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Abstract

High speed communication networks accommodate various types of traffic including
voice, video and real-time data. Such traffic, being sensitive to congestion phenomena
(packet losses, and excessive delays), requires Quality of Service (QoS) guarantees.
We quantify QoS by the probability of congestion, which should be extremely small,
e.g. on the order of 107°. We use Large Deviations techniques to estimate the leading
exponent of this probability in various settings.

In a single class setting, we consider an acyclic network and compute the leading
exponent of congestion probabilities in each node, by decomposing the problem to
a series of single node problems. In a multiclass setting, we consider a multiplexer
with segregated buffers and calculate the leading exponent of congestion probabilities
for each type of traffic, under various scheduling policies. We relate the problem to
a deterministic optimal control problem, which we explicitly solve. Optimal state
trajectories of the control problem correspond to typical congestion scenarios. Both
in the single and multiclass settings our results explicitly characterize the most likely
way that congestion occurs.

We show how to apply our performance analysis results to prevent congestion. We
devise an admission control mechanism that provides loss and delay QoS guarantees
which can be distinct for each type of traffic. This generalizes the notion of effective
bandwidth in the multiclass case.

Finally, we propose an importance sampling technique for variance reduction in
simulations of loss probability in certain single class buffers that multiplex a large
number of calls. We show numerical evidence of dramatic reduction in simulation
time versus direct Monte Carlo simulation.
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Chapter 1
Introduction

In recent years we have witnessed an explosion in the number of Internet users, mainly
due to the development of software (World Wide Web browsers) that make Internet
resources easily accessible, even to users that are not well versed in computers. Being
“on-line” has become a way of life, and e-mailing as well “surfing” the net indis-
pensable routine activities. In this new world, where connectivity is a must, new
services are emerging such as interactive TV, teleconferencing, Video-On-Demand
and remote access to information servers, to name a few. Moreover, educational and
medical services such as remote teaching, remote medical diagnosis and even per-
forming medical procedures remotely, have been developed or are in the development
process. All these services are of a truly multimedia character, meaning that they
require from the network transfers of large amounts of data, images, audio and even
video. Advances in hardware (fiber optics, switching) have made available enough
bandwidth to satisfy the resulting dramatic increase in bandwidth requirements. The
challenge is how to manage the network resources (bandwidth) in order to support

such multimedia services.

The TCP/IP protocol used in the Internet as well Ethernet, FDDI and other
popular Local Area Network (LAN) protocols can only provide “best effort” service.
That is, the protocol does its best to accommodate the offered load without making

particular promises to the users. Congestion causes packet losses, due to buffer over-

17



18 Chapter 1. Introduction

flows, and excessive delays, thus in the event of congestion, packets may be dropped
or arbitrarily delayed. The protocols achieve reliable communication by retransmit-
ting packets that have being dropped, which generates further delays. This may be
tolerable for e-mail and file transfers but results in severe degradation of the Quality
of Service (QoS) provided to real-time services as the ones already discussed. Hence,

the network should have the ability to guarantee certain QoS parameters to the user.

In the last decade a new transport protocol has been standardized, the Asyn-
chronous Transfer Mode (ATM) protocol where information is traveling in tiny fixed-
length packets of 53 bytes each (48 bytes information, 5 bytes header) [BG91]. ATM
mnetworks are gaining popularity and a number of organizations are currently upgrad-
ing their LANs to ATM. Many specialists believe that soon Internet (TCP/IP) will
be running on top of ATM. ATM switches with capacities of up to 10 Gb/s are cur-
rently available and more powerful switches are being developed. ATM networks are
a particular flavor of B-ISDNs (Broadband Integrated Services Digital Networks) that
as the name indicates have the capability of providing high transmission speeds and
accommodate distinct types of services (handling voice, video and data). Figure 1-1

depicts one such communication scenario.

Independently of which protocol dominates, two are the critical questions that

arise from the above discussion:
1. How we quantify the notion of Quality of Service (QoS) and how we measure
it ? |
2. How we design and operate a high-speed multimedia network in order to prevent

congestion and to guarantee QoS to real-time services ?

These questioﬁs should be addressed in a’se'tting that preserves the fundamental
features of high speed networks, as outlined above. We believe that among such

features two dominate:: .. -

1. Networking. The high speed network is a collection of switches (nodes) and

sessions go through several nodes from origin to destination. Thus, the QoS
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Figure 1-1: A scenario of multimedia communications via a B-ISDN network.

offered to the session by all nodes in its path has to be quantified and measured.

2. Multimedia. Possibly the dominant feature of such high speed networks is that
they accommodate different types of traffic, including voice, video and data,
which are quite different in character (hence, a different model may be needed

for each type) and have different QoS requirements from the network.

1.1 QoS measures and Literature Review

One way to provide QoS guarantees is to ensure that packets losses do not occur
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and delays stay bounded below a given maximum tolerable value that depends on the
particular application (type of traffic). To attain such a goal, deterministic bounds
on queue lengths and delays have to be determined in the network, which requires
external input traffic to be also bounded. This deterministic approach was initially
proposed by Cruz [Cru9la, Cru91lb]. He lets R(t) represent the instantaneous rate of
traffic lowing on a specific link at time t. Therefore, for y > z, the integral fY R(t)dt
represents the total amount of traffic transmitted in the time interval [z,y]. A specific
regulator (leaky bucket) is applied to the incoming traflic with the property that the

regulated traffic satisfies
y
/ R(t)dt <o+ p(y — z)

where o and p are constants. Under regulated incoming traffic, upper bounds are
provided for delays and queue lengths and the idea is extended to networks. Parekh
and Gallager developed this approach further in [PG93, PG94]. They consider the
generalized processor sharing (GPS) policy, which was also proposed in [DKS90] under
the name fair queueing, and they obtain worst-case upper bounds on delays and queue

lengths in the network from source to destination.

Using such a worst-case approach one can dimension the buffers in the network
and tune the regulators in the interface between the network and the users, so that
congestion phenomena (packet losses and excessive delays) do not occur. However, to
calculate deterministic bounds on queue lengths and delays, the worst-case behaviour
of traffic sources is assumed. This may result in substantial underutilization of the
network resources, since typical traffic in communication networks is bursty and on
the average it uses much less bandwidth than its peak requirements. Moreover, al-
though such a worst-case approach, where external input traffic is regulated, provides
guarantees on what is happening in the network, it does not provide concrete guar-
antees to the application that uses the network. For instance, losses and large delays
may be incurred in the leaky bucket regulator, even though packets that finally enter
" ‘the network do not suffer from congestion. '

In this thesis, as many authors in the literature, we take a philosophically different

standpoint. Let Dpay be the maximum tolerable delay to deliver a packet from source
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to destination. Let also d denote the delay incurred by an arbitrary packet and P, the
packet loss probability (i.e. the probability that the packet is dropped due to buffer

overflow). We seek to make losses and excessive delays rare events, i.e.,

Pld > Dpa] < € (1.1)

P <e (1.2)

where € is on the order of 107°. Real-time applications can tolerate such small fre-
quencies of congestion phenomena. Hence, we quantify QoS by the probability of
excessive delays and the loss probability. We refer to Dy, and € as QoS parame-
ters, since they determine how well a particular application is treated. Determining
such probabilities as the ones in (1.1) and (1.2) is a highly non-trivial task, since it
essentially requires finding the distributions of waiting times and queue lengths in
a multiclass network of G/G/1 queues with correlated arrival processes (since it is
needed to model bursty traffic) and non-exponentially distributed service times. In
this light, it is natural to focus on asymptotic regimes and determine the leading ex-
ponent of such small probabilities. Large deviations [Buc90, DZ93b] theory will be our
main analytical tool in this thesis, since it provides techniques to obtain asymptotic

expressions for the tails of atbitrary distributions.

One important requirement for the above outlined approach is that a detailed
statistical description of the input traffic should be available. We will use Markov
modulated processes and stationary processes with mild mixing conditions to describe
input traffic. Such models approximate very well voice traffic (see [MAS88]) and
have been used to describe video traffic (see [EHL*94, EM93, Kel96, SW95]) with
satisfactory results. In Chapter 6 we describe such models in more detail and assess
their performance through experiments. Data traffic is harder to model. Recently
a certain statistical behaviour termed self-similarity has been observed in Ethernet
traffic [LTWW94, Wil95] and some complicated models have been proposed [Nor94]

to explain this behaviour. Objections on the existence of self-similarity in actual
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traffic have been raised in [DLO*94], where the authors argue that non-stationarity
causes the observed statistical behaviour. Although the issue is not yet settled, such
models, which exhibit self-similarity, are beyond the scope of this thesis. We view
our results as complementary to other approaches that handle such models and to
worst-case deterministic approaches. Our principal focus is voice and video, which

will definitely fill up a significant portion of the total traffic.

Large deviations techniques have been applied recently to a variety of problems in
communications. A nice survey can be found in [Wei95]. The problem of estimating
tail probabilities of rare events in a single class queue has received extensive attention
in the literature [Hui88, GH91, Kel91, KWC93, GW94, EM93, TGT95] and has been
approached by two main methodologies. The first one is to use large deviations
arguments. Such results were first obtained in [Hui88], [Kel91], [GH91] and later in
[KWC93]. A more elaborate Markov modulated model with multiple time-scales is
used in [TGT95]. The second approach is to use spectral decomposition techniques
and is used in [EM93] to estimate the tail probability of the queue length in a queue

with a deterministic server and Markov modulated arrival process.

The extension of these ideas to networks appears to be a rather challenging prob-
lem. Researchers have been able to obtain some bounds on the tail probabilities for
delays and queue lengths in various networks models (see [Cha94b, YS93]), but it is
not clear whether these bounds are tight. Recently, large deviations results for two
queues in tandem, with renewal arrivals and exponential servers, were reported in
[GA94].. In [dVCW93], a very interesting approach is used to obtain results for net-
works with deterministic servers. The departure process from a single G/D/1 queue
is characterized in the large deviations regime, using a discrete time model, in an
attempt to treat the whole network inductively. The main focus of [{VCW93] is to
apply the large deviations results obtained to resource maﬁagement for networks. It
is important to point out that the departure process is a very difficult process to
obtain exact results for (see for example [BN90]).: However, we should note that it
is not very clear to us how the large deviations result for the departure process in
[dVCW93] can be applied inductively. The crux of the matter is that [{VCW93] uses
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a technical result from [DZ93a] in order to obtain the large deviations behaviour of
the departure process. The latter result holds under certain technical assumptions on
the arrival process. Since the departure process from a queue is the arrival process
in an other downstream queue in the network, one would need at this point to verify
that fhe same technical assumptions hold for the departure process. This is not done
in [dVCW93] and appears to be rather difficult.

In a multiclass setting, the asymptotic tails of the overflow probabilities for the
GPS policy with deterministic service capacity are obtained in [dVK95] and [Zha95].
The latter paper raises and addresses a technical difficulty not handled in [dVK95].
Both papers use a large deviations result for the departure process from a G/D/1
queue [dVCW93]. Tail overflow probabilities for the GPS policy and deterministic
service capacity were also reported in [O’C95b, CW95]. The authors in [CW95] view
the problem as a control problem where control variables are the capacity that the
server allocates to each buffer, as a function of the current state. This approach
has some technical problems with boundaries because it requires Lipschitz continuity
of the controls. In [GGG93] the authors suggest the use of the longest queue first
(LQF) policy in high speed networks and use a deterministic model (only the rate
of each incoming stream is known) to calculate buffer sizes that guarantee no loss
with certainty. In [SW95] the authors consider the LQF policy in a system with two
buffers and address the question of how one queue builds up when the other is large.
They consider the M/M/1 version of the system (i.e., Poisson arrivals and exponential

service times).

One other issue that arises in practice is the simulation of rare event probabilities,
especially in situations where a very accurate estimate should be obtained or when
asymptotic results obtained through large deviations techniques are tested and veri-
fied. The problem is that simulating a system to estimate a small probability (< 10°)
may take a long time since a huge sample size is required. Importance sampling has
been used to substantially speed up the simulation in several cases [PW89, CHJ S94].
Large deviations techniques are very useful in determining the change of measure to

be used in importance sampling (see [Buc90]).
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1.2 Results and Contributions of the Thesis

In this thesis we address the questions raised earlier in both a networking and a mul-
timedia (multiclass) setting. As we outlined in Section 1.1, we use the loss probability
and the probability of large delays (see Egs. (1.1) and (1.2)) to quantify QoS.

1.2.1 A network result

To motivate our network result consider the particular “bold” session in Figure 1-2.

It passes through a series of switches with associated buffers dedicated only to this

Figure 1-2: A session from origin to destination as it passes through a

series of switches (nodes).

‘session. Even if the capacity of the switches is deterministic, due to the stochastic
nature of the cross traffic in each switch, the “bold” session is facing a tandem net-
work of G/G/1 with stochastic capacities. The objective is to determine the QoS
parameters that all nodes deliver to the session. The largest loss and delay proba-
‘Dbilities among all nodes determine the QoS delivered to the session by the network.
Notice that since we are only considering the “hold” session and not the way that it
interacts with other sessions we are in a single class setting and the First Come First

Serve (FCFS) policy is a natural choice.
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In Chapter 2, we consider a network model that generalizes the tandem network
faced by the “bold” session. The results of that chapter were reported in [BPT94]. In
particular, we consider a single class, acyclic network of G/G/1 queues. Customers
arrive to the network in a number of independent streams and are treated uniformly.
Different streams may share a queue and the first-come first-serve (FCFS) policy is
implemented. A constant fraction p;; of customers departing queue i, is routed to
queue j and a fraction p;o leaves the network. The aim is to derive large deviations
results for the waiting time and the queue length observed by an arbitrary customer at
different queues of the network. To this end, we initially seek to characterize the large
deviations behaviour of the aggregate arrival process in each node. Our results are self-
contained in the sense that we do not need the technical results of [DZ93a]. Instead,
we impose certain assumptions on the external arrival processes and we characterize
the large deviations behaviour of all the processes resulting from various operations
in the network. For the network model that we are considering, these operations are
passing-through-a-queue (the process resulting from this operation being the depar-
ture process), superposition of independent processes, and deterministic splitting of
a process to a number of processes. We prove that the assumptions imposed on the
external arrival processes are preserved by these operations, and thus we are able to
apply these results inductively to obtain large deviations results for the aggregate
arrival process in each node. As a by-product of our analysis we also obtain large
deviations results for the internal traffic in the network. For a single queue, in isola-
tion, we characterize the large deviations behaviour of the waiting time incurred by
a typical customer and, by using ideas from distributional laws (see [BN95, BM92]),
the large deviations behaviour of the queue length observed by a typical customer.
Finally, we combine the large deviations behaviour of the aggregate arrival process
in each node of the network with the results for a single queue to obtain the large

deviations behaviour of the waiting time and queue length in each node.

Our approach provides particular insight on how these large deviations occur, by
concretely characterizing the most likely path that leads to them. Characterizations

of most likely paths were also obtained for the single queue case in [Asm82], [Ana88]
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and [DZ93a]. Results similar to ours were independently obtained in [Cha94a], [CZ95]
and [O’C95a). In [Cha94a] the author obtained the large deviations behaviour for a
network model of G/D/1 queues when the external arrival processes are bounded. In
[CZ95] the authors obtain the large deviations behaviour of the departure process of
~ a G/G/1 queue, in isolation.

It is inferesting to note, that in order to obtainﬂ‘ie la;rg'e” dsviafisns behaviour
of the superposition operation we prove a general result that connects the stationary
distribution (i.e., as it is seen at a random time) and the Palm distribution (i.e., as it
is seen by a typical customer) of a point process in the large dev1at10ns reg1me This

result could be of independent interest.

1.2.2 Multiclass Performance Analysis Results

To address the questions raised in the beginning of this chapter in a multimedia
environment we consider a multiclass multiplexer (one node), with segregated buffers
for each type of traffic. We seek to determine the QoS parameters that the switch
delivers to each type of traffic under specific scheduling policies for sharing bandwidth.

That is, the aim is to obtain loss and delay probabilities for each type of traffic.

In Chapters 3 and 5, we consider the generalized processor sharing policy (GPS)
(loss and delay, respectively). According to this policy each type i of traffic receives
a guaranteed constdnt o; fraction bf fhe node’s capacity. In Chaptei‘ 4, we consider
the loss probability under the generalized longest queue first policy (GLQF), which
as the name indicates is a generalization of the LQF policy. In particular, there is a
threshold level, 3, and the server allocates all of its capacity to the first buffer, if the
ratio of the queue length in the second buffer versusthe queue length in the first buffer
is below the threshold, otherwise it allocates all of its capacity to the second buffer.
For 8 = 1 we have the LQF policy. The LQF policy can be viewed as an attempt
to reduce the variance of delay between different types of traffic. Both the GPS and
the GLQF policies are parametric policies and for specific values of the parameters

reduce to strict priority policies. Thus, the performance of strict priority policies is
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obtained as a corollary of our results (approximate results for priority policies are
reported in [EM94]).

In Chapter 4, we compare the loss probability characteristics of the GLQF and
the. GPS policy and find that the first outperforms the second. However, this may be
happening at the expense of greater delay. Though, since delay is due to long queues,
it is intuitive that the GLQF policy tries to balance (with a § “bias”) the delay of
the two traffic streams. In any case, if only loss probability guarantees are needed,

our results clearly suggest the use of the GLQF policy instead of the GPS.

Regarding the analysis technique, in the standard large deviations methodology we
provide a lower and a matching (up to first degree in the exponent) upper bound on
the buffer overflow and delay probabilities. We prove that congestion occurs in one of
two most likely ways (modes of overflow) and we explicitly and in detail characterize
these modes. We address the case of multiplexing two different traffic streams; for
the general case of IV streams our lower bound approach (which also determines the
modes of overflow) can be easily extended. It should be noted, however, that there

is an exponential explosion of the number of overflow modes (there are 21

modes).
Proving a tight upper bound for the case of N streams is still an open problem. Our
results have important implications in traffic management of high-speed networks.
They extend (in the GPS case) the deterministic, worst-case analysis of [PG93] to

the case where a detailed statistical model of the input traffic is available.

More importantly, we provide an optimal control formulation of the problem,
both in the GPS and the GLQF case. Our formulation is different from the one
in [CW95] and does not fall into problems with the boundaries of the state-space.
In particular, the exponent of the congestion probability is the optimal value of a
corresponding control problem, which we explicitly solve. Optimal state-trajectories
of the control problem correspond to the most likely modes of congestion; from the
solution of the control problem we obtain a detailed characterization of these modes.
This formulation, as will be apparent later, motivates the selection of congestion
scenarios that are used to obtain the lower bound, a selection which is sort of arbitrary

in most of the existing literature. This optimal control formulation is general enough
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to include any scheduling policy. The only thing that changes with the policy is the
dynamics of the system. Optimal control formulations are also used in [SW95] for

large deviations results for jump Markov processes.

Our results consider the case of stochastic node capacity (in contrast to [dVK95,
Zha95, O’C95b, CW95]). This makes it possible to treat more complicated service
disciplines. Consider for example the case where we have a deterministic server and
three types of traffic with dedicated buffers. We give priority to the first stream and
use the GPS policy for the remaining streams. These two remaining streams face a
server with stochastic capacity, a model of which can be obtained using the model for

“the arrival process of the first stream. Stochastic capacity significantly alters the way
congestion occurs. To see this notice that in deriving their results [dVK95] and [Zha95]
use the departure process from a G/D/1 queue. The large deviations behaviour of
the departure process is different with deterministic and stochastic service capacity
as it is pointed out in Chapter 2 and [BPT94, CZ95]. '

1.2.3 Admission Control

In Chapter 6, we apply the performance analysis results outlined in Section 1.2.2 to

prevent congestion through admission control.

More specifically we consider the same model of the multiclass switch with segre-

gated buffers for each type of traffic and under the GPS policy we

1. Dimension the buffers based on the maximum tolerable delay characteristics of

the corresponding types of traffic, and

2. Devise an admission control algorithm on a call basis that guarantees to each

type of traffic the required QoS parameters.
Among the main advantages of the proposed algorithm are

e It allows for the use of separate models for each type of traffic.
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® Delivers to each type of traffic the required QoS parameters, which may be
type-dependent.

e Takes into account both packet loss and delay in measuring congestion. To
see the importance of this feature consider a switch with two buffers and high
priority to the first buffer. Notice that guaranteeing the loss probability in both
buffers is not sufficient for acceptable QoS since traffic in the second buffer may

experience arbitrarily large delay.

Our admission control algorithm can be run on-line and is based on the calculation
of an admission region that contains the set of loads under which QoS is guaranteed
to all types of traffic. Such an admission region can be calculated off-line, if detailed
statistics for the incoming traffic are available. If such statistics are not available the

the admission control mechanism should be coupled with an on-line estimator.

Also, in Chapter 6, we report a couple of experiments with traffic models and
actual traffic which assess the performance of our approach. These experiments show
a substantial gain from statistical multiplexing versus more najve worst-case based

admission control.

1.2.4 Quick Simulation

Lastly, in Chapter 7, we consider a particular single class buffer which accommodates
a large number of calls and estimate the loss probability through simulation. Since,
as we discussed earlier, direct Monte-Carlo simulation takes a large amount of CPU
time, we apply importance sampling techniques. Based on the large deviations result

in [BD94] we infer a change of measure that speeds-up the simulation dramatically.

1.2.5 Main Contributions

We next summarize the main contributions of the thesis:
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. We provide a rigorous large deviations analysis of single class acyclic networks

of G/G/1 queues that enable us to determine the QoS that a particular session
acquires from the network. In the course of the analysis we characterize the
internal traffic in the network, in the large deviations regime, and prove a result

that relates Palm and stattonary probabilities in the same regime.

. We introduce a deterministicvoptimal control approach to analyze the perfor-

mance of the GPS and the GLQF policy in multiclass multiplexers. The optimal

control approach yields

(a) A tight lower bound on the dominant exponent of congestion probabilities,

and

(b) The most likely way that congestion occurs, in the sense that the optimal
trajectories of the control problem correspond to the maximum probability

scenario (sample path) of congestion.

. We devise an admission control mechanism in multiclass switches that allows

the use of distinct source models per type of traffic and provides loss and delay

guarantees that can be type-dependent.

. We use an importance sampling technique (introducing an appropriate change

of measure) for obtaining the loss probability in a particular single class buffer
through simulation. We show numerical evidence that the simulation speeds up

dramatically when compared with direct Monte Carlo simulation.

1.3 Background Material

In this section we review some basic results on Large Deviations Theory that will be

used in the rest of the thesis. An introductory reference to this theory and some of its

important applications is the book by Bucklew [Buc90]. A very rigorous treatment

can be found in the book by Dembo and Zeitouni [DZ93b|. Finally, the book by

Shwartz and Weiss [SW95] specializes in Large Deviations for jump-Markov processes
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and contains numerous applications of the theory to various problems, especially in

communications.

The theory of Large Deviations is concerned with the estimation of rare event
probabilities. Consider for instance a sequence of iid random variables X;, i > 1, with
mean E[X;] = m. The strong law of large numbers asserts that ——%i converges
to m, as n — oo, w.p.1. Thus, for large n the event 37 ; X; > na, where a > m,
(or 3%, X; < na, for a < m) is a rare event. In particular, its probability behaves
as e @ as n — 0o, where the function 7(-) determines the rate at which the
probability of this event is dropping. Cramér’s theorem [Cra38] determines (),
and is considered the first Large Deviations statement. Although, Cramér’s theorem
applies to iid random variables it has been extended by Girtner and Ellis to cover
dependent processes. We will next state the Gértner-Ellis Theorem (see [Buc90] and
[DZ93b]) which establishes a Large Deviations Principle (LDP) for random variables.

Consider a sequence {Si, S, ... } of random variables, with values in R and define
1
A(6) £ ~log E[e"™] (1.3)

For the applications that we have in mind, S,, is a partial sum process. Namely, S, =
=1 X, where X;, ¢ > 1, are identically distributed, possibly dependent random
variables.
Assumption A
1. The limit

A6) 2 tim A,(0) = lim %log E[e"S"] (1.4)
ezists for all 6, where £oo are allowed both as elements of the sequence An(9)
and as limit points.

2. The origin is in the interior of the domain Dy = {0 A(0) < 0o} of A(B).

3. A(0) is differentiable in the interior of Dy and the derivative tends to nfinity
as 0 approaches the boundary of Dy.
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4. A(0) is lower semicontinuous, i.e., liminf, 4 A(0,) = A(B), for all 6.

Theorem 1.3.1 (Gdértner-Ellis) Under Assumption A, the following inequalities
hold

Upper Bound: For every closed set F

1 Sn .
i — — < - *(a). .
lim sup — log P [ — € F] < élelg‘A (a) (1.5)

n—oo N

Lower Bound: For every open set G

o S o '
llﬂg}fﬁlogP [7 € G] > — ;IE%A (a), (1.6)
whére
A*(a) £ sup(fa — A(B)). (1.7)
0

We say that {S,} satisfies a LDP with good rate function A*(-). The term “good”
refers to the fact that the level sets {a | A*(a) < k} are compact for all £ < co, which

is a consequence of Assumption A (see [DZ93b] for a proof).

It is important to note that A(-) and A*(-) are convex duals (Legendre transforms
of each other). Namely, along with (1.7), it also holds

A(6) = sgp(@a — A*(a)). (1.8)

The Girtner-Ellis Theorem intuitively asserts that for large enough n and for
small € > 0,
P[S, € (na — ne,na + ne)] ~ e (@),
In this thesis, and in particulaf in bhéﬁter 2, we are movstly estimating tail prob-
abilities of the form P[S, < na] or P[S, > na]. We therefore define large deviations

rate functions associated with such tail probabilities.
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Consider the case where S, = Y7, X;, the random variables X;, i > 1, being
identically distributed, and let m = E[X;]. It is easily shown (see [DZ93b]) that
A*(m) = 0. Let us now define

A (a) 2 { A*(a) Tfa >m (1.9)
0 ifa<m
and
A* if
A(@) & | Mle) ifa<m (1.10)
0 if a > m.

Notice that A**(a) is non-decreasing and A*~(a) non-increasing functions of a, re-

spectively. The convex duals of these functions are

A(G) if6>0
At 2] A 6> (1.11)
+oo if6 <0
and
AB) if6<0
Ay 2] MO O (1.12)
+oo if0>0
respectively.

Using the Géartner-Ellis Theorem we can now state
1
lim - log P[S, < na] = —sup(fa — A=(0)) = —A*"(a) (1.13)
n—oo 9
and

lim %logP[Sn > na] = —sup(fa — AT(9)) = —A*"(a). (1.14)
n—o0 9
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1.3.1 Sample Path Large Deviations

A stronger concept than the LDP for the partial sum random variable S, € R that

we introduced in the previous section, is the LDP for the partial sum process

Su(t) = p ZX“' t € [0,1].

Note that the random variable S, = Y™, X; corresponds to the terminal value (at
t = 1) of the process Sy(t), t € [0,1].

In a key paper [DZ93a), the authors establish an LDP for the process Sn(-) in
DI0, 1] (the space of right continuous functions with left limits). In particular, under
certain mild mixing conditions on the stationary sequence {X;; @ > 1} they first

establish that the following two assumptions are satisfied.

Assumption B
Fizrme Nand 0 =ty < t; < ... < tm < 1, setting Z, = (Sa(t1), Sn(t2) —
Sn(t1), -, Sn(tm) — Sn(tm—1)). Then, {Z,} satisfies an LDP in R™ with the good

rate function

Azl(z)=§;(ti—ti_1m*(t ).

i — tict

where z = (21, .. , 2m), and A*(-) is the convez good rate function associated with the

LDP of Sa(1).

Assumption C

For all non-negative y, 7 < 0

1 ktm 5
g(v)= sup —log E[e" Lt ] < oo,
" k,meN,ke[0,rm] T )

and A = sup, limsup,_,, lg,(7) < 00.
Under these assumptions they prove the following theorem.

Theorem 1.3.2 (Sample path LDP, Dembo and Zajic [DZ93a]) Assuming
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that Assumptions B and C hold, the sequence of partial sums {S,(-)} satisfies the
LDP in DI[0,1] with the conver good rate function

1 Ax( - 0
Lo (2() = o A*(2) dt of z € AC

00 otherwise.

We use AC? to denote the set of maps z : [0,1] — R that are absolutely continuous
and satisfy (0) = 0. Dotted variables denote derivatives. The space D|0,1] is
equipped with the metric topology induced by

doo(y(°), 2(")) = t?[?i] ly(t) — z(2)].

The integral in the above theorem can viewed as the cost that the process S,(-)
incurs to follow the path z(-). In the simpler case when dependencies are not present
(ie., S; = Zj-:l X, where X;’s are iid) the above theorem was first proved by Mogul-
skii (see [DZ93b}). In [DZ93a] and [Cha94a] it is proved that Assumptions B and
C (and therefore Theorem 1.3.2) are satisfied by processes that are commonly used
in modeling the input traffic to communication networks, that is, renewal processes,
Markov modulated processes with some uniformity assumptions on the stationary
distribution (see [DZ93a, Section 4]) and correlated stationary processes with mild

mixing conditions.

In this thesis we will focus to such dependent processes and base our analysis on
the sample path LDP. We will therefore assume that arrival and service processes
satisfy a statement similar to Thm. 1.3.2, the exact assumption to be specified on a
case by case basis. The above sample path LDP in discrete time takes the form of

the following assumption.

Assumption D

For all m € N, for every e1,e2 > 0 and for every scalars aq, ... ,am_1, there ezists
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M > 0 such that for allm > M and all ko,... ,ky withl=Fky <k <<k, =mn,

e—(n62+z:n=;1(ki+1—ki)A*(Gi)) < P“Ski+1 — Ski — (ki+1 — kz)al‘ <en,1=0,..., m— 1]

< e(nea-X05 (i kA (@) (1.15)

TIntuitively, Assumption D asserts that for the partial sum process {Sz, i =
1,...,n} to reach the improbable level S, ~ ng,l(kiﬂ — k;)a; it is constrained
in an €;-tube around the “polygonal” path constructed with linear segments of slopes
ag, .- »0m—1-

In [Cha94a] a uniform bounding condition is given under which Thm. 1.3.2is true.
In other words, this condition implies Assumptions B and C. It is verified that the
condition is satisfied by renewal, Markov-modulated and stationary processes with

mild mixing conditions. In particular, the following result is proved.

Theorem 1.3.3 ([Cha94a]) Suppose that {X;; i > 1} € R? is adapted to filtration
F;. If for all v € R, .

k+m
sup — log E[e” oAt Xil] < o0,

k,m

and for all @ € R, k,m > 0, there is a differentiable function A(§) < oo and a
function 0 < T'(0) < co independent of k,m, such that

mA(8) — T(0) < logE[e’Licin Xt | ] < A@)m +T(0),  a.s.,

then the process {Si; 1 > 1} satisfies a sample path LDP (Thm. 1.3.2).

Using this uniform bounding condition it is not hard to verify (see [Cha94a] for a
proof) that the following assumption is satisfied. This assumption can be viewed as

the “convex dual analog” of Assumption D.

Assumption E
For all m € N there exists M > 0 and a function 0 < I'(y) < oo, for all y > 0, such
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that for alln > M and all kg, ... ky withl1 =k <k <--- <k, =n,

B’ ] < exp{3[(k — k- )A6) + D6}, (1.16)

j=1
where 6 = (91, Cen ,gm) and Z = (Sk0,5k2 - S}Cl, e :Skm — Skm-1)'

Finally, on a notational remark, in the rest of the thesis we will be denoting by
SZXJ £ Ei:i Xy, © < j, the partial sums of the random sequence {X;; i € Z}. We will
be also denoting by Ax(-) and A% (-) the limiting log-moment generating function and
the large deviations rate function (see eqs. (1.4) and (1.7) for definitions), respectively,

of the process X.






Chapter 2
Acyclic Single Class Networks

Consider a single class, acyclic network of G/G/1 queues. Customers arrive to the
network in a number of independent streams and are treated uniformly by the net-
work. Different streams may share a queue and the first-come first-serve (FCFS)
policy is implemented. A constant fraction p;; of customers departing a queue i, is
routed to queue j and a fraction p;o leaves the network. In this chapter we derive
large deviations results for the waiting time and the queue length observed by an

arbitrary customer at different queues of the network.

As we outlined in the introduction, we use a decomposition approach that essen-
tially treats the problem as a series of single queue problems. The main task is to
prove an LDP for the aggregate arrival process in each queue of the network. We
observe that for the particular network model that we are considering the external
traffic is transformed by three “filtering” operations as it slips through the network.
The first operation is to pass through a queue (passing-through-a-queue), the second
to split at a router (routing) and the third to get superimposed (superposition) as it
reaches a node. We impose an LDP on the external arrival processes, along with some
mild technical assumptions. We analyze all three “filtering” operations in isolation
and determine an LDP for their output. We prove that all these operations preserve
the assumptions imposed on the external arrival processes. Thus, by using induction

rigorously we determine an LDP for the aggregate arrival process in each queue of

39
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the network. The last step is to invoke single queue results for the waiting time and
the queue length and determine the tail of the waiting time and the queue length in

all the queues of the network.

Regarding the structure of‘ this chapter, we start in Section 2.1 by presenting the
network model that we are considering and establish our notation. In Section 2.2
we treat the single queue' case. This séction iS coinprised by two subsections. In
Subsection 2.2.1 we review the existing result for the large deviations behaviour of
the waiting time and we completely characterize the most likely path along which
the waiting time takes large values. In Subsection 2.2.2, using an idea from distri-
butional laws we obtain the tail pro"ba,b;ility of the Queue length. In Section 2.3 we
derive the large deviations behaviour of the departure process (passing-through-queue
operation) from a G/G/1 queue. Particular attention is given to the way that such
a deviation occurs. In Subsection 2.3.1, some special cases are studied. Namely, we
apply the result for the departure process of a G/G/1 queue to a G/D/1 queue and
an M/M/1 queue. For the latter case, Burke’s Theorem is verified in the large devia-
tions regime. In Sections 2.4 and 2.5 we study the large deviations behaviour of the
processes resulting from the following operations: superposition of independent pro-
cesses, and deterministic splitting of a process to a number of processes, respectively.
In Subsection 2.4.1 we prove a result that connects the Palm and the stationary dis-
tribution of a point process in the large deviations regime. This result is used in the
rest of Section 2.4 to derive the large deviations behaviour of the superposition pro-
ceés. In Section 2.6, we treat, as an example, a network consisting of two queues in
tandem. We characterize the way that the waiting time in the second queue reaches

large values and we include some numerical results.

2.1 The Network Model

In this section, we formally define the network model of which we will derive the large
deviations behaviour. Moreover, we establish the notation that we will be using and

state a set of assumptions on the arrival and service processes. .
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Consider a directed acyclic graph (dag) with J nodes. For reasons that will become
soon apparent, we assume that any two directed paths do not meet in more than one
node. Each node of the graph is equipped with an infinite buffer and a single server.
Customers enter the network in a number of independent streams A, A2, ..., A7. In
particular, A° is the stream of customers that enter the network at node i. Customers
are treated uniformly by the network, i.e., the network is assumed to be single class.
Let Z denote the set of integers. By A{ , © € Z, we denote the interarrival time of the
ith customer in the jth stream (the interval between the arrival epochs of the (i —1)st
and the sth customer). By B{ , 1 € Z, we denote the service time of the ith customer
in the jth node. We assume that for each arriving stream j the process {AZ, 1€ Z},
is stationary, and A{ , 1 €Z, are.vpossibly dependent random variables. Moreover, for
each node j, the service times BZ , © € Z, are iid random variables. We also assume
that interarrival and service times at a specific node are mutually independent and

that service times at different nodes are independent.

Independent streams may share a queue and the FCFS policy is implemented.
A fraction p;j , pij,, ... of customers departing node ¢, which is connected to nodes
Ji,J2, - - ., are routed to these nodes, respectively, and a fraction p;y leaves the net-
work. The exact way that the routing is performed is not of importance in the large
deviations regime. Roughly, out of every 1/p;; customers leaving node i, the rout-
ing mechanism sends one to node j. Figﬁre 2-1 depicts an example of the class of
networks considered. Such a network is intended to model packet-switched commu-

nication networks.

We denote by WY, W2, ... W7 and L', L? ..., L’ the steady-state waiting times
and queue lengths, incurred by a typical customer at nodes 1, 2,... , J of the network,
respectively. For each node j, W7 (resp. L?) denotes the waiting time incurred
(resp. queue length observed) by the nth customer. We assume that the process
{WJ L), neZ,j=1,...,J} is stationary.

In this chapter, we derive large deviations results for the steady-state waiting
times W1, W2 ... W7, and the corresponding queue lengths L', L?,... , L’, incurred

at nodes 1,2,...,J of the network, respectively (as these random variables are seen
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Figure 2-1: A network example.
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by a typical customer). Our strategy is first to obtain large deviations results for
the steady-state waiting time and the corresponding queue length in a single G/G/1
queue. Then it suffices to derive a LDP for the partial sum of the aggregate arrival
process in each queue of the network and apply the result for the single queue case.
It is important to note that by the definition of the network all the streams sharing
the same queue are independent. ‘Therefore, from the model description, it is ap-
parent that it suffices to obtain LDP’s for the processes resulting from the following

operations

1. Passing-through-a-queue (the process resulting from this operation being the

departure process).
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2. Superposition of independent streams.
3. Deterministic splitting of a stream to a number of streams.

Let {A;, @ € Z} be an arbitrary external arrival process and {B;, i € Z} be an
arbitrary service process. Hereafter, we will be using the notation ng = i:i Xi; 1 <
j for the partial sums of the random sequence {X;; ¢ € Z} along with the convention
SX20; 0> 5.

Assumption F

1. The sequence of partial sums {an; n > 1} satisfies

! .
,}L%;lOgP[Sﬁn < na] = —AY (a), (2.1)
where
lim,,_,e L log E[e?Sta] 40 <0
Ap(g) & | OB BT 02 )
+00 if0 >0
and
Ay (@) 2 sup(6a = A3 (6)). (2.3)

We will say that {S{* ; n > 1} satisfies an one sided LDP.

1,n

2. The sequence of partial sums {SP,; n > 1} satisfies the requirements of the

Gartner-Ellis theorem (i.e., Assumption A) with limiting log-moment generating

function
a1 S8,
Ap(0) = Tlll)r{}oﬁlogE[e La], (2.4)
which s finite for all 8 > 0, and large deviations rate function

A%(a) & sup(6a — A5 (9)). (2.5)
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Assumption G
1. For every €1, ¢€9,a > 0, there exists M4 such that for alln > My

e—n(Aj\_(a)+€2) < P[Sfl,z —wa<en, t=1,... ,n]. (2.6)

2. For every €1, €3,a > 0, there exists Mp such that for alln > Mg
e A5 (@t < PSE — (j—i+1)a<en, 1<i<j<n (2.7)
and

e MAE @) < PSP _(j—i+1)a> —en, 1<i<j<n]. (28)

We consider external arrival and service processes that satisfy Assumptions F and
G. We will show that these assumptions are satisfied by the processes resulting from
the three operations mentioned above. In this way, our approach provides a calculus
of acyclic networks since we will be able to determine the large deviations behaviour

of each individual queue inductively.

Assumption F provides a LDP for the arrival and service processes. Based on
these LDP’s we will derive LDP’s for all the processes of interest in the network.
Note that only the tail probability of the external arrival processes corresponding to
“many arrivals” is characterized by Assumption F. We will prove that in order to
estimate probabilities of large waiting times and long delays, as we do in this chapter,
only such a tail probability of the aggregate arrival process in each queue of the

network is needed.

Assumption G is needed in order to derive a LDP for the departure process of a
G/G/1 queue. It intuitively asserts that besides the LDP for the partial sum random
variable S ,, we also have a LDP for the partial sum process {Si;, i=1,... ,n} for
the arrivals and {S;;, 1 < i < Jgn}forthe service times. In other words, (2.6)
and (2.7) guarantee that the partial sum process follows a path that never overshoots

the straight line of slope a, in order to reach an improbable level S;, < na. A
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similar interpretation can be given to (2.8). Mild mixing conditions on the arrival
and service processes suffice to guarantee Assumption G. A thorough treatment
is given in [DZ93a]. In the Appendix A we provide some conditions under which
Assumption G is satisfied based on the results of [DZ93a].

Assumptions F and G are satisfied by processes that are used to model external
arrival and services in communications networks, such as renewal processes, stationary
processes with mild mixing conditions, as well as Markov-modulated processes with

some uniformity assumptions on the stationary distribution (see [DZ93a, Section 4]).

2.2 Large Deviations of a G/G/1 Queue

In this section, we establish a LDP for the Palm distributions of the steady-state
waiting time and queue length (i.e., as these random variables are seen by a typical

customer), in a G/G/1 queue with stationary arrivals and service times.

The setting is the same as in Section 2.1. We denote by {4;, i € Z} the stationary
aggregate arrival process to the queue and we assume that it satisfies Assumption F.1.
We also denote by {B;, i € Z} the stationary service process and we assume that
it satisfies Assumption F.2. For this section, the independence assumption for the
service times can be relaxed. For stability purposes, we further assume E[A] > E[B],

~ where A (resp. B) denotes a typical interarrival (resp. service) time.

2.2.1 Large Deviations of the Waiting Time

Let us first characterize the steady-state waiting time, W, incurred by a typical
customer. By W, we denote the waiting time of the nth customer. The condition
E[A] > E[B] is necessary ! for the existence and the uniqueness of a stationary process

(see [Wal88]). From the Lindley equation, the waiting time of the Oth customer, at

Hor sufficiency ergodicity is also needed.
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steady-state, is given by

Wo = [W_1 + B_y — AgJ* 2 max[W_; + B_, — A, 0] = max[S%_, ;- §4,,,0].
B (2.9)

The intuitive meaning of this relation is the following: For a particular sample path,
if ¢* is the optimum 4, then the customer with label —i* — 1 is the one who initializes

the busy period in which the 0th customer is served.

The next theorem establishes a LDP for W,. This result is not new. The proof
is almost identical with the proof in [dVW93, Thm 3.1], where a discrete time model
is used, and is therefore omitted. An upper bound on the tail probability, of the
steady-state waiting time, was first obtained by Kingman [Kin70].

Theorem 2.2.1 The tail of the Palm distribution of the steady-state waiting time,
W, in a FCFS G/G/1 queue with arrivals and service times satisfying Assumption F

is characterized by
li 1l PW >U] =6 2.10
Ao = log PIW > U] = 67, (2.10)
where 6% < 0 is the smallest root of the equation

Aa(6) + Ap(—0) = 0. (2.11)

Remarks : Intuitively, Theorem 2.2.1 asserts that for large enough U, we can state

PW >U]~e”"  where 0" < 0issuch that  A,4(6") + Ap(—6*) = 0.
(2.12)

Note that 6* exists as an extended real number since E[A] > E[B] and the functions
Aa(-),Ap(-) are convex 2." Figure 2-2 depicts the furction A4(0) + Ag(—0) and the
root 6*. If A4(60) + Ap(—0) < 0 for all @ < 0 we use the convention §* = co.

2This is proven under the conditions of Assumption F in [DZ93b, Lemma 2.3.9]
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AA®) +An(=6) - /

Figure 2-2: The root of As(0) + Ag(—8) = 0.

It is instructive to characterize the most likely “path” along which the large devia-
tion of the waiting time occurs. Such a characterization can also provide an alternative
proof of Thm. 2.2.1. Let a > 0 and z;,z; € R*, such that o — z; = a. Using Eq.
(2.9), we have

v

| PS5 11— 5% > (i+1)a]
P[Séi,o <@+ 1)551]1)[5?1'—1,—1 > (i + 1)z

oG+ (21)+A}}+(22)+€], (2.13)

P[Wo > (i + 1)a]

v

v

where the last inequality makes use of Assumption F and holds for any ¢ > 0 and for

large «.

Setting U = (i + 1)a, we obtain

PW,>U] > exp{—Uinf L inf a[Ajl_(a:l) + A5 (z2)] — Ue}. (2.14)

a>0 g T2—z1=

Let a* > 0 be a solution to the above optimization problem. Thus, for large U,
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and by taking ¢ — 0 in (2.14), we obtain

(2.15)

. . .
P[W, > U] > exp {_Ulnf12—11=a* [N (1) + A5 (22)] } -

a*

The tightness of this bound can be proven by obtalmng a matching (i.e., with the
same exponent) upper bound the proof is omitted. Let ¢* be defined by the equation
i*+1=U/a*. Let also z} and 3 solve the optimization problem in (2.15). Consider
a scenario where customers (—* —1),...,—1,0 arrive at an empirical arrival rate of
21_; and customers (—:* — 1),...,—1 are served with an empirical service rate of xiz
Such a scenario, which is depicted in Figure 2-3, has probability comparable to the
right hand side of (2.15) and is therefore a most likely way for the large deviation of

the waiting time to occur.

cust. (—i* — 1) arrives cust. 0 arrives

B . 1
SZi+_1,-1; Tate a7

cust. (—1) arrives cust. (—1) departs

Figure 2-3: The optimal path for large deviations in the waiting time.

2.2.2 Large‘Deviation's*- of the Queue Length

In this subsection, we present a LDP for the steady-state queue length in a G/G/1

queue, as seen by a typical customer (Palm distribution). To accomplish that we
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use the main argument used in deriving distributional laws; that is, a probabilistic
relation between the waiting time and the queue length. A detailed discussion of
distributional laws and their applications can be found in [BN95, BM92]. It is impor-
tant to note that distributional laws have been proven there only for renewal arrival
and service processes. However in the large deviations setting, we are able to relax
the renewal assumption and state a result that holds even for correlated arrival and

service processes.

Let us now characterize the steady-state queue length L seen by a typical cus-
tomer (not including herself) upon arrival (this is sometimes denoted by L~ in the
literature). The goal is to estimate P[L > n]. Let us denote by L, the queue
length observed by the nth customer. As in Section 2.1, we assume that the process
{(Ln,W,); n € Z} is stationary. The main idea, in order to establish a relation
between the waiting time and the queue length, is to look backwards in time from

the arrival epoch of the nth customer. Figure 2-4 depicts the situation. We denote

Figure 2-4: The system at time T,,.

with Ty, Ty, ... the arrival epochs of customers 0,1, ..., respectively. Recall that W,

and B, denote the waiting and the service time of the nth customer, respectively.

The main observation is the following: In order for the queue length right before

T, to be at least n, the Oth customer should be in the system at that time. Namely,

P[L, > n] = P[Wy + By > S{., (2.16)
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and by using (2.9) we obtain

P[L, > n] = P[m;igc[SZ_l,o - SAi,n’ _Sﬁn] > 0] =

= P[{I;%)IC[S&_LO -S54 1>0]. (2.17)

—i,n

The next theorem establishes a LDP for L,. We will need a technical lemma which

we prove next.

Lemma 2.2.2 Under Assumption F, and for 0 < 0, satisfying As(0) + Ap(—6) <0,
it holds

1
lim sup - log E[e"omax"Z‘l[S-Bi-l,O_Sfﬂ"]] < Aa(0). (2.18)

n—00

Proof : We have

E[e—ama‘xiZ—l[Sfi—l,O_Séi,n]] < Z E[e—asfi—l,O]E[eosfi,n]_
i>—1

From (2.4) it can be seen that there exists j > 0 such that for all< > j and all € > 0
it holds

Ele 05210 < (+DA5(-0)+9 (2.19)

Also from (2.2), we have that for § < 0 there exists /V such that for all n > N, all
1> —1landalle >0

Fix now some 6 < 0 satisfying As(0) + Ap(—6) < 0 and some € > 0 such that
A4(0) + Ap(—0) + 2¢ < 0. Note that the existence of such a ¢ is guaranteed by the
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condition E[A] > E[B] (see Figure 2-2). We then have that for all n > N

J
E[e-emaxiz—l[Sfi—l.o—sfi,n]] < Z E[e_gsfi—l,o]E[eosfi,n] + ZE[e_osfi—l,O]E[eosfi,n]

i=—1 i>j

J
Sen(AA(0)+€) Z E[e_osfi-lvo]e(i+2)(AA(0)+€)
i=—1
4 en(AA(0)+€) Z eZAB(—0)+AA (0)+3€6i(AB(—0)+AA(9)+26)
1>7
<K (0, j,€)erdal®)+e) (2.21)

where K (6, j,€) is some constant depending on 6, j and € but not on n. To see that,
notice that in the last inequality above we use the fact that the first sum is finite, and
the infinite geometric series in the second sum converges to a constant independent
of n. From Eq. (2.21) we obtain

1
lim sup — log E[e—gm‘“iz‘l[S-Bi-l‘ﬁ_séim]] < Aa(0) + e (2.22)

n—oo M

Since this is true for all small enough € > 0, the result follows.

Theorem 2.2.3 The tail of the Palm distribution of the steady-state queue length,
L, in a FCFS G/G/1 queue with arrivals and service times satisfying Assumption F

18 characterized by
.1 .
Jim ﬁlogP[L > n] = As(0%), (2.23)
where 6* < 0 is the smallest root of the equation

Aa(8) + Ap(—0) = 0. (2.24)

Proof : Due to stationarity, it suffices to characterize the tail distribution of L,,. For
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an upper bound define

2

G H>1 X[S—z 1,0 SAz n] (225)
Using the Markov inequality, we obtain

P(L, > n] = PG, > 0] < Ele %],

for § < 0. Taking the limit as n — oo, using Lemma 2.2.2, and optimizing over ¢ to

get the best bound we obtain

1
= < = *
hiri)s;}p log P[L, > n] ” A1‘&(6’)+Af]3( 0)<0}[ 4(0)] = Aa(07), (2.26)

~ where the last equality is justified by Figure 2-2.

For a lower bound, set i = én for § > 0 (dn is assumed integer), and notice that

P(L,.>n] = PG, >0

> supP[S%;,_ 1,0 - 54
5>0

> 0].

—én,n =
The limiting log-moment generating function of S%;, _, ; — S5 n 18

lim —log Ele5%n-10"5%nn)] = 6A5(—0) + (1 4 6)Aa(6)

n—oo n,

and by using Assumption F we obtain

lim inf %logP[Ln >n] > igg(— sup[—0(A7(6) + Aj(=0)) — AZ(0)])
= supinf[3(A4(60) + Af(=0)) + AL (0)]
N g A;(o)irkfz(—o)<0}[A:‘(0)]-
= AZ(67) = Aa(67), (2:27)
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where the second equality follows by dualizing the constraint AL (8) + A%(—6) < 0.
The lower bound in (2.27) along with (2.26) proves (2.23).

Remark : Intuitively, Theorem 2.2.3 asserts that for large enough n, we can state

P[L > n] ~ ™) where #* < 0 such that  A,(6%) + Ap(—6") = 0.
(2.28)

2.3 The Departure Process of a G/GI/1 queue

In this section we obtain a LDP for the process resulting from the passing-through-
a-queue operation of our network model. That is, we establish a LDP for the steady-
state departure process of a G/GI/1 queue, as seen by a typical departing customer.
We denote by D;, 7 € Z, the inter-departure time of the ith customer (the interval
between the departure epochs of the (¢ —1)st and the ith customer). As in Section 2.1
we assume that the interarrival times process {A;, ¢ € Z} is stationary, and A; are
possibly dependent random variables. The service times B; are independent and
identically distributed (iid) random variables. The arrival and service processes are
also assumed to satisfy Assumptions F and G. As explained in Section 2.1, we will
prove that the departure process satisfies Assumptions F and G when the arrival and

service processes do.

We denote by an = ~ 1 Dj, the partial sum of the departure process. The
objective of this section is to prove a LDP for an. The inter-departure times can be

expressed as follows
D; = B; + I, (2.29)

where B; denotes the service time of the ith customer and I; the idling period of the
system that ended with the arrival of the ith customer (I; = 0 if the 7th customer

finds the system busy upon arrival). By using the Lindley equation one can obtain
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an expression for I; and after some algebra derive an expression for S , 10 terms of
the partial sums for the arrival and the service process. Using such an expression
one can prove a LDP for an. Here we follow a more intuitive approach. We derive
an upper bound and a matching lower bound on PSP, < na] based on sample path
arguments. To that effect, we explicitly characterize the most likely path leading
to the large deviation of the departure process. The next proposition establishes an

upper bound for the tail probability of SP,.

Proposition 2.3.1 (Upper Bound) Under Assumption F, the partial sum SP, of
the departure process of a G/GI/1 queue under FCFS satisfies

h{bri)s;lp—logP[SD < na] < —A} (a), (2.30)
where
Ay (a) £ Ay (a) + Ar (a) (2.31)
and
A (a) sup [0a — AZ(6)]. (2.32)

{6144 (8)+Ap(-0)<0}
Proof : Since D; > B; for all i we obtain
S0, > 5P, (2.33)

Consider some j < 1 and let (j — 1) be the customer who initializes the busy period
in which the Oth customer is served. Let ¢ be the time that the (j — 1)st customer
arrived, ¢’ the time that the (j — 1)st customer departed, and ¢” the time that the
nth customer departed. Figure 2-5 depicts the situation. Note that

Bj_1+ 850, >S5 (2.34)
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cust. (j — 1) arrives cust. n arrives

cust. (j — 1) departs cust. n departs

Figure 2-5: Deriving an upper bound on P[SP, < na].

Since the system is busy from the arrival of the (j — 1)st customer until the departure

of customer 0, we have
Sh =S (2.35)
Therefore, from (2.35) and (2.34) we have
Sf’n = an - Sfo > an - B, - Sfo = an — Sﬁl,ﬂ' (2.36)

Now, from (2.33) and (2.36) we obtain

P(S{, <na) < PISf, <na, 3j<1st S~ 5P, <nd

= P[an < na]P[rJnSi{J[an — Sﬁl,u] < nal, (2.37)

since the service times B; are assumed to be independent and independent of the ar-

rival process. Since min;<,[S7,,—S7 ;o] = —max;<1[S2, ;—S2 |, we use Lemma 2.2.2
to obtain
. l fmin;<;[SA —-SB ]
lim sup — log E[e” ™"7125n ™25 -10l] < A 4(6), (2.38)
n—oo T
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for < 0, satisfying A4(0) + Ag(—0) < 0.
Using Markov’s inequality we obtain

lim sup 1 logP[rnln[S — 57 10 < nal < Aa(6) -

n—oo T

Optimizing over @ to obtain the tightest bound we finally find (note that for # < 0
we have A5 (6) = Aa(9))

1
lim sup — logP[mm[ Sﬁl o]l <mna) < — sup [6a — A5 (6)].
n—oo T ’ {0]Aa(8)+Ap(-0)<0} (2 39)

Moreover from Assumption F we can assert that

lim sup — 10gP[S1 L < nal < —Aj (a). (2.40)

n—00

Combining Eqs. (2.40) and (2.39) along with Eq. (2.37) we obtain (2.30).
]

Obtaining a lower bound on the tail probability‘ of SD is much more involved.
Assumption F which provides a LDP for the partial sums S}, an of the interarrival
and service times is not sufficient. Assumption G which provides a LDP for the partial

INE
next proposition we derive a lower bound on the tail probability of Sl,h and we prove

sum processes {SIJ, j = .,n} and {SB, 1 < i < j < n}, is required. In the

that the departure process {Sfi, i=1,...,n} satisfies Assumption G.

Proposition 2.3.2 (Lower Bound) Under Assumptions F and G, the partial sum
SD of the departure process of a G/GI/1 queue under FCFS satisfies

.1 D —
hﬁglfﬁlog PSP, < na] > =A% (a). (2.41)
Moreover, the departure process {Sfé, i=1,...,n} satisfies Assumption G.

Proof : Fix e1,e; > 0, ¢ > 0 and y;,y2 > 0 such that y; — y» = a and Tl%c >a
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Consider the set of all sample paths that satisfy

Sik < (k+1-j)a+en, 1<j<k<n, (2.42)
Sf(n,k <(Cn+k— 1)1?JT1C + en, k=1,...,n, (2.43)

and
S in 10 > nyz — €1n. (2.44)

We state the following lemma the proof of which is deferred until the end of the

current proof.

Lemma 2.3.3 For any sample path that satisfies (2.42), (2.48) and (2.44) we have

ka < ka+ 4en, k=1,..., n. (2.45)

Therefore,

P[kagka+4eln, k=1,...,n]>
ZP[kaS(k+1—j)a+eln, 1<j<k<n]x

sup sup P[ngn’kﬁ (Cn+k—1)1+%+eln, k=1,...,n] x
{¢20]8 7 2a)y 1720

P[Sf(n—l,l] > nys; — €1n)

> sup sup exp{—n(A}},— (@) +€)—n [AZ‘ (T%g) 1+Q+ 6”]
{¢2017% 7 2a) V1 V270

-n [A’g” (922—“) ¢+ e"'] }, (2.46)

where the last inequality holds for large n and is obtained by applying Assumption
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G to the arrival and service processes. We can now choose appropriate €, €’ and €”

such that for sufficiently large n and given €, we have

PSP, < ka+4en, k=1,...,n]>  sup sup exp{—n [A*B'(a)+
{¢20| g zay V17 ¥270

A (25) 1+ 0) ++a5 ( 2)g+e2]}. (2.47)

We now argue that the constraint % C > a can be removed from the optimization
in (2.47). Consider a choice of y; = 71, y2 = ¥z and ¢ = ¢ such that §, — 92 = a
and T%C < a. Let us now consider the subset of sample paths with ( = 0, y1 = a
and y; = 0 from those satisfying (2.42), (2.43) and (2.44). It is easy to see that the

probability of this subset is e "[45 (44437 (@] Now note that since —y—C < a we have

exp{—n[Ay (a) + A% (a)]} > exp{—n [A’E(a) + AT (fﬁz) 1+ + A5 (1’5) 5] }

This shows that there exist choices of y;,y2 and ( satisfying i+Lc > a that have a

better exponent. Hence, the constraint T1+Lc > a can indeed be removed.
We now use convex analysis to prove that A} (a) as defined in Eq. (2.32) is equal

to
—sup sup { (1+QOAY (1+c)—CME;L (%)}

¢>0 y1—y2=a
‘thus, proving that the lower bound in (2.47) (taking ¢, — 0) matches the upper
bound obtained in Proposition 2.3.1. Dualizing the constraint A4 (¢) + Ap(—6) <0
we obtain (note that A4(f) + Ap(—0) < 0 if and only if A4(f) + A(—6) < 0)

—Ar(a) =~ sup [ba — AZ(6)]
(81AA(0)+A5(~6)<0}

inf fa + A
{HlAA(0)+AB( 9)<0}[ ‘H‘ A(g)]

= sup {— sgp[ea - (1+ C)AZ(H) - CAE(_H)]}

¢=0
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= sup {— inf [(1 + QAT (T.%g) +CAE (yl)]}

>0 Y1—y2=a ¢
=sup sup [+ OA (&) — Ay (2)]. (2.48)

To see that, note that for convex functions f, f1, f> and for a scalar ¢ > 0, it holds

(cf)*(z*) = cf*(z*/c), and (fr + fo)*(2*) = infor yay=o- [f1 (z]) + f5(z3)] (see [Roc70,
Thm. 16.1, Thm 16.4]).

In summary, we have verified that Assumption G holds for the departure process,

ie.,
P[Sfi <t +4en, i=1,...,n] > e~ 4D (a)+er), (2.49)

By taking €;,e; — 0 and since P[SP, < na] is clearly larger than the probability in
(2.49), (2.41) is verified for the same region.
|

Proof of Lemma 2.3.3: Note that for £ = 1,...,n from (2.43) and (2.44) we

obtain

21
1+ C + e1n
<(ny, ~ e1n) + ((k — 1)a + 2€1n)
S(k — l)a + 2¢1n + S?Cn_]_’o, (250)

where the second inequality holds because the two sides are equal at £k = n + 1 and

because T%C > a. The third inequality is justified by (2.42) and (2.44).

Let ¢ be the arrival time of customer —(n — 1. Then customer k arrives at time
t+ Sf@,k. We distinguish two cases. In case 1, customer % finds an empty system

upon arrival. Then it departs at time ¢' where

' =t+8%,  +Bx <ka+3en+t+S55, 1, (2.51)



60 Chapter 2. Acyclic Single Class Networks

by using (2.42) and (2.50). Let " the departure time of the Oth customer. Clearly,
t" > t+S%, _, o, which along with (2. 51) implies that ' —¢" < ka+3e;n < ka+4en.
But, according to their definition ¢ — ¢’ = =S¥,

In case 2, customer & finds a busy system upon arrival in which case D, = B,.
Then, if this is also true for all t=1,...,k—1, we have SP, = SE <ka+en <
ka + 4eln If not, let i € [1,... k- 1] the latest customer that finds the system
empty (i.e., the one with maximum index). To bound SP; we use the argument of
Case 1. Thus,

S1 —Slz+ 1k = SID1+S+1,C<'La+3eln+( k—1)a+en = ka+ 4en,

where we have used (2.42) in the last inequality.
|

The proof of the above theorem indicates a most likely path along which the large
deviation of SP occurs (in the sense that its probability equals P[SP, < na]). Let
¢*,y1 and y3 be a solution of the optimization problem in (2.47). The large deviation

‘in S », occurs by

e Maintaining an empirical arrival rate of at least J— from the arrival of customer
—(*n—1, until the departure of the nth customer and an empirical service rate
of at most 5— from the arrival of customer —(¢*n — 1, until the departure of the

2

Oth customer, and by

¢ Maintaining an empirical service rate of at least 1 /a from the departure of the

Oth customer until the departure of the nth customer.

Figure 2-6 illustrates the situation.

Co’fnbining Propositions 2.3.1 and 2.3.2 we obtain fhe following theorem.

Theorem 2.3.4 Under Assumptions F and G, the partial sum an of the departure
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= = = - arrival rate

service rate

rate
L e
a
o ) PO
vi
g; i
Yo
7 g A
Y s ! , '
cust. —(*n — 1 arrives cust. 0 departs cust. n departs

Figure 2-6: The most likely path for large deviations of S,

process of a G/GI/1 queue under FCFS satisfies

1
lim - log P[SP, < na] = —A} (a), (2.52)

—00

where
AL (a) = A (a) + A7 (a)

and
A@= s [fa—Az(6))
{61A4(6)+AB(—6)<0}
We now argue that the passing-through-a-queue operation preserves Assump-
tion F. Proposition 2.3.2 establishes that it preserves Assumption G. To see that the
departure process satisfies Assumption F, notice that we have proven an one-sided

LDP for the departure process with large deviations rate function expressed as a
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function of the large deviations rate function of the arrival and service processes.

Throughout this section we have assumed that the service times B; are iid. A
close examination of the proofs of Propositions 2.3.1 and 2.3.2, suggests that a weaker
condition is sufficient for our purposes. Namely, we only need the random variables
SE, and S, to be approximately independent for every j < 0, as n — co. A mixing
condition of the type E[eanOeoslB,n] = E[eeSfO]E[eBSIBm]e"‘(") for every j < 0 and 6,

where lim,,_,, €(n) = 0, is sufficient.

An alternative expression for A} (-) which is a consequence of the defining Eq.
(2.31) is

Ay (a) + Al (a) if a > A, (6*)

(2.53)
Ay (a) +0%a — Aa(0%) ifa < Ay(0%)

Ay (a) = Ay (a) + Ap (a) = {
where 0* is defined in the statement of Thm. 2.2.1 and A’y(z) denotes the derivative of
A (") evaluated at z. To see that consult Figure 2-2 and notice that the first branch
of Eq. (2.53) corresponds to the region of a where the constraint A4(6) +Ap(—0) <0

is not tight, and the second branch to the region of a where this constraint is tight.

To obtain the limiting log-moment generating function for the partial sum of the
departure process, we take the convex dual of A7, () in (2.53). Using the duality

correspondences proven in [Roc70, Sec. 16] we obtain the following corollary.

Corollary 2.3.5 Under Assumptions F and G we have

A5 (68) = infg, 19,—0{A5(01) + A4(62)} ff9 > ? (2.54)
A5(0 — 0) + A4 (67) if <0
where
god (A% (a) + A (a)] (2.55)
T da B AN a=n (07 )

It is instructive to determine the fluctuations of the queue length that lead to a

large deviation in the departure process. Let (* solve the optimization problem in
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(2.47). Let ¢ be the arrival time of customer —(*n — 1. The Oth customer arrives at
t + S4.,0 and departs no earlier than ¢ + SZ.. _, ;. Thus, for the waiting time of

customer 0 holds
WO Z t + S? *n—1,0 - t — Sfc*n’o = Sf(*n—l,o - Sfc*n,o é WQ. (2.56)

A close examination of the proofs of Propositions 2.3.1 and 2.3.2 suggests that Ax(-)

is the large deviations rate function of the process
{Sfc*n,k - Sfc*n_l,o, k == 1, e ,n} = {ka - WO, k == 1, e ,n}. (2-57)

From the above discussion and Eq. (2.53) we conclude that depending on the value
of a, we can distinguish two cases for the large deviation in the departure process to

occur.

a > A, (6*): In this region, Aj”(a) = A’ (a) and from Eq. (2.57) it is clear that the
most likely way for the large deviation in the departure process to occur is the
Oth customer to incur O(1) waiting time, which implies that it finds a queue

length of O(1) upon arrival.

a < A%(6*): In this region, A;™(a) = 6*a— A4(6*) and from Eq. (2.57) it is clear that
the most likely way for the large deviation in the departure process to occur is
the Oth customer to incur a large waiting time (recall from Thm. 2.2.1 that the

large deviations rate function for the waiting time is linear with slope 6*).

Hence, taking also into account Fig. 2-6 we can infer for the queue length the cases
depicted in Figure 2-7. In Region 2 and in contrast with Region 1, the queue builds

up to lead to a large deviation in the departure process.

