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Whether mammal–microbiome interactions are persistent and specific over evolutionary time

is controversial. Here we show that host phylogeny and major dietary shifts have affected

the distribution of different gut bacterial lineages and did so on vastly different bacterial

phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial

lineages. Conversely, correlation with host phylogeny is mostly seen among more recently

diverged bacterial lineages, consistent with processes operating at similar timescales to host

evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model

their evolution along the mammalian tree and to infer ancient diets from the predicted

microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as

having a significant role in the evolution of mammalian gut microbiome compositions. Highly

co-speciating bacterial genera are also associated with immune diseases in humans, laying a

path for future studies that probe these co-speciating bacteria for signs of co-evolution.
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T
he evolution of binary symbiotic relationships between
animal hosts and individual microbial symbionts is well
documented1–3. However, little is known about the

mechanisms that shape community structure during the long-
term symbiosis of hosts and their gut microbiomes. If sister host
lineages share similar bacteria, gut communities may recapitulate
host phylogeny. This pattern, referred to as ‘phylosymbiosis’4–6,
does not imply a process and vertical inheritance of symbionts.
We define ‘vertical inheritance’ as the restricted transmission
of bacterial lineages within- rather than between-host lineages,
as in dispersal exclusively to conspecifics; this could include
but would not require transmission from mother to offspring.
Phylosymbiosis may arise from the neutral vertical inheritance of
symbionts (for example, co-speciation associated with allopatric
speciations of hosts, see Supplementary Fig. 1), and/or from
selective vertical inheritance, for instance, with intimate
co-evolution between host and microbes7–9. But it can also
arise independently of vertical inheritance, if closely related hosts
with similar genetic or behavioral traits select similar bacteria
from the environment10 (Supplementary Fig. 1). The signal of
phylosymbiosis can erode over time or even disappear, when a
selective trait such as diet is decoupled from host phylogeny,
promoting the horizontal acquisition of bacterial symbionts from
the environment or from distantly related hosts11,12.

In mammals, both at the intrahost and interhost species levels,
whether host evolutionary history (host genetics and phylogeny,
respectively) or host diet exerts a stronger influence in shaping
the gut microbiome is controversial. Several studies11,13–16 have
claimed that diet is the main driver of gut microbiome
composition. Some authors have claimed that host genetics has
a minor contribution relative to environmental factors in humans
and chimpanzees15,17,18, while others have found evidence for a
stronger impact of host genetics19,20. At the interhost level, it has
recently been shown that two gut bacterial families possess
lineages that harbour patterns of co-speciation in four hominid
hosts7, highlighting the influence of host phylogeny at short
evolutionary scales. However, previous investigations have
disagreed on whether or not11,21 a signal for phylosymbiosis
exists at larger evolutionary scales, across all mammalian gut
microbiomes4,11,21,22. Because of all these uncertainties, and
because we anticipate that correlation with host phylogeny would
be generated by a mix of vertical and horizontal inheritance, while
the correlation with diet would be primarily driven by horizontal
inheritance, it is unknown whether mammalian gut microbiomes
primarily evolve through vertical or horizontal inheritance over
evolutionary time.

Here we characterized the variation in mammalian gut
microbiome compositions in light of host diet and phylogeny.
We are defining diet with a coarse granularity, using nine large
dietary categories from the EltonTraits database23. A percentage
for each species is assigned to each of the nine categories
(see ‘Host phylogeny and dietary data’ in the Methods and
Supplementary Table 1). Hence, this study focuses on the impact
that large dietary shifts had on microbiomes at the scale of
mammalian evolution. Furthermore, we employ ‘host phylogeny’
as a composite term that encompasses all traits that change
roughly clock-like along the phylogeny of hosts and that might
influence microbiome compositions, such as genetic or
immunological factors24. We hypothesized that major changes
in diet and host phylogeny may have driven vertical and
horizontal inheritance of bacterial lineages at different bacterial
phylogenetic scales6,25. For example, when mammalian lineages
shifted their diet towards herbivory, they might have horizontally
acquired herbivorous-specific bacterial lineages, and those
bacterial lineages could even predate the divergence of the
mammals. Furthermore, if host phylogeny shapes gut

microbiome compositions independently of the significant
dietary shifts that occurred during mammalian evolution, and if
vertical inheritance is generating this correlation with host
phylogeny, these associations should be stronger in recent
regions of the bacterial tree (as co-speciation events are not
possible prior to the evolution of mammals). However, if vertical
inheritance is not involved in generating this diet-independent
correlation with host phylogeny, associations with host
phylogeny should be seen at timescales of bacterial evolution
that are decoupled from host evolution. For example, a given
mammalian clade might select non-vertically inherited bacteria
within a bacterial lineage that arose prior to the emergence of
mammals.

Thus a phylogenetically informed approach incorporating
compositional disparities along the bacterial phylogenetic
timescale may allow us to disentangle the individual contributions
of host phylogeny and major dietary shifts and to better
understand how and to what extent the different types of
bacterial inheritance (vertical and horizontal) have driven gut
community evolution. Using such an approach, we show that diet
drives the horizontal acquisition of bacterial lineages that belong
to ancient bacterial clades and that host phylogeny predicts the
presence of more recent bacterial lineages. We show that gut
microbiomes have recorded the information of major dietary
shifts that occurred during the evolution of mammals, allowing us
to predict ancient diets from the reconstruction of ancient
microbiomes. Associations between microbiome compositions
and host phylogeny are universal in mammals and stronger
among recently diverged mammals. Finally, our results
suggest that co-speciation between bacterial lineages and their
mammalian hosts partly drives these patterns of phylosymbiosis.

Results
Phylogenetic decomposition of community dissimilarities. Gut
microbiome content in operational taxonomic units (OTUs) can
vary greatly between two communities (that is, hosts). Usually,
these compositional dissimilarities (b-diversity26) are described
with a single measure, either using taxonomic metrics, such as the
Sørensen metric27, or using phylogenetic metrics, such as
UniFrac28. However, relying on a single number to describe
community dissimilarities may be too simplistic if different
factors shape compositions in OTUs at different bacterial
phylogenetic scales25. Yet, there is no robust framework in the
literature that integrates compositional b-diversity along a
phylogenetic timescale.

We developed a new method (BDTT; for b-diversity through
time) to account for this potential temporal scale disparity
between factors, here to separate the influence of host diet and
phylogeny on gut microbiota compositions along the timescale of
bacterial evolution (Supplementary Fig. 2). BDTT computes
compositional turnover (using Sørensen or Bray–Curtis metrics,
see Methods) between communities at different time period along
the bacterial phylogenetic timescale, producing a profile of b-
diversities29. From the leaves to the root, the bacterial tree (here,
reconstructed de novo from all 16S rRNA reads) is continuously
sliced, either by time or evolutionary distance. For each time
period, the tree of bacteria is cut, yielding clades that can serve as
OTUs in downstream analysis. Microbiome composition is then
determined for each mammalian species in terms of these new
OTUs, and pairwise compositional dissimilarities are computed.
Importantly, the BDTT profile provides a phylogenetic
decomposition of the broadly used UniFrac metric28

(Supplementary Fig. 2 and Supplementary Note 1), Finally, at
each time period, b-diversities are correlated to host diet and
phylogenetic distances, and the comparison of the amount of b-
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diversity explained by each factor across bacterial timescales may
reveal the phylogenetic levels at which their individual influence
is greatest. We run BDTT on simulated data sets (see ‘Validation
of BDTT on simulated data’ in the Methods) and we show
that it is able to disentangle the effect of different factors
shaping community assembly at different phylogenetic scales
(Supplementary Fig. 3 and Supplementary Note 2).

Note that, for BDTT to be informative, it is not necessary that
bacterial time estimates (in millions of years ago (Myr ago)) be
strictly accurate, but rather that the relative order of branching
is conserved from relatively ancient to relatively modern
divergences. Branch lengths expressed in the expected number
of substitution per site were also used to approximate time and
to cluster sequences into OTUs at different slices in our
BDTT approach, yielding to identical patterns (Supplementary
Figs 2 and 4).

We applied BDTT to a data set of 33 mammalian gut
microbiomes11, composed of 44,444 dereplicated and chimera-
free amplicons of the 16S rRNA gene (V2 region), from which we
reconstructed the time-calibrated bacterial phylogenetic tree.
Host phylogenetic distances between our 33 mammals were
deduced from a time-calibrated ultrametric phylogenetic tree of
mammals30, which was recently updated31,32. Diet distances were
deduced from EltonTraits23, a database that compiles dietary
attributes for all mammalian species.

Phylogeny and diet shape microbiomes at different scales.
Consistent with our hypothesis, BDTT was able to disentangle the
effects that the major dietary shifts had on gut microbiome
compositions from those of host phylogeny. This was possible
because host phylogeny shapes gut microbiome compositions
mainly near the leaves of the bacterial tree (Mantel test; R2¼ 0.38
at 100 Myr ago, P valueo0.001; R2¼ 0.03 at 1,000 Myr ago,
P value40.05), while host diet mostly determines the distribution
of more ancient bacterial lineages among hosts (Mantel test;
R2¼ 0.08 at 100 Myr ago, P valueo0.001; R2¼ 0.22 at 1,000 Myr
ago, P valueo0.001) (Fig. 1a,b).

We performed multiple control experiments to evaluate the
robustness of this signal of phylogenetic scale disparity between
host phylogeny and diet (Supplementary Figs 4–7 and
Supplementary Note 3 and 4). We measured the influence of
the intrahost species variability of microbiome compositions, the
influence of topological uncertainties in the tree of bacteria and
the influence of differences in statistical power at different depth
of the bacterial tree. We also used branch lengths in the bacterial
tree expressed in average substitution/site as a proxy of time in
the BDTT approach. We controlled for the influence of the
unequal sampling size across samples by performing rarefaction
of the OTU tables, and we controlled for the differences in
granularity between the host phylogenetic and dietary distance
matrices. All of these experimental controls support that our
analysis uncovers a genuine and robust biological signal of scale
disparity between the two factors. Finally, we described the
process of mammalian diet evolution and then used this process
to simulate traits along the phylogeny of hosts. We used these
simulated traits to run BDTT and compared the simulated
correlation profiles with the correlation profile obtained when
using observed diets. We show that the peak of correlation
between microbiome compositions and diet at ancient timescales
is not solely an echo of host phylogeny and conclude that the
contribution of diet on microbiome compositions is partially
decoupled from the host phylogenetic history (see Supplementary
Fig. 8 and ‘The contribution of diet on microbiome compositions
is partially decoupled from the host phylogenetic history’ in
Supplementary Note 3).

As mammals diverged recently in comparison to bacteria, the
effect of host phylogeny on recent bacterial lineages is consistent
with, although not direct proof of, co-diversification between
hosts and their gut microbiomes. The effect of diet on more
ancient bacterial lineages is consistent with the evolutionary
conservation of functional traits involved in the digestion of
dietary compounds in ancient bacterial taxa25,33. Note that BDTT
allows us to statistically disentangle the temporally separated
portions of the contributions of host phylogeny and diet (when
defined with a coarse granularity), not the totality of the processes
themselves.

To further resolve the roles of host diet and phylogeny, we
asked whether the more recent bacterial lineages that correlate
with host phylogeny are nested within ancient diet-related
bacterial lineages or whether they are independent from them
(Supplementary Fig. 9a,b). After removing the bacterial lineages
correlated with broad categories of diet (Fig. 1a), we found
that the correlations between host phylogeny and bacterial
composition within recent time slices decreased but remained
very strong (Fig. 1c), close to their previous level (Mantel test;
R2¼ 0.34 versus 0.38 at 100 Myr ago). This means that although
some bacteria related to host phylogeny at recent timescales are
nested within higher clades also related to broad categories of
host diet, a large part of the bacteria associated with host
phylogeny are different from the bacteria associated with diet
(see also ‘Bacterial lineages correlating with host phylogeny and
diet lowly overlap’ in Supplementary Note 5). We also measured
to what extent the covariation between host phylogeny and diet
drives gut community b-diversities. We observed that, at all
bacterial phylogenetic scales, the covariation between host
phylogeny and diet only weakly explains bacterial community
dissimilarity (R2 ranging from about 0.01 to about 0.04, see
Supplementary Fig. 9c and ‘The covariance between host
phylogenetic and dietary distances poorly explains community
dissimilarities’ in Supplementary Note 5). Altogether, these
results suggest that, even though broad shifts in diet can be
locally correlated with host phylogeny34,35, the impacts of these
factors on changes in the microbiome can be primarily observed
in different microbial lineages.

Herbivory and carnivory act at distinct timescales. We also
discovered a timescale disparity between herbivore- and
carnivore-associated bacterial lineages. Herbivory is associated
with bacterial lineages that arise deeper in the bacterial phylogeny
(4200 Myr ago) than those associated with carnivory, which are
confined in a limited range of phylogenetic scales (between 150
and 300 Myr ago, see Fig. 1d). This suggests that herbivory and
carnivory are associated with bacterial lineages that emerged at
different evolutionary timescales and that traits allowing bacterial
lineages to thrive within a mammalian herbivorous gut appeared
early in bacterial evolution, while those permitting specialization
in carnivore guts arrived much later, which is consistent with the
late appearance of carnivorous animals36.

Omnivores do not harbour omnivore-specific bacteria. The fact
that some bacterial lineages may have functionally adapted to
thrive in gut environmental conditions that are diet-specific and
not host-specific raises the question: do generalist hosts harbour
distinct microbes that are also ‘generalists’ and can digest both
plant and animal material or do they include a mixture of
herbivorous and carnivorous bacteria? Upon closer inspection, we
found specialist bacterial lineages associated with both herbivores
and carnivores (Fig. 2a), suggesting functional adaptations
to these two types of diet-related gut environments. However,
we did not find specialist bacteria associated with omnivores,
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suggesting that omnivores contain a combination of herbivorous
and carnivorous bacterial groups. Figure 2a shows these results
using a joint projection of the diet-associated bacterial lineages
with hosts that are separated by diet on the same ordination space
(see also Supplementary Note 6).

Gut microbiomes can predict ancient mammalian diets. We
next investigated whether the presence of these diet-specific
bacteria is sufficient to predict diet in extant hosts. To test
this, we built a multinomial regression model (see Methods
and Fig. 2b) to predict diet in mammalian hosts from their
microbiome composition. We evaluated the accuracy of our
model using cross-validation experiments, and we show that our
microbiome-based method is accurate and performs well at
estimating host diet (Supplementary Fig. 10a–c and ‘Accuracy
of our microbiome-based method of diet prediction’ in
Supplementary Note 7).

As we could predict host diet, we hypothesized that we might
be able to infer the diet of ancestral mammals by reconstructing
their microbiome. We further hypothesized this should only be
possible if we use an appropriate phylogenetic cutoff (as before,
B300 Myr ago or B94% OTUs) to describe community
structure. In particular, reconstruction of widely used 97% OTUs
should not be able to reconstruct ancestral dietary patterns.
To test our hypotheses, we reconstructed ancestral microbiome
compositions for each mammalian ancestor using a maximum
likelihood (ML)-based approach37, that accounts for the vertical
and horizontal inheritance of OTUs along the host phylogeny.
We used a model that integrates over the numerous events of gain
and loss of bacterial lineages that occurred during the millions of
years of host evolution, with varying rates across host lineages.
We then used our microbiome-based model to predict ancestral
diets from these ancestral microbiomes. We compared our
microbiome-based predictions to those obtained with a classic
macro-evolutionary, trait-based model that considers diet as a
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Figure 1 | Phylogenetic-scale disparities in mammalian gut microbiomes. (a,b) Bacterial lineages that diverge recently in evolutionary history show high

levels of correlation with host phylogenetic distances (blue) while correlation with host dietary distances (orange) is greatest for more ancient lineages.

(a) Lines show correlations between the pairwise Sørensen compositional dissimilarities and pairwise host phylogenetic or dietary distances (dashed lines:

95% null envelope). (b) Individual bacterial lineages correlated with diet or phylogeny (circles). Pie charts represent the percentage of lineages that
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removed, correlation with host phylogeny (dark blue) still holds (light blue), but correlation with host diet does not (orange versus brown). (d) Each

bacterial lineage having a significant correlation with diet (b) was called herbivorous- or carnivorous-specific if it is only found in herbivores or carnivores,

respectively. Herbivory is associated with bacterial lineages that arise earlier in bacterial evolution than those associated with carnivory.
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discrete variable with three different states (Carnivorous,
Omnivorous and Herbivorous). We performed a trait-based
diet reconstruction with (i) the present mammalian data set
(33 mammals) and (ii) a much larger taxonomic sampling
(1,534 species of mammals34). This large set of species
more exhaustively samples mammalian diversity and previously
provided trait-based diet reconstructions that are in agreement

with the fossil record38. For these reasons, we considered this
latter reconstruction as a reference, to which microbiota-based
reconstructions were compared. Interestingly, we found that
microbiome-based inferences agreed at 70% of ancestral nodes to
these reference trait-based predictions (Fig. 2c). We observed
that transitions towards herbivory are associated with multiple
and convergent horizontal gains of herbivorous-specific bacterial
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clades across several branches of the mammalian phylogeny
(Supplementary Fig. 11 and Supplementary Note 8). Most of the
divergent predictions, as shown in Fig. 2c, are located in ancient,
poorly sampled areas of the mammalian tree (carnivorous
Chiroptera, Afrotheria, Xenarthra and Marsupialia are absent in
the present data set, see ‘Microbiome-based and trait-based
inference of ancestral diets in mammals’ in Supplementary Note
7).

We further compared the precision of the predictions obtained
with the microbiome- and trait-based methods on a similar
taxonomic sampling (33 species). We found that the entropy of
the ancestral dietary probability distributions, which measures the
uncertainty in these distributions, is significantly lower with
microbiome data (Wilcoxon test, W¼ 232, P value¼ 0.0002),
indicating a higher precision of the microbiome-based method
(Supplementary Fig. 10d–f and ‘Microbiome-based and trait-
based inference of ancestral diets in mammals’ in Supplementary
Note 7). Finally, bacterial phylogenetic groups summarized
at 120 Myr ago (or B97% 16S similarity) or 600 Myr ago
(B91% similarity) were much less accurate at predicting diet
(see ‘Reconstruction of ancient diets from microbiomes defined
at alternative bacterial phylogenetic scales’ in Supplementary
Note 7). These results underscore the importance of identifying
the correct phylogenetic resolution with which to define
communities, in order to study patterns of host–microbiome
evolution. Overall, our results show that gut microbiomes record
the information of past dietary adaptations with the horizontal
acquisition of diet-specific bacteria and that signals of these
adaptations still remain in the microbiomes of extant mammals.

The phylosymbiosis signal is strong in mammals. Phylo-
symbiosis is a pattern describing higher compositional similarity
(that is, low b-diversity) between bacterial communities
colonizing closely related hosts compared with distantly related
hosts4–6. The correlation between microbiome composition and
host phylogeny at shallow bacterial phylogenetic scales observed
in Fig. 1 does not universally describe the variation and
magnitude of phylosymbiosis across the host mammalian tree:

the signal for phylosymbiosis might be uniform or variable across
mammalian clades, and it might be weak or strong. In the
following, we address these questions with communities defined
at a recent bacterial phylogenetic scale (B120 Myr ago, OTUs
with B97% similarity, see Methods), where correlation with host
phylogeny is high.

After 4100 millions of years of mammalian evolution, many
gains and losses of bacterial lineages occurred, possibly
randomizing the genuine signal of compositional change that
mirrors the mammalian phylogeny. To measure phylosymbiosis,
we modelled the dynamics of gain and loss of bacterial lineages
using the same phylogenetic model37 that we previously used in
the section ‘Gut microbiomes can predict ancient mammalian
diets’. We quantified phylosymbiosis with a hierarchical approach
along the tree of mammals, by reconstructing ancestral
communities for each mammalian ancestor (that is, for each
node of the host phylogeny). We reasoned that if the size of a
reconstructed community for an ancestor of a given mammalian
clade is higher than randomly expected under a null model in
which host–bacteria associations are shuffled, then mammals
belonging to this clade harbour a phylosymbiotic signal, because
their gut microbiota share more bacterial lineages between each
other than randomly expected. We computed the magnitude of
the phylosymbiosis signal along the mammalian host tree, for
each ancestor, by computing a standard effect size (SES) per
branch/node:

SESphylosymbiosis ¼
Size ancestral OTU contentObs�mean size ancestral OTU contentNullð Þ

s:d: size ancestral OTU contentNullð Þ
ð1Þ

For a given ancestor, the higher the SES is, the stronger the
signal for phylosymbiosis is. Although previous parsimony and
distance-based methods provided conflicting results on the
existence of a phylosymbiosis signal4,11, we observe that most
of the mammalian clades, both young and ancient (up to 80 Myr
ago), harbour a significant (permutation test, P valueo0.05)
and strong phylosymbiosis signal (Fig. 3a). The magnitude of
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phylosymbiosis (SES, equation 1) decays with evolutionary time
(Fig. 3b), consistent with multiple turnovers over millions of years
of host evolution and/or with the long-term evolution of host
traits, progressively selecting for different bacteria. Contrary to
some previous conclusions11, this turnover of gut microbes
during mammalian evolution is not too rapid to erase the
phylosymbiosis signal.

At the shallow phylogenetic scale at which we measured
phylosymbiosis, the correlation between community dissimilarities
and host dietary distances is weak but significant (Fig. 1a). We
measured to what extent the phylosymbiosis signal is affected by
dietary shifts. At each focal node in the mammalian phylogeny, we
estimated the magnitude of dietary shift after the divergence of the
two descendant lineages. We used our trait-based ancestral diet
reconstructions using 1,534 mammalian species and measured the
average diet distance with the two descendant nodes. As
phylosymbiosis is negatively and linearly correlated to node ages
(Fig. 3), we compared for each focal mammalian node the residuals
of this regression to the magnitude of dietary shift at this node. If
ancestral dietary shifts have an impact on phylosymbiosis, we
expect to observe a negative correlation between phylosymbiosis
residuals and the magnitudes of dietary shift. We show that the
effect of dietary shift poorly explains the decrease in phylosym-
biosis compared with what would be expected by age: the
regression has a negative but weak slope (R¼ � 0.15,
Supplementary Fig. 12). We conclude that dietary transitions
along mammalian evolution had minor effect on the part of the
microbiota that correlates to host phylogeny.

Co-speciation between hosts and their gut bacterial symbionts.
Phylosymbiosis does not necessarily imply vertical inheritance,
it only reflects congruency between gut bacterial compositions
and host phylogeny. We next asked whether this signal
could have been generated through vertical inheritance, via
co-speciations between symbionts and mammals. Besides
co-speciation, at least two other possible mechanisms can
generate the same signals of correlation with host phylogeny and
of phylosymbiosis10 (Fig. 3a and Supplementary Fig. 1):
horizontal inheritance through host swaps within related hosts,
and environmental filtering by closely related hosts that select
similar symbionts from the environment. Of these various
mechanisms, co-speciation is more likely to result in congruent
splits between the symbiont and host phylogenetic trees. We used
a probabilistic model of host tree/symbiont tree reconciliation
implemented in ALE39–41 to measure the magnitude of
topological congruence between symbiont and host trees and
the number of bacterial lineages experiencing more co-speciation
than host-swap events.

Interestingly, we find that a majority of bacterial clades (67%)
harbour more co-speciation than host-swap events (Fig. 4a,b). To
test whether this percentage is higher than one would expect by
chance only, we evaluated the percentage of bacterial clades that
would show more co-speciation that host swap under a null
model in which phylogenetic relationships between hosts are
disrupted. We observed that, by chance, we would obtain about
10% of OTUs with more co-speciation than host-swap events,
much less than the estimates obtained with the observed
biological data.

Even though OTUs may have more co-speciation than
host-swap events, the co-speciation rate might not be significantly
higher than the host-swap rate. This might be due to insufficient
phylogenetic information in the 16S rRNA data. In addition, an
OTU might have more co-speciation than host swap only because
the reconciliation algorithm (ALE) overfitted the host tree when
searching for the best scenario of bacterial evolution, leading to

an overestimation of the number of co-speciation events.
To control for these effects for each individual OTU, we
evaluated whether the observed rate difference between co-
speciation and host swap is significantly higher than expected
under a null model (see Methods). We found that, within the 67%
of bacterial clades showing more co-speciation than host swap,
only 16% show no significant rate differences (Fig. 4a).

Among the OTUs that have a distribution across hosts that
correlates with host phylogeny, 89% have more co-speciation
than host swap (Fig. 4a,c), supporting that co-speciation is likely
to be a major driver of the correlation with host phylogeny.
Moreover, 31% of these bacteria show no sign of host swap
and have fully congruent phylogenies with the host phylogeny.
It is possible, however, that iterative bacterial specializations
on related host linages (or host-swap speciation) locally
yield concordant nodes in symbionts/host topologies, inflating
the amount of detected co-speciations42 (see Supplementary
Discussion).

We did not observe that strong changes in diet are driving
the co-speciation signals that we measured. Indeed, when
running reconciliations considering mammalian herbivores only,
we observed that the frequency of all OTUs having more
co-speciation than host swap was similar to the frequency
observed with all mammals (Z-test, 70% versus 67%,
P value40.05). However, it does not rule out the possibility that
fine-grained differences in diet that are locally correlated with
host phylogeny and, which are not captured by our diet distance
metric, have promoted co-speciation or, alternatively, have
created spurious co-speciation signals (see Supplementary
Discussion).

Altogether, while most bacterial lineages do show evidence of
horizontal inheritance, our results also suggest that vertical
inheritance is an evolutionary path followed by numerous
mammalian gut symbionts and extend the recent results on
patterns of co-speciation between gut bacterial lineages and
Hominids7 to larger evolutionary scales (see Supplementary
Note 9).

Co-speciating bacteria are associated with disease in humans.
We next investigated the characteristics of bacterial lineages that
harbour high co-speciation levels. Interestingly, at the scale of
mammals, we found that many widely studied genera showed low
levels of vertical inheritance with hosts (Fig. 4d, Supplementary
Fig. 13 and Supplementary Note 9). These findings are consistent
with the notion that these metabolically important and cosmo-
politan organisms provide similar and probably diet-related
functions across diverse hosts and thus are more likely to be
transferred across hosts or acquired from the environment with
little host selectivity. By contrast, we reasoned that organisms
specifically and tightly linked to host physiology (for example, via
immunity) might be more likely to be restricted to their host. In
support of this hypothesis, we find that 13 out of the 20 bacterial
lineages that inhabit humans and have high co-speciation rates
(40.8) belong to five different genera (such as Subdoligranulum)
that are strongly associated with a human immune disease,
inflammatory bowel disease (IBD)43 (Fig. 4e and Supplementary
Fig. 14). This enrichment in highly co-speciating OTUs among
genera negatively associated with IBD in comparison with lowly
co-speciating OTUs is strongly significant (permutation test,
P value¼ 0.0015, see Supplementary Note 9). All five of these
genera are strongly depleted in patients affected by both Crohn’s
disease and ulcerative colitis43, perhaps suggesting a functional
link between co-speciating bacteria and host immune function.
It should be noted, however, that even among published IBD
studies there can be differences between disease-associated taxa,
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so future studies are needed to confirm these preliminary
observations and to turn these intriguing correlations into
proper demonstration of causation.

Discussion
Our findings are relevant to the recent debate over the extent to
which hosts and their associated microbial communities should
be considered as holobionts, defined as coherent genomic systems
on which selection operates44,45. However, as was recently
pointed out10, evidence for a tight association between a small
number of taxa and their hosts does not necessarily generalize to
the entire microbiome, and we find that only a minority of
lineages fully co-speciate with their hosts. Moreover, evidence for
co-speciation does not necessarily imply co-evolution, which
needs to be established through more in-depth and mechanistic
studies. Nonetheless, our findings reveal the specific microbial

lineages most promising for such detailed study which are not the
bacterial groups that have been the focus of most prior work and
suggest their relevance to human health and disease.

Methods
Mammalian microbiome data set. We analysed a data set of mammalian gut
microbiota containing 33 mammals11 that represent 10 mammalian orders and
cover various diets (carnivorous, herbivorous and omnivorous)30. These data are
ideal because they cover a large diversity of mammalian clades and were produced
at the same time within a single study, avoiding biases introduced with variation in
DNA extraction protocols, choice of 16S primers and sequencing platform. The
data consist of amplicons of the V2 region of the 16S rRNA gene. As conspecific
samples were originally available in this data set for seven host species, only one
individual per species was retained for further analyses (and chosen at random) to
focus on the evolution of gut microbiota at the interspecies level only. We also ran
analyses including the other conspecific samples to control for the effect of
intrahost species variability in gut microbiome compositions. The number of hosts
in this data set (33 mammals) did not preclude us from obtaining strong statistical
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Figure 4 | Large-scale vertical inheritance of mammalian gut symbionts. (a) Frequencies of bacterial lineages harbouring either more co-speciation

(Co-spe.) or more host-swap (H-swap) events are shown, either for all OTUs or only for OTUs that are correlated with host phylogeny. Out of the 350

bacterial lineages correlated with host phylogeny and present in at least four hosts, 313 harbour more co-speciation events than host-swaps. Non-specific

(grey) lineages are lineages with a non-significantly higher rate of co-speciation than the rate of host-swap. This higher observed rate may be due to

overfitting to the host tree (see Methods). The Null Expectation bar represents the expected frequency of lineages harbouring more co-speciation than

host-swaps by chance (see Methods). (b) Example of a co-speciating bacterial lineage belonging to the Clostridiales order. A blue line indicates the

presence of a symbiont in a host. (c) OTUs correlated to host phylogeny harbour higher co-speciation rates than OTUs that are not.

Co-speciation rate per OTU is defined as the amount of co-speciation events relative to the number of host-swap events (two-tailed Wilcoxon’s rank-sum

test, ***P valueo0.001). (d) Average co-speciation rate per bacterial genus. For a full list of genera, see Supplementary Fig. 13. (e) Subdoligranulum has high

co-speciation rates and is correlated with IBD in humans (two-tailed Wilcoxon’s rank-sum test). CD, Crohn’s disease; UC, ulcerative colitis. Other genera

with similar patterns are shown in Supplementary Fig. 14.
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support and power to discriminate between alternative hypotheses in all our
analyses.

We used USEARCH v8.0.1517 (ref. 46) to dereplicate 16S sequences. Chimera
sequences were removed from the data, using the UCHIME algorithm47 and the
reference Gold database, containing 5,181 16S sequences. We subsequently used
the de novo algorithm, also implemented in UCHIME, to further remove chimeras.
We used the Ribosomal Database Project Classifier48 to assign a taxonomy to each
unique 16S sequence. We retained bacterial sequences with an assignment
probability 40.8 at the phylum level (85% of all sequences). The final data set
comprises 44,444 unique bacterial sequences.

Phylogenetic reconstruction. To use BDTT on our data, we reconstructed the
phylogenetic tree of all 16S unique sequences. First, we added the V2 region of the
16S rDNA genes from 139 Cyanobacteria, 115 Rickettsiales, 21 Chlorobium and 24
Chromatiales to the set of 44,444 stool sequences. These external 16S sequences
were used to incorporate calibrations when computing the divergence times
(see below) and were subsequently removed for all our analyses.

We aligned all 16S reads with the sina program (version 1.2.11) using the Silva
database49, producing an alignment of 751 sites. We then removed sites containing
495% of gaps from the alignment. The final alignment contains 257 positions.
To limit computational burden, we used FastTree50 to reconstruct the ML
phylogenetic tree of all 44,444 unique stool sequences plus 299 external sequences.
We used the GTR model and the default CAT approximation to model rate
heterogeneity across sites. We used the RDP taxonomy to constrain the topology of
the phylogeny, forcing all phyla and all classes within the Proteobacteria (alpha,
beta, gamma, delta, epsilon) to be monophyletic. The phylogenetic tree was rooted
either on the branch separating Actinobacteria or Firmicutes from the rest of the
sequences. Finally, we used PATHd8 (ref. 51) to produce a cladogram from the ML
tree reconstructed by FastTree (see ‘Phylogenetic reconstructions’ in the
Supplementary Methods for further details).

b-diversity through time and phylogenetic clustering. As explained in the
section ‘Phylogenetic decomposition of community dissimilarities’ in the Results,
we computed compositional turnover (using Sørensen27 or Bray–Curtis52 metrics)
between communities at different time periods along the bacterial phylogenetic
timescale. However, BDTT can be used with any type of taxonomic diversity
metrics, such as Jaccard or Jensen-Shannon. BDTT can be employed on
communities of both microorganisms and macroorganisms, in order to study the
phylogenetic/timescale-dependent effect of a given factor on the distribution of
biological entities across host sites or spaces.

Validation of BDTT on simulated data. To test whether the BDTT approach is
able to disentangle the effect of factors shaping community assembly at different
phylogenetic scales, we carried out simulation experiments. The rationale is to
assemble communities under known processes, here under two independent
environmental filters. Species are filtered out of communities according to their
two ‘environmental preferences’ or ‘traits’ (each trait represents a particular
environmental variable). We make these traits evolve with decreasing evolutionary
rates over time under models that differ in the strength of the rate decrease
(see below). More specifically, one trait displays phylogenetic signal towards the tip
of the phylogeny while the second trait will carry phylogenetic signal in higher
regions of the tree. If communities are filtered according to these two traits at the
same time, we expect BDTT to be able to discriminate the phylogenetic scale at
which each environmental gradient primarily shapes community composition (for
example, the effect of the environmental variable that harbours deep phylogenetic
signal should be seen at high phylogenetic scales in the BDTT analysis).

The simulation experiment contains four steps: (i) we simulated a phylogeny of
200 species. (ii) We simulated traits (representing the environmental preference of
species) along this phylogeny with different models that have scale-dependent rates
of trait evolution, that is, producing traits with phylogenetic signals that are located
at different phylogenetic scales. (iii) We assembled communities of species
with two environmental gradients that filter species according to their traits
(¼ environmental preferences). These two gradients are linked to two independent
environmental preferences of species (¼ two traits) that show phylogenetic signal
at different phylogenetic scales (as simulated in (ii)). (iv) We applied BDTT to
these data sets and tested whether a phylogenetic-scale disparity was observed
(for further details, see ‘Validation of BDTT on simulated data’ in the
Supplementary Methods).

Host phylogeny and dietary data. The 33 hosts in the data set11 represent
10 mammalian orders and cover various diets (carnivorous, herbivorous and
omnivorous)30. Host phylogenetic time distances between our 33 mammals were
deduced from a time-calibrated ultrametric phylogenetic tree reconstructed with
4,510 species30 and that was subsequently updated to include 5,020 species31.
Without adding new mammalian species, we further updated the phylogenetic
relationships and divergence times within the Carnivora clade with a highly
resolved supertree that was recently published32. We used the EltonTraits 1.0
database to compute dietary distances23. EltonTraits compiles dietary attributes for
a large number of mammals, including the 33 species present in our data set. Nine

dietary items (Invertebrate, Vertebrate (excluding fishes), Rotting carcass, Fish,
Unknown Vertebrate, Fruits, Nectar, Seed, other plant materials (for example,
grass, ground vegetation, seedlings, weeds, lichen, moss, small plants, reeds,
cultivated crops, forbs, vegetables, fungi, roots, tubers, legumes, bulbs, leaves, above
ground vegetation, twigs, bark, shrubs, herbs, shoots, aquatic vegetation, aquatic
plants)) are defined and each species is assigned a percentage for each item
depending on its diet. We used Euclidian distance to build the diet distance matrix.
As our dietary categories represent fuzzy variables (proportions between 0 and 1),
we also computed diet distances using the Manly index, implemented in the
dist.ktab function in the ‘ade4’ R package53. This control revealed no impact on our
results, so we only present results obtained with the Euclidian distance matrix.

Measuring correlation profiles with diet and host phylogeny. For each time
period, we correlated b-diversities to host dietary and phylogenetic distances.
We used (i) Mantel test54 (with Pearson’s correlations, that is, a linear model) and
(ii) a non-linear model (Generalized Dissimilarity Modeling (GDM) approach55) to
measure correlation coefficients between b-diversity and host phylogenetic or
dietary distances. All Mantel tests were run with the MRM (Multiple Regression on
distance Matrices) function from the ‘ecodist’ R package56. This function has the
interesting property of allowing the user to run regression models with multiple
predictors, a property that we used to measure the combined effect of host
phylogeny and host diet in the prediction of gut community dissimilarities
(see below in this section). The Mantel test (with Pearson correlations) assumes a
linear model between predictor and response variables. To evaluate the robustness
of our results to the potential nonlinearity of the relationship between
compositional dissimilarity and host dietary or phylogenetic distances, we also
computed correlation coefficients with the GDM approach55 to relax the linear
hypothesis. The use of GDM did not affect the overall correlation patterns and we
noted that the explanatory only slightly increases in comparison with the linear
Mantel approach (Supplementary Fig. 4).

To test whether R2 values were significantly higher than expected by chance, we
used permutation tests on the distance matrices and computed the 95% credibility
interval of correlations between community dissimilarities and both host dietary
and phylogenetic distances at each phylogenetic slice, producing 95% credibility
envelopes for both factors. At each slice, host names were randomly shuffled
100 times in dietary and phylogenetic distance matrices, and correlations with
community dissimilarities (b-diversities) were re-computed for each replicate,
yielding a distribution of 100 R2 coefficients with respect to each factor.
A correlation with either host diet or phylogeny is considered significant when
the R2 is higher than the upper bound of the 95% credibility interval.

Finally, variance partitioning57 was used to quantify the variance in microbiome
composition explained by the joint effect of host diet and phylogeny. We first
measured the correlation coefficient associated with the union of host phylogenetic
and host dietary effects (that is, using both predictors in the same model). Then we
computed the correlation coefficient associated with the intersection effect of host
phylogeny and diet (equation (3)):

Intersection R2 ¼ R2 Phylogeny onlyð ÞþR2 Diet onlyð Þ
� Union R2 PhylogenyþDietð Þ ð3Þ

Distribution and niche of individual bacterial lineages. At all bacterial scales
defined by time or evolutionary distance, we measured the percentage of individual
bacterial lineages (OTU) that have a distribution across mammalian hosts
correlated to host phylogenetic and dietary distances, using permutation
multivariate analysis of variance tests58 and a false discovery rate (FDR) approach
to correct for multiple tests.

The ecological niche of a species (here each bacterial lineage) can be described
by its mean and breadth along an environmental gradient. To describe the niche of
gut bacterial lineages with respect to host diet, we used the multivariate co-inertia
analysis called Outlier Mean Index59. This technique enabled us to project both
hosts and their diet-associated bacteria onto the same axes and to compute niche
means and niche breadth for each bacterial lineage. We used this technique for two
reasons. First, contrarily to canonical correspondence analysis or redundancy
analysis, the Outlier Mean Index does not assume a particular response curve of the
species to the environment (for example, unimodal or linear). Second, this
ordination technique gives equal weight to all hosts, independently of their
bacterial lineage richness.

Reconstruction of ancestral communities. Mammals diverged 4100 Myr ago.
We expect that saturation of the phylogenetic signal in OTU turnover leads to
systematic biases in inference of ancestral community compositions. To overcome
these issues, we used the Count program37 to estimate the ancestral gut community
compositions in a phylogenetic and probabilistic framework. Count was originally
designed to model the evolution of gene families through gene gain and loss. Along
host evolution, the composition of gut microbiota changes through gain or loss of
OTUs, so probabilistic models implemented in Count are adequate to model gut
microbiota evolution.

OTUs are considered as independent from each other. We used a probabilistic
birth–death model of gain and loss of OTUs to compute probabilities of the
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presence/absence at each internal node of the mammalian host tree. We used a
non-homogeneous version of the gain/loss model where gain and loss parameters
are allowed to vary across the branches of the host tree. Variation of gain and loss
rates across bacterial lineages is modeled using discrete Gamma distributions, each
with four rate categories. All rates were estimated in a ML framework. With all ML
rate estimates and the observed presence/absence matrix, we computed the
posterior probability for each bacterial lineage (OTU) to be present at each internal
node of the host tree. At a given node, the expected total number of OTUs was
computed by summing all OTU-specific posterior probabilities of being present at
this node.

Reconstruction of ancestral diets. We first present methodological details for
reconstructing ancestral diets using extant and ancestral microbiome compositions.
Our microbiome-based method to predict ancestral diets uses the correlation
between extant diet and extant gut bacterial community compositions.
Assuming that the relationship between diet and bacterial composition has not
varied since the last common ancestor of mammals, ancestral diet can be predicted
from reconstructed ancestral community compositions (Fig. 2b). The effects of
carnivory and herbivory on the distribution of bacterial lineages are not maximal at
the same phylogenetic timescale (Fig. 1d). Thus we selected a time slice (300 Myr
ago) allowing us to construct communities having both carnivorous- and
herbivorous-specific bacterial lineages to build a regression model to predict diet.
We converted the OTU table to presence/absence data and restricted our analysis
to bacterial lineages having a distribution across hosts that significantly correlates
with diet (permutation multivariate analysis of variance tests, with FDR correction
for multiple tests). We then used a principal component analysis (PCA) to project
host species according to the composition of their microbiota. Host coordinates
along the first axes of the PCA are then used as independent (explanatory)
variables in a multinomial logistic regression model, in which the dependent
(predicted) variable is diet, discretized into three categories: carnivore, omnivore,
and herbivore. The optimal number of independent variables (PCA axes) to
include in the regression model can be determined with model selection criteria
such as Akaike’s Information Criterion (Supplementary Fig. 10a). For each
ancestor, its reconstructed community is then projected onto the PCA. Projection
coordinates are then used to predict a corresponding diet with the multinomial
logistic regression. For each ancestor, the prediction provides a vector of
probabilities for each diet category. To visually represent the evolution of diet along
a linear gradient from carnivory to omnivory to herbivory, we transformed each
vector of diet probabilities into a single value. We assigned 0 to carnivory, 0.5 to
omnivory and 1 to herbivory and multiplied each probability by its corresponding
weight and then summed the weighted probabilities. The new variable has values
between 0 and 1, with 0 representing a probability of 1 to be a carnivorous and 1 a
probability of 1 to be herbivorous. We also performed ancestral diet reconstruction
at two other time slices to control for the influence of the phylogenetic scale at
which community compositions are defined on the ability to accurately infer
ancestral diet. The 300 Myr ago time slice defines monophyletic clusters of 16S
sequences (OTUs) with, on average, B94% similarity. We selected another time
slice around 120 Myr ago creating OTUs with B97% 16S similarity. The last time
slice used to reconstruct ancient diet is the slice at which the correlation between
community dissimilarity and diet is maximal (see Fig. 1), around 600 Myr ago,
building OTUs with B91% 16S similarity.

As for the reconstruction of ancestral diets using extant diets encoded as
discrete character traits: we considered diet as a discrete variable with three
states (Carnivorous, Omnivorous and Herbivorous). We used the ARD
(All-Rates-Different) model of trait evolution implemented in the ‘ace’ function
from the ‘ape’ R package60 to estimate the ML transition rates across dietary
categories and to infer posterior probabilities for each diet state at each ancestor.

We compared the accuracy and precision of trait- and microbiome-based
models as follows. To measure the predictive power of our microbiome-based
method, we used cross-validation experiments to evaluate the accuracy
of the inference of extant diets using extant microbiome compositions (see
Supplementary Fig. 10b,c and ‘Accuracy of our microbiome-based method of diet
prediction’ in Supplementary Note 7). To compute precision of ancestral diets,
we compared the trait- and microbiota-based reconstructions on 33 species to the
trait-based reconstruction based on 41,500 species because this large taxonomic
sampling exhaustively samples mammalian diversity and provides diet inferences
that are in agreement with the fossil record38. To compute the precision of
inferences, we measured the Shannon entropy of each probability vector. The
entropy is measured as follows, with I the space of possible diet states and iAI:

Entropy ¼ �
X

i

pi log pi ð2Þ

The entropy measures how spread a probability distribution is: if the probability
vector is uniform, the entropy is maximal. However, if the distribution is
concentrated on a single category (meaning that probabilities are low for other
categories), the entropy is low. In our case, as we are making predictions, we want
to obtain probability distributions with entropies as low as possible, to be able to
assign with confidence an ancestral diet to a given ancestor.

Phylosymbiosis along the host phylogeny. To measure phylosymbiosis, we used
gut microbiota compositions defined at a recent phylogenetic timescale, recent
enough so that the correlation with host phylogeny is near maximal but deep
enough in the phylogeny to ensure that bacterial lineages appear in a sufficient
number of hosts. The selected slice creates 1,484 bacterial lineages (OTUs) that are
observed in Z2 hosts. On average, each OTU has an observed DNA similarity of
B97%. We rarefied the OTU table to avoid reconstruction biases owing to unequal
sequencing across samples.

In its original definition4,5,61, phylosymbiosis has been described as the
congruence between the host tree and the tree of communities, inferred using the
compositional dissimilarities between gut microbiota. Previous attempts to detect
and measure phylosymbiosis from gut microbiome data employed parsimony- and
distance-based methods to compute the tree of communities (for example,
Neighbor Joining62), without probabilistic modelling of OTU evolution. In the case
of parsimony4,11, previous authors considered all OTUs independently and
recoded OTU relative frequencies into ordered discrete states, from 0 to 6, to reflect
log-unit differences in their occurrence. The tree minimizing the number of
transitions between these ordered states was considered as the Maximum
Parsimony tree of communities. For distance-based methods, a dissimilarity matrix
computed with a b-diversity metric, such as Bray–Curtis or UniFrac, was used to
compute a dendogram (that is, the tree of community dissimilarities) with a
hierarchical clustering method5,61. However, over millions of years of host
evolution, many OTU gain and loss events have occurred, possibly randomizing
the genuine historical signal of compositional change along the mammalian
phylogeny. In molecular phylogenetics, parsimony- and distance-based approaches
are known to reconstruct less accurate topologies and to be more sensitive to
substitution saturation than probabilistic approaches that employ evolutionary
substitution models63,64. Here, at the scale of mammals, which diverged 4100 Myr
ago, we also expect issues related to the saturation of the phylogenetic signal in
OTU turnover, leading to systematic biases in community tree reconstruction.
Using the mammalian data set that we re-analysed in this study, Muegge et al.11

used approaches that did not employ explicit modelling of OTU dynamics of gain
and loss to search for patterns of phylosymbiosis. They concluded that mammalian
community compositional dissimilarities did not mirror host distances,
questioning the existence of long-term phylosymbiosis in mammals.

Here we extend the original definition to apply the ‘phylosymbiosis’ concept to
each individual host clade. Using ancestral community reconstruction with a
model-based and probabilistic approach, we measured for each ancestor the
amount of bacterial lineages that were ancestrally present and compared this
number to a null expectation in which the observed relationships between
hosts and bacteria are disrupted. To compute this null expectation, we ran
Count under the same non-homogeneous gain/loss model (see ‘Reconstruction of
ancestral communities’ in the Methods), with 100 random OTU tables created with
the independent swap algorithm65 (50,000 iterations). This algorithm maintains
OTU occurrence frequency across hosts and sample-specific richness during the
randomization of the data and is widely used in ecology65. With these random
distributions, we computed P values for each ancestor to detect those that have a
significantly higher number of present OTUs than randomly expected; these
ancestors then define clades with mammalian species that possess gut microbiomes
that share more bacterial lineages between each other than randomly expected.
We computed the magnitude of the phylosymbiosis signal along the mammalian
host tree, for each ancestor, by computing a SES per branch/node (see Results,
equation (1)).

After measuring the magnitude of the phylosymbiosis signal, we investigated its
pattern along the phylogeny of hosts. First, we tested whether the time span of
microbiome turnover over millions of years of host evolution has an impact on
phylosymbiosis, yielding to weaker phylosymbiosis signals for the most ancient
mammalian clades and higher signals for the most recently diverged clades. We
correlated the amount of phylosymbiosis (SES values) to crown ages of each focal
mammalian ancestor (Fig. 3). Although we computed a R2 coefficient, we did not
test whether the correlation was significant, because the data points are non-
independent. Second, we tested whether dietary shifts during mammal evolution
reduced the amount of bacterial lineages shared within mammalian clades and
negatively impacted the signal of phylosymbiosis. We correlated the residuals of the
linear regression between the amount of phylosymbiosis and time (SES–age) to a
quantification of dietary shifts. To measure these dietary shifts, we computed
dietary distances between successive nodes in the mammalian phylogeny. We used
ancestral diets reconstructed both with the trait-based approach using the dietary
data of 1,534 mammals and with the microbiome-based approach. Each approach
provides a probability distribution for each dietary category at each ancestral
mammalian node. We computed the dietary distance between two consecutive
nodes by computing a distance between the two probability distributions. When
computing this distance, we accounted for the fact that omnivory is the union of
carnivory and herbivory. Each node has three probabilities (summing to one) that
correspond to the three diets (omnivory, carnivory and herbivory). We first
assigned one diet (omnivory, carnivory or herbivory) to each node by drawing a
diet category from a multinomial distribution defined with the three probabilities.
Second, we recoded the diet as a two state variable, either ‘Carnivore’ or
‘Herbivore’: if the node was first assigned ‘Omnivore’, the node is now assigned
both Carnivore and Herbivore. Three configurations are possible: herbivore only,
carnivore only, or both herbivore and carnivore. Third, we computed dietary
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distances between two nodes using the Sørensen metric. This procedure66 enables
us to account for the fact that a carnivorous (or herbivorous) diet is a subset of an
omnivorous diet. We repeated this procedure 100 times (draw samples from the
multinomial distribution differ at each repetition) and we used the mean dietary
distance between the two distributions.

Detecting co-speciating bacterial lineages. We measured the amount of
co-speciation and host-swap events per OTU at the same time slice that we used to
measure the phylosymbiosis signal. We only conserved OTUs that are present in at
least four hosts and we used the rarefied data matrix. We extracted the individual
alignments for each OTU from the global alignment previously used to reconstruct
the phylogenetic tree of all 16S sequences. Replicate sequences were treated as
follows. When identical sequences were observed multiple times in a single host,
only one sequence was retained in the alignment. Replicate sequences observed in
multiple hosts were all conserved in the OTU alignment.

We used the ALE algorithm39–41 to detect the co-speciation and host-shift
events along the phylogenetic tree of 16S sequences. ALE employs a probabilistic
and event-based approach, reconciling the symbiont phylogenetic tree with the
mammalian host tree using a probabilistic model of co-speciation, host-swap,
intrahost speciation and extinction of symbionts within the host tree. Initially, the
ALE algorithm has been designed to reconcile gene trees with species trees with a
model of gene speciation, transfer, duplication and loss. In the case of
reconciliation between a symbiont tree and a host tree, these events correspond to
co-speciation, host-swap, intrahost speciation and extinction events, respectively.
ALE has three key features: (i) it is implemented in a probabilistic framework,
(ii) it makes use of time calibrations in the host tree to constrain in time the host
swaps during symbiont evolution (host swaps cannot happen back in time), and
(iii) it also accounts for uncertainties in the OTU tree reconstruction. In the
following, only the relative amount of co-speciation versus host swap is considered,
as these events allow us to measure the amount of vertical versus horizontal
inheritance in the gut microbiota.

ALE uses the information in the alignment of sequences to search for the ML
values of co-speciation and host-swap rates. When the associated ML symbiont tree
has been found, ALE provides the ML reconciliation scenario including the
numbers of co-speciation and host swap. ALE uses a distribution of symbiont trees
to search for the best reconciliation scenario. We run Phylobayes67 to obtain a
posterior distribution of OTU trees with a GTR model and a discrete gamma
distribution with four categories to model rate variation across sites. We run
Phylobayes for 10,000 generations, sampling at every generation with an initial
burn-in of 1,000 generations.

We then compared the amount of OTUs that harbour more co-speciation than
host swap with a null expectation. This null model allowed us to measure the
amount of OTUs that were observed to have more co-speciations than host swaps
owing to chance or to the overfitting to the host tree, during ALE reconciliations.
We proceeded as follows. We shuffled the names of the host tree to break up the
initial host phylogenetic relationships and re-ran ALE to measure the amount of
co-speciation and host swaps under this null expectation. We performed 100
replicates of the null model per OTU. For each OTU, we computed the number
Nnull of null replicates for which the amount of co-speciation events is equal to or
higher than the number of host-swap events. We computed a P value for each OTU
by dividing Nnull by the number of replicates þ 1. The null expectation of the
number of OTUs harbouring more co-speciation than host-swap events is then
simply obtained by summing the P values (null expectations are represented in
Fig. 4a, ‘Null expectation’ bars).

To control for overfitting, we computed for each replicate r the difference Dr,null

between the number of co-speciations and the number of host swap and compared
this null difference with the observed difference Dr,obs for this OTU. We computed
a P value for each OTU, defined as the number of times Dr,null is ZDr,obs, divided
by the number of replicates þ 1. After correcting for multiple tests with an FDR
approach, if a P value is higher than the significance threshold (here, 0.05), then we
cannot reject the hypothesis that chance and/or overfitting to the host tree are the
reasons for observing more co-speciations than host swaps. The proportion of
OTUs that were observed to have more co-speciation than host swap owing to
overfitting is represented in grey in Fig. 3c.

Code availability. BDTT has been implemented in R. All codes needed to run
BDTT, as well as illustrative examples, are available here: https://github.com/
FloMazel/BDTT.

Data availability. The data that support the findings of this study (the multiple
sequence alignment of the processed 16S data that we used for all phylogenetic
analyses, the OTU table of unique sequences, the calibrated and non-calibrated
bacterial phylogenetic trees used in the BDTT analyses, the matrix of host
phylogenetic distances and the matrix of host dietary distances) are available
from: https://github.com/mgroussi/MammalianGuts

References
1. Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of

heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

2. Bennett, G. M. & Moran, N. A. Heritable symbiosis: the advantages and perils
of an evolutionary rabbit hole. Proc. Natl Acad. Sci. USA 112, 10169–10176
(2015).

3. Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in
bacterial symbiosis. Proc. Natl Acad. Sci. USA 108(Suppl 2): 10800–10807
(2011).

4. Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by
gut microbial communities. PLoS Biol. 8, e1000546 (2010).

5. Brucker, R. M. & Bordenstein, S. R. The hologenomic basis of speciation:
gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667–669
(2013).

6. Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota:
lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).

7. Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353,
380–382 (2016).

8. Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict
host-symbiont cospeciation and reductive genome evolution in insect gut
bacteria. PLoS Biol. 4, e337 (2006).

9. Chung, H. et al. Gut immune maturation depends on colonization with a
host-specific microbiota. Cell 149, 1578–1593 (2012).

10. Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS
Biol. 13, e1002311 (2015).

11. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions
across mammalian phylogeny and within humans. Science 332, 970–974
(2011).

12. Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous
mammals. Mol. Ecol. 23, 1301–1317 (2013).

13. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320,
1647–1651 (2008).

14. Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut
microbiota. Cell Host Microbe 17, 72–84 (2015).

15. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography.
Nature 486, 222–227 (2012).

16. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a
comparative study in children from Europe and rural Africa. Proc. Natl Acad.
Sci. USA 107, 14691–14696 (2010).

17. Degnan, P. H. et al. Factors associated with the diversification of the
gutmicrobial communities within chimpanzees from Gombe National Park.
Proc. Natl Acad. Sci. USA 109, 13034–13039 (2012).

18. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature
457, 480–484 (2009).

19. Blekhman, R. et al. Host genetic variation impacts microbiome composition
across human body sites. Genome Biol. 16, 191 (2014).

20. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159,
789–799 (2014).

21. Vaishampayan, P. A. et al. Comparative metagenomics and population
dynamics of the gut microbiota in mother and infant. Genome Biol. Evol. 2,
53–66 (2010).

22. Oh, P. L. et al. Diversification of the gut symbiont Lactobacillus reuteri as a
result of host-driven evolution. ISME J. 4, 377–387 (2010).

23. Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the
world’s birds and mammals. Ecology 95, 2027 (2014).

24. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat.
Genet. 48, 1407–1412 (2016).

25. Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C.
Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323
(2015).

26. Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California.
Ecol. Monogr. 30, 279–338 (1960).

27. Sørensen, T. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the
vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5,
1–34 (1948).

28. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for
comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

29. Cavender-Bares, J. & Reich, P. B. Shocks to the system: community assembly of
the oak savanna in a 40 year fire frequency experiment. Ecology 93, S52–S69
(2012).

30. Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals.
Nature 446, 507–512 (2007).

31. Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in
predictors of mammalian extinction risk: big is bad, but only in the tropics.
Ecol. Lett. 12, 538–549 (2009).

32. Nyakatura, K. & Bininda-Emonds, O. R. Updating the evolutionary history of
Carnivora (Mammalia): a new species-level supertree complete with divergence
time estimates. BMC Biol. 10, 12 (2012).

33. Philippot, L. et al. The ecological coherence of high bacterial taxonomic ranks.
Nat. Rev. Microbiol. 8, 523–529 (2010).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14319 ARTICLE

NATURE COMMUNICATIONS | 8:14319 | DOI: 10.1038/ncomms14319 | www.nature.com/naturecommunications 11

https://github.com/FloMazel/BDTT
https://github.com/FloMazel/BDTT
https://github.com/mgroussi/MammalianGuts
http://www.nature.com/naturecommunications


34. Price, S. A., Hopkins, S. S. B., Smith, K. K. & Roth, V. L. Tempo of trophic
evolution and its impact on mammalian diversification. Proc. Natl Acad. Sci.
USA 109, 7008–7012 (2012).

35. Sanders, J. G. et al. Baleen whales host a unique gut microbiome with
similarities to both carnivores and herbivores. Nat. Commun. 6, 8285 (2015).

36. Sperling, E. A. et al. Oxygen, ecology, and the Cambrian radiation of animals.
Proc. Natl Acad. Sci. USA 110, 13446–13451 (2013).

37. Csu+rös, M. Count: evolutionary analysis of phylogenetic profiles with
parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).

38. Stevens, C. E. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive
System (Cambridge University Press, 2004).
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