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Abstract

Heritability estimation provides important information about the relative contribution of

genetic and environmental factors to phenotypic variation, and provides an upper bound for

the utility of genetic risk prediction models. Recent technological and statistical advances

have enabled the estimation of additive heritability attributable to common genetic variants

(SNP heritability) across a broad phenotypic spectrum. Here, we present a computationally

and memory efficient heritability estimation method that can handle large sample sizes,

and report the SNP heritability for 551 complex traits derived from the interim data release

(152,736 subjects) of the large-scale, population-based UK Biobank, comprising both quan-

titative phenotypes and disease codes. We demonstrate that common genetic variation con-

tributes to a broad array of quantitative traits and human diseases in the UK population, and

identify phenotypes whose heritability is moderated by age (e.g., a majority of physical mea-

sures including height and body mass index), sex (e.g., blood pressure related traits) and

socioeconomic status (education). Our study represents the first comprehensive phenome-

wide heritability analysis in the UK Biobank, and underscores the importance of considering

population characteristics in interpreting heritability.

Author summary

Heritability of a trait refers to the proportion of phenotypic variation that is due to genetic

variation among individuals. It provides important information about the genetic basis of

complex traits and indicates whether a phenotype is an appropriate target for more specific

statistical and molecular genetic analyses. Recent studies have leveraged the increasingly

ubiquitous genome-wide data and documented the heritability attributable to common

genetic variation captured by genotyping microarrays for a wide range of human traits.

However, heritability is not a fixed property of a phenotype and can vary with population-
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specific differences in the genetic background and environmental variation. Here, using a

computationally and memory efficient heritability estimation method, we report the herita-

bility for a large number of traits derived from the large-scale, population-based UK Bio-

bank, and, for the first time, demonstrate the moderating effect of three major demographic

variables (age, sex and socioeconomic status) on heritability estimates derived from genome-

wide common genetic variation. Our study represents the first comprehensive heritability

analysis across the phenotypic spectrum in the UK Biobank.

Introduction

The heritability of a trait refers to the proportion of phenotypic variance that is attributable to

genetic variation among individuals. Heritability is commonly measured as either the contri-

bution of total genetic variation (broad-sense heritability, H2), or the fraction due to additive

genetic variation (narrow-sense heritability, h2) [1]. A large body of evidence from twin studies

has documented that essentially all human complex traits are heritable. For example, a recent

meta-analysis of virtually all twin studies published between 1958 and 2012, encompassing

17,804 traits, reported that the overall narrow-sense heritability estimate across all human

traits was 49%, although estimates varied widely across phenotypic domains [2]. Over the past

decade, the availability of genome-wide genotyping has enabled the direct estimation of addi-

tive heritability attributable to common genetic variation (“SNP heritability” or h2
SNP) [3–5].

These estimates do not capture non-additive genetic effects such as dominance or epistasis,

and provide a lower bound for narrow-sense heritability because they also do not capture con-

tributions (e.g., from rare variants) that are not assayed by most genotyping microarrays and

are not well tagged by genotyped variants. Nevertheless, estimates of SNP heritability can pro-

vide important information about the genetic basis of complex traits such as the proportion of

phenotypic variation that could be explained by common-variant genome-wide association

studies (GWAS).

However, heritability is not a fixed property of a phenotype but depends on the population

in which it is estimated. As a ratio of variances, it can vary with population-specific differences

in both genetic background and environmental variation [1]. For example, twin data have doc-

umented variations in the heritability of childhood IQ by socioeconomic status (SES) [6],

highlighting that different environment may have different relative contributions to the vari-

ance of a phenotype. In addition, heritability estimates for a range of complex phenotypes have

been shown to vary according to the sex and age distributions of the sampled populations [2].

Identifying variables that may affect the heritability of complex traits has implications for the

design of GWAS, highlighting subgroups and environmental conditions in which common-

variant contributions may be diminished or magnified. To date, however, studies of complex

trait heritability and the effect of modifying variables have produced mixed results likely due

to sample size limitations and population-specific differences in genetic and environmental

variance that may be operating in different cohorts.

The UK Biobank (http://www.ukbiobank.ac.uk) provides a unique opportunity to estimate

the heritability of traits across a broad phenotypic spectrum in a single population sample. The

UK Biobank is a large prospective population-based cohort study that enrolled 500,000 partici-

pants aged 40–69 years between 2006 and 2010 [7]. The study has collected a wealth of pheno-

typic data from questionnaires, physical and biological measurements, and electronic health

records as well as genome-wide genotype data. However, this rich data source also presents

analytic challenges. For example, with the large sample size, existing heritability estimation
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methods such as genome-wide complex trait analysis (GCTA) [3–5] and LD (linkage disequi-

librium) score regression [8] become computationally expensive and memory intensive, and

thus can be difficult to apply. Here we implemented a computationally and memory efficient

approach to estimate the heritability for 551 complex traits derived from the interim data

release (152,736 subjects) of the UK Biobank, comprising both quantitative phenotypes and

disease categories. We then examined how heritability estimates are modified by three major

demographic variables: age, sex and socioeconomic status (SES). Our results underscore the

importance of considering population characteristics in estimating and interpreting heritabil-

ity, and may inform efforts to apply genetic risk prediction models for a broad range of human

phenotypes.

Results

We report the heritability for 551 traits that were made available to us through the interim

data release of the UK Biobank (downloaded on Mar 3, 2016) and had sufficient sample sizes

to achieve accurate heritability estimates (standard error of the heritability estimate smaller

than 0.1; 15 disease codes excluded) using a computationally and memory efficient heritability

estimation method (see Methods and S1 Text).

The 551 traits can be classified into 11 general phenotypic domains as defined by the UK

Biobank to group individual data fields into broadly related sets: cognitive function (5 traits),

early life factors (7 traits), health and medical history (60 traits), hospital in-patient main diag-

nosis ICD-10 codes (194 traits), life style and environment (88 traits), physical measures (50

traits), psychosocial factors (40 traits), self-reported cancer codes (9 traits), self-reported non-

cancer illness codes (79 traits), sex-specific factors (14 traits), and sociodemographics (5 traits).

ICD-10 (the International Classification of Diseases, version-10) is a medical classification list

published by the World Health Organization (WHO), which contains thousands of diagnostic

codes. Fig 1 shows the percentage of each domain that makes up the 551 traits we analyzed.

Using the top-level categories and chapters of the self-reported disease and ICD-10 coding

tree, we can further break down self-reported non-cancer illness codes and ICD-10 codes into

different functional domains (S1 Fig). We note that since we only analyzed disease codes that

had prevalence greater than 1% in the sample, distribution of the disease traits across func-

tional domains was skewed. For example, we investigated a large number of gastrointestinal

and musculoskeletal traits, while diseases that have low prevalence in the sampled population

such as psychiatric disorders were not well represented.

Table 1 lists the top heritable traits in each domain (the most heritable trait and traits with

heritability estimates greater than 0.30). S1 Table and S2 Table show the heritability estimates,

standard error estimates, sample sizes, covariates adjusted, prevalence in the sample (for

binary traits) and other relevant information for all the traits we analyzed. Common genetic

variants appear to have an influence on most traits we investigated, although heritability esti-

mates showed heterogeneity within and across trait domains. Complex traits that exhibited

high SNP heritability (larger than 0.40) included human height (0.685+/-0.004), skin color

(very fair/fair vs. other, 0.556+/-0.008), ease of skin tanning (very/moderately tanned vs.

mildly/occasionally/never tanned, 0.454+/-0.006), comparative height at age 10 (taller than

average, 0.439+/-0.007; shorter than average, 0.405+/-0.008), rheumatoid arthritis (0.821

+/-0.046), hypothyroidism/myxedema (0.814+/-0.017), malignant neoplasm of prostate (0.426

+/-0.093), and diabetes diagnosed by doctor (0.414+/-0.016), among others. On the other end

of the spectrum, traits such as duration of walks/moderate activity/vigorous activity, frequency

of stair climbing, ever had stillbirth, spontaneous miscarriage or termination, painful gums,

stomach disorder, fracture, injuries to the head/knee/leg, and pain in joint had zero or close to
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zero heritability estimates, indicating that their phenotypic variation is largely determined by

environmental factors, or there is widespread heterogeneity or substantial measurement error

in these phenotypes. SNP heritability estimates for several phenotypes, including diseases with

known immune-mediated pathogenesis (rheumatoid arthritis, psoriasis, diabetes, hypothy-

roidism), were markedly reduced when the major histocompatibility complex (MHC) region

was excluded from analysis (S4 Table), and thus need to be interpreted with caution (see

Discussion).

A substantial fraction of the phenotypes we examined were based on self-report illness

codes or diagnostic (ICD-10) codes, which may be noisy and have low specificity. However,

the SNP heritability estimates for 14 pairs of self-reported illness and ICD-10 codes that repre-

sent the same or closely matched diseases were largely consistent and had a Pearson correla-

tion of 0.78 (Table 2), indicating that both phenotypic approaches captured useful and

comparable variations in these phenotypes.

Heritability analysis stratified by sex identified a number of traits whose heritability showed

significant difference in males and females after multiple testing correction (Fig 2). For exam-

ple, the analyses of diastolic and systolic blood pressure, and self-reported hypertension and

Fig 1. The number of traits in each of the 11 phenotypic domains that make up the 551 traits analyzed in the UK Biobank: cognitive function (5

traits), early life factors (7 traits), health and medical history (60 traits), hospital in-patient main diagnosis ICD-10 codes (194 traits), life style and

environment (88 traits), physical measures (50 traits), psychosocial factors (40 traits), self-reported cancer codes (9 traits), self-reported non-

cancer illness codes (79 traits), sex-specific factors (14 traits), and sociodemographics (5 traits).

https://doi.org/10.1371/journal.pgen.1006711.g001
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high blood pressure provided consistent evidence that the heritability of blood pressure related

traits and diseases is significantly higher in females than in males.

A majority of physical measures showed decreasing heritability with age (S3 Table). More

specifically, 33 out of 50 physical measures had a significant decreasing trend in heritability

estimates after accounting for multiple testing correction (mean slope of the 33 traits -0.0035,

i.e., heritability estimates decrease by 3.5 percent per decade). The age-varying SNP heritability

estimates and their standard errors for 12 traits that showed both significant slopes and signifi-

cantly different heritability estimates between the first (40–49 years) and last age range (64–73

years) are shown in Fig 3A. S2 Fig shows the mean and standard deviation of the 12 traits in

each age range.

Table 1. The SNP heritability estimates (h2), standard error (SE) estimates, sample sizes (N), and prevalence (prev) in the sample (for binary traits)

for the top heritable traits in each phenotypic domain. All heritability estimates adjusted for genotyping array, UK Biobank assessment center, age at

recruitment, sex (except male-specific traits indicated by *) and top 10 principal components of the genotype data as covariates. ]: additionally adjusted for

weight; §: additionally adjusted for negative experience. See S1 Table and S2 Table for the way we binarized categorical variables and other relevant

information.

Field ID Field Name Type N Prev h2 SE

20016 Fluid intelligence score continuous 34491 NA 0.233 0.011

1697 Comparative height at age 10 categorical 106497 25.36% 0.439 0.007

2976 Age diabetes diagnosed continuous 5369 NA 1.000 0.074

6148 Eye problems/disorders categorical 33750 2.04% 0.722 0.097

2443 Diabetes diagnosed by doctor binary 107935 5.25% 0.414 0.016

6152 Blood clot, DVT, bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor categorical 108022 12.37% 0.344 0.010

41202 C61 Malignant neoplasm of prostate binary 32780 2.24% 0.426* 0.093

41202 C60-C63 Malignant neoplasms of male genital organs binary 32780 2.46% 0.322* 0.087

1747 Hair colour (natural, before greying) categorical 107947 4.62% 1.000 0.018

1717 Skin colour categorical 106773 80.09% 0.556 0.008

1727 Ease of skin tanning categorical 105966 61.13% 0.454 0.006

6144 Never eat eggs, dairy, wheat, sugar categorical 107832 2.68% 0.691 0.026

50 Standing height continuous 107976 NA 0.685 0.004

23105 Basal metabolic rate continuous 106311 NA 0.397 0.004

23102 Whole body water mass continuous 106252 NA 0.331] 0.004

23130 Trunk predicted mass continuous 106157 NA 0.325] 0.004

23106 Impedance of whole body continuous 106304 NA 0.307 0.004

20151 Forced vital capacity (FVC), best measure continuous 84301 NA 0.339 0.005

20150 Forced expiratory volume in 1-second (FEV1), best measure continuous 84305 NA 0.324 0.005

3148 Heel bone mineral density (BMD) continuous 62546 NA 0.327 0.006

20126 Bipolar and major depression status categorical 25571 19.91% 0.195§ 0.032

20001 Prostate cancer binary 50997 1.59% 0.310* 0.077

20002 Psoriasis binary 108148 1.15% 1.000 0.047

20002 Thyroid problem (not cancer) binary 108148 5.77% 0.876 0.015

20002 Rheumatoid arthritis binary 108148 1.18% 0.821 0.046

20002 Hypothyroidism/Myxoedema binary 108148 4.83% 0.814 0.017

20002 Diabetes binary 108148 5.14% 0.396 0.016

20002 Dermatology binary 108148 4.27% 0.368 0.019

20002 Asthma binary 108148 12.44% 0.340 0.010

2395 Hair/Balding pattern categorical 50660 18.51% 0.479* 0.017

2375 Relative age of first facial hair categorical 49384 6.64% 0.303* 0.030

6138 Qualifications categorical 107158 30.16% 0.294 0.007

https://doi.org/10.1371/journal.pgen.1006711.t001
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Table 2. A head-to-head comparison of SNP heritability estimates (h2) for the self-reported illness codes and ICD-10 codes that represent the

same or closely matched diseases.

Self-reported disease h2 (self-reported) ICD-10 code h2 (ICD-10)

Breast cancer 0.133 C50 Malignant neoplasm of breast 0.207

Skin cancer 0.061 C43-C44 Melanoma and other malignant neoplasms of skin 0.160

Male genital tract cancer 0.226 C60-C63 Malignant neoplasms of male genital organs 0.322

Prostate cancer 0.310 C61 Malignant neoplasm of prostate 0.426

Cerebrovascular disease 0.066 I60-I69 Cerebrovascular diseases 0.197

Angina 0.176 I20 Angina pectoris 0.136

Liver/Biliary/Pancreas problem 0.074 K80-K87 Disorders of gallbladder, biliary tract and pancreas 0.099

Heart attack/Myocardial infarction 0.184 I21 Acute myocardial infarction 0.193

Gastro-oesophageal reflux (gord)/Gastric reflux 0.099 K21 Gastro-oesophageal reflux disease 0.105

Cholelithiasis/Gall stones 0.123 K80 Cholelithiasis 0.143

Uterine fibroids 0.087 D25 Leiomyoma of uterus 0.054

Enlarged prostate 0.157 N40 Hyperplasia of prostate 0.127

Pneumonia 0.075 J18 Pneumonia—organism unspecified 0.160

Diverticular disease/Diverticulitis 0.195 K57 Diverticular disease of intestine 0.179

https://doi.org/10.1371/journal.pgen.1006711.t002

Fig 2. SNP heritability estimates and their standard errors of the traits in the UK Biobank that show significantly different SNP heritability in

females and males after multiple testing correction. The heritability estimates of rheumatoid arthritis, endocrine/diabetes and wheat products intake

reported here are based on genome-wide SNPs and will be markedly reduced when the major histocompatibility complex (MHC) region (chr6:25-35Mb) is

excluded from analysis, and thus need to be interpreted with caution.

https://doi.org/10.1371/journal.pgen.1006711.g002
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When we stratified heritability by the Townsend deprivation index, a proxy for SES, educa-

tion (has college or university degree or not) was the only trait on which SES had a significant

moderating effect after accounting for multiple testing correction. Fig 3B shows that the herita-

bility of education increases with increasing SES.

