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Discovering charge density 
functionals and structure-property 
relationships with PROPhet: A 
general framework for coupling 
machine learning and first-
principles methods
Brian Kolb1,2, Levi C. Lentz1 & Alexie M. Kolpak1

Modern ab initio methods have rapidly increased our understanding of solid state materials properties, 
chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders 
direct ab initio calculations intractable for large or complex systems. There are two obvious avenues 
through which to remedy this problem: (i) develop new, less expensive methods to calculate system 
properties, or (ii) make existing methods faster. This paper describes an open source framework 
designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine 
learning techniques to find complex, non-linear mappings between sets of material or system 
properties. The result is a single code capable of learning analytical potentials, non-linear density 
functionals, and other structure-property or property-property relationships. These capabilities enable 
highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the 
development of predictive models for systematic materials design and optimization. This work explores 
the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of 
various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for 
arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing 
analysis tools and to open the door to improving ab initio methods themselves with these powerful 
machine learning techniques.

Recent decades have seen a surge in the development of first principles methods aimed at increasing our under-
standing of the interactions of atoms in materials and other chemical systems. In addition to total energy cal-
culations with the workhorse density functional theory1, 2 (DFT), advanced methods now allow unprecedented 
accuracy in computations of wide ranging material properties of practical interest, including optical proper-
ties (GW3, TD-DFT4, and BSE5), thermal and electronic transport characteristics (Boltzmann transport based 
methods), response properties (perturbative methods), electronic polarization (the Berry phase formalism6), 
and many others. These methods, however, often have a computational cost orders-of-magnitude greater than 
a simple ground-state total energy calculation. The expense of computing these important properties (or even 
just extremely accurate total energies computed using high-order methods such as CCSD(T)7) can be prohibitive 
for many important systems. The development of ever more sophisticated materials, increasingly requiring a 
detailed treatment of interfaces, heterostructures, and environmental factors, brings with it a concomitant need 
for advanced methods capable of treating these large, complex systems.

In this work, we describe for the first time the open source code PROPhet (short for PROPerty Prophet), 
which was developed to help address these challenges. PROPhet, which couples directly to the first-principles 
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codes VASP8–10, Quantum Espresso11, and FHI-Aims12, 13, allows users to employ neural networks to fit a set of 
virtually any system properties (including scalar, vector, and/or grid-based quantities) to any other. PROPhet 
can be used, as artificial neural networks (ANNs) have in the past, to create analytical potentials14–16 or to predict 
properties based on selected descriptors17–20. However, its capabilities go much further, enabling the generation of 
density functionals for virtually any system property. Such functionals can greatly reduce the computational cost 
associated with the calculation of system properties. These functionals themselves are not limited to the familiar 
exchange-correlation functionals, but can be functionals for any number of complex properties such as electronic 
kinetic energy, or even more esoteric functionals (guaranteed to exist by the Hohenberg-Kohn theorem1) for 
system properties such as band gap. The comparatively low cost of evaluating neural networks means that such 
functionals would allow quantum mechanical methods to be applied to much larger systems than is possible 
with direct ab initio approaches. This paper serves as both a proof-of-concept exploring these more exotic uses of 
ANNs within chemical physics and as a first description of PROPhet, a tool created to facilitate further commu-
nity exploration of these ideas.

In the following, these methods will be explored through a series of examples. We first discuss the creation of 
an analytical potential for diamond-phase carbon that includes vacancy defects, demonstrating PROPhets pow-
erful capability to generate and explore the properties of complex energy surfaces. ANNs enable users to train 
potentials on small systems within the reach of ab initio approaches, then use these potentials to investigate large, 
complex systems such as interfaces, surfaces, grain boundaries, and amorphous materials using, e.g., classical 
Monte Carlo (MC) and molecular dynamics (MD) simulations. While using ANN potentials for this purpose 
is not a new capability, PROPhet is the first freely available, open-source code for training ANN potentials that 
also enables direct application of the ANN potentials within the widely used MD code, LAMMPS21, 22. It is also 
closely integrated to the first-principles DFT codes Quantum Espresso11, VASP8–10, and FHI-Aims12, 13, making it 
easily accessible for use by a large community of researchers. As an example of this approach, we use our diamond 
potential to compute the speed of sound in diamond as a function of carbon vacancy concentration in a regime 
of dilute vacancies that is inaccessible with DFT. Second, using gas phase NH3 as an example system, we demon-
strate the ability of PROPhet to find exchange-correlation density functionals. We show that it is possible to map 
fully local functionals of the DFT charge density to the exchange correlation energy computed using either of two 
highly computationally expensive methods: DFT with the non-local B3LYP functional and CCSD(T). Further, we 
show that the predictions from the learned density functionals have near chemical accuracy with respect to the 
B3LYP and CCSD(T) values. Finally, we demonstrate the use of PROPhet to explore charge density functionals 
for properties other than energy, identifying a functional of the charge density that predicts, with high accuracy, 
the HOMO-LUMO gap of NH3 as computed within the expensive yet highly accurate G0W0 approximation. These 
examples provide a brief glimpse of the range of possibilities for using the approaches within PROPhet to develop 
fundamental chemical and physical models and to improve existing ab initio methods.

Methods
Overview.  PROPhet was designed to be used primarily by researchers in the physics, chemistry, and materials 
science fields who are interested in using the power of machine learning approaches to extend the impact and 
applicability of first-principles computations. As some novel approaches are used by PROPhet (particularly with 
regard to providing complex system properties as input to neural networks), researchers in the machine learn-
ing community may also be interested in this work. In this section, we provide an overview of the underlying 
machine learning methods employed within PROPhet; these ideas are explored in more detail through a series of 
examples in the following sections.

At its core, PROPhet utilizes traditional fully connected, feed-forward neural networks. Training of the net-
work parameters is performed via well known steepest-descent methods or more cutting edge methods such as 
resilient backpropagation23 (Rprop) and limited-memory BFGS24 algorithms. The code allows users to specify 
many details about the training, including the structure of the network, the type of transfer functions, the type 
of training algorithms, use of regularization, etc. Despite this flexibility, the aim of this work is not focused on 
the active development of the underlying machine learning approaches, but rather on their application to the ab 
initio field. To this end, PROPhet was designed for ease of use by non-experts in machine learning, implementing 
sensible defaults for most parameters. For the same reason, PROPhet is built to interface with several widely used 
first-principles codes (currently Quantum Espresso11, VASP8–10, and FHI-Aims (FHI)12, 13), allowing it to read 
data directly from their output files. A plugin mechanism makes adding new interfaces relatively easy, and users 
are encouraged to contribute an interface for their favorite first-principles code.

ANN potentials.  One of the key features of PROPhet is the ability to use the arrangement of atoms as the 
input to a neural network (NN), enabling one to identify structure-property relationships for a wide range of 
properties. When the output property is the total energy, the trained NN is an analytical potential that can be 
used within classical MC and MD simulations to study structural, thermal, and mechanical properties of sys-
tems with tens of thousands of atoms (well beyond the practical reach of direct ab initio computations) with the 
accuracy of DFT, or whatever method is used to generate the properties to which the NN is trained. To facilitate 
this, PROPhet is built with a library allowing the use of potentials created in PROPhet to be used directly in the 
LAMMPS MD package.

Finding the most effective way to use atomic structures as the inputs to a NN remains an active area of research 
within the community. PROPhet employs one of the most commonly used approaches, the Behler-Parrinello 
method, which is described in detail in refs 14, 25 and 26. Briefly, this method assigns a unique neural network 
to each species of atom in the system, rather than a single network for the whole system. This approach is advan-
tageous in that the complexity of the training scales with the number of species rather than the total number 
of atoms. Mapping functions convert the atomic structure within a chosen cutoff radius around each atom to 
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a vector of network inputs, which are a fingerprint of the chemical environment of that atom. The mapping 
functions also serve to automatically handle symmetries, including permutation symmetry, without the need for 
complex user tuning of basis functions or any special knowledge of the system.

In the case of a NN potential, when the network is evaluated, each network provides the contribution to the 
total energy from a single atom. The atoms are then looped over, with the appropriate species network evaluated 
for each one; the sum of their outputs is then the total energy of the system. This approach has several advantages 
over other methods14, 27. Most notably, since the inputs to the network depend only on the local environment 
around each atom, systems of many different sizes can be used in training and evaluation. As an example, this 
enables the creation of a training set that includes the atomic structures of small, representative bulk crystal 
supercells, bulk liquid phases, surfaces, and model solid-liquid interfaces to create a NN potential that can be used 
to investigate the properties of nanostructures in an explicit aqueous environment, which requires thousands 
of atoms and cannot be studied directly using DFT (e.g. see refs 28–30). One could also train on a set of bulk 
structures with varying supercell size and defect concentration to develop a NN potential capable of studying 
large bulk systems with dilute defect concentrations that are inaccessible to DFT; an example of this in the carbon 
system is discussed below.

We note that the range of applicability of a given NN potential is highly dependent on the input data set and 
should always be validated carefully.

Charge density functionals.  One of the novel capabilities of PROPhet is the ability to train charge density 
functionals to arbitrary system properties. According to the Hohenberg-Kohn theorems, the ground-state charge 
density is a fundamental variable that can be used to determine any system property, if only the means to extract 
the information is known1. One can write a reasonably general functional of the density as

∫ρ ρ ρ ρΘ =
� �� �� � ��r f x x x d V[ ( )] ( ( ), ( ), , ( )) (1)n

n
1 2

where n is the order of the functional (n = 1 corresponds to a local functional) and V is the relevant region of the 
density. As a familiar concrete example, consider the local density approximation (LDA), where one writes

∫ρ ρ ε ρ=
   E r r r dr[ ( )] ( ) ( ( )) (2)xc

LDA
xc

where εxc is the so called exchange-correlation energy density, the form of which is known in the high and low 
density limits, and can be numerically interpolated for intermediate densities. Equation 2 is a special case of 
Equation 1 for which n = 1 and f(ρ) = ρεxc(ρ). Outside of the homogeneous electron gas, and for virtually all 
properties, Θ, other than energies, the function f is completely unknown a priori. Again, one of the strengths 
of machine learning techniques such as neural networks is that no a priori knowledge of the functional form is 
required, and the flexibility of the networks allows many complicated functions to be fit.

Fitting ρΘ
r[ ( )] directly with a neural network is not feasible, since a neural network must always see the same 

number of inputs, each of which must have the same meaning, but a charge density represented on a grid, or 
expanded in some basis, can comprise an arbitrary and a priori unknown number of inputs. Worse, if the system 
of interest is shifted or rotated relative to the underlying grid or coordinate system, the resulting input vector 
presented to the network will change. Without employing a substantially expanded training set or explicitly sym-
metrizing the inputs in a preprocessing step, a neural network fit in this way will yield inconsistent answers. In 
addition, the number of parameters in a neural network grows quickly with the number of inputs. Given that the 
number of grid points or expansion coefficients for a charge density can easily exceed 106, tens or hundreds of 
millions of DFT calculations might be required to provide enough training data.

PROPhet solves these problems by training the ANN as the kernal function f (i.e., the integrand) in Equation 1, 
rather than the entire functional, Θ. That is, the ANN itself is a pure function of the density — taking exactly n 
points as input (one for a local functional or a few for a nonlocal functional) per system, regardless of the num-
ber of grid points in the density. This network-represented function is then numerically integrated explicitly to 
form the full density functional. Since the number of inputs remains constant and relatively small regardless of 
the size of the grid, functionals created in PROPhet can be used on densities of any size without the need for 
preprocessing or using an excessive training data set. In addition to simplifying the evaluation of the functionals, 
this makes it possible to create a single functional applicable to many different physical systems, since the details 
of the underlying charge density grids need not be the same. Furthermore, density functionals written in this 
way return consistent results even if the physical system is shifted or rotated relative to the underlying coordinate 
system. Such transformations do not change the points the network sees, but only (possibly) the order in which 
it sees them, which does not affect the result of Equation 1. In PROPhet, the integration in Equation 1 is carried 
out by performing n nested loops over the density, evaluating the network at each point (or pair, triple, etc), and 
then summing these results after scaling by the appropriate dV value (the discrete volume). The result is the value 
of the functional Θ for the given density.

In order to train this density-functional network, we define an error function, E, as the sum of the squared 
errors over the training set, and determine how this error varies as each internal network parameter, χi, changes. 
This is done by invoking the chain rule on Equation 1:

∫χ χ χ
=

∂
∂Θ

∂Θ
∂

=
∂
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∂
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In other words, we compute the derivative of the network output with respect to the internal parameters in the 
usual way, then integrate these derivatives scaled by ∂

∂Θ
E , the derivative of the error function with respect to the 

value of the functional, to get the derivatives required to properly adjust the parameters. The integration over 
volume evident in Equations 1 and 3 is the key difference between a standard implementation of ANNs and the 
way in which PROPhet handles functionals of grid-based data. For dense charge density grids, these integrals may 
entail a large number of points, greatly increasing the computational cost, especially for non-local functionals. For 
this reason, PROPhet allows for down-sampling, wherein density values are averaged over clusters of neighboring 
grid points. This effectively renormalizes the density to a coarser grid before the integrations are performed, 
greatly reducing the computational cost.

It is important to note that nothing in Equations 1 and 3 requires the functional being determined to repre-
sent an energy. Historically, the community has thought entirely in terms of energy functionals since we have 
some idea how to write approximations to these using known physics. However, the Hohenberg-Kohn theorems 
state that the ground-state charge density is a fundamental variable of the system, much like the full many-body 
wave function, and thus it contains the information necessary to determine all system properties. Below, we will 
provide an example illustrating how powerful ANNs can be for identifying density functionals to predict other 
properties.

Results and Discussion
In this section, we present several examples to illustrate the broad and exciting range of applications that may be 
addressed using ab initio computations in conjunction with the machine learning tools developed in PROPhet.

To demonstrate the ability of PROPhet to map atomic structure and crystallographic information to system 
properties, we use the Behler-Parrinello approach described above to fit an analytical potential for bulk carbon 
in the diamond structure to DFT total energies. The fit was performed on around 28,000 (2 × 2 × 2) supercell 
structures (64 atoms each), generated using ab initio MD simulations at temperatures ranging from 50 K to 400 K. 
The DFT calculations were carried out within VASP, using a plane-wave cutoff of 350 eV, a (3 × 3 × 3) Γ-centered 
k-point grid, and the PBEsol exchange correlation functional. The ANN used to fit these data consisted of two 
hidden layers, each with 35 nodes (using a tanh transfer function) and a single linear activation node as the net-
work output.

Figure 1 shows a histogram of the prediction errors of the generated ANN potential over a testing set of 2000 
structures not used in the fit. All errors are less than 0.5 meV per atom, well within the accuracy of the DFT cal-
culations themselves. The quality of the fit can be further demonstrated by analyzing the phonon spectrum of a 
bulk-diamond supercell. Figure 2 compares the phonon band structure computed from this ANN potential for 
a (4 × 4 × 4) supercell with that computed using density functional perturbation theory within VASP. The agree-
ment is excellent, bolstering confidence in the fidelity of the potential. Note that the neural network potential is 
orders-of-magnitude faster than the original DFT calculations, and the PROPhet phonon spectrum of Fig. 2 was 
computed in seconds.

The power of MD potentials generated from PROPhet is that they extend the accuracy of quantum mechanical 
methods for short-ranged interactions to very large systems with perhaps many thousands of atoms. This can be 
used to determine, e.g., thermal or mechanical properties, which are not easily accessible to direct ab initio calcu-
lations because of the prohibitive computational cost. As an example, the previously described diamond potential 
was extended to allow the study of dilute vacancies, by including a total of 75,000 structures, about half of which 
contained one or more vacancies. The data set was generated using ab initio MD in a manner identical to the 
above mentioned data set for ideal crystals. The resulting potential was then used to study the propagation speed 
of low-amplitude waves moving though diamond as a function of vacancy concentration. These calculations were 
carried out using the MD code LAMMPS21, 22, with a library created, and included within PROPhet, to allow 
potentials created with PROPhet to be used directly in LAMMPS as if they were native to the code.

Figure 1.  Histogram of the errors between a machine-learned analytical potential and the directly computed 
DFT energies for carbon in the diamond structure. The network used here, trained in PROPhet, contained 2 
hidden layers each containing 35 nodes. The errors shown here are for 2000 structures that were not used in the 
fitting procedure.
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The MD simulations were performed using a (6 × 6 × 10) supercell (2880 atoms). For each vacancy concen-
tration considered, carbon atoms were removed at random, with care taken to avoid vacancy clusters since these 
are outside the range of validity of the generated potential. To investigate the effects of the precise vacancy con-
figurations, 50 randomly generated structures were generated at each vacancy concentration. The simulations 
were conducted by first minimizing the energy for the given configuration, then applying a 4 Å/fs velocity to the 
atoms in the first plane, in either the x (transverse waves) or z (longitudinal waves) direction and monitoring the 
propagation of the impulse wave as it moves through the lattice.

Figure 3 shows the calculated speed of sound averaged over all 50 randomly-generated vacancy configurations 
at each concentration, for longitudinal and transverse polarized waves moving through the cell. As is evident 
in the figure, the wave propagation speed generally decreases for both polarizations with increasing vacancy 
concentration, with the effect being larger for longitudinal waves. This stems from weaker coupling as vacancy 
concentration increases, creating a lower effective restoring force for atomic displacements. The increasing stand-
ard deviation (denoted in the figure by the error bars) as concentration increases arises from the local variation 
of wave propagation speed within the precise configuration of vacancies even at a given concentration. As the 
vacancy concentration increases, there are more possible configurations of vacancies and thus a larger range of 
possible wave propagation speeds. For example, at the highest concentration investigated (0.45%), the full range 
of wave propagation speeds over the 50 sampled configurations was 1129 m/s or about 7.35% of the average value. 
Such a wide variation means that a potential of this kind would be invaluable in studying, for example, thermo-
electric materials for which one wishes to optimize the configuration of defects to minimize thermal conductiv-
ity (i.e., the propagation of phonons through the system). Note that these calculations could not be performed 

Figure 2.  Phonon band structure of diamond-structured carbon as calculated from the PROPhet potential 
(black lines) and density functional perturbation theory (red circles). Phonons with the PROPhet potential were 
computed within the frozen-phonon approximation using a 6 × 6 × 6 supercell, while those from DFPT were 
computed within VASP using a primitive cell. All band structures were interpolated using the phonopy43 code. 
These results are in good agreement with experimental and other theoretical results44, 45.

Figure 3.  The speed of sound through a (6 × 6 × 10) unit cell of diamond as a function of vacancy 
concentration for both the longitudinal (top) and transverse (bottom) polarizations. The values and error bars 
plotted at each concentration correspond to the mean and standard deviation for the value of 50 randomly 
selected vacancy configurations. The inset shows a longitudinal wave propagating through the unit cell used 
for these calculations, and is meant to emphasize that potentials of this kind can couple short-range quantum 
mechanical information acquired from ab initio calculations with large, complex systems, facilitating the study 
of emergent behavior. The longitudinal speed of sound at zero vacancy concentration is in good agreement with 
experimental values46.
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directly with DFT, since the low vacancy concentrations studied here require thousands of calculations on unit 
cells with hundreds to thousands of atoms, well outside the practical abilities of DFT. Further, results of this kind 
could not be achieved through traditional force-field type approaches since we are studying very precise vacancy 
configurations that i) cannot be modeled reliably by potentials fit to bulk system properties and ii) will tend to 
confound potentials based on connectivity. Through a combination of a robust set of DFT training data and a 
very flexible functional form, PROPhet is able to generate a near-DFT-accurate potential capable of studying such 
large-scale phenomena in systems with finely tuned microstructure.

Although creating analytical potentials capable of obtaining near-DFT energies orders-of-magnitude faster 
than ab initio methods is extremely useful, PROPhet’s capabilities extend well beyond this known use case. In 
particular, PROPhet can use the electronic charge density as input to a network, allowing one to train density 
functionals for arbitrary system properties. The most familiar example of such a use would be machine learning 
an exchange correlation energy functional. One way to proceed is to perform standard DFT calculations on many 
structures, extract the charge density from each calculation, then couple these to a more sophisticated DFT treat-
ment (e.g., hybrid or meta-GGA functionals), or a wave function-based method (e.g., MP2 or CCSD(T)). Once 
trained successfully, the result is a pure density functional capable of obtaining (within some average error bars) 
energies from much more expensive, non-local approaches.

To demonstrate this, we first generate an exchange-correlation density functional for gas phase NH3, chosen 
because of the low computational cost of simulating such an atomic structure. Single point energy calculations for 
1000 randomly-generated structures were carried out using the all electron FHI-Aims code12, 13 with the B3LYP31 
hybrid functional using the “tight” basis set. The charge density for each structure, stored on an (80 × 80 × 80) 
grid, was used as input to a local PROPhet functional (Equation 1 with n = 1), with the output being trained to 
the B3LYP exchange-correlation energy. The chosen neural network contained a single hidden layer with 120 
tanh-neurons. Errors for structures in a test set of 5000 structures not contained in the fit are impressively low, 
with an RMS error of only 20 meV, and almost all predictions lying within chemical accuracy of the underlying 
B3LYP values. It is critical to realize that these are the errors arising from using a pure (local) density func-
tional to predict the value of a non-local hybrid functional. In effect, this functional approximates the B3LYP 
exchange-correlation energy, but at a computational cost similar to that of LDA.

An obvious question with these results is whether the relatively large number of parameters in the neural 
network (361 in this case) means that the good results are a matter of over-parameterization (this common criti-
cism of neural networks conjures up quotes about fitting elephants32) or if real, meaningful information is being 
extracted from the density. To help answer this question, we performed a second fit using the same data, but with 
the exchange-correlation energies randomly reordered, so that each was associated with the “wrong” density. The 
neural network and the training procedure were otherwise identical to the previous case. The best RMS error 
achieved was 400 meV, a factor of 20 higher than that given above. This indicates that the previously fit network 
is indeed identifying information contained within the density that leads to the associated exchange-correlation 
energy. We emphasize that although the true exchange-correlation functional is universal, the functional fit here 
has extremely limited applicability as the input to the network is purely from NH3 data. A machine-learned func-
tional with wider predictability would require a greatly expanded training set containing many structures from 
diverse systems. However, this demonstrates the promising ability of machine learning techniques to extract pure 
density functionals which closely approximate much more complicated wave function expressions.

As a second, more intriguing example, a pure density functional was created to predict the CCSD(T) corre-
lation energy of gas phase ammonia. The energies of 1500 randomly-generated NH3 structures were computed 
at the CCSD(T) level in the NWchem33 quantum chemistry package, using a cc-pVTZ basis set. Using, as input, 
the charge densities generated by the initial Hartree-Fock orbitals, 500 of these structures were used to train a 
PROPhet density functional consisting of a single layer with 80 neurons. The resulting density functional was 
then used to predict the CCSD(T) correlation energies of the remaining 1000 structures (see Fig. 4). As in the 
previous example, almost all the predictions lie within chemical accuracy of the reference method, demonstrating 
that this functional, again with a cost similar to an LDA calculation, can accurately predict the energy from much 
more accurate wave function approaches.

This ability to express non-local quantities, which depend explicitly on wave functions, as pure density func-
tionals raises other intriguing possibilities. As an example, the well-known N( )3  scaling of standard DFT limits 
its practical utility to systems of hundreds of atoms (with advanced methods reaching 1000 atoms). This steep 
scaling arises from the need to diagonalize the Hamiltonian to obtain the single-particle orbitals necessary to 
compute the electronic kinetic energy, which has no known pure density functional form. If a pure density func-
tional (local or otherwise) can be found, the resulting orbital-free DFT could be capable of describing systems 
with tens of thousands of atoms34. The obvious implications of this have led to enthusiastic efforts to find such a 
pure density functional, an endeavor that dates back at least as far as the Thomas-Fermi approximation. While 
progress is being made in this field, to date no such functional has provided the necessary accuracy to supplant 
the current (exact) orbital-based calculation of the kinetic energy.

Recent work has shown machine learning to be a promising avenue toward finding a kinetic energy density 
functional35–39. In principle, the approach here is straightforward. Since any Kohn-Sham DFT calculation pro-
duces the exact (single particle) kinetic energy, one can run many single-point DFT calculations, extracting the 
charge density and kinetic energy from each. Equations 1 and 3 can then be used to fit the former to the latter, 
producing a kinetic energy density functional in the form of a trained ANN. In practice, of course, the complexity 
of such a kinetic energy density functional makes this a difficult process. As a demonstration of this concept, 
500 NH3 structures were used as a training set to fit charge density to the electronic kinetic energy. The results, 
while not yet quantitatively sufficient, are encouraging for further exploration as a way to cheaply calculate the 
kinetic energy term. In a straightforward application of the approach, a two layer network with 25 tanh-neurons 
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per layer yielded an RMS error of 300 meV over the same 5000 structure prediction set used above. While this 
is far from chemically accurate, it is important to note that even this first attempt exceeds, by orders of magni-
tude, the accuracy of the Thomas-Fermi model including the empirically scaled von Weizsäcker correction40, 41, 
which yields an RMS error of 450 eV over this set. It remains to be seen whether a carefully constructed network 
could outperform existing empirical results to an accuracy not currently feasible. A good approximation to the 
kinetic energy is likely to require a functional far more complicated than the purely local functional that we have 
employed. Work is currently underway to investigate the ability of non-local functionals, fit through PROPhet, to 
provide an improved description.

While a promising scientific endeavor, energy components are not the only useful quantities to compute using 
these methods. For example, optical properties such as band gap can be computed fairly accurately with advanced 
methods such as GW3 or TD-DFT42, but these accurate methods come with a substantial computational cost. 
This is not a significant problem if one is interested in only a few simple systems, but can become prohibitive if 
one is interested in complex system (e.g., interfaces) or needs to investigate many system (as might be the case 
during high-throughput searches for improved photo-absorber materials). In these cases, one is generally forced 
to use less accurate approximations to the band gap, which may lead to incorrect results. Extending the ideas 
described thus far, it is easy to see how an approximation to accurate band gaps can be generated with PROPhet. 
To demonstrate this, we again use the NH3 data to fit a charge-density functional to the HOMO-LUMO gap 
computed within the G0W0 approximation. In other words, we are mapping B3LYP charge density to the highly 
accurate G0W0 band gap. A network with 120 tanh-neurons in a single hidden layer produced the results shown 
in Fig. 5. The RMS error of this functional over 5000 structures not contained in the fit is a mere 10.4 meV, indi-
cating an exceptionally accurate approximation to the gap computed with G0W0. Functionals like this could be 
used to post-process a standard DFT calculation and provide an excellent approximation to what one would 
obtain from a vastly more expensive GW calculation. Note that, while we have used simple G0W0 values here as 
our training targets, there is no reason one could not use fully self-consistent GW, TD-DFT, or any other desirable 

Figure 4.  Accuracy of a PROPhet density functional mapping the Hartree-Fock electronic charge density to 
the CCSD(T) correlation energy. The underlying neural network consists of a single layer of 80 nodes and was 
trained on 500 randomly generated NH3 structures. The errors shown are relative to a CCSD(T) calculation 
carried out in NWchem for 1000 NH3 structures not contained in the fit. The dotted black lines denote chemical 
accuracy.

Figure 5.  The HOMO-LUMO gap of 5000 structures of NH3 as computed via a functional of the total potential 
vs the same value computed directly within the G0W0 method. None of the structures in this figure were used in 
the fitting of the functional.
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method to train the functional. With this approach, the expense of the underlying reference method only needs 
to be incurred while preparing the training set. After training, evaluating the functional to predict new values is 
of negligible computational cost.

These results demonstrate the range of possibilities of PROPhet and the novel ability to train charge density 
functionals in a machine learning framework. While powerful, the limitations of this method are not currently 
known and is an active area of research. As with all machine learning methods, this suite of tools is ultimately 
limited by the quality and quantity of the data in the training set. While there are significant computational 
advantages to the methods we have outlined, the computational cost associated with generating a representative 
dataset may be prohibitive for some properties or systems. Even with these limitations, however, the tools within 
PROPhet may be applied to a wide range of areas in physics, chemistry, and materials science.

Conclusions
The results described here demonstrate great promise for using machine learning techniques to find less expen-
sive alternatives for computing molecular and materials properties. While some of these ideas (e.g., analytical 
potentials) have been used successfully for quite some time, our results confirm that machine learning techniques 
can have a far wider impact if coupled to ab initio computations effectively, particularly by creating density func-
tionals for important system properties. With the hope that this potential can be realized through community 
effort, we provide PROPhet as an open source tool to facilitate work in this direction. As described in this work, 
the current capabilities of PROPhet already allow a diverse array of uses, but the code is being released open 
source to allow its capabilities to be extended as needed by any interested researchers.

Associated Content
Supporting Information.  A full detailed description of PROPhet, as well as the code itself can be found at 
http://kolpak.mit.edu/PROPhet.
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