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Abstract

The aim of this paper is to propose a new method to identify main paths in a technological

domain using patent citations. Previous approaches for using main path analysis have

greatly improved our understanding of actual technological trajectories but nonetheless

have some limitations. They have high potential to miss some dominant patents from the

identified main paths; nonetheless, the high network complexity of their main paths makes

qualitative tracing of trajectories problematic. The proposed method searches backward

and forward paths from the high-persistence patents which are identified based on a stan-

dard genetic knowledge persistence algorithm. We tested the new method by applying it to

the desalination and the solar photovoltaic domains and compared the results to output

from the same domains using a prior method. The empirical results show that the proposed

method can dramatically reduce network complexity without missing any dominantly impor-

tant patents. The main paths identified by our approach for two test cases are almost

10x less complex than the main paths identified by the existing approach. The proposed

approach identifies all dominantly important patents on the main paths, but the main paths

identified by the existing approach miss about 20% of dominantly important patents.

Introduction

Technological progress is a major factor enabling economic growth [1, 2]. Better understand-

ing of technological change and innovation is essential for informing policy to enable sustain-

able economic and social growth. An important qualitative aspect of technological change is

changes in underlying knowledge bases. Dosi’s seminal work [3] delineated the concepts of

technological paradigm and trajectories: these have been widely used as a foundation for

innovation studies [4–10]. Tracing radical change and incremental development processes

through technological trajectories provides essential insights into the evolutionary process and
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regularities in a technological domain [10, 11]. This paper contributes to the existing objective

methodology for doing such studies.

In the past decade, studies on innovation have exploited patent citation networks to identify

and visualize the technological trajectories from empirical data [10]. A patent citation as a ref-

erence to prior art for legal purposes represents a proportion of inventive knowledge in the cit-

ing patent in originated from or already disclosed by the cited patent [12] and thus a patent

citation can be considered to be a knowledge flow and sequential evolutionary path [13–16].

To reduce the complexity of a citation-based knowledge network in order to identify the

most significant trajectories, Hummon and Doreian [17] first introduced a main path algo-

rithm and much research has applied main path analysis to technologies to investigate the pat-

terns of technological changes [10, 11, 18–21]. However, previous main path approaches have

some limitations. First, most of them identify only one single main path. Second, they cannot

show combinatorial relationships between sub-fields in a technological domain (we adopt the

definition of a technological domain by Magee, et al., [22]: The set of artifacts that fulfill a spe-

cific generic function utilizing a particular, recognizable body of knowledge). Third, traversal

counts based forward searching from the starting nodes can ignore other important patents

and knowledge flows (details on the limitations are described in section 2).

Therefore, the aim of this research is to propose a new main path approach to overcome the

identified limitations. For this, we adopt the genetic knowledge persistence measurement

(GKPM), suggested by [23], and differently from others, identify the main paths by forward
and backward tracing. A GKPM quantifies how much knowledge of an invention is retained in

and contributes to recent inventions based on structural and topological positions of patents

in a citation network and identify high-persistence patents, whose inventive knowledge domi-

nantly persists and contributes to recent inventions in a technological domain. Since the pro-

posed method searches backward and forward paths from the most genetically dominant

patents, it can generate multiple interconnected main paths without missing any dominantly

important knowledge in the domain (we label the new method genetic backward-forward path

analysis and use the acronym GBFP throughout this paper).

To test GBFP and compare it to the existing methods, we conducted empirical analyses for

two technological domains, Desalination and Solar photovoltaics (PV). The results show that

GBFP identifies multiple main paths for each case with an easily recognizable number of

nodes and links, including all high-persistence patents, whereas the existing approach does not

identify some dominantly important patents on the identified main paths and also yields high

network complexity that makes qualitatively tracing the main paths problematic. Therefore,

the proposed method provides clear advantages on reducing network complexity of the identi-

fied main paths without missing any developmental paths in a technological domain, which

increase the quality and efficiency of qualitative tracing of technological trajectories.