Fig 3. (A) The age-varying SNP heritability estimates and their standard errors (shaded region) for the 12 traits whose heritability significantly decreases with

age after accounting for multiple testing correction; (B) The stratified heritability estimates and standard errors (shaded region) of education (has college or

university degree or not), on which the socioeconomic status (SES) measured by the Townsend deprivation index has a significant moderating effect after

multiple testing correction.

https://doi.org/10.1371/journal.pgen.1006711.g003
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Discussion

Estimating the heritability of complex, polygenic traits is an important component of defining

the genetic basis of human phenotypes. In addition, heritability estimates provide a theoretical

upper bound for the utility of genetic risk prediction models [9]. We calculated the common-

variant heritability of 551 phenotypes derived from the interim data release of the UK Biobank,

and confirmed that common genetic variation contributes to a broad array of quantitative

traits and human diseases in the UK population. Two aspects of our work are particularly

notable. First, we developed a computationally and memory efficient method that enabled us

to calculate the most extensive population-based survey of SNP heritability to date. Second, we

found that the heritability for a number of phenotypes is moderated by major demographic

variables, demonstrating the dependence of heritability on population characteristics. We dis-

cuss each of these advances and the limitations of the biobank data and our analyses below.

Classical methods to estimate SNP heritability, such as GCTA (also known as the GREML

method), rely on the restricted maximum likelihood (ReML) algorithm [3–5], which can give

unbiased heritability estimates in quantitative trait analysis and non-ascertained case-control

studies, and is statistically efficient when the trait is Gaussian distributed [10]. However, ReML

is an iterative optimization algorithm, which is computationally and memory intensive, and

thus can be difficult to apply when analyzing data sets with hundreds of thousands of subjects.

An alternative and widely used SNP heritability estimation method is LD score regression,

which is based on GWAS summary statistics and an external reference panel for the LD struc-

ture [8]. The approach can thus be easily applied to complex traits on which large-scale GWAS

results are available, and allows meta-analysis of heritability estimates from different studies.

Recently, LD score regression has been extended to partition heritability by functional annota-

tion [11], and to estimate the genetic correlation between two traits [12,13]. However, when

applying LD score regression to novel phenotypes in a large cohort, conducting GWAS is

often time-consuming.

In the present study, we implemented a computationally and memory efficient moment-

matching method for heritability estimation, which is closely related to the Haseman-Elston

regression [14–16] and phenotype-correlation genetic-correlation (PCGC) regression [10],

and produces unbiased SNP heritability estimates for both continuous and binary traits. The

moment-matching method is theoretically less statistically efficient than the ReML algorithm

(i.e., produces larger standard error on the point estimate) when analyzing quantitative traits,

but the power loss is expected to be small [17] and is less of an issue given large sample sizes,

such as in the UK Biobank. The moment-matching method is also mathematically equivalent

to LD score regression if the following conditions are satisfied: (1) the out-of-sample LD scores

estimated from the reference panel and the in-sample LD scores estimated from individual-

level genotype data are identical; (2) the intercept in the LD score regression model is con-

strained to 1 (i.e., assuming that there is no confound and population stratification in the

data); and (3) a particular weight is used in the LD score regression (more specifically, the

reciprocal of the LD score, which is close to the default setting in the LD score regression soft-

ware) [18]. Here, since we have constrained our analysis to a white British (Caucasian) sample

and have accounted for potential population stratification by including top PCs of the geno-

type data as covariates, the two methods should produce similar estimates. See Box 1 for an

empirical comparison between the moment-matching method, LD score regression and

GCTA.

Using the moment-matching method, we found that a large number of traits we examined

display significant heritability. For traits whose heritability has been intensively studied, our

estimates are generally in line with prior studies. For example, twin and pedigree studies have

Phenome-wide heritability analysis of the UK Biobank
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estimated the heritability of human height and body mass index (BMI) to be approximately

80% and 40–60% [see e.g., 19–21], respectively, although recent studies have shown that heri-

tability may be overestimated in family studies due to, for instance, improper modeling of

common environment, assortative mating in humans, genetic interactions, and suboptimal

statistical methods [10,22–25]. Using genome-wide SNP data from unrelated individuals, it

has been shown that common SNPs explain a large proportion of the height and BMI variation

in the population, although SNP heritability estimates are lower than twin estimates [4,5,26].

Specifically, the first GCTA analysis estimated the SNP heritability of human height to be 0.45

using relatively sparse genotyping data (approximately 300,000 SNPs) and showed that the

estimate could be higher if imperfect LD between SNPs and causal variants are corrected [4].

A more recent study leveraging whole-genome sequencing data and imputed genetic variants

concluded that narrow-sense heritability is likely to be 60–70% for height and 30–40% for BMI

[27]. Here, we estimated the SNP heritability of human height and BMI to be 0.685+/-0.004

and 0.274+/-0.004, respectively, which are comparable to the expected range. The SNP herita-

bility estimates of other complex traits of interest, such as age at menarche in girls (0.239

+/-0.007), diastolic (0.184+/-0.004) and systolic (0.156+/-0.004) blood pressures, education

(has colleague or university degree or not, 0.294+/-0.007), neuroticism (0.130+/-0.005), smok-

ing (ever smoked or not, 0.174+/-0.006), asthma (0.340+/-0.010) and hypertension (0.263

+/-0.007) were also more modest and lower than twin estimates, as expected [2].

Box 1. An empirical comparison between the moment-matching method, LD score

regression and genome-wide complex trait analysis (GCTA). To confirm our theoretical

expectation of how the moment-matching method compares to LD score regression and

GCTA, the most widely used SNP heritability estimation methods, we performed the fol-

lowing empirical analysis. For each trait in S1 Table, we randomly sampled 10,000 sub-

jects and compared SNP heritability estimates from the moment-matching method, LD

score regression (with constrained intercept and the regression weight set to the recipro-

cal of the LD score), and GCTA. S3 Fig shows that the moment-matching method pro-

duced virtually identical estimates to LD score regression, and consistent heritability and

standard errors estimates with GCTA. The power loss of the moment-matching method

relative to GCTA is negligible. Although the three methods produced consistent herita-

bility estimates, the moment-matching method has much lower computational demand

than the ReML algorithm and LD score regression. Specifically, using a single core of the

(dual CPU) Intel Xeon 5472 3.0GHz processor and 7 Gb of virtual memory, GCTA takes

approximately half an hour to analyze one trait (assuming that the genetic similarity

matrix has been pre-computed) and each GWAS takes several hours, while the moment-

matching method can produce the SNP heritability estimate of a trait in less than half a

minute. When analyzing the full sample (~100,000 subjects), GCTA becomes very diffi-

cult to apply because its memory demand increases quadratically and computational

complexity scales cubically with the sample size. It is also challenging to conduct stratifi-

cation analyses across the phenotypic spectrum using LD score regression due to the

large number of GWAS to be performed. In contrast, the moment-matching method

only takes approximately 20 mins to complete the main heritability analysis and all the

stratification analyses for a trait with 100,000 subjects using one CPU processor and 7Gb

of memory. To summarize, we have used a method that balances statistical efficiency

and computational burden with the flexibility to achieve our main goal in this study.
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Heritability is, by definition, a ratio of variances, reflecting the proportion of phenotypic

variance attributable to individual differences in genotypes. Because the genetic architecture

and non-genetic influences on a trait may differ depending on the population sampled, herita-

bility itself may vary. Examples of this have been reported in the twin literature. In one well-

known study, Turkheimer and colleagues [6] reported that the heritability of IQ is moderated

by SES in a sample of 320 7-year-old twin pairs of mixed ancestry. In that study, the heritability

of IQ was essentially 0 at the lowest end of SES but substantial at the highest end. Subsequent

studies of the moderating effects of SES on the heritability of cognitive ability and development

using twin designs have produced mixed results [28–33]. In our analysis, using SNP data, we

observed no moderating effect of SES (as measured by the Townsend deprivation index) on

the heritability of cognitive traits (including fluid intelligence), possibly due to the age range of

participants in the UK Biobank (middle and old age) in contrast to many previous studies tar-

geting childhood or early adulthood, and the cross-national differences in gene-by-SES inter-

action on intelligence as shown by a recent meta-analysis [34]. In addition, the brief cognitive

tests available in the UK Biobank may have had limited sensitivity for capturing individual dif-

ferences in IQ (see discussion below). On the other hand, the heritability of education showed

significant interactions with SES, with increasing heritability at higher SES levels. Prior evi-

dence has suggested that education has substantial genetic correlation with IQ and may be a

suitable proxy phenotype for genetic analyses of cognitive performance [35]; thus our results

may indirectly support earlier studies of the SES moderation of IQ heritability.

With two exceptions, significant sex differences we observed indicated greater heritability

for women compared to men. Our results are consistent with findings from some twin studies

but not others. For example, we found that women exhibited significantly greater heritability

for measured waist circumference and blood pressure. Twin studies have also reported greater

female heritability for waist circumference [36] but no substantial sex difference in heritability

of blood pressure [2,37]. A substantial difference between the heritability of rheumatoid arthri-

tis (RA) in males compared to females was observed, although the MHC region has a large

impact on the SNP heritability estimates of autoimmune diseases, and thus this finding needs

to be interpreted with caution (see discussion below). While RA is known to be more common

in women, a twin analysis found no sex difference in heritability among Finnish and UK twin

pairs, though power was limited in that analysis [38]. Intriguingly, greater heritability was

observed among men for the personality trait of miserableness, a component of neuroticism,

suggesting that environmental factors may be more influential for this trait among women or

that measurement error differs by sex.

We examined age effects on heritability for a subset of variables and found that a number of

physical measures indexing body size, adiposity, height, as well as systolic blood pressure and

lung function, showed declining heritability with age. Age-related declines in heritability may

reflect the cumulative effect of environmental perturbations over the lifespan. Prior twin stud-

ies of age effects on the heritability of anthropometric traits in adults have had inconsistent

results [39–41]. Haworth and colleagues showed that the heritability of BMI increases over

childhood [42]. A recent meta-analysis of 32 twin studies documented a non-monotonic rela-

tionship between BMI heritability and age (from childhood to late adulthood), with a peak

around age 20 and decline thereafter [43]. An age-related decline in indices of body size may

reflect a decreasing contribution of genetically-regulated growth processes over the lifespan.

However, we were unable to assess the entire trajectory of heritability due to the age range

(40–73 years) of the UK Biobank participants. Some but not all studies have also suggested

varying or declining heritability with age for blood pressure, lung function and age at first

birth [39,44–50].
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Our results should be interpreted in light of the limitations associated with the biobank

data. First, the UK Biobank is restricted to middle and old age groups, which may be subject to

sample selection bias. For example, older and physically/cognitively impaired subjects may be

underrepresented in the study, which may have an impact on the heritability estimates strati-

fied by age. Mortality selection can also alter the results of genetic analyses as shown by recent

analyses [51]. In addition, the UK Biobank participants comprised a relatively high proportion

of well-educated, skilled professionals [52], potentially leading to the underrepresentation

or restricted range of certain traits such as smoking relative to other cohorts. Therefore, our

heritability estimates may be specific to this UK population and may not generalize to other

settings or ancestry groups. Second, although the UK Biobank has collected a wealth of pheno-

types, measurements associated with a particular phenotypic domain may not be comprehen-

sive. For example, only five cognitive tests were included in the UK Biobank. The reasoning

task (fluid intelligence test) was brief and had a narrow range; the reaction time was averaged

from a small number of trials; and the visual memory test (pairs-matching test) had a signifi-

cant floor effect (a large number of participants made zero or very few mistakes, and thus the

scores do not fully reflect individual differences). In addition, all cognitive tests had relatively

low reliability across repeat measurements [53]. These noisy measurements may thus down-

wardly bias heritability estimates of cognition. The Townsend deprivation index, which we

used to stratify phenotypes, was calculated based on the national census output area of each

participant in which their postcode was located at the time of recruitment, and thus can only

serve as a proxy for SES. Third, the phenotypes were limited to those for which we had suffi-

cient data to estimate heritability with adequate precision. Therefore, diseases with low preva-

lence in the sampled population were not well represented in our analysis. We expect to

analyze traits with lower prevalence (e.g., 0.5%) when the genetic data for all UK Biobank par-

ticipants becomes available. We also assumed in our analysis that the population prevalence of

a binary trait is identical to the observed sample prevalence, but diseases such as schizophrenia

and stroke are naturally under-ascertained and thus their sample prevalence is often lower

than population prevalence. In addition, we note that since we used medical history to define

cases and controls, the prevalence of many diseases we investigated reflected lifetime preva-

lence, which may be different from cross-sectional prevalence used in other studies. We also

binarized categorical (multinomial or ordinal) variables to facilitate analysis, but this might

not optimally represent variation in these variables with respect to heritability. Fourth, a sub-

stantial fraction of the phenotypes we examined were based on self-report or diagnostic (ICD-

10) codes, which may or may not validly capture the phenotypes they represent. For example,

a recent UK Biobank study shows that 51% of the participants who reported RA were not on

RA-relevant medication, a proxy measure of valid diagnosis [54]. However, our head-to-head

comparison of the heritability estimates between self-reported illness and ICD-10 codes

showed largely consistent results, indicating that both phenotypic approaches at least captured

comparable variations in these phenotypes. Prior research evaluating phenotypes derived from

electronic health records (EHR) indicate that greater phenotypic validity can be achieved

when diagnostic codes are supplemented with text mining methods [55–58]. The specificity of

the disease codes might also be improved by leveraging the medication records in the UK

Biobank.

Methodologically, our SNP heritability estimation approach, despite its superior computa-

tional and memory performance compared to existing methods, also has several limitations.

First, heritability estimation always relies on a number of assumptions on the genetic architec-

ture. For example, the moment-matching method we used here, as well as the established

GCTA and LD score regression approaches, implicitly assumes that the causal SNPs are ran-

domly spread over the genome, which is independent of the MAF spectrum and the LD
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structure, and the effect sizes of causal SNPs are Gaussian distributed and have a specific rela-

tionship to their MAFs. Although it has been shown that SNP heritability estimates are reason-

ably robust to many of these modeling assumptions [59], the estimates can be biased if, for

instance, causal SNPs are rarer or more common than uniformly distributed on the MAF spec-

trum, or are enriched in high or low LD regions across the genome. For example, the heritabil-

ity estimates for some autoimmune diseases such as psoriasis and RA dropped dramatically

when the MHC region (chr6:25-35Mb) was removed when constructing the genetic similarity

matrix, indicating, as expected, that causal variants for these diseases are disproportionally

enriched in the MHC region. S4 Table lists all the traits whose heritability estimates decreased

by 0.2 or more when the MHC region was taken out, and thus need to be interpreted with cau-

tion. Methods to correct for MAF properties and region-specific LD heterogeneity of causal

variants have been proposed [27,59,60]. For example, we can stratify MAF and LD structure

into different bins, compute a genetic similarity matrix within each bin, and fit a mixed effects

model with multiple variance components [27,60]. This approach can give heritability esti-

mates that are more robust to properties of the underlying genetic architecture, but has the

downside of increased computational burden and reduced statistical power. A different direc-

tion to explore is to estimate SNP heritability using imputed data (in contrast to the genotype

data here), which might capture more genetic variation from rare variants, or common vari-

ants that are not well tagged by the genotyped SNPs, and thus lead to increased heritability esti-

mates. Second, heritability analysis models, including the one we employed in the present

study, typically assume that genetic and environmental effects are independent, i.e., no gene-

by-environment (GxE) interaction exists. This is certainly a simplification of the real world

where GxE interactions are expected for many complex traits. Recent computational studies

have also shown that ignoring GxE interactions in heritability analysis can produce biased esti-

mates [25]. However, modeling GxE would require collecting relevant environmental variables

for each phenotype and more sophisticated statistical modeling approaches, e.g., incorporating

multiple random effects in the heritability analysis model [5,61]. Due to the limited measure-

ments of environment collected by the UK Biobank, and the extensive analyses we have con-

ducted across the phenotypic spectrum, explicitly modeling the environmental factors and

GxE interactions is not feasible. We therefore took an alternative approach to examine the

moderating effects of three major demographic variables on heritability estimates by stratify-

ing samples. Of note, consistent heritability estimates across different levels of the stratifying

variable do not completely eliminate the potential existence of GxE interactions. Specifically,

recent studies have identified genetic heterogeneity in human traits such as BMI and fertility

[62,63], indicating that the genetic architecture of a trait may be different across environments

(i.e., the genetic correlation of a trait in different environments may be significantly smaller

than 1) even if the overall heritability estimates are similar. Dissection of common and unique

environmental influences and their interactive effects with genetics on different complex traits,

and the shared and unique genetic effects across environments are important future directions

to explore. Lastly, as reviewed in [64], a number of empirical genetic similarity measurements

computable from genome-wide SNP data have been proposed, which, when utilized in herita-

bility analysis, can give different estimates with different interpretations. In addition, recent

studies have argued that estimation error associated with genetic similarity measurements and

the ill-posedness of the empirical genetic similarity matrix may produce unstable and unreli-

able SNP heritability estimates [65]. However, this is an area under active investigation and

debate [64–67]. Here, as the first study to screen all UK Biobank variables and provide an over-

view of the distribution of SNP heritability across different trait domains, and to examine the

effect of potential modifying variables on heritability estimates, we used a straightforward and

classical modeling approach that is most widely used. To obtain more insights into the genetic
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architecture and find the most appropriate and robust model for each individual trait, more

systematic investigation is needed.

In sum, using a computationally and memory efficient approach, we provide estimates of

the SNP heritability for 551 complex traits across the phenome captured in the population-

based UK Biobank. We further identify phenotypes for which the contribution of genetic

variation is modified by demographic factors. These results underscore the importance of con-

sidering population characteristics in interpreting heritability, highlight phenotypes and sub-

groups that may warrant priority for genetic association studies, and may inform efforts to

apply genetic risk prediction models for a broad range of human phenotypes.

Materials and methods

Ethics statement

This study utilized deidentified data from the baseline assessment of the UK Biobank, a pro-

spective cohort study of 500,000 individuals (age 40–69 years) recruited across Great Britain

during 2006–2010 [7]. The protocol and consent were approved by the UK Biobank’s Research

Ethics Committee.

Participants and data sources

The UK Biobank collected phenotypic data from a variety of sources including questionnaires

regarding mental and physical health, food intake, family history and lifestyle, a baseline physi-

cal assessment, computerized cognitive testing, linkage with health records, and blood samples

for biochemical and DNA analysis. Details about the UK Biobank project are provided at

http://www.ukbiobank.ac.uk. Data for the current analyses were obtained under an approved

data request (Ref: 13905).

Genotyping and quality control

The interim release of the genotype data for the UK Biobank (downloaded on Mar 3, 2016)

comprises 152,736 samples. Two closely related arrays from Affymetrix, the UK BiLEVE

Axiom array and the UK Biobank Axiom array, were used to genotype approximately 800,000

markers with good genome-wide coverage. Details of the design of the arrays and sample pro-

cessing can be found at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=146640 and http://

biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155583.

Prior to the release of the genotype data, stringent quality control (QC) was performed at

the Wellcome Trust Centre for Human Genetics, Oxford, UK. Procedures were documented

in detail at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580. We leveraged the QC

metrics made available by the UK Biobank and removed samples that had mismatch between

genetically inferred sex and self-reported sex, samples that had high genotype missingness or

extreme heterozygosity not explained by mixed ancestry or increased levels of marriage

between close relatives, and one individual from each pair of the samples that were 3rd degree

or more closely related relatives. We restricted our analysis to subjects that were self-reported

white British and confirmed by principal component analysis (PCA) to be Caucasians. We fur-

ther filtered out genetic markers that had high missing rate (>1%), low minor allele frequency

(<1%), significant deviation from Hardy-Weinberg equilibrium (p<1e-7), and subjects that

had high missing genotype rate (>1%). 108,158 subjects (age 40–73 years; female 52.84%) and

486,175 SNPs remained for analysis after QC. S4 Fig shows the age distribution of the subjects

that passed QC. The genetic similarity matrix was computed using all genotyped autosomal
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SNPs. All genetic analyses were performed using PLINK 1.9 (https://www.cog-genomics.org/

plink2) [68].

Phenotypic variables

We analyzed every trait available to us that had a sufficient sample size to produce a heritability

estimate with its standard error smaller than 0.1. The traits can be classified into the following

11 domains as defined by the UK Biobank: cognitive functions, early life factors, health and

medical history, life style, physical measures, psychosocial factors, sex-specific factors and

sociodemographics. For continuous traits, we excluded samples that were more than 5 stan-

dard deviations away from the population mean to avoid extreme outliers and data recording

errors. We only analyzed binary traits that had prevalence greater than 1% in the sample, so

that we had enough statistical power to get reliable heritability estimates. We typically binar-

ized categorical variables at a meaningful threshold close to the median and then analyzed

them as binary traits. For the specific cutoff-points used to binarize each categorical variable,

see S1 Table.

We also analyzed a large number of self-reported illness codes and hospital in-patient diag-

nosis codes. Self-reported cancer and non-cancer illness codes were obtained through a verbal

interview by a trained nurse at the UK Biobank assessment center on past and current medical

conditions. Hospital in-patient diagnoses were obtained through medical records and were

coded according to the International Classification of Diseases version-10 (ICD-10). Disease

codes for each domain (self-reported cancer, self-reported non-cancer illness, and ICD-10)

were organized in a hierarchical tree structure; codes closer to the root of the tree are often less

specific and have larger prevalence, while codes closer to the leaves are more specific but have

lower prevalence. We analyzed every disease code that had prevalence greater than 1% in the

sample. 15 ICD-10 codes were excluded due to small sample sizes and large standard errors

(>0.1) on heritability estimates (N70-N77 Inflammatory diseases of female pelvic organs;

O20-O29 Other maternal disorders predominantly related to pregnancy; O80-O84 Delivery;

N50 Other disorders of male genital organs; N80 Endometriosis; N81.1 Cystocele; N81.2

Incomplete uterovaginal prolapse; N83 Noninflammatory disorders of ovary—Fallopian tube

and broad ligament; N83.2 Other and unspecified ovarian cysts; N84.1 Polyp of cervix uteri;

N92.1 Excessive and frequent menstruation with irregular cycle; N93 Other abnormal uterine

and vaginal bleeding; O68 Labour and delivery complicated by foetal stress [distress]; O70.1

Second degree perineal laceration during delivery; O80 Single spontaneous delivery). We also

employed a data-driven approach to determine if a disease is sex-specific. More specifically, if

the sample prevalence of a disease in males was more than 100 times larger than the sample

prevalence in females, we defined the disease as male-specific and the analysis was restricted to

males. The same approach was used to find female-specific diseases. See S2 Table for all the

disease codes we analyzed.

Heritability estimation

We consider the linear random effect model y = g + e, where an N-dimensional trait y is parti-

tioned into the sum of additive genetic effects g and unique (subject-specific) environmental

effects e. The covariance structure of y is cov½y� ¼ s2
gK þ s2

e I, where K is the empirical genetic

similarity matrix for each pair of individuals estimated from genome-wide SNP data [4,5], I is

an identity matrix, s2
g and s2

e are the total additive genetic variance captured by genotyped

common SNPs and the variance of unique environmental factors across individuals, respec-

tively. SNP heritability is then defined as h2
SNP ¼ s2

g=ðs
2
g þ s2

eÞ ¼ s2
g=s2

p, which measures the
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total phenotypic variance s2
p that can be explained by total additive genetic variance tagged by

genotyped SNPs, and is a lower bound for the narrow-sense heritability h2. When covariates

need to be incorporated into the model, i.e., y = Xβ + g + e, where X is an N × q covariate

matrix and β is a vector of fixed effects, an N × (N − q) matrix U always exists, which satisfies

UTU = I, UUT = P0, UTX = 0, and P0 = I − X(XTX)−1XT. Applying UT to both sides of the model

removes the covariate matrix [69,70].