2.3.1 Special Cases

In this section we apply Theorem 2.3.4 to two special cases. Namely, we study the

departure process, in the large deviations regime, of an M/M/1 queue and a G/D/1
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Region 1: a > A',(6) Region 2: a < A/4(6%)
queue length queue length
AN~
| N / /

P s

cust.. 0 departs cust. An departs cust. 0 departs  cust. n departs

cust. 0 arrives cust. —(*n — 1 arrives

Figure 2-7: Two cases for the queue length: In Region 1, the Oth customer
finds an O(1) queue upon arrival and until the nth customer departs the
queue stays at an O(1) level. In Region 2, the queue first builds up (see also
the arrival and service rates in Figure 2-6) and then it is depleted resulting
in the large deviation in the departure process.

queue.

The departure process of a G/D/1 queue

We -assume, as in Sectlon 2.3, that the interarrival times process {A;,1 € Z} is sta-
t1onary and A are p0851b1y dependent random varla.bles The service times B; are
iid random variables and equal to ¢ w.p.1. Interarrival and service times are assumed

independent.
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It is straightforward that Ap(@) = cf. Therefore a simple calculation yields

+o00 ifa<ec
Ay (a) = 2.58
7 (a) { AN (2.58)
Moreover,
A (a) = sup  [fa— A;(8)] = Ba — AZ(0), (2.59)

{0]A4(6)—cO<0}

where @ is the optimizing . Note that by taking a > ¢ we have A A(é) —cfh < 0, which
implies that for such a we have A;™(a) = A% (a). Therefore, using Eq. (2.31),

At (a) = { +00 ifa<c (2.60)

Ny (a) ifa>c

This is exactly the result obtained in [dVCW93] for a discrete time model. Taking

- the convex dual of the above we obtain

A=(8 AL (6) if 0 > LAY (a))p=e = 0
p\Y) = A A n
Oc — Ay (c) =0c—cf+ AZ(0) if 6 < L[A% (a)]e=c =9,

where § is the solution of the equation AN,(0) =c.

The departure process of an M/M/1 queue

We assume that the arrival process is Poisson with rate A and the service times are

iid, distributed according to an exponential distribution with parameter .

It is straightforward to calculate

A

A4(6) =log (m) . Ap(h) = log (ﬁ) . (2.62)
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Now, notice that

Ao
AA(9)+AB(—9) =0« mm =160=0,0=X\—y, (263)

which implies that * = A\ — u, where 6* is defined in the statement of Thm. 2.2.1.

Moreover, notice that "o \ .
A (6% = B —_——

Thus, using Eq. (2.53), we obtain for a > 1/,

Ap (a) = A (a) + Aj (a) = Ay (a), (2.64)

since by definition A} (a) = 0 for a > 1/u. Using the second branch of Eq. (2.53),
we obtain for a < 1/p,

Ap (a) = A (@) +a(A — p) — log(A/ w). (2.65)

But
Ap (a) = Sl;p[f)a — Ap(0)] = ap — 1 —log(ap),

since, by differentiating, the optimal 6 is found equal to (ax — 1)/a. Thus, from Eq.
(2.65), for a < 1/p,

A3y (a) = aX — 1 —log(aX) = Al (a). (2.66)
Summarizing Eq. (2.64) and (2.66) we finally obtain
Ay (a) = A (a). (2.67)

This result is in accordance with Burke’s output Theorem which states that the

~ departure process of an M/M/1 queue is Poisson with rate A (see [Kel79]).
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2.4 Superposition of independent streams

In this section we treat the superposition operation of our network model. In partic-
ular, we derive a LDP for the process resulting from the superposition of independent
arrival streams and we show that the superposition preserves Assumptions F and G.
However, as it will become clear in the sequel, in order to derive this LDP we need a
result that connects, in the large deviations regime, the Palm distribution of the ar-
rival process (i.e., as it is seen by a random customer) with its stationary distribution
as seen at a random time. This result is presented in Subsection 2.4.1 and could be

of independent interest.

Consider two independent arrival streams. By Al(resp. 4?), i € Z, we denote
the interarrival time of the ith customer in stream 1 (resp. 2). We assume that the
processes {A}, A?, i € Z} are stationary, and mutually independent. However the
interarrival times in each stream may be dependent. We impose Assumptions F and
G on the arrival process of each stream. We denote by A,l’2 , © € Z, the interarrival
times of the process resulting from the superposition. It should be noted that in order

to derive the LDP for the superposition, Assumption G is not used.

The next theorem establishes a LDP for the partial sum S{},ll’z of the aggregate

process, resulting from the superposition of streams 1 and 2.

Theorem 2.4.1 Under Assumption F, the partial sum Si‘}:f of the aggregate process,

resulting from the superposition of the independent processes A}, A%, i € Z, satisfies

. 1 1,2 . *— *— A *—
Jim logPIS{,” < nal = — inf (503 (a/8) + A5 (a/62)] £~ (a).
81,6220 (2.68)

Proof : Consult Figure 2-8. Consider the partial sum Sf,ll'z and let H; (resp. H,)
denote the event that the first customer of the aggregate process originates from

stream 1 (resp. 2). We first obtain an upper bound on P[Sf,ll'2 < na | H]. Notice
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Sik

=
™)
"
St
S [~}
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Figure 2-8: Superposition of two independent streams.

that

P[Sf;’2 <na|H| < i P[S’f},lc < na]PR[Sf;_k < nal. (2.69)

k=1
Here, P[] denotes the probability distribution seen by a random customer (Palm
distribution) and Pg[] denotes the probability distribution seen at a random time.
Due to the independence of the two arrival streams, an arrival originating from stream
1 constitutes a random incidence in the arrival process of stream 2 and therefore we are
interested in the probability distribution seen at a random time for events concerning

stream 2.

In Subsection 2.4.1 it is shown that

. » , L
lim —log PR[Sf:L < na] = lim - logP[SffZ < na] = —A%;(a). (2.70)

n—o00 n

Therefore, from (2.69), letting kK = nd, § € [0,1] (nd is assumed integer), and taking
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large n we obtain

P[S’f}:{2 <na|H< Z P[Sf,lm < na]PR[sz(l_a) < nal
§ef0,1]

<n sup P[Sl ne < na]PR[Sl ,n(1-0) < TZ,CL] =
§€0,1]

lim sup —logP[S *<na|Hy)< - ,sé%fl [6A%(a/0) + (1 = 0)A%s(a/(1 — 6))]

n—oo

= — inf [61A*Al (a/él) + 52 (0/52)]

01+02=
Siibz0 (2.71)

To obtain a lower bound notice that

P[sf:z <na|H, > sup P[S{‘ms < na]Pg[S{: S i—s < nal =
§€[0,1]

liﬂg}f%bgP[Sﬁ'zgnﬂHﬂ >~ inf A% (0/0) + (1 - A e/ (1 - 6))

= - Jlﬂzle[dlAz_l(a/él) + 6.A%2(a/d2)].  (2.72)
61,60>0

Finally, observe that because of symmetry, Egs. (2.71) and (2.72) also hold for
P[S{,” < na | H,]. This along with the fact

P[S{." < na] = P[S{." < na | HiP[H)] + P[S{," < na | Hy]P[Hy),

proves the theorem.

Remark : Let 6},0; be a solution to the optimization problem in (2.68). It can
be seen that a most likely path to have a large deviation in the aggregate process is
to maintain an empirical arrival rate of éai in stream 1 and a rate of éai in stream 2.

Then, since 67 + 65 = 1 the empirical rate of the aggregate process is L.

Using induction on the number of streams superimposed we generalize Theo-

rem 2.4.1 to obtain the following corollary.



70 Chapter 2. Acyclic Single Class Networks

Corollary 2.4.2 Under Assumption F, the partial sum Sf};""'m of the aggregate pro-
cess, resulting from the superposition of the m independent processes Al At G €
7, satisfies

lim Elog P[SAI’---. < na] = ~ s 12fm_ Z J9\W ~(a/6) & —A5 n(a).
| | S edn20 B (2.73)

Using convex duality one can obtain the limiting log-moment generating function
at..m () of S{‘; "™ as the convex dual of its large deviations rate function A% . . (:)-
The latter function is convex by [Roc70, Thm. 5.8].

We now proceed into proving that the aggregate process, resulting from the su-
perposition of independent streams which satisfy Assumptions F and G also satisfies
the same assumptions. It is clear that the process resulting from the superpyosition
satisfies Assumption F, since we have proven an one sided LDP for this process with
Jarge deviations rate function expressed as a function of the large deviations rate func-
tion of the superimposed processes. The next Theorem establishes that the process

resulting from the superposition satisfies Assumption G.

Theorem 2.4.3 Assume that the m independent processes A}, ..., AT i € Z satisfy
Assumption G. The aggregate process resulting from their superposition also satisfies

Assumption G.

Proof : It suffices to prove the result for m = 2 since by using induction we can
prove it for any m. We need to prove that for every €1, €3, a > 0, there exists Mg such
that for all n > My

e MM (%) < P[S’f};'z —ja<en, j=1,...,n]. (2.74)
Fo‘ll‘oxvs‘lin»gV the Steps ‘of the ’pbrolof of Theorem 241 we consider the scenario that a
fraction & of customers of the aggregate process originates from the A' process. Again,

H, denotes the event that customer 1 of the aggregate process originates from the Al



Sec. 2.4. Superposition of independent streams 71

process. We have

P[Sf;z_jaseln’ lea ,TL|H1]2

> sup P[Sf‘;d—ja <eén,j=1,...,n] x
6€0,1] ’

PR[Sﬁ;u_J) —ja<en, j=1,...,n]. (2.75)

Using Assumption G for the A! stream we obtain for large enough n
PlS{s—ja<en, j=1,...,n] > e ™MRa/+e) (2.76)
In Subsection 2.4.1 (Lemma 2.4.6)’ it is shown that for large enough n
Pr[S{ia s —ja<ean, j=1,...,n] > e "ML=+ (g 77)

To obtain (2.74) it suffices to choose appropriate ¢ and €” such that for large enough

n and given €;

¢~ intse0, 1[50 (a/0)+ )= (AT (0/ (-] 5 p=n(AST p()+er)

2.4.1 Connection between Palm and stationary distributions

in the large deviations regime

In this subsection we show that the stationary and the Palm distribution of the same

point process have the same large deviations behaviour.

Consider a stationary arrival process satisfying Assumptions F with interarrivals
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Ai, i € Z. We have

lim %logP[an < nal = —A% (a). (2.78)

n—oo

As explained in the proof of Thm. 2.4.1, P[] denotes the probability distribution
seen by a random customer (customer 1 in the cage of Eq. (2.78)). Consider now a
random time (say ¢ = 0) and assume that customer 0 is the first customer to arrive
after ¢t = 0. Let U,V denote the duration and the age, respectively, of A4,. The
situation is depicted in Figure 2-9. By Pr[-] we denote the probability distribution

t=20

v
z ¢
U St

1,n

Figure 2-9: The arrival process seen at a random time.

obtaining a LDP result for the partial sum process {Sfj, J=1,... ,n} under Pr[]
when Assumption G is satisfied. The latter result is obtained in Lemma 2.4.6.

Theorem 2.4.4 Unger Assumption F we have
n—00

lim T—];logPR[an < na] = —A} (a). (2.79)

Proof : Let Er[-] denote the €xpectation with respect to Pr[]. We use a standarg
procedure to relate Ex|] to E[] (see [Wal88]). Consider an arbitrary function f (-) of
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S{,. It can be shown ([Wal88, ch. 7]) that
Er[f(S5a) |V =v,U = u] = B[f(5{,) | Ao = u].

Thus following the steps in [Wal88, ch. 7],

Balf(Si] = gy [y J o BUSE) | o=l do dFs(u)

u=0

= B[ f(st,) ]
= BlAA(SL)), (2.80)

where we have assumed without loss of generality that E[A;] = 1, and we have used

the notation F4,(-) for the distribution function of A,.

To obtain an upper bound on ER[easiq-n] we set f(-) = €’ and use Hélder’s in-
equality. Namely,
Eg[e"*n] = E[Aoc"*00]
(p+g=1) = E[(45") (/75%:)"] < BAYPPE[/D5]s,
(2.81)

which implies

P—logim‘l’/p] +qAa(0/q) = qra(0/q), (2.82)

1
lim sup — log E[e?® f‘-n] < lim sup
n n—00

n—r00

since the first term of the right hand side vanishes. Taking the now limit as ¢ — 1 in

the above equation we obtain

1
lim sup -~ log ER[eesﬁﬂ] < A4(6). (2.83)
n—00 .
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Therefore using Eq. (2.83) and the Markov inequality we obtain

1
lim sup - log Pr[S7, < na] < —A% (a). (2.84)

n—00

To obtain now a lower bound on Pg[S{, < na] set f(Sf,) = 1{S{}, < na} in Eq.
(2.80), where 1{-} denotes the indicator function. We have

o0
PrlSA < na] = / WP[S{ < na | Ay = u] dF,(u)
’ 0 b
1 foo A
> = it P[S7, <na | Ay = u] dFa,(u)
1
= EP[S{fn < na, 49 > X]. (2.85)
We need the following lemma the proof of which is deferred until the end of the
current proof.
Lemma 2.4.5 Under Assumption F and for every positive € and a, there exists N

such that for every n > N, it holds

P[S{, < na, Ag > 4] > e7(*4 (@F9), (2.86)
We now use Lemma 2.4.5 in Eq. (2.85) and take ¢ — 0 to obtain

li%r_l)glfilog Pg[St, < na] > —AY (a).

Proof of Lemma 2.4.5: = Eq. (2.78) implies that for every positive ¢ and a there
~ exists N, , such that for every n > N; o it holds

e (A4 (@) < P[S] < na] < eT0X @7, (2.87)
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Fix now a,€¢ > 0, and let = ¢’. We have

P[Sf}n < na, Ay > #] =
1 nd

(by stationarity) = 5 ZP[S{L,,-M < na, A; > 3]
=1

(union bound) > nidP[Hz' € [1,nd] s.t. SA

1
itlitn S NG, A > n_2]

Y4

1
n_ép[sfn(ua) <na,3i € [1,nd] s.t. A; > 5]

A%

1 nd
EP[an(HJ) <na )y A>7%
i=1
1 1
(PANB]> P4~ PIBY) > SPISfyu. < nal = —PSh, < &

L _neo)ay (35)+¢) 1 raa s
> A N146 - — < £{(2.
> —e naP[Sl,na < £](2.88)

where the last inequality holds for all n > N'4 Note that we have used the

1+0°€
notation B to denote the complement of B. We next show that for n — oo (keeping

’a

a,d, € fixed) we can neglect the second term in the right hand side of (2.88). To see
that note that for all 3 positive there exists Nj o such that for all n > N ¢ it holds

PS5 < ] < P[SP 5 < ndf] < e A4 B)=€), (2.89)
By taking 3, § and €’ small enough and n > Nj . we can achieve
No(B)—€é >0+ 5)(Aj{(1"w) +¢€). (2.90)

Here we are using the fact that for sufficiently small 3, A% (8) > A (135) since

A’ (B) is monotonically increasing as 3 | 0.

Observe now that the value of 3 which satisfies Eq. (2.90) is a function of a, §
and ¢'. Therefore, using Eq. (2.89), there exists N, s« such that for all n > Nyse it
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holds

1 1 x—g @ ’
— CP[S, s < 8] > — e AT (Tt '
nat [Stns < 5] 2 =5 5e (2.91)

Combining Eqgs. (2.91) and (2.88) we conclude that there exists N, 5 such that for
all n > N, 50 it holds '

1 o LA
A < > 11> - —n(148)(A% (1_}_5)4‘5). )
P[Sl,n = naaAO = n2] = 27156 (2 92)

We now choose ¢ such that (recall § =€)

1 AT () 5 omnhy (@+e)
2ne’ -

for all n > N, .. This can be done due to the lower semicontinuity of A} (-) (see the
argument in the proof of Lemma 2.2.5 in [DZ93b]).
|

Lemma 2.4.6 Under Assumptions F and G we have that for every €1, €2,a > 0 there
exists Noe, e, such that for allm > Ny ¢, it holds

PR[S{; <ja+en, j=1,...,n] > "Ai @), (2.93)
Proof : Following the proof of the lower bound in Thm. 2.4.4 (using the argument

used to derive Eq. (2.85) but applied to the sample path Sfj < jatemn, j=1,...,n)

we have

: : 1 . .
PR[Sﬁj <ja+en, j=1,...,n] > ﬁP[S{fj <jaten, j=1,...,n, Ay > 5.
(2.94)

Now, as in the proof of Lemma 2.4.5, fixing a, €1, €, > 0 we obtain

S P[Sfjgja+eln, j=1,...,n, Aozzli]z
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1 nd . .
= _ZP[Siq+k i+k S](1-'_61717 ] = 1) » T, Ak Z _17]
nd = J n
1
> %P[Elk €[Lnd)st. S{yw<jaten, j=1,...,n, A, > 5]
1
> _5P[Vk = [l,nél Sf—i—kj—{-k < ]a+ €n, ] = 1, oo, dk € [1,n5] s.t. Ak 2 #]
n n
1 1
> %P[Vk €[1,nd] S{y e <jatean, j=1,...,n] - %P[Sfm; <9
(2.95)
Now notice that
P[Vk € [1,n8] Siy, ik <ja+ean, j=1,...,n]
=P[Vk € [1,nd] SfjJrk — Sffk <(+kla—ka+en, j=1,...,n]
>PS{ < (G+k)a+492 Ve e ([L,nd), j=1,...,7,
S > ka — 4, Vk € [1,nd]]
=P[S{ s S G+ k)a+ 92, VE€[1,nd], j=1,...,n]
> n(HAT (@)+¢) (2.96)

where the last equality is obtained by choosing sufficiently small § such that nda —
&% < 0 which implies that P[S{}, > ka — 4®, Vk € [1,nd]] = 1. The last inequality
holds, due to Assumption G, for all n > Né,el,e,. Now, as in Lemma 2.4.5 it can be
shown that there exists N/, ., such that for all n > N}/ . it holds

1 1 e
= 5PlSins < 1] > — e IO @), (2.97)

Combining Eqgs. (2.94), (2.95), (2.96) and (2.97) we conclude that there exists N, , 4,

such that for all n > Na,el,,;,e; it holds

1 .- '
PR[Sfj S ja + e1n, ] = 1, . ,n] 2 me_n(l_“s)(AA (a)te ) (298)

We now choose ¢’ and if necessary ¢ smaller than the one chosen above for the purposes
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of (2.96), such that

1
—<€

—n(1+6)(A:"4— (a)+¢€') > e—n(A*A_ (a)+e2)
2n36 - ’

for n > Ny er-

2.5 Deterministic splitting of a stream

In this section we treat the splitting operation of our network model. In particular,
we derive a LDP for the process resulting from the splitting of a stream to a number

of streams and we show that splitting preserves Assumptions F and G.

Consider a stream with stationary interarrival times A;, ¢ € Z, which is split to 2
substreams. In particular, a fraction p of arrivals of the “master” stream is directed
to substream 1 and a fraction 1 — p to substream 2. The next theorem provides a
LDP for stream 1. Since stream 1 is chosen arbitrarily, by relabelling the streams one
can obtain a LDP for stream 2. The more general case in which the master stream
is split to more than two substreams can be handled by successive splitting to two

1

substreams. Let us denote by A} A2, ¢ € Z, the interarrival times of substreams

1,2, respectively. A%() and A4(-) denote the large deviations rate function and the

limiting log-moment generating function of the master stream.

Theorem 2.5.1 Under Assumption F, the partial sum Sf,ll of substream 1 satisfies

1 : 1
lim —log P[SA < na] = —=A% (ap). 2.99
Jim —logP[S;, < na ) (ap) (2.99)

Proof : To have n arrivals in substream 1 we need n/p arrivals of the master stream.

Since we are interested in large values of n we will ignore integrality issues (i.e., it
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holds |n/p|/n — 1/p, as n — o). Thus,
P[S{,, < na] =P[S{,,), < na] < e”MATR),

Similarly for the lower bound.
|

We now argue that splitting preserves Assumptions F, and G. It is clear that
the process resulting from splitting satisfies Assumption F, since we have proven
an one sided LDP for this process with large deviations rate function expressed as a
function of the large deviations rate function of the master process. The next theorem

establishes that the process resulting from splitting satisfies Assumption G.

Theorem 2.5.2 Assume that the process {A;, i € L}, satisfies Assumptions F and
G. Then the A' process satisfies Assumption G.

Proof : The proof is very similar to the proof of Theorem 2.5.1.

P[S{‘S —ja<en, 3=1,...,n] ZP[Sfj/p—jageln, j=1,...,n]

>~ (n/P)AY (ap)+e)

for n large enough and all €;, € > 0 by using Assumption G for the master process.

2.6 An Example: Queues in Tandem

In this section we apply the results derived so far to obtain LDP’s for two G/GI/1
queues in tandem. Moreover we work out a numerical example in order to get a
qualitative understanding of the results. Large deviations results for tandem queues

with renewal arrivals and exponential servers have been reported in [GA94].

Consider two G/GI/1 queues in tandem. Let A;, i € Z, denote the interarrival



80 Chapter 2. Acyclic Single Class Networks

times in the first queue and B}, B?, i € Z, the service times in the first and second

1

queue respectively. These processes are mutually independent, stationary and satisty

Assumptions F and G.

According to Corollary 2.3.5 the limiting log-moment generating function of the

departure process from the first queue is given by

A5 (6) = { inf, s y—p{AG: (z) + AZ(y)} if 6 >0 (2.100)

Agi (0 — 0%) + Aa(67) ifo <@

where

~n d *— "
= da [ABl(a) + A4 (a)]a=Ah(9f).

Applying Theorem 2.2.1 we obtain that the tail probability of the stationary

waiting time, W5, seen by a customer in the second queue, is characterized by
P[W, > U] ~ %Y, (2.101)

where U is large enough and 6 < 0 is the smallest root of the equation Ap(6) +
Ap2(—6) = 0. Since for § < 0 the equation Ap(f) + Ap2(—6) = 0 has exactly the
same roots as the equation Ap(6) + Ajf.(—0) =0, it turns out that 63 is the smallest

root of the equation

inf, y—o{ A5 () + A5 (y)} + Afa(~0) =0 if6 >0
Api (8 — 6%) + Aa(0%) + Af(—60) =0 ifo <@

It is instructive to characterize the most likely path along which the LDP for
the waiting time occurs in the second queue. The remarks after the proof of Theo-
rem 2.2.1, suggest that the most likely path for the waiting time in the second queue

is characterized by

PW§ > (i+1)a] ~ sup P[ST, < (i+ D P[SE, ;) > (i + 1)za],
T (2.102)
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where W denotes the waiting time of the Oth customer in the second queue and ¢ is

large enough. Setting U = (i + 1)a, we obtain for large enough U

1
P[W2 > U] ~ exp {—Uigg = it (A (o) + A;;t(xz)]}. (2.103)
a To—IT1=
Let (a*,z7,z3) be an optimal solution of the optimization problem appearing in
(2.103). Eq. (2.103) suggests that the waiting time in the second queue builds up by
maintaining an empirical rate of 1/z] for the process D (departure from first queue)

and an empirical service rate (process B?) of 1/z3.

We use the remarks after Theorem 2.3.4 to characterize the most likely path
for the process D to maintain an empirical rate of 1/z}. Let i* be defined by the
equation :* + 1 = U/a*. From (2.102), it can be seen that it suffices to characterize
the most likely path along which the event {S Z‘*,o < (¢ 4+ 1)z7} occurs. As shown in
Theorem 2.3.4, this most likely path is characterized by

PISTo < (" +0si] ~ e {0+ Dsup sup [-(+0n5 (1) -
’ (>0 y1—y2=a 14+¢

—CA%: (%)] — (" +1) ;(@}(2.104)
Let (yf,y3,¢*) be the solution of the optimization problem appearing in Eq. (2.104).
We depict the most likely path in Figure 2-10.

We now proceed with a numerical example. We chose the arrival process A to be
a two-state Markov modulated deterministic process. More precisely, we consider a

two-state Markov chain with transition probability matrix

0.8 0.2
P= , (2.105)
0.3 0.7

and we let the interarrival times be equal to Ail = 1 w.p.1 when the chain is at state 1,

and equal to % = ;5 w.p.1 when the chain is at state 2. The steady-state probability

vector for this Markov chain is [m; 73] = [0.6 0.4] and thus the mean inter-arrival is
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— — service rate in second queue

— — = - arrival rate in first queue

service rate in first queue (arrival in second)

S O U

| 1 |

e B

busy period of cust. (=" —1) ¢y, (—%* — 1) departs from  cust. 0 departs from first
starts in first queue first queue (arrives at second) queue (arrives at second)

Figure 2-10: The most likely path for the waiting time in the second queue.

)‘%Trl + %271'2 = 0.16. We chose a deterministic server for both queues 1 and 2 with

service times ¢ = 0.13.

Theorem 3.1.2 in [DZ93b] calculates the limiting log-moment generating function
for the arrival process as the largest eigenvalue of the matrix Fy 2 [pije"/ %] which in

our case is

(2.106)

0.8¢%/5 0.2¢8/10
0.3¢/5  0.7¢0/10

We perfovrmed‘ several calculations using the software package Matlab. For the
tail probability of the waiting time in the first queue we found that 67 = —9.47. We

calculated the large deviations rate functions A% (a) and A}; (a) for the arrival process
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and the departure process from the first queue, respectively. The results appear in
Figure 2-11. To calculate A}, (a) we used Eq. (2.60). It can be seen that the first

35 T T T T

\ — AL (a)

25

| - AT (@)

1.5F \ h

05 AN -

| Il
0 0.05 0.1 0.15 02 0.25

Figure 2-11: A’ (a) and A}y (a) for the numerical example.

queue has a smoothing effect on the arrival process. In other words, the departure
process deviates from its mean with smaller probability than the arrival process does.
We also found that Ap(f) + Ap:(—0) is strictly negative for all # < 0, so as it can
be seen from the proof of Theorem 2.2.1 that we have 65 = —oo, which means that
w.p.1 a large queue does not built up in the second queue. Finally, we found that
the departure process D, from the second queue has large deviations rate function

A7, (a) equal to A}, (a). This, can also be seen analytically. Namely, observe that in
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Eq. (2.59) we have Af (a) = A} (a) which implies A}, (a) = Ap (a).



Chapter 3

Overflow Probabilities with GPS

In this chapter we switch gears and consider a multiclass model. The motivation is
to capture the interaction between distinct types (classes) of traffic in future high-
speed networks and to understand how they can share common network resources in
a way that congestion stays within desired limits. We therefore consider a multiclass
multiplexer (switch) with two types of traffic and a distinct buffer assigned to each
traffic class. We estimate the buffer overflow probability in each of the buffers, when

the multiplexer is operated under the generalized processor sharing policy (GPS).

Regarding the structure of this chapter, we begin in Section 3.1 by formally defin-
ing the multiclass model that we consider and by stating a set of assumptions that
arrival and service processes need to conform to. In Section 3.2 we formally define the
GPS policy and we provide an outline of the methodology that we follow in proving
our results. In Section 3.3 we prove a lower bound on the overflow probability and in
Section 3.4 we introduce the optimal control formulation and solve the control prob-
lem. In Section 3.5 we summarize the most likely modes of overflow obtained from
the solution of the control problem and in Section 3.6 we prove the matching upper
bound. We gather our main results in Section 3.7, where we also treat the special

case of strict priority policies.

85
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3.1 A Multiclass Model

In this section we introduce a multiclass multiplexer model that we plan to analyze,

- in the large deviations regime.

Consider the system depicted in Figure 3-1. We assume a slotted time model (i.e.,

Al

T~ 0!

/ Q2

A2

Figure 3-1: A multiclass model.

discrete time) and we let A} (resp. A?), 1 € Z, denote the number of type 1 (resp. 2)
customers that enter queue Q' (resp. %) at time 7. Both queues have infinite buffers
and share the same server which can process B; customers during the time interval
[i,% + 1]. We assume that the processes {A}; i € Z}, {A% i € Z} and {B;; i € Z}
are stationary and mutually independent. However, we allow dependencies between

the number of customers at different slots in each process.

We denote by L; and L?, the queue lengths at time i (without counting arrivals
at time 7) in queues @' and Q?, respectively. We assume that the server allocates its
capacity between queues @' and Q? according to a work-conserving policy (i.e., the
server never stays idle when there is work in the system). We also assume that the
queue length processes {L{ ,j =1,2,4 € Z} are stationary (under a work-conserving
policy, the system reaches steady-state due to the stability condition (3.1) by assuming
ergodicity for the arrival and service processes).

To simplify the analysis and avoid integrality issues we assume a “fluid” model,

1

meaning that we will be treating A}, A? and B; as real numbers (the amount of fluid
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entering or being served). This will not change the results in the large deviations

regime.

For stability purposes we assume that for all ¢
E[B)] > E[A}] + E[A42]. (3.1)

We further assume that the arrival and service processes satisfy a LDP (Assump-
tion A), as well as Assumptions D and E. As we have noted in Section 1.3, these
assumptions are satisfied by processes that are commonly used to model bursty traf-
fic in communication networks, e.g., renewal processes, Markov-modulated processes

and more generally stationary processes with mild mixing conditions.

3.2 The GPS policy

In this section we introduce the generalized processor sharing (GPS) policy that was
proposed in [DKS90] and further explored in [PG93, PG94]. According to this policy
the server allocates a fraction ¢; € [0, 1] of its capacity to queue !, and the remaining
fraction ¢, = 1 — ¢, to queue Q2. The policy is defined to be Work-conserving, which
implies that one of the queues, say queue @', may get more than a fraction ¢, of the
server’s capacity during times that the other queue, Q?, is empty. More formally, we

can define the GPS to be the policy that satisfies (work-conservation)
Li,+ L2, =L} + L+ Al + A? - B]",
and
L'{-I-l S [L{ + Ai - ¢jBi]+; .7 = 1: 2)

where [z]* £ max{z, 0}.

We are interested in estimating the overflow probability P[L} > U] for large values
of U, at an arbitrary time slot , in steady-state. Having determined this, the overflow

probability of the second queue can be obtained by a symmetrical argument.
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We will prove that the overflow probability satisfies
P[L! > U] ~ e”Ybcrs, (3.2)

asymptotically, as U — oo. To this end, we will develop a lower bound on the overflow
probability, along with a matching upper bound. Consider all scenarios (paths) that
lead to an overflow. We will show that the probability of each such scenario w
asymptotically behaves as e~U?“), for some function #(w). This probability is a lower
‘bound on P[L} > U] for all w. We select the tightest lower bound by performing the
minimization 6} pg = min, #(w), by solving a deterministic optimal control problem.
Optimal trajectories (paths) of the control problem correspond to most likely overflow
scenarios. We show that these must be of one out of two possible types. In other
words, with high probability, overflow occurs in one out of two possible modes. We
will obtain an upper bound on P[L} > U] by first obtaining a sample path upper
bound, i.e., L} < L! (which implies P[L} > U] < P[L! > U]) and establishing that

P[L} > U] is at most e~U%ps.

3.3 A Lower Bound

In this section we establish a lower bound on the overflow probability P[L} > U].

Proposition 3.3.1 (GPS Lower Bound) Assuming that the arrival and service
processes satisfy Assumptions A and D, and under the GPS policy, the steady-state
queue length L' of queue Q' satisfies

1 .
U]'.I—I)IgoﬁlogP[Ll > U] Z —ecps, (33)
where 05 pg 15 given by

0Gps = min gg EA(IJPS(G')’ }11;% aAgps(a) ) : (3.4)
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and the functions ALps(-) and Adps(-) are defined as Jollows

AGps(a) = inf A% (1) + (o) + A (zs)], (3.5)
z2<5¢2z3

and

AGps(a) = | i [Nu(@) + Ap(za) + A(as)]. (36)
T22>¢273

Proof : Let —n < 0and g > 0. Fix 21, 75,23 > 0 and €1, €2, €3 > 0 and consider the

event
{ 'Sfjl,—i—l — (n~9)z,| < e, lsf;,_i_l — (n —1i)z;3| < e5n,
SE o —(n—i T3] < en, 1=0,1,... ,n—1).
n,—i—1

Notice that z,, z, (resp. z3) have the interpretation of empirical arrival (resp. service)

rates during the interval [—n, ~1]. We focus on two particular scenarios

Scenario 1: z, + 1, — T3 =a Scenario 2: 7, — D123 = a

Ty < Pox3 Ty 2 Paz3.

(3.7)

Under Scenario 1, the first queue receives the maximum capacity (at a rate of z —Z3)
when the second queue stays always empty during the interval [-n,0]. Thus, L} >
na — ney, where €, — 0 as €1,€2,€3 — 0. Similarly, under Scenario 2, the second
queue is almost always backlogged during the interval [-7, 0], and the first queue gets

capacity roughly ¢,x;, implying also L} > ng — ne;,, where ¢, — 0 as €1,€9,€3 — 0.
g 0 2 2

Now, the probability of Scenario 1 is a lower bound on P[L} > n(a — €})]. Cal-
culating the probability of Scenario 1, maximizing over z,, 7, and Z3, to obtain the
tightest bound, and using Assumption D we have

P[L; > n(a-é)] > sup P |Sf;}_i_1 —(n—9z| <en, i=0,1,... ,n—1]
T1+T3—T3=q
T2<doz3
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XP“S—n—z 1 (n—i):c2|§egn,i:O,l,...,n—l]
XP“S—n —i—1 (’n—i)x3|§e3n,i:O,l,...,n—l]
> exp{—n (z1+zign—fa,‘3=a[A*Al(x1) + Ao (z2) + Ap(z3)] + e) }
z2<¢2Z3
= exp{—n(Agps(a) + €)}, ' (3.8)

where n is large enough, and €,¢; — 0 as €, €2,€3 — 0.

Similarly, calculating the probability of Scenario 2, we obtain
P[L; > n(a — €)] > exp{-n(Agps(a) +€)}, (3.9)

for n large enough, and with €/,¢, — 0 as €, €3,e3 — 0.

Combining Eqgs. (3.8) and (3.9) (taking the limit of all €’s going to zero) we obtain
1
lim 210 P(L} > na] > — min(ALips(a), Ais(a)) (3.10)
As a final step to this proof, by letting U = na, we obtain
1 1 1 1 ITx
hm ﬁlogP[L > U] = Jim —logP[L > na)] > ——mm(AGPS(a),AGPS(a)).

Since a, in the above, is arbitrary we can select it properly to make the bound tighter.

Namely,

11m ﬁlogP[L1 > U] > —min 1nf AGPS(G’) mf Ag;s( )|-
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3.4 The optimal control problem

In this section we introduce an optimal control problem and show that 0% p is its

optimal value.

To motivate the control problem, we relate it, heuristically, with the problem of
obtaining an asymptotically tight estimate of the overflow probability !. For every
overflow sample path, leading to L§ > U, there exists some time —n < 0 that both
queues are empty. Since we are interested in the asymptotics as U — oo, we scale
time and the levels of the processes A', A? and B by U. We then let T = 2 and
define the following continuous-time functions in D[—T, 0] (these are right-continuous

functions with left-limits):

, 1, 1
L(t) = ELJLU”, i=1,2, S¥*(t)= ESi(UT,[Utp X e {A', A%, B}, forte[-T,0|.

Notice that the empirical rate of a process X is roughly equal to the rate of growth
of 5% (t). More formally, we will say that a process X has empirical rate z(¢) in the
interval [T, 0] if for large U and small € > 0 it is true

550 - | tT w(r)dr|<e  Vte[-T,0]

where z(t) are arbitrary non-negative functions. We let, z;(t), 72(t) and z3(t) denote
the empirical rates of the processes A', A% and B, respectively. The probability of
sustaining rates z;(t), z5(t) and z3(t), in the interval [~UT, 0] for large values of U is

given (up to first degree in the exponent) by

exp{—U [ 1K@ (®) + K (ea(®) + A (za(®) dt}.

This cost functional is a consequence of Assumption D. With the scaling introduced

here as U — oo the sequence of slopes ag,ay,...,a,,-; appearing there converges

1Such a relation can be rigorously established using the sample path LDP for the arrival and
service processes, as it is defined in [DZ93a] and [Cha94a].
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to the empirical rate x(-) and the sum of rate functions appearing in the exponent

converges to an integral.

We seek a path with maximum probability, i.e., a minimum cost path where the
cost functional is given byv the integral in the above expression. This optimization is
subject to the constraints L'(—7T) = L*(—T) = 0 and L'(0) = 1. The fluid levels
in the two queues L!(t) and L2(t) are the state variables and the empirical rates
z1(t), z5(t) and z3(t) are the control variables. The dynamics of the system depend

on the state. We distinguish three regions:
Region A: Ll(t‘),‘L2 (t) > 0, where according to the GPS policy
LY = z,(t) — brzs(t) and L% = z5(t) — daws(t),

Region B: L!(t) = 0, L?(t) > 0, where according to the GPS policy

L? =z, (t) + 32(t) — 73(2),

Region C: L(t) > 0, L%(t) = 0, where according to the GPS policy

LY =z, (t) + za(t) — 23(2).

Dotted variables in the above ‘expr’essi.(&)ns ’d(envote derivatives 2. Let
(GPS-DYNAMICS) denote the set of state trajectories L7(t), j = 1,2, t € [-T,0],

that obey the dynamics given above.

Motivated by this discussion we now formally define the following optimal control
problem (GPS-OVERFLOW). The control variables are z;(t), j = 1,2,3, and the
state variables are L’(t), j = 1,2, for t € [T, 0], which obey the dynamics given in

2Here we use the notion of derivative for simplicity of the exposition. Note that these derivatives
may not exist everywhere. Thus, in Region B for example, the rigorous version of the statement
L2 = 21 (t) + z2(t) — x3(¢) is L2(t2) = L3 (t1) + fh (z1(t) + mz(t) — x3(t)) dt, for all intervals (¢1,t2)
that the system remains in Region B.
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the previous paragraph.

0

(GPS-OVERFLOW) minimize /_ N (1 (8) + N (a(0)) + Apas(0) e
(3.11)
subject to: L}(=T) = L*(-T) =0
LY(0) =1
L*(0) : free
T : free

{L(t): te[-T,0], j =1,2} € (GPS-DYNAMICS).

The first property of (GPS-OVERFLOW) that we show is that optimal control
trajectories can be taken to be constant within each of the three regions. The result is
established in the next lemma, where only Region A is considered in the proof. The

other regions can be treated similarly.

Lemma 3.4.1 Fiz a time interval [Ty, —T3). Consider a segment of a control tra-
jectory {z,(t), T2(t), z3(t); t € [~T1,—T2]}, achieving cost V, such that the corre-
sponding state trajectory {L'(t), L*(t); t € (—T1, —T3)} stays in one of the regions A,
B, or C. Then there ezist scalars T, T and T3 such that the segment of the control
trajectory {x,(t) = Z1,72(t) = Tp, z3(t) = T3; t € [-Th, —T2]} achieves cost at most
V, with the same corresponding state trajectory {L*(t), L*(t); t € (=T1, —T2)}

Proof : Consider a segment of any arbitrary control trajectory {z:(t), z2(t), z3(t); t €
[-T1, T3]}, that satisfies

LN-T1)=a; >0, L'Y(-Tz)=b >0,
L2(—T1) =ay >0, L2(—T2) = bg > 0, (312)

and stays in Region A, i.e., L'(t), L2(t) > 0 for all t € (—T1, —T3). We will prove that
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the time-average control trajectory

1 -1z )
()= 77 /_Tl n()dt, =123 Vre[-T,~-T, (3.13)

is no more costly. To this end, notice that to stay in Region A, the state variables

have to be positive, which by the system dynamics implies
) t
L’(t) =a; + /T [z;(1) — ¢;z3(T)] > 0, j=1,2, te (-T,-Ty). (3.14)
—41
Moreover, we also have
, =T )
D(-T;) =a; + /T [z;(1) — ¢;23(7)] = by, j=12. (3.15)
—41

Notice now that the time-average trajectory, has the same end points (i.e., satisfies

(3.12)), moves along a straight line and thus stays in Region A for t € (-T,-T3). -

Moreover, by convexity of the rate functions we have

[ 8 1 6) A a8+ M s ()] 2 (T~ To)[As (32) + A (32) + A (39)]

Given this property, to solve (GPS-OVERFLOW) it suffices to restrict ourselves
to state trajectories with constant control variables in each of the regions A, B and
C. A trajectory is called optimal if it achieves the lowest cost among all trajectories
with the same initial and final state. Since we have a free time problem, any segment

of an optimal trajectory is also optimal.

Consider now a control trajectory {z(t); t € [T, 0]} with corresponding state
trajectory {L(t), L*(t); t € [~T,0]}, which leads to a final state (L'(0), L*(0)).

Define a scaled trajectory as

22(t) = zk(t/a), i=1,2,3, t € [~aT,0),
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Q) =all(t/a), j=1,2,t€[-aT,0],

and note that it leads to the final state (aL'(0), «L?(0)). Then, the cost of the Q

trajectory is given by

/_OQT[AZI@?(t)) + N2 (22(8)) + Ay (af (t))] dt =
/ (A% (27 (8)) + A (23 (1) + Ap(25 ()] dt.

Using this observation, it follows easily that every scaled version of an optimal trajec-
tory is optimal for the corresponding terminal state. Given this homogeneity property
we can compare the state trajectories in Figure 3-2(a), (b) and (c). If the trajectory
in Figure 3-2(a) is optimal then so does the scaled version (by a = ay/a;) in Figure 3-
2(b) and as consequence its segment which appears in Figure 3-2(c) is also optimal

(since we have a free time problem).

Using the homogeneity property we can make the reduction in Figure 3-2(e),
starting from any arbitrary trajectory with constant controls as the one appearing in
Figure 3-2(d) (by appropriately scaling the dashed segment). Therefore, we conclude
that optimal state trajectories which have L'(t) = 0 for some initial segment can
be restricted to have one of the forms depicted in Figure 3-3(c) and (d). Similarly,
optimal state trajectories which have L'(t) > 0 for some initial segment can be
restricted to have one of the forms depicted in Figure 3-3(a) and (b). Consider now
the trajectories in Figure 3-3(c) and (c’). The segment of (c) and (c) that is in Region
A has the same slope, thus the same controls, which implies that the trajectory in (c')
is at least as cheap since it spends less time on the L? axis. Hence, we have reduced

the candidates for optimal trajectories to the ones in Figure 3-3 (a), (b) and (d).

Finally, consider the state trajectory in Figure 3-3(d). Assume, without loss of
generality that it spends a ( fraction of its total time T on the L? axis (Region B)
and the remaining 1 — ( fraction in Region A. Let also, {z;; j = 1,2,3,} be the
controls in Region B and {y;; j = 1,2,3,} the controls in Region A. The feasibility
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Figure 3-2: By the homogeneity property, optimality of the trajectory
in (a) implies optimality of the trajectory in (b) which by its turn implies
optimality of the trajectory in (c). Using the homogeneity property the
trajectory in (d) reduces to the one in (e).

constraints are

1 < 123,
(T(z1+ 72 — 23) + (1 = )T (y2 — ¢2y3) = 0,
(1 =T (y1 — drys) = 1.
Note that the time average control over z,, ys, i.e., Ty = Cxzp + (1 — {)ys,, satisfies

the same feasibility constraints and therefore by convexity (using the argument in the

proof of Lemma 3.4.1) it is at least as profitable to have z3 = y, = &,. Now, to have
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Figure 3-3: Candidates for optimal state trajectories are depicted in (a),
(b), (c) and (d). The trajectory in (c) is reduced to the one in (c¢') which
has the same form as the one in (d). The trajectory in (d) is reduced to the
one in (d') which is contradicted by the time-homogeneity property. Hence,
optimal state trajectories have only the form in (a) and (b).

the trajectory in Figure 3-3(d), it has to be the case (since z; > ¢y73 and 75 < @yy3)

Ty > ¢oxs,

Ty < Pays.

Consider the trajectory with z§ = z3 + ¢ and y3 = ys — i—¢ for some small € > 0.
This latter trajectory serves the same total number of customers as the former in the
interval [T, 0] (equal to (Tz3 + (1 — ¢)T'y3) and it is at least as cheap by convexity
of the rate functions. It is depicted in Figure 3-3(d’). We can now apply the same
argument to its dashed segment. If we keep doing that we conclude that the trajectory

in Figure 3-3(a) is at least as cheap.

Therefore, optimal state trajectories of (GPS-OVERFLOW) can be restricted to
have one of the forms depicted in Figure 3-3(a) and (b). We next calculate the optimal
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value of (GPS-OVERFLOW). The best trajectory of the form shown in Figure 3-3(a)

has value

$1+$2—$3=T
z2<¢2T3

which is equal to infr[TALpg(1/T)] by the definition in (3.5). The best trajectory of

the form shown in Figure 3-3(b) has value

T 11—¢1$3=%
zT2>¢2T3
which is equal to infr[TAY3s(1/T)] by the definition in (3.6). Thus, the optimal
value of (GPS-OVERFLOW) is equal to the minimum of the two expressions above
which is identical to 8% pg as it is defined in (3.4). In summary we have established

the following:

Theorem 3.4.2 The optimal value of the problem (GPS-OVERFLOW) is given by
0% ps, as it is defined in (3.4).

It is of interest to investigate under what conditions on the parameters of the
arrival and service processes the trajectory in Figure 3-3(a) dominates the one in (b)
and vice versa. We will distinguish two cases: E[A%] > ¢,E[B] and E[A?] < $,E[B],
where for j = 1,2, E[A’] (resp. E[B]) denote the expected number of customers
arriving from stream j (resp. expected potential number of departures). In the
first case we will establish that the trajectory in Figure 3-3(b) dominates the one
in (a). In the second case, however, the relationship between expectations is not
sufficient to discard one of the two trajectories and which one dominates depends on
the distribution of the arrival and service processes. The following theorem describes

the result.

Theorem 3.4.3 If E[A?] > ¢,E[B] then optimal state trajectories of
(GPS-OVERFLOW) can be restricted to have the form in Figure 3-3(b) with optimal
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value
i;}f inf  T[A%(z1) + Ap(z3)].

1
T1—¢1T3=7F

Proof : Assume E[A?] > ¢,E[B] and consider the state trajectory in Figure 3-
3(a) which has optimal value given by the expression in (3.16). Since z, < ¢z,
either z; < E[A?] or z3 > E[B]. Then we can increase z, and decrease z3 until
Ty = ¢ox3, making x; + x5 — T3 > % The segment of this trajectory with terminal
point at L' = 1 has the form of the state trajectory in Figure 3-3(b). Thus we
have reduced optimal state trajectories to Figure 3-3(b). To determine the optimal
value, notice that if z3 > E[B] we can decrease z3 to E[B], without violating the
constraint T, > ¢,x3, making z; — 13 > %, and keeping the segment of the resulting
trajectory with terminal point at L' = % Thus, it has to be the case z3 < E[B].
Then we can actually fix z, to E[A?], without violating the constraint z, > ¢,z
(since z5 = E[A?%] > ¢ E[B| > ¢yz3). This proves that the optimal value is given by
the expression appearing in the statement of this theorem.

3.5 The most likely paths

As we have explained in the Section 3.2 we will prove an upper bound that matches the
lower bound in Proposition 3.3.1. This is sufficient to guarantee that the two scenarios
identified in the proof of Proposition 3.3.1 (or equivalently the two optimal state
trajectories of (GPS-OVERFLOW)) are two generic ways that queue Q! overflows.

We summarize here these two modes of overflow.

In particular, we distinguish two cases:

Case 1: Suppose 0%pg = inf, Alpg(a)/a holds. Let a* > 0 the optimal solution
of this optimization problem. In this case, the first queue is building up to
an O(U) level while the second queue stays at an o(U) level. The first queue

builds up linearly with rate a*, during a period with duration U/a*. During



100 Chapter 3. Overflow Probabilities with GPS

this period the empirical rates of the processes A', A% and B, are roughly equal
to the optimal solution (z7,z3,x}), respecfively, of the optimization problem
appearing in the definition of AZpg(a*) (Eq. (3.5)). The trajectory in L'-L?
space is depicted in Figure 3-3(a).

Case 2: Suppose 0%5pg = inf, A{fg(a)/a holds. Let a* > 0 the optimal solution

of this optimization problem. In this case, both queues are building up to an
O(U) level. The first queue builds up linearly with rate a*, during a period
with duration U/a*. During this period the empirical rates of the processes Al
A? and B, are roughly equal to the optimal solution (z7, z3, z3), respectively, of
the optimization problem appearing in the definition of AL5g(a*) (Eq. (3.6)).

The trajectory in L!-L? space is depicted in Figure 3-3(b).

It is interesting to reflect at this point on the implications of this result on ad-
mission control for ATM multiplexers operating under the GPS policy. Consider the
admission control mechanism for queue Q! and suppose that the objective of this
mechanism is to keep the overflow probability below a given desirable threshold. A
worst-case analysis as in [PG93] would conclude that the admission control mech-
anism has to be designed with the assumption that the second queue always uses
a fraction ¢, of the service capacity. If instead the results of this chapter are used
(assuming that a detailed statistical model of the input traffic streams is available) a
statistical multiplexing gain can be realized. In the overflow mode described in Case
1 above, the second queue consumes less than the fraction ¢, of the total service ca-
pacity, implying that more Type 1 connections can be allowed without compromising
the quality of service. Even if the overflow mode described in Case 2 above prevails,
the overflow probability is explicitly calculated (in an exponential scale) and can be

taken into account in the design of the admission control mechanism.
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3.6 An Upper Bound

In this section we develop an upper bound on the probability P[L} > U ]. In particular,
we will prove that as U — co we have P[L} > U] < e7%rsUtelU)  where o(U) denotes

functions with the property limg_, ﬂUﬂ =0.

In proving the upper bound we will distinguish two cases:

Case 1. E[A?] < ¢,E[B].

Case 2. E[A’] > ¢,E[B].

3.6.1 Upper Bound: Case 2

We will first establish the proof for Case 2, which is easier.

We consider a busy period of the first queue, Q', that starts at some time —n* <0
(L,. = 0) and has not ended until time 0. N otice that due to the stability condition
(3.1) and the fact E[4?] > $E[B], it is true that E[A!] < $:E[B], which implies
that such a time —n* always exists. We will focus on sample paths of the system in
[-n*, 0] that lead to L} > U. Note that

1

L; < St i —hiSEL L (3.18)
Thus,
P[Ly > U] <P[3n > 0st. $4, | - $155, _, > U]
<P[max(S4 . _ gbIan,_l) > U]. (3.19)

n>0 -n,—1

We next upper bound the moment generating function of max, (S f:z,_l ~ 6155, ).

Applying the LDP for the arrival and service processes for # > 0 we can obtain

E[emn20(5%, 1 —0152, 1)) < > E[eS% =152, ),
n>0



102 Chapter 3. Overflow Probabilities with GPS

< Z eMA 41 (0)+AB(=910)+¢)

n>0
SK(G,G) if AA1(9)+AB(—¢19) <0,
(3.20)

since when the exponent is negative (for sufficiently small €), the infinite geometric
series converges to a constant, with respect to n, K(6,¢). We can now apply the

Markov inequality in (3.19) to obtain

P[L{ > U] SE[eGmaicnzo(Si‘,ll,_l—¢1S_Bn,_1)]e—0U

<K(0,¢) if Ay(8) + Ap(—0) < 0. (3.21)

* Taking the limit as U — oo and minimizing over § to obtain the tightest bound we

establish the following proposition.

Proposition 3.6.1 If E[A?] > ¢E[B| and assuming an LDP for the arrwal and

service processes (Assumption A)

1
lim —logP[L} > Ul < — sup 6.
U—oo U & [ 0 ] {6>0: A ,41(8)+Ap(—$10)<0}

We are now left with proving that this upper bound matches the lower bound,

0%ps, which in Case 2 is given by the expression in Thm. 3.4.3.

In preparation for this result, consider a convex function f(u) with the property
f(0) = 0. We define the largest root of f(u) to be the solution of the optimization
problem sup,.uy<o u- If f(-) has negative derivative at u = 0, there are two cases:
either f(-) has a single positive root or it stays below the horizontal axis u = 0, for

all u > 0. In the latter, case we will say that f(-) has a root at u = oco.

Lemma 3.6.2 For A*(-) and A(-) being convexr duals it holds

inf lA*(a) = 0",

a>0
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where 0% is the largest root of the equation A(f) = 0.

Proof : -

P 1
inf ~A*(a) = ir;g sup E[Qa — A(6))

a>0 q

= inf sup[f — a'A(6)]

e'>0 g

= sup 6.
9: A(6)<0

In the second equality above, we have made the substitution o’ := % and in the last

one we have used duality.

Based on this lemma and Proposition 3.6.1 we establish the following proposition.

Proposition 3.6.3 (GPS Upper bound, Case 2) If E[A?] > ¢,E[B] and assum-
ing that the arrival and service processes satisfy Assumption A, the steady-state queue

length, L*, of queue Q', at an arbitrary time slot satisfies

1 .

Proof : It suffices to prove that 6¢pg5 = sup g A1 (6)+A5(~p10)<0} 0- Since we are in
Case 2, 0 pg is given by the expression in Thm. 3.4.3. Due to Lemma 3.6.2 it suffices
to prove that A 41(6) + Ap(—¢16) is the convex dual of A*(a) £ inle_¢,1z3;a [/fjll (1) +
Aj(z3)]. Notice that the latter is a convex function of a as the value function of a
convex optimization problem with a appearing only in the right hand side of the

constraints. Indeed

sup sup [fa—Ali(z1) — Aj(z3)] =

¢ z1—-¢1T3=0

= sup [9(:1:1 — ¢1:L'3) — Aj‘41 ($1) - A*B(-T:i)]

I1,73
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=Au(0) + Ap(~h16).

3.6.2 Upper bound: Caée 1

We now proceed to establish the upper bound in Case 1.

Consider all sample paths that lead to L§ > U. Looking backwards in time from
time 0, let —k* < 0 be the first time that L' = 0. Since the system is busy during

the interval [—k*, 0], the server operates at capacity and
1 2
Ly<Ly+Li=L%. +S%. 1 +5%.,-5%. .. (3.22)

" Since according to the GPS policy Q? gets at least a fraction ¢, of the capacity, we can

‘upper bound L?,. by the queue length at a virtual system which gives to Q* exactly
~a ¢, fraction of the capacity (wasting some capacity at times that Q' is empty). This
trick of using the virtual system to upper bound the queue length in the second queue
has been introduced in [dVK95] and used in [Zha95|, although the upper bound proofs
there do not extend to the general services case. To establish the upper bound we will
use the fact that 6%pg is the optimal value of (GPS-OVERFLOW). Let —n* < —£*
be the first time (looking backwards in time from —k*) that the queue length of Q?
becomes zero in the virtual system. Notice that such a time —n* always exists since
we are in Case 1, and Q? is stable when it gets exactly a fraction ¢, of the capacity.
Then

L% < Sfi*,—k*_l — 6288, k1, (3.23)
which when combined with (3.22) yields

1 2
Lé S Sf *,_1 + an*,_l - ka*,—l - ¢2S?n*,—k*—l‘ (3.24)
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Now, since Q' is non-empty during the interval [—k*, 0]
Ly <S4 1 —$iSP. . (3.25)

We will use the bound in (3.24) when sz*,_l < ¢$258,. _; and the bound in (3.25)

otherwise. Namely we will use

Ly <
1 2 . 2
Sf *7_1 + an*,_l - ka*'_l ¢2 —n* —k* 1 lf an* _ S ¢2S§n* _1

- ) o (3.26)
S 1 — 01820 4 if S%,. 1 > $2S5,. ~1-

Let €2; the set of sample paths that satisfy Sfi*,_l < qSZan*,_l and €2, its comple-

ment. We have

P[Ly > U and Q] <
<PEn>k>0st 8% | <$S% | and
S4 1+ 552 — S8 1~ %258, > U]
<P| max (5% 1+ 8% 1 - — 6285, 1) > Ul.

n>k>0: SAZ _ <4$,SB
{ N —n,—l—¢,2 —11,—1} (3.27)

For sample paths in 2, we have

P[Lg > U and Q,] <
<PEn >k >0st 5% | > ¢S5, _ _yand SA ) — 4S5, > U]
SP[ max (ka,—l - ¢IS—k,—1) > U]- (3.28)

{nZkEO: sz,_12¢2‘9§n,—l}

Let us now define

= max (SA1 ot S—n -1 SE;,—1 - ¢ZS§n,—Ic—1)’

LI
GPS,1
{n>k>0: SA2 _ 1S¢288 1}
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and

A Al B
LGPSl = max (S—k,—l - ¢1S—k,—1)a
{n>k>0: SA2 _ >¢,8B .}

which after bringing the constraints in the objective function become

LépSl - nrgl?;{(] 33%[5 k a4t (1- U)SA2 -(1- U¢2)S?k,—1 — ¢a(1 = U)S?n,—k—l],
(3.29)

and

Lips1 = nax, }};%[S k a1t Uan 1+ (—ugs — ¢1)SB ) —ueSZ, ;]
(3.30)

Next we will upper bound the moment generating functions of Léps; and Lgps,1
by using Assumption E. For the moment generating function of Lips, and > 0 we

have

E[eaLéPS,l] <

<Y Y inf Elexp{0[S%, 1 + (1 — u)S4 _ — (1 —u¢2)S%,

— ¢2(1 —u)SZ, 41}
<>y 1nf exp{(n — k)[Aa2(0 — Ou) + Ap(—0¢2(1 — u))]

n>00<k<n

+ E[A41(0) + Ap2(0 — Ou) + Ap(—0(1 — udy))] + T'(6,v)}
<Y n sup 1nf exp{n[C(AAz (0 — Ou) + Ap(—0¢2(1 — u)))

ns0 (Cef1)¥20

+ (1= O)(Aar(0) + Ape(9 — Bu) + Ap(=6(1 — ugn))) + TG4}, (3.31)
where we let ( = . In the second inequality above we have used Assumption E.

Let us now define

Mipsi(8) 2 sup infl¢(Axe(6 - Ou) + Ap(—0¢a(1 — u))) +

¢efo,1]
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+ (1= O (Aar(0) + A2 (0 — Ou) + Ap(—0(1 — ugy)))].
Let u*(¢) be the optimal u in the above optimization problem. From (3.31) we have

E[eaLIGPS,l] <

< n sup exp{n[((An:(0 — Ou”) + Ap(—02(1 — u")))

n>0 (€€[0,1]
+ (1= ) (A (0) + Aa2(8 — Ou”) + Ap(—0(1 — u*¢y))) + LI}y,
(3.33)

Now for every ¢ > 0 and § > 0 we can take n large enough such that m’,’lil < €. For
sufficiently small € and if Afpg,(#) < O then the infinite geometric series in the right

hand side of (3.33) converges to a constant, with respect to n, K,(0,¢). That is,

E[e"6rsa] < Ky (6,¢),  if Abpg,(0) < 0. (3.34)

Similarly, for the moment generating function of LY,o, and § > 0 we have
g GPS,1

E [eeLIGIPS,l] <

<M 3 ir;%E[exp{O[Sf;’_l + qu:l,_l + (—uds — ¢1)S§k,—1

n>00<k<n —

- u¢’2S§n,—k—l]}]
< Z Z 11LI>1f(; exp{(n — k)[A42(0u) + Ap(—0p3u)))

n>00<k<n —
+ k[AAl (0) + Ay (0'&) + AB(—0(¢1 + ’lL(ﬁQ))] + F’(G, U)}
<> n sup inf exp{n[C(A 2(0u) + Ap(—0¢3u)))

n>0 (C€[o,1]%20

+ (1= (A (8) + As2(0u) + Ap(—0(dy + ugs))) + ZE1I}. (3.35)
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In the second inequality above we have used Assumption E. Let us now define

Mlpsa(0) = sup inf[C(Mn(Bu) + As(~0020))

+ (1= O(Aar(0) + Aaz(0u) + Ap(—0(d1 + ugs)))]-
Let 4*(A) be the optimal u in the above optimization problem. From (3.35) we have

E [QGLgPS,l] <

<3 n sup exp{n[C(A2(00") + Ap(—0¢20")))
n>0 ¢elo,1]

(1= O(An(0) + Aae(80") + Ap(—B(er +0"¢2))) + T},
(3.37)

Now for every ¢ > 0 and 6 > 0 we can take n large enough such that &iu—l < €.
For sufficiently small € and if Af{pg;(6) < O then the infinite geometric series in the
right hand side of (3.37) converges to a constant, with respect to n, K»(6,€'). That

is,
E[e’tdrsa] < Ky (0,¢'),  if Allpg(0) < (3.38)

We can now invoke the Markov inequality and by using the bounds (3.31) and
(3.35) on (3.27) and (3.28) obtain ‘

P[Lé > U] SP[L(I] > U and O] +P[L(1) > U and Q]
S(E[QGLIGPS,I] 4 E[eeLIGIPS,l])e_oU

<(K1(0,€) + K2(0,€))e™®,  if max(Agps1(9), Agpsa(6)) < 0.
(3.39)

Optimizing over @ to get the tightest bound we establish the following proposition.

Proposition 3.6.4 If E[A'] < ¢,E[B] and assuming that the arrival and service
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processes satisfy Assumptions A and E

1

. 1 _
Uh_r)xgo i logP[L; > U] < sup 6.

{6>0: max(Agps,(0),Aps,(6))<0}

We are now left with proving that this upper bound matches the lower bound,
0Gps- The result which is based on Lemma 3.6.2 and convex duality is established in

the next proposition.

Proposition 3.6.5 (GPS Upper bound, Case 1) If E[A?] < ¢,E|[B] and assum-
ing that the arrival and service processes satisfy Assumption A and E, the steady-state

queue length, L', of queue Q, at an arbitrary time slot satisfies

o1 .
Uh_l)lgovlogP[Ll > U] < —6¢pg.

Proof : It suffices to prove that 65,5 = SUP(9>0: max(ALps,, (0),Adps 1 (6))<0} 6. Consider

the following expressions

Abpsa(a) 2 [C(A%2(2) + A (zs))

inf
C(z2—d223)+(1-C)(y1+y2—y3)=a
¢(z2—t2z3)+(1-C)(y2 —P2y3) <0
0<¢<1

+ (1= QA% () + Az (y2) + AR(ys))],  (3.40)

and

A . * *
AIGI;S,I(G) = inf [((A%:(z2) + Ap(x3))
(1~ (y1—d1y3)=a
C(z2~d2z3)+(1—C)(y2—b2y3)>0
0<¢<1

+ (1= Ok (v1) + Ae(v2) + Ap(ys))],  (341)

which by a change of variables can be written as

= inf
(z2—¢223)+(y1+y2—v3)=a (€[0,1]
(z2—p2x3)+(y2—P2y3)<0

AGpsa(a) = inf [((A%2(72/¢) + Ap(z3/C)) +
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+ (1= Oy /(L = €)) + Al (y2/(1 = Q) + A (ys/(1 = O)))], (3-42)

and

i inf A% A3
e SR W2/ )+ A(ws/C))
(z2—p223)+(y2—¢2y3)>0

+ (1= QW /(1 =) + A'Z‘caz(yz/(lv =)+ Ap(ys/(1 = Q) (343)

Ag;S,l(a’) =

By [Roc70, Thm. 5.8] the function

Cél[}fl][C( *2(22/C) + Ap(x3/C))
+ (1= QW /(1= ) + M/ (1 = Q) + Ap(ys/ (L = O]

is convex in (z3,Z3, 1,2, ys) and therefore the functions Afpgs,(a) and Adtsq(a)
are convex in a as optimal value functions of a convex optimization problem with a
appearing only in the right hand side of the constraints. We will next show that the
convex duals of these functions are ALpg,(0) and Afps,(0), respectively. Indeed, by

using convex duality, we have

s%p[(?a - Agps,1(a)] =

= sup sup sup [0a — C(A%2(z2) + Ap(z3))
¢e0,1] e ((z2—o2z3)+(1-C)(y1+y2—ys)=a
((z2—¢2z3)+(1—C)(y2—¢2y3)<0
0<(¢<1
— (1= O)(A%u (1) + Ao (y2) + Ap(y3))]

= sup inf sup [0C(z2 — ¢axs) + O(1 — {)(y1 + v2 — y3) — u( (T2 — $273)
GO T

—u(l = {)(y2 — b2ys) — C(Alg2(z2) + A(23))
— (1= QW () + A (2) + A (ys))]

= sup inf[C(A2(0 — u) + Ap(~02 + ugy))
¢efo1)u=

+ (1= O(Am(0) + Aaz (0 — u) + Ap(—0 + udy)))]
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:AIGPS,I(Q)-

Similarly it can be shown that A{pg,(6) is the convex dual of AZpg;(a). Let now

A, 1 5
0r = ;I;g EAIGPS,I(a)v (3.44)
and
A 1 ITx
Orr = inf EAGPS,I(a)' (3.45)

Using the result of Lemma 3.6.2, 6; (resp. 6;;) is the largest positive root of
Abps1(8) = 0 (resp. Afpg () = 0). As Figure 3-4 indicates, due to convex-
ity, 0&ps 2 min(f;, 0;7) is the largest positive root of the equation Agps1(0) 2
max[ALps(0), Adps1(0)] = 0, that is —05pg, is equal to the upper bound estab-

lished in Prop. 3.6.4. The last thing we have to show is that 6fps; = 05pg. This is

—_— max(AIGPS,l(e)aAgPS,l(e))
------ Affps1(6)

AGpsa(6)

Figure 3-4: 0;ps, as the largest positive root of the equation Agps:(6) =0 .

based on 6pg, being equal to min(fy, f;;). Note, from (3.44), that §; corresponds to
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the optimal solution of a control problem very similar to (GPS-OVERFLOW) with a
trajectory of the form appearing in Figure 3-5(a). Also, from (3.45), Oy corresponds
to the optimal solution of a control problem with a trajectory of the form appearing
in Figure 3-5(b) 3. The only difference from (GPS-OVERFLOW) is that on the L*-
axis the cost functional is A%, (z,) + A% (73) instead of A%s(21) + Ale(72) + Ap(23).
Using exactly the same techniques as in Section 3.4, that is convexity and the homo-
geneity property, it can be established that optimal state trajectories do not spend
any time on the L? axis. Thus, Figure 3-5(a) and (b) can be reduced to the ones in
Figure 3-3(a) and (b), respectively. This establishes the desired result 6;p5, = 0Gps

and concludes the proof of the theorem. -
L? L?

(a) (b)

Figure 3-5: Trajectories for the control problems corresponding to 6y and 0y;.

We summarize Propositions 3.6.5 and 3.6.3 in the following proposition.

Proposition 3.6.6 (GPS Upper Bound) Assuming that the arrwal and service
processes satisfy Assumptions A and E, and under the GPS policy, the steady-state

3For both trajectories we let ¢ be the fraction of time that they spend on the L? axis and 2, >
(resp. y1,9y2,Yy3) the controls for the initial ¢ (resp. last 1 —¢ ) fraction of the time.
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queue length, L', of queue Q*, at an arbitrary time slot satisfies

1 .
Jim UlogP[L1 > U] < —6%ps. (3.46)

3.7 Main Results

In this section we combine Propositions 3.3.1 and 3.6.6 and summarize our main

results for the GPS policy. As a corollary we obtain results for priority policies.

Theorem 3.7.1 (GPS Main) Under the GPS policy, assuming that the arrival and
service processes satisfy Assumptions A, D, and E the steady-state queue length, L,
of queue Q', at an arbitrary time slot satisfies

1

i log P[L' > U] = —6%ps, (3.47)

lim
U—oco
where 0%pg is given by
0¢ps = min|inf lAI* (@), inf lA”* a) (3.48)
GPS a2 o reps\a), L - Agpsta) f,

and the functions ASpg(+) and Aps(-) are defined as follows

= o aaltl A (21) + Al (22) + A (xs)], (3.49)
T2<¢2z3

Agps (a)
and

* A . * *
AGrs(a) = gy A% (21) + A (22) + A (2s)] (3.50)
22> P23
An interesting observation is that strict priority policies are a special case of
the GPS policy. Type 1 customers have higher priority when ¢; = 1 and lower
priority when ¢, = 0. We can therefore obtain the performance of these two priority

policies as a by-product of our analysis. Note that the result for the policy that
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assigns higher priority to Type 1 customers, matches the FCFS single class result
(see [Kel91, GW94, BPT94]) since under this policy, Type 1 customers are oblivious
of Type 2 customers. We summarize the performance of priority policies in the next
corollary. The discussion of Section 3.5 can be easily adapted to the cases ¢; =1
and ¢; = 0 to characterize the most likely ways that lead to overflow under priority

policies.

Corollary 3.7.2 (Priority policies) Under strict priority policy for Type 1 cus-
tomers (Py), assuming that the arrival and service processes satisfy Assumptions A,

D, and E the steady-state queue length, L', of queue Q', at an arbitrary time slot

satisfies
. 1 1 *
[}grgoﬁlogP[L > Ul = —0p,, (3.51)
where 0%, is given by
Op, = inf ~ A} (a), (3.52)
and where
Ap(a) £ inf [Al(zy) + Ap(ea)) (3.53)

Under strict priority policy for Type 2 customers (P;), the steady-state queue length,

L', of queue Q', at an arbitrary time slot satisfies
. 1 1 *
l}%ﬁlogP[L > U] = —0p,, (3.54)
where 0p, is given by

* - 1 *
01:'2 - ;I;f) EAPZ (a‘)’ (355)
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and where
M@ 2 inf_ [N(o) + Aa(ea) + A(es)], (350
T2<zI3

Proof : For policy P, apply Theorem 3.7.1 with ¢; = 1. For such ¢, it is easy
to verify that Alpg(a) > Als(a), for all a. Thus, we define A%, (a) to be equal to
A3c(a) with ¢, set to 1.
For policy P, apply Theorem 3.7.1 with ¢, = 0. Application of ¢; = 0 to ALps(a)
yields |
Mips(@) = inf _ [Au(2) + Ala(zz) + A (z)] (3.57)

T1+T2—T3=
T2<z3

Also, application of ¢; = 0 to Ajs(a) yields

Agps(a) = nf [Al(21) + A (2) + Aj(as)]. (3.58)
2273

The functions A%.(z;) and Aj(z3) are non-negative, convex, and achieve their min-
imum value, which is equal to 0, at z, = E[A}] and z3 = E[By], respectively. Since
E[By] > E[Af], the inequality z; > z; implies that either z, > E[A2] or 23 < E[By].
If the former is the case, we can decrease z; and reduce the cost, as long z, > z3
holds. Also, if 3 < E[By] is the case, we can increase z3 and reduce the cost, as long
Ty > z3 holds. Thus, at optimality z; = z3 in (3.58). But, the region characterized
by z; = a and 73 = x3 is included in the region defined by the constraints in the op-
timization problem in (3.57). Hence, for all a, and when ¢; = 0, ALpg(a) < Ajs(a).

Therefore, we define A}, (a) to be equal to the expression in (3.57).
||

As the results of Theorem 3.7.1 and Corollary 3.7.2 indicate, the calculation of
the overflow probabilities involves the solution of an optimization problem. We will

next show that because of the special structure that these problems exhibit, this is
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equivalent to finding the maximum root of a convex function. Such a task might be
easier to perform in some cases, analytically or computationally. This equivalence
relies mainly on Lemma 3.6.2. Hence, using duality, we express 0;pg as the largest
root of a convex function. On a notational remark, we will be denoting by A&ps(-)
and Ap4(-), the convex duals of Alpg(-) and AYps(:), respectively. Notice, that
ALpg(a) and Adpg(a) are convex functions of a as the value functions of a convex

optimization problem with a appearing only in the right hand side of the constraints.

Theorem 3.7.3 05pg is the largest positive root of the equation

Agps(0) & Au(6) + oinf [A (6 = u) + Ap(~6 + ¢u)] = 0. (3.59)

Proof : The first thing to note is that AGPS(H) 1s a convex function of 8. This can
be seen when we write it as the value function of a convex optimization problem with

0 appearing only in the right hand side of the constraints, i.e.,

AGPS(Q) AA1(9) + 1nf [AAz(Z — U) + AB( zZ+ ¢2’u,)]

0<u<9

Next we show that Equation (3.59) has a positive, possibly infinite, root. To this
end, observe that
Agps(0) < A (0) + Aa2(0) + Ap(—0),

and that both sides of the above inequality are 0 at § = 0. This implies that their
derivatives at 6 = 0 satisfy

aps(0) < Nyi(0) + Ayz(0) — AR(0) <0,

where the last inequality follows from the stability condition (3.1). The convexity of

Agps(+) is sufficient to guarantee the existence of a positive, possible infinite, root.
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We now calculate the functions Afpg(6) and Alpg(6), using convex duality. We

have

Aéps(e) = sgp[@a - Agps(a)]

=sup sup [fa — Ali(z1) — Afa(z2) — Aj(zs))
a T1+T2—T3=a
z2<¢2T3
=sup sup [0(z1+ T2 — z3) — Al (21) — Alz(z2) — Af(z3)]
¢ z1;-2$<2(;zfcxe.a=a

= sup [0(z1+ 22 —x3) — A (z1) — Ae(z) — Ag(z3)]

z2<paz3

=An(0) + inf sup [0(z2 — 23) — A2 (22) — Ap(z3) + u(Pazs — z3))]
uzU z,z3

= Ar(6) + inf[An2(0 — w) + Ap(—0 + ugn)].

In the fifth equality above we have dualized the constraint z, < ¢,z; and used the

definition of A 41(#). Similarly, the convex dual of AZzs(-) is

Agps(o) = s%p[ea - Ag};s(a)]

=sup sup [fa— A% (21) — Alje(z2) — Ap(zs)]
¢ T1-¢123=0
T22>¢213

= AAI (9) + 1llgf(; f:lg[@(—gblxg) — AZQ (.Z'z) — AE(E;;) + u(—¢2w3 + .’L‘z)]
=Aan (9) + igf(;[A/p (u) + AB(—0¢1 — U¢2)]

=Aa(0) + i&%[AfP (0 — u) + Ap(—0 + ugy)].

In the fifth equality above we have made the substitution u := 6 — w.

Using the result of Lemma 3.6.2, 6; 2 inf,-, LA{ps(a) is the largest positive root
of Afps(6) = 0 (this equation has a positive, possibly, infinite root by the argument
used to establish that Agps(f) = 0 does). Similarly, 6, 2 infos0 2AZ5(a) is the
largest positive root of Affpg(f) = 0. By Equation (3.48), 65ps = min(6:,6,). The

situation is exactly the same as in Figure 3-4, that is 6% is the largest positive root
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of the equation max[ALpg(0), Adps(8)] = 0.

The last thing we have to show to conclude the proof is that Agps(0) =

max[ALpg(8), Aipg(9)]. Indeed, we have

max(Agps(0), Agps(6)) =max(Aa(9) + inf[Ase (0 — u) + Ap(=0 + uey)l,
Ax(0) + inf[A (0 — w) + Ap(—0 + ugs)])
=Aa1(0) + inf [An2(0 —u) + Ap(—0 + udy)]

O N ps(9).

Again, as it was the case with Theorem 3.7.1, the result of Theorem 3.7.3 can be

specialized to the case of priority policies.

Corollary 3.7.4 0%, is the largest positive Toot of the equation
Ap1(0) £ Aai(6) + Ap(—6) = 0. (3.60)
Also, 0%, is the largest positive root of the equation

Apa(6) 2 A (6) + inf [Asa(0 —u) + Ap(—0+u)] = 0. (3.61)

We conclude this section noting that, by symmetry, all the results obtained here
can be easily adapted (it suffices to substitute everywhere 1 := 2 and 2 := 1) to
estimate the overflow probability of the second queue and characterize the most likely

ways that it builds up.



Chapter 4

Overflow Probabilities with GLQF

In this chapter we continue the line of development of Chapter 3. We consider the
multiclass multiplexer model that we introduced there and we estimate the overflow
probabilities for each buffer under another scheduling policy, the generalized longest
queue first (GLQF) policy which we formally define in the sequel. The notation of
Section 3.1 is in place as well as the assumptions on the arrival and service processes

that are reported there.

Regarding the structure of this chapter, we begin in Section 4.1 by formally defin-
ing the GLQF policy and the probabilities of which we seek the asymptotic tails.
Moreover, in the latter section, we provide an orientation of the methodology that we
follow in proving our results. In Section 4.2 we prove a lower bound on the overflow
probability and in Section 4.3 we introduce the optimal control formulation and solve
the control problem. In Section 4.4 we summarize the most likely modes of over-
flow obtained from the solution of the control problem and in Section 4.5 we prove
the matching upper bound. We gather our main results in Section 4.6. Finally, in }

Section 4.7 we compare the performance of the GPS and GLQF policy.

119
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4.1 The GLQF policy

In this section we introduce the generalized longest queue first policy (GLQF). We
will obtain in this chapter, the tail distributions of the queue lengths in the multiclass
system, defined in Sect1on 3.1, operated under thls policy. Moreover in the course
of the analysis, we 1dent1fy the most likely ways leadmg to large queue length values
(overflows).

Figure 4-1 depicts the operation of the GLQF policy in the L'-L? space. Fix the
parameter of the policy § > 0. There is a threshold line, of slope 3, which divides
the positive orthant of the L' — L? space in two regions. The GLQF policy serves
Type 2 customers above the threshold line and Type 1 below it. The value 8 =1
corresponds to the longest queue first (LQF) policy. More formally, we define the
GLQF policy to be the work-conserving policy that at each time slot ¢ serves Type 1

customers when

L? < BL} and LI+ Al <pB(Lj+A; — By).
It serves Type 2 customers when

L?>pL! and L!+ A} - B; > B(L} + A4)).
When

L? < BL} and L+ A? > (L} + Al — By),

or when
L*> AL} and L2+ A - B; < B(L; + A}),

then the GLQF policy allocates appropriate capacity to both types of customers such
that L?,, = BL},,. Whenever L} = BL;, the GLQF policy arbitrarily allocates its
capacity to Type 1 and 2 customers.

As in Section 3.1, we assume that the queue length processes {L],j=1,2,i € Z}

are stationary. We are interested in estimating the overflow probability P[L! > U]
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L2

Serve 2

Serve 1

.. tanw=2p

Ll

Figure 4-1: The operation of the GLQF policy.

for large values of U, at an arbitrary time slot ¢ in steady-state. Having determined
this, the overflow probability of the second queue can be obtained by a symmetrical

argument.

We will prove that the overflow probability satisfies
P[L}! > U] ~ e Y%uar, (4.1)

asymptotically, as U — oco. Our methodology is similar to the one we used in ana-
lyzing the GPS policy in Chapter 3. To this end, we will develop a lower bound on
the overflow probability, along with a matching upper bound. Consider all scenarios
(paths) that lead to an overflow. We will show that the probability of each such sce-
nario w asymptotically behaves as e"V%“) for some function f(w). This probability
is a lower bound on P[L] > U] for all w. We select the tightest lower bound by per-
forming the minimization 63, o, = min, 6(w). This is a deterministic optimal control

problem, which we will solve. Optimal trajectories (paths) of the control problem
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correspond to most likely overflow scenarios. We show that these must be of one out
of two possible types. In other words, with high probability, overflow occurs in one
out of two possible modes. For the upper bound, we will consider the probability of
all sample paths that lead to overflow and show that it is, asymptotically, no more

that e U%zer.

4.2 A Lower Bound

In this section we derive a lower bound on the overflow probability P[L; > U].

Proposition 4.2.1 (GLQF Lower Bound) Assuming that the arrival and service
processes satisfy Assumptions A and D, and under the GLQF' policy, the steady- state

queue length, L', of queue Q', at an arbitrary time slot satisfies

.1 «
Uh_rgoﬁlogP[Ll > U] > —0g10F> (4.2)
where OgqF S given by
* : : 1 * * :
OcLor = min ,1121(; aAéLQF( a), 1nf AgLQF a)|, (4.3)

and the functz’ons AGLor(+) and AIGIL*QF(-) are defined as follows

GLQF( ) inf  [Afi(z1) + Al (z2) + Aj(w3)], (4.4)

r1—T3=a
z2<f(z1—23)

and

* A . * * *
AgLQF(a) = xl_lg—iza (A% (1) + Az (22) + Ap(z3)]- (4.5)
z3—(1—-¢)z3=PFa

0<g<1
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Proof : Let —n < 0 and a > 0. Fix 1,3, 23 > 0 and €;, €5, €5 > 0 and consider the

event
AS {84, iy = (n—d)zi| < em, 1S4, i1 = (n— i)z < e,
1S, i1 —(n—1)z3|<en, i=0,1,... ,n— 1}

Notice that z,, 73 (resp. z3) have the interpretation of empirical arrival (resp. service)

rates during the interval [—n, —1]. We focus on two particular scenarios

Scenario 1: T1—T3=a Scenario 2: 1 — ¢dr3 =a
T S ,8(1'1 — 1'3) Tg — (1 — ¢).’L‘3 = ,BCI, (46)
0<¢<1

Under Scenario 1, even if the server always serves Type 1 customers ! in [—n, 0] we

have that L > na — ne}, where €, — 0 as €, €3, €3 — 0.

Consider now Scenario 2. Let (L%, L% ) = (z,y) and let for the moment ignore
¢'s (e, ¢ = € = €3 = 0). If y = Bz and for given z,,z,, 23 we can find ¢ such
that both queues build up together with the relation L? = 3L! holding in the interval
[-7,0]. According to the GLQF policy the server arbitrarily allocates its capacity
to the two queues, giving fraction ¢ to Q' and the remaining 1 — ¢ to Q? (here ¢ is
subject to optimization), yielding L§ = na + z > na. If y > Bz then the first queue
receives less capacity in [—n, 0] than n@zs, resulting also in L} > na. Finally, consider
the case y < Bz. Then at time —t € [-n,0] we have L', = z + (n — t)(z; — z3) and
L?, = y+(n—t)z,. Notice that z, > B(z; —13). Otherwise, we have a contradiction,
ie.,

Ba <z < B(r1 — 23) < Pa.

Ywhich is the case if we start from an empty system at —n and the arrival and service rates are
exactly z1,Z2, T3, respectively. Then the second queue, since it receives zero capacity, builds up
with rate z3, and its level always stays below BL!, a necessary condition for the first queue to be
receiving all the capacity.
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Thus, for large enough n, there exists some ¢ such that L%, = BL',. From that time
on, both queues build up together with the relation L? = BL! holding. Therefore and
since L2 + L} > (1 + B)a, we have Lg > na.

With €, €2,€3 > 0, and with the same ¢ there exists €; > 0 such that queue
lengths are Wlthm an €, band of their values in the previous paragraph, resulting in

L} > na — ne,, where €, — 0 as €1, €, €3 — 0.

The probability of Scenario 1 is a lower bound on P[L} > na]. Calculating the
probability of Scenario 1, maximizing over z1, zz and 3, to obtain the tightest bound,

and using Assumption D we have

P[L; > n(a —€))] > - 8up_ P| IS_n i — (=91 <en,i=0,1,...,n—1]
zzﬁlﬁ(z?:ws)

xP[[S_n 1= (=913 <en, 1=0,1,... ,n—1]

XP[IS—n —i—1 (n_i)x3‘se3n77;:0717"'771’—1]

> exp{—n( inf  [A%i(z1) + Al (z2) + Ap(zs)] + e) }

Tr1—T3=a
2 <B(z1—3)

=exp{—n(AGror(a) +€)}, (4.7)

where n is large enough, and the €}, — 0 as €1, €2,€3 — 0.

Similarly, calculating the probability of Scenario 2, we have

PLi>na—¢)> sup PS4 i i—(—dn|<ean i=01,...,n-1]

T1—¢z3=0a
z2—(1—¢)z3=Pa
0<p<1
x P[ |S_n i1~ (=11 <en, i=0,1,... ,n—1]
xP[lS_n - (=i)z3] <en, i=0,1,...,n—1]
Z exp{—n( lélf N [Ajﬂ (3131) + AZz(.’L‘z) + AE(I‘;:,)] =+ 6’)}
T —pr3z=a
z9—(1—¢)z3=0a
0<p<1

:exp{_n(AIGIEQF(a) +€)} (4.8)
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where n is large enough, and the €},¢ — 0 as €1, €5, €5 — 0.
g g 2 )

Combining Egs. (4.7) and (4.8) (taking the limit of all €’s going to zero) we obtain
. L
nh_{{.lo n log P[Ly > na] > — min(AIG*LQF(a‘)’ AgEQF(a))- (4.9)
As a final step to this proof, letting U = na, we obtain
.1 1 .1 1 | IIx
Ull_I)IC}OEIOgP[L > U] = JL%%IOSP[LO > na) > - min(Agror(a), Agror(a)).

Since a, in the above, is arbitrary we can select it in order to make the bound tighter.
Namely,

1

1 1
UlogP[Ll > U] > —min CILI>1£ EAgLQF(a’)’i% —AIGIEQF(a) :

lim
U—oo a

4.3 The optimal control problem

In this section we introduce an optimal control problem and show that OGLor 18 its
optimal value. The ideas are similar to the case of the GPS policy, we will therefore
keep the discussion brief.

The scaling of time and fluid levels is done in exactly the same manner, as in Sec-
tion 3.4, therefore the resulting control problem is identical to (GPS-OVERFLOW)
with the exception of the system dynamics that are different in the case of the GLQF

policy. In particular, we distinguish three regions depending on the state as follows

Region A: L?(t) > BL'(t), where according to the GLQF policy

L' =2,(t) and L2 = z,y(t) — z3(t),
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Region B: L*(t) < BL(t), where according to the GLQF policy

Y = 21(t) — zs(t) and L? = 2,(t),

Region C: L*(t) = BL'(t), where according to the GLQF policy

LY+ L% = 21(t) + za(t) — z3(2)

Let (GLQF-DYNAMICS) denote the set of state trajectories L), =12, t¢€
[—T, 0], that obey the dynamics given above.

We now formally define the following optimal control problem
(GLQF-OVERFLOW). The control variables are z;(t), j = 1,2,3, and the state
variables are Li(t), j = 1,2, for t € [—T,0], which obey the dynamics given in the

previous paragraph.

(GLQF-OVERFLOW)  inf [ °T[A;1 (21(8)) + M (2(8) + Al (1)) dt
(4.10)
subject to: L*(=T) = L*(-T) =0
L'(0)=1
L*(0) : free
T : free
{L’(t): t€[-T,0], j =1,2} € (GLQF-DYNAMICS).

This problem exhibits both the properties of constant control trajectories within
each region of system dynamics, and time-homogeneity. We omit the proofs since
they are similar to the GPS case. Using these properties we can make the reduc-
tions appearing in Figure 4-2(a), (b) and (c), starting from an arbitrary trajectory
with piecewise constant controls. We conclude that optimal state trajectories can be

reduced to having one of the forms depicted in Figure 4-2(d), (e) and (f).
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The trajectory in Figure 4-2(d) has value equal to infr[TAG,or(7)] and the tra-

jectory in Figure 4-2(e) has value equal to infr[TAf}or(7)], Where Afy,p(-) and

A{7or(:) are defined in Equations (4.4) and (4.5), respectively. Consider now the

L2

| L2 '
(a) i (d) :
0 i © |
— —
(c) (f)
1 L! 1 Lt

Figure 4-2: By the property of constant controls within each region of
system dynamics the state trajectory in (b) is no more costly than the tra-
jectory in (a). Also, by the time-homogeneity property, optimality of the
state trajectory in (b) implies optimality of the trajectory in (c). Candi-
dates for optimal state trajectories are depicted in (d), (e) and (f). The
trajectory in (f) is eliminated as less profitable to the one in (e). Hence,
without loss of optimality we can restrict attention to trajectories of the
form in (d) and (e).
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trajectory in Figure 4-2(f) which has value

i%f inf  [A%i(z1) + Al (z2) + Ap(z3)]. (4.11)

The functions A%;(z2) and Aj(z3) are non-negative, convex, and achieve their min-
imum value which is equal to 0 at z; = E[A2] and z3 = E[B), respectively. Since
% > 0, and due to the stability condition (3.1), for z3 —z3 > [3%, it has to be the case
that either z, > E[A2] or 73 < E[Bo]. If the former is the case, we can decrease z; and
reduce the cost, as long zo — 3 > ﬂ% holds. Also, if z3 < E[By] is the case, we can
increase z3 and reduce the cost, as long zo —z3 > 3 % holds. Thus, at optimality it is
true that ©, — 73 = 4. Then, the expression in (4.11) is equal to infr[TAZ o (7))
with ¢ = 0 in the definition of AZf,x(%). Thus, since the calculation of Af7or(7)
involves optimization over ¢, we conclude that the state trajectory Figure 4-2(f) is
less profitable than the one in Figure 4-2(e), leaving us with only the trajectories
in Figure 4-2(d) and (e) as possible candidates for optimality. We summarize the

discussion of this section in the following theorem.

Theorem 4.3.1 The optimal value of the problem (GLQF-OVERFLOW) is given by

QE‘LQF :

4.4 The most likely path

As we have explained in the Sec. 4.1 we will prove a matching upper bound to the one
in Proposition 4.2.1. This is sufficient to guarantee that the two scenarios identified
in the proof of Proposition 4.2.1 (or equivalently the two optimal state trajectories
of (GLQF-OVERFLOW)) are the most likely ways that queue Q' overflows. We

summarize here these two most likely modes of overflow. We distinguish two cases:

Case 1: Suppose 05, or = info AGzgr(a)/a holds. Let a* > 0 the optimal solution of

this optimization problem. The first queue builds up linearly with rate a*, dur-
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ing a period with duration U/a*. During this period the empirical rates of the
processes A', A? and B, are roughly equal to the optimal solution (z?, T}, x3), re-
spectively, of the optimization problem appearing in the definition of Alror(a®)
(Eq. (4.4)). In this case the first queue is building up to an O(U) level while
the second queue builds up at a rate of z}, in such a way that the level of the
second queue is always below the level of the first, which results in the server
allocating its entire capacity to the first queue. The trajectory in L'-L? space
is depicted in Figure 4-2(d).

Case 2: Suppose 05, = inf, A} op(a)/a holds. Let a* > 0 the optimal solution of
this optimization problem. Again, the first queue builds up linearly with rate a*,
during a period of duration U/a*, and with the empirical rates of the processes
Al, A’ and B being roughly equal to the optimal solution (z},x}, ), respec-
tively, of the optimization problem appearing in the definition of AX;,.(a*)
(Eq. (4.5)). In this case both queues are building up, the first to an O(U) level
and the second to an O(BU) level. The trajectory in L!-L? space is depicted in
Figure 4-2(e).

4.5 An Upper Bound

In this section we develop an upper bound on the probability P[L} > U]. In particular,
we will prove that as U — oo we have P[L} > U] < e~%61erU+(V) where o(U) denotes

functions with the property limy_, ﬁgl =0.

Before we proceed into the proof of the upper bound, we derive an alternative
expression for 67, o which will be essential in the proof. In the next theorem, we
will show that the calculation of %o is equivalent to finding the maximum root of

a convex function. The equivalence relies mainly on Lemma 3.6.2.

In the derivation of such an equivalence we will be using the same convention for
the term infinite root that we introduced in Section 3.6. Namely, consider a convex
function f(u) with the property f(0) = 0. We define the largest root of f(u) to be the
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solution of the optimization problem sup, ru)<o u- If f(-) has negative derivative at
u = 0, there are two cases: either f(-) has a single positive root or it stays below the
horizontal axis u = 0, for all u > 0. In the latter, case we will say that f(-) has a root
at u = 0o. On a notational remark, we will be denoting by A&, #(-) and A or(),
the convex duals of AL, op(-) and Af7or(-), respectively. Notice, that the latter are
convex functions. For Af;,r(a), convexity is implied by the fact that it is the value
function of a convex optimization problem with a appearing only in the right hand
side of the constraints. For A{{for(a), the same argument applies when we note the
following reformulation
Migr@ = inf_ [Nuu(m) + A(e) + Ap(ao)
S
= inf  [A (z1) + ANy (2) + Ap(w3)].
o1 -zh=

22— (v3—2})=0a
0<zf<z3

In preparation for the following theorem we prove the next monotonicity lemma.

Lemma 4.5.1 (Monotonicity) Consider a random process {X;; i € Z} that sat-
isfies Assumption A. Assume X; > 0, i € Z. Then for all 0 < 6 we have
Ax(0) < Ax(6').

Proof : X; >0, i € Z, implies S{', > 0 which in turn implies
E[eﬂsfn] < E[eolsf"],

for all 6 < @'.

This Lemma, clearly applies to the arrival and service processes.
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Theorem 4.5.2 0%, is the largest positive root of the equation

Acror(f) = ma'x[AGLQF(O)7AgLQF(9)] =0, (4.12)
where AGrqp(*) 15 the conver dual of ALy op() and is given by

GLQF( ) lnf(;[AAl (0 - ’U,,B) + AAZ(U) + AB(—9 + U,B)], (413)

and Al op(-) 1s the conver dual of Aftor(-) and for 8 > 0 satisfies

AGLQF(O) = igf(;[AAl (0 — uB) + Asz(u) + max(Ag(—u), Ap(—0 + uB))]. (4.14)

Proof : Let us first calculate Af;op(-) and AfLor(-) by using convex duality. We

have

Aé‘LQF(G) = sgp[ﬂa - AgLQF(a)]

=sup sup [fa — Ali(z1) — Ale(z2) — Ap(x3)]
a r1—T3=a
zzslﬂ(wj—xa)
=sup sup  [0(zy — z3) — Al (21) — Ajpa(22) — Aj(23)]
z’zflﬂ(l‘?:m)

= p )[9($1 — 23) — Al (71) — e (22) — Ap(23)]

= inf sup [B(zy — z3) — Alu(z1) — Al(z2) — Alg(3)

‘U,<0 x1,Z2,T3

— u(Bx; — Brs — 1,)]
= inf[An (0 — uB) + Aae(u) + An(=6 + u)].

Similarly,

AGLQF(G) = sgp[&a - AgEQF(a)]
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= sup sup [0a — A% (z1) — Alyz(22) — Ap(73)]
a Tr1—QT3z=a
23— (1—¢)ea—B(z1 —$3)
0<p<1

= lIlll.fzS;lpz [9(1131 - d).’I?3) - Aj‘41 (.'131) — Aj‘42 (122) - A*B($3)
0<pe1

= inf[A 41 (0 — uB) + As2(u) + sup Ap(—0¢+ (66 + ¢ — 1)u)]
v 0<¢<1
= inf[A 4 (6 — upf) + A 42(u) + max(Ap(—u), Ap(—0 + up))]
= il;f(;[AAl (0 — uB) + Az(u) + max(Ap(—u), Ap(—0 + up))].
In the fifth equality above, we have used the monotonicity of Ap(-) (see Lemma 4.5.1),
and the fact that the argument —6¢ + (8¢ + ¢ — 1)u is linear in ¢, thus, taking its

maximum value at either ¢ = 0 or ¢ = 1. For the sixth equality above, notice that

because Ap(-) is non-decreasing it holds

AAI(Q - ’U,ﬂ) —|— AAz(u) + max(AB(—u),AB(—H + ’U,,@)) =

_ A (0 —uB) + Age(u) + Ap(—u) ifu<$ (4.15)
Aar(8 —uf) + Aae(u) + Ap(—0 +uB) ifu> I3,

since at the upper branch —u > —6 + uf and at the lower branch —u < -0 + uf.

Differentiating the above at u = 0, and for § > 0, we obtain

—BA(8) + Aa2(0) — Ap(0) <0,
<0 (3.)
<0

which implies (by convexity) that the infimum is achieved at some u > 0. Thus, the

infimum over unrestricted u has to be the same with the infimum over u > 0.

Using the result of Lemma 3.6.2, p; = inf, LAGor(a) is the largest positive

root of A or(f) = 0 (it is not hard to verify that this equation has a positive,

possibly, infinite root). Similarly, ps £ inf, 1A{7or(a) is the largest positive root of
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A or(0) = 0. By Equation (4.3), 0&Lor = min(py, p2). This implies that O&Lor 18
the largest positive root of the equation max[Af,ox(6), AfLor(9)] = 0.
|

We next prove the upper bound for the overflow probability.

Proposition 4.5.3 (GLQF Upper Bound) Under the GLQF policy, assuming
that the arrival and service processes satisfy Assumptions A and E, the steady-state

queue length, L', of queue Q*, at an arbitrary time slot satisfies
g

1 .

Proof : Without loss of generality we derive an upper bound for P[L} > U]. We
will restrict ourselves to sample paths with Lj > 0 since the remaining sample paths,
with Lj = 0, do not contribute to the probability P[L} > U].

Consider a busy period for the system that starts at some time —n < 0 (L, =
L2, =0), and has not ended until time 0. Such a time —n exists due to the stability
condition (3.1). Note that since the system is busy in the interval [—n, 0], the server
works at capacity and therefore serves B; customers at slot 7, for i € [-n,0]. We
will partition the set of sample paths, with L} > 0, in three subsets ;,, and Q.
The first subset, {1, contains all sample paths at which only Type 1 customers get

serviced in the interval [—n,0]. As a consequence,
Ll—k = Sf:L,—k—l - an,—k—l’ Lz—k = Sf:z,—k—p and ﬂLl—k 2 L2—k7 Vk € [0, n],
which implies

Ly =84,

-n,—1

— S8, 1, and B(S4 _ —-SP _)>S%

-n,—1-
Thus

P[L(I, > U and ;] <
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<P[En>0st S | — 85, | >Uand B(S4, 4 — 5%, 1) > 5%, 1]

= max sS4, 1 —S2, ) > Ul 417
[{nzm B(sAL _,-SB, )>542, 1}( 1= 5% > Ul (4.17)

The second subset, {2y, contains sample paths at which Type 1 customers do not
receive the entire capacity, and AL} < L2. That is, there exists a ¢ € [0, 1] such that
Type 1 customers receive only a ¢ fraction of the total capacity (¢SZ, _1). Then we

have

P[L} > U and Q] <
<P[En>0,0< ¢ <1, st. SA1 —¢S8, _,>U and
:8( —n,—1 ¢S ) < Sffz,-l - (1 - )S—]?n —1]

= P| max (Sf1 1 —¢S2, 1) > Ul
{n>0, 0<p<1: B(SAL | —¢SE, _)<sA2 =952, ) " - (4.18)

Finally, the third subset, Q3 contains sample paths at which Type 1 customers
do not receive the entire capacity, and SL} > LZ. Then there exists k € [0,7],
such that the interval [—k,0] is the maximal interval that only Type 1 customers
get serviced. That is, LY, > L%;, i € [0,k — 1], and L, < L*,. Since Type
1 customers do not receive the entire capacity, there exists 0 < ¢ < 1 such that
LYy, =S4 41— ®S5, 41 Since SLL; < L2_k, we have

/B(S n,—k—1 ¢S —k— 1) < SAn —k-1 (1—¢)S—n —k—-1- (419)

Now, due to the way we defined k we have L', = L1_k+Sf,lc,_i_1—S§kl_i_1, i €[0,k—1],
and the inequality SL*; > L%, becomes

/G(S—n —k—1 ¢S—n —k— 1+Sf;:,—z— S —k,—1— 1)>S —n,—k-1 (1 QS)SB’I'L —k— 1+SAk —i—1
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which by (4.19) implies
ﬂ(SAk —i-1 S}—Bk,—i—l) 2 Sf;,_,-_l, 1 €0,k —1].
Thus,

P[L} > U and 3] <
<SPAIn>00<k<n0<¢<1, st 8% —¢S5 ,  +5%4 | ~SB _ >U
and /H(Sf:l,—k—l ¢S—n —k— 1)<S—n —k—1 (1‘¢)S—n—k 1

and ﬁ(S k-1 1) > S—k,—l]
Al B
<P| nzo,ogrlﬁ?rfogqsa (S—n ko1 — $SZ n—k=1 T 92k 1 —S2 1) > Ul
B(SA k1982, )SSA L —(1-#)SP, (4.20)
B(SA, _,—5B, _)284 |
Let us now define
AN 1
LIGLQF = max ) (an,—1 an “1)

{n>0: ﬁ(Sfl ,—SB, _1)Zsfn,_1}

II A
LGLQF: max ( -n,—1 ¢5-n -1
{n20, 0<¢<1: B(SA, _,—¢SB, _)<SAZ | —(1-¢)SB, _}

—-n,—1 ,—1/=*—n —

and

A " 5
i A max S gB L _s
GLQF n>0,0<k<n,0<¢<1 ( —¢ —-n,—k—1 —k,—1 —k,—l)’

1 2
ﬂ(sAn —k—1 ¢an —k— l)<an —k— 1_(1_¢)S—n,—k—1
ﬂ(S_k =8B 284,

which after bringing the constraints in the objective function become

Léror £ max 1nf[(1 +uf)SA, 1 uSAn S+ (-1-pw)SE ], (421)
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LGLQF = max gf[(l - Uﬁ)an at USiln at (o +ubfd—u+ U¢)an,—1],

0<¢<1 (4.22)

A . 1 2
Lg,—fQF = max { 1nf0[(1 — ulﬁ)S‘_‘ln,_k_l + uleny_k_l + (= +w B — uy +

w§) S, ] + Inf [(1+uaf)S% 4 — a4y + (-1 - uzﬁ)ka,_l}}. (4.23)

Next, we will first upper bound the moment generating functions of L ror LELor

and L/ op. For Lo and for 6 > 0 we have

E[QGL{;‘LQF‘]
<3 Elexp{0 mf[(l +uB)SA, | —uSh |+ (-1- Bu)SE, 1} ]

n>0 )
< Z 1nf E| exp{@[( + Uﬂ)Sf;,—l - ’U/Sé;’_l + (-1~ IBU’)S—BTL,—I]} ]

>0 -

< Z einfu>0[A 41(0+0uB)+A 42 (—ub)+Ap(—0-upfd)]+e1)
B n>0
<K'(0,e1)  if Agpor(9) < 0. (4.24)

In the third inequality above we have used the LDP for the arrival and service pro-
cesses. In the last inequality above, when the exponent is negative (for sufficiently
small ¢;), the infinite geometric series converges to a constant, with respect to n,
K'(6,€1). Also, in the last inequality, we have made the substitution u := —8% in the

expression in the exponent and used the definition of AL, ,r(6) (Eq. (4.13)).

Similarly, for L, o and for 6 > 0 we have

Ele 6'LGLQF]

<ZEexp{9max 1nf[(1—uﬂ) S 1+uS_n a+ (- ¢+u,8q5—u+uc]5)5n ]

n>0 ¢<luz
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< Z 1nf E[exp{H max [(1 - uﬂ)S_n 4+ qui,_l +(—¢p+ubBp—u+ uda)S_n _i}]

>0—

< Z II;f(;( n([AAl(O 0uﬂ)+AA2(u9)+AB( Ou)]+e}) + en([ 41(0— Ouf)+A 42 (ud)+Ap(— 9+€uﬂ)]+e )
n>0"

<2 Z en(mfuzo[AAl (0—6upB)+A 42 (u0)+max(AB(—0u),AB(—0-f:9uﬂ))]+ez)
n>0

In the third inequality above, the expression to be maximized over ¢ is linear, thus,
the maximum is achieved at either ¢ = 0 or ¢ = 1, which implies that we can upper
bound it by the sum of the terms for ¢ = 0 and ¢ = 1.

Also, for L], and for 6 > 0 we have

Ir

E[e’"ctar]

<Z Z E[exp{@max inf [(1 - u,8)5% —n,—k— 1+UIS n—k—1 T (=0 +u1 B¢ —

n>00<k<n 0<¢<lu120

U + u1¢)S§n,—k—1] + u1211>f0[(1 + U2ﬂ)5filc,—1 - Uszf;,_l +(-1- uZﬁ)ka,—l]} ]

< Z Z inf E[exp{e mfx [(1— ulﬂ)Sf:,,_k_l + U1Sf,217_k_1 + (—¢ +wBo —

>
n>00<k<n “1 4220

w40 8)S8 ]+ (1 wB)SE_, — 0S¥+ (1 — ug)SE, 1}]

< Z Z inf [ (n—k)(A 41 (6—-0u1B)+A 42 (u10)+Ap(—0u1)+ey) +
n>00<k<n “1¥220

e(n—k)(AAl (0—0’U1ﬂ)+AA2 (u1 0)+A3(—0+0U1ﬂ)+6g ] k(AAl (0+0uzﬂ)+AA2(—u20)+AB( 6— 0uzﬁ)+e"'

2T T R O)+) KA 0)48)

n>00<k<n
<2y netA(0)+é) 4 o 3 ne™ (M (0)+é)
n>0 n>0

SKIH(Q, €3), if ma'x(AGLQF(Q)a AIGILQF(G)) <0. (4.26)
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In the third inequality above we have used the LDP for arrival and service processes,
as well as Assumption E. Concerning the maximization over ¢, we have used the
same argument as in Eq. (4.25). In the fifth inequality above, since the exponent is
linear in k, the maximum over k is either at £k = 0 or at k = n. Thus, we bound the
term by the sum of the terms for £k = 0 and k¥ = n. Finally, for the last inequality,

both series converge to a constant if both their exponents are negative, which requires
max(AGor(0), AiLor(0)) < 0.

To summarize (4.24), (4.25) and (4.26), the moment generating functions of
Liror, L¥or and Lifop are upper bounded by some constant K (0,¢€1,€,€3) if
max(ALpop(0), ALor(f)) < 0, where €1, €2, €5 > 0 are sufficiently small. We can now
apply the Markov inequality to obtain (using Egs. (4.17), (4.18) and (4.20))

P[Ly > U]
<P[LL > U and Case 1] + P[L} > U and Case 2] + P[Lj > U and Case 3]

< (E[eoAI(o)] + E[eﬂA”(B)] + E[eaAl”(o)]> U

<3K(0, €1, €2, €3)e Y if max(AgLor(0), AgLor(0)) <0.

Taking the limit as U — oo and minimizing the upper bound with respect to 6 > 0,

in order to obtain the tightest bound, we have

1 .
lim —logP[Ly > U] < — sup 0.
U—oo U (Lo ] {6>0: max(Al(9),A71(8))<0}

The right hand side of the above is equal to =0, by Theorem 4.5.2.

4.6 Main Results

In this section we summarize our main results for the GLQF policy.

Combining Propositions 4.2.1 and 4.5.3 we obtain the following main theorem.
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An exact characterization of the most likely ways that lead to overflow were discussed

in Section 4.4.

Theorem 4.6.1 (GLQF Main) Under the GLQF policy, assuming that the arrival
and service processes satisfy Assumptions A, D, and E, the steady-state queue length,

LY, of queue Q', at an arbitrary time slot satisfies

.1 "
where 051oF s given by
f¢Lor = min ¢111>1‘fj AGLQF(a) mf AgL*QF( )| (4.28)

and the functions Al qp() and A7 op (") are defined as follows

" A . * Nk *
AIGLQF(a) = zlilgza [A%i (1) + Az (22) + Aj(z3)], (4.29)
z2<B(z1—x3)

and

Miigr@ 2 inf M) + M) + ()] (4:30)
B |

It should be noted that the performance of strict priority policies, which is char-
acterized by Corollary 3.7.2, can be also obtained as a corollary of the above theorem.
We obtain the performance of strict priority to Type 2 (P;) when 3 = 0, and the
performance of strict priority to Type 1 (P;) when 8 = co. It is not hard to verify
that the result is identical to Corollary 3.7.2. The above Theorem indicates that the
calculation of the overflow probabilities involves the solution of a convex optimization
problem. In Section 4.5, and for the purposes of proving Proposition 4.5.3, we proved
in Theorem 4.5.2 that the exponent of the overflow probability can also be obtained -

as the maximum root of a convex function. This may be easier to do in some cases.
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Here, we restate this latter result, simplifying the expression for Agror(-).

Theorem 4.6.2 05, o is the largest positive Toot of the equation

AGLQF(Q) = max{AA1 (9) + AB(—B), infL[AAl (9 — ’U,,B) -+ AAZ(U) —|- AB(—U)]} =0.

T8 (4.31)

Proof : Due to Theorem 4.5.2 it suffices to prove that the expression in (4.31) is
equal to max[AL o (0), AlLor(0)]. Recall the definitions of AGqr(f) in (4.13) and
of ALor(0) in (4.14). Recall also the expression in (4.15) for the objective function
of the optimization problem corresponding to A, ox(6). Let now u* be the optimal
solution of the optimization problem in the definition of A ,r(f). We distinguish

two cases:

Case 1: where u* > ﬁ. Then, notice that u* is also the minimizer of the objective -
function in the definition of AL ror(0). Thus, due to convexity, the constraint

u<0is tight for the problem corresponding to A or(0), and

max(AgLor(0), AdLor(0)) = Aai(0) + Ap(=0), if u* > ;%2 (4.32)

144"
But,
inf [AA1(9 — uﬂ)+AA2 (’LL) + AB(—U)]
0
Ogugm
< [Aar(0 —up) + Aax(u) + Ap(—u)] __o
148
= [Aa(155) + Aax(15) + As(—175)]
= [Aar (0 — upB) + A2 (u) + Ap(—0 + Uﬂ)]u_Lﬂ
=1y
< [Ag1(0 —uB) + Aygz2(u) + Ap(—0 + uf)]u=o
= A (0) + Ap(—0).
- In the second inequality above we have used the assumption u* > %= and

1+
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convexity. Therefore, combining it with (4.32) we obtain

max(AgLqr(6), AdLor(6)) = max{A4 (6) + Ap(—0),
infg [AAI (9 - ’U,,@) + AAZ(U) + AB(—U)] } = AGLQF(Q) if u* Z L.

Osusiig (

8
1+8°
max(Agrop(0), AbLor()) is not AL ox(0) when the optimal solution, of the

Case 2: where 0 < u* < To conclude the proof we need to show that

optimization problem appearing in the definition of A, (6), is some @ < 0.
Let us, indeed, assume that this optimal solution is some % < 0. Then, for all

u € [0, 75) (hence for u*) we have

AIGLQF(e) = [Aq1(0 — 4B) + Aa2(0) + Ap(—0 + 0p)]
< [Aai (8 —uB) + Ape(u) + Ap(—0 + upf)]
< [Aq1 (0 — uB) + Aaz(u) + Ap(—u)],

where in the last inequality we have used the fact that u < ﬁ which implies
(see also (4.15)) Ag(—u) > Ap(—0 + uf3). Therefore, for 0 < u* < ﬁ also, we
have

max(AéLQF(e)a AgLQF(e)) = max{A 4 (0) + Ap(—0),
info [AAI (9 — ’Ufﬂ) + AA2 (u) + AB(—U)] } = AGLQF<0)-

Osusiig

The results of this Theorem can be also specialized to the case of priority policies,

to obtain the characterization of Corollary 9.2 3.7.4.

We conclude this section, noting that, by symmetry, all the results obtained here

can be easily adapted (it suffices to substitute everywhere 1:=2,2:=1, and 3 = %)
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to estimate the overflow probability of the second queue and characterize the most

likely ways that it builds up.

4.7 A Comparison

In this section we compare the overflow probabilities achieved by the GPS and the
GLQF policy.

Let 7 be an arbitrary work-conserving policy to allocate the capacity of the server
to the two queues Q' and @?, and II the set of all work-conserving policies 7. Let L'
and L2 denote the queue lengths of Q' and Q?, respectively, at an arbitrary time slot,

when the system operates under m. Let us now define 8™ the vector (07,03) where
7 = li —1—1 P[L' > U] d 0; = li —1—1 P[I?>U 4.34
[ = lim - log an 7 = Jim - logP| ] (434)

The GPS policy analyzed in Chapter 3 is a parametric policy with performance de-
pending on the parameter ¢;. To make this dependence explicit we will be using the
notation GPS(¢;). Also, the GLQF policy analyzed in Section 4.1 is a parametric
policy with performance depending on the parameter 3. For the same reason we will
be using the notation GLQF(f). Special cases of a work-conserving policy 7 are the
GPS(¢;) policy, the GLQF () policy, the strict priority to Type 1 policy (P, policy),
and the strict priority to Type 2 policy (P, pdlicy). Using Theorems 3.7.1, 4.6.1 and
Corollary 3.7.2 one can readily obtain the corresponding 6™ for the policies GPS(¢1),
GLQF(B), P and P;.

It is intuitively obvious that
P _ T : T Py __ : us T
6 = (17Ir1€aﬁc o7, min 63) and 67 = (1#161%11 o7, max 03).

In Figure 4-3 we plot #GF5(41) as ¢, varies in [0, 1], and 95LQF(®) a5 B varies in [0, 00).
For simplicity the calculations were performed with the arrival and service processes

being Bernoulli (we say that a process {Xj; i € Z} is Bernoulli with parameter p,
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denoted by X ~Ber(p), when X; are i.i.d. and X; = 1 with probability p and X; =0

with probability 1 — p). Also, for the calculations we used the expressions for 0%pg

1.4 1.6 18 2 22 24 26 28 3 32

Figure 4-3: The performance 8751 of the GPS(¢,) policy as ¢, varies
in [0, 1], and the performance §¢L2F ) of the GLQF (3) policy as (3 varies in
[0,00), when A* ~Ber(0.3), A*> ~Ber(0.2) and B ~Ber(0.9).

and 05, op given in Theorems 3.7.3 and 4.6.2, respectively, because they were more
efficient to perform numerically than the equivalent expressions in Theorems 3.7.1
and 4.6.1. Note that 87 = 6F5() = GLQF() and that §F2 = HGPS(0) = GGLRF(0),
Figure 4-3 indicates that the GLQF curve dominates the GPS curve, i.e., the
GLQF policy achieves smaller overflow probabilities than the GPS policy. The ques-
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tion that arises is whether this depends on the particular distributions and parameters
chosen in the figure or is a general property. In the sequel we show that the latter is
the case, that is, for all arrival and service processes that our analysis holds (processes
satisfying Assumptions A, D, and E) the GLQF curve dominates the GPS curve. The
intuition behind this result is that the GLQF policy, which adaptively depends on the
current queue lengths, allocates capacity to the queue that builds up, thus, achiev-
ing smaller overflow probabilities than the GPS policy which is static. This suggests
than when one has to deal with delay insensitive traffic (i.e., when there are no delay
constraints) GLQF is more suitable than GPS. On the other hand, GLQF does not
have the fairness property of GPS, that is it may allow a bursty class of traffic to be
using all the available capacity until the backlog of the other class reaches the level

of the bursty one.
Let us first formally define the term the GLQF curve dominates the GPS curve.

Definition 4.7.1
We say that the GLQF curve dominates the GPS curve when there does not ezist

o pair of ¢1 € [0,1] and B € [0,00) satisfying 6775 > gFLIFE) g g7
OZ,GLQF(ﬂ).

In order to establish that the GLQF curve dominates the GPS curve, we need to

prove the three lemmata that follow.

Lemma 4.7.2 If ¢; < ¢} we have

pOPS@) < gOPS) 65TS@) > TP,

and

Proof : We only prove the first relation. The second can be obtained by a sym-
metrical argument. We use the result of Theorem 3.7.3. Note that ¢, < ¢}, implies
oh=(1 —¢’1) < ¢9 = (1 — ¢1). Thus, by Lemma 4.5.1, for all u,0 > 0 we have that
Ap(—0+pou) > Ap(—0+@yu), which by Thm. 3.7.3 implies Agps(g,)(0) > Acpsig)(0)

“for all 8. Therefore, by convexity, for 0% pg, as it is defined in Thm. 3.7.3, we have
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OGPt < OGps):

A similar property is proven for the GLQF policy.

Lemma 4.7.3 If 8 < 8 we have

HIG'LQF(ﬂ) < HIGLQFO@’) and 92GLQF(ﬁ) > ngLQF'(ﬂ').

Proof : Again we only prove the first relation. The second can be obtained by a
symmetrical argument. We use the optimal control formulation of Section 4.3. We
argued there that optimal trajectories have the form of Figure 4-2(d) and (e), with
cost inf, Ay op(a) and inf, oA} or(a), respectively. Let us fix B and consider how

the cost is affected by using the policy with 5 = 3 +- €, for small € > 0.
Consider first trajectories of the form in Figure 4-2(e). Note that we can rewrite
Agf@p(ﬂ) (a) as
AGiore)(a) = ol (A1) + A (22) + Ay (xs)).

z1+22—z3=0F(1+a)
0<¢<1

We shall show Affr,p 5 (a) > Afforp)(a) for all @ > 0. Assume the contrary.
Consider the optimal solution of the problem corresponding to 8 which satisfies the

feasibility constraints

T —¢dry=a
z1 + 75 — x5 = §/(1 + a)
0<¢ <1
‘We distinguish two cases: ¢ > 0and ¢ =0. We provide an argument only for the

first case. The second case can be handled similarly. Since B,a > 0, at least one of
the following holds: z} > E[A]] or zy > E[A]] or 2, < E[By]. Depending on which



146 Chapter 4. Overflow Probabilities with GLQF

one is the case we can decrease 1, Or Z), or increase 3, respectively, reducing the
cost, until 2§ + z/, — 75 = B(1 4 a). Thus, we have constructed a feasible solutjon of
the problem corresponding to 8 with smaller cost than AgL*Q #(3(a). This contradicts
our initial assumption. We conclude that by increasing 4 to B’ we also increase the

optimal cost of trajectories having the form in Figure 4-2(e).

If now, an optimal trajectory has the form in Figure 4-2(d), then it will still be
the optimal, by convexity, when 4 is increased to A'. Thus, in this case, the optimal

cost does not change.

We summarize by considering how the cost is affected as f is increased from 0 to
0. At B = 0, possible optimal trajectories have the form of Figure 4-2(e). There
is a threshold valye B such that for aj] B < B optimal trajectories have the form
of Figure 4-2(e) with values Increasing as 4 increases from 0 to 4. For an B8 >j
optimal trajectories have the form of Figure 4-2(d) with slope 3 and do not change
as f3 increases from 7 to oo, ’

|

We next prove a sufficient condition for the GLQF curve dominating the GPS

curve.
Lemma 4.7.4 If for all g [0,00) there exists $1 €1[0,1) such that

elG'PS(q}l) < elGLQF(ﬁ) 02G'PS(¢1) < ngLQF(ﬂ)’

ond

then the GLQF curve dominates the GPS curve.

there exist " and ¢! such that

GIGPS@U N BIGLQF(ﬁ') and

ngPS(aSi) > 62GLQF(5').

By Lemma 4.7.2 all points with O1 < 4 have 6775  gGPS(e)) 05 ) Also
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by the same lemma, all points with ¢; > @] have 9? PS(1) > 0;3 PS@L) HfLQF(ﬂ 0,
This contradicts our initial assumption.

We now have all the necessary tools to prove that the GLQF curve dominates the
GPS curve.

Theorem 4.7.5 Assuming that the arrival and service processes satisfy Assump-
tions A, E, and D, the GLQF curve dominates the GPS curve.

Proof : Fix an arbitrary . We will prove that there exists ¢, satisfying the condition
of Lemma 4.7.4. It suffices to prove that for both queues and such ¢, overflow with
the GLQF(8) policy implies overflow with the GPS(¢,) policy. Then, the overflow
probability of GLQF(() is a lower bound on the corresponding probability of GPS(¢,),
i.e., it holds

P[L{S‘LQF(,B) >U] < P[L{?PS(q&l) > U, 7=12,

which implies

01GP5(¢1) < 91GLQF(ﬂ) and

920PS(¢1) < 92GLQF(ﬁ).

Since we have established that both in the GPS and the GLQF case, the overflow
probability is equal to the probability of overflowing according to one out of two
scenarios, it suffices to establish the above only for these scenarios. In particular,

we distinguish the following cases depending on the possible modes of overflow for
GLQF(3), which are described in Section 4.4.

Case 1: Mode 1 for overflow of Q! and mode 1 for overflow of Q2.
Case 2: Mode 1 for overflow of Q! and mode 2 for overflow of Q2.
Case 3: Mode 2 for overflow of @' and mode 1 for overflow of Q2.

Case 4: Mode 2 for overflow of @' and mode 2 for overflow of Q2.
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In Case 1 and 2, we have

Ty — T3 = a,

Hp) S ﬂaa

where z;, j = 1,2,3, a, solve the optimization problem corresponding to the overflow
of Q' in mode 1. Then, since 21 — ¢1z3 > &1 — T3 = a V¢, it is clear that for all ¢,
the GPS policy will overflow Q*. If we are in Case 1, then also for all ¢, the GPS

policy will overflow Q?. If we are in Case 2, we have

Ya — QY3 = a,
y1 — (1 - @)ys = a/B,
0<¢<1,
where y;, 7 = 1,2,3, a,®, solve the optimization problem corresponding to the

overflow of Q? in mode 2. Then, the GPS policy with ¢; > 1 — ¢ will overflow Q7.

Consider now Cases 3 and 4. We have

T, — ¢T3 = a,
$2—(1_¢)$3=aﬂ7
0< <1,

where z;, j = 1,2,3, a,¢, solve the optimization problem corrvesponding to the
overflow of Q! in mode 2. Then the GPS policy with ¢; < ¢ will overflow Q*. In
Case 3, for reasons explained in the previous paragraph, the GPS policy will overflow

Q? for all ¢,. If, finally, we are in Case 4, we have

Yo — (1= ¢ )ys =2,
n—@ys =a'/B,
0<¢ <1,
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where y;, j = 1,2,3, a’,¢', solve the optimization problem corresponding to the
overflow of Q* in mode 2. Then the GPS policy with ¢; > ¢' will overflow Q%. To
show that there is at least one ¢, that overflows both queues we need to show ¢ = ¢'.

To see that notice that (by making the substitution o’ := Ba’)

. 1 . * * *

inf — inf (A% (y1) + Aa(y2) + A (ys)] =

o a’ y2—(1-¢')ya=a’

y1—¢'ya=a' /B
0<¢' <1
1. .1 . . . i
7 inf ~ inf  [AL(y1) + Al (v2) + Ap(v3)].
B e a y—-dy=a
y2—(1—-¢')ys=pa’
0<¢'<1

The right hand side is exactly the problem corresponding to the overflow of Q! in

mode 2.






Chapter 5

Delay in GPS

In this chapter we analyze the probability of large delay for each queue @' and Q?, in
the multiclass model of Chapter 3, operated under the GPS policy. We assume that
the FCFS policy is implemented for customers of the same class. The same notation

and assumptions (i.e., Assumptions A, D, and E) are in effect.

We first establish in Section 5.1 a general result for the delay that the customers
in each of the queues Q' and Q? are facing (see Figure 3-1). Next, in Section 5.2 we
establish a lower bound on the probability of large delays using the optimal control
approach that we introduced in Chapter 3 and finally in Section 5.3 we establish a

matching (up to first degree in the exponent) upper bound on the same probability.

5.1 Delay in the Multiclass Model

Consider the multiclass model of Section 3.1. We denote by D! and D? the sojourn
time in the system of a virtual customer arriving at time ¢ (we assume that the virtual
customer arrives at the beginning of time slot 7 before any other customer arrives or
departs at the same slot). In this section we establish a relationship between the
distribution of the delay and the corresponding queue length. These relationships are
typically termed as distributional laws in the literature [BN95, BM92]. We will do

151
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that only for the delay in the first queue @', the delay in the second queue can be

obtained by a symmetrical argument.

Theorem 5.1.1 Assuming that customers in queue Q' are served in the order they
arrive (FCFS policy), for each m € N we have that

P[D} > m] = P[L}, > Si. 1]

Proof : Consider a virtual customer arriving right before time 0 in Q. If Dj > m
then the customer should be in the system at time m—1, and because Q' operates with
the FCFS policy, the queue length at time m, L} (recall that this does not includes
arrivals and departures at time m) should include all the arrivals after the virtual
customer. Thus, D§ > m implies L}, > Sgh._,. Hence P[D} > m] < P[LL, > Sg, 1.

Similarly, L}, > Sé‘f,ln_l implies that the customer arriving right before time 0 is
still in the system at time m — 1.

We are interested in obtaining the probability P[D§ > m], up to first degree in

the exponent, for large values of m. Using stationarity, the above theorem implies
P[D!, >m]=P[L§ > SA ],

and we will be using the latter expression to calculate the probability that the delay
gets large.

5.2 Lower Bound: Optimal Control

In this section we establish a lower bound on the probability of large delay P[Dj > m),
for large values of m. We use the same optimal control approach that we used in

Section 3.4 to obtain a lower bound on the overflow probability.

Consider a virtual customer arriving at time —m. To calculate the probability
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that this customer suffers large delay, as we argued in the previous section, we will

be using the expression
P[D!, >m]=P[L} >S4 _|]. (5.1)

For every sample path that leads to large delay, there exists some time —n < —m at
which both queues are empty. Since we are interesting in the asymptotics as m — oo

we scale both time and the levels of the processes A, A2 and B by m. In particular,

we let T'= 2~ and define the following continuous-time functions in D[—1 — T, 0]

. 1 . _ 1
L) = ELJLmtJv 7=12, SX(t) = _SXm(1+T),LmtJ: X e {Al,AZ,B}.

mo-

In formulating the control problem, we use exactly the same notation as in Sec-
tion 3.4. The empirical rates z,(t), zo(t) and z3(t), of the processes A', A% and B,
respectively, are the control variables and the levels of the two queues L!(¢) and L2(3),

the state variables. The cost functional is

exp{—U / °T_1 (A (21(8) + Al (2(8) + Ap(25(1))] dt}.

The state trajectories are in the set (GPS-DYNAMICS), as it is defined in Section 3.4.
We next formally define the deterministic optimal control problem (GPS-DELAY).

(GPS-DELAY) minimize /OT_I[Ajp (21(2)) + Ala(z2(t)) + Ay (z3(2))] dt (5.2)

subject to: L'(—T —1) = L*(-T - 1) =0
0
M0) > / . (¢) dt
1

L*(0) : free
T : free

{Li(t): t€[-T —1,0], j = 1,2} € (GPS-DYNAMICS).

To solve the above problem we decompose it into the two time intervals [-1 — T, —1]
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and [~1,0]. First note that for all ¢ € [~1,0] we have
0 0 0
[ m(r) dr < 130) < 11(t) + | o dr <@+ [ n)
-1 t -1
which implies
L'(ty>0, Vtel[-1,0] (5.3)

Thus, the state trajectory in the interval [—1,0] does not touch the L? axis in the
L'~ L? space. Observe, now, that the problem in the time interval [-1-T, 1] is the
same as (GPS-OVERFLOW) with the exception of the final value being L}(—1) > 0
instead of 1 as was the case in (GPS-OVERFLOW). The development in Section 3.4
suggests that the difference in the final value affects only the optimal value and not the
optimal trajectories. Thus the segment of the optimal trajectory of (GPS-DELAY)
in [-1 — T, —1] has exactly the same form as in Figure 3-3(a) and (b).

We next focus in the time interval [—1,0]. Using exactly the same argument
(taking time averages) as in the proof of Lemma 3.4.1, we can restrict the search
for optimal trajectories to trajectories with constant controls in each of the Regions
A, B and C. Thus, depending on the form of the segment of the state trajectory
in [-1-7T,-1] we distinguish two different sets of candidates for optimality. These
are depicted in Figure 5-1. For candidates belonging to Set I (Set II, respectively),
the segment of the state trajectory in [—1 — T, —1] has the form of Figure 3-3(a)
(Figure 3-3(b), respectively).

Let us first examine the state trajectories in Set I. Consider the trajectory in
Figure 5-1(b). Let y; and x;, j = 1,2, 3, be the controls in the time intervals [-1 —
T, —1] and [—1, 0], respectively. We have

Y2 < days,
Ty > ¢ax3,

T(y1 +y2 — ys) + (21 — ¢r23) > 24,
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Set 1
(a) (b) (0
L2 L2 L2
L'(-1) L'o) r! LY(-1) Lo Li(-1) LY0)
Set IT
(d) (e) ()
L? L? L?
Ll(-1) Loy r! LY(-1) L(0) L(-1) Ll(o)
Figure 5-1: Candidates for optimal state trajectories of (GPS-DELAY).
From Set I, candidates for optimal trajectories are reduced to case (a). From
Set II, candidates for optimal trajectories are reduced to case (d).
which implies
Y2 < Pays, (5.4)
T2 > a3, (5.5)
T(y1 +y2 — y3) > ¢r3. (5.6)

We now claim that z3 > y3. To show this we assume that z; < yg and we will

arrive at a contradiction. With z3 < y3, and for small € > 0, we increase z3 to z3 + ¢
and decrease y3 to y3 — £, such that the total number of services in [~1 — T, 0] stays

constant. Note that the constraint (5.6) is not violated since T'(y; + yp — y3) + € >

¢173+ p1€. Also, due to convexity the cost is decreased. We can keep doing this until
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some of the constraints (5.4) or (5.5) is violated. This however contradicts the initial
assumption that the trajectory has the form of Figure 5-1(b). Thus, we conclude that

T3 > y3. This implies that y, < z, since

Y2 < days < a3 < T3

For small € > 0, we can now keep increasing ¥, to y2 + 7, and decreasing z» to z2 —¢,
without violating (5.6), until one of the constraints (5.4) or (5.5) is violated. This also
contradicts the initial assumption that the trajectory has the form of Figure 5-1(b).
We finally conclude that we can exclude the trajectory in Figure 5-1(b) from our
search for optimality. The same argument also excludes the trajectory in Figure 5-
1(c) from this search. Hence, from trajectories in Set I, candidates for optimality are

restricted to trajectories of the form of Figure 5-1(a).

We next examine trajectories in Set II. Consider the trajectory in Figure 5-1(e).
Let —(1—() the time that this trajectory hits the L' axis in the interval [-1,0]. Let y;,
i=1,2,3, the rates during [-1—T, —1] and z;, i=1,2,3, the rates during [-1, —(1—()].
By taking the time average over the controls in the interval [-1—T, —(1—()] we have
constant controls during this interval. Let 7, and @5 the arrival rate in the second
buffer and the service rate, respectively, during the same interval. From the form of
the trajectory we should have (T + () (92 — ¢273) = 0, which implies 7 = ¢»¥3. Thus,
the trajectory reduces to the one in Figure 5-1(a). The same argument applies in the
trajectory in Figure 5-1(f) which reduces to the one in Figure 5-1(c). Hence, from
trajectories in Set I, candidates for optimality are restricted to trajectories of the

form of Figure 5-1(d). We summarize this discussion in the following proposition.

Proposition 5.2.1 The state trajectories in Figure 5-1(a) and (d) are optimal.

5.2.1 Optimal Value of (GPS-DELAY)

Next we calculate the optimal value of the control problem (GPS-DELAY). The

result of the above proposition allows us to consider only trajectories of the form of
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Figure 5-1(a) and (d).

Consider first the former. Let y;, and z;, i=1,2,3, the rates during the time

intervals [-1 — T, —1] and [—1, 0], respectively. The feasibility constraints are

Y2 < Pays,
Ty < Poz3,

T(n +y2 —ys) + (22 — 3) > 0.

Taking the time average for z3, y» (i.e., (1 + T)Z, = Ty, + z,) and for z3, y3 (i.e.,
(1+T)Z3 = Tys + z3), we improve the cost and we obtain

Ty < ¢73, (5.7)
Ty + (1+T)(z2 — 73) > 0. - (5.8)

Therefore for trajectories of the form of Figure 5-1(a) the optimal cost is

9;,11 = ll%f :Ezi<%£is [TA;H (yl)il— A‘*41 (.’L’l) + (1 + T)(A*Az (Tz) + A*B(il—,‘g))]
Ty1+(1+T)(Z2—23)>0

Notice in the optimization above we can take z; = E[A!], making A%:(z;) = 0.

We next manipulate the above expression, using convex duality, to arrive at a more

compact formula. We have

0p, =inf (- sup [~TA% (1) — (1 + T)(A%:(Z2) + Ap(Zs))]
T (14T)Z2<(1+T)$2 73
Ty1+(1+T)(Z2—%3)>0

=i%f [— inf>0 sup(ui (1 + T)¢aZs — ur(1 + T)Zz + uz(1 + T)(Zy — T3)

u1,u2

uaTy — T (1) — (14 TY (A% (3) + Az,(fa))]]

=ipf [— inf [TAg(uz) + (1+T)(Age(uz — w1) + Ap(—us + u1¢z))]]

uy,u2>
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=i1%f - uiznzfo[TAAl (u2) + (1 + T)(Agps(uz) — Aar(u2))]

= igf sup A1 (uz) — (1+ T)Abps(us)] (5.9)

u2>0

In the fourth equality above we have used the expression of Agpg(-) as it appears in
the proof of Thm. 3.7.3.

We next consider the trajectory of Figure 5-1(d). We again let y;, and z;, i=1,2,3,
the rates during the time intervals [-1 — T, —1] and [—1, 0], respectively. The feasi-

bility constraints are

Y2 2 ¢2y3:
Ty > PaT3,

T(y1 — ¢1ys) + (z1 — d123) > 1.

Taking the time average for z,, y» (i-e., (1 +7)Zy = Ty2 + T,) and for z3, ys (i-e.,

(14 T)z3; = Tys + x3), we improve the cost and we obtain

To Zlifﬁzi‘s, (5.10)
Ty1 > (1 + T)¢1if3. (511)

Therefore for trajectories of the form of Figure 5-1(d) the optimal cost is

Ppa=ipf inf  [TAZ() + N (o0) + (1+ 1) (Wa(32) + Ap(E))]
Ty1>(1+T)¢1Z3

Notice again in the optimization above we can take z; = E[A'], making A%:(z,) = 0.

We next manipulate the above expression, using convex duality, to arrive at a more

compact formula. We have

Op, =inf |~ Sup [=TA%w () — (1+ T)(A2(Z2) + Ap(Z3))]
14T)z2>(14+T)p223
: Ty1>(14T)¢p123
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=iI%f — inf sup[~uy(1 + T)aZs + us(1 + T)Zy + usTys — up(1 4 T)h1 75

uy,u2>0

TN ) — (L4 T) (A (@) + A*Bm))]]
=inf -— inf O[TAAI(UQ) + (1 4+ T)(An2(u1) + Ap(—uady — U1¢2))]J

T uy,uz>

=inf| — inf [TAu(uz) + (1 +7) Jof (A2 (uz — ) + Ap(~up + U¢2))]]

it~ B [T (1) + (14 ) (M) — A (w))]}

=11r111f su>%[AA1 (Uz) - (1 + T)AIGIPS(UQ)]. _ (512)

In the fifth equality above we have used the expression of AL,4(+) as it appears in
the proof of Thm. 3.7.3.

Hence the optimal value of (GPS-DELAY) is 6}, = min(6}, ,, 6}, ;) which yields

0p = min(6p, 1,05 ,)

=1inf sup [A 41 (uz2) — (14 T)Agps(uz)]
u3>0

= sup [AAI (’U,z) — Agps(’u,z)], (513)

u2>0: Agps(uz2)<0

by recalling by the proof of Thm. 3.7.3 that Agps(6) = max[ALps(6), Aps(6)].
We have proved the following theorem.

Theorem 5.2.2 The optimal value, 0}, of the control problem (GPS-DELAY) is

gwen by the following expression

0y = sup [Aai(u) — Agps(u))]

u>0: AGps(’u)<0

Moreover, following exactly the same argument as in Chapter 3, the solution to the
control problem provides a lower bound on the probability of large delay and the

optimal trajectories identify the most likely ways that large delays occur.
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Proposition 5.2.3 (GPS Delay Lower Bound) Assuming that the arrwal and
service processes satisfy Assumptions A and D, and under the GPS policy, the steady-
state delay D' of queue Q' satisfies

B . * ,
%Lr)xgo%logP[Dl > m| > —0p. (5.14)

5.3 A Matching Upper Bound

In this section we establish an upper bound on the probability of large delay, estab-
lishing that the lower bound of the previous section is asymptotically tight (up to
first degree in the exponent). Namely we will show that for large m the steady-state
delay in Q' satisfies P[D' > m] < e~™b™°(™_ A symmetrical argument provides the
bound for the delay in Q2.

As we argued in Section 5.1 we will work with the quantity P[L} > Sf,ln,_l] since
P[D.,, >m]=P[L} >S4, I

We first argue that Q' never empties in [—m, 0].

Lemma 5.3.1 If L} > S4,. | then L, > 0 for all k € [0,m].
Proof : We have

1 Al 1 Al 1 Al
LY+ 8%, 1> L +55 12 Ly > SCm 1

|
Following the methodology of Section 3.6 we distinguish the following two cases:
Case 1. E[A?] < $,E[B].

Case 2. E[A?] > $,E[B].



Sec. 5.3. A Matching Upper Bound 161

5.3.1 Upper Bound: Case 2

We will first establish the upper bound for Case 2. We follow the line of development
of Section 3.6.1.

We consider a busy period of the first queue, Q', that starts at some time —n* <
—m (LL,. = 0) and has not ended until time 0. Notice that due to the stability
condition (3.1) and the fact E[A?] > ¢,E[B], it is true that E[A'] < ¢;E[B], which
implies that such a time —n* always exists. We will focus on sample paths of the
system in [—n*, 0] that lead to L} > S4 Note that

-m,—1"*
L(]j S Sfyll*,_l - ¢IS?R*,—1' (5.15)
Thus,

P[Ly >S4, | <PEn>mst. S4 | — 4,88, | > 54 ]

<Plmax(S%, _,_; — #1587, ;) > 0]. (5.16)

—-n,—1

We next upper bound the moment generating function of maxnzm(Sfl —

n,—m—1

¢1S_Bny_1). Applying the LDP for the arrival and service processes for # > 0 we

can obtain

E[eomaxnzm(Si‘i,_m_,—¢15_B,,‘_1)] < Z E[ea(sfi,_m_l—%S_Bn__l)]
n>m :
<3 e(n=m)A 41 (0)+nA5(—$10)+ne
n>m
<e A OemBnO+AaCa K (9 ) if Ay (6) + Ap(—¢10) < 0,
(5.17)

since when the exponent is negative (for sufficiently small €), the infinite geometric

series converges. We can now apply the Markov inequality in (5.16) to obtain

P[Ly >S4 1] gE[eBmaanm(Si‘i,_m_l-¢15_Bn,_1)]
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<K(0,e)e™sn0 if Ay (0) + Ap(—¢:10) <0.
(5.18)

Taking the limit as o — oo and minimizing over 6 to obtain the tightest bound we

establish the following proposition.

Proposition 5.3.2 If E[A?] > ¢:E[B] and assuming an LDP for the arrival and
service processes (Assumption A)

lim 1-logP[Lé >84 1<~ sup [—Ap(—$10)).

m—00 11 —m,-1 {6>0: A 41 (9)+AB(—¢10)<0}
We are now left with proving that the above upper bound is tight. This is done

in the following proposition.

Proposition 5.3.3 (GPS Delay Upper bound, Case 2) IfE[A?] > ¢,E[B] and
assuming that the arrival and service processes satisfy Assumption A, the steady-state

delay, D', of queue Q', at an arbitrary time slot satisfies

1 1 .
%H%OEIOgP[D >m] < —0p.

Proof : Given the result of Proposition 5.3.2 it suffices to prove that 0, =
SUP{>0: AA1(0)+AB(—¢10)<0}[—AB(_¢19)]' Consider the analysis of Section 5.2 that
yields 6% as the solution to (GPS-DELAY). The argument of Theorem 3.4.3 applies,
implying that optimal state trajectories can be restricted to having the form depicted
in Figure 5-1(d). Consider the feasibility constraints of such a trajectory given in
Egs. (5.10) and (5.11). Notice that 73 > E[B] (if otherwise, we can decrease I3 to
E|[B] improving the cost without violating the constraints). Then we can actually fix

T, to E[A?] without violating the constraint (5.10) since
T, = B[A?] > 9 E[B] > $273.

Finally, fixing also z; to E[A!] the expression for 67, , given in Section 5.2.1, which
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as we argued equals 67, in Case 2, becomes

Op =ipf b s T A () + (1+T)AR(Zs)).

Manipulating the above expression as in (5.12), using convex duality, it can be verified
that it iS equa]. tO Sup{ezo AAI(0)+AB(_¢10)<O} [—AB(_¢19)].
|

5.3.2 Upper Bound: Case 1

We now proceed with establishing an upper bound in Case 1. We follow the line of

development of Section 3.6.2.

Consider all sample paths that lead to L} > S4, _,. Looking backwards in time
from time 0, let —k* < —m be the first time that L' = 0. We use again the virtual
system idea of Section 3.6.2. Let —n* < —k* be the first time (looking backwards
in time from —&*) that the queue length of Q* becomes zero in the virtual system.
Notice that such a time —n* always exists since we are in Case 1, and Q? is stable
when it gets exactly a fraction ¢, of the capacity. Eq. (3.24) and (3.25), which we

repeat for convenience, hold, i.e., we have
Ly < S% 1+ 8% =SB~ 658 e, (5.19)
and
Ly < S 1 — 6188 .. (5.20)

We will use the bound in (5.19) when Sffl*,_l < ¢2S%,. _, and the bound in (5.20)
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otherwise. Namely, we repeat (3.26)

Ly <
1 A? B B : A? B
Sék*,—l + S—'ﬂ*,—l - S_ *’_1 - ¢2S_nx,_k*_1 lf S—TL*,—I S ¢25_n*,_1

Al B e QA2 B (5:21)
S—k*,—l - ¢IS—k*,—l lf S—'n,*,—l 2 ¢2S—n*,—1'

Let Q; the set of sample paths that satisfy Sf;*,_l < ¢251-3n*,—1 and €2, its comple-

ment. We have

P[> 54, and O] <
<P[En>k>mst SA | < 4,55, ) and
Sé;:,—l + Sf;,—l - ka,—l - ¢2an,—k—l > valn,—ﬂ

SP[ nzl.ax (Sflt,—m—l + Sf:’_l - ka7_1 - ¢2an,—k:—1) > 0]
{n>k>m: SA, _ <288, _1}
| , (5.22)

To bound the above we will make use of the following lemma, which establishes

that n* = O(m) with high probability, meaning that the probability of n* > Im, for

some constant [, is smaller that e=™/b+om).

Lemma 5.3.4 Assuming that the arrival and service processes satisfy Assumptions A
and E, there exists | > 0 such that ‘

P[L; > Sf,ln,_l and n* > Im] < e"mrto(m),

where q¢ > 0}).

Proof : Using (5.19) and the Markov inequality we obtain

P[L} > 8%, _ and n* > Im| <

<P[En >k >m, n>Im, s.t. Sf,lc,_l +84 S_B,c7_1 - ¢2S§n,_k_1 > 0]

—n,—1
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n>k>m
- n>lm

<P/| max [Sf,lc__l + Sf;,q - S?k,_1 — 5%, 1>0

<Ele n>im , (5.23)

1 2
( ama'xnszm[ka,—l"‘an,—l ‘ka,—1‘¢2sj—3n,—k-1]J

for some 6 > 0 to be specified in the sequel. The above moment generating function
can be bounded as follows:

n>lm

1 2
6 munzkzm[sfk,-1+sfn,—1_ka,_1—¢25§n,_k_1]
Ele <

< T3 RN O A~ HEA 1 (O1+A 12 (0)+ (- TO)

n>Ilm k=0
<y (en[AAz(9)+AB(—¢29)]+1"(9) + en[AA1(9)+AA2(0)+AB(—9)]+F(9))
n>lm
<K(6) (elm[AA2(9)+AB(—¢29)] + elm[AAl(9)+AA2(9)+AB(—0)]) (5.24)

In the first inequality above we have used Assumption E and in the second the fact
that the exponent is linear in k£ and hence the expression is upper bounded by the sum
of the terms at k = 0 and £ = n. In the third inequality above, for sufficiently large m,
the infinite geometric series converge if the exponents are negative for some 6. Indeed
this is the case, that is, there exists a 6 at which both exponents are negative, since
both [A42(6) + Ap(—¢20)] and [Aa1(8) + A42(8) + Ap(—0)] are zero at § = 0 and have
negative derivatives at 6 = 0, i.e, E[A%] — ¢,E[B] < 0 and E[4'] + E[4%] - E[B] < 0,
respectively. We can now choose large enough [ to make the exponents in the right

hand side of (5.24) sufficiently small (equal to —q).
|

We now return to Eq. (5.22) and note that due to the above Lemma we can

constrain n < [m. Let

I A Al A2 B B
Lp, = max (S—k,—m—l + S—n,—l - S—k,—l - ¢2S—n,—k—1):

{lm>n>k>m: SA7 _ <¢25B, .}
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which after bringing the constraints in the objective function becomes

I
LD,l =

lmzf%gfzm }g%[si‘k,—m—l +(1- U)Sén,—l -(1- U¢2)S?k,—1 — ¢a(1— ,U’)an,—k—-ll'
(5.25)

Next we will upper bound the moment generating functions of L{)’l using Assump-

tion E. For 8 > 0 we have

Ele’"01] <
. Al B AZ B 3 .
< zmzznzm mg:sn 11}%% Elexp{0[SZ; _m—1 + (1 U)S—n,-;_ (1—ugs)S% 4

— ¢a(1 - U)S—Bn,—k—l]}] |
< > ) infexp{(n—k)[Ax(0 — Ou) + Ap(—02(1 — u))]

+ (k — m)[A () + Aaz(0 — Ou) + Ap(—0(1 — ugs))]
+ m[Ag2(0 — Ou) + Ap(—0(1 — ugy))] + T'(6,u)} (5.26)

Let now > = 7 and % = 7 for ¢ € [0,1]. For large enough m we have

E[e?’p.1] < Im?e™ba(®) (5.27)

where

N2(6) 2 sup sup inf (7 (6 = )+ A (01— )

T CE[Oal] -

+7(1 = O)[A () + Aaz(0 — Ou) + Ap(—6(1 — ug))]

+ [Axe(8 — 6u) + Ap(—0(1 — u¢2))]). (5.28)
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Thus, invoking the Markov inequality from (5.22) we establish
1
Jim ElogP[L}, >S4 and O] < iI(}fAfll(Q). (5.29)

To show that the above upper bound matches the lower bound of Proposition 5.2.3
we have to establish that —6}, > infs A}, ,(6). Let 0 £ inf, A} 1(f). This is done
using the ideas in the proof of Proposition 3.6.5. That is, we consider the trajectory
of Figure 5-2 with associated cost

inf inf [CT(A%2(z2) + Ap(z3))

T (T(z2—¢223)+(1—()T(y2 —d2y3)+ (w2 —p2w3) <0
cr(xz—¢zxs)+(1—c)g£yc1:1yz—y3)+(w2 —w3)>0

+ (1= O7(A (y1) + Al (92) + Ap(ys)) + (Al (w2) + A (ws))]-

Manipulating the above expression as in (5.9) and using convex duality it can be

L2

LY(-1) LY(0)

Figure 5-2: Trajectory for the control problems corresponding to 6% .

verified that it is equal to 6. Now, using exactly the same techniques as in Sec-
tion 5.2, that is convexity and the homogeneity property, it can be established that
optimal state trajectories do not spend any time on the L? axis. Thus, the trajectory

in Figure 5-2 can be reduced to the one in Figure 5-1(a). This establishes the desired
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result 65 = 07, , > 07, which implies
: 1 1 Al *
%g&o%logP[Lo > S84, 1 and ] < —0p.
Similarly, it can be shown that

1
lim —logP[L} >S4 | and Q] < —67.

Mm—+00 17, —-m,~1

Hence we have established the following Proposition.

Proposition 5.3.5 (GPS Delay Upper bound, Case 1) If E[A?] < $,E[B]
and assuming that the arrival and service processes satisfy Assumption A and E, the

steady-state delay, D', of queue Q', at an arbitrary time slot satisfies

lim llogP[D1 >m| < —0p.

m—o0 M,

We summarize Propositions 5.3.3 and 5.3.5 in the following:

Proposition 5.3.6 (GPS Delay Upper bound) Assuming that the arrival and
service processes satisfy Assumption A and E, the steady-state delay, D', of queue

Q', at an arbitrary time slot satisfies
lim l10 P[D! > m] < —6;
m—00 1M, 8 - D-
The main result of this chapter is the following theorem.

Theorem 5.3.7 Under the GPS policy, assuming that the arrwal and service pro-
cesses satisfy Assumption A, D and E, the steady-state delay, D', of queue Q*, at an

arbitrary time slot satisfies

: 1 1 *
n%glcl)oalogP[D > m] = —6p,
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where

D
o *

= sup [Aar(uz) — Agps(us)),

u2>0: Agpg(uz)<0

vand where Agps(+) is aé defined in Thm. 3.7.3.






Chapter 6
Admission Control

In this chapter we discuss the application of the performance analysis results that
we have obtained in the previous chapters to the problem of admission ééﬁtrol in
high speed networks. As we discussed in the introduction, admission control in high
speed networks (e.g., ATM-based networks) is necessary since real-time services as
interactive-TV, video, video-conferencing and voice are very sensitive to packet losses
(due to buffer overflows) and to large delays. In our treatment we take only two
Quality of Service (QoS) measures of interest: the loss probability and the probability
of large delay. It is desirable that both these probabilities are upper bounded by
some given constant which depends on the particular service. In practice there are
additional QoS measures of interest, for example, the delay jitter (i.e., delay variation)
and the short term fraction of packets that are lost or delayed. Notice, that the latter
QoS measure is concerned with losses and delays that occur almost consecutively, in
bursts. In contrast, the probability of loss or delay captures the long term fraction of

packets that are lost or delayed (assuming stationarity and ergodicity).

We propose in this chapter an admission control scheme on a call by call basis.
This means that when a call is admitted, the network does not take any control
action to regulate the traffic produced by the call. One reason for doing that, besides
the analytical tractability of the problem, is that regulation (with a leaky bucket for

example) will also introduce delays or losses that will degrade the quality of the call.

171
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Therefore, if we were to use regulation we would also need to evaluate the quality
degradation that it produces. To implement such a call-based admission control
mechanism two are the critical decisions to be made. First to assign buffer sizes and
second to restrict the number of connections (calls) that the network services in order

to ensure that the QoS measures are within specifications.

A prerequisite for using the performance analysis results obtained in earlier chap-
ters to do admission control is that we have a detailed statistical model for the traffic
(knowledge of moment generating functions). For voice traffic Markov-modulated
processes with an underlying Markov chain of very few states (usually two states) are
satisfactory models (see [AMS82, MAS88, EM93]). For video traffic, Markov mod-
ulated processes with higher dimensionality are often required. When such a model
is not available off-line, the admission control mechanism has to be coupled with an
on-line estimator. In practice, there are types of traffic (especially data) for which
appropriate statistical models are not available, or are too complicated and do not
satisfy Assumptions A and D and E, which basically require short range dependencies.
In such cases the results of this chapter are not applicable and worst case analysis

might be used instead.

In this chapter we will focus on an isolated node (switch) and devise an admission
control mechanism. Although our network analysis of Chapter 2 provides the basis for
admission control in the single class case, for a network, we choose to focus on a single
node for two primary reasons: a) we consider the multiclass effect of primary interest
and there are not yet developed analytical results for multiclass networks, and b) even
if such results were available the admission scheme would be too complicated and too
computationally burdensome to be implementable in real-time. For modeling traffic

we will use the discrete-time model that we introduced in Section 3.1 in page 86.

Regarding the structure of this chapter we begin in Section 6.1 with the simpler
case of single class admission control. We also present there several examples (based
both on some simple traffic models and on actual MPEG video traffic) that indicate
the relevance of the large deviations asymptotics and the statistical multiplexing gains

that can be obtained by such an admission control scheme. In Section 6.2 we consider
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the much more involved multiclass case and propose an admission control algorithm

under the GPS scheduling policy.

6.1 Single Class: Effective Bandwidth

In this section we review a single class admission control scheme. This scheme is based
on the notion of the effective bandwidth. Numerous papers deal in various ways with
this concept [Hui88, GH91, Kel93, KWC93, dVW93, CW93, EM93, EHL*94], and is
probably this concept that generated so much interest in large deviations techniques

for communication networks.

Consider the architecture of Figure 6-1. We assume a deterministic service capac-

Admission Controller

Admitted Calls

Call Requests

Figure 6-1: An architecture for single-class admission control.

ity of ¢ b/s (bits/sec). Calls request to be connected to the system. We assume that
all calls are of the same type and generate traffic according to a stochastic process
{A; © € N}, where A, is the traffic (in b/s) generated in time slot i. We also assume
that the process A satisfies Assumptions A and D. Let A4(f) denote the limiting
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log-moment generating function of the process A. If the admission controller admits
N calls then it is easy to verify that the aggregate arrival process in the buffer, say

A, has limiting log-moment generating function
A;(0) = NA4(O), Vo € R.

Since the service process is deterministic it is characterized by the limiting log-moment
generating function Ap(f) = cf. Let U (in bits) denote the buffer size of the system,
and Ly, Dy, the steady-state queue length and delay, respectively. The subscript U
denotes the fact that these steady-state distributions depend on the buffer size.

The QoS parameters are given in terms of a constant Dpay, which denotes the

desirable maximum allowed delay in the buffer, and a scalar ¢ such that

P[Ly > U] <4, (6.1)
P[Dy > Dpmax] < 6. - (6.2)

The admission controller has the freedom to select the appropriate buffer size
U and restrict the number of admitted calls in order to guarantee (6.1) and (6.2).
We next argue that the appropriate buffer size is U = ¢Dpax. Consider first setting
U > ¢Dpax. Then the system will be admitting packets that will need more than Dp,ax
time to clear the buffer. We can view Dp., as a threshold value set appropriately,
depending on the application, such that packets which are not transmitted within
Dpnax will severely degrade the performance and cannot therefore be considered of use
in the receiving end. In practice, such packets are often discarded before transmitted.
Constraints (6.1) and (6.2) guarantee that the fraction of such packets as well as lost
packets remains sufficiently small. Thus, for engineering reasons the system should
not be admitting such packets and hence the buffer size should be set to U < cDpax.
Consider now setting the buffer size to U < ¢Dpax. Then the system is discarding
packets that can be transmitted within Dy,.,. Moreover, the loss probability for a
fixed number of connections is increased as we decrease U. Therefore we set the buffer
size to U = cDpax. Note that this immediately guarantees (6.2) for all § > 0. We are
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now left with guaranteeing (6.1).

We will use the level crossing probability of an infinite buffer system to approxi-
mate the loss probability of the system with finite buffer. In our discrete time model
the queue length at time O in an infinite buffer G/G/1 queue with aggregate arrival

process A and service process B, respectively, is given by the Lindley equation
Lo - [L_l + /‘i_]_ — B_1]+,

which is very similar to Eq. (2.9). The following theorem is the discrete-time analog

of Theorem 2.2.1 in page 46; the proof is identical and is omitted.

Theorem 6.1.1 The steady-state queue length L in a G/G/1 queue with arrival and

service processes satisfying Assumption A is characterized by
lim —logP[L > U] = —0" (6.3)
Jim, 77w ==, -
where 8* > 0 us the mazimum root of the equation
A;(0) + Ag(—6) = 0. (6.4)

In the discrete-time model the stability condition asserts E[A] < E[B], thus the
function A 4(0) + Ap(—6) has negative derivative at 0. The situation of Figure 2-2
holds when we change the direction of the #-axis (6* > 0). By convexity we have that
A;(0) + Ap(—6) < 0 for all 0 < § < 6*. Let now 6, = —*%€%. We can ensure

PL>U]~e VU <§=¢ V%

if and only if §; < 0* which holds if and only if A;(6.) + Ap(—6.) < 0. For the

system of Figure 6-1, when N calls are admitted, this implies

AA((SL) <ec

N6L

(6.5)
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The quantity v(dr) 2 A—*‘}f—LZ depends only on the QoS parameters and the statistics of
a call and is referred to as effective bandwidth of the call due to the similarity of (6.5)
with the admission criterion for loss networks (circuit switched). That is, the number
of calls times the capacity that each call consumes has to be at most the total capacity
of the system. Here, that a stochastic process characterizes the traffic generated by a
call, the effective bandwidth captures, in a single number, the capacity that the call
requires for the quality of service to remain within the given specifications. The next
theorem establishes that the effective bandwidth is constrained within the mean and

the peak arrival rate.

Theorem 6.1.2 Assume that A; < Amax < 00 for all i (with non-zero mass at Amax)
w.p.1. Then
E[A] < v(0) < Amax,

and the lower bound becomes tight as @ — 0, while the upper bound becomes tight as

 — oo.

Proof : For the upper bound note that for all # > 0 and n

E[eGZ:’:l A < 0 Amax

b

which implies that

!

v(f) = 7

Aa(0) < Amax- (6.6)

For the lower bound, notice that

sup, [90‘ _ A*A(
0

() = I - gra), | (6.7)

since A% (E[A]) = 0.
When 6 — 0, A4(0) = 6E[A] + 0(8), which implies that (6.7) gets tight. To prove
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that the upper bound is tight for § — co, arguing as in (6.7), we have

.*4 (Amax)

0) > A, —

This implies that as § — 00, v() > Amax, where we have assumed that A% (Amay) <

00 (since Amax has non-zero mass).

The above theorem implies that as ¢ — 0 (hence, 6, — o0), which means that
we require no loss and no large delays, then the effective bandwidth converges to
the peak arrival rate. As § — 1 (hence, §; — 0), which means that we relax the
QoS requirements, the constraint (6.5) degenerates to the stability condition of the

system.

6.1.1 An example

We present a simple example that shows how effective bandwidth-based admission
control performs. We consider two types of traffic with the parameters of Table 6.1.
Both types of traffic conform to the ON-OFF model of Figure 6-2. Traffic is gener-
ated according to a continuous-time Markov process, with embedded Markov chain
depicted in Figure 6-2. In the ON state, traffic is produced with a constant rate of p
b/s. We refer to this as the peak rate. In the OFF state no traffic is generated. The
traffic source stays in the ON state a fraction -3 of the time and for an expected
number of 1/b transitions of the embedded Markov chain. It generates traffic with

an average rate of p;%; b/s.

A few comments about the traffic and QoS parameters are in order. Type 1 traffic
has parameters which are typical of a video-conferencing call which consists of the
transmission of relatively low activity scenes (people sitting around a table). As a
consequence the peak rate is close to average rate. Type 2 traffic is more typical
of a bursty video call (e.g., action movie). To put Dy, into perspective, with a
packet size of 53 bytes (size of an ATM cell) and with a 64 Kb/s rate for voice, the
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Figure 6-2: The ON-OFF source model.

Traffic Parameters QoS Parameters
[ Peak | Avg. | Elton] | a | b Do | )
Typel| 2Mb/s|1Mb/s| 25ms | 0.04 | 0.04 || 10 ms 10°°
Type 2 || 10 Mb/s | 2 Mb/s | 5ms | 0.05| 0.2 || 30 ms 107°

Table 6.1: Traffic Parameters for the ON-OFF model. E[ton]| denotes
the expected amount of time that the traffic source stays in the ON state
(expected duration of burst). For both types of traffic it can be easily verified
that the embedded Markov chain makes one transition every 1 ms.

packetization delay is about 6 ms. It is usually assumed that about 300 ms end to
end delay for voice and video calls is satisfactory, thus with about 10 nodes end to
end path, maximum delay should be in the order of 30 ms per node. A discussion of

typical traffic and QoS parameters can be found in [HW94].

Consider now the system of Figure 6-1 with a service capacity of 135 Mb/s. One
naive way to admit calls is to take a worst case analysis stance and assume that
traffic sources are always transmitting in their peak rate. Thus, we would be able

to allow at most 67 calls of Type 1, or 13 calls of Type 2. We refer to this as peak

“rate assignment. The stability condition for the system implies that we cannot admit

more than 135 Type 1 calls, or 67 Type 2 calls. If we apply the recommendations of

this section, Eq. (6.5) restricts the number of calls to at most 120 for Type 1 calls, or
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58 for Type 2 calls. This is about twice the peak rate assignment for Type 1 calls and
more than three times for Type 2 calls. Hence, a significant statistical multiplexing
gain can be realized when we take into account the statistical behaviour of traffic,
the exact way that we do this being prescribed by Eq. (6.5). The following table

summarizes the discussion of this paragraph.

Max Number of Calls
| Peak rate assignment | Stability condition | Effective bandwidth
Type 1 67 135 120
Type 2 13 67 58

Table 6.2: Comparing peak rate assignment, the stability condition and
the the effective bandwidth-based assignment.

6.1.2 An example with actual MPEG video traffic

We next present an example where the input traffic is actual traffic generated by
transmitting an MPEG-coded (for a description of the coding algorithm see [LeG91])
video signal of the Star Wars motion picture. The data were obtained from the
Bellcore site (see [Gar93] for details).

The video trace is plotted in Figure 6-3. It depicts the number of bits used by
the MPEG encoder per frame; frames are generated at a rate of 24 per second. This
trace has a peak rate of 4.44 Mb/s and an average rate of 0.37 Mb/s. Consider the
system of Figure 6-1 with a service capacity of 50 Mb/s. Worst case analysis demands
that we admit traffic based on the peak rate. In this example, this means that we
can allow at most 11 movies to be transmitted through the system. The stability

condition for the system implies that we can allow at most 135 movies.

To apply the recommendations of this section we need to estimate a statistical

model from the data. We will be using a Markov-modulated source model. Traffic is
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generated according to a continuous-time Markov process, the state of the process be-

ing the bit rate. More specifically, consider a Markov chain with M states sq, ..., sy.
X 10° | _ | | | _ r |
1.81 ]
1.6 J
1.4 i

bits

|

0 2 4 6 8 10 12 14 16

x10
frames (24 per sec)

Figure 6-3: The MPEG video trace of the Star Wars movie.

In state s; the source model generates traffic at a rate of r; b/s. The chain makes
transitions at the frame transmission rate (i.e., one transition every 1/24th of a sec-
ond). Let now R and r be the peak and the mean rate, respectively, of the MPEG

video trace. We build the model from the data as follows:
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1. We split the bit rate range [r, R] in M equal intervals of length (R — r)/M.

Interval 7 = 1,... , M corresponds to rates in [r + (i — I)RA;’,T + iRAjIT] and is

assigned to state s; of the Markov modulated source model.

2. We define r; = r + iRA}T, which is the maximum rate in interval ;.

3. We estimate the transition probabilities of the Markov chain using maximum

likelihood estimation.

Since the source model is assumed to transmit at the maximum possible rate when in
state s;, it is, in this sense, a “worst case” model within the set of Markov modulated
models with M states. We use such a model to obtain “safer” estimates of the quality
of service probabilities. In other words, given the fact that traffic statistics are not
known a priori and have to be estimated, it is better to use conservative modeling

than to run the risk of violating QoS specifications.

We have performed a small number of experiments to assess the performance of
such a scheme. We estimated, off-line, a Markov modulated model from the data, as
outlined above, and we determined by Eq. (6.5) the maximum number N of movies
that can be transmitted for a maximum delay of 40ms and a QoS parameter of 10~°,
when the available capacity is 50 Mb/s. We then compared the analytical estimate
for the loss probability with an estimate obtained from simulating the system when

N movies randomly ! synchronized are transmitted. The results are outlined in
Table 6.3.

As this table indicates we have used three different Markov modulated models
A, B, and C, with 76, 58, and 39 states, respectively. There is an issue on how to
select the dimensionality of the Markov modulated model, which is not very well
understood at the moment. Very few states do not capture well the structure of the
data and result in conservative estimates of the loss probability, while, on the other

hand, many states result in large estimation errors since the transition probabilities

1Each movie starts at a frame ¢ uniformly distributed in [1,T], where T is the length of the movie
in frames. Frames are transmitted in the order ¢t,¢t +1,... ,T,1,... ,¢t — 1.
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| [ No. of States (M) [ No. of Movies (IV) | Analytical | Simulation |

Model A 76 118 1.4107° 5.0 10°°
Model B 58 116 6.2 10°° 3.5 1077
Model C 39 112 5.7 107° -

Table 6.3: Experimental results with actual MPEG video traffic.

of the Markov model are estimated from a finite trace. From Table 6.3 we see that for
the particular Star Wars trace, a model with 76 states describes the data sufficiently
well and yields a loss probability estimate very close to the actual one (obtained via
simulation). In practice it might be desirable to use a model with relatively few states
(Model C for instance) that yields a conservative loss probability estimate. Such a
conservative model results in only a 5% loss in capacity (transmitting 112 movies
instead of 118). Notice that transmitting 112 movies is an enormous gain over the
peak rate assignment (11 movies) and not very far away from the upper bound of 135

movies implied by the stability condition.

6.2 Multiclass Admission Control

In this section we turn our attention to the multiclass case and propose an admis-
sion control mechanism which takes advantage of the performance analysis results

developed in Chapters 3, 4 and 5.

The problem with the effective bandwidth-based admission control, although sim-
ple and elegant, is that all calls are treated the same. This is not desirable in truly
multimedia situations in future high speed networks where different types of ser-
vices are going to be operational. In such situations, different models are required
to characterize distinct types of traffic (for instance voice traffic can be adequately

represented with a Markov modulated process with only two states, whereas video
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traffic requires Markov modulated processes of high dimensionality). Moreover, dis-
tinct types of traffic often have different quality of service requirements (for instance
real-time data have a more stringent loss rate requirement than voice). The scheme
that we propose in this section addresses these issues by using the multiclass model of
Section 3.1 and the GPS policy. It provides for admission which guarantees different

QoS requirements for each type of traffic.

Consider the architecture of Figure 6-4. The notation remains the same as in

Type 1 calls

——————— Type 2 calls

Admission Controller

Admitted Calls

Call Requests

Figure 6-4: An architecture for multiclass admission control.

the previous Section and Chapter 3. Let A! (resp. A?) denote the arrival process
for Type 1 (resp. Type 2) calls. With N; (resp. N,) Type 1 (resp. Type 2) calls
admitted, the aggregate arrival process in the first (resp. second) buffer, say A' (resp.
A?) is characterized by Az (8) = NiA 41 (6) (resp. Az2(6) = NyA,:(6)), for all 0. The
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service process is deterministic with rate ¢ b/s, hence Ag(f) = cf for all 6.

We now have to satisfy four QoS constraints, namely,

P[ng > UJ] < 6j7 J=12,, (68)
P[D} > Dl <d;,  j=12 (6.9)

The admission controller has the freedom to select the appropriate buffer sizes
U; and restrict the number of admitted calls in order to guarantee (6.8) and (6.9).
We next argue that the appropriate buffer sizes are U; = ¢D?,., j = 1,2. For the
same reasons that we presented in the previous section it is not recommended to have
buffer sizes U; > ¢D? ., since the system will be admitting packets that will not be
able to clear it within DJ _, with certainty. Thus, it has to be the case U; < c¢DZ .,
j = 1,2. Consider now the case U; < c¢D},,. The system is discarding packets that
will depart within D! | if the second buffer is and remains empty. In fact, the system
is doing this “blindly” without checking the status of the second buffer. It is more
efficient to be discarding packets only when there is a danger of violating the QoS
constraints. We therefore, set buffer sizes to U; = ¢D? .., j = 1,2. Notice that this
no more guarantees the delay constraints, as it was the case in the single class setting
of the previous section. That is, if both buffers get full, certain packets will violate
their delay QoS constraint (Eq. (6.9)). We deal with this by restricting the number
of admitted calls.

Hereafter, as in the previous section we approximate the loss probability with
the level crossing probability in an infinite buffer system and we upper bound the
delay probability with the one in the infinite buffer system. Notice, now, that with
U; = cDi ., j = 1,2, the event L7 > U; implies the event D/ > DJ . Thus,

max’

P[L? > U;] < P[D? > Dj, j=1,2. (6.10)

a.x]’

Therefore we need to guarantee, through admission control, only (6.9). Let us denote

by 6%, the decay rate of the delay probability that is obtained by applying Thm. 5.3.7.
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Namely, for 7 =1, 2,

0p; = sup  [Aai(u) — Agps(u)],
u>0: Agps(u)<0

and the delay probability, for large values of DI __, is given by

max)
. . _pi .
P[D? > DI | ~ e Praxfp;,

__logd;

We can ensure (6.9) if and only if 8%, > 4%, where 67, £ Dl

The following

definition is of relevance.

Definition 6.2.1
We define the admission region for the system of Figure 6-4 operated under the GPS
policy the set

A: {(¢1’N1:N2) : ¢’1 € [07 1]7 NlaNZ € N+7 9*DJ 2 51)) .7: 172}

If a vector (¢1, N1, NV2) € A, we can ensure (6.9) and due to (6.10) we can also ensure

(6.8), that is, all QoS requirements are satisfied.

When an adequate model for the arrival processes is available off-line then the
admission region can be calculated also off-line and be used on-line by the admission
controller. The calculations required for the admission region are computationally
burdensome and can be done in the order of minutes, depending on the complexity
of the arrival model. Thus, it may not be appropriate to repeat them for every call
request. In practice, these calculations should be performed based on data from an
on-line estimator of the call traffic (one estimator for each traffic type) and be updated
frequently. Calls are admitted based on the current version of the admission region
according to the following algorithm: (assume without loss of generality a type 1 call

request)
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ﬁEl ¢1 H (¢1,N1 + 1,N2) € .A
then accept;
else reject;

end

Notice that the algorithm performs a look-up-table operation which can be done
on-line. According to this proposed scheme the admission controller provides the
input to the GPS scheduler and the scheduling parameter ¢; can be adjusted to

accommodate the current load. One significant advantage of this scheme, over other
priority schemes proposed in the literature ([EM94]), is that each type of traffic gets
the capacity required by its QoS specifications which include both a measure of loss
and one of delay. It allows, for instance, Type 1 traffic to suffer less delay with a
| larger loss probability than Type 2 traffic, something that can not be achieved with

a priority scheme.

6.2.1 The admission region: An example

Here we provide an example of the admission region for the two types of traffic that
are described in Subsection 6.1.1. The traffic parameters and the QoS parameters are
. given by Table 6.1. o

Figure 6-5 depicts the admission region for this particular example. For every
fixed ¢; and N, we plot the maximum allowed number of type 2 calls, N, such
that (¢1, N1, N2) € A. That is, as long as we operate the system under the plotted
surface the QoS constraints are satisfied. In Figure 6-6 we show waterfall plots of
the admission region to depict better the shape of the region for N; constant and
for ¢, constant (first and second plot in Figure 6-6, respectively). Finally, for better
understanding of the structure of the admission region, in Figure 6-7 we project the

region in the N;-N, space for various values of ¢;.

Some observations are in order. Recall that the admission region is defined to
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satisfy both constraints

G > 63, 6.11
D D
b2 > 6% (6.12)

Consider the first plot of Figure 6-6. Notice that for small values of N;, the
maximum allowed NN, is non-decreasing as ¢, increases in [0,1]. To explain this,
notice that for large ¢, we favor type 1 calls and since these are few the constraint
(6.11) is not tight. The maximum allowed N, is set such that (6.12) is tight. The
situation stays the same (i.e., maximum allowed N, is constant) as we decrease ¢,
until some threshold value ¢} at which (6.11) gets tight. For smaller ¢; than @7, and
since we keep NV, fixed, to accommodate type 1 calls (i.e., satisfy (6.11)) we need to

decrease N,.

An a.ntipodal phenomenon, in the same plot, is occurring for large values of V.
For small values of ¢; (6.11) is tight while (6.12) is not tight. Increasing ¢; more
than some threshold point ¢} makes (6.12) tight and thus we can guarantee the QoS

constraints only by dropping the maximum allowed N,.

Let us now turn our attention to the second plot in Figure 6-6 (or, alternatively,
Figure 6-7), which depicts cross sections of the admission region for ¢, fixed. Consider
cross sections around ¢; = 0.2 to make the discussion clearer. We can distinguish
roughly three regions: (a) small values of Ny, (b) moderate values of N;, and (c)
large values of V;. In region (a) the maximum allowed N, drops almost linearly as
we increase V7. This is occurring because in this region (6.11) is not tight while (6.12)
is tight and the only way to increase N, without compromising the quality of type
2 calls, is to decrease N,. The decrease is roughly linear for the following reason: in
this region the dominant congestion event is large delays in the second buffer, which
are occurring according to the scenario depicted in Figure 5-1(a) in page 155. Recall
that large delays are occurring because the second buffer builds up in the first part
of that path (interval [-1 — T, —1] with the notation there). Since according to that
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path the first buffer stays roughly empty the second buffer gets capacity of ¢ — Ny,
where y; is the most likely arrival rate of type 1 calls during periods of congestion in
the second buffer (solution of an optimization problem similar to the one appearing
in Eq. (5.9)). To have (6.12) tight, this capacity should be equal to Nay,, where y; is
the most likely arrival rate of type 2 calls during periods of congestion in the second

buffer. Thus Ny = %L which is linear in V;.

Now, from region (a), as we keep increasing N; we enter region (b). Still (6.11) is
not tight, however the most likely way that the second buffer generates large delays
becomes the scenario of Figure 5-1(d), that is by building up the first buffer also.
This means that the first buffer requires capacity ¢;c and to accommodate type 2
calls we have decreased their number such that they are satisfied with capacity ¢ac.
We can therefore increase N; even more, until we make (6.11) tight, without having to
decrease N, (notice that in region (b) N, is roughly constant). When (6.11) becomes
tight we enter region (c) and the only way to further increase N is to drop N,. The
drop is roughly linear for a similar reason to the one explained above. The discussion
extends to other values of ¢; away from ¢; = 0.2, with the three regions mentioned

above degenerating to two (see that for ¢; around 1 we can distinguish only regions
(a) and (b)).
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150 1

Figure 6-5: The admission region for the traffic model and parameters of
Subsection 6.1.1.



190 Chapter 6. Admission Control

Figure 6-6: Waterfall plots of the admission region for the traffic model
and parameters of Subsection 6.1.1.
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Figure 6-7: Plots of the admission region in the N;-IN, space for various
values of ¢, for the traffic model and parameters of Subsection 6.1.1.






Chapter 7

Loss Probabilities via Quick

Simulation

In this chapter we switch gears once more and attempt to estimate the loss probability
in a particular single class buffer through simulation. One reason that one might
want to resort to simulation is that in some cases a very accurate estimate of the
overflow probability is required, and the asymptotic decay rate that can be calculated

analytically, via large deviations, is not sufficient.

However, since we need to estimate probabilities of rare events, direct simulation
is very computationally burdensome due to the huge sample size that it requires. We

will use the technique of importance sampling to speed up the simulation.

Regarding the structure of this chapter we begin in Section 7.1 with a primer
on importance sampling. In Section 7.2 we define the system that we simulate. In
Section 7.3 we describe a large deviation result for this system and we derive a change
of measure that we use to speed up the simulation. Finally, in Section 7.4 we compare
the performance of the quick simulation, the direct Monte Carlo simulation and the

analytical large deviation result.

193
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7.1 Importance Sampling Primer

In this section we briefly discuss the main idea behind the importance sampling
technique. A detailed discussion of quick simulation techniques can be found in
[Buc90]. The idea is rather simple. Consider a random variable X, and assume that
We want to estimate [ = Ep|1 8(X)] where 1 B(X) denotes the indicator function of
the event B, alid the expectation is with respect to the distribution P of X. Assume
also that X has a density p(-). N - ' ' |

If we were to calculate the expectation through direct simulation we would gen-

erate a sequence of i.i.d. samples r, . .. Tk from X and obtain the estimate
. 1 X
=1

However, when the event B is very rare we need a huge sample size K to obtain

a good estimate. Let now @ be some arbitrary distribution with density ¢(-) and

consider a sequence of j.i.d. samples y,, . . » Yk drawn from Q. We can now form the
estimate
. 1 X p(y:) ‘ o
lo==Y"84/4 8(y;). 7.2
“TK ;1 alys) ) | (7:2)

Notice, that the éxpected value of fQ with respect to Q is I, since

Ballel = 3 3 [ X805, 300 a1,
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The variance of the estimator is given by:

Var(ig) =% / (%13@) - l)zq(:z) de

=% [ / %(p(zzlti)(’:))z dz = 12] (7.3)

The above is minimized when ¢(z) is proportional to p(z)15(z). But the normalizing
constant is 1//, precisely what we are trying to estimate. In general it is hard to obtain
the optimal change of measure since it essentially requires solving a large deviations
problem. The intuition behind the change of measure idea, is that we find ( under
which the event B is typical (and not rare) and we use it to obtain an estimate that
has the desired mean. In this chapter we do this heuristically, and show numerical

evidence that indeed the simulation speeds up drastically.

7.2 Traffic Model and Problem Definition

In this section we formally define the system of interest and the associated loss prob-

ability that we want to estimate.

Consider the system of Figure 7-1. There are N independent traffic sources that
are multiplexed into one buffer. The traffic sources conform to the model of Figure 7-
2. They generate traffic in a periodic fashion. Assume, without loss of generality that
the period is 1. The source can be in one of two states: ON and OFF. In the ON
state generates traffic at a constant rate of A and stays in the ON state for a period
of 6 < 0.5. The phase of the source, toy, is uniformly distributed in [0,1]. In the
OFTF state the source is silent. We assume that the system is stable, that is, it holds
NéX < c.

We want to estimate the loss probability in the above system for some fixed
buffer size U, as the number of sources becomes very large. We approximate the loss
probability with the level crossing probability in an infinite buffer system. Assume

that the sources start feeding the buffer at time —oco. Let S;!, the amount of work
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Ny

Figure 7-1: A system that multiplexes N traffic sources.

that arrivés in the interval [t1,ts] (t1 < t2), per source, and S{}’,g the sum of N i.i.d.
copies of Sﬁ,tz' Let L; be the queue length, in the infinite buffer system, at some
arbitrary time ¢. Since we are interested in the loss probability for large values of N
we scale both the buffer size and the service capacity by IV, that is we define b = U/N
and s = ¢/N. In particular the quantity that we want to estimate is P[L, > N,
asymptotically as N — oo.

7.3 Loss Probability and Change of Measure

In this section we discuss a large deviation result for the loss probability that was
obtained in [BD94] and infer from it a change of measure that we use in simulating

the system:.

From the Lindley equation we obtain
Lo = Igggc[sfgfg — sNt]. (7.4)
Let us now define

1
M) = < log E[e/5%e0=51)], (7.5)
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Figure 7-2: The source model.

and let us also denote by A;(-) the convex dual of \;(-), i.e.,
Af(a) = Sl;p[(?a — A(9)].

Since the source model is periodic with period 1 it is not hard to verify that the queue
length L, is also periodic with the same period. Thus, in Eq. (7.4) the maximum can

be taken only over 0 < ¢ < 1, without loss of generality.

‘Under an assumption on A,;(-) very similar to our Assumption A, and a local
regularity condition on the sample paths of the workload process {ngfg —sNt; t > 0}
the following theorem is proved in [BD94].

Theorem 7.3.1 (/[BD94]) For each b > 0
. 1
Jim ~logP[Ly > Nb| = —I(b),

where
I(b) = %legt)\t (b/¢t).

Proof : We present the proof of the lower bound since this is informative on the
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change of measure that we use in order to estimate the above probability through

simulation. The upper bound proof can be found in [BD94].

We have that
. AN
hNHig.}f I logP[:StlZlg(S—t’o sNt) > Nbj
o] AN
> han)lgf N stg%) log P[(SZ;y — sNt) > Nb|

1
> sup lim inf N logP[(Sft’fg — sNt) > Nb| (7.6)

t>0 N—o00

Now note that the moment generating function for (S i‘;{},’ — sNt) is
N
E[eo(s’_‘;%—sm)] _ (E[eG(Sftlo—st)]) ,

which by using the definition of A;(-) implies that
1 ,
-t (0) = log E[e?$2u0] = N log E[ee(sft%—sm)].
Thus applying the lower bound of Cramér’s theorem (the i.i.d. analog of Gértner-Ellis
theorem) to the right hand side of (7.6), we obtain

lim inf%r—log P[(SAN — sNt) > Nb| > —(tA)"(b) = —tA; (b/t),

where the superscript * denotes the convex dual and the last equality above is obtained
by using convex duality properties ([Roc70]). Combining the above with (7.6) we
finally obtain the desired result.

|

The above theorem intuitively asserts that for large N the overflow probability

behaves as
P[Lo > Nbj ~ e V1O,
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Let ¢* the solution of the optimization problem associated with the large deviations
rate function I(b). We can interpret ¢* as the most likely duration of the busy period
that leads to the overflow. Due to the periodicity of the queue length process we have
t* €[0,1].

We next present a heuristic change of measure that we use to speed up the simu-
lation. Let us fix to ¢ € [0,1] the duration of the busy period that leads to overflow
and ask the question how the distribution of the random source phases should look

like in order to have an overflow. Then the queue length at time 0 is
Lh =S5 — sNt, (7.7)

The superscript ¢ on Ly denotes the fact that we have fixed the duration of the busy
period (i.e., the maximizing ¢ in Eq. (7.4)). Now, L} is a sum of the N i.i.d random
variables, W, & 5%, — st. For the sum of i.i.d. random variables an optimal change
of measure is known. It is the exponential change of measure that is used to prove
the lower bound in Cramér’s theorem (see [Buc90, DZ93b]). In particular, if we let

W, be the random variable with the changed measure we have

e%vdFy, (w)
dFWt (’UJ) - E[egzwt] ) (78)
where 0} is the optimal solution of
Ai (b/t) = sup[0b/t — Au(8)]. (7.9)

Recall now that only the phase of the source is random, thus, W, is a function of
the phase, say u, which is uniformly distributed in [0, 1]. To explicitly denote this we
will write W;(u) = S4, o(u) — st. Thus from (7.8) we obtain the change of measure
fbr the phase

eg: Sft,O(u)

q(u) = P(U)E_[em, (7.10)
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where p(u) is the original uniform density in [0, 1], i.e., p(u) = 1 for all u € [0, 1].
Let now I, the estimate of P[Lg > bNN] obtained from the direct simulation and

iq the one obtained from the quick simulation. The above change of measure g is

optimal, for ¢ fixed, in the sense that it minimizes the following speed factor

SF(,) 2 lim %mg[KVar(iq)],

N—o00

where K is the sample size.

Let us know explicitly calculate, for the particular source model that we are con-
sidering, the density ¢ given by (7.10). We divide [0,1] in the three subintervals '
[0,6], [6,1 — ¢] and [1 — 6,1]. After a fair amount of routine calculations we obtain
that for ¢ € [0, ] |

(t —u)A if u € [0, ]
N 0 ifuelt,l—1J]
S%0 =1 t € [0,4], (7.11)
(u+d—1X fue[l—06,t+1—74]
R ifuelt+1—261]
and
E[e?5%0] = =1 5 t)+e”-1), telo,d.  (7.12)

HA

For ¢t € [4,1 — 6] we obtain

Ad if uel0,t— 9
t—u)A ifuelt—ot

Sh o= <( ) 1 [ | tes,1-4], (7.13)
0 ifueltl—7J]
L(u+5—1))\ ifuell—-24¢1]

1Recall that we have assumed ¢ < 0.5.
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and

2D

X

E[CBSft,O] = 26 + (1 - 6 - t) + eeéA(t - 5)7 t e [57 1 - 6] (714)

Finally, for t € [1 — 4, 1] we obtain

(s ifuelo,t—d
(t—u)A ifuelt—46,1-4
—-1+t)A ifuell—4t¢
((u+d-1)A ifuelt]]

54,6=1 tel-41], (7.15)

and

06X _ B(t—1+6)A

€ — €

O

E[easfho] _ e”"(t —8)+2 +(t-1+ 5)30(5‘1“)", tell—61].

(7.16)

In Figure 7-3 and for A = 2513.4 packets/period, N = 160 sources, buffer size
U = 1000 packets, § = 0.1 periods and ¢ = 75260 cells/period, we plot the density
q(u) for t := ¢* (i.e., the optimal solution of the optimization problem associated
with I(b)) and for §; := 6. (i.e., the optimal solution of the optimization problem
associated with A% (b/t*)). For the particular parameters we have chosen it turns out
that ¢* = 0.0846, so Eq. (7.11) and (7.12) are applicable. As it is shown in the plot,
in order to have an overflow at t*, the sources will get to their on state with much
higher probability in the intervals [1 — §,1] and [0, t*].

In all the above discussion about the change of measure we have fixed ¢, the dura-
tion of the busy period that leads to overflow, although this is a random variable as
well. So, the change of measure in (7.10) is the optimal change of measure conditional
on the overflow occurring at ¢. Initially we used this in the simulation and the results
that we were getting were not satisfactory. In fact, instead of obtaining a reduction of
the variance we were observing variance inflation of the estimator. The reason for this
was that the likelihood ratio [TY; p(u:)/ I, q(us) = 1/ 1Y, q(u;) for a sequence of
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Figure 7-3: The change of measure when the duration of the busy period
that leads to overflow is fixed to t*.

N random phases ug, ... ,uy was behaving very erratically, experiencing huge jumps
once in a while. Actually, when we tried to also calculate E,[1/[TY, ¢(u;)], through
the simulation, which should be exactly 1, we were observing a value very far away
from 1. The crux of the matter is that this change of measure is in a sense singular.
It forces the sources to be clustered in a way that the overflow occurs at some fixed
time ¢, while in the original problem the overflow occurs at a random time which is

uniformly distributed in [0, 1].

To remedy this we employ the following idea. We first generate a sequence of

random phases from g(u) and sort them. Let (Ui,...,Uy) be the resulting random
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sequence. We then let T be a uniform random variable in [0, 1] and shift the vector
(Uh,...,Uy) by T to obtain (U1,...,Uy) = (Ui + T,... Uy + T) (mod 1). The
intuitive idea is that with the shift the overflow time will be uniformly distributed in

[0,1]. We use samples of (U1, ... ,Un) to generate arrivals in the simulation.

Note now that the likelihood ratio for a sample (4, ... , iy) is 1/P[(U} = @y, . . .
Uy = iiy)], where

)

~ ~ 1
P[(Ulz’l:.l,l,... :UN:ﬂN)]:/O P[(U1=ﬂ1—a,...,UN=ﬁN—a) ITZG,] da

=/01P[(U1:ﬁ,1—a,... Uy =iy —a)] da
2—/0111_—\’-_[1q(ﬁi ~a) da (7.17)

The second inequality above holds since T is independent of (Ui, ... ,Uy). We used
the above outlined procedure to obtain samples of arrival patterns in the simulation
and the results, which we report in the next section, were very satisfactory. The aver-
aging operation in the above resulted in a much smoother behaviour of the likelihood
ratio in the simulation. A similar shifting idea to smooth the likelihood ratios was
also used in [Rob91].

7.4 Numerical results

Here we report numerical results that indicate the speed up in the simulation with

the change of measure.

We simulated the system of Figure 7-1 for different values of N with the fol-
lowing parameters: A = 2513.4 packets/period, § = 0.1 periods, b = 6.25 packets,
s = 470.375 packets/period. The estimate obtained from the simulation is the loss
probability (the fraction of time that buffer stays above the level U = bN), denoted
by Pjoss. In Table 7.4 we compare the estimate obtained from the direct Monte Carlo

simulation, the quick simulation with the change of measure described above, and the
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estimate obtained from the analytical result of Thm. 7.3.1.

Direct Simulation Quick Simulation
N Ploss K Pioss K SU LD
20 || (5.36 +£.35)-1072 | 1.5- 10° || (5.27 +£.26)-1072 | 1.0 - 10° 1.5/ 18-107t
40 || (7.39 +£.59) -10~% | 7.0-10° || (7.52 & 42)-1073 [ 2.0-10° 3.5 3.5-1072
60 || (1.10 £.09) -10~° | 4.0 - 10* || (1.12+£.07)-107% | 3.0-10° 13.3 || 6.7-1073
80 || (2.05+.16)-107* | 2.0-10° || (1.96 & 12)-107* | 3.0 - 10° 66.6 || 1.2-1072
100 || (3.18 £.25) -107® | 1.1-10° || (3.29 + .18)-107° | 5.0 - 10° 220.0 || 2.4-10*
120 || (5.40 + .44) -107% | 5.5-10° || (5.79 &+ .36) - 1075 | 5.0-10° 1100.0 || 4.6 - 1073
160 || (1.75 £ .18) - 10-7 | 1.0-10% | (1.77 £ A1) - 10°7 [ 9.0-10% || 11111.1 || 1.6 -107°

Table 7.1: A comparison of results from direct Monte Carlo simulation,
quick simulation, and analytical large deviations (LD) results. K denotes
the number of iterations (sample size) that the simulation needs to obtain a
confident estimate. We define SU (Speed-up) to be the ratio of the iterations
needed for the direct simulation versus the iterations needed for the quick
simulation.

To obtain the last row of the table, the direct simulation was running for approx-
imately two weeks on a Sparc 20, while the quick simulation needed only 5 min on
a Sparc 5 (which is about 50% slower than a Sparc 20). An other interesting obser-
vation is that the quick simulation was very robust to changes in the pseudo-random
number generator. We used various pseudo-random number generators, from a very
sophisticated one with a period of 10? to the standard random() with a period of
10'° and the results were consistent. In [KLE] the authors use massive parallelism
to speed-up the direct simulation for the same problem and they report sensitivity of

their results to the pseudo-random number generator.
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Conclusions

In this thesis, we have used the probabilities of packet losses (due to buffer overflows)
and large delays to quantify the QoS delivered by the network to the users. Us-
ing large deviations techniques we estimated such congestion probabilities in various

environments, including a networking and a multimedia environment.

Among the main methodological contributions of the thesis we consider:

1. The proof of a rigorous induction step in an acyclic, single class network of
G/G/1 queues. This enables us to obtain the tail of congestion (loss and delay)
probabilities in all the nodes of the network. This network result is based on
a set of mild technical assumptions on external arrival processes ! which are

proven to hold for the internal traffic as well.

2. The introduction of a deterministic optimal control approach to establish tight
lower bounds on congestion probabilities in multiclass multiplexers. This ap-
proach yields the leading exponent of congestion probabilities (under the GPS
and the GLQF policy) and characterizes the most likely way that congestion
occurs. Tightness of the lower bound is proved independently through the

!These assumptions as we note in Chapter 2 are satisfied by processes that are, typically, used
in modeling traffic in communication networks such as renewal, Markov modulated and stationary
processes with mild mixing conditions.

205
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derivation of @ matching upper bound in each case. We believe that optima]

contro] techniques have substantia] botential in attacking Communication net-

G/G/1 queye in isolation the steady-state waiting time, W, satisfies (Thm. 2.2.1)

1 "
Ulggo ElogP[W 2Ul=¢

Where 9% < ¢ ;g the smalest root of the equation

and where A 4(*) and Ap(-) denote the limiting log-moment generating functiong of
the arriva] and the service Process, respectively. Moreover the Steady-state queue
length, 7, Satisfies (Thm, 2.2.3)

lim 1logP[L > 1) = A4 (6").

n—o00 o
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passing-through-a-queue operation (i.e., departure of a G/G/1 queue) we established
(Thm. 2.3.4)

1
lim —logP[SD < na] = —A% (a),

n—o0 n

where

Ap (a) = Ap (a) + A (a)

and

A (a) = sup ‘[Qa — A5 (0))].
{01A4(0)+AB(—0)<0}

We paid particular attention to the most likely way that large deviations of the de-

parture process occur (see Figure 2-7).

For the partial sum Sf‘,lL "™ of the aggregate process, resulting from the superpo-
sition of the m independent processes A},..., A™ i € Z, we established (Cor. 2.4.2)

lim llog P[S " < na] = inf Z Ni(a/or) = —A1 . w(a).

n—oo n, 61+ Fom=1

To show the latter result we proved a result connecting the Palm and the stationary

distributions in the large deviations regime.

For the output of the splitting operation where a fraction p of the arrivals from a

“master” process A are routed to form the process A! we established (Thm. 2.5.1)
1,
Jim —logP[S < na] = —EAA (ap).

Finally, we showed that a set of technical assumptions imposed on the external
arrival processes are satisfied by the outputs of the above operations. These oper-
ations, along with the results for a single queue in isolation, establish a calculus of
acyclic single class networks and yield the tail of waiting times and queue lengths in

all the nodes of the network.

In Chapter 3, we switched gears and considered the switch of Figure 3-1. Under
the GPS policy and by using a discrete time model we showed that the tail probability
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of the steady-state queue length, L', in the first buffer is characterized by (Thms.
3.7.1 and 3.7.3)
.1 .
Uh_{%OEIOEP[LI > U] = —0pq,

where 9’2‘;‘},‘5 is the Iargest positive root of the equation
Acps(6) 2 A (8) + odnf [Aa2(8 = w) + Ap(—8 + gyu)] = 0,

and where A 4:1(-), Ay2(-) and Ap(-) denote the limiting log-moment generating func-
tions of the two-arrival processes and the service process, respectively. In Chapter 5,
we characterized the tail probability of the steady-state delay, D' in the first buffer,
namely

lim %logP[D1 >m] = —6},

m—r00

where

0 = sup [AAI(Uz) — Agps(ug)).
u220: Agps(uz)<0

By symmetry results for the queue length in the second buffer can be also obtained.

Moreover the performance of priority policies was obtained as a corollary.

For the same sWitch, operated under the GLQF policy, in Chapter 4 we obtained
(Thms. 4.6.1 and 4.6.2)

1 .
where 0%, o5 is the largest positive root of the equation

Acror(6) = max{A (6) + Ap(~—0), infg [Aq: (0 — up) + A2 (u) + Ap(—u)]} =o.

Critical in our analysis of the multiclass switch (results of Chapters 3, 4 and 5)
was the use of deterministic optimal control techniques. These techniques provide
a tight lower bound on the various congestion probabilities, and, more importantly,

completely characterize the most likely way that congestion builds up.
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In Chapter 6, we utilized the GPS results for the multiclass switch (multiplexer)
to dimension the buffers in the system of Figure 6-4 and devised an admission control
algorithm that guarantees loss and large delay probabilities to both types of traffic.
We reported experiments with traffic models and actual traffic that show the relevance

of the traffic models and the asymptotics that we have used in this thesis.

Finally, in Chapter 7, we applied an importance sampling technique (deriving an
appropriate change of measure) to speed up simulations of the loss probability in the

system of Figure 7-1, for large values of the number N of accommodated calls.

8.2 Directions for Future Research

In this section we suggest some directions for future research.

We start by discussing some immediate research goals that follow directly from
the results of this thesis. One such short term goal would be to perform a more
extensive experimental investigation of the admission control scheme that we proposed
in Chapter 6, especially in the multiclass case. In that chapter we reported a limited
number of experiments with real MPEG video traffic and we identified the basic
trade off that exists in the selection of the dimensionality of the Markov modulated
model. However, more research is needed in quantifying this trade off and selecting
the proper dimensionality of the Markov modulated model. Moreover, it would also
be very interesting to develop approximations of the admission region that we defined
in Definition 6.2.1. Calculating this region requires a fair amount of computations,
since we need to solve several nonlinear optimization problems. We have proposed
to do that off-line and perform admission control on-line, based on the most current
evaluation of the admission region. Developing techniques to evaluate the admission
region approximately and fast, would allow us to update the admission region very
frequently or even to evaluate it on-line. Regarding the quick simulation result of
Chapter 7, it would be interesting to extend it in the multiclass case, and incorporate
the features (traffic models, scheduling policies) that we used in Chapter 6, in order

to speed up the simulations reported there.
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Among the long term and challenging research goals we consider the development
of techniques to treat multiclass networks. It would be very interesting to bring
together the techniques that we used in Chapter 2 to solve the network problem,
with the techniques of Chapters 3, 4 and 5, that address the multiclass switch case, in
order to establish performance analysis results for multiclass networks operating under
various scheduling policies. The more challenging question is how to use admission
control in a multiclass and networking setting to prevent congestion and provide

end-to-end type-dependent QoS guarantees.



Appendix A

On Assumption F

Here we consider an arbitrary process {X;, ¢ € Z} that satisfies Assumption F and

the following:

For every €1, €;,0,a > 0, there exists Mx such that for all n > My

(MK (@) +er) <

PSS —(j—i+1l)a<ean 1<i<j<nst (j—i+1)>dn]. (A1)

Inequality (A.1) is implied by the results in [DZ93a], under some mild mixing assump-
tions on the process {X;, ¢ € Z}. We prove that the process {X;, i € Z} satisfies
Assumption G for the service times (Eq. (2.7)), i.e.,

For every €, ¢€3,a > 0, there exists MY such that for all n > M}
e"Ax @Fe) <P[SX — (j—i+1a<en 1<i<j<n] (A2)

Since Assumption G for the arrivals (Eq. (2.6)) is a weaker version of the above it is
also satisfied by the process {X;, i € Z}.
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Fix positive €, €; and a. We have

PSS —(j—i+1la<ean 1<i<j<n]=
—P[SX —(j—i+la<ean 1<i<j<nst (j—i+1)>on,
Sfj—(j—i+1)a§eln, 1<i<j<nst (j—i+1) <dn]
>PISK —(j—i+Da<ean 1<i<j<nst (j—i+1)>on] -
PRi<je[l,n]st (j—i+1)<énand S —(j—i+1)a>en].
(A.3)

where we have used the inequality P|AN B] > P[A] — P[B€]. Using the union bound
and the Gartner-Ellis Thm. we obtain that for all €3 > 0 there exists NV; such that
for all n > Vy

PEi<jell,n]st. (j—i+1)<dnand S5 —(j—i+1a>ean] <
< > P[Sfj—(j—i—kl)aZeln]

i<j€[l,n]
(j—i+1)<dn
< Z P[Sl),(ﬁn 2 617’2,]
i<je(1,n]
(j—i+1)<én
< eI (F)—es) (A4)

Now for given €, > 0 choose €3 and ¢ small enough in order for large n to have

2o~ (Pr=er) < %e—n(A}'(aHe’z) (A.5)

This can be done since A% (8) — 0o as § — oo.

Also, by using (A.1) we have that there exists N” such that for alln > N”

PSX—(j—i+la<ean 1<i<j<nst (j—i+1)>dn] > e~MAx (9)Fer)
(A.6)
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Combining (A.6), (A.5) and (A.4) with (A.3) we obtain that there exists NV such that
foralln > N

| o o 1 oy
PSS —(—i+1la<en 1<i<j<n]> Se x4 (A7)
Finally, to obtain (A.2) it suffices to choose €} such that for large enough n

L n(ay @+e) 5 p=n(Ay (@)+er)
5 >
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