4:0] Input ctlr 0 | The virtual channel bid by input controller 0

The virtual channel bid by input controller 1
The virtual channel bid by input controller 2
The virtual channel bid by input controller 3
The virtual channel bid by input controller 4
The virtual channel bid by input controller 5
Enables crossbar

Psuedo-random number used to even out chances of
winning

Which input ctlr won the bid for output ctlr 0
Which input ctlr won the bid for output ctlr 1
Which input ctlr won the bid for output ctlr 2
Which input ctlr won the bid for output ctlr 3
Which input ctlr won the bid for output ctir 4
Which input ctlr won the bid for output ctlr 5

Table 7.6: Crossbar control and arbitration signals.
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Pad type | description

in Digital input pad.

in_jt Digital input with boundary scan.

out Digital output pad.

out_jt Digital output pad with boundary scan.
analog Analog input pad with input protection.

supply_gnd | Ground (VSS) pad.
supply-vdd | Power Supply (VDD) pad.

Table 7.7: Types of digital I/O pads used in the router.

2.

The bids are fully decoded, thus each input controller has 18 different bid lines.
It will only assert one of these lines at a time. The arbitration process looks at all 18
bid lines and at the mask lines. The mask lines are used to bump the priority for a
given input up one level. Therefore, the arbiter looks like a 24-input priority encoder.

7.4 Top-level Modules

This section describes all of the the top-level modules found in the router with the
exception of the port module. The port module is complex and will be explained in
its own section, Section 7.5.

7.4.1 I/O Pads

The design hierarchy in the router schematics corresponds almost exactly to the
layout hierarchy. The layout composition style is based upon rectangular modules
with terminals (pins) on the boundary of the rectangles. Because of this, the router
does not have a “pad-ring” module. It has modules which correspond to the I/O pads
on each of the four sides.

The left and right side I/O pads are predominately standard CMOS digital 1/0
pads. The exception are the chip and processor clock pads. These signals are differ-
ential clocks and the comparators are located near the buffers, so the clock pads are
analog input pads. The complete list of pad types is shown in Table 7.7.

The hs_port® module uses two types of I/O pads. The first type of /O pad is
the simultaneous bidirectional signalling pad described in chapter 5. The other is a
unidirectional differential variant for clock distribution between routers.

The bias_blk module is used to supply bias voltages to the bidirectional pads.
The bidirectional pads use two types of current sources, one for pulling up, the other
for pulling down. Both types of current sources require bias voltages. A third bias
voltage is provided to allow control over the rise/fall time of the bidirectional signals.

3hs_port is short for high-speed port
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| Select | description | Select | description
0 | Reserved 12 | Port 4 registers
1 | X address minus 13 | Port 5 registers
2 | Y address minus 14 | Unused
3 | Termination resistance [7:0] 15 | Port 0 I/O pads
4 | Termination resistance 16 | Port 1 I/O pads
[15:8] 17 | Port 2 I/O pads
5 | jt_en_hs[3:0], 18 | Port 3 I/O pads
jt-en left, jt_en_right, 19 | Left side pads
parity_sense, ad_or_do 20 | Left side pads
6 | Select processor clock speed 21 | Left side pads
7 | Interchip clock delay 22 | Right side pads
8 | Port 0 registers 23 | Right side pads
9 | Port 1 registers 24 | Right side pads
10 | Port 2 registers 25 | Right side pads
11 | Port 3 registers

Table 7.8: Top-level JTAG register map.

7.4.2 Clock Buffers

The global clock and reset signals require extensive power amplification before driving
the entire chip. This buffering is done in the modules pr_clk_buffer, clk_buffer,
clk50_buffer, and reset _buffer. A related module is clocks final, which divides
the incoming 100MHz clock in two to produce the 50Mhz clock.

7.4.3 JTAG Modules

There are three types of JTAG modules at the top level: a JTAG controller (tap_ctl),
an instruction register (instructionReg), and several instantiations of an 8-bit data
register (chip_reg§). The controller implements the standard JTAG tap controller.
It provides signals to shift data through scan chains, to parallel load a scan chain into
a register, and to parallel load a register into a scan chain.

The JTAG standard defines two types of registers: instruction and data. There is
only one instruction register per tap controller. The router uses a 30-bit instruction
register. Bits [29:4] form the select[25:0] signals, bits [3:0] are used to further select
a scan chain within a port. Table 7.8 shows the first level of register decode and
Table 7.9 shows how the registers are decoded within a port.

7.4.4 Mask Generation

The crossbar connects input controllers to output controllers. At any point in time,
there is the possibility of multiple input controllers all wanting to send a flit to the
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Reg # | Description

0 | Control register
Routing problem
Route

Route FSM
Busy

> DN —

Table 7.9: JTAG register map for standard ports.

same output controller. An arbiter is used in each output controller to resolve the
contention. From the standpoint of fairness, one would like all input controllers to
have an equal chance of sending their flit. To avoid pattern-sensitive livelock, one
would also like the choosing to be decorrelated with all traffic patterns. The choice
should be perfectly random.

The mask_gen module calculates a psuedo-random number which alters the order
the arbiters look at the input controllers. This effectively randomizes the choosing.

7.4.5 Win Enable

To implement plesiochronous data retiming, a certain percentage of output frames
must not have data in them. The easiest way to ensure this is to occasionally turn off
the crossbar. The win_enable module disables the crossbar approximately one out
of a thousand times. The module itself is nothing more than a polynomial counter.

7.4.6 Crossbar to Processor

One of the features of the Reliable Router is the ability to operate the processor
interface at a clock rate lower than the router. It is fairly difficult to find CMOS
parts that can accept data at 100MHz, but considerably easier at 25MHz. For these
lower speed processors, the output of router must be throttled back. The module
xbar_to_proc generates a periodic signal, xbar “o_proc_ok. The input controllers
know when a flit is destined for the processor and wait until xbar_to_proc_ok is
asserted.

7.5 Ports

Ports are the major building block of the router and have input and output controllers.
In the router, the input controller is much more complex than the output controller, so
the port block diagram in Figure 7-7 shows the port with its input controller expanded
one level. The input controller has a plesiochronous frontend, some logic common to
all virtual channels such as routing problem computation, logic and control for each
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Figure 7-7: Block diagram of a port.

input virtual channel, control logic which coordinates the virtual channels, a FIFO

for flit storage, and an interface to the logical crossbar.

7.5.1 Frontend

The frontend module is responsible for several functions. It assembles the subframes
sent between routers into frames, it checks and maintains link status, and it manages
the plesiochronous retiming.

Routers communicate with each other using frames of information. Frames are
transmitted continuously and contain the fields shown in Table 7.10. All the sub-
frames contain 16 bits of flit data, along with 2 bits of data parity for end-to-end

checking.
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Bit Field
22 21 20:18 17 16 15:0
Subframe 0 | pe USRO | VCI DP1 | DPO | Data[15:0]
Subframe 1 | Copied Kind | Copied VCI | DP3 | DP2 | Data[31:16
Subframe 2 | U/D | USRI | Kind DP5 | DP4 | Data[47:32
Subframe 3 Freed DP7 | DP6 | Data[63:48

Table 7.10: Frame Format.

Field Description

vcif2:0] Virtual channel identifier for the flit.
kind[2:0] The kind of flit.

data[63:0] Flit data.

dp[7:0] Flit data parity.

usr[1:0] Spare bits in the flit.

pe Parity error detected flag
freed[4:0] Data flit storage freed.

copied kind[1:0] | The kind of flit copied.
copiedvci[2:0] | The virtual channel identifier of the copied flit.
u/D Link up/down

Table 7.11: Frame Field Descriptions.

The field definitions are shown in Table 7.11. The flit-oriented fields have the
obvious meanings. After establishing the subframe format, there were two extra bits
which became the usr bits. They may be used for any purpose.

The parity error field is cumulative. Any parity errors detected by the receiver
cause this flag to be set. This allows the transmitter to know that its information
was lost and that the link between routers is failing.

The link up/down bit is used bring the link up and down. When a link is to be
brought up, both routers must agree that the link is up. During link initialization,
the link is down. Both routers monitor the link for parity errors. If no parity errors
are seen, each router signals that it is ready by asserting “link up”. A router can
start sending messages over the link as soon as it sees the “link up” indication from
the other router. When a parity error occurs, the link is brought down immediately.

Plesiochronous Considerations

Plesiochronous retiming requires occasional “non-data” transmissions, during which
a timing adjustment is made. Frames contain both flits and control information
which are not guaranteed to have overlapping non-data times. The plesiochronous
adjustment is therefore managed independently for several of the fields.
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The flit data, user parity, user bits, flit kind, and flit VCI are managed as one
group. The crossbar ensures the proper insertion of non-data items for this group.

The copied kind, copied vci signals are managed as the second group. The copied
signals are the direct result of a flit being sent across the crossbar. As such, the
crossbar insertion of non-data flits also serves to meter the copied group.

Each freed signal is managed independently, as they are the result of downstream
copied operations which could be performed on different routers. The interarrival
time of non-data on the freed signals can be guaranteed in one of two ways. The first
way takes advantage of the fact that the freed signal is only asserted for data flits,
not for head or token flits. As long as the maximum message size does not exceed
the number of continuous data flits allowed, ample non-data opportunities exist.

The second way is to realize that the copied/freed signals form a two-hop cascaded
plesiochronous system. As long the system requirements for cascaded systems are
met, the freed signals will operate correctly.

Link up/down and parity error are used internally to the frontend and are kept
in RxClk domain. No plesiochronous adjustment is needed.

Clock Phase Generation

A frame is sent between routers as four subframes. The subframes must be latched
on four successive RxClk edges. These latch signals are called pp0, pp1, pp2, and
pp3. The prefix pp is an acronym for “phase positive”. They are are generated
by the clock_phase module in the frontend. Figure 7-8 shows the relative timing
relationships. Phase 0 is used to latch subframe 0, phase 1 is used to latch subframe
1, etc.

