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ABSTRACT

DNA methylation plays a crucial role in the estab-
lishment of tissue-specific gene expression and the
regulation of key biological processes. However, our
present inability to predict the effect of genome se-
quence variation on DNA methylation precludes a
comprehensive assessment of the consequences
of non-coding variation. We introduce CpGenie, a
sequence-based framework that learns a regulatory
code of DNA methylation using a deep convolutional
neural network and uses this network to predict the
impact of sequence variation on proximal CpG site
DNA methylation. CpGenie produces allele-specific
DNA methylation prediction with single-nucleotide
sensitivity that enables accurate prediction of methy-
lation quantitative trait loci (meQTL). We demon-
strate that CpGenie prioritizes validated GWAS SNPs,
and contributes to the prediction of functional non-
coding variants, including expression quantitative
trait loci (eQTL) and disease-associated mutations.
CpGenie is publicly available to assist in identifying
and interpreting regulatory non-coding variants.

INTRODUCTION

A significant portion of the disease and trait-associated
variants revealed by genome-wide association studies
(GWAS) reside in the non-coding genome where they al-
ter cellular activities and organism phenotype by chang-
ing gene regulation (1–3). While GWAS studies can iden-
tify thousands of loci that are associated with traits, they are
typically underpowered to identify the exact causal variants
for a trait of interest, and further analysis of the potential
functional consequence of each variant must be performed.
Computational methods that analyze candidate variants for
their potential contribution to a phenotype of interest are
known as variant prioritization methods. Variant prioriti-
zation methods that accurately predict which variants influ-
ence proximal regulatory elements and thus gene regulation
are valuable tools.

Previous variant prioritization methods have considered
a diverse set of functional signals (4–8), including DNase
hyper-sensitivity sites (DHS), histone modifications, and
transcription factor binding. However, DNA methylation,
an important epigenetic state that is involved in the regu-
lation of key biological processes (9–14) and encodes cel-
lular state information not contained in other epigenetic
marks (15,16) has been largely overlooked. In the few meth-
ods where it is considered (5), DNA methylation is used as
a low-resolution regional feature that is not allele-specific.
While sequence-based methods for DNA methylation exist
(17–20), there is no published method to predict the impact
of sequence variants on methylation, which makes it diffi-
cult to incorporate DNA methylation in functional variant
prioritization.

We introduce CpGenie (Figure 1), a deep-learning model
that (i) learns a regulatory code of DNA methylation, (ii)
predicts the methylation status of a CpG site from the
flanking sequence at a single-nucleotide sensitivity and (iii)
produces high-confidence predictions of non-coding vari-
ants that modulate DNA methylation. We find that Cp-
Genie predicts the impact of sequence variants on DNA
methylation with an accuracy that surpasses existing meth-
ods for functional variants prioritization. CpGenie also
identifies the direction of impact of meQTLs that result
in an allelic imbalance of DNA methylation, and priori-
tizes meQTLs over variants that exhibit no effect on DNA
methylation with accuracy higher than alternative methods.
We show that predictions from CpGenie improves the pre-
diction of expression quantitative trait loci (eQTLs) and
disease-associated variants by providing functional infor-
mation complementary to other data type. In addition, we
find that the sequence determinants learned by CpGenie
correspond to the binding motifs of proteins known for
their involvement in the regulation of DNA methylation
state. We provide CpGenie as open source software avail-
able at http://cpgenie.csail.mit.edu.

MATERIALS AND METHODS

CpGenie implementation

Me-CpG-prediction. We implemented a three-layer con-
volutional neural network with Dropout and max-norm
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Figure 1. Schematics of CpGenie. (A) CpGenie takes the high-throughput DNA methylation sequencing data, such as restricted representation bisulfite
sequencing (RRBS) or whole-genome bisulfite sequencing (WGBS) as input and produces predictions of CpG methylation as output. CpGenie can predict
DNA methylation at CpG resolution, interpreting the functional consequence of non-coding sequence variants, and prioritizing causal mutations from
GWAS-determined associations. (B) CpGenie converts the sequence context around a CpG into one-hot encoding, and transforms it to higher-level features
through three pairs of convolutional and max-pooling layers. Two fully-connected layers follow to make predictions on the methylation status of the queried
CpG.

regularization. Our implementation utilizes the Keras li-
brary (https://keras.io). To cope with the differences in sam-
ple sizes and protocol, we used slightly different network
parameters for models trained on RRBS data from EN-
CODE and the pool-based bisulfite sequencing data from
(21). Detailed network structure can be found in Supple-
mentary Table S5. Hyper-parameters, such as learning rate
and Dropout ratio, are tuned in a standard cross-validation
fashion with test set completely held out. As input, each
DNA sequence of length L is converted into a 2-D matrix of
size 4 × L, where each column is a one-hot vector encoding
the presence of the four DNA nucleotides A, C, G and T.

Variant-prediction. Given a sequence variant, we predict
the methylation status of all CpGs within 500 bp with either
of the variant allele. The maximum, mean and sum of the
methylation level of adjacent CpGs are reported for each al-
lele. In case where no CpG resides in the 500 bp vicinity of
the given variant, a pseudo-methylation level of 0.001 is re-
ported. We evaluate the impact of the variant by calculating
the change

re f − alt (1)

https://keras.io
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in the sum/mean/max methylation level, and the change of
log odds

log
re f

1 − re f
− log

alt
1 − alt

(2)

in the mean/max methylation level of nearby CpG sites, re-
sulting in five features for each variant.

High-throughput DNA methylation data

The 50 RRBS datasets of immortal cell lines, includ-
ing GM12878, and the WGBS dataset of GM12878
were downloaded from ENCODE website (https://www.
encodeproject.org/). We merged multiple replicates for the
same experiments, and where a CpG exists in all repli-
cates we merged the counts of methylated and unmethy-
lated reads and re-calculated the percentage of methylation.
We further applied a minimum-read cutoff of 10 to filter
out unreliable samples. Samples from chromosome 1–9 and
chromosome 14–22 were used for training, samples from
chromosome 12–13 were used for hyper-parameter tuning
and model selection, and the rest of the data were held-out
for testing. For WGBS, the original dataset was randomly
downsampled to 1 million sites due to the limited scalability
of the kmer counter used in the baseline.

The raw allele-specific DNA methylation data were ob-
tained from the authors of Kaplow et al. (21)(personal
communication). They surveyed 823 726 SNP-CpG pairs,
among which 2379 are meQTLs. After filtering out CpGs
with read counts less than 10, the whole dataset was split
into training, validation and testing set in the same way
as previously described for RRBS data. Test set was com-
pletely held out from training. For simplicity, only methyla-
tion levels corresponding to the reference allele were used
in the training and evaluation of Me-CpG-prediction. In
the analysis of variant-prediction, only meQTL and allele-
specific methylation data from the held-out chromosome 10
and 11 were used.

Methylation prediction comparison with random forest

We counted the frequency of each possible 4-mer in the
1001 bp sequence centered at a CpG with JELLYFISH
(22) (version 2.2.6, https://github.com/gmarcais/Jellyfish/
releases), generating 256 features for each sample. We used
the random forest implementation in sciki-learn Python
package (http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html).

meQTL prioritization comparison with existing methods

We downloaded DeepSEA (ver. 0.93) from http://deepsea.
princeton.edu/, GWAVA (version 1.0) from http://www.
sanger.ac.uk/resources/software/gwava/, deltaSVM from
http://www.beerlab.org/deltasvm/, and Basset from https:
//github.com/davek44/Basset. For CADD (version 1.3), we
used the online webserver (http://cadd.gs.washington.edu/).

For deltaSVM and Basset, the predictions of which are
cell-line specific and direction-included, we used the abso-
lute value of the predictions for the same type of cell line
(LCL, lymphoblastoid cell line) from which the meQTL

were discovered from. For deltaSVM, we used the gkmSVM
weights trained on GM12878 DNase Hyper-sensitive Sites
(DHS). For Basset, we used the absolute SAD (SNP Acces-
sibility Difference) scores predicted for GM12878.

Functional variant prioritization

The variants in strong linkage disequilibrium with
rs1427407, rs12740374, rs10737680, rs7705033 are deter-
mined by finding all variants with r2 = 1 in HaploReg
(http://archive.broadinstitute.org/mammals/haploreg/
haploreg.php, v4.1). In the case of rs1427407 where no
variants match the criteria, we find all variants with r2 ≥
0.8 with it.

We obtained the eQTL and GWAS SNPs datasets, as well
as their corresponding five negative sets from the supple-
mentary tables in Zhou et al. (6). Four of the five negative
sets were constructed by finding, for each positive variant,
the closest SNP in the full set, 20%, 4% and 0.8% random
subset of 1000 Genome variants with minor allele frequency
distribution matched to the positive set. The mean distance
to the positive set is 360 bp, 1400 bp, 6300 bp and 31 000
bp for these four negative sets respectively. The fifth nega-
tive set was constructed by sampling 1 000 000 non-coding
1000 Genome SNPs with minor allele frequency distribu-
tion matched to the positive set.

For each variant in the positive and negative set, we
applied variant-prediction to generate DNA methyla-
tion features that describe the impact on the proximal
DNA methylation levels in the 50 ENCODE RRBS
dataset, resulting in 250 features for each variant. We
further kept only the absolute value of each feature. As
described in Zhou et al., for each negative set we trained
L2-regularized logistic regression models on CpGenie
and DeepSEA features respectively using scikit-learn
library (http://scikit-learn.org/stable/modules/generated/
sklearn.linear model.LogisticRegressionCV.html). The
performance was evaluated with 10-fold cross-validation.
For CADD, GWAVA and Funseq2, the auROC reported
in Zhou et al. (6) was directly used as we tested on the same
dataset.

To interpret the feature importance, we trained a ran-
dom forest classifier on the same tasks as above with all
the features normalized to have mean 0 and variance 1
before training. We used random forest implementation in
scikit-learn library (http://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html)
in which the feature importance is calculated as ’mean
decrease impurity’ defined as the total decrease in node
impurity averaged over all trees of the ensemble (23). To
interpret the features with markedly higher importance,
for each model we plotted the sorted feature importance
and identified an importance-cutoff corresponding to
the ‘elbow-point’ in the importance distribution. The
top features in each model are defined as the ones with
importance higher than the corresponding cutoff.

Network interpretation

We adopted a widely-used visualization method (7,24) to
convert the first layer kernels to position weight matri-
ces (PWMs). For each convolutional kernel, we searched

https://www.encodeproject.org/
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through all the samples for all that can activate at least one
neuron (output of the neuron >0.5 of the maximum out-
put among all samples) in the first convolutional layer. Each
such activation was mapped back to the input sequence to
locate the region that led to the activation. For each con-
volutional kernel, we aligned all of the activating sequences
to generate a PWM. To understand the biological mean-
ing of these PWMs, we used tomtom ((25), version 4.11.1)
to match the PWMs to known human motifs in CIS-BP
database (26) with a FDR threshold of 0.1 as suggested in
Kelly et al. (7) When combined with importance analysis,
we used a more stringent FDR of 0.01. For the analysis of
PWMs partially matched with known motifs, we also com-
pared the PWMs against TransFac (27) database.

We interpret the importance of the first layer kernels with
an optimization-based framework. We fixed all weights in a
trained CpGenie model, and optimized the output of the
neuron in the last layer that corresponds to the target label
(methylated/unmethylated) with respect to the input of the
second layer (i.e. the output of the first max-pooling layer)
under a L2 regularization. The resulting optimum input is
a 2D matrix, representing the spatial activation pattern of
each of the first layer convolutional kernels for the network
to reach high confidence in the prediction. For each ker-
nel, we assigned the importance as the maximum activation
from all locations.

RESULTS

A two-step variant-evaluation framework for DNA methyla-
tion

CpGenie employs a two-step framework to evaluate the
impact of genetic variants on DNA methylation. The first
module (Me-CpG-prediction) predicts the DNA methy-
lation status of a CpG from its flanking 1001 bp se-
quence context. As a fully sequence-based model, Me-CpG-
prediction learns a regulatory code of DNA methylation
from genomic sequence, which is essential for accurate
allele-specific predictions and non-coding variant evalua-
tion. The second module (variant-prediction) uses the regu-
latory code learned in Me-CpG-prediction to score the im-
pact of a given genetic variant on proximal region. Variant-
prediction predicts the methylation modulation caused by
a variant by summarizing diverse statistics of the predicted
methylation changes in adjacent CpG sites.

Me-CpG-prediction employs a convolutional neural net-
work (CNN) to learn the sequence determinants for DNA
methylation. Compared to random forest or support-vector
machines (SVM) methods which are often used in existing
frameworks (17,19,20,28,29), a CNN is able to learn more
effectively from large-scale DNA methylation datasets, such
as WGBS and RRBS, and is capable to learn features of dif-
ferent spatial and complexity scales using the hierarchical
architecture.

Variant-prediction applies Me-CpG-prediction to char-
acterize the impact of a genetic variant across a region.
Variant-prediction first uses Me-CpG-prediction to score
the impact of a variant compared with the corresponding
wild-type allele on all CpGs within 500 bp of the variant.
Variant-prediction then scores a variant’s impact by the
change in the sum, max and mean of methylation level in

a 1001 bp genomic neighborhood around the variant when
compared with the wild-type allele. These different statis-
tics, which are often not correlated, describe different as-
pects of the impact and in sum produce a succinct yet in-
formative picture of how a sequence variant alters the local
methylation landscape.

CpGenie predicts DNA methylation from sequence context

We first assessed the ability of CpGenie’s Me-CpG-
prediction module to predict the methylation status of a
CpG site from its flanking sequence. As none of the pub-
lished models for fully sequence-based DNA methylation
prediction (17–20) provide an standalone software for re-
training and predicting on a large number of CpG sites ,
we compared CpGenie with a random forest (RF) classifier
trained on 4-mer frequencies of the input sequence, consid-
ering that random forest and k-mer frequencies have been
used in the literature of sequence-based DNA methylation
models (19,20,28,29).

We evaluated Me-CpG-prediction and the random for-
est method on restricted representation bisulfite sequenc-
ing (RRBS) datasets from ENCODE. We trained Me-CpG-
prediction and the random forest method on RRBS data
from GM12878, a lymphoblastoid cell line (LCL) exten-
sively studied in ENCODE. Me-CpG-prediction resulted
in an area under receiver operating characteristic (auROC)
of 0.854 and an area under precision-recall curve (auPRC)
of 0.685 on the held-out test set. Both of these metrics sur-
passed the performance of the random forest baseline (au-
ROC of 0.814 and auPRC of 0.584, Figure 2A). The perfor-
mance of CpGenie and random forest varies across different
chromatin states in a similar way (Spearman correlation =
0.47, P-value = 0.079, Supplementary Figure S2A and B),
with best accuracy for CpG sites in weak promoter, weak
enhancer and active promoter state. Yet, we note that the
performance correlates with the number of training sample
in the corresponding state (Spearman correlation = 0.61, P-
value = 0.016), with the exception of weak promoter, weak
enhancer and heterochromatin state (Supplementary Fig-
ure S2C).

We then evaluated Me-CpG-prediction on 50 RRBS
datasets from ENCODE (Supplementary Table S1) with
our random forest baseline to systematically benchmark
their capacity in predicting DNA methylation. Me-CpG-
prediction robustly outperformed the alternative methods,
with better auROC and auPRC for all 50 experiments (Fig-
ure 2C). We also found that a sequence window of 1001 bp
optimized performance (Supplementary Figure S1), which
could suggest stronger involvement of sequence features
within 500 bp away in DNA methylation regulation.

We further characterized Me-CpG-prediction and the
competing method using two alternative datasets: a bisul-
fite sequencing dataset from LCLs derived from 60 Yoruban
(YRI) HapMap individuals (21), and a whole-genome
bisulfite sequencing (WGBS) dataset from GM12878 cell
line. On both datasets, Me-CpG-prediction achieved bet-
ter performance (auROC = 0.75 and auPRC = 0.79 (Fig-
ure 2B) for the first dataset, auROC = 0.786 and auPRC
= 0.784 for the second dataset (Supplementary Figure S3))
than the competing model trained and tested on the same
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Figure 2. CpGenie predicts DNA methylation at CpG resolution. (A, B) The receiver operating characteristic (ROC) curve (top) and precision-recall (PRC)
curve (bottom) of CpGenie (blue) and random forest using 4-mer counts (green) for predicting DNA methylation status of held-out CpGs in GM12878
RRBS data (A) and bisulfite sequencing data from LCLs derived from 60 Yoruban HapMap individuals (B). (C) Pairwise auROC (top) and auPRC
(bottom) comparison of CpGenie (y-axis) and random forest using 4-mer counts (x-axis) on 50 RRBS datasets from ENCODE.

datasets (auROC = 0.57 and auPRC = 0.63 for the first
dataset, auROC = 0.67 and auPRC = 0.661 for the second
dataset).

CpGenie predicts the impact of functional variants on DNA
methylation

We next assessed the ability of CpGenie’s variant-prediction
module to identify genetic variants that modulate DNA
methylation. Kaplow et al. analyzed the DNA methyla-
tion level of over 800 000 single nucleotide polymorphism
(SNP)–CpG pairs by mapping the bisulfite sequencing
reads back to the reference and alternate allele of a variant
(21). They found over 2000 genetic variants (meQTLs) with
statistically significant allelic imbalance of DNA methyla-
tion. As only reads that overlap with both the CpG site
and the variant locus were counted, the meQTLs discovered
from this method act in cis (with an average distance of 25.4
bp), making these data a relevant standard to evaluate the
ability to predict allelic change of DNA methylation in the
presence of a sequence variant.

Variant-prediction accurately predicted the direction of
allelic methylation change caused by sequence variants.
When applied to the meQTLs on chromosomes held out
from training, variant-prediction accurately identified the
allele with higher DNA methylation level, showing sensi-
tivity and accuracy to single-nucleotide changes (Figure
3A). Moreover, the accuracy quickly and stably increased to
100% when we gradually retained only the high-confidence
predictions by increasing the threshold of the absolute al-
lelic difference in the predicted methylation (Figure 3B). For
instance, for the variants of which the predicted absolute

difference of DNA methylation between the two alleles is
greater than 0.03, CpGenie identified the allele with more
methylation with an accuracy >90%.

We find that CpGenie variant-prediction accurately clas-
sifies variants that are meQTLs from variants that exhibit
no impact on DNA methylation. Since CpGenie is the
first computational method to predict meQTLs we com-
pare it with several state-of-the-art methods for functional
variant prioritization, including DeepSEA (6), Basset (7),
deltaSVM (8), GWAVA (5) and CADD (4). We used 201
meQTLs on the chromosomes held out in the training of
CpGenie models as positive samples. To simulate different
equilibrium linkage structures we constructed three nega-
tive sample sets that are 10 times, 50 times and 100 times
the size of the positive set by randomly sampling from the
76 532 non-meQTLs on the held-out chromosomes. Cp-
Genie models trained on datasets from Kaplow et al. and
ENCODE GM12878 RRBS datasets both surpassed the
competing methods, with higher accuracy at 10% recall
and larger area under precision recall curve (auPRC) when
evaluated on all three negative sets (Figure 3C). Thus, Cp-
Genie excels in predicting genetic variants that modulate
DNA methylation, an important task that the state-of-the-
art frameworks for functional variant prioritization fail in.

CpGenie learns the binding motifs of proteins known to reg-
ulate DNA methylation

We expected that a predictive model of DNA methylation
from sequence would learn motifs that correspond to reg-
ulators associated with the mechanism of DNA methyla-
tion. The basic unit of a convolutional layer is a ’kernel’
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Figure 3. CpGenie accurately predicts the direction of allele-specific (AS) DNA methylation and prioritizes variants that modulate DNA methylation
(meQTLs). (A) CpGenie’s DNA methylation prediction for the reference and alternate alleles of 201 meQTLs on held-out chromosome 11 and 12. The x
and y axes represent the CpGenie predicted DNA methylation level. The green and blue dots represent reference allele-biased and alternate allele-biased
variants respectively as experimentally determined by Kaplow et al. (B) Prediction accuracy quickly and steadily increased to 100% when only the high-
confidence predictions were retained. The y-axis denotes accuracy and the x-axis represents margin, or the threshold of predicted absolute allelic difference
in methylation to retain high-confidence predictions. (C) The precision-recall curve (PRC) for classifying the 201 meQTL from three different random
subsets of the 76 532 non-meQTL that are 10 times (left), 50 times (middle), and 100 times (right) the size of meQTL. CpGenie outperformed all the
state-of-the-art methods in functional variant prioritization with better precision at the 10% recall and higher area under precision–recall curve.

that searches for patterns in the input, analogous to a mo-
tif scanner looking for motif matches. Interpreting the con-
volutional kernels in the first layer of a network is cru-
cial for understanding how the network responds to an
input sequence (7,24) . Previous studies have established
that many transcription factors interact with DNA methyl-
transferases (DNMT) that methylate DNA (30). As tran-
scription factors are known for binding DNA with strong
sequence specificity, we transformed the first-layer convo-
lutional kernels in CpGenie to position weight matrices
(PWMs) (Methods) to determine if it learned certain of
these sequence motifs.

We found that 97 out of the 128 PWMs recognized by
CpGenie’s Me-CpG-prediction significantly match the mo-
tifs of known transcription factors (Figure 4A, Supplemen-
tary Table S2). We found the motifs of 21 transcription
factors known to strongly interact with DNA methyltrans-
ferase (DMNT) (30), including ELK1,FLI1 and E2F4. As
a point of comparison, Das et al. (31) found that the mo-
tifs of 31 transcription factors, only a small fraction (6/31)
of which overlap with the DNMT-interacting factors, help

classify hyper-methylated regions from hypo-methylated re-
gions. We found 48% (15/31) of the Das et al. discovered
motifs were among the CpGenie-discovered PWMs includ-
ing YY1 and CEBPA. Moreover, although without a sta-
tistically significant overall match, many CpGenie discov-
ered PWMs capture motif information associated with tran-
scription factors previously reported to be associated with
DNA methylation, such as NFKB1, MEF3 and LUN1
(Figure 4B).

Interestingly, a large number of CpGenie-discovered
PWMs are variants of PAX4 and SP3 motifs (24 and 23
respectively). Hervouet et al. reported DNMT-interaction
with other transcription factors in the same family (PAX6,
SP1 and SP4). Certain predictive transcription factor mo-
tifs discovered with CpGenie are not known for involve-
ment in DNA methylation. Two examples are GFI1 (FDR
q-value = 0.0025), which is a transcriptional repressor that
functions by histone deacetylase (HDAC) recruitment, and
THRA (FDR q-value=0.0023), which is a nuclear hormone
receptor that can act as a repressor or activator of transcrip-
tion.



PAGE 7 OF 10 Nucleic Acids Research, 2017, Vol. 45, No. 11 e99

Figure 4. CpGenie learns motifs of regulatory elements involved in DNA methylation. (A) 97 out of 128 of the convolutional filters match motifs of
known transcription factors in the human CIS-BP database at an FDR threshold of 0.1. (B) Examples of convolutional kernels characterizing partial
information of transcription factors known for involvement in or predictive for DNA methylation. The logos for LUN1 and MEF3 were generated from
motif information in TransFac databse (January 2013) and the logo for NFKB1 was generated from motif information in CIS-BP database.

We next scored the importance of CpGenie’s Me-CpG-
prediction 128 first-layer convolution kernels with an
optimization-based framework (Materials and Methods).
The framework identifies the first-layer kernel activation
pattern that can maximize the network’s confidence to clas-
sify a sample as one class (methylated/unmethylated). To
understand the biological relevance of the top-ranking ker-
nels, we chose a more stringent false discovery rate of 0.01
when matching with known motifs. The top 10 convolution
kernels for high and low methylation prediction are quite
distinct, with the exception that SP3 is important for pre-
dicting both high and low methylation (Supplementary Ta-
ble S3).

CpGenie assists in downstream analysis of functional variants

We next asked whether CpGenie, which is optimized for
meQTL prediction, could shed light on the functional con-
sequence of genetic variants associated with downstream
phenotypes. We applied CpGenie on four experimentally
validated GWAS SNPs, rs1427407 (fetal hemoglobin levels,

(32)), rs12740374 (low-density lipoprotein (LDL) choles-
terol levels,(33)), rs10737680 (age-related macular degen-
eration, (34)), rs7705033 (visceral adipose tissue, (35)), of
which the first two have been reported to alter gene expres-
sion (BCL11A (36) and SORT1 (37) respectively) and the
last two have been reported to alter DNA methylation (21).
Compared with linked SNPs in strong linkage disequilib-
rium (Materials and Methods), all the validated SNPs were
scored higher by CpGenie (Figure 5A).

We further applied CpGenie on two much larger GWAS
SNPs and eQTL datasets (6), one with 78 613 eQTLs from
GRASP (Genome-Wide Repository of Associations be-
tween SNPs and Phenotypes) (38) and one with 12 296
disease-associated SNPs from the US National Human
Genome Research Institute’s GWAS Catalog (39). For each
dataset, five size-matched negative sets were constructed by
sampling from different subsets of 1000 Genome Project
SNPs (40). We found a simple L2-regularized logistic re-
gression model trained on CpGenie’s predictions for the
50 ENCODE RRBS datasets performed competitively in
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Figure 5. CpGenie’s sequence-based DNA methylation predictions assist in downstream analysis of functional variants. (A) CpGenie scored the validated
GWAS SNPs (red) higher than the SNPs in strong linkage disequilibrium. The three statistics generated from CpGenie are colored in blue (the absolute
change of total methylation of proximal CpG sites), green (the absolute change of mean methylation of proximal CpG sites) and red (the absolute change
of maximum methylation of proximal CpG sites). (B) Compared to previous methods that utilize more annotation information, CpGenie achieved better
or comparable performance in prioritizing noncoding GRASP eQTLs (left) and noncoding GWAS Catalog SNPs (right) against noncoding 1000 Genome
Project SNPs. The x-axis denotes the mean distance of the SNPs in the negative set to the paired positive SNP. The ‘Random’ group denotes 1 000 000
randomly sampled 1000 Genome Project SNPs. (C) CpGenie’s DNA methylation features (green) were considered significantly more important in general
than DeepSEA’s functional predictions on histone modification, transcription factor binding and DNase hypersensitivity (blue) in eQTL (left) and GWAS
SNPs (right) prioritization. The asterisks denote statistical significance calculated from Mann–Whitney U test (P-value < 0.001).

both eQTL and GWAS SNP prioritization (Figure 5B),
compared to several state-of-the-art methods including
DeepSEA (6), CADD (4), GWAVA (5) and Funseq2 (41)
which were all trained on more diverse sets of functional
data such as histone modification, transcription factor
binding, and gene expression.

To assess the relative importance of DNA methylation
features in eQTL and GWAS SNPs prediction, we com-
bined the functional features predicted from CpGenie and
DeepSEA, and trained a random forest model in which fea-
ture importance can be evaluated by mean decrease impu-
rity (Materials and Methods). DeepSEA predicts a vari-
ant’s effect by producing 919 features derived from ex-
periments of DNase hyper-sensitivity (DNase-seq), tran-

scription factor binding (ChIP-seq), and histone modifica-
tion (ChIP-seq), which is much larger and comprehensive
than CpGenie’s prediction of methylation alone. However,
in both eQTL and GWAS SNP prioritization, CpGenie-
predicted DNA methylation features are considered signif-
icantly more important than the original DeepSEA fea-
tures as a whole (Mann–Whitney U test, Figure 5C, Sup-
plementary Table S4). To account for the potential infla-
tion of significance from the high correlation in the fea-
tures, we further only looked at the top features with signif-
icantly higher importance (Methods). Consistently across
different tasks, CpGenie-predicted methylation-based fea-
tures account for a significant portion in the top features
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which the eQTL/GWAS predictor might actually rely on
(Supplementary Table S4).

DISCUSSION

Despite the growing number of genetic variants associated
with disease and complex traits by genome-wide association
studies (GWAS), the identification of causal variants and
their pathogenic mechanisms remains a challenge that re-
quires predictive models for accurate interpretation of non-
coding variants. CpGenie is a computational framework
that is able to assess non-coding variant’s effect on DNA
methylation, a functional signal largely overlooked by ex-
isting models for functional variant prioritization.

With its convolutional neural network-based Me-CpG-
prediction, CpGenie is able to learn sophisticated sequence
determinants associated with DNA methylation efficiently
from large-scale DNA methylation data generated from
high-throughput bisulfite sequencing technology. CpGenie
predicts the DNA methylation status of a CpG solely from
the sequence context with consistently high accuracy on
datasets across different cell lines, tissues, and experiment
protocols (Figure 2), demonstrating crucial robustness and
generalizability of the methodology. Built on convolutional
neural network which is a universal computation frame-
work given sufficient training data (42), CpGenie might also
be applied to methylation data from other species to learn
the species-specific regulatory code.

CpGenie demonstrated high sensitivity to single-base
changes in input sequences (Figure 3A and B), a capabil-
ity that enables the incorporation of allele-specific, rather
than regional, DNA methylation information in the inter-
pretation of non-coding variants. CpGenie identifies methy-
lation quantitative trait loci (meQTLs) with a precision that
surpasses the state-of-the-art frameworks for functional
variants prioritization (Figure 3C), which emphasizes the
unique role of CpGenie in providing a more comprehensive
and accurate interpretation of the functional consequence
of non-coding variants.

We have shown that CpGenie’s methylation-based pre-
dictions can assist in the downstream analysis of risk-
associated variants. By taking into account the influence on
all the CpG sites residing in the neighborhood of the target
variant, CpGenie summarizes a diverse set of statistics that
can both directly instruct the identification of causal vari-
ant from candidates in strong linkage disequilibrium (Fig-
ure 5A) and be incorporated in secondary models designed
to classify sequence variants associated with gene expres-
sion or complex traits (Figure 5B). Moreover, CpGenie’s
methylation-based features are highly favored (Figure 5C),
when jointly considered with other functional annotations,
such as DNase hyper-sensitivity, histone marks and tran-
scription factor binding, by a predictive model for func-
tional variant classification. This demonstrates the wealth
of information captured in the change of DNA methylation
and highlights the necessity to include allele-specific DNA
methylation predictions in a comprehensive assessment of
non-coding variants.

We envision CpGenie to be a resource to help understand
the regulatory mechanism encoded in the non-coding re-
gion of the genome, and contribute to the functional inter-

pretation of non-coding variants associated with complex
traits and diseases. The website associated with this paper
includes the complete source code for CpGenie and detailed
instructions on how to use it to predict meQTLs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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