The rest of this paper is structured as follows: Section 2 reviews the literature on the main

path analysis, Section 3 describes GBFP, Section 4 presents the empirical analysis and discus-

sion of the results, and finally conclusions are drawn in Section 5.

Main Path Analysis

Citation information indicates knowledge diffusing from the cited to citing documents, so

knowledge flows in a citation network are used to trace evolutionary trajectories of technologi-

cal or scientific knowledge. Although conventional network analysis techniques, such as

betweenness and closeness centrality, can be used to analyze the structure or topology of a net-

work, the acyclic character of citations (a patent never cites later patents) makes it difficult to

employ the conventional techniques for citation network analysis. Recent research in complex
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networks has greatly the improved understanding of structures and dynamics of complex net-

works [24–31]. However, such general complex network approaches are not as useful for inno-

vation studies particularly because of knowledge inheritance, which is usually not considered

in generalized complex network research. This is the primary reason that main path analysis

has been widely used to reduce the network complexity and identify the most important

knowledge trajectory in a citation networks that characterize invention and innovation trajec-

tories. In order to identify the main sequences of citations in a large citation network, Hum-

mon and Doreian [17] suggested three indices, SPLC (search path link count), SPNP (search

path node pair), and NPPC (node pair projection count), which calculate the ‘link connectiv-

ity’ based on traversal counts in search paths through the network and assign weight to each

link: Batagelj [32] later proposed one more similar index, SPC (search path count): he tested

the performance of the search path indices (SPC, SPLC and NPPC) and concluded that these

indices provide almost the same performance. The basic logic behind these indices is that a

link (and node) included in many search paths in a citation network plays a critical role in the

knowledge diffusion, so a sequence of high-weighted links (or nodes) constructs a main path.

In the initial research, main path analysis was applied to academic publications: Hummon

and Doreian [17] applied it to DNA development, Hummon and Carley [33] applied it to the

social network analysis field, Carley, Hummon [34] analyzed scientific influence in the Con-

flict resolution field by using main path analysis. More recent research has applied the main

path analysis to investigate developmental trajectories of technological fields using patent

citation information: Verspagen [10] investigated the technological trajectories of Fuel cell

technology, Fontana, Nuvolari [35] traced evolution of Local Area Network (LAN) technol-

ogy, Mina, Ramlogan [18] analyzed growth and transformation of Coronary artery disease

treatment technology, Martinelli [11] applied a main path analysis to trace the Telecommu-

nications switching industry, Epicoco [36] examined the long-term evolution of the Semi-

conductor miniaturization trajectory, Ho, Lin [21] explored the knowledge diffusion of

Membrane electrode assembly technology, and Huenteler, Schmidt [20] analyzed the long-

term pattern of innovation and technological life-cycles in the Wind power and Solar PV

fields.

Although previous approaches to main path analysis have been used for many studies,

methodological limitations also have been recently discussed [37, 38]. Here, we define the

required characteristics of a main path analysis for analyzing ‘technological’ domains by con-

sidering the properties of a technological domain and the theoretical perspectives in innova-

tion. First, given that a fundamental purpose of using main path analysis is to minimize the

number of patents needed to realistically represent a specific technological domain, the

identified main paths have to successfully contain the technologically significant patents [35].

Moreover, since technological discontinuities are usually perceived to be the significant tech-

nologies in a domain [23], omission of them on the main paths can make the identified main

paths misleading or unreliable trajectories. For example, in the Light Emission Diode (LED)

domain, a main path analysis for the domain would be judged unrealistic if the identified main

paths do not contain the blue LED related patents. Second, a technological domain usually

consists of several specific technological knowledge or sub-knowledge fields, so it is reasonable

that developmental trajectories for a technological domain would contain multiple trajectories.

For specific scientific fields or methods, such as Green chemistry [39], social network analysis

[34] or the Hirsch Index [37], a singular main path might realistically trace the developmental

trajectory in that the fields only focus on a narrow knowledge outcome. However, if the tech-

nological domain has many sub-technologies, for the example of flexible displays, with wiring

material, flexible display substrate material, thin film transistor array, semiconductor material,

and so on, is represented by a singular path, this would not be useful to investigate the
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technological changes in the domain. Third, one major driver for technological development

is the recombination of existing knowledge [40–45], therefore a main path analysis should be

able to show the combinatorial relationships between the different knowledge streams which is

somewhat equivalent to identifying the discontinuities as discussed above.

However, existing approaches are somewhat insufficient to meet the requirements. Most

main path approaches produce only a singular main path [17, 32, 37, 38] and as noted above

are inappropriate to analyze some technological domains. Verspagen [10] suggested a modi-

fied main path which overcomes the limitation of a singular main path and produces multiple

main paths so this is the existing approach considered the baseline method in this research.

Method

In this section, genetic backward-forward path analysis (GBFP) is described in detail and its

overall procedure is shown in Fig 1.

Collection of patent set

The unit of analysis of this research is a technological domain; the technological domain is

defined as ‘the set of artifacts that fulfill a specific generic function utilizing a particular, recogniz-
able body of knowledge’ [22]. Collection of the right data is a fundamentally important step in

that this can seriously affect the result. Therefore, we adopted a highly reliable patent search

technique, the classification overlap method (COM) developed by [46, 47], to collect highly

relevant patents for a pre-defined technological domain, and downloaded the patents from

www.patsnap.com.

Construction of patent citation network

The knowledge network of a technological domain is generated based on patent citations

with the basic assumption being that a patent citation represents a knowledge flow from

cited patent to citing patent. This paper only considers knowledge flows within the techno-

logical domain, so only those patent citations occurring within the technological domain are

considered (Fig 2). The cited-citing patent pairs are extracted from patent backward citation

information.

Measuring knowledge persistence

GBFP identifies main paths by backward and forward searching from the patents dominantly

important in a technological domain, i.e. high persistence patents (HPPs): Martinelli and

Nomaler [23] show that patents having high persistence value are technologically important

inventions or, often, technological discontinuities in the focal technological domain. Searching

from the HPPs can guarantee the inclusion of all significant knowledge on the identified main

paths. Both backward and forward searching can identify not only other potential main

paths that might be missed by only a forward searching, but can also identify convergence

structures in technological trajectories. The methodological difference of GBFP from previous

approaches originates from this step. Even though the baseline approach [10] also utilizes

genetic knowledge persistence, it identifies main paths by forward searching form the start-
points and so can miss other main paths that contain dominantly significant patents.

In order to identify the HPPs, knowledge persistence of each patent is measured using

the GKPM. GKPM, developed by Martinelli and Nomaler [23], can objectively quantify the

persistent knowledge of a patent by a backward mapping of the patent from all connected end-
points. The main concept of knowledge persistence is that a new invention is created by the
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recombination of the existing pieces of knowledge and so, similar to Mendelian genetic inheri-

tance, a proportion of knowledge in a patent is incorporated in its descendant patents. There-

fore, in the patent system, cited and citing patents can be interpreted as ancestors and

descendants from the genetic inheritance perspective.

The procedure of GKPM is as follows (see Fig 3). First, the overall lineage structure of the

technological domain is constructed by assigning each patent to a layer. The endpoints are

identified and each patent is assigned to a layer by working backward: the startpoints are

assigned as the first layer and then layer numbers for other patents including endpoints are

determined. The number of layers of the domain is determined by the longest sequences of

citation links from endpoints to startpoints.
Second, based on the topological structure of the layer-based citation network, GKPM mea-

sures how much knowledge of a patent is inherited by recently invented patents, i.e. endpoints.
Specifically, the proportion of the inherited knowledge of a patent to the next-generation

descendant patent is calculated by 1/the number of backward citations of the next descendant

patent. Therefore, knowledge persistence of a patent in the network can be calculated by the

following equation:

KPA ¼
Xn

i¼1

Xmi

j¼1

Ylj � 1

k¼1

1

BWDCitðPijkÞ
; ð1Þ

• where KPA is knowledge persistence value of patent A (PA),

• n is the number of patents in the last layer, which are (indirectly) connected to PA,

• mi is all possible backward paths from Pi to PA,

• lj is the number of patents on the j-th backward path from Pi to PA,

Fig 1. The three steps in the proposed method.

doi:10.1371/journal.pone.0170895.g001
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• Pijk is the k-th patent on the j-th backward path from Pi to PA, and

• BWDCit(Pijk) is the number of backward citations of Pijk, without considering backward cita-

tions by patents in between the first layer and layer t-1, when PA belongs to layer t.

Fig 3 shows a simple patent citation network organized from the layer perspective and gives

as an example of use of (Eq 1) for calculation of the knowledge persistence value of patent E.

KPE is calculated by the retained knowledge in the patents J, K and L. J has three backward

paths to reach at E (J!G!E, J!E and J!H!E). The number of backward citations for J is

3, for G is 2 (the backward citation to the initial patent A is ignored), and for H is 2. Therefore,

0.167 (= 0.5 × 0.333) of E’s knowledge is retained in J through E!G!J path, 0.33 through

E!J, and 0.167 (= 0.5 × 0.333) through E!H!J; the total knowledge of E retained in J is

0.667 (= 0.167+0.333+0.167). By the same calculation procedure, 0.5 of E’s knowledge is

retained in K and 0.75 in L, and so the overall knowledge persistence of E in this simple net-

work is 1.917 (= 0.667+0.5+0.75).

Fig 2. Cited-citing patent pairs. Note: each circle denotes a specific patent; the arrow represents knowledge flow from the cited patent to the

citing patent (directed link), e.g. since patent B cites patent A, the arrow from patent A points to patent B; only patents and citations inside the

technological domain (A,B,C, and D) are considered as the nodes and links, therefore citations from or to patents outside the technological domain

are ignored (E!A, A!F, C!G, and C!H).

doi:10.1371/journal.pone.0170895.g002
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Identification of main paths

GBFP searches paths from the patents having high knowledge persistence value. To select

these HPPs, we consider two perspectives: global persistence (GP) and layer (or local) persis-

tence (LP). GP identifies the most important patents in the domain and LP identifies the

important patents in each layer: we use LP is to include relatively recent important patents in

Fig 3. Measurement of knowledge persistence. Note: the layers represent the overall lineage structure of

the technological domain. The number of layers in a domain are determined by the longest sequences of

citation links from endpoints to startpoints and the layer number of each patent is determined based on its

topological position in the network; inherited knowledge from cited patent to citing patent is measured based

on the number of sources, for example, patent D cites two previous patents (patent A and B), so patent D

inherits 1/2 of its knowledge from patent A and 1/2 of its knowledge from patent B.

doi:10.1371/journal.pone.0170895.g003
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the main paths whose overall persistence has not yet emerged. To simplify the process, we nor-

malized the GP and LP of each patent by dividing by the maximum persistence value in the

domain for GP and dividing by the maximum persistence value in each layer for LP. The cutoff

value for HPPs can be set according to the desired complexity of the main paths; based on our

heuristic test, GP>(0.3~0.5) or LP>(0.7~0.9) are usually most appropriate for further analysis.

The lower value for the GP cutoff relative to the LP cutoff value is necessary to maximize reten-

tion of dominantly important patents in the main path network. The testing also showed a

clear tradeoff between retention of important patents (favored by low cutoff values) and net-

work complexity (favored by high cutoff values). For the rest of this paper, we report results

for the cutoff values of GP = 0.3 and LP = 0.8 but recommend that the range suggested be

investigated for completeness of analysis.

After the identification of HPPs, main paths are identified by backward and forward search-

ing from each HPP (Fig 4): if there exist five HPPs, five backward and forward searches are

performed. The basic mechanism for a backward/forward search is to choose the patent(s)

having the highest GP among the directly connected cited/citing patents, therefore, any direct

link between two HPPs is always chosen as a component of the main paths. The backward/for-

ward search is finished when it reaches the startpoint(s)/endpoint(s) for all HPPs so all main

paths are identified.

Empirical Analysis

In this section, we present empirical analyses for two technological domains: Desalination and

Solar PV. In order to show the differences of GBFP from previous methods, we compared the

main paths from GBFP with the main paths from the baseline approach.

Fig 4. Searching backward and forward paths. Note: every HPP has both left and right arrows for backward and forward

searches; HPP (0.2 GP and 1.0 LP) on layer i+5 is directly connected with two HPPs on layer i+4 and both links are chosen as main

paths; if a HPP is not directly connected with other HPPs, e.g. the HPP (0.4 GP and 0.8 LP) on layer i, a patent which is not HPP

but having the highest GP among the directly connected patents, e.g. the patent (0.2 GP and 0.25 LP) on layer i+1, is chosen and

further searching is continued from that patent using the same algorithm.

doi:10.1371/journal.pone.0170895.g004
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Solar PV

Introduction to Solar PV. Solar energy is the most abundant energy source on earth and

photovoltaic devices have been identified as one promising type of clean energy. PV cells

directly generate electricity from sunlight radiation and this PV effect was discovered over 150

years ago but has been practically developed from the 1950s [48]. The Solar PV domain can be

broadly classified into three sub-components: solar cell, module and panel, and mounting sys-

tem. The solar cell as the core component is a form of photoelectric cell which generates elec-

tricity. The PV module (or panel) is a bundle of solar cells for practical applications, and

mounting systems are related to technologies to install and control a PV system. Major bottle-

necks in Solar PV are conversion efficiency and costs, so the overall developmental trajectory

consists of inventions that, based on the basic PV effect, adopting new materials or develop

new engineering designs for alleviating these bottlenecks. Some of the patents involve sunlight

concentration and hybrid structure; moreover, multi-junction cells have been developed

to realize cheaper manufacturing costs while maintaining useful conversion efficiencies.

Although emerging PVs, such as dye-sensitized solar cells or organic solar cells, have recently

received attention, they are still at the laboratory research level [49] due to their currently

lower performance (W/$) compared to the for now dominant PV types using crystalline sili-

con or amorphous silicon.

Data. The patent set for the Solar PV was obtained by COM specifically using the overlap

between UPC 136 (Batteries: thermoelectric and photoelectric) and IPC H01L (Semiconductor

devices; Electric solid-state devices). The number of patents in the set is 5,203, from 1976-1-1

to 2013-7-1, and the technological relevancy of the patent set is 0.85.

Result. The main paths for Solar PV drawn by the proposed method are shown in Fig 5;

the graphs were drawn by using Gephi (www.gephi.org) and Event graph layout plug-in [50],

and serial numbers were given to the patents sorted by ascending order of patent numbers.

The identified main paths can be broadly separated into three sub-fields: module and panel,

solar cell and mounting system (Fig 5). Overall developmental trajectories are increasing con-

version efficiency and reliability with lower cost by adopting new materials or new engineering

designs. With the GP cutoff at 0.3 and the LP cutoff at 0.8, the main path network consists of

159 patents (58 are HPP) with 192 citations among them. Qualitatively, the main paths are rel-

atively easy to identify in this network but larger numbers of nodes/patents make this more

difficult.

Fig 6. shows the main paths determined by the baseline method [10]. The overall network is

quite large (upper left of Fig 6 has 1821 patents and 1729 citations among them which is a fac-

tor of ~9 bigger than the GBFP-based network. The larger graphs in Fig 6 were drawn (as was

Fig 5) using Gephi and show some similarities to the main paths in Fig 5 with both approaches

showing similar trajectories which are mainly constructed by HPPs. However, about 24% (14

patents) of the identified HPPs are only included in the main paths obtained using GBFP (in

Fig 5 but not in Fig 6). Some other similarities and differences between the results from the

two methods are worth noting. First, in the main paths for the Solar PV module and panel, the

paths from 424 to 1645 are similar overall but the path from 1645 to 3492 and 4272 in Figs 5

and 6 are somewhat different: HPPs 1730, 1886 and 2080 are included only in the path in Fig

5. Investigating these additional patents included by BFGP but not in the baseline indicates

they are important and appropriate to include. In particular, Patent 1886 (US 5409549) was a

new design for the solar cell module panel improving long-term reliability and cost. Specifi-

cally, the edge portions of the solar cell modules are fixed and protected by the module fasten-

ers, the modules are not mechanically damaged, and so long-term reliability of the modules is

improved. In addition, because a separated base for the work is not required, the facility and

A Genetic Knowledge Persistence-Based Main Path Approach

PLOS ONE | DOI:10.1371/journal.pone.0170895 January 30, 2017 9 / 18

http://www.gephi.org


safety of the installation is improved, and cost can be reduced. Many other patents also

described this invention as one representative type that is compatible with other inventions

(US 6119415, US 6182404, and US 7081585).

Patent 2080 (US 5589006) is a solar cell module that can be used with an air heating type

passive solar system. Heat from solar energy is usually an inevitable cause of deteriorating con-

version efficiency of solar cells. This solar cell module does not require an additional base,

which limits the reduction in photoelectric conversion efficiency due to heat. This invention

provided an important combination of solar cell modules with a passive solar system by over-

coming the efficiency problem introduced by heat.

In addition, in the main paths for the solar cell, the path from 602 to 1349 is about thin

film solar cell and patents in the path from both approaches are the same but the main paths in

Fig 5. Main paths for Solar PV determined by GBFP. Note: # of nodes and links are 159 and 192; # of high persistence patents (GP>0.3 or LP>0.8) are 58.

(see Table A in S2 File for details on HPPs).

doi:10.1371/journal.pone.0170895.g005
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Fig 6. Main paths for Solar PV obtained by the baseline approach. Note: # of nodes and links for all main paths are 1821 and 1729; # of high

persistence patents included in all main paths are 44; the left and right graphs are the sub-networks of main paths which contain more than five

HPPs.

doi:10.1371/journal.pone.0170895.g006
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Fig 5 contain one more patent– 871. Patent 871 (US 4532537) describes a method of fabricat-

ing the photo detector comprising the light transmissive electrical contact with the textured

surface on the substrate by chemical vapor deposition. This invention is an important applica-

tion of surface-textured substrates for optical absorption enhancement [51] and many later

patents introduced this as one conventional method (US 4664748, US 4880664, US 5078803

and US 5102721).

Moreover, patent 3301 (US 6784361), a relatively recent invention but not included in the

main paths in Fig 6, is about amorphous silicon (a-Si) and CdS/CdTe type thin film solar cells

that can provide better efficiency at elevated operation temperatures. Specifically, this includes

a front electrode made of a transparent conductive oxide (TCO) and has thick intrinsic layers.

Since this invention is one conventional early design of related solar cells (described in US

7846750, US 7875945, US 7888594, US 7964788, US 8203073, US 8012317, US 8022291, US

8076571, US 8133747, US 8236118, US 8334452, US 8338699, and US 8354586), leaving

this patent out when tracing technological trajectories of the thin-film solar cell appears

unrealistic.

Desalination

Introduction to desalination. The desalination domain consists of artifacts that remove

salts and minerals from saline water. The potential for a global water shortage has promoted

this technological domain to one of high significance for human welfare. Desalination devices

can be broadly categorized as thermal or membrane-based technologies [52]. Thermal desali-

nation is based on water phase changes through distillation or evaporation: Multi effect distil-

lation, multi stage flash and vapor compression distillation are the most representative

technologies. Membrane desalination is based on the characteristics of semi-permeable mem-

branes that permit water to pass through it when the pressure of feed water is greater than

the osmotic pressure: reverse osmosis (RO) has been widely used for commercial purposes.

Although thermal desalination accounts for a significant portion of the entire desalination

market, rapid advancement of membrane desalination is apparently leading to it surpassing

thermal desalination [52]: most patented inventions, particularly in our patent set, are related

to membrane desalination.

Data. The patent set for the Desalination technology is obtained by COM. The specific

overlap used was between UPC 210 (Liquid purification or separation) and IPC C02F (Treat-

ment of water, waste water, sewage, or sludge) or B01D (Separation). Since this classification

overlap contains patents related to water treatment or purification, we added a keyword search

query to isolate only patents relevant to the desalination technology. The number of patents in

the set is 3,634, from 1976-1-1 to 2013-7-1, and the technological relevancy of the patent set is

0.87.

Result. The identified main paths for Desalination are shown in Fig 7 for GBFP and in Fig

8 for the baseline method [10]. The networks were again drawn by using Gephi and serial

numbers are given to the patents sorted by ascending order of patent numbers. As with Solar

PV, the baseline main path network is much larger (1744 patents with 1508 citation links

among them) than the network from GBFP (115 patents with 134 citation links among them).

Although sections of the baseline network can be isolated as shown in Fig 8, the added com-

plexity makes this main path network less amenable to qualitative analysis than is the GBFP-

based network shown in Fig 7.

The identified main paths can be classified into three sub-fields: reverse, or forward, osmo-

sis based membrane process, ion-exchange including water softening and electrodialysis,

and preprocess techniques, usually, for membrane processes including dewatering and
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precipitation. The major outcomes of the developmental trajectories are increasing desalina-

tion efficiency at lower energy consumption, i.e. cost apparently arising from hybrid use of dif-

ferent methods or new materials, e.g. nanofiltration (NF), and new energy sources, e.g. solar

energy. Both the proposed and baseline methods’ main paths show overall similar trajectories.

However, similar to the PV case, the network obtained from the baseline approach–despite

its much larger size–does not contain about 18% of HPPs (9 out of 50) present in the GBFP-

based network. As before, qualitative analysis indicates that some of those included by GBFP

seem to be significant knowledge inputs in tracing developmental trajectories. First, the patent

Fig 7. Main paths for Desalination technology drawn by GBFP. Note: # of nodes and links are 115 and 134; # of high persistence patents (GP>0.3 or

LP>0.8) are 50. (see Table B in S2 File for details on HPPs).

doi:10.1371/journal.pone.0170895.g007
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757 (US 4704324) is an invention describing a method to form a semi-permeable membrane.

Specifically, a permselective discriminating layer of the membrane prepared by reaction of

onium compounds with nucleophilic compounds can greatly enhance the flux of membranes

and thus increase desalination efficiency of RO systems. Since many later patents adopted its

inventive knowledge (US 4812238, US 4888116, US 5238747 and US 5310581), patent 757’s

position on the main paths appears important for further evolution of the trajectory on the

flux of membranes (Fig 7). Missing this patent suggests a main path that is probably not a reli-

able representation of reality.

Second, the patent 1041 (US 4936987) disclosed a water soluble polymer that can prevent

the precipitation or crystallization of scale-forming salts of alkaline earth metal cations.

Although later inventions pointed out that large dosages of the polymers are required (US

5256302 and US 5393456), this invention is a relatively early technology for scale and corro-

sion inhibitors which have made substantial contribution to later relevant developments (US

5182028, US 5259974, US 5322636, US 5338477, US 5358642, US 5284590, US 6333005, US

6355214 and US 6646082).

Third, the patent 1608 (US 5458781) is a method to separate the monovalent anion bromide

from sea and brackish waters by using a combination of RO and NF membranes. Even though

this patent has not been widely cited by the later patents and its major purpose is not exactly

for producing potable water from sea or brackish waters, the inventive knowledge of this

invention had a significant impact on further developments in combinations of RO and NF

membranes; many of the patents that cite the patent 1608 are directly affected by this invention

(US 6190556, US 7144511, US 8366924, and US 9205383).

Fig 8. Main paths for Desalination technology obtained by the baseline approach. Note: # of nodes and links are 1774 and 1508; # of high persistence

patents included in the all main paths are 41; the left and right graphs are the sub-networks of main paths which contain more than five HPPs.

doi:10.1371/journal.pone.0170895.g008
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Conclusion

Main path analysis has been widely adopted as a useful tool to empirically trace technological

trajectories. Ideally, a main path analysis would be able to reduce network complexity for effec-

tive qualitative investigation of the technological trajectories while not eliminating dominantly

important knowledge. Our results for the solar PV and the desalination domains clearly show

that our proposed new approach (genetic backward-forward main path analysis or GBFP) is a

significant step towards this ideal compared to the existing approaches represented by the

baseline approach. In the two cases, the GBFP networks are about 10 times smaller and also

contain about 20%more of the dominant genetic knowledge in the domain. Defining less com-

plex networks that nonetheless contain more of the important knowledge makes simultaneous

progress along both key dimensions toward a better method. The GBFP does this while adopt-

ing the best practice of the baseline approach–the genetic knowledge definition as first defined

by Verspagen [10]. This is done through adopting the persistence measurement (GKPM) to

first identify the patents having the dominantly significant knowledge bases, i.e. HPPs, in the

technological domain. Then, main paths are identified by backward and forward searching

from the identified HPPs.

To verify the usefulness of the proposed method, we conducted empirical analyses for the

solar PV and desalination technological domains and compared our method with the existing

approach. The empirical results show that major technological trajectories on both main paths

are quite similar and they are overall represented by HPPs. Most HPPs on the main paths are

actually critical for dominantly important knowledge streams for the technological domains.

In regard to combinatorial relationships, both approaches appropriately identify the important

combinations of knowledge streams (e.g. two converging main paths onto patent 424 in Solar

PV). Even though main paths from the baseline method show much more combinatorial rela-

tionships, it is apparently due to the baseline method identifying much larger networks, and

many of the converging paths seem to be noise, also due to the large network size. Our qualita-

tive analysis also found that some HPPs only included in the main paths obtained by GBFP

involve significant domain knowledge and should be contained on realistic main paths. In

addition, even though many of previous studies using the existing approach focused on the

largest sub-network of main paths to trace technological trajectories, the empirical result

shows that the largest, or even second or third largest, sub-network of main paths is not always

the most important main path. This means that most of large sub-networks need to be ana-

lyzed to uncover the appropriate trajectories. Therefore, given that a major reason to use main

path analysis is to reduce the network complexity, the high network complexity of the baseline

main paths is not a negligible issue in that the size of the main paths, shown in Figs 6 and 8, is

still too large for qualitative analysis.

However, there exist some issues that would be improved in further research. First, we

adopt GKPM to identify HPPs in a patent citation network. GKPM considers that a citing pat-

ent receives same proportion of knowledge from all cited patents, but the proportions in

knowledge inheritance for each citation might be different. Our empirical analysis and Marti-

nelli and Nomaler [23]’s research show that this weighting issue is negligible when the size of a

citation network is relatively large, but it might cause a reliability problem when the network

size is too small. Therefore, the improvement of this weighting algorithm may increase quality

and reliability of the main paths. Second, we use a concept of layer persistence (LP) to identify

the patents which are recently invented but have the potential to be dominantly important.

Nonetheless, the identified main paths still have a relatively low number of recent HPPs.

Therefore, development of other criteria using a text mining technique to identify the recently

invented but technologically important patents may provide additional value.
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