Within the clock phase module, rx_phase is sampled at the positive edge of
RxClk. Its interchip timing constraint is therefore somewhat looser than that of the
subframe RxD signals.

Latches

The first function of the frontend is to assemble four subframes into a complete
frame. To try to minimize clock loading, the assembly is done with latches. The
latch structures for retiming the subframes are shown in Figure 7-9. The complete
frame appears on the outputs at the rising edge of pp0.

Parity Checking

Parity is computed as soon as the frame is assembled. The basic parity circuit is
shown in Figure 7-10. The frontend uses up to 10 of the ripple-type stages in a row.
The outputs are taken into a standard parity tree. About 10ns is budgeted for parity
checking.
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Figure 7-8: Clock phase generation. The frontend uses four different clock phases to
latch subframes.
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Figure 7-9: Latch structures for assembling a frame.
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Figure 7-10: Differential ripple parity generation cell.
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Figure 7-11: Q and R waveform generation, multiplexor.

Squash

The frontend:final parity module implements the squash logic. When any sort
of error is detected on a link, the incoming frames are squashed, preventing erroreous
information from propagating further. Local link down and remote link down also
cause incoming frames to be squashed. The squash signal is synchronized in the glue
module to z1k50 where it becomes the port_status signal.

The final_parity module generates the 1cl_pe_happened (parity error detected
locally) and rmt_pe_happened (parity error detected remotely) signals. These signals
can be read under JTAG control.

Q and R Waveform Generation

The last stage of the frontend is the generation of the Q and R waveforms, followed
by the multiplexor and flip-flop into the router’s internal c1k50 timing domain. The
multiplexor has the cover term required for correct plesiochronous operation.
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Flit Kind Encoding
Head Original 000
Head Restart 100
Data 010
Tail 011
Token Unique 001
Token Replica 101
Reserved 110
Reserved 111

Table 7.12: Flit Kinds.

7.5.2 Glue

The glue module is just that. It transforms the tightly encoded signals transported
between routers into something more easily used by the port. It decodes the flit kinds
shown in Table 7.12 into the write_head, write_data, and write_token signals. The
virtual channel identifier (VCI) is also decoded. Note that vci 0 is encoded as 001,
vci 1 as 010, etc. This allows the squash logic in the front-end to simply crowbar the
entire frame to zero in the event of an error.

The copied_vci decoding is similar. The assertion of copied kind[0] indicates
that a data flit was copied, copied kind[l] indicates that a token flit was copied. The

freed signals are simply buffered.

‘ Lastly, the port_status_1 signal coming from the frontend is put through a syn-
chronizer and distributed. The failure detection logic in the frontend operates in a
different clock domain so either a synchronizer or the plesiochronous retiming circuit
was required. As both the up and down states can persist indefinitely, it was deemed
easier to use a synchronizer.

7.5.3 Compute Routing Problem

A routing problem is a concise, easy-to-decode form of the desired next step in the
route of the message. The routing is derived from fields found in the head of the
message (see Table 7.13) and the incoming virtual channel number. The module
contains no state information.

Essentially, the compute routing problem module compares the destination ad-
dress found in the message with this node’s address. It asserts which directions the
message can travel in. The module handles both adaptive and dimension-ordered
modes. If dimensioned-ordered is asserted and progress needs to be made in the X-
dimension, the Y-dimension is deasserted. Additionally, the routing problem can be
“forced” under JTAG control.
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Bit fields | Description

4:0 { Address in X

9:5 | Address in Y

10 | Diagnostic port (processor port when 0)

11 | Priority

63:12 | User payload

Table 7.13: Head Flit Format.

Bit | Description

Message needs to travel in X-

Message needs to travel in X+

Message needs to travel in Y-

Message needs to travel in Y+

For this node’s processor port

For this node’s diagnostic port

Message priority

Message priority

Destination node is one hop away in X

Ned lo ol N | Hoa) Mo aES N LY I SN ol ]

Message entered on a fault-handling channel

Table 7.14: Routing Problem.
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Bit Field | Explanation
[4:0] | Output virtual channel

5 | Output Controller x-

6 | Output Controller x+
Output Controller y-
Output Controller y+
Processor Qutput
Diagnostic Output
| | Priority

[==RRNelNe SN |

1
1

[u—y

Table 7.15: Routing Answer Decomposition.

7.5.4 Virtual Channel Slice

The virtual channel slice (module ve) contains nearly all of the control logic for an
individual virtual channel. Figure 7-12 shows the functions which go into the virtual
channel slice and their interconnection.

Routing Problem Register

A head flit begins each message. This head flit contains the routing information for
the rest of the message. To avoid having to read the FIFO each time that the routing
information is needed, a copy of the routing problem is keep in the virtual channel
slice. ’

The routing problem register is nothing more than a transparent latch. It is
enabled when writing a head flit during the middle 50% of the clock period.

Optimistic Router

The optimistic router “solves” a routing problem, given a particular resource set
expressed by the vc_free and port_status signals. The router performs several
routing computations in parallel: adaptive, dimension-ordered, fault-handling, and
processor/diagnostic. The router selects amoung the outcomes of these computations,
resulting in a routing answer. The bit definitions of the routing answer are given in
Table 7.15.

Route

The optimistic router is combinational logic and depends on the vc_free signals.
Thus, the answer produced by the optimistic router can change over the course of
a message. The route module holds the answer (route) from the optimistic router
stable during the remainder of the message. Like the routing problem, this register
is simply a transparent latch. It is enabled during the middle 50% of the c1k50 cycle
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Figure 7-12: The virtual channel slice.
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when the route_fsm indicates that the message has not been routed. Table 7.15 gives
the bit assignments for the routing answer.

Set and Force Route

The saf_route module allows the routing answer to be read under JTAG control. It
also allows a route to be explicitly set under JTAG control, overriding the optimistic
router.

Select Route and Priority

The select route and priority module (sel_route_priority) is one portion of a mul-
tiplexor which is distributed across the virtual channel slices. The common control
logic decides which virtual channel to work on, as indicated by the read_vci sig-
nals, but the routing information in that virtual channel needs to be brought to the
crossbar.

Fault and Clear-To-Send

The fault and clear-to-send conditions depend on the output port the message is
routed to. Faults can occur on any of the standard I/O ports, but not on the processor
or diagnostic ports. Similarly, permit-based flow control is used by the standard ports
while explicit clear-to-send indications are used by the processor and diagnostic ports.
The fault_cts module unifies these different types of ports so that the remainder of
the virtual channel slice does not need to worry about the differences.

Route Finite-State Machine

The route FSM keeps track of the state of the routing of a message. The transition
diagram is shown in Figure 7-13. The machine has six states: idle, routed, needs_route,
backup, rerouted, and needs_reroute. They are defined as follows:

Idle The idle state is when the virtual channel has no message.

Routed The routed state is entered when the message has been successfully routed.
The optimistic router produced an answer, the common control logic decided
to work on this input virtual channel, and the head flit was sent across the
crossbar to an output controller.

Needs_route  Occasionally, a message arrives which is unable to be routed imme-
diately. Reasons for routing failure include the absence of an available output
virtual channel or contentiorn for the crossbar. This state indicates that the
channel is not idle, but still needs to be routed.

Backup When a fault occurs while a message is in the routed state, a clock period
is needed to “backup” the pointers in the FIFO.

127



Needs_reroute  This state is entered after the backup state and is used to remember
that a failure occurred while forwarding this message. It behaves just like the
needs_route state.

Rerouted The rerouted state is entered when the message has been successfully
rerouted. The optimistic router produced an answer, the common control logic
decided to work on this input virtual channel, and the head flit was sent across
the crossbar to an output controller.

Control VCI Slice

The control VCI slice determines the next step to be taken in the forwarding of this
message. There are five different asnswers: do nothing, read the head flit, read the
next data flit, read the token, or generate a token.

The submodule vc_read_head determines when to read the head flit. Three con-
ditions must hold: there must be a head flit, clear-to-send must be asserted, and
the optimistic router must have determined an answer. An additional condition of
xb_to_proc_ok asserted is added when the message is destined for the processor.

Reading a data flit is determined by the submodule vc_read_data. The conditions
are that a data flit be present, that clear-to-send be asserted, and that the message is
routed. Additionally, xb_to_proc_ok should be asserted when the message is destined
for the processor. The presence of a data flit is detected by the new arrival of a data
flit, or by the signal rdy data from the FIFO.

Sending/generating a token is bit more complicated and is handled in submodule
vc_read mk_token. The message must be routed and clear-to-send asserted. The
FIFO provides two control signals, rdy_data and not_idle. Rdy_data indicates that
there are still data flits needing to be sent in the FIFO, so rdy_data must not be
asserted when sending a token. The second signal from the FIFO, not_idle, indicates
that there are data flits in the FIFO which must be held for fault recovery purposes.
All copies of the message flits are not erased (freed), so the token cannot yet be
forwarded. Therefore, not_idle must not be asserted.

The remainder of the conditions include the xb_to_proc_ok constraint, and either
a token arrival or a failure on the incoming link. The submodule vc_read mk_token
also keeps track of the presence of the token.

Flow Control

The reliable router uses permit-based flow control*. The permits are kept in the input
controllers. When the message is first routed, the input controller has 15 permits
corresponding to the total data flit storage in the FIFO, per virtual channel.’

The permit count is decremented whenever data flit is successfully sent across the
crossbar. The count is incremented on the receipt of a freed signal. Of course, both

4The processor and diagnostic ports are handled differently using explicit clear-to-sends.
5The FIFO actually has 16 flits of storage, but the designer of the FIFO did not properly handle
the full case. Rather than redo the FIFO, the maximvm number of permits was reduced to 15.
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Figure 7-13: Route finite-state machine.
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can happen in the same clock period. The count is initialized whenever the route_fsm
module leaves the routed or rerouted states.

The module produces the clear-to-send signal. Clear-to-send is asserted as long
as the permit count is non-zero. The clear-to-send signal is used by the cts module
as the port_cts input.

Flow Control Multiplexor

In Section 7.3.3, it was mentioned that the flow-control permits flowed opposite the
message. The generation of new permits corresponded to storage freeing up in the
FIFO of an adjacent router. To manage the backward flow of permits from output
controller to input controller, the reliable router uses two 30-to-1 multiplexors in each
virtual channel slice. The select inpuis to the multiplexors are the route kept in the
route module. A route is the forward mapping of input virtual channel to output
virtual channel. Using the the route to select amoung the flow control information
presented by all the output virtual channels performs the reverse mapping.

7.5.5 FIFO

The FIFO provides the buffering for messages. Some buffering is required, as messages
can become blocked in the network. Without buffering, these messages would be
spread across several routers, tying up virtual channel resources. With buffering,
blocked messages become compressed into two routers®. The FIFO in the reliable
router provides 16 flits (128 bytes) of data storage per virtual channel. In addition,
separate storage is provide for the head flit and the token flit.

All FIFO operations take place in a single c1k50 period. Data is written during
the first part of the clock period and read during the second half. Writes to the FIFO
occur when the frontend logic receives a flit. The signals used are write_vci[4:0],
write head, write_data, and write_token. Reads are similar and involve xbarack,
read vci[4:0], read head, read data, and read_token. The FIFO provides the sig-
nal rdy_data when there are data flits which should be read. The state of the head
and token flits is kept in the virtual channel slice.

The write and read operations cause the FIFO state to change beyond what one
might expect of a FIFO. To keep the virtual-channel flow control information accurate
during a fault, a “first read” bit is kept with each flit. This bit is set when the flit is
written and cleared the clock period after it is read.

Internally, the FIFO keeps three pointers: a write pointer, a read pointer, and a
free pointer. The write pointer points at the next location to write, the read pointer
points at the next location to read, and the free pointer points at the next flit to
be freed. The write and read pointers both advance on write and read operations
respectively, the freed pointer advances on the receipt of the “freed” signal’.

60wing to the need to keep two copies of a message in the network
"The pointers are not reset to zero between messages. This allows the FIFO storage to be checked
using a series of small messages.
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The FIFO has the ability to backup. Backups are needed to recover from a fault so
that some flits may be retransmitted, which implies that they need to be read again
from the FIFO. During a backup operation, the read pointer is set to the free nointer.
Since this takes a clock period to do, the extra “backup” state was inserted into the
route finite-state-machine.

The signal data_rdy is asserted whenever the read pointer does not equal the write
pointer. The signal not_idle is asserted whenever the free pointer does not equal the
read pointer. Both of these must be non-asserted to allow either the sending or the
creation of a token.

7.5.6 FIFO Interface to the Crossbar

The FIFO interface to the crossbar (module £1it_munger) is a wide register followed
by many 2-to-1 multiplexors. The register is to hold the flit data read out of the
FIFO for transmission across the crossbar. The multiplexors are used to send the flit
in two halves. Sending the flit in two parts significantly reduced the number of wires
used in the central wiring channel.

Additional register/multiplexors are used to derive the control fields which go
along with the flit data. Additional logic in the flit munger handles the encoding of
read.vci[4:0] back into 3 bits, generates a token if needed, and adds the restarted
field to the flit kind.

7.5.7 Upper Left

The upperLeft modules is a collection of small modules gathered together for floor
planning purposes. It comprises the busy/free virtual channel state logic, the bid
encoder, the arbiter, the common control, and the JTAG subcontroller.

Busy/Free Logic

The busy logic keeps track of the allocation state of the output virtual channels in
this port. Whenever a flit is sent to the output controller in this port, the output
virtual channel is tagged as busy. Later, when the token flit is finally copied forward
in the downstream router, the output virtual channel is freed.

Each bit of the allocation state can be individually controlled via the JTAG con-
troller. For example, it is possible to “busy-out” both of the adaptive channels, leaving
the router as a single-channel, dimension-ordered router. This control, together with
the JTAG control over the routing problem, allows the boundary scan to thoroughly
test the routing logic.

The free encoder reduces choice of virtual channels given the optimistic router.
For example, adaptive channel 0 is the preferred channel. If it is free, neither adaptive
channel 1 or any of the dimension ordered channels will appear as “free”. This helped
reduce the critical path through the optimistic router.
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Bid encoding

When an input controller wishes to a send a flit to an output controller, it first tells
the output controller that it has a flit to send. This notification of intent to send is
called a bid. Each bid has an associated priority level. To simply the arbiter, the bid
x priority space is fully decoded into 18 individual bid lines.

Arbiter

The arbiter looks at all the bids for an output controller and decides which bid wins.
This is done using a priority encocder with full look-ahead. Since a priority encoder has
a fixed order, one port could cause starvation on another port unless an adjustment
is made. This is done by randomly boosting some subset of the bids up in priority.

Common Control

The role of the common control logic is to resolve contention amoung the various
input virtual channels. The concept is to look for virtual channels which can actually
make progress. For example, if a virtual channel has no flit to send or is blocked on
flow-control, it make no sense to choose to give that virtual channel access to the
crossbar.

The arbitration is done in the module 1rd_cc. Each of the virtual channel slices
asserts if it has work to do and the nature of the work on the vec_read *[4:0] signals.
This module determines the virtual channel to read and the type of flit to be read.

The arbitration is somewhat randomized by the 1rd _cc_vc_pri module. This
module goes round-robin through the virtual channels, giving a virtual channel and
all lower-numbered virtual channels higher priority. The arbitration is implemented
as a fixed priority encoder, so this prevents starvation.

The 1rd_cc_encode module generates the copied fields which are passed between
routers. These fields are qualified by the crossbar acknowledgement, xbarack.

JTAG subcontroller

The main JTAG instruction register provides port-level select and four address bits
(jt-low.word). It up the individual port to provide decoding to select individual
registers and to provide the multiplexing of the register data-outs into a single port
data-out. This is done the JTAG subcontroiler module jtag generic.

The decode and multiplexor functions are provided in the submodule jtag_decode.
It provides decodes and multiplexing for 10 JTAG data registers.

A control register submodule jtag register supplies all of the miscellaneous
control bits such forcing a route, enabling the override of the routing problem, clearing
parity errors, and setting the link state.
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. Subframe 0 Subframe 1
ctl[4:0 vci[4:0] (fully decoded) | usr[l:0}, flit kind[2:0
par|3:0 Data parity for bytes 3-0 | Data parity for bytes 7-4
data[31:0] | Flit data 31-0 Flit data 63-32

Table 7.16: Processor Input Frame Format.

7.6 Processor Port

The processor port reuses many of the same components found in the standard port.
The differences are in the frontend (frontend) and output controller (outctl) mod-
ules.

7.6.1 Processor Frontend

The role of the processor frontend is to move signals generated by the processor into
router’s clock domain, to handle the allocation of input virtual channels, and provide
clear-to-send indications to the processor for each of the five input virtual channels.
Each of these functions is handled by a different module.

Processor to Router Retiming

~ The processor input is plesiochronous with respect to the router’s clock. It is up to
the designer of the external processor interface to ensure that ample non-data items
are inserted.

Processor input frames are broken into two subframes, as shown in Table 7.16.
Both subframes are sampled into the processor frontend on the rising edge of the
processor clock. Subframe 0 is indicated by a 1 on the processor phase input signal,
pr-phasein. A 0 on the same signal indicates that it is subframe 1. Framing is
constantly occurring on the processor input, even when flits are not being sent.

The remainder of the plesiochronous retiming is done in processor frontend the
same as was done in the standard frontend.

Input Virtual Channel Aliocation

One the more subtle parts of the Unique Token Protocol is that the buffers in the
input controllers are not truly free until the token has been sent. In the case of the
processor, the processor may have loaded an entire message into the input controller
and now must wait until the router has sent the token before reusing the virtual
channel.

The processor input virtual channel allocation works as follows. The external
processor interface begins with all virtual channels free. It marks a virtual channel
as busy as soon as it injects the head flit. Some time later, when the input controller
sends the token, the processor frontend will pulse the corresponding pr_free_out[4:0]
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signal for one processor clock period. This pulse should mark the virtual channel as
free.

The module which converts the “send copied token” into the pr_free_out signal is
called free_sync. This module sets an RS latch when it detects “send copied token”.
The output of the RS latch is put through a synchronizer and edge detecter in the
processor clock domain, resulting the the pr_free_cut signal.

Clear-To-Send to the Processor

Each of the input virtual channels provides a clear-to-send to the processor. These
clear-to-send signals are produced using the router’s clock and need to be synchronized
externally to the processor’s clock.

The module flow_control in the processor frontend library manages the conver-
sion of permit-base flow control into clear-to-send flow control. The module keeps
track of the number of free data flits in the FIFO for a given virtual channel. Clear-
to-send is dropped when 6 permits remain, it is raised when at 7 permits are again
present.

7.6.2 Processor Output Controller

The processor output controller has three functions: it moves flits from the router’s
clock domain to the processor clock domain, it synchronizes the processor’s clear-to-
send signal to the internal clock, and it generates the flow control signals.

" Router to Processor Retiming

The router to processor retiming logic is made complicated by allowing the processor
to operate a slower speed. The steps involved are: to reassemble the flit from the
crossbar, to generate the Q and R waveforms, generate either select Q or select
R, move the flit into the processor clock domain, and then multiplex it back into
subframes. The reassembling followed by the multiplexing seems unnecessary, but it
is required in order to have sufficient timing edges for the plesiochronous adjustment.

The first step is the reassembly of the flit from the crossbar. This is only done
when the signal xb_to_pr_ok is asserted the previous c1k59 cycle. This produces a
flit at a rate one half that of the processor clock. For example, if the processor clock
is 100MHz, a new flit is produced every 20ns or at a 50MHz rate. This reassembled
flit becomes the ) waveform.

The R waveform is generated from the Q waveform by delaying it a router clock
period. When the processor clock equals the router clock, flits are produced every
20ns. To properly position the R waveform for this case implied a delay of 10ns,
which is a router clock (clk) period. The same delay is used even when the processor
is operated at a slower speed.

The generation of select Q and select R begins with the creation of the keepout
window. The keepout-Q window is nominally a router clock period in width (10ns)
and is centered on the Q-waveform exclusion time. The keepout window is sampled
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in the processor half-clock® domain and then synchronized back to the router clock
domain. The select-Q/select-R finite state machine is updated when both Q and R
are valid.

The flit can now be safely sampled by the processor half-clock and is then multi-
plexed into the two subframes for the processor.

Clear-To-Send Synchronization

The processor provides a single clear-to-send indication to the router. This clear-to-
clear is synchronized and then distributed to all ports.

Flow Control Generation

When a flit finally reaches the processor, its storage in the network of routers should
be released. If the flit is a data flit, both the global copied (gbl-copied) and global
freed (gbl_freed) signals are asserted. The global copied signal causes the storage
in the upstream router to be released, the global freed signal releases the storage in
this router. If the flit was a token, the output virtual channel is freed.

7.7 Diagnostic Port

As with the processor port, the diagnostic port differs from a standard port in its
implementation of the frontend and output controllers.

7.7.1 Diagnostic Frontend

The diagnostic frontend is principally a large JTAG register which which holds the
flit data, kind, and virtual channel identifier. Once this register has been loaded,
a second JTAG register called the launch register is written to. The output of the
launch register is synchronized into the router’s c1k50 domain. The synchronized
launch signal is then fed into a rising-edge detector. The rising edge causes the flit
to enter the rest of the input controller.

The diagnostic frontend also watches for the arrival of freed signals. Data flits
can be entered one at a time. The writing of a data flit resets an RS flip-flop. The
freed sets the flip-flop. The outputs of the flip-flops can be read under JTAG control.

7.7.2 Diagnostic Output Controller

The diagnostic output controller provides a means for capturing a flit when the flit
leaves the crossbar, flow control, and virtual channel allocation.

8A clock operating at one-half the processor clock speed. The rate of this clock corresponds to
the processor flit rate.
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Capturing the Flit

The flit capture function is simply a wide parallel-loadable register. This register is
loaded with the flit from the crossbar whenever the flit valid (£fv) is asserted. Flit valid
is asserted whenever any of the input controllers is sending a flit to the diagnostic
port. The contents of this register can the be loaded into a JTAG scan chain and
read out.

Flow Control and Virtual Channel Allocation

As there is only one output register, sending a flit to the diagnostic port is a one-shot
operation. The diagnostic clear-to-send signal (diag_cts) is asserted under JTAG
control. The clear-to-send is negated immediately whenever a flit is sent to the
diagnostic port.

Like the processor port, this is the final destination for a flit. The other flow-
control signals, global copied and global freed, are asserted whenever a data flit ar-
rives. Similarly, the virtual channel is marked free whenever a token arrives.

7.8 Summary

The design of the Reliable Router explored several microarchitectural points. Some
of the insights gained are:

o The crossbar function can be distributed. The insight was the wiring pitch was
smaller than the datapath pitch of the FIFO.

o Permit-based flow control causes the output controller to be minimal.

e Permit-based flow control and virtual channels seemed to imply a large bus.
The high fan-in multiplexor, although it seemed to be brute force, is the least
complex.

e Bookkeeping for maintaining two copies of all flits in the network was high.
This logic could be simplified if the entire message fit into the FIFO, as the
bookkeeping could then be done at the message level.

e Relatively little logic was used to keep track of the token.

o Giving each virtual channel a copy of the router simplified the design tremen-
dously and eliminated one possible cause of livelock.

e Each port actually has very few interactions with other ports. This can be
exploited in the design of the clock distribution system.

Most importantly, the router design was decomposed into many small, easily un-
derstood modules. The most complex state machine in the router is the JTAG tap
controller. The next most complex is the route finite state machine which has 6 states.
The decomposition led to good test coverage at the module level. When system level
bugs were found, corrections were usually easy to make.
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Chapter 8

Design Methodology

The Reliable Router was implemented using the Cadence integrated circuit design
tools. The principal tools used were the schematic capture system, the Verilog sim-
ulator, HSpice, the layout editor, and the SKILL ! language interface. The synthesis
and place-and-route tools were aot used.

All logic was entered using schematics. It was found that most of the logic struc-
ture benefited from human inspection. This was especially evident in the optimistic
router, where altering the free virtual channel encoding in the busy module reduced
the logic complexity in the route computation. Many of the other modules, such as
the plesiochronous frontend, had very specific timing requirements. In a synthesis
attempt, one wound up coding in a structural style to achieve the desired result. Fur-
ther, crafting the layout lead to shifting functionality between modules. Schematics
simply proved to be easier.

The supplied place and route tools suffered some limitations. The Reliable Router
is composed of several large blocks, the ports. Each port is made of modules which
are designed to fit well together. It was discovered that one had very little control
over the final width of a module or the exact placement of of pins. Perhaps the most
serious flaw was the team’s inability to automate the place and route process using
scripts or SKILL code. During the design of a previously fabricated test chip, power
and ground were not connected to a module. This was the result of running the
place-and-route package by hand late at night and neglecting to manually edit some
terminals before proceeding.

The remainder of design methodology of the Reliable Router is somewhat unique.
It relies on SKILL routines to construct all modules. No hand-editting? of the resulting
modules is required, which allows the consistent reproduction a cell or module. In
theory, one could start with the hand-drawn cells and rebuild the entire router by
loading and executing SKILL programs.

The remainder of this chapter presumes some knowledge of the Cadence tools as
it explores the components developed for the methodology.

ISKILL is a LISP-like language. The Cadence design interface has an interpreter which can be
used to control nearly all of the high level tools.
2Well, one or two places. ..
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8.1 Standard Cells

The standard cells are laid out in a gate-matrix style. Power and ground rails are
14\ wide to allow three vias vertically. Bottom GND edge to top VDD edge is 66\.
There is space for two internal wiring tracks.

8.1.1 Standard Cell Generation

Most of the standard cells were generated using SKILL code from the schematic
database. A tool, layoutGen was written for this purpose. It consists of three parts.

The first part is a netlister which flattens the schematics down to the transistor
level. It is much easier to draw a NOR2 followed by an inverter than to repeat all
the transistors in an OR2 gate.

The second part finds the gates. It first does a clustering pass where it separates
transistors connected via source or drain regions into separate clusters. Pass gates
are pulled out of the clusters at this point. N and P transistors are also separated.

The N and P transistors are inspected for the common series and parallel configu-
rations. A series of N transistors, parallel P transistors is recognized as the common
NAND configuration. NOR gates, inverters and multiplexors are also recognized at
this point.

The recognized patterns are used to arrange the transistors. The order of the gates
may be determined by simply starting at GND (or VDD ) on the series transistors. For
gates which don’t fit any of the predeiined patterns, the program simply exhaustively
searches the gates, looking for the tightest packing.

Next, the clusters are tried in various orderings and mirrorings, also looking for
the tightest packing. For example, a nand gate followed by inverter can share the
power and ground contacts.

In the third step, the gates are drawn. A poly river-router is used to connect
the top gates to the bottom gates. A very naive one-track metall router is used to
connect P and N diffusions. An intelligent choice is made for the location of the
metal2 output track, to try mininize its interference with the poly inputs.

Lastly, the N-well, the well plugs, and the substrate contacts are drawn and the
terminals are added. Figure 8-1 shows the final result, as produced by the code.

Large Inverters

Large inverters are handled as a special case. They require transistor splitting and
have multiple substrate and well contacts. In addition, the input is distributed using
wide poly.

8.2 Standard Cell Placement and Routing

Standard cell placement is done by hand using SKILL code. The main routine is
instsPlaceRow. It takes a list of instances and a X-Y coordinate, and then places
the instances in a row. An instance can be shifted relative to its neighbor by specifying
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Figure 8-1: Layout of an AND4.
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a delta X for that instance. Similarly, an instance can be positioned at an absolute
X coordinate (useful for datapaths) or mirrored. The row placement routine handles
connecting power and ground between the cells, and it will also add in additional
N-well to prevent design rule violations.

Multiple rows are constructed using multiple calls to instsPlaceRow. The coding
style has been to declare several variables RY0, RY1, RY2, ...which give the Y-
coordinates of the rows. Each Y-position is calculated from the previous by adding

66 + (trackCountToChannelHeight tracks)

to the previous coordinate. It is then easy to adjust the height of any channel.

Routing channels are rectangles. Givenstandard cells plaed in rows, channellorzFind
returns an array of rectangles corresponding to the routing channels. Options include
extra space to the west and east, an absolute width, and the top and bottom channel
heights. The absolute width is very useful for constructing blocks of cells which abut
vertically.

8.2.1 Routing

The base routine is called wireChannel and is a greedy, one-wire-at-a-time router. It
was discovered that small permutations of the routing order were sufficient to achieve
good channel density. The wiring routine takes in the channel, a list of poly rectangles,
and a list of metal2 rectangles. It finds a metall wiring track and connects them up.
The wireChannel routine takes the following options:

gravity Orainarily, the router tries to find a track on the side side of the channel
with the greatest number of poly pins. The side preference may be overridden
by this argument.

trackNum The track number may be explicitly specified. The tracks start from
0. The numbering starts at either top or bottom, dependent on the channel’s
gravity.

eastExtend,eastExtend Extend the track to the west and east ends of the channel.

pinWest,pinEast Extend the track to the west and east ends of the channel. Add
pins.

locatorWest,locatorEast Extend the track to the west and east ends of the chan-
nel. Add pins

netName The name of the net used to construct pins.
direction The direction of the pins, e.g. “input”.

viaMergeThreshold How close two vias have to be before they are merged into a
single via.
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trackWidth The width of the metall track.

The hard part of the wire router was not track assignment, it was getting the
“feeder wires” from the cell pins to the track. The routine has two strategies. Very
often, a vertical run is blocked by a poly contact. This is seen when connecting to
the gates of a NAND stack. The wiring routine tries to push the contact out of the
way and often succeeds. The second strategy is that it can side-step somewhat in the
X-direction, creating a jog. This is also quite effective.

The routine wireVerticalChannel is very similar to wireChannel, except that
it handles vertical wiring channels.

8.2.2 Multiple-Channel Router

The channel router is painful to use on multiple rows of standard cells. A multiple-
channel wire router was written to help. The multi-channel router takes in a list of
channels, a list of output terminals, and a list of input terminals. A terminal is a list
consisting of an instance and a pin name.

The multi-channel router first decides the set of channels which need to be routed.
It then looks to ensure that there is at least one metal2 jumper over each row of cells.
If jumpers are missing, it adds them in. The router then goes channel by channel,
trying to connect as many pins as possible. It does correctly handle cells with a pin
only on either the top or bottom of the cell (latches or muxes). Like wireChannel,
wireMultiChannel has many options.

gravity The gravity option is passed into wireChannel.

westExtend, eastExtend Channels numbers in which the metall track is to be
extended to the west and/or east edges of the channel.

netName Used to construct pins.

pinWest, pinEast The channels in which to put pins.
locatorWest,locatorEast Like pinWest and pinEast, only using locators.
pinSouth, pinNorth Adds pins on the north and/or south sides.

channelBiasUp Ordinarily, the router is biased toward the lower channels. This
reverses the bias.

useChannelZero The router tries not to use channel zero unless required. This
allows it to be used freely.

trackiInChannelList A list of track assignments. This is useful for ensuring that
pins are properly positioned for abutment.

polyJumpers Allows the use of polysilicon jumpers, not just metal2. Useful for
slow speed logic and when it just won't route otherwise.
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jumperX The router tries to find jumpers around the X-coordinate of the output
pin. This overrides the starting position for the search.

8.3 Power and Ground Router

The power and ground router connects the ends of the standard cell rows together
using bands of metal2. One can specify if bands are desired on the west and/or east
sides, if pins are to placed on each of the four sides, and the width of the strapping.
Occasionally, a module was instantiated mirrored, so the capability of swapping the
vertical positions of the power and ground straps was added. Additional strapping
could be added through the middle of the rows.

8.4 Module-Generator Generator

It would be very time-consuming to enter the SKILL code to route a block of standard
cells. Instead, a module-generator generator (mgg) is used. A module-generator gen-
erator takes as input a schematic and produces a SKILL procedure, mg. The routine
may then be executed to produce the actual layout.

The module-generator generator looks at all of the symbols on a schematic. If
a symbol had a layout representation, it is treated as a base cell. Otherwise, the
symbol’s schematic view is flattened into the netlist and the process repeats®.

The netlist is then converted into a program which has several parts. The main
procedure is called mg. It calls routines which do the cell instantiation, placement,
power and ground routing, followed by many calls to the individual wire functions.
Each net in the schematic is converted into its own wiring routine.

The placement routine is a stub. The user adds several calls to instsPlaceRow
to place all of the cells. Since an average mg call took about 15 seconds, one altered
the placement and re-ran it until one was happy with the results.

The routing quality was also improved by some manual intervention. One routed
the clock lines first, to keep the “feeder wire” lengths down. Afterwards, the net
routing order was permuted until the resulting wiring looked good.

8.5 Validation

The Reliable Router was checked using flat DRC and flat extractions. It was observed
that shorts to underlying modules were not properly handled using hierarchical tech-
niques.

However, some degree of hierarchical checking was needed to expedite the initial
module validation. A flat LVS often highlighted too much information to understand
where the error was. SKILL code was written to generate LVS views for cells and
modules. These were then treated as “black boxes” by the netlister. The tricky part

3The proper handling of busses and bundles was very tricky!
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was setting up the netlister so that it could do either a flat or hierarchical comparison
without either recompiling the technology file or deleting the LVS views. This was
done by having the netlister look at the name of the run directery. If it ended in
“.abstract”, it was a hierarchical LVS.

The top-level chip and core were only checked hierarchically. The extraction files
grew too large.

The top-level chip could not be flat DRC’d in one pass. Instead, a shell script was
used to iterate a flat windowed DRC over the entire chip.

8.6 Top-Level Power and Ground

The top-level power and ground routing is done in metal3. Each top-level module
includes its own metald connections. This was done by creating a derivitive cell,
usually named something like cel1Name m3. SKILL code was written which looked at
the cell’s placement in the module or chip and then added the metal3 bands in the
right locations.

For example, the ports looked at their locations in the core module. They added
the bands and created modules nport0.m3, etc. Each of these module was flat ex-
tracted and LVS’d, to ensure that there were no power and ground shorts. The core
module then simply abutted the ports to connect the metal3 together. No metal3
was painted over the top of the ports in the core module.

The bulk of the chip power distribution comes from the left and and right side
pads. Again, these modules looked into the chip layout for the locations of the metal3
. pins on the core module. These were added to the left and right side modules.

The top-level power and ground routing was mostly wiring straight from the pads
to the core. Some additional work was needed to connect the random top-level mod-
ules, such as the JTAG controller.

The actual construction of the metal3 to metal2 vias was done in SKILL code.
The HP26 process does not allow stacking vias. The code looked at the geometry
underneath the band for good via locations.

8.7 Other Tricks

This section lists a few of the things the router team learned and developed over the
years.

8.7.1 Technology File

It took many months to get the technology file stable. The Reliable Router tech-
nology file uses colors very similar to Magic, including the gray background. Some
experimentation was required to produce stipple patterns which looked good - a hard
case is metall over poly over diffusion.

The design rules are almost MOSIS scalable CMOS. The router is fabricated in
the HP26 process, so poly surrounding a contact was reduced to 1X. A strict option
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can be turned on in the design rule checker to ensure full compliance with the scalable
rules.

The technology file was split into several pieces. This allowed for more rapid
experimentation with colors as well as retargetting the basic libraries for a different
process. After some time, it was dicovered that the technology file was just standard
SKILL code, thus any SKILL constructs could be used in the technology file.

8.7.2 Standard SkiLL Library

The standard SKILL library has several components. The style.il file defines a
small number of useful macros, such as first, second, etc. for taking elements out
of a list. The point.il file defines useful operations on points, such as addition,
subtraction, delta x, and delta y.

Rectangles are the work-horse of the layout and wiring routines and are defined
in rectangle.il. There are 36 rectangle-oriented routines and they are listed in
Table 8.1. Most of the routines are very simple, yet without them, the resultant
higher-level code is very confusing.

All types of contacts may generated using the routines in contact.il.

Cells and pins are related. To make naming pins easier, cells must have their pins
centered on the edge of a rectangular box. This gives a natural way to talk about
the VDD pin on the west side of the cell. By convention, poly pins straddle the edge
by 1\ on each side, all others layers straddle the edge by 2A. Several useful routines
are defined, such as cel1PinBox which returns the rectangle which has edges through
~ the centers of all the pins.

Instances are instances of cells. Like cells, it is useful to find the pinBoz via
instPinBox. However, instances can be rotated and mirrored, so instPinBox returns
the rectangle after transformation. One of the most useful things to do do with an
instance is to find the location of a pin. instFindPinOnSide return the rectangle for
a pin on a particular side of an instance after transformation. A standard cell which
has GND pins on the west and east sides will have them on the north and south after
rotation.

One other very common task is to abut two instances. The routine instAlignPins
is used to position two instances so that the specified pins overlap. This is useful for
constructing a row of standard cells by simply aligning GND pins.

Quite often, one needs to refer a point inside of a cell which is not on the pin box.
A data type called a locator is defined. Locators must be unique within a cell. They
consist of a rectangle, such as metall, and a label. Their position may be found by
the label name. Locators are used extensively in the top-level wiring of the Reliable
Router. Horizontal wiring channels brought their wires to a locator, which was then
used by the vertical channel router to complete the wire.

8.7.3 Schematic Capture

The canonical design representation is the set of schematics. All other representations
must agree with the schematic form. Some simple conventions were adopted:
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Routine Arguments
rectMake Ix ly ux uy
rectCenter r
rectSize r

rect Width r

rect Height r
rectCanon r
ptInRect pt rect
rectValid rect
robustMin ab
robustMax ab
rectIntersection  rl r2
rectIntersectionX rl r2
rectIntersectionY rl r2
rectUnion rl r2
rectUnionX rl r2
rectUnionY rl r2
rect AllCorners rect
rect_Ix rect
rect_ly rect
rect_ux rect
rect_uy rect
rectDX rect dx
rectDY rect dy
rectSet_1x rect v
rectSet_ly rect v
rectSet_ux rect v
rectSet_uy rect v
rectStretchX rect x
rectStretchY rect y
makeRec points
rectAddPoint rp
rect_x_interval r
rect_y_interval r
rectBloat r delta
rectCenterAtX rect x
rectCenterAtY rect y

Table 8.1: Rectangle Routines.



e There are two useful sizes of “drawing paper”, A-size and BH (for B-Hacked).
These had the proper aspect ratios to fit in the 8.0”x10.5” printable area of a
standard laserprinter. The BH size was determined by making the boundary
progressively bigger until the scaled down output was almost too small to read.
All the typical revision block things were discarded as one could find out more
by using the Design Manager. This left the greatest amount of white space for
actual drawing.

o All wires and symbol pins were drawn on a .125” grid.

o The square that served as the connecting point on a symbol was replaced with
a much smaller circle. It is now barely visible on the schematic plots.

e The pin length on a symbol defaulted to .250”. It was shortened to .125”.
Similarly, the inversion bubbles were enlarged to a full .125".

e All schematics should be on a single page when possible.

¢ The name of a basic gate was left off the symbol. Most people know a NAND4
when they see one.

e All of the basic gates had DeMorgan equivalents for active low-logic.

e These symbols were generated using SKILL code for uniformity.

These simple rules tended to produce schematics which were readable and mostly
uncluttered.

8.7.4 Miscellaneous

A standard cell validator was written. Most of its utility resided in cleaning up some
layout artifacts, such as mislabeled pins and zero-area shapes.
A utility to renumber instances on a schematic was useful. After many edits, the
instance numbers got rather large. It was nice to get to them to be I0, I1, I2. .. again.
Utilities to list module usage in both schematic and layout forms were needed for
garbage collecting the libraries.

8.8 Summary

The resultant tool-set proved to be quite powerful. It adapted itself well to a variety
of layout construction problems, ranging from standard cell blocks to datapath to
chip composition. The insistence on rigorous checking has paid off by producing an
operational device.

However, most of the tools were written on an as-needed basis. It would be very
desirable to go over the entire suite. There is some inconsistency in routine naming,
and some arguments are no longer needed. Some features were grafted on in an
ackward way in order to retain backward compatability. Still, the team would build
the chip the same way if they had it to do over.
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Chapter 9

Testing

A small test PC board was designed and built. The test board holds two Reliable
Routers, clock generation circuitry, and some LEDs. It also has an interface between
the JTAG ports on the routers and a parallel digital I/O board, located in an PC.
Only preliminary testing has been done to date. The following tests have been tried:

Smoke test

Power was gradually applied. It didn’t smoke.

Current Draw

Power was increased to 5 volts. Static current was under 100mA. No signs of latchup
on repeated power cycling.

JTAG Instruction Registers

Using code on the PC, the JTAG instruction was successfully written and read from.
This was converted into a test loop, which ran 1,000 write/read cycles successfully.

JTAG Data Registers

The on-chip registers can be written to, but not read from. Overriding an I/O pad
connected to an LED allowed us to see that register writes were working. See Sec-
tion 9.1 for a description of the bug.

Diagnostic Port to Processor Out

Using the JTAG functionality, a head flit was loaded into the diagnostic input and
then sent to the processor output. We were able to verify pr_phase_out, pr_validout,
and one of the data bits. Many, many things on the chip had to be operational for
this to work. Compute routing problem, FIFOQ, flit Munger, arbiter, disable of other
ports, virtual channel slice, crossbar wiring, processor output controller including
plesiochronous retiming, xbar to processor ok, clocks, reset, busy/free logic, common
control, flow control. In short, nearly everything had to work.
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Processor clock in to phase out is about 12ns.
 The computeRoutingProblem does seem to compare the address in the head flit
with the chip address.
Proper operation was observed at 32MHz.

9.1 Errata

1.

The final JTAG latch in the IR should be clocked on tclk. It is currently
attached to clockIR.

clockIR and clockDR are queiencent high, not low. The clock enable logic should
reflect this.

Add back in the JTAG bypass register.

. In the pr_frontend flow control slice, add a latch before the R and S inputs.

Works because the initial polynomial states all have cover terms, but it is just
not a clean design.

. CTS in the diag output needs more buffering.

9.2 Desirata

Ll S

Remove unneed latches from JTAG subregisters.
Make more state readable.
Make the FIFO writable and readable under JTAG control.

Drop CTS to the processor a bit earlier. The pipelining and synchronizer delays
make it a bit close.

Add individual blocks on the diagnostic input, to allow the diagnostic routine
to load an entire message and then send it.

CTS in the diagnostic port could be moved up the pipeline by looking for any
bids in the previous c1k50 cycle.

Add the ability to override the internal port_status signals under JTAG control.
This would allow the sending of a flit to an unconnected port for test purposes.
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Chapter 10

Conclusion

The research behind this thesis began by looking for better ways to build large, fault-
tolerant, parallel computers. It was observed that large machines tended to be less
reliable than small ones and that parallel computers also tended to be large machines.
They could stand to benefit from some fault-tolerant capabilities.

Parallel computers are generally built from processing units which are intercon-
nected using a network. The processing units are small and often multiple units are
placed on the same circuit board or circuit module. The technology used to construct
these modules is fairly reliable. What tends to be less reliable is the interconnection
network, as it includes things like connectors and cables. These connections will be
made and unmade over the life of a machine, further reducing their reliability. Thus,
a good place to add fault-tolerant capabilities is the interconnection network.

Like the interconnection network, the other globally distributed resources within a
parallel computer can lead to reduced reliability. These resources are power and clock.
Any techniques developed should try to eliminate the need for either a system-wide
power source or a system-wide clock source.

The performance of the system is important. An increase in reliability must not
be offset by a corresponding decrease in performance.

Centributions

To address these concerns, the Reliable Router project set about to build a better
interconnection fabric. The following are the results:

e The Unique Token Protocol was developed to provide fault-tolerance in the
network. This protocol is not an end-to-end protocol. The protocol obviates
the need for the the sender to keep a copy of a message until an acknowledge is
received. Instead, the sender holds onto a copy until the network has two copies.
No final acknowledgement from the message recipient is needed. Further, when
a fault does not disrupt the message, the network is able to certify to the
message recipient that the receiver has gotten exactly one copy of the message.
The protocol has been modified for worm-hole routing.
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This protocol allows the construction of a high-performance, low-overhead,
fault-tolerant communication network.

e Simultaneous Bidirectional Signalling is used for high-performance interchip
communication, 200Mbit/s each way per wire. A single wire carries full duplex
communication concurrently through the use of waveform superposition.

This signalling technique improves the performance of the communication net-
work. Further, the current steering technique employed needs only a single
voltage reference between routers, VT . Power and ground can be partitioned
for each processing unit.

e Low-Latency Plesiochronous Data Retiming is used for interchip communica-
tion. Each router operates in a separate clock domain. The basic retiming
method is fully described, along with circuits and constraints for correct op-
eration. Average latency is one-half a clock period. Extensions for integral
subrates and cascaded timing circuits are also developed.

This retiming technique eliminates the need for any global clock distribution
system, yet does so with a minimal performance penalty.

e The Reliable Router is a high-performance device. It uses wormhole routing, 5
virtual channels per physical channel, 2 priority levels, minimally adaptive and
one-fault-tolerant routing. Bandwidth between routers is 3.2Gbit/s, each way.
Router latency is about 70ns. The router has been fabricated on a 13.5mm by
15mm die and packaged in a 463-pin PGA.

The router has been implemented and partially tested. The techniques devel-
oped have clean implementations and do not have significant area or perfor-
mance penalties.

Future Work

These are a few of the things still to do. The first set of tasks is to leave the Reliable
Router in a good state (a critical part of the methodology).

e There is additional testing to be done on the Reliable Router, to bring up a link
and verify the signalling, retiming, and error recovery circuits.

e The Reliable Router schematics should be cleaned up.

e Now that one knows more the desired design methodology, the home-brew tools
should be cleaned up and documented.

Afterwards, research should be done on the following areas:

e The Unique Token Protocol’s token-passing should be proven correct.
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o Establishing and verifying packaging and interconnect models. How does one
know when to use a first-level model and when to use a second-level model?

o The bidirectional pads should be pushed to the limit. Are there tricks to help
the on-chip reference look more like the line?!

e Cascading plesiochronous retiming was based on a unidirectional system. How
would it work if a node requested non-data items?

Of course, the author would like to see the Reliable Router made fully operational
and in use by the research community.

1Gill Pratt suggests compensating capacitors.
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Reliable Router Schematics
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Figure A-1: Library arbiter, cell clkbuf
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Figure A-2: Library arbiter, cell e_win_logic
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Figure A-3: Library arbiter, cell Ird_arbiter
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Figure A-4: Library arbiter, cell new_bid_and2
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Figure A-5: Library arbiter, cell new_bid_logic
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Figure A-6: Library arbiter, cell new_bid_nand2_invert
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Figure A-T: Library arbiter, cell new_priority
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Figure A-8: Library arbiter, cell no_bids
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Figure A-9: Library arbiter, cell win0
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Figure A-10: Library arbiter, cell winl
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Figure A-11: Library arbiter, cell win2

166

no_prev_bids

win_|

bid2

11

bid®

_J

bid1




Figure A-12: Library arbiter, cell win3
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Figure A-13: Library arbiter, cell win4
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Figure A-14: Library arbiter, cell win5
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Figure A-15: Library arbiter, cell win_xen_logic
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Figure A-16: Library bidirdv, cell bias_blk
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Figure A-17: Library bidirdv, cell chappel
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Figure A-18: Library bidirdv, cell clk_delay
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Figure A-19: Library bidir3v, cell hs_port
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Figure A-20: Library bidir3v, cell resis_elt
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Figure A-21: Library bidirdv, cell resis_elt_clk
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Figure A-22. Library bidir3v, cell xcvr
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Figure A-23: Library bidir3v, cell xcvr_clk
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Figure A-24: Library bidir3dv, cell xmit_diffBuff
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Figure A-25: Library bidir3v, cell xmit_stage
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Figure A-26: Library bidirdv, cell xmitter
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Figure A-27: Library busy, celi busy
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Figure A-28: Library busy, cell busy_rs_1bit
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Figure A-29: Library busy, cell clock_buffers
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Figure A-30: Library busy, cell free_encoder
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Figure A-31: Library busy, cell free_encoder_pd
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Figure A-32: Library busy, cell jtag_bit
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Figure A-33: Library busy, cell mx6
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Figure A-34: Library chip, cell clk50.buffer
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Figure A-35: Library chip, celi clk_buffer
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Figure A-36: Library chip, cell clocks_final
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Figure A-37: Library chip, cell core
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Figure A-39: Library chip, cell nchip
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Figure A-40: Library chip, cell pr_clk_buffer
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Figure A-41: Library chip, cell reset_buffer
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Figure A-43: Library chip, cell xbar_to_proc
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Figure A-44: Library diag, cell diag_in2
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Figure A-46: Library diag, cell diag_out2
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Figure A-47: Library diag, cell diag_out2_np
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Figure A-49: Library diag, cell edge_detect
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Figure A-50: Library diag, cell flit
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Figure A-52: Library fifo, cell 4tol6
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Figure A-53: Library fifo5, cell billxnor2
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Figure A-54: Library fifo5, cell bitdriver
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Figure A-55: Library fifo5, cell bitdrivercell
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Figure A-56: Library fifo5, cell channel
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Figure A-57: Library fifo5, cell clk50_buffer
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Figure A-58: Library fifo5, cell clk_buffer
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Figure A-60: Library fifo5, cell cntrlogic
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Figure A-61: Library fifo5, cell comp
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Figure A-64: Library fifo5, cell counter
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Figure A-65: Library fifo5, cell decodernand
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Figure A-66: Library fifo5, cell dslatch
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Figure A-67: Library fifo5, cell even_buf
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Figure A-68: Library fifo5, cell fifo
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Figure A-70: Library fifo5, cell logic
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Figure A-71: Library fifo5, cell memory
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228



I

I dOo L v G66L Z@'9v'8L 8 d84
BqEny wIed omg | DOUTIOR 39T on
Hnp ZPuoudw GOyl
™uRg Ry (190 Leaqr
ZPuDuAw
O}l

I3noy 91qelPy auyL

Zpuou

Figure A-74: Library fifo5, cell mynand2
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Figure A-75: Library fifo5, cell mynand3
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Figure A-76: Library fifo5, cell mynor2
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Figure A-78: Library fifo5, cell outbuf

233




¢N ¢N

z/ u 3/¢
Ino ‘ JnqunTInNo
Ld @d
¢/ /
Cl d ¢/al d

Figure A-79: Library fifo5, cell outbufbit

234



1 | 2 3

1 d0 L v GB6L LL:Z:LL 82 unr
29qWNN 3934 (] POUTPOR v1 [T}
aMynp snd GOyl
DOsg owuy (1e) —Leaqr

snd
04}

I9jnoy s[qerey o4yf

|
J8unod jsjunco sunos
dwod
ol poas " duwea
«<@:C>109,pops a -] -y e o
.Aenv pop <EL>I0GPIEL > 0GR <FE>I00FC>I0qP T | <BIC>I0600°T>109P) <§E> 1OP:L>10qPY| <FL>I0GPICEFT>/00P!
<EC>OUPDIN <FC>PI <0x>ps <ECIP <g oM <FEOM <FDOIN TI<BE>™ Alunvv.ltlnﬂnvv.. <@g ™
<85 >IpoIn <gie>voqb <@e>ioqb{ ] <acoi0qh <gx>0l <EL>000 @O0 <EC>R <B%>200[ T | B> <Er>om
<gc>d <se>b[ *<arb <EFC>b <L <geob[ ™ <@ c>d <we>d[H<merb <ge>d
« <
x 4 3
8y i 3 g 1 5 1 iz ;

2
- E@!AL . TN ) X p X
B ST L H

Bd
;

vees B
wees
wo -

=

ppo
ueAs

235

ITEY)
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Figure A-83: Library fifo5, cell read_decodegate3
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Figure A-84: Library fifo5, cell read_decodegatehead
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Figure A-85: Library fifo5, cell read_decodegatetok
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Figure A-87: Library fifo5, cell wclk_gen
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Figure A-88: Library fifo5, cell write.decodegate3
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Figure A-89: Library fifo5, cell write_decodegatehead
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Figure A-92: Library fifo5, cell xbarack_latch
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Figure A-93: Library frontend, cell clock_phase
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Figure A-99: Library frontend, cell gen_bad
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Figure A-100: Library frontend, cell getfour_0
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Figure A-101: Library frontend, cell getfour_1
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Figure A-103: Library frontend, cell getfour_3
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Figure A-112: Library frontend, cell phitlctl
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Figure A-114: Library frontend, cell phit2ctl
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Figure A-116: Library frontend, cell phit3ctl
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Figure A-124: Library inctl2, cell Irdcc
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Figure A-129: Library inctl2, cell Ird_cc_slicel
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Figure A-136: Library jtag, cell dr_clks
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Figure A-143: Library outctl, cell parity_mux
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300




T

140 1 Jue]  cesl gsizvel £ dus

L AL K

uoonuop xMu~oqx _ 1oyro
L - o ) . .

I9)n0y s[qeley Juj,

@ §———

i

QI

eal 33l

Figure A-146: Library outctl, cell xbar_mux

301



1 ] 2 | €

L 40\ [WE| GBS [FirnL € 95 |

| ] Wy A | SRR WY ]

uceIURD 1OU02 801} _ pusjuel)—d

— ) L] - -

321|S 10J3U0) MO|4
J3|jo1yuo] nduj

To1noy o(qelPy 94l

Figure A-147: Library p_frontend, cell low_control

302



The Reliable Router

Fiow Control
FIFO Count Cell

1

1 0r

Sop 3 14:41:54 1985

1y 4

[ @ | <

Figure A-148: Library p_frontend, cell flow_control cell

303




D reascin>

1 3 : %
9 S E ) E ) I

ne_sepied et W8> '

o saplu bRl
o e _sdsc 1>
a_snpint_Magad>,
_ohee D>
o—t_sepied_vek
owet gl vich>

The Reliable Router

c
B

Figure A-149: Library p_frontend, cell free_sync

304




The Reliable Router

T
dennipon

Tl Tem.
free_pync_niice

i

e Tl
Sop 5 14:41:58 1298

pm T Tewsd ey |
1.GF 1

!

-
p_lronmend

-
—Qow
—3

Figure A-150: Library p_frontend, cell ivee_sync_slice

205




1 |

L &1

C36L ZGTY'rL £ 905

wsj
puajuol}—d

I31noy s1qenay o4l

aN

o:@%

2 | 3 I [3
v
2]
©
o
-]
=]
Q
-~
o)
2
. - “1
4] p
> E
| =t =2
fod
=2
NG|
8il [ I ..l..
Y]
—{
]
| <
L
P ]
=i
o0
o
o
3 [ 3 I ¥




I 1

L d0 1 [wa] cesicEZEN € s |
- L o L I8
udsuBp oapeb _ pusyuos~d
Lo 1y L —
om)eb
puajuouy—d

Inoy s[qersy auL

<+

71

'1.‘

¢
[ I

Al

o

kI

!
. &

7Y

R

i 4

R

L1

11

Figure A-152: Library p_frontend, cell gettwo
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Figure A-164: Library pad, cell leftSide
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Figure A-166: Library pad, cell out_jt
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Figure A-173: Library ports, cell nportl (sheet 1)
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Figure A-177: Library ports, cell nport2 (sheet 2)

332




i bt y 1
o
Ul it Nith
i
[ it i
‘ Fon
(L Dt b |’1'f": v Ll b,
L LHIH'MMMJN[M
" g il §: g
Figure A-178: Library ports, cell nport2 (sheet 3)

333




31} ON

Iojnoy sqelsyg aud,

l.‘!MH o
P POy “us"
L .
aremr s P ] St e Yrvewued -
‘I' VAT I e
<va ————{ eIt DM Sayte
ﬂuﬂ! pacores SR D el
Gropgm ] PV -
——s — L]
—cy ] ponrug an>eerm
— = R |
anoem¢ | -
poyt ko — R T ey

Figure A-179: Library ports, cell nport3 (sheet 1)

334



=
e
=

£
—5—

3
[ >
o —
=&

.

»
-

£
oy

[ .SFT
< L ¥ ]
£ -~ 4
- PN

oyl ot

G(GH?! ¢
h i1 ! i i i
’ {iil ‘iig il ’iii
...J ” ’l]t ...«“ iu mlu
(——..;$E===:..;ﬁﬁ=== T R
. =1 =2 o= % =
o S EE e B S ER——
At e | P | P
; = % =5 ‘Q-EE hf.z Wes
i b nibay| gt nd
e I

ik WLt Lol
Rl '—]r it 312 g‘!gi gl |

The Reliable Router

No title.

Figure A-180: Library ports, cell nport3 (sheet 2)

335




LY

-.-.M

u.—.-n.
el
RIS

A
The Reliable Router

) sttty i—ﬁ 3
g AP
IR ms il e

|
i | H

i vt 0
! l

A
JabeAS>
s>

W A W

Figure A-181: Library ports, cell nport3 (sheet 3)

336




The Rellable Router)s
Sikmam o] e

Figure A-182: Library ports, cell nport4

337




3 saﬁ;
2
wlinh p %?
22 il
e %
¥ plAlC
‘*.19 = ll
g.:.l
i R

—rents D—

R

iy | ittt
SatdeOhiddd®il bbbl &
A
gyl
T

l ]

l -

Figure A-183: Library ports, cell nport5 (sheet 1)

338




i

g =
e
—
——L—“ b
Ty
%____
s
B §yhrenel
[ TV

l l’l!“ ‘l'iug‘
R

7
i

[y
e
. en_ta_svmman |
X
1
M
ey
—_—
et_owta._ta_swwwmn

neo gty D

o SO ]
<P o mn >y 1
.- > @t v . S
‘ <R e <o > o -urarwe L st
1 Sy Anay - vk | may -y
i) ey -1 wesy ey ey
] 1t ! -—1[ > wowesy | ey
— pERA =R i 5 1S bl 1 |
Aoy LA ] s s ey st 1 s vemaey - awvory mesar
papvny s L gtondedm <oy v —
v el <paonimws || s
v g vy -1 —ye vy -~ |
wwowa - es-we ] ey —rne - |
— 4 —— P ey “1 ——
@Dy Srempriae |4 otrowre | e
anmnn{ VS 4 and = -
L] ] -ME 18 wrmwl] 1 wrww] ' erwwl] ' e
arma wrne - ™
- F wrtep 1 -tey

ki
-

= 11

= i
1T
suLehe
-kl
rma_ v
[~ e
roud_ved

-
-
.
-

<> »
< g
HESE a8
LI1 II
—
LY.~ 3

oS
—
. t_ioe
1 et
SR {) ot
payoy
ey
v
el
E=5T
el
=02 ain
— | et
roed_ws
———
-t
- g
[y -

Iy

A D—
-l

-

ar
on_scotn
-

oL_hwods
S ind
at—
ey

-t

.

Py
[
|y
[ s
Rsuntn
—xl

X T e o 0

The Reliabie Router

No title.

Figure A-184: Library ports, cell nport5 (sheet 2)

339




R
il . B
| etk
i 31
W0 fulle bt it
i
g i
| .
!mm !l!ﬂm L] ﬁil L |£1'!!'2 unn ‘i ‘h" Iml s
L vl
AT LT T g

I

Figure A-185: Library ports, cell nportd (sheet 3)

340




iz
-
$

q—_

I 40 L IR
[ S | | Lt L] &)

UOwUUSD woaddn _ spod
) ih ) Lo B
Uy
vy IR pE—
Lot SOy
JoINnoy 3ajqel[ay = o
b .y -
noy sfqelfsy =yl =7y o
(a2 ]
v (rmany
] van
[ Bl
WA
I oyl ——y
ey oy
@ LI TRA T L <P T R — -—
[addi L s Lodieand ] Lladl! ey
o Y 40 W ——— (] <R e Dol WO s
Seway Y @t rn S eases oy} ——y
) (———@ o ¥
[e? SRR
ot -
e
ans G ———————ilrnd PR ——t—ee () v
" s
’l‘.'.h - -
sy vy
e g P predome ool (e |
| ayvousvonrwc pseeemn Lomstiny
;- y—— yr——-
N  — ) — —
oy po o vy el
—y— -y - T
c—T—— | S—— - “——
Pt | cozomawapden g merag
Ptiemiore) e oo e v N~
———_ wasw ] e
"« aas hl —
g D —— -
- - im e
e jope  wu>ew S
Lo [ e
———y ety
SOy oy
ey @§—{ ey .y -y
L] ey F ekt
a o -—
@i ovrivam
Do
<Pree var vy vepvrm
M Dot ediae <Ovwwrw
<oyrew vy @yreawm
_mwwewvey | D dadn D inindendian]
D ie o A D ée G hmdla)
SO G—— e, VIO =" o ]

|

!

|
niu 3

ell upperLeft

341

Figure A-186: Library ports, c




2
2 [
~ | |8
W | i
SH ’ i%d” i ]; %; Mm
| ‘!”! Hi}‘H §.um ﬂﬁ
i LTI __
111111 j "} "l ti
o LI !himn
;' .iglg ﬂ”'-éll
] i
LMy |
"i il |
)

!a!ﬂ} Ly ﬁil} : T
!ﬂi}}!?'““" e

I a ]

Figure A-187: Library ports, cell upperLeft_diag

342



I

—

V4o L [HB |  <eeLssuvw £ o5 |

S gyt L —
o S0ud~y,as0ddn — suod
— Lo D - ; S
usnoe-y
P
Iojnoy d[qerey 9YL|  =x:
v e
o~y
e uncaes Tasse e

i

i

(e

1

I

q!x;;'n
i

L e

J

343

in
i

i

il

Figure A-188: Library ports, cell upperLeft_proc

i i.lm!'

|

TRy

WILLTT

:
j

i
|

!
:

|
|




The Reliable Rcuter

1001

Sep 3 14:42:23 W03

| i | |
%
) @ 3 3 4 tr 3% "
1l 31l 917 e9¥ =3 eel
BRI L
M 4] 5 4 28 ¢ M
U
i
3 @ i

Figure A-189: Library pr-out, cell bit_slice

344



1

G| G88L 1ZTriv € des

Figure A-190: Library pr_out, cell bit_slice_fv
345




| 40t

uognIuep

)

15)n0y S[qeldy suL

Figure A-191: Library pr.out, cell clk_buffers
346




{ P
S ~
Y *
é) g ﬁ slat -
41l
) T
Kl
I 1 Lhtl
’ |
:ﬂ;hn [’:;?
! S M
T S 'y i g;
S ] @ | <

The Reliable Router

S T —
Gan nigoa
T 7 T
10 1

=X

— e —
pr_out l P

(T ] -0 LTS T
| sep 3 14:62:38 1993
]

Figure A-192: Library pr.out, cell clk logic

347



178
—

(il

The Reliable Router

oyrer |
danrigon

TiEn | oo e |
1or1

|

ol Bomn
cts

T
|

Tors B
Sop 3 14:42:15 1983

[ Mwrery
pr_
=

I @ I

Figure A-193: Library pr_out, cell cts

348




o

[ TP

Pr_dteeic B>
b m— e
.__p.—-vnab
—3

[ ¥ X
L ey LY

JINNITING %&n‘u
T 3

The Reliable Router

1 or 1

datapath

Sep 3 14:42:208 1995

I @ I

Figure A-194: Library pr-out, cell datapath

349



8
&
8

S68L LTy £ dos |

ram U Y

T
VST AR 9 M o~

() L2 7' R - .

I9Inoy s1qeney a4l

oS @
Gvme—s
e Q

Figure A-195: Library pr-out, cell fc

350




1 [

L 3 [ v
1 &0t G88L ZO:THHL £ doS
A
[Ty wo~xd ~ no~ad
g g 1 Toasan |
yno~id/no—ud
I19)N0yg 9[qeldy duL
i.llTuui
™
a ]
e ltl.lld“nl - et mmmammn. Ko
‘\‘v. v - - n
_ L’ g
-y Lol
r A
[ Wyt L - L o4
Load Lanond Ow vt -t - -
~ ™
e waw
-
o e
o> wancrw
e >
<FE— s
<PE>EN Dbl
= @i <purip
r-st Qe “ o anrem
T PO
e D it
ol w o Doieand
<Brosansrd (PYIT s DN W BN <IN — BN D aiden O
g".‘ﬁ’u’nl @SOS ﬁll oM anne al L
] "
- oy
<o
=3
i I 2 € v

Figure A-196: Library pr_out, cell pr_out
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Figure A-198: Library vc, cell control_vcislice
353




—) Lo .

uonoin20) bulpuoH—3No4
Jaynoy ousiwdo

T57N0Y s[qeey o4l
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Figure A-203: Library vc, cell flow_ctl_mux
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Figure A-210: Library vc, cell routing_problem
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Figure B-2: Library gliost, cell and2
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Figure B-6: Library ghost, cell aol2
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Figure B-7: Library ghost, cell aoil2
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Figure B-19: Library ghost, cell diffbuff

391



Figure B-20: Library ghost, cell diffbuff9x
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Figure B-21: Library ghost, cell dl_2c
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Figure B-22: Library ghost, cell dl_2c_min
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Figure B-24: Library ghost, cell dlm
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Figure B-27: Library ghost, cell dsfm_2¢
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Figure B-29: Library ghost, cell dsl_2c
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Figure B-30: Library ghost, ceil dslc2¢
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Figure B-31: Library ghost, cell inv
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Figure B-32: Library ghost, cell inv10x
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Figure B-33: Library ghost, cell inv12x
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34: Library ghost, cell invl4x

Figure B
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Figure B-35: Library ghost, cell invi8x
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Figure B-36: Library ghost, cell inv21x
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Figure B-37: Library ghost, cell inv27x
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Figure B-38: Library ghost, cell inv2x
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Figure B-39: Library ghost, cell inv3x
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Figure B-40: Library ghost, cell inv44x
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Figure B-41: Library ghost, cell invdx
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Figure B-42: Library ghost, cell inv5x
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Figure B-43: Library ghost, cell inv6x
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Figure B-44: Library ghost, cell inv7x
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Figure B-45: Library ghost, cell inv8x
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Figure B-46: Library ghost, cell inv9x
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Figiie B-47: Library ghost, cell inv_half
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Figure B-48: Library ghost, cell invweak 5x
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Figure B-49: Library ghost, cell jk_2c
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Figure B-50: Library ghost, cell mx2_cover
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Figure B-51: Library ghost, cell mx2_cover_min
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Figure B-52: Library ghost, cell mx2_nand
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Figure B-53: Library ghost, cell nand2
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Figure B-54: Library ghost, cell nand3
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Figure B-55: Library ghost, cell nand4
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Figure B-56: Library ghost, cell nand5
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Figure B-57: Library ghost, cell nand6
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Figure B-58: Library ghost, cell nor2
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Figure B-59: Library ghost, cell nor3
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Figure B-60: Library ghost, cell nor4
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Figure B-61: Library ghost, cell nord
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Figure B-62: Library ghost, cell nor6

434



i

1 d0 L G661 Zv'8E:pL € dos
BqEmy_ywoug POUTPORY 8T asy
Hnp z4i0 1soyb
Woag e ) Zreaqr]

I3jnoy a1qeldy oyL

L = Kl
——@ v

Figure B-63: Library ghost, cell or2
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Figure B-64: Library ghost, cell or3
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Figure B-65: Library ghost, cell or4
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Figure B-66: Library ghost, cell or6
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Figure B-67: Library ghost, cell parity_hor

439



|

St

S ']gH:

= o7

(@]

e 4z

N 45|

o a|”

c

A

Q

= il§,

= W
o
[}

[ @ I

Figure B-68: Library ghost, cell rsf
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Figure B-69: Library ghost, cell xnor2
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Figure B-70: Library ghost, cell xnor2_new

=
o5

442




ONL,

z/8
8NL,

z/8t

Z/
¥d —®
2/91 q

¢d
/91

443

/91
ePlry

¢d
z/91

@d

Z/91

i
‘—

Figure B-71: Library ghost, cell xor2
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Figure B-72: Library ghost, cell xor2_new
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