To obtain unbiased estimates of s2
g and s2

e , we used a computationally efficient moment-

matching approach [70,71], which is closely related to the Haseman-Elston regression [14–16]

and phenotype-correlation genetic-correlation (PCGC) regression [10], and mathematically

equivalent to the LD score regression under certain conditions [8,18]. Specifically, we regress

the empirical estimate of the phenotypic covariance onto the matrices K and I: vec½yyT � ¼

s2
g vec½K�þ s2

e vec½I� þ �, where vec[�] is the matrix vectorization operator that converts a matrix

into a vector by stacking its columns, and � is the residual of the regression. The ordinary least

squares (OLS) estimator of this multiple regression problem can be explicitly written as ŝ2
g ¼

1

vK
yT K � tIð Þy and ŝ2

e ¼
1

vK
yT kI � tKð Þy, where τ = tr[K]/N, κ = tr[K2]/N, and vK = N(κ − τ2).

SNP heritability is then estimated as ĥ2
SNP ¼ ŝ2

g=ðŝ
2
g þ ŝ2

eÞ ¼ ŝ2
g=ŝ2

p.

To estimate the sampling variance of ĥ2
SNP, we follow Visscher et al. [17] and make two

assumptions: (1) the off-diagonal elements in the empirical genetic similarity matrix K are small,

such that K� I and V ¼ cov½y� ¼ s2
gK þ s2

e I � s2
pI; and (2) the phenotypic variance s2

p can be

estimated with very high precision. We thus have var ŝ2
g

h i
¼ 2

v2
K

tr K � tIð ÞV K � tIð ÞV½ � �

2s4
p=vK , and var½ĥ2

SNP� � 2=vK . This estimator coincides with existing results in the literature

[17]. We note that the calculation of the variance of ŝ2
g relies on an additional assumption that

the trait y is Gaussian distributed and thus may be suboptimal for binary traits. However,

Visscher and colleagues have empirically shown that this sampling variance approximation is

accurate for both continuous and binary traits when the sample size is large [17] (also see S3

Fig).

We note that for large sample size N, the N × N genetic similarity matrix K and residual

forming matrix P0 can be very large, making the computation memory intensive. We have

developed a memory efficient algorithm that can iteratively load columns (or block columns)

of K into the memory to compute the SNP heritability estimate, and does not need to explicitly

compute P0 or any other N × N matrices. See S1 Text for details. Matlab and Python imple-

mentations of the algorithm are available at https://github.com/chiayenchen/mmhe.

For binary traits, the above calculation gives a heritability estimate on the observed scale,

which is dependent on prevalence of the trait in the population. We transformed this heritabil-

ity estimate to the underlying liability scale under the assumption of a classical liability thresh-

old model [72,73], which makes heritability estimates independent of prevalence and thus

comparable across traits. Specifically, heritability estimate on the liability scale can be obtained

using a linear transformation of the heritability on the observed scale: ĥ2
SNP;L ¼ cĥ2

SNP, where c =

P(1 − P)/φ(t)2, P is the population prevalence, t = F−1(1 − P) is the liability threshold, F is the

cumulative distribution function of the standard normal distribution, and φ is the density

function of the standard normal distribution [3,74]. Since the UK Biobank is not designed to

be ascertained for particular diseases, we assumed that population prevalence is identical to

sample prevalence. The sampling variance of the heritability estimate can be transformed

accordingly: var½ĥ2
SNP;L� ¼ c2var½ĥ2

SNP�.
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Statistical analysis

In all heritability analyses, we included genotyping array, UK Biobank assessment center, age

at recruitment and top 10 principal components (PCs) of the genotype data as covariates.

Other covariates such as sex and handedness (e.g., when analyzing the grip strength of the left/

right hand) were adjusted where appropriate. See S1 Table for the set of covariates we included

in the model when estimating the heritability for each trait. To compute PCs of the genotype

data, we performed pairwise linkage disequilibrium (LD) based SNP pruning at R2>0.02 and

excluded SNPs in the major histocompatibility complex (MHC) region (chr6:25-35Mb) and

chromosome 8 inversion (chr8:7-13Mb). Top PCs were then computed using flashPCA [75]

on the pruned data, which employs an efficient randomized algorithm and is thus scalable to

large data sets with hundreds of thousands of individuals.

To examine how heritability estimates are modified by sex, we estimated heritability for

each non-sex-specific trait in males and females separately. For binary traits, sample preva-

lence was calculated in each sex. To test if heritability estimates are significantly different by

sex, we assumed that the two SNP heritability estimates to be contrasted, ĥA and ĥB, are inde-

pendent and approximately Gaussian distributed, and computed the z-score of their differ-

ence: z ¼ ðĥA � ĥBÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝe2

A þ ŝe2
B

p
, where ŝe2

A and ŝe2
B are standard error estimates of ĥA and ĥB,

respectively. A p-value can then be computed as p = 2 � F(−|z|), where F is the cumulative dis-

tribution function of the standard normal distribution.

To examine whether SNP heritability estimates vary with age, we used a sliding window

approach and estimated heritability for every age range of 10 years (i.e., 40–49 years, 41–50

years, . . ., 64–73 years) by stratifying the samples. For binary traits, sample prevalence was calcu-

lated in each age range separately. We assessed whether heritability estimates exhibited a linear

trend with age by fitting a regression model, ĥ2
k ¼ aþ agekgþ �k, where ĥ2

k is the heritability

estimate in the k-th age range, agek is the mean of the age range, α is an intercept, γ is the slope

and �k is the residual of the regression, and testing whether γ is significantly different from zero.

We weighted heritability estimates by the inverse of their standard errors when fitting the regres-

sion model, and thus put more emphasis on estimates with better precision. We only analyzed

physical and cognitive measures, and did not consider disease codes and medical history in age

stratification analyses because age at recruitment does not reflect disease onset.

Similarly, we used a sliding window approach to estimate the SNP heritability for each trait

from the bottom 1/3 quantile to the top 1/3 quantile of the Townsend deprivation index at

recruitment, a measure of material deprivation within the population of a given area. For

binary traits, sample prevalence was calculated in each SES bin separately. For traits that do

not reflect the status of participants at the time of recruitment (e.g., medical history and early-

life factors), we have implicitly made an assumption that the SES of participants had not

changed dramatically throughout their lives.

To account for multiple testing in our stratification analyses, we corrected the p-values

using the effective number of independent traits we analyzed. Specifically, for each stratifica-

tion analysis (sex, age and SES), we calculated the Pearson correlation coefficient for each pair

of the traits using their overlapping samples. The correlation between traits that had no sample

overlap, e.g., male- and female-specific factors, was set to zero. We then conducted a principal

component analysis (PCA) to the constructed phenotypic correlation matrix, and estimated

the effective numbers of independent traits that explained 99% of the total phenotypic varia-

tion in sex, age and SES stratification analyses to be 400, 31 and 440, respectively. Finally, we

multiplied uncorrected p-values by the corresponding effective number of independent traits

to obtain corrected p-values.

Phenome-wide heritability analysis of the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006711 April 7, 2017 16 / 21

https://doi.org/10.1371/journal.pgen.1006711


Supporting information

S1 Text. The moment-matching method for SNP heritability analysis.

(DOCX)

S1 Table. The SNP heritability estimates, standard error estimates, sample sizes, covariates

adjusted, prevalence in the sample (for binary traits) and other relevant information for

all non-disease traits analyzed in the UK Biobank. SNP Heritability estimates stratified by

sex and socioeconomic status (SES) measured by the Townsend deprivation index are also pre-

sented.

(XLSX)

S2 Table. The SNP heritability estimates, standard error estimates, sample sizes, preva-

lence in the sample and other relevant information for all self-reported illness codes and

ICD-10 codes analyzed in the UK Biobank. SNP Heritability estimates stratified by sex and

socioeconomic status (SES) measured by the Townsend deprivation index are also presented.

(XLSX)

S3 Table. SNP Heritability estimates stratified by age.

(XLSX)

S4 Table. Traits whose SNP heritability estimates decrease by 0.2 or more when the major

histocompatibility complex (MHC) region (chr6:25-35Mb) is removed when computing

the genetic similarity matrix.

(XLSX)

S1 Fig. (A) A breakdown of the 79 self-reported non-cancer illness codes into different func-

tional domains; (B) A breakdown of the 194 ICD-10 codes into different functional domains.

(TIFF)

S2 Fig. The mean and standard deviation (shaded region) of the 12 traits whose SNP heri-

tability estimates significantly decrease with age.

(TIFF)

S3 Fig. A comparison of the SNP heritability and standard error (SE) estimates from the

moment-matching method, genome-wide complex trait analysis (GCTA) and LD score

regression (with constrained intercept and the regression weight set to the reciprocal of

the LD score), by randomly sampling 10,000 subjects for each trait in S1 Table.

(TIFF)

S4 Fig. Age distribution of the sample analyzed in the UK Biobank.

(TIFF)

Author Contributions

Conceptualization: TG MRS JWS.

Data curation: TG JWS.

Formal analysis: TG CYC.

Funding acquisition: JWS MRS.

Methodology: TG CYC MRS JWS.

Resources: MRS JWS.

Phenome-wide heritability analysis of the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006711 April 7, 2017 17 / 21

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006711.s009
https://doi.org/10.1371/journal.pgen.1006711


Software: TG CYC.

Supervision: JWS MRS.

Validation: TG.

Visualization: TG.

Writing – original draft: TG JWS.

Writing – review & editing: TG CYC BMN MRS JWS.

References
1. Visscher P. M., Hill W. G., Wray N. R. (2008). Heritability in the genomics era—concepts and miscon-

ceptions. Nature Reviews Genetics, 9(4), 255–266. https://doi.org/10.1038/nrg2322 PMID: 18319743

2. Polderman T. J., Benyamin B., De Leeuw C. A., Sullivan P. F., Van Bochoven A., Visscher P. M., et al.

(2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature

Genetics, 47(7), 702–709. https://doi.org/10.1038/ng.3285 PMID: 25985137

3. Lee S. H., Wray N. R., Goddard M. E., Visscher P. M. (2011). Estimating missing heritability for disease

from genome-wide association studies. The American Journal of Human Genetics, 88(3), 294–305.

https://doi.org/10.1016/j.ajhg.2011.02.002 PMID: 21376301

4. Yang J., Benyamin B., McEvoy B. P., Gordon S., Henders A. K., Nyholt D. R., et al. (2010). Common

SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42(7), 565–569.

https://doi.org/10.1038/ng.608 PMID: 20562875

5. Yang J., Lee S. H., Goddard M. E., Visscher P. M. (2011). GCTA: a tool for genome-wide complex trait

analysis. The American Journal of Human Genetics, 88(1), 76–82. https://doi.org/10.1016/j.ajhg.2010.

11.011 PMID: 21167468

6. Turkheimer E., Haley A., Waldron M., D’Onofrio B., Gottesman I. I. (2003). Socioeconomic status modi-

fies heritability of IQ in young children. Psychological Science, 14(6), 623–628. https://doi.org/10.1046/

j.0956-7976.2003.psci_1475.x PMID: 14629696

7. Sudlow C., Gallacher J., Allen N., Beral V., Burton P., Danesh J., et al. (2015). UK biobank: an open

access resource for identifying the causes of a wide range of complex diseases of middle and old age.

PLoS Medicine, 12(3), e1001779. https://doi.org/10.1371/journal.pmed.1001779 PMID: 25826379

8. Bulik-Sullivan B. K., Loh P. R., Finucane H. K., Ripke S., Yang J., Patterson N., et al. (2015). LD Score

regression distinguishes confounding from polygenicity in genome-wide association studies. Nature

Genetics, 47(3), 291–295. https://doi.org/10.1038/ng.3211 PMID: 25642630

9. Chatterjee N., Shi J., Garcı́a-Closas M. (2016). Developing and evaluating polygenic risk prediction

models for stratified disease prevention. Nature Reviews Genetics, 17(7), 392–406. https://doi.org/10.

1038/nrg.2016.27 PMID: 27140283

10. Golan D., Lander E. S., Rosset S. (2014). Measuring missing heritability: inferring the contribution of

common variants. Proceedings of the National Academy of Sciences, 111(49), E5272–E5281.

11. Finucane H. K., Bulik-Sullivan B., Gusev A., Trynka G., Reshef Y., Loh P. R., et al. (2015). Partitioning

heritability by functional annotation using genome-wide association summary statistics. Nature Genet-

ics, 47(11), 1228–1235. https://doi.org/10.1038/ng.3404 PMID: 26414678

12. Bulik-Sullivan B., Finucane H. K., Anttila V., Gusev A., Day F. R., Loh P. R., et al. (2015a). An atlas of

genetic correlations across human diseases and traits. Nature Genetics, 47(11), 1236–1241.

13. Zheng J., Erzurumluoglu A. M., Elsworth B. L., Kemp J. P., Howe L., Haycock P. C., et al. (2016). LD

Hub: a centralized database and web interface to perform LD score regression that maximizes the

potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinfor-

matics, btw613.

14. Elston R. C., Buxbaum S., Jacobs K. B., Olson J. M. (2000). Haseman and Elston revisited. Genetic

Epidemiology, 19(1), 1–17. https://doi.org/10.1002/1098-2272(200007)19:1<1::AID-GEPI1>3.0.CO;2-

E PMID: 10861893

15. Haseman J. K., Elston R. C. (1972). The investigation of linkage between a quantitative trait and a

marker locus. Behavior Genetics, 2(1), 3–19. PMID: 4157472

16. Sham P. C., Purcell S. (2001). Equivalence between Haseman-Elston and variance-components link-

age analyses for sib pairs. The American Journal of Human Genetics, 68(6), 1527–1532. https://doi.

org/10.1086/320593 PMID: 11353401

Phenome-wide heritability analysis of the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006711 April 7, 2017 18 / 21

https://doi.org/10.1038/nrg2322
http://www.ncbi.nlm.nih.gov/pubmed/18319743
https://doi.org/10.1038/ng.3285
http://www.ncbi.nlm.nih.gov/pubmed/25985137
https://doi.org/10.1016/j.ajhg.2011.02.002
http://www.ncbi.nlm.nih.gov/pubmed/21376301
https://doi.org/10.1038/ng.608
http://www.ncbi.nlm.nih.gov/pubmed/20562875
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1046/j.0956-7976.2003.psci_1475.x
https://doi.org/10.1046/j.0956-7976.2003.psci_1475.x
http://www.ncbi.nlm.nih.gov/pubmed/14629696
https://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
https://doi.org/10.1038/ng.3211
http://www.ncbi.nlm.nih.gov/pubmed/25642630
https://doi.org/10.1038/nrg.2016.27
https://doi.org/10.1038/nrg.2016.27
http://www.ncbi.nlm.nih.gov/pubmed/27140283
https://doi.org/10.1038/ng.3404
http://www.ncbi.nlm.nih.gov/pubmed/26414678
https://doi.org/10.1002/1098-2272(200007)19:1&lt;1::AID-GEPI1&gt;3.0.CO;2-E
https://doi.org/10.1002/1098-2272(200007)19:1&lt;1::AID-GEPI1&gt;3.0.CO;2-E
http://www.ncbi.nlm.nih.gov/pubmed/10861893
http://www.ncbi.nlm.nih.gov/pubmed/4157472
https://doi.org/10.1086/320593
https://doi.org/10.1086/320593
http://www.ncbi.nlm.nih.gov/pubmed/11353401
https://doi.org/10.1371/journal.pgen.1006711


17. Visscher P. M., Hemani G., Vinkhuyzen A. A., Chen G. B., Lee S. H., Wray N. R., et al. (2014). Statisti-

cal power to detect genetic (co) variance of complex traits using SNP data in unrelated samples. PLoS

Genetics, 10(4), e1004269. https://doi.org/10.1371/journal.pgen.1004269 PMID: 24721987

18. Bulik-Sullivan, B. (2015). Relationship between LD score and Haseman-Elston regression. bioRxiv,

018283.

19. MacGregor S., Cornes B. K., Martin N. G., Visscher P. M. (2006). Bias, precision and heritability of self-

reported and clinically measured height in Australian twins. Human Genetics, 120(4), 571–580. https://

doi.org/10.1007/s00439-006-0240-z PMID: 16933140

20. Silventoinen K., Magnusson P. K., Tynelius P., Kaprio J., Rasmussen F. (2008). Heritability of body size

and muscle strength in young adulthood: a study of one million Swedish men. Genetic Epidemiology,

32(4), 341–349. https://doi.org/10.1002/gepi.20308 PMID: 18271028

21. Silventoinen K., Sammalisto S., Perola M., Boomsma D. I., Cornes B. K., Davis C., et al. (2003). Herita-

bility of adult body height: a comparative study of twin cohorts in eight countries. Twin Research, 6(05),

399–408.

22. Visscher P. M., McEvoy B., Yang J. (2010). From Galton to GWAS: quantitative genetics of human

height. Genetics Research, 92, 371–379. https://doi.org/10.1017/S0016672310000571 PMID:

21429269

23. Zaitlen N., Kraft P., Patterson N., Pasaniuc B., Bhatia G., Pollack S., et al. (2013). Using extended gene-

alogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genetics,

9(5), e1003520. https://doi.org/10.1371/journal.pgen.1003520 PMID: 23737753

24. Zaitlen N., Pasaniuc B., Sankararaman S., Bhatia G., Zhang J., Gusev A., et al. (2014). Leveraging pop-

ulation admixture to characterize the heritability of complex traits. Nature Genetics, 46(12), 1356–1362.

https://doi.org/10.1038/ng.3139 PMID: 25383972

25. Zuk O., Hechter E., Sunyaev S. R., Lander E. S. (2012). The mystery of missing heritability: Genetic

interactions create phantom heritability. Proceedings of the National Academy of Sciences, 109(4),

1193–1198.

26. Vattikuti S., Guo J., Chow C. C. (2012). Heritability and genetic correlations explained by common

SNPs for metabolic syndrome traits. PLoS Genetics, 8(3), e1002637. https://doi.org/10.1371/journal.

pgen.1002637 PMID: 22479213

27. Yang J., Bakshi A., Zhu Z., Hemani G., Vinkhuyzen A. A., Lee S. H., et al. (2015). Genetic variance esti-

mation with imputed variants finds negligible missing heritability for human height and body mass index.

Nature Genetics, 47(10), 1114–1120. https://doi.org/10.1038/ng.3390 PMID: 26323059

28. Bates T. C., Lewis G. J., Weiss A. (2013). Childhood socioeconomic status amplifies genetic effects on

adult intelligence. Psychological Science, 24(10), 2111–2116. https://doi.org/10.1177/

0956797613488394 PMID: 24002887

29. Hanscombe K. B., Trzaskowski M., Haworth C. M., Davis O. S., Dale P. S., Plomin R. (2012). Socioeco-

nomic status (SES) and children’s intelligence (IQ): In a UK-representative sample SES moderates the

environmental, not genetic, effect on IQ. PLoS One, 7(2), e30320. https://doi.org/10.1371/journal.

pone.0030320 PMID: 22312423

30. Kirkpatrick R. M., McGue M., Iacono W. G. (2015). Replication of a gene–environment interaction via

multimodel inference: additive-genetic variance in Adolescents’ General Cognitive Ability Increases

with Family-of-Origin Socioeconomic Status. Behavior Genetics, 45(2), 200–214. https://doi.org/10.

1007/s10519-014-9698-y PMID: 25539975

31. Turkheimer E., Beam C. E., Davis D. W. (2015). The Scarr-Rowe interaction in complete seven-year

WISC data from the Louisville twin study: Preliminary report. Behavior Genetics, 45(6), 635–639.

https://doi.org/10.1007/s10519-015-9760-4 PMID: 26497158

32. Haworth C. M., Wright M. J., Luciano M., Martin N. G., De Geus E. J. C., Van Beijsterveldt C. E. M.,

et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adult-

hood. Molecular psychiatry, 15(11), 1112–1120. https://doi.org/10.1038/mp.2009.55 PMID: 19488046

33. Davis O. S., Haworth C. M., Plomin R. (2009). Dramatic increase in heritability of cognitive development

from early to middle childhood: An 8-year longitudinal study of 8,700 pairs of twins. Psychological Sci-

ence, 20(10), 1301–1308. https://doi.org/10.1111/j.1467-9280.2009.02433.x PMID: 19732386

34. Tucker-Drob E. M., Bates T. C. (2015). Large cross-national differences in gene × socioeconomic status

interaction on intelligence. Psychological science, 0956797615612727.

35. Rietveld C. A., Esko T., Davies G., Pers T. H., Turley P., Benyamin B., et al. (2014). Common genetic

variants associated with cognitive performance identified using the proxy-phenotype method. Proceed-

ings of the National Academy of Sciences, 111(38), 13790–13794.

Phenome-wide heritability analysis of the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006711 April 7, 2017 19 / 21

https://doi.org/10.1371/journal.pgen.1004269
http://www.ncbi.nlm.nih.gov/pubmed/24721987
https://doi.org/10.1007/s00439-006-0240-z
https://doi.org/10.1007/s00439-006-0240-z
http://www.ncbi.nlm.nih.gov/pubmed/16933140
https://doi.org/10.1002/gepi.20308
http://www.ncbi.nlm.nih.gov/pubmed/18271028
https://doi.org/10.1017/S0016672310000571
http://www.ncbi.nlm.nih.gov/pubmed/21429269
https://doi.org/10.1371/journal.pgen.1003520
http://www.ncbi.nlm.nih.gov/pubmed/23737753
https://doi.org/10.1038/ng.3139
http://www.ncbi.nlm.nih.gov/pubmed/25383972
https://doi.org/10.1371/journal.pgen.1002637
https://doi.org/10.1371/journal.pgen.1002637
http://www.ncbi.nlm.nih.gov/pubmed/22479213
https://doi.org/10.1038/ng.3390
http://www.ncbi.nlm.nih.gov/pubmed/26323059
https://doi.org/10.1177/0956797613488394
https://doi.org/10.1177/0956797613488394
http://www.ncbi.nlm.nih.gov/pubmed/24002887
https://doi.org/10.1371/journal.pone.0030320
https://doi.org/10.1371/journal.pone.0030320
http://www.ncbi.nlm.nih.gov/pubmed/22312423
https://doi.org/10.1007/s10519-014-9698-y
https://doi.org/10.1007/s10519-014-9698-y
http://www.ncbi.nlm.nih.gov/pubmed/25539975
https://doi.org/10.1007/s10519-015-9760-4
http://www.ncbi.nlm.nih.gov/pubmed/26497158
https://doi.org/10.1038/mp.2009.55
http://www.ncbi.nlm.nih.gov/pubmed/19488046
https://doi.org/10.1111/j.1467-9280.2009.02433.x
http://www.ncbi.nlm.nih.gov/pubmed/19732386
https://doi.org/10.1371/journal.pgen.1006711


36. Zillikens M. C., Yazdanpanah M., Pardo L. M., Rivadeneira F., Aulchenko Y. S., Oostra B. A., et al.

(2008). Sex-specific genetic effects influence variation in body composition. Diabetologia, 51(12),

2233–2241. https://doi.org/10.1007/s00125-008-1163-0 PMID: 18839131

37. Hottenga J. J., Boomsma D. I., Kupper N., Posthuma D., Snieder H., Willemsen G., et al. (2005). Herita-

bility and stability of resting blood pressure. Twin Research and Human Genetics, 8(05), 499–508.

38. MacGregor A. J., Snieder H., Rigby A. S., Koskenvuo M., Kaprio J., Aho K., et al. (2000). Characterizing

the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis & Rheuma-

tism, 43(1), 30.

39. Brown W. M., Beck S. R., Lange E. M., Davis C. C., Kay C. M., Langefeld C. D., et al. (2003). Age-strati-

fied heritability estimation in the Framingham Heart Study families. BMC Genetics, 4(1), 1.
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