Approximation Algorithms for Disjoint Paths Problems
by
Jon Michael Kleinberg

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology
(1994)
A.B., Computer Science and Mathematics
Cornell University
(1993)
Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1996
© 1996 Jon Michael Kleinberg. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author

Department of Eléctrical Engi;eering arﬁ Computer Science
May 3, 1996

A

Michel X. Goemans
Assistant Professor of Applied Mathematics
Thesis Supervisor

Certified by. N

Accepted by , -
F.R. Morgenthaler

WASSACHUSETTS INSTITUTE . 1y ‘
OF TECHNOLOGY Chairman, Deparment Commigtee on Graduate Students

JUL 1 619% ’ ARCHIviES

LIBRARIES

Approximation Algorithms for Disjoint Paths Problems
by
Jon Michael Kleinberg

Submitted to the Department of Electrical Engineering and Computer Science
on May 3, 1996, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

The construction of disjoint paths in a network is a basic issue in combinatorial optimization:
given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths
between as many of these pairs as possible. This leads to a variety of classical NP-complete
problems for which very little is known from the point of view of approximation algorithms. It
has recently been brought into focus in work on problems such as VLSI layout and routing in
high-speed networks; in these settings, the current lack of understanding of the disjoint paths
problem is often an obstacle to the design of practical heuristics.

We develop a number of general techniques for designing approximation algorithms for dis-
joint paths probleras. Our approach leads to the first constant-factor approximation algorithm
for the maximum disjoint paths problem on the two-dimensional mesh, as well as on a class
of planar networks generalizing the mesh. We obtain a number of related algorithms by this
approach, including a routing algorithm for the mesh that is optimal in the on-line model con-
sidered in much of the recent work on this problem; here connection requests arrive over time
and must be processed immediately. Underlying a number of our results is a new approximation
algorithm for a basic, NP-hard variant of the maximum flow problem.

Thesis Supervisor: Michel X. Goemans
Title: Assistant Professor of Applied Mathematics

Keywords: combinatorial optimization, approximation algorithms, network flow

Acknowledgements

It has been my privilege to have worked in a number of exciting and intellectually rich environ-
ments, and with a wonderful array of mentors and colleagues. I thank my thesis advisor Michel
Goemans for his support and collegiality over the past three years. I have benefited enormously
from working with him, and from his perspective on algorithms and combinatorics. I began my
work in the area that is the topic of this thesis with Eva Tardos, and the research contained in
three of the chapters of this thesis was done in collaboration with her. I am grateful to have
had the opportunity to work so closely with her — a process that has significantly shaped my
approach to research — and for the considered guidance she has given me in many different
regards.

Early in my undergraduate career at Cornell, I had the good fortune to begin working with
Dan Huttenlocher; and this collaboration has also had a great impact on my development as
a computer scientist. I have worked with Dan both as a fellow researcher and as his teaching
assistant, and I thank him for imparting to me his broad and balanced view of research in
computer science. The environment at Cornell was both exciting and immensely supportive
— I have benefited from interactions with many of the faculty and visitors there, including
Paul Chew, Bruce Donald, Rod Downey, Klara Kedem, Keith Marzullo, Paul Pedersen, Ronitt
Rubinfeld, David Shmoys, Bernd Sturmfels, Sam Toueg, and Nick Trefethen. The community
of friends and fellow students in which I was immersed there was a wonderful one as well; T will
try to avoid listing too many names here, but want to mention Lillian Lee, Tony Yan, Anne
Kist, Sendhil Mullainathan, Jen Smith, Barry Isralewitz, Rachel Byard, Charlotte Lee, Aravind
Srinivasan, and Thomas Yan.

The environment in the Lab for Computer Science at MIT has been an exciting one to be
a part of. I thank Tom Leighton for his advice and for the opportunity to work with him on a
variety of problems. I have also been fortunate to have been able to work with Bonnie Berger,
David Karger, and Nancy Lynch; I additionally thank all of them for their continuing advice as
my job search progressed this year, and David for his thorough reading of this thesis. I am also
grateful to have had the chance to work with several of the visitors to the theory group at MIT
— in particular, Allan Borodin and Hagit Attiya during my first year here, and Ronitt Rubinfeld

during my last. I thank Marcos Kiwi and Dan Spielman for a wonderful year as apartment-

mates; and I also thank Matt Andrews, Andrds Bencziir, Michael Bender, Stan Chen, Ric
Crabbe, Rosario Gennaro, Joshua Goodman, Shai Halevi, Rebecca Hwa, Mike Leventon, Liana
Lorigo, Carol Sandstrom and Chris Small (and Emily and Sophie), Ravi Sundaram, and Lisa
Zhang. Finally, I thank Bruce Dale, Be Hubbard, David Jones, and Joanne Talbot for all their
help.

I spent much of the summer of 1995 working in the Theory of Computation Group at the
IBM Watson Research Center — a very lively and welcoming research environment. Portions of
the work in this thesis, as well as current aspects of my research, emerged from my time there;
and I look forward to continued collaboration with the researchers and other summer visitors
that I met at IBM. In particular, I thank Pankaj Agarwal, Alok Aggarwal, Allan Borodin,
Don Coppersmith, Sanjeev Khanna, Bill Pulleyblank, Prabhakar Raghavan, Baruch Schieber,
Madhu Sudan, and David Williamson. I additionally would like to thank Alok, Allan, and
Prabhakar for their advice over the past year.

Finally: I thank my parents, my brother Bobby, and Lillian, for all their support. It is

because of them that my years spent on this work have been such a delight.

For five of my six semesters at MIT, I have been supported by an ONR Graduate Fellowship.
Portions of this thesis represent joint work with several of the people mentioned above: Chapters
6 and 7 are based on joint work with Eva Tardos, Chapter 8 on joint work with Eva Tardos and
Satish Rao, Chapter 9 on joint work with Alok Aggarwal and David Williamson, and portions
of Chapter 5 on joint work with Ronitt Rubinfeld.

Contents

Introduction
1.1 Related Optimization Problems
1.2 Overview of the Present Work
1.3 Some General Notation
Background
2.1 Menger’s Theorem
2.2 Tractable Special Cases i
2.3 Disjoint Pathsona Surface
24 Fractional Flow o o
2.5 The High-Capacity UFP
2.6 Approximations forthe MDP
2.7 On-Line Routing Algorithms
28 Expander Graphs e
2.9 Directed Graphs e e e e
Single—Source Unsplittable Flow
3.1 Coalitions e e e
3.2 Congestion e e e e e e e e
3.3 Maximization
34 RoutinginRounds
3.4.1 Tools from Matroid Theory
3.4.2 The Approximation Algorithm

11
14
17
23

25
25
28
30
35
39
42
42
44
46

Directed Single—Source Problems
41 Coalitionst e e e e e e e e e e
4.2 The Approximation Algorithms
The Greedy Algorithm
51 General Bounds o ittt e e e e e e e
5.2 The Algorithm on Bounded-Degree Expanders
The Two—Dimensional Mesh
6.1 The Simulated Network
6.2 The On-Line Algorithm
6.2.1 Combining Maximization Algorithms
6.2.2 The AAP Algorithm
6.2.3 Routing Long Connections
6.2.4 Routing Short Connections
6.3 The Off-Line Algorithm
6.4 RoutinginRounds
Generalizing the Mesh
7.1 Definitions and Properties o oo o oo
7.2 SmoothCycles e
7.3 Clustersand Enclosureso
7.4 Defining the Simulated Network
7.5 Building the Simulated Network
7.6 The On-Line Algorithm
7.7 The Off-Line Algorithm,
Minimizing Congestion
8.1 Preliminaries e e
8.2 The Approximation Algorithm

68
73
81

85
87
90

93
95
98
98
101
104
106
108
112

117
118
125
128
134
136
139
141

9 Node-Disjoint Paths 153

9.1 Node-Disjoint Pathsonthe Mesh 154
9.2 Preliminary Facts 159
9.3 Thebound for x(T) it e i e 161
9.4 Terminals with Spacing 166
9.5 Constant-Bend Routing 167
10 Conclusion 171
10.1 Improved Approximation Ratios 172
10.2 The On-LineModel 174
103 Extensions e e e e e 177

10

Chapter 1

Introduction

People, he said, ... they use the telephone. Phil calls Philadelphia. Pat calls

Patagonia. ...
— Vladimir Nabokov, Lolita.

A basic problem that arises in large-scale communication networks is that of assigning paths
to connection requests. Each connection request is a pair of physically separated nodes that
wish to communicate over a path through the network; given a list of such requests, one wants
to assign paths to as many as possible in such a way that no two paths “interfere” with each
other. Thus, for a given list of requests, we can ask a number of natural questions. How
many requests are simultaneously realizable using paths that are mutually edge-disjoint? How
many rounds of communication are required to satisfy all requests, when all paths assigned in
a single round must be edge-disjoint? These turn out to be classical problems of combinatorial
optimization and operations research; they are also among the most well-known NP-complete
graph problems.

The intractability of these disjoint paths problems does not appear to be simply a theoret-
ical phenomenon. A number of recent papers (e.g. [12, 46]) have observed that much of the
difficulty in admission control and routing of virtual circuits in high-performance communi-
cation networks comes from the lack of good heuristics for constructing disjoint paths. These
issues also arise within the context of VLSI, where the current lack of understanding of these
problems is often an obstacle in the design of effective layout and wire routing algorithms for

printed circuits.

11

In essentially all of the optimization versions of these problems, finding the best solution is
NP-complete. In this work, therefore, we are interested in developing efficient algorithms that
produce near-optimal solutions. Such approrimation algorithms have recently been the focus
of an intense amount of work in the theoretical computer science community; in the setting of
disjoint paths problems, as in many similar settings, the development of approximation algo-
ritiums is of value both in suggesting robust heuristic approaches to computationally intractable
probleins, and in providing further understanding of the elusive structure of their optima.

Let us make all this more precise, as follows. Given an undirected graph G = (V, E), each
connection request is specified by a pair of terminals s; and t;, where s;,t; € V. Let T be
the set of all terminal pairs (8,,t;),...,(Sk, tx). We say that T is realizable in G if there exist
mutually edge-disjoint paths P,,..., P, such that P; has endpoints s; and ¢;. Given G, k, and
7', determining whether 7 is realizable in G is one of Karp’s original NP-complete problems
[56] — we will refer to this as the basic disjoint paths problem.

Thus, the first of the optimization problems mentioned in the opening paragraph is simply
to find a maximum-size realizable subset of a set 7 of terminal pairs in a graph G. We will
refer to this as the mazimum disjoint paths problem (MDP), and denote the maximum size of a
realizable subset of 7 in G by a(7T).

Theoretical work on the disjoint paths problem has its roots in the early development of
graph connectivity and network flow. The special case in which all (s;,t;) pairs are the same
— so that one wants to find the maximnm number of disjoint paths between two fixed nodes
in a graph — is the essence of Menger’s classical theorem [82], generalized into the max-flow
min-cut theorem of Ford and Fulkerson [34, 35]. This work also led to efficient algorithms
for this special case; see Chapter 2 for technical background on this and others of the results
mentioned in this introduction.

Following Karp’s NP-completeness result, it became clear that similar clean structural re-
sults and efficient algorithms were not likely to be obtainable for the disjoint paths problem in
its full generality. Thus, most of the graph-theoretic work in this area has turned to tractable
special cases ot the problem; this is given extensive coverage in a survey by Frank [39].

Much less attention has been devoted to the problem of designing approximatiou algo-

rithms for intractable cases of the MDP, the subject of our work here. To be concrete, by a

12

c-approzimation algorithm for the MDP we mean an algorithm that, on input G and 7T, pro-
duces a realizable set 7' C 7T of size at least a(7)/c. All the approximation algorithms we will
discuss run in polynomial time. We will survey previous work on approximation in Chapter 2.
It is worth noting at the outset that many of the algorithms we discuss here are randomized;
their approximation guarantees hold with constant probability, and hence can be made to hold
with probability 1 — 2% by running them O(k) times independently. Thus this notion of a
probabilistic performance guarantee does not rely on any assumptions about the distribution
of the input; it holds for all input instances, and the probability is taken only over the random
choices made by the algorithm. In some of our results randomization is used mainly for the
sake of simplicity and can be eliminated; in some we do not know how to avoid the use of
randorization; and in some it is possible to prove that no deterministic algorithm can perform
as well as the randomized algorithm we present.

Let us discuss a natural generalization of the MDP, obtained by incorporating an additional
consideration from the network routing applications discussed above. Again, consider a graph
G = (V, E) with a set 7 of terminal pairs. Now, however, each pair (s;,t;) has associated with
it a given demand p;; and each edge e is given a capacity c., which indicates the total amount
of traffic it can carry. We say that 7 is realizable in G if there exist paths Pi,..., P, such that

P, has endpoints s; and t;, and the following capacity constraint is met for every edge:

Y. pisec. (L1)

i:e€P;

That is, the total demand contained in paths using edge e does not exceed the capacity of e.

Throughout this work, we will make the following balance assumption:
Vi,e : p;<c. (1.2)

That is, every demand on its own is capable of “fitting” across every edge.

For 7' C T, define p(7T"’) to be the total demand of terminal pairs in 7"

WT)= Y o (1.3)

i:(s,t;)ET’

13

The unsplittable flow problem (UFP), with input G and 7, asks for a realizable subset T’ of T
that maximizes p(7’).! Note that in the case when all p; and all ¢, are equal to 1, this coincides
with the maximum disjoint paths problem; and hence designing approximation algorithms for
the UFP can only be more difficult than for the MDP. By analogy with the MDP, let us use «(7)
to denote the maximum value of p(7"’), over all realizable 7' C T.

There is, however, a special case of the UFP in which strong approximation results have been
obtained by Raghavan and Thompson [94, 93]. This is the case in which all capacities c. exceed
all demands p, by a factor of at least Q(log|E|) -— wc will refer to this as the high-capacity
UFP. Here, the algorithms of [94, 93] provide a constant-factor approximation for any graph
G. While these results do not relate directly to the disjoint paths problem itself, we will make
use of them in designing some of our algorithims. Of course the strength of this result is such
that the UFP can be considered largely settled in this “high-capacity” case. However, in many
network routing applications, each communication path can consume a large fraction of the
available bandwidth on a link [12, 90]; for such situations, one must be able to deal with edges

whese capacity is small relative to the individual demands.

1.1 Related Optimization Problems

The two problems discussed above will serve as our main focus; however, there are a number
of closely related optimization problems that our techniques can be adapated to handle. We

introduce these here.

On-Line Routing. Above, we observed that the routing of connections in communication
networks is a motivation for the disjoint paths and unsplittable flow problems. In many of
these applications, one is faced with the additional constraint of being presented with terminal
pairs gradually over time; as each pair is presented, it must immediately be routed on a free
path through G, or rejected, without knowledge of future requests. The goal remains to route

a large number of terminal pairs relative to the optimum. This (not surprisingly) results in

1This problem is often referred to as the integer multicommodity flow problem in the operations research
literature. We have adopted the unorthodox name used here because of our understanding that the term integer
multicommodity flow does not have a single standardized meaning within this area; for example, it frequently
refers only to the special case in which all p; are equal to 1. See Section 2.4.

14

a number of additional complications that the designer of an approximation algorithm must
contend with; for example, it rules out approaches that incrementally develop a solution by
re-routing old paths as new ones are added.

Algorithms that must operate in this “one—pass” fashion are typically termed on-line algo-
rithms. The design of on-line algorithms is an issue that has been actively studied over the last
ten years; the work of Sleator and Tarjan [114] was a major influence in popularizing this area.
Routing in networks is clearly a natural setting in which to analyze on-line algorithms, and
this has been undertaken at a theoretical level by a number of researchers; some of the earliest
papers here were those of Garay, Gopal, et al. [41, 42] and Aspnes et al. 8]

Interestingly, good approximations exist for the high-capacity UFP even in the on-line model.
An algorithm of Awerbuch, Azar, and Plotkin [10] provides an on-line O(log | E|)-approximation
when no demand requires more than an O(log™" | E|) fraction of the minimum edge capacity. In
the on-line setting, as in the classical setting, much less is known about approximation when
the demands p; are allowed to be comparable in size to the capacities c.. Moreover, some
lower bounds have been established here, showing that no on-line algorithm can provide a good
approximation in cerfain families of graphs [10, 17, 15]. Again, see Chapter 2 for a discussion
of prior work here.

When it is necessary to distinguish on-line algorithms from the traditional algorithms that

will occupy our attention for most of the time, we will refer to the latter as off-line algorithms.

Routing in Rounds. Let us return to the second of the questions raised in the opening
paragraph -— what is minimum number of rounds of communication required to route a set
T of terminal pairs, when all paths assigned in a single round must be edge-disjoint? More
succinctly, given a graph G and set 7 of terminal pairs, we are asking for the smallest number
of realizable sets into which 7 can be partitioned. Let us denote this minimum by x(7). Of
course, x(7) =1 if and only if 7 is realizable in G, so determining x(7') i~ omplete. We
also note that the same question applies to the more general setting of unspuitable flow with
arbitrary demands, where again we seek a minimum partition into realizable sets.

In addition to the above scheduling interpretation, one can view this problem in a number of

other ways. As a salient example, the objective function x(7') arises in the design of algorithm

15

for routing in all-optical networks. The model here, considered in [1, 95, 9] and based on current
proposals for network design using optical communication technology, is the following. Each
connection request (s;,¢;) must be assigned an s;-t; path and a wavelength, so that if two paths
share an edge then they must use different wavelengths. The goal is to minimize the number
of wavelengths used to route all the connections. There is clearly a one-to-one correspondence

between wavelengths here, and the “rounds” of the previous paragraph.

Congestion. Finally, there is a third natural objective function (in addition to o and y) that
one can consider when given a graph G and terminal pairs 7. As above, we suppose that each
terminal pair (s;, ;) has an associated demand p;. Let us say that a routing of 7 in G is simply
a choice of an s;~t; path P,, for each (s;,t;) € T. The congestion of a routing is then defined to
be the maximum amount of demand carried by the routing over any edge in G; i.e., it is given

by the expression

max Z pi. (1.4)

We use v(7T) to denote the minimum congestion achievable by a routing of 7 in G. Of course,
when all demands are equal to 1, ¥»(7) = 1 if and only if 7 is realizable in G, so determining
v(T) is NP-complete.

The notion of congestion does not take into account the capacities on the edges of G (im-
plicitly, all are equal to 1). When dealing with arbitrary capacities, we will also be interested
in the relative congestion of a routing — the maximum fraction by which the demand carried
by the routing over any edge e exceeds its capacity c.. That is, the relative congestion of a
routing specified by paths {P;} is equal to

max Ei:eGP.- Pi .

ax e (1.5)

We use (7)) to denote the minimum relative congestion achievable by a routing of 7 in G.
Note that ¥(7) = y(7T) in any graph in which all capacities are equal to 1. Note also

that »(7) < x(7), since one can obtain a routing of relative congestion x(7) by simply

“superimposing” all the paths used in a routing of 7 in x(7") rounds. But there are graphs

G and sets 7 of terminal pairs for which x(7) can be much larger than v,(7); we will see

16

examples of this in Chapter 2.

Karp, Leighton, et al. [57] and Raghavan and Thompson [94] use congestion as a measure
of how “densely” wires must be packed on a VLSI chip. And though the UFP is perhaps a
more accurate reflection of the types of packing constraints that predominate in virtual circuit
routing in high-speed networks, congestion also makes sense as a measure in this domain. In
particular, the statistical multiplezing capabilities of Asynchronous Transfer Mode (ATM) allow
one, in some cases, to trade off the congestion on a link against the expected rate of cell loss.
We will not discuss this further here; we refer the reader to a reference such as [90] for a general

introduction to ATM.

An Example. It is worth discussing an example of a graph G and a set 7 of terminal pairs, in
order to illustrate the relationship between the three objective functions «, X, and v. Perhaps
surprisingly, the case in which G is a graph consisting of one unit-capacity edge (s,t) is already
interesting. Let us assume the set T of terminal pairs consists of k copies of the pair (s,), with

demands p,,...,pr. Then

e a(T) corresponds to the NP-complete knapsack problem: given real-valued weights py, ..., px €
(0,1), find a subset of the {p;} of maximum total weight, subject to the constraint that

their total weight not exceed 1.

e x(T) corresponds to the NP-complete bin-packing problem: given real-valued weights
p1s---, Pk € (0,1), place them into as few “bins” as possible, so that the total amount of

v.eight placed in any bin does not exceed 1.

e v(T) is trivial in this case; it is equal to }_; p;.

1.2 Overview of the Present Work

We now provide a brief overview of the material in Chapters 3-9, which constitutes the main
technical portion of this work. The results described here are part of the overall context set
forth in Chapter 2, and they extend some of the earlier work discussed there.

The focus of this work is on approximation algorithms for the unsplittable flow problem

and its variants. The two main results that we build up to are a general constant-factor

17

approximation algorithm for the single-source unsplittable flow problem (Chapters 3 and 4),
when all terminal pairs share a common vertex; and a constant-factor approximation algorithm
for the unsplittable flow problem on a class of locally planar graphs that generalizes the two-
dimensional mesh (Chapter 7). The latter algorithm requires, as one component, one of the
single-source algorithms developed in Chapter 3. Variants of the latter algorithm provide, in
the same general class of graphs, a constant—factor approximation algorithm for the problem of
minimizing congestion (Chapter 8), and an (optimal) on-line O(logn)-approximation for the
UFP. This settles open questions of Karp, Leighton, Rivest, Thompson, Vazirani, Vazirani [57],
and of Awerbuch, Gawlick, Leighton, Rabani [12] respectively. We also develop algorithms for
constructing node-disjoint paths on the two-dimensional mesh (Chapter 9); the performance
guarantee of our algorithm essentially settles (to within a logarithmic factor) an open question
of Aggarwal, Klawe, Lichtenstein, Linial, and Wigderson [2] that was raised in the context of
VLSI layout.

A central theme in this work is the cornection between the unsplittable flow problem and
the closely related fractional multicommodity flow problem. We will discuss the latter in detail
in Chapter 2; for now, it is sufficient to think of it as a variant of the UFP in which the
“unsplittability” constraint is relaxed to allow the p; units of demand associated with the pair
(si,t;) to be routed only partially, and to be split up over several paths. The basic optimization
problems involving fractional flow can be solved in polynomial time, and thus it makes sense
to investigate ways in which optimal fractional flows can be used to approximate the UFP.
This general approach is typically referred to as rounding: we wish to “round off” the fractional
solution we obtain to a 0/1-valued solution that produces an unsplittable routing. For example,
the high-capacity UFP approximation of Raghavan and Thompson [94] is based on a direct
rounding procedure, which we will sketch in Chapter 2.

Our approximation algorithm for the general single-source problem is based on a new round-
ing procedure for single—source fractional flow — this latter problem corresponds to the well-
known mazimum flow problem. For general multi-terminal problems, one can show that the
optimal value of a fractional flow can far exceed the optimal value of an unsplittable flow —
thus, a direct comparison to the optimum fractional flow will not be of use in designing a general

approximation algorithm in this case. However, on the two—dimensional mesh and its gener-

18

alization discussed above, we show that one can make use of the optimal fractional solution
in designing an approximation algorithm. Our algorithm here uses the Raghavan-Thompson
method on a high-capacity “simulated network” that we construct on top of the underlying
mesh. To generalize this construction of a simulated network beyond the mesh itself, we require
a multicommodity flow result of Okamura and Seymour [84], as well as some topological results
on the disjoint paths problem due to Schrijver [104]. One interesting feature of the node-disjoint
paths problem, from the perspective of these techniques, is that the gap between the fractional
and unsplittable solutions can be very large, and thus the fractional solution provides very little
information in designing our algorithm for the node-disjoint case (Chapter 9).

Certain of the results described below make use of the following definition. We say that a
set of terminal pairs is a permutation if every vertex of the graph appears in exactly one pair.

We say that it is a partial permutation if every vertex appears in at most one pair.

Single-Source Unsplittable Flow. In Chapter 3, we consider a very basic case of the
unsplittable flow problem, which previous approximation techniques were unable to handle.
This is the single-source UFP, in which all s; are the same. When all p; and c, are equal, this
problem can be reduced to the case of edge-disjoint s-¢ paths, the subject of Menger’s theorem
[82] and the max-flow min-cut theorem (34, 35]. But when we simply remove this condition, the
single-source UFP becomes NP-complete (as indicated above, it trivially contains the knapsack
problem); and in fact previous techniques are capable of providing an approximation algorithm
only when every c. is at least Q(log |E|) times every p;.

Here we provide a constant—factor approximation for the general case of this problem. We
also investigate what can be said about the case in which p* = max; . p;/c. is small, as this is
relevant to situations such as those covered by [94, 93, 10}, when every connection consumes
only a small fraction of the bandwidth on a link. We provide an approximation algorithm with
a performance guarantee of 1 + O(y/p*) — the crucial point being that this converges to 1
as p* becomes smaller and smaller. We obtain similar approximation ratios for the problems
of minimizing congestion and routing in rounds. For the latter problem, we make use of a
matroid structure inherent in the single-source disjoint paths problem in order to develop the

approximation algorithm. The connection with classical matroid algorithms appears to be

19

interesting in its own right; its first application in approximation problems of this type was
found by the author and Eva Tardos [63], for a related problem that we will not be discussing
in this work.

As indicated above, the results are based on a new rounding procedure for the fractional
version of the problem, which is precisely the classical mazimum flow problem. The nature of
the algorithms developed here makes them useful in a number of subsequent chapters, as they
allow many algorithms designed with the MDP in mind to be converted intc algorithms for the

more general UFP.

Single—Source Problems in Directed Graphs. We also extend our algorithms for the
single-source UFP to the case of directed graphs. Although the final results we obtain are
essentially the same (with somewhat larger constants) as for the undirected case, the techniques
required are more elaborate.

This is the only place in this work in which we deal with directed graphs, and we have two
main motivations for doing so. First, much less is known about the disjoint paths problem in
the directed case, and thus it is of interest to develop techniques that apply to directed graphs.
Second, it is possible to reduce a general family of NP-complete “load-balancing” problems to
the directed case of the single-source UFP. In this way our constant—factor approximation for
this problem implies a general constant—factor approximation for any load-balancing problem
of this type. Thus, as is the case with the classical max-flow min-cut theorem, we obtain
applications of the single-source UFP that have essentially nothing to do with the issue of

routing in networks.

The Greedy Algorithm. Chapter 5 is a short chapter which analyzes the performance of
perhaps the simplest algorithm for the MDP — the greedy algorithm, which always routes a
connection on the shortest available path. For the most part, we consider a slight variant of the
greedy algorithm called the bounded greedy algorithm (BGA), which only routes a connection
if there is a free path that is sufficiently short. We show that in a bounded—-degree expander
graph, the BGA provides an O(log n(log log n)?)-approximation for the MDP. The fact that this
performance guarantee can be achieved by an algorithm that is both on-line and deterministic

presents a somewhat striking contrast with lower bounds due to Bartal et al. [15] and Awerbuch

20

et al. [10], which apply to classes of graphs other than expanders. For permutations on
expanders, we show that the BGA is in fact an O(log n)-approximation. This improves on the
bound of O(log®n) that follows from the techniques of Aumann-Rabani [9] and Raghavan-
Upfal [95]; these papers consider the routing of permutations on expanders in the off-line and
randomized on-line settings respectively. The latter part of this chapter is based on joint work

with Ronitt Rubinfeld [62].

Approximations on the Two-Dimensional Mesh. In Chapter 6, we develop approxima-
tion algorithms for the two-dimensional mesh graph. The two-dimensional mesh is a funda-
mental graph to consider both in the context of VLSI and the context of virtual circuit routing.
The n x n two-dimensional mesh is the adjacency graph of the n x n chessboard; it has vertex
set {(,7) : 1 <4,j < n}, with (,j) and (k, £) joined by an edge iff |k — 4| +|¢ — j| = 1. In some
sense, it forms the basis of the study of VLSI layout, since most models of a VLSI chip represent
it as an n x n array of square cells [57]. It is one of the most common parallel architectures; and
many large-scale networks for high-speed communication are configured as mesh-like, nearly
planar graphs [12, 22, 90, 66, 81, 117]. Finally, we note that the MDP remains NP-complete
when the underlying graph is restricted to be the mesh [65].

We provide a constant—factor approximation for the UFP on the (uniform-capacity) two-
dimensional mesh. This is the first constant—factor approximation for the UFP, or even the
maximum disjoint paths problem, in any class of graphs other than trees. Using the same
underlying technique, we obtain an on-line O(log n)-approximation algorithm, which is optimal
for on-line algorithms on the mesh. This settles an open question of Awerbuch, Gawlick,
Leighton, and Rabani [12]. The underlying technique for both these algorithms is, roughly, the
following. We. impose a high-capacity “simulated network” on the mesh; the paths are then
constructed in two stages: (i) using an algorithm for the high-capacity UFP (e.g. [94, 93, 10]),
we choose “global routes” in the simulated networks; (ii) these global routes are then converted
into paths in the mesh itself.

We also note that a straightforward application of the greedy set cover technique (24, 53, 77|,
in conjunction with the constant—factor approximation for the MDP, allows us to obtain an

O(log n) approximation for the minimum partition of 7" into rounds. This improves on a bound

21

of Aumann and Rabani [9].

Approximations on a Generalization of the Mesh. Much of the motivation for studying
the mesh in the context of communication networks stems from the fact that it is a bounded-
degree planar graph typical of many of the types of networks that arise in practice. Thus, it
is important to develop routing algorithms here that are robust in the sense that they do not
rely heavily on the fixed row/column structure of the mesh itself. With this in mind, we define
in Chapter 7 the class of densely embedded graphs, which generalizes the mesh. In particular,
it includes any class of even—degree graphs that can be embedded in the plane with a fixed
boundary and uniformly bounded face size. We extend our constant—factor approximation
algorithm to this class of graphs; much of the difficulty here is in adapting the construction
of the underlying “simulated network,” indicated above, to the setting of an arbitrary densely
embedded graph. To do this, we make use of classical results of Okamura and Seymour [84]
and Schrijver [104] on the disjoint paths problem. Our requirement that the vertex degrees be
even arises throughout previous work on this problem, as will be seen in Chapter 2; it is not
particularly limiting in practice, as it can be achieved by doubling every edge. The material in

Chapters 6 and 7 is based on joint work with Eva Tardos [63, 64].

Minimizing Congestion. In Chapter 8, we consider the problem of minimizing congestion.
Using the simulated network construction of Chapter 7, we obtain a constant—factor approxi-
mation for congestion in densely embedded graphs. Combined with the algorithm of Raghavan
and Thompson [94], this settles an open question of Karp, Leighton et. al [57] for the special

case of the mesh. This is based on joint work with Satish Rao and Eva Tardos [61].

Node—Disjoint Paths. Finally, all of the above has been concerned with edge-disjointness
constraints. But a number of very basic and interesting questions arise when one requires paths
that are node-disjoint. At the level of arbitrary graphs, these problems are very closely related;
but when one is interested, for example, in the case of planar graphs, the problems are very
different. In particular, one begins to encounter “topological” obstacles to the existence of
paths that did not arise in the edge—disjoint case. Moreover, such problems arise very naturally

in VLSI layout problems, which are often fraught with node-disjointness constraints.

22

In Chapter 9, we develop algorithms for finding node-disjoint paths on the two-dimensional
mesh. These will not be proper approximation algorithms in the sense defined above; but they
will be guaranteed to produce realizable sets within a polylogarithmic factor of the bisection
bound. Specifically, we will show that every permutation on the n x n mesh contains a set of size

Q(lo:n) that is realizable by node-disjoint paths. This essentially (to within this logarithmic

factor) closes a gap left open by Aggarwal, Klawe, Lichtenstein, Linial, and Wigderson [2, 3].
We also develop extensions of this algorithm for the case of “sparse” sets of terminal pairs on
the mesh. The material in this chapter is based on joint work with Alok Aggarwal and David
Williamson [5).

Figure 1-1 gives an approximate guide to the interdependence among Chapters 2-9. Chap-
ter 2 can be used mainly as a reference; most of the subsequent chapters rely only on selected

portions of it.

6—>T7T—>8

N /N

2/3
|

Figure 1-1: Interdependence among chapters

1.3 Some General Notation

Much of the notation that we require will be developed as it is needed; here we introduce some
basic definitions that will be used throughout.

As before, let G = (V, E) be an undirected graph, possibly with parallel edges. If u,v € V,
let d(u,v) denote the least number of edges in a u-v path. For v € V, and r > 0, let B,(v)
denote the set of all u € V for which d(v,u) <.

23

For X C V, let G[X] denote the subgraph of G induced on the vertices in X. Let §(X)
denote the set of all edges with exactly one end in X. Let w(X) denote the set of all vertices
of X that are an end of an edge in §(X). Let X° = X \ n(X), the “interior” of X. For two
disjoint sets X,Y C V, let §(X,Y) denote the set of edges with one end in X and the other in
Y.

An FEulerian graph is one in whick the degree of every vertex is even; its name commemorates
the fact that the development of graph theory would have been pcstponed by a century had
the street map of Konigsberg been Eulerian. A planar graph is one that can be drawn in the
plane without edge crossings; viewing the drawing of a planar graph as a subset of the plane,
we observe that its complement consists of a finite number of connected components, called
faces, of which the unbounded one is called the outer face.

Finally, we confess to using the terms “node” and “vertex” completely interchangeably.

24

Chapter 2

Background

Paths, paths, everywhere; a stamped-in network of paths spreading over the
empty land, through long grass, through burnt grass, through thickets, down
and up chilly ravines, up and down stony hills ablaze with heat ...

— Joseph Conrad, Heart of Darkness.

None of the theorems discussed in this chapter are our own; we give attributions in almost all
cases, unless the result is somehow part of the “folklore.” Our development of this background
material is not meant to be comprehensive; in particular, we devote the most attention to the

results that we will use in subsequent chapters.

2.1 Menger’s Theorem

As mentioned in Chapter 1, one of the most basic cases of the disjoint paths problem is that in
which all (s;,t;) pairs are the same; that is, all connections requests are between two vertices
s,t € V. In this, the setting of Menger’s classical theorem [82], one asks: What is the maximum
number of mutually edge-disjoint s-t paths in G?

One way to provide evidence that there do not exist k edge-disjoint s-¢ paths is to exhibit

a set .X C V such that
(i) se Xandt ¢ X.

(i) [6(X)| < k.

25

For if there were k edge-disjoint s-t paths, then by (i) each would have to pass through a
different edge in §(X); but this would contradict (ii). We will call such a set X an s-t cut, and
define its value to be |6(X)].

Menger’s theorem is the non-trivial converse of the above observation.

Theorem 2.1.1 (Menger) There ezxist k edge-disjoint s-t paths in G if and only if there does

not ezist an s-t cut of value less than k.

There are many proofs known for Menger’s theorem; when Ford and Fulkerson proved
their generalization, the max-flow min-cut theorem (34, 35] (see Section 2.4), they provided a
polynomial-time algorithm for finding the maximum number of edge-disjoint s—t paths in a
graph G.

The formulation of Menger’s theorem exposes a very elegant necessary condition for the

existence of a solution to the disjoint paths problem, with arbitrary input G and 7.
There does not exist a set X C V such that

(i) There is a set of j terminal pairs in 7, each with one end in X and the other
inV\X.

(i) 16(X)| <.

We refer to this general statement as the cut condition, and the set X as a cut. X will be called
a non-trivial cut if neither X nor V' \ X are empty. Note that in this general formulation of
the cut condition, we do not require the entire set 7 of terminal pairs to be split by the cut.

Also, it is a simple matter to show

Lemma 2.1.2 The cut condition holds if and only if it holds for all sets X for which both G[X]
and G|V \ X] are connected.

(See e.g. [39].)

The cut condition is not sufficient for the solvability of the disjoint paths problem in general.
For example, let us consider the brick wall graph of Figure 2-1. Speaking somewhat informally,
we say that the general n x n brick wall graph G, consists of n layers of vertices, connected

as in the figure. Let 7, be a set of terminal pairs in G,, such that all s; appear from top to

26

S1

32

33

S4

t ta t3 4

Figure 2-1: A bad example

bottom at the leftmost edge, and all t; appear from left to right on the bottom layer. (7, is
pictured in the figure.) Then one can easily verify that the cut condition holds for (G, T,); but
if 1 <i < j <k, then any s,-t; path must share an edge with any s;-t; path, and hence o(7T,)
is equal to 1. This in fact an interesting example on which to compare the objective functions
a, x, and v — we have o(7,,) = 1, x(7) = n, and v(7) = 2, indicating among other things
that the gap between v and x can be very large.

The special case of the MDP encompassed by Menger’s theorem is quite robust in the sense
that a number of seemingly more general cases reduce easily to it. As a primary example,
consider the single-source MDP, in which all s; are the same vertex t € G (though the ;, for
i=1,...,k, may be distinct). If we construct a new graph G’ by joining an additional node ¢*
to each of t;,...,t, then we see that there exist k£ edge-disjoint paths from s to ¢* if and only

if the original problem has a solution. Thus, by Menger’s theorem

Theorem 2.1.3 An instance of the single-source disjoint paths problem has a solution if and

only if the cut condition holds.

Moreover, since there is an efficient algorithm for determining the maximum number of edge-
disjoint s-t* paths in the newly constructed graph, there is an efficient algorithm for the single-
source maximum disjoint paths problem. On the other hand, it is interesting to recall that
by the example in Chapter 1, the single-source unsplittable flow problem is NP-complete. We
develop approximation algorithms for it in Chapter 3.

In later chapters, we will also make use of another general problem that can be reduced to

Menger’s theorem — that of computing linkages between sets. Let X and Y be disjoint subsets

27

of V. By an X-Y linkage we mean a collection of edge-disjoint paths, each with one end in
X and the other in Y. An X-Y linkage will be called simple if the endpoints of all the paths
are distinct. A simple X-Y linkage of maximum size can be computed efficiently by attaching
an additional vertex s to all the vertices in X, an additional vertex ¢ to all the vertices in Y,
and computing a maximum size set of edge-disjoint s-t paths in the newly constructed graph.
To compute a (non-simple) X-Y linkage of maximum size, one defines A to be the maximum
degree of the original graph, attaches s and ¢ to their respective sets X and Y via A parallel
edges to each vertex, and again computes a maximum size set of edge-disjoint s-¢ paths in the
newly constructed graph. We will use f(X,Y’) (resp. f,(X,Y)) to denote the size of a maximum
(simple) X-Y linkage.

Karp’s proof that the disjoint paths problem is NP-complete [56] gave compelling evidence
that there does not exist a simple criterion for the existence of disjoint paths of the type
suggested by the cut condition. In the next two sections, we discuss some special cases of the
disjoint paths problem in which feasibility can be decided in polynomial time (and for which
simple criteria are both necessary and sufficient); following this, we discuss a fractional version

of the disjoint paths problem that can be solved in general in polynomial time.

2.2 Tractable Special Cases

One of the first natural special cases of the disjoint paths problem to be considered was that of
a fixed number of terminal pairs. Even the case |7| = 2 turned out to be quite non-trivial, and
it was not until 1980 that three independent solutions emerged, due to Seymour [111}, Shiloach

[113], and Thomassen [116].

Theorem 2.2.1 (Seymour, Shiloach, Thomassen) There is a polynomial-time algorithm

for the disjoint paths problem in the case |T| = 2.

These algorithms also came with a fairly simple structural criterion for the existence of the
paths, which we will not go into here; for perhaps the shortest proof of this criterion, the reader
is referred to Section 2 of [100].

Naturally the next question was whether the problem is in polynomial time for any fixed

value of |7|. A polynomial time algorithm for this case was discovered by Robertson and

28

Seymour, as one of the main consequences of their Graph Minors series. The algorithm is given
in [102], but the proof of its correctness requires much of the machinery developed throughout

the series of papers.

Theorem 2.2.2 (Robertson—Seymour) For every fized k, there is a polynomial-time algo-
rithm for the disjoint paths problem in the case |T| = k.

Indeed, for every k the algorithm runs in time O(n®). However, the O() hides a very high
dependence on k and very large constants. Finding a reasonably simple algorithm even for the
case k = 3 remains an interesting open question. We will not be making use of Theorem 2.2.2,
though later in this work we will relate some of the concepts we introduce to definitions from
the Graph Minors series.

For the case of a variable number of terminal pairs, recall that the problem is NP-complete
even for planar graphs. Thus the emphasis here, in developing special cases, is in finding
some structured “arrangement” of the set of terminals that makes the problem more tractable.
Historically one of the first such results was developed by Okamura and Seymour [84], in the
following setting.

Let G be a planar graph, and @ the outer face of G. Also, let us define the augmented graph
G* to be the graph obtained from G by adding all (s;,t;) pairs as edges. Then Okamura and

Seymour show

Theorem 2.2.3 (Okamura—Seymour) If G* is Eulerian and all terminals lic on ®, the

outer face of G, then the set T is realizable in G if and only if the cut condition holds.

The proof also yields a polynomial-time algorithm for finding the paths. A number of more
efficient algorithms have been developed for this case, culminating in a recent linear time (and
quite practical) algorithm of Wagner and Weihe [118].

The requirement that G* be Eulerian is called the parity condition, and it appears in much
of the work on exactly solvable special cases. Though it seems somewhat mysterious, the reader
can appreciate its importance by considering again the brick wall graph of Figure 2-1; it satisfies
all the hypotheses of the Okamura-Seymour theorem aside from the parity condition, and yet

the disjoint paths do not exist.

29

A result due to Frank [37] allows us to weaken the parity condition a little. For a set X, let
d(X) denote the set of terminal pairs with one end in X and the other in V' \ X. We say that
the cut condition holds sirictly if |6(X)] > |d(X)| for all non—trivial cuts X. (The cut condition

itself requires only non-strict inequality.)

Theorem 2.2.4 (Frank) Let G be planar, and Eulerian everywhere but its outer face ®. Let
T be a set of terminal pairs all lying on ®. Then if the cut condition holds strictly, the set T

s realizable.

We will make use of Frank’s extension of the Okamura-Seymour theorem in Chapter 7.

There are a number of subsequent results on the solvability of the disjoint paths problem
in cases when the underlying graph is planar and the terminals have some “nice” arrangement.
In particular, see the papers of Okamura [85] and Schrijver [103], both of which are discussed
in Frank’s survey (39].

There is a further elegant theorem along these lines due to Seymour [112], which we state

here although we will not have occasion to use it.

Theorem 2.2.5 (Seymour) Let G be planar, with terminal pairs T, and suppose that G* is

both planar and Eulerian. Then T is realizable in G if and only if the cut condition holds.

Again, there is a polynomial-time algorithm accompanying this theorem.

2.3 Disjoint Paths on a Surface

We now discuss some special cases of the node-disjoint paths problem, when the underlying
graph is embedded on a fixed surface. The techniques here will be used in Chapter 7, as part
of our approximation for (edge-)disjoint paths in densely embedded graphs.

First we need some preliminary topological definitions; the reader is referred to an intro-
ductory textbook such as [80] for more detail. Let S* denote the unit circle, and S? the surface
of the unit sphere in R3, as topological spaces. Let ¥ denote a compact orientable surface; it is
well-known that ¥ may be obtained from $? by attaching a finite number of handles. By a disc
we mean a set homeomorphic to the closed unit ball in R?, and by X-disc, we mean a subset of

¥ homeomorphic to a disc. We also use the terms curve (continuous image of [0,1]) and closed

30

curve (continuous image of S'). Our definition of graph embedding is standard; a face of an
embedded graph G is a connected component of £\ G, and we say G is strongly embedded if
the closure of each face is a ¥-disc, and each face is bounded by a simple cycle of G.

(It is not difficult to produce an example of a graph embedding that is not a strong embed-
ding; consider the following construction. Let C be a copy of K3, with vertices vy, vz, v3. Let
C; (i =1,2,3) also be a copy of K3. We define a 9-node graph G by identifying v; with a node
of C;, for i = 1,2,3. Then it is possible to embed G on the torus in such a way that the for
each edge e of C, there is a face ® in the embedding such that the sequence of edges bounding
® contains « twice.)

In the results to follow, one can take all curves and closed curves to be polygonal, and all
surfaces to be triangulated; in this way, we avoid various topological exotica.

Two curves R and R’ are said to be homotopic on I if, informally speaking, one can be
“continuously deformed” into the other without moving the endpoints. Technically, R and R’
are homotopic, written R ~ R’, if there exists a continuous function ¥ : [0,1] x [0,1] — ¥ such

that for all t € [0, 1],
(i) W(t,0) = R(2), ¥(t,1) = R'(2).
(ii) ¥(0,t) = R(0), ¥(1,t) = R(1).

We define homotopy for closed curves using a function ¥ : S* x[0,1] — X that satisfies condition
(i). A closed curve is said to be null-homotopic on X if it is homotopic to a point; it is well-
known (see e.g. [99]) that a closed curve is null-homotopic if and only if it is contained in a
¥-disc.

Robertson and Seymour proved the following theorem [98]. Let G be a planar graph, and
T a set of terminal pairs on the outer face of G. If we are looking for a realization of 7 by
node-disjoint paths, then we observe that the following are obstacles to the existence of such

paths.

(i) Two pairs of terminals cross; that is, they appear in the cyclic order s;,s;,t,¢; on the

outer face.

(ii) (A type of cut condition.) One can draw a simple closed curve R in the plane, meeting

31

the graph only at vertices, so that the number of te. minals pairs with one end inside R

and the other end outside R is greater than the number of times that R meets G.

For in case (ii), each path in a realization of G would have to pass through a different vertex
in RN G; and there are not enough such vertices.
In [98] it is shown that these conditions form a criterion for the (non-)existence of paths.

The proof is not very difficult.

Theorem 2.3.1 (Robertson-Seymour) If G is planar and T lies on the outer face, then T
is not realizable by node-disjoint paths if and only if one of (i) or (ii) above holds.

In [98], a similar result is also proved for graphs embedded on a cylinder.

Schrijver proved what is in some sense the ultimate generalization of this result, for graphs
embedded on an arbitrary surface [104]. Say that a curve R on ¥ is G-normal if it meets
the drawing of G only at vertices. Let cr(R,G) denote the number of times R meets G, and
mincr(R, G) the minimum of cr(R’, G) over all R’ ~ R. For two curves Ry and R,, we define
cr(Ry,R,) to be the number of crossings of Ry and R,, and mincr(RRy, R,) to be the minimum
of cr(Rg, Ry), over all Ry ~ Ry and Ry ~ R;.

Let A,,...,A; be closed curves on ¥. We are interested in finding node—disjoint cycles
Ci,...,Cy on X such that C; ~ A; for i = 1,...,k. Consider the following two necessary

conditions for the existence of such cycles, analogous to obstacles (i) and (ii) above.

(i) There exist closed curves Aj,..., A} on ¥ such that A; ~ A}, and the A] are mutually
disjoint.

(ii) For every closed curve R on ¥ we have

k
cr(R,G) > Y mincr(R, A;).

i=1

It turns out that these are not sufficient for the existence of the disjoint cycles in G [105]; to
obtain a set of sufficient conditions, we must consider the following type of parity condition.

Say that a closed curve R is odd with respect to G and {A;} if
ca(R,G) £ Y _cr(R,A;) (mod 2).

32

Note that the parity of the number of crossings is invariant under homotopy; so if R is odd
and R ~ R', then R’ is odd as well. Thus for every odd curve, a necessary condition for
the existence of the disjoint cycles is that we have strict inequality in (ii). But this does not
necessitate changing the statement of (ii); for if we know that cr(R,G) 2 Zf;, mincr(R, A;)
for an odd curve R, then strict inequality already holds.

The problem arises when we concatenate two odd curves with a common point. Let R,
and R, be two odd closed curves, with a common point x € £\ G. Define R to be the closed
curve obtained by concatenating the parametrizations of R, and R, at the common point z, in
the natural way. We say that R is the doubly odd closed curve composed of R, and R,. Now,
cr(R,G) and ¥, mincr(R, A;) do have the same parity, and so it is possible for these quantities
to be equal. But because of the parity constraints, we know that if Cy, ..., Cy are node-disjoint

cycles in G homotopic to Ay, ..., Ai, then we must have

k
cr(Ry,G) > Y cx(Ry, Cy),

i=1

k
cr(R2,G) > Z cr(R,, Cy),

i=1
whence
cr(R,G) = cr(Ry,G)+ cr(R,,G)
k k
> z Cl‘(Rl, C,) + Z CI'(RQ, C,)
i=1 i=1
= Z CI‘(R, C,)

> E mincr(R, A;).

Thus, we obtain our third necessary condition.

(iii) For every doubly odd closed curve R on ¥ we have

k
cr(R,G) > Z mincr(R, A;).

i=1
Schrijver proves that (i), (i), and (iii) are indeed sufficient [104].

33

Theorem 2.3.2 (Schrijver) Given closed curves A,,..., A, on X, there ezist node-disjoint

cycles Cy,...,Cy in G such that C; ~ A; if and only if (i), (i1), and (iii) hold.

For us, it will be useful to have a version of this theorem for surfaces with boundary. By
a surface X with boundary we mean a compact surface £ from which the interiors of one or
more disjoint closed -discs have been removed. The boundaries of these closed t-discs will
be called the boundary components of £. In this setting, we are interested in the following
related problem. We are given curves A;,..., A, whose endpeints coincide with vertices of G
on boundary components of £, and we want to find node-disjoint paths P;,..., P, in G such
that P,~ A; fori=1,...,k.

Here, our three necessary conditions remain almost exactly the same, except that we must
incorporate the fact that ¥ has a boundary. So call a curve R essential if it is either a closed
curve or a curve with both endpoints on boundary components of ¥. Our necessary conditions

now become
i) There exist curves A’;,..., A’s on T such that A; ~ A!, and the A are mutually disjoint.
1 1

(ii) For every essential curve R on ¥ we have

k
cr(R,G) > Z mincr(R, A;).

i=1

(iii) For every doubly odd closed curve R on ¥ we have

k
cr(R,G) > Z mincr(R, A;).

i=1

Now the following is known [107], and can in fact be shown by a simple reduction to

Theorem 2.3.2

Theorem 2.3.3 (Schrijver) Given curves A,,..., A, on X, whose endpoints coincide with
vertices of G on boundary components of ¥, there erist node-disjoint paths Py,...,P. in G

such that P; ~ A; if and only if conditions (i), (ii), and (i) above hold.

34

2.4 Fractional Flow

As we begin to turn to the issue of approximation, we introduce the notion of fractional flow,
which due to its tractability is of great help in the design and analysis of approximation algo-
rithms for the MDP.

As before, we are given a graph G and a set 7 of k terminal pairs. Let us consider the case
in which each terminal pair (s;,t;) has an associated demand p,. A fractional flow for T in G

is defined as follows. For each pair (s;,t;), we choose
(i) a set of s,-t; paths P},..., P, and
(ii) associated non-negative weights y!,...,y* € R such that z; =}, vl < pi.

Of the p; units of flow fromn s; to t;, a total of y! is routed on path P/ (and so p; — z; units of
flow are not routed at all). We say that such a flow is a fractional routing if z; = p; for each
i=1,...,k; that is, the total demand for each terminal pair is routed on the associated flow

paths. A fractional flow is said to be feasible if it satisfies the capacity constraints

Y yi<e. (2.1)

(i,j):eEPl.j
We can now ask whether 7 is fractionally realizable (or fractionally feasible) — by this we mean
that there exists a feasible fractional routing. We can also consider fractional version of some

of the optimization problems considered in the introduction:

(i) We can ask — what is the maximum amount of flow that can be feasibly shipped from
the sources to the sinks in G? For this latter problem, we will denote the maximum in
question by af(T). Of course, using the above notation, the unsplittable flow problem is
obtained by simply adding the requirement that each g¢; be equal to 0 or 1; and for those

terminal pairs with ¢; = 1, we must have y} = p;.

(i) The congestion of a fractional routing is defined to be the maximum amount of flow sent

across any edge; using the above notation, we can write it as

max > 4l

(i,j):e€ P}

35

Similarly, the relative congestion of a fractional routing is defined to be

E(i,j):ceP.’ y{
max ———.
e Ce
We use v/(T) (resp. v{(T)) to denote the minimum congestion (resp. relative congestion)

of a fractional routing of 7.

These are often termed fractional multicommodity flow problems; the terminal pairs (s;,t;)
are viewed as different commodities that must be simultaneously transported on the same un-
derlying network. Both here and in what follows, when we speak of “maximum flow” (question
(i) of the previous paragraph), we do not allow more than p; units of flow to be shipped from
s; to t;. That is, we do not consider the version of the problem in which one can ship more
flow than the total demand. This is mainly for the sake of a uniform presentation, and it can
be finessed by allowing p; = co for some of the pairs (s;, ;).

There is also a notion of a cut condition in this setting; we can define it as follows. For a
set X C V, recall that 6(X) denotes the set of all edges with exactly one end in X, and d(X)

denotes the set of all terminal pairs with exactly one end in X. Define

oX) = z Ce
e€6(X)
p(X) = Z Pi

(8t)Ed(X)
Then the cut condition is the following.

For all X C V, we have ¢(X) > p(X).

Although the cut condition is necessary for fractional realizability, it is not in general sufficient.
A fairly large amount of work has been done on showing the sufficiency of “approximate” cut
conditions; we will discuss this further in Chapter 10, and also refer the reader to [69, 60, 44,
89, 74] for more details.

The well-studied maximum s-t flow problem deals with fractional flow — it is simply the
above problem in the case when all (s;,¢;) pairs in 7 are the same. This is the case considered

in the fundamental work of Ford and Fulkerson [34, 35], who showed that in this setting the cut

36

condition is necessary and sufficient for fractional realizability. Notc that since we are assuming
that all (s;,¢;) pairs are the same, the definition of fractional flow allows us to assume further
that |T7] = 1 — by merging all the s-t demand into one single value p. (It can be split up
fractionally again when it is routed.)

Thus we obtain the maz-flow min-cut theorem.

Theorem 2.4.1 (Ford—Fulkerson) Let G be an arbitrary graph, and T consist of a single
pair (s,t) with demand p. Then T is fractionally realizable in G if and only if ¢(X) 2 p for all
sets X CV for whichse X, t# X.

The original proof of Ford and Fulkerson yielded a polynomial time algorithm for deciding
realizability for the case in which p and all c. are bounded integers. A polynomial-time al-
gorithm for the general case was first obtained independently by Dinic [30] and Edmonds and
Karp [32]. The efficiency of maximum flow algorithms has become a major issue in algorithm
design; see for example the survey of Goldberg et al. [48]. All these algorithms solve the more
general mazimization version of this problem, in which one wishes to ship the maximum amount
of flow possible from s to t.

The max-flow min-cut theorem appears to be simply a fractional analogue of Menger’s

theorem; but in fact it generalizes it, due to the following second result of Ford and Fulkerson.

Theorem 2.4.2 (Ford—Fulkerson) Let G be an arbitrary graph, and T consist of a single
pair (s,t) with demand p. Suppose further that p is an integer, and all capacities are integers.
Then T is fractionally realizable if and only if it is realizable by p flow paths each carrying one

unit of flow.

Due to this theorem, we can feel justified in using the term “s-t flow” in a graph with only unit
capacities to denote a set of edge-disjoint s-t paths.

From the s-t version of these results, it is again possible to infer more general results, by
analogy with the method we saw in Section 2.1. For example, the single-source maximum flow
problem, when all s; are the same vertex, can be reduced to the s-t maximum flow problem as

before. It is worth stating this as an explicit corollary of Theorems 2.4.1 and 2.4.2.

Corollary 2.4.3 Let G be an arbitrary graph, and T a set of k terminal pairs such that s; =
seV fori=1,...,k. Then

37

(i) T is fractionally realizable if and only if the cut condition holds.
(11) A mazimum fractional flow can be found in polynomial time.

(iii) If all demands p; are equal to a common value p, and all capacities are multiples of p,
then there is @ mazimum fractional flow that is an unsplittable flow. In particular, in this

case, if T s fractionally realizable then it is realizable in the unsplittable sense.

Now let us consider the fractional multicommodity flow problem in its full generality. It
turns out that unlike the MDP and UFP, the fractional multicommodity flow problem can be
solved in polynomial time. The most direct way to see this is to verify that it can be written
as a polynomial-size linear program, and thus solved optimally using a polynomial-time linear
programming algorithm [58, 55, 49]. Recently, faster and more combinatorial algorithms have
been developed to provide (1 + €)-approximations for this problem (see e.g. [88, 68, 13]).

Since maximum fractional flows can be computed in polynomial time, we will be making
use of them in designing approximation algorithms. As with many fundamental problems of
combinatorial optimization, a question that naturally arises is the extent to which the existence
of a fractional solution to a problem implies the existence of an integer solution. And, in a related
vein, one can ask how different the optimum over fractional solutions can be in comparison to
the optimum over (the more restricted set of) integer solutions.

In our case, at least when all p; are equal to 1, integer solutions correspond to feasible
unsplittable flows, and so this comes down to a comparison of «(7) and af(7). Following the
example of Figure 2-1, consider an n X n brick wall graph with n terminal pairs arranged as
shown, and all capacities and demands equal to 1. There is a fractional flow of total value %n,
while the maximum unsplittable flow has value 1, since disjoint paths cannot be found between

any two pairs simultaneously. Thus, we have the following fact (noted in [44] and elsewhere).

Theorem 2.4.4 Even when all demands and capacities are equal to 1, the gap between the
mazimum fractional flow value o/ (T) and the mazimum unsplittable flow value a(T) can be as

large us a factor of 1k for k terminal pairs.

Of course, the size of this gap is extremely sensitive to the nature of the underlying graph; if

we double every edge in Figure 2-1, then Frank’s extension of the Okamura-Seymour theorem

38

applies and there is no gap at all. Much of our work here is motivated by the investigation of the
relationship between fractional and unsplittable flow, both as a means to provide approximation
algorithms and as an end in itself.

Seymour formulated the following conjecture {112], which can easily be motivated by exam-

ples such as Figure 2-1 and theorems such as 2.2.3 and 2.2.5.

Seymour’s Conjecture: If all capacities and demands are equal to 1, and a set T
of terminals is fractionally realizable, then it is realizable in half-integers. That us,
there is a fractional flow shipping all the demand, in which all path weights are equal

1
to 2

This conjecture is false, disproved by Lomonosov [76]; in fact, it is now known that the “half-
integer” flow problem is NP-complete [83]. However, it seems quite possible that structural

results of this type may indeed hold for the unsplittable flow problem in general graphs, and

this is clearly an interesting issue for future work.

2.5 The High—Capacity UFP

We can now introduce the randomized rounding technique of Raghavan and Thompson [94],
which leads to Raghavan’s algorithm for the high—capacity UFP [93]. Recall that in this special
case of the UFP, we have an n-node, m-edge graph with minimum edge capacity at least
Q(log m) times the maximum demand. Re-scaling, let assume that the maximum demand p*
is at most 1, and the minimum edge capacity c, is at least € log m.

Raghavan’s algorithm is now simply the following.

(i) Solve the fractional maximization problem; for the pair (s;, t;) we obtain paths P},..., P%,

and weights y;,...,y{ € R such that z; = }; y! < pi.
(i) Define 7} = y!/p; and Z; = z/pi.
(iii) Choose a constant scaling factor p. (The dependence of p on € will determined below.)

(iv) Finally, route the pair (s;,¢;) on path P/ with probability 17, and don’t route (s;,t;) at
all with probability 1 — uZz;.

39

In analyzing this algorithm, we must verify two things. First, we argue that with high
probability, no capacity constraint is violated by the resulting paths. And second, we argue
that the total amount of flow routed is within a constant factor of the optimum.

To verify the first of these, we need the following result from [93]; it is a bound on the sum

of independent random variables in the spirit of results of Chernoff [23] and Hoeffding [51].

Theorem 2.5.1 (Raghavan) Leta,,...,a. € [0,1]. Let X}, X2, ..., X, be independent Bernoulls
trials with EX; =p; and ¥ =3, 0;X,; s0o EY =m =Y, a;p;. Then for § > 0 we have

Pr(¥ > (1+68)m] < [(l_-'f‘;m] .

We specialize this to the form in which we will use it as follows.

Corollary 2.5.2 Let a;,...,a, € [0,1]. Let 0 < 4 < a £ 1, and py,...,p, € [0,1]. Let
X1, X3,..., X, be independent Bernculli trials with EX} = pp; and ¥' = 3, a;X]. Let m =
Y ia:pi. Then

Pr(¥' > am] < (ea™'p)*™.

This follows by applying the bound of Theorem 2.5.1 with m set to um and & set to ap~! — 1.

We apply the corollary to prove that the capacity of edge e is not violated after rounding,
with high probability. First, to make the computation easier, note that on any edge e which is
not fully saturated by the fractional solution, we may add artificial demands (and corresponding
amounts of flow) across e in order to saturate it. Thus, we will assume that all edges are
saturated. Let p; denote the fraction of demand of (s;,¢;) that is routed across edge e by the
fractional solution, and X/ the indicator random variable for the event that (s;,¢;) is routed on
a path that uses edge e. Note that with a; = p;, m = Y, a,p; is simply the capacity c. (by our
saturation assumption), and ¥’ is now a random variable equal to the amount of flow crossing
edge e in the solution produced by Raghavan’s algorithm. The “bad event” that the capacity of
edge e is violated has probability at most (ex)®, by Corollary 2.5.2; since c. > ¢ log m, we can

40

set 4 = e~'471/¢ and obtain a probability bounded by m~2. Thus, invoking the union bound,
the probability that the capacity of any edge is violated is at most m™".

Now. the expected amount of flow routed by the approximate solution is exactly u times the
fractional optimum,; since it cannot exceed the fractional optimum, Markov’s inequality implies
that with probability at least 7, the approximate solution has value at least 1u times the
fractional (and hence the unsplittable) optimum.

Since each randomized rounding experiment is an independent trial that succeeds with

constant probability, we obtain

Theorem 2.5.3 (Raghavan) Iterating the above algorithm ©(k) times provides a constant-

factor approzimation to the high-capacity UFP with probability 1 — 27F.

There are a number of things worth noting about this algorithm. First, the requirement
that all capacities be large relative to the demands was crucial for the experiment to succeed.
For consider a graph G consisting of two nodes s and ¢, with m parallel edges of unit capacity.
There are m terminal pairs, each equal to (s,t) with unit demand, and our fractional solution
(unfortunately) splits the flow for each pair evenly across the m edges. Now, our randomized
rounding experiment corresponds to the well-known combinatorial problem of throwing m
objects into m containers with equal probability; if we scale down the flow by only a constant
factor u before performing the rounding, then a standard argument shows that e(ﬁ%) paths
will be routed across a single edge with high probability.

In fact, the requirement that all capacities be large was crucial for the nature of the result
we proved. The randomized rounding algorithm in this case was able to produce an unsplittable
solution whose value was within a constant factor of the fractional optimum. But we saw in
the previous section, via Theorem 2.4.4, that no such result is possible for the unsplittable
flow problem in general. Thus, the high-capacity assumption played a significant role here;
approximation techniques for the UFP with small capacities cannot work so directly from the
fractional solution.

Recently, Awerbuch, Azar, and Plotkin [10] gave an on-line O(log n)-approximation for the

high-capacity UFP in general graphs: see Section 2.7.

41

2.6 Approximations for the MDP

As noted above, approximation results are much more limited for the MDP, and for the UFP
when one drops the “high-capacity” assumption. Prior to this work, the only class of graphs for
which a constant-factor approximation algorithm had been obtained was the class of capacitated
trees, by Garg, Vazirani, and Yannakakis [44]. Of course, deciding the realizability of a set of
terminals 7 is easy, since there is a unique path for every (s;,t;) pair. But if all demands are
equal to 1, and capacities can take on the values 1 and 2, the maximization problem becomes
NP-complete. Garg et al. consider the case of trees in which all demands are equal to 1, and
capacities are arbitrary. They show that in this setting, the ratio between the fractional and
integral optima is at most 2, and using this they obtain a 2-approximation algorithm.

Essentially the only other (off-line) approximation algorithms for the MDP are an O(log n)-
approximation for the two-dimensional mesh, obtained independently of this work by Aumann
and Rabani [9], and the approximations for expander graphs discussed in Section 2.8.

These above results concern the MDP, and uot the more general unsplittable flow problem.
There has been work on the problem of minimizing congestion, with arbitrary unsplittable
demands, when the underlying graph G is a cycle. (So the problem is, for each demand, to
decide whether to send it clockwise or counter-clockwise around the cycle.) This question was
raised in the context of SONET ring routing by Cosares and Saniee [26]. Schrijver, Seymour,
and Winkler showed that on the cycle, one can aiways find (in polynomial time) an unsplittable
routing for the demands such that the amount of flow crossing any edge is at most 2p* units
more than is required for the fractional optimum [108]. Thus, the approximation guarantee

they obtain here is additive, rather than multiplicative.

2.7 On-Line Routing Algorithms

Recall that an on-line algorithm for the MDP (or UFP) is one that is presented with a sequence
of terminal pairs in order; when each arrives, it must be irrevocably rejected or routed on a
path through G without knowledge of future input. In analyzing such algorithms, especially
when randomization is involved, one must be careful that things are defined correctly; thus, we

will define our on-line model in slightly more detail.

42

As is standard in this area, we can picture the execution of an on-line algorithm as a game
played between the algorithm and an adversary that generates the input. First the underlying
graph G is fixed. Then the adversary (using knowledge of the algorithm) creates an ordered
set T of terminal pairs and presents them one at a time. For a deterministic algorithm, the
performance is measured as the ratio of the optimum o(7) to the number of pairs routed by
the algorithm.

Now, for a randomized on-line algorithm, we allow the adversary to have knowledge of the
algorithm, but not of the random choices that will be made during the algorithm’s execution.
The algorithm’s performance is the ratio of the optimum a(7T) to the ezpected number of
pairs routed by the algorithm. It will turn out that randomized on-line algorithms are often
capable of achieving significantly better performance guarantees than deterministic ones; this
is perhaps not surprising, given that randomization on the part of the algorithm to some extent
mitigates the power of adversarially chosen input. We note that there are other ways of modeling
randomized on-line algorithms, and a number of subtle issues arise [16]; howaver, we will not
get into these here.

As mentioned in Section 2.5, Awerbuch, Azar, and Plotkin [10] have given a deterministic
O(log n)-approximation for the high-capacity UFP in general graphs. They also prove that
Q(log n) is a lower bound for the performance ratio of any deterministic on-line algorithm for
this problem. Although Awerbuch et al. only prove their performance guarantee in terms of
the optimum unsplittable flow, it holds as well in terms of the optimum fractional flow. We
prove this in Chapter 6, where we need a slightly stronger analysis of their algorithm for use in
our on-line algorithm for the UFP in densely embedded graphs.

For the MDP, on the other hand, a number of fairly straightforward lower bounds show
that no deterministic on-line algorithm can achieve a polylogarithmic performance ratio in
trees or meshes [10, 17]. Thus, the on-line algorithms developed here have essentially all been
randomized.

An O(log n)-approximation for the case of trees was obtained by Awerbuch, Bartal et
al. [11]; this approximation ratio was improved to O(log d) for trees of diameter d by Awerbuch,
Gawlick, Leighton, and Rabani [12). Awerbuch, Gawlick, et al. [12] also obtained an on-

line O(log n log log n)-approximation for the two-dimensional mesh. Finally, the technique of

43

Raghavan and Upfal [95] discussed in the following section provides an O(log® n)-approximation
for bounded-degree expander graphs.
Now it is natural to ask whether there could be a randomized on-line algorithm with a

performance ratio of O(log®™

n) for all graphs, and this was recently answered in the negative
by Bartal, Fiat, and Leonardi [15]. They showed that there is a family of graphs {G,} and an
€ > 0 such that no on-line algorithm can be better than an O(n¢)-approximation on G,. In
fact, the graphs G, used by Bartal et al. are simply the n x n brick wall graphs of Figure 2-1.
Their on-line lower bound is highly sensitive to the structure of these graphs; and it must be
so, since in Chapter 7 we provide an on-line O(log n)-approximation for any Eulerian planar
graph with (loosely speaking) the structure of the brick wall graph. As our class includes, for
example, the brick wall graph in which every edge is given capacity 2, a natural next question is

the following — is there any €2(n¢) lower bound for on-line algorithms in any family of graphs

with edge capacity 2, instead of 1?7

2.8 Expander Graphs

Finally, we discuss a line of work related to constructing disjoint paths in bounded-degree
expander graphs. We will make use of this in Chapter 5, when we analyze the performance of
the greedy algorithm for constructing disjoint paths in expanders.

First, we define an expander graph. We say that an n-node graph G is an a-ezpander if, for
a constant o > 0, every set X C V of cardinality at most in satisfies the following ezpansion
condition:

16(X)| 2 o X]. (2.2)

Expander graphs must be highly non—planar; in particular, any class of graphs embeddable on
a fixed surface cannot contain arbitrarily large expanders [47, 6]. All the expanders we consider
here will have bounded maximum degree A. At times below we will use the term “sufficiently
strong expanders”; we intend here to avoid lengthy technical details, and essentially mean
expander graphs with an implicit lower bound on the constant a.

It turns out that in any (sufficiently strong) expander graph, any set of terminals of up to

a certain size is realizable. The first result of this type was proved by Peleg and Upfal [86];

44

their bound on the size of the allowable terminal set was considerably strengthened by Broder,
Frieze, and Upfal [20]. In order to obtain paths that are edge-disjoint, both these papers require
very strong expansion guarantees. However, for more moderate expanders, [20] also proves the
following. Recall that by the congestion of a set of paths, we mean the maximum of number of

paths containing any fixed edge.

Theorem 2.8.1 (Broder—Frieze-Upfal) For every a > 1, there ezists a constant 6 such
that the following holds. In any A-regular n-node a-ezpander graph G, any partial permutation
containing at most O(n/ log® n) terminal pairs can be routed with congestion at most 2, using

paths of length O(logn).

The proof also provides a randomized polynomial time algorithm for constructing the paths.
If one allows super—constant congestion, then even larger terminal sets can be guaranteed

to be realizable; in particular Leighton and Rao prove the following [70]. (The result in [70]

is stated only for strong expanders, but the proof as given there applies to a-expanders for

arbitrary a > 0.)

Theorem 2.8.2 (Leighton—Rao) For every a > 0, every bounded-degree c:-expander G has
the following property: every partial permutation T containing at most O(n/(lognloglog n))

terminals pairs can be routed in G with congestion O(loglogn), using paths of length O(logn).

Recent unpublished work of Broder, Frieze, and Upfal also addresses this trade-off between
the size of the terminal set and the allowed amount of congestion [21].
As a by-product of their earlier fundamental work on multicommodity flow, Leighton and

Rao [69] established the following result.

Theorem 2.8.3 (Leighton—Rao) Let G be a bounded-degree, n-node a-ezpander. Then any

partial permutation in G can be routed with congestion O(log n) using paths of length O(logn).

Using this result, Aumann and Rabani observed the following [9]. Say that we route a
partial permutation in such a graph G, and then build a conflict graph K on the set of paths
used in the routing. Now, each path meets O(log n) other paths on each of its O(log n) edges,

45

so the conflict graph K has maximum degree O(log®n). Hence we can color it with O(log® n)

colors. But each color class is a set of edge—disjoint paths; thus they show

Theorem 2.8.4 (Aumann—Rabani) Let G be a bounded-degree, n-node a-expander. Then

any partial permutation in G can be pariitioned into O(log2 n) realizable sets.

It follows that there is an O(log® n)-approximation for the MDP in bounded-degree ex-
panders: one simply computes the partition above and takes the largest realizable set produced.

Raghavan and Upfal [95] arrive at Theorems 2.8.3 and 2.8.4 via a completely different
technique, more closely related to the methods of Broder, Frieze, and Upfal [20]. Given a
permutation on a bounded-degree expander G, they produce a routing for it iteratively as
follows. For terminal pair (s;,t;), a point z; € V is chosen 2t random from the stationary
distribution of the random walk on G. The path for (s;,¢;) is then constructed from an s;-z;
random walk of length ©(logn), followed by an x;-t; random walk of length ©(log n). Raghavan
and Upfal show that the set of paths produced this way, for all pairs, has congestion O(logn)
with high probability; thus Theorem 2.8.3 follows.

A variant of this randomized algorithm produces an on-line O(log” n)-approximation for
the MDP in bounded-degree expander graphs. Specifically, when a terminal pair arrives, we
construct the above type of random walk; we then route the pair if the path constructed does
not intersect any previously routed path. It is not hard to show, given that the conflict graph
K on the paths will have maximum degree O(log?n) with high probability, that this is an
O(log® n)-approximation.

In Chapter 5, we develop an on-line O(log n log log® n)-approximation for expanders that

is deterministic.

2.9 Directed Graphs

All of the above discussion has been in terms of undirected graphs, and essentially all of the
present work is concerned with the case of undirected graphs. However, in Chapter 4, we will
extend our single-source unsplittable flow algorithm to the case of directed graphs. Thus, in
this section, we discuss some of the known results on disjoint paths in directed graphs that we

will be using.

46

First of all, by a directed graph, we mean an undirected graph G = (V, E) together with a
choice of a direction for every edge. Thus, if e = (u,v) € E, this choice of direction fixes one of
u or v to be the head of e, and the other to be the tail. A path in a directed graph must now
respect the directions of its edges, in the obvious way. So in the context of the MDP, if (s;, ;)
is a terminal pair in G, we are now seeking a directed path from s; to t;. This introduces a
substantial new complication to the disjoint paths problem, and changes the nature of what can
be done algorithmically. As one striking example, the problem of deciding whether (G,7) is
realizable, when G is directed and |T'| = 2, was shown to be NP-complete by Fortune, Hopcroft,
and Wyllie [36]. This is in contrast to the algorithmic results of [111, 113, 116, 102] discussed
in Section 2.2.

Indeed, the disjoint paths problem is much less well understood in general in the directed
setting than it is in the undirected setting. Let us indicate here which of the results of the
previous sections have analogues in the directed case, and which do not. First, we formulate a
directed cut condition as follows. If X C V, we define 67 (X) to be the set of edges entering
X, and 6*(X) to be the set of edges leaving X. In the capacitated case, we define ¢™(X) and
ct(X) to be the total capacity of edges entering and leaving X, respectively. Finally, we define
p~(X) to be the total demand of terminal pairs (s;,t;) for which s; ¢ X and ¢; € X; we define

pt(X) analogously. Thus, a natural phrasing of the cut condition is as follows.
For all X C V, we have ¢~ (X) 2 p~(X).

(The cut condition for ¢t and p* is equivalent, by considering V' \ X in place of X.)

Menger's theorem and the max-flow min-cut theorem still hold in the directed case (and
are, in fact, perhaps easier to prove for directed graphs). That is, the cut condition is necessary
and sufficient for realizability when all terminal pairs are the same. By the reduction discussed
in Sections 2.1 and 2.4, we obtain results for more general “single-source” problems as well.

We state the directed analogue of Corollary 2.4.3 here, as we will be using it in Chapter 4.

Corollary 2.9.1 Let G be an arbitrary directed graph, and T a set of k terminal pairs such
that s; =s €V fori=1,...,k. Then

(i) T is fractionally realizable if and only if the cut condition holds.
(ii) A mazimum fractional flow can be found in polynomial time.

47

(ii1) If all demands p; are equal to a common value p, and all capacities are multiples of p,
then there is a mazimum fractional flow that is an unsplittable flow. In particular, in this

case, if T is fractionally realizable then it is realizable in the unsplittable sense.

The general fractional multicommodity flow problem in directed graphs can still be formu-
lated as a linear program of polynomial size, and hence solved in polynomial time. It follows
that the high—capacity UFP approximation still works in the directed case. In fact, the on-line
algorithm due to Awerbuch et al. [10] also works in the directed case.

Essentially none of the other results of the previous sections hold for the directed case. A
limited number of results of the flavor of those in Section 2.2 have been proved; see for example
[29, 38, 110, 106]. Similarly, nothing is known for directed graphs embedded on general surfaces
that is as general as Schrijver’s theorem 2.3.2. Thus it remains an interesting general problem to
try identifying further special cases of the disjoint paths problem that are solvable in polynomial
time in directed graphs. Finally, the approximation algorithms described in Sections 2.6 and

2.7 that do not assume large edge capacities do not apply in the directed case.

48

Chapter 3

Single—Source Unsplittable Flow

The less I seek my source for some definitive
The closer I am to fine ...

— Indigo Girls, Indigo Girls.

Let us consider the unsplittable flow problem in the case in which all terminal pairs share
a common vertex. That is, the set of terminal pairs is 7 = {(s1,%1),..., (8, %)}, and all s; are
equal to a common vertex s. For notational simplicity in this case, we will sometimes use D to
denote the set {t;,...,t}; we will refer to these as the terminals, the vertex s as the source,
and specify the problem using the triple (G, D, s).

We recall from Section 2.4 that fractionally, this is precisely the classical maximum flow
problem. Moreover, the integrality theorem stated there, Theorem 2.4.2, shows that when
all demands are the same value p, and all capacities are multiples of p, then the maximum
unsplittable flow value is equal to the maximum fractional flow value. It follows that in this
case, the unsplittable optimum is characterized by the cut condition, and one can find this
optimum in polynomial time.

But this is far from the case for the general single-source UFP. In particular, the following
result is immediate; it is similar to one of the examples used in Chapter 1. (Very similar hardness
results can also be found in [26, 108].) We say that a problem is strongly NP-complete if it
remains NP-complete when all numbers in the input are written in unary; i.e., it is NP-complete

even when the input numbers are polynomially bounded.

49

Proposition 3.0.1 The single-source UFP is NP-complete, even for a graph G, consisting of
two vertices with two parallel edges joining them. 't is strongly NP-complete, even for a graph

G, consisting of two vertices with m parallel edges, where m is part of the input.

Proof. The following partition problem is NP-complete [56]: given a set S of positive integers
ay,...,8,, with D = Y, a;, decide whether there is a set S’ C S with

1
Z (lj = ED.

j:a; €S’

Given an instance of the partition problem, with numbers a;,...,a, and D = Y, a;, we reduce it
to the following single-source UFP (G, D, s). The underlying graph G, has node set {u, v}, with
two parallel edges of capacity %D each. We define s = v, t; =u,and p; =@a; fori =1,...,n.
This problem has a feasible solution if and only if the partition problem has a solution.

To prove strong NP-completeness, we note that the following bin packing problem is strongly
NP-complete [43]: given given a set S of positive integers a,...,a,, and numbers B and D,
decide whether there is a partition of S into at most B sets, each of which sums to at most D.
Given such an instance of the bin—packing problem, we reduce it to the following single-source
UFP (G}, D, s). The underlying graph G, has node set {u,v}, with B parallel edges of capacity
D each. We define s = v, t; = u, and p; = a; for ¢ = 1,...,n. This problem has a feasible

solution if and only if the bin packing problem has a solution. m

Since the problem is NP-complete, we are interested in providing approximation algorithms
for it. We will consider both the maximization and congestion versions of the problem, as
introduced in Chapter 1. We obtain constant—factor approximations for both these versions.
We also consider the extent to which tighter approximation guarantees can be obtained when
the maximum demand is small compared to the minimum edge capacity; here we show how our
approximation ratios converge to 1 as this demand-to—capacity ratio goes to 0. In all cases, our
results follow from a relation between the fractional and unsplittable optima for single-source
problems.

We also obtain a constant-factor approximation algorithm for the problem of routing in
rounds, in the single-source case. Moreover, if the ratio of the maximum demand to the

minimum capacity is sufficiently small, then our approximation ratio for this problem is 2.

50

Since we saw above that it is NP-hard to distinguish a set of terminals routable in a single
round from one that is routable in two, one cannot hope in this case for an approximation ratio
better than 2. However, it is possible that one could be able to obtain an approximation to the
minimum number of rounds that differs from the optimum by an additive error, and we leave
this as an interesting open question.

For notational convenience, we will use a(G, D, s) to denote the quantity a({(s,t;) : t; € D)
defined in Chapter 1 — that is, the maximum amount of realizable demand for the problem
(G,D,s). We define of (G, D, 3), v(G, D, s), v/(G,D,s), and x(G, D, s) analogously.

As mentioned in Section 2.6, results of a similar flavor have been developed by Schrijver,
Seymour, and Winkler for the case of multi-terminal problems on a uniform-capacity cycle
[108]. For the problem of minimizing congestion, their results also provide an approximate
solution that approaches the optimum value as the demand-to-capacity ratio goes to 0. Our
basic approach is quite different, since we are able to use the fact that all terminal pairs have

a common source, but must deal with an arbitrary underlying graph.

Techniques

To highlight some of the complications that arise in designing approximation algorithms for the
single-source UFP, it is worth considering the obstacles that arise in trying to adapt standard
maximum flow techniques to our setting. Two of the main methods used to prove the max-flow
min-cut theorem are augmentation — iteratively construct a maximum flow by increasing flow
on some edges and re-routing across others — and induction — find a cut whose incident edges
are saturated, contract the side of the cut that does not contain the source, and proceed by
induction. However, it seems very difficult to define suitable “approximate” analogues of these
methods in the setting of unsplittable flow. There are a number of basic reasons for this — in
particular, both methods rely very heavily on the fact that in constructing a fractional flow,
it is enough to maintain knowledge only of the amount of flow f. crossing each edge e. In our
setting, on the other hand, one must keep track of the set of demand values p; crossing each
edge; thus, for example, it matters whether f, = 1 because e is carrying one unsplittable unit
of flow, or because it is carrying two unsplittable half-units of flow.

In terms of other methods, we saw in the previous chapter that the randomized rounding

51

method of Raghavan and Thompson [94] requires the minimum capacity to exceed the maximum
demand by a factor of at least Q(log |E|); thus it is inapplicable to the general setting we are
considering here. Finally, it seems that an approach based on setting ail demands to the
same value, invoking Corollary 2.4.3, and then restoring all demands to their original values
is inherently incapable of providing a constant-factor approximation, since it introduces terms
that depend on the ratio between the largest and smallest demands in D.

Our basic method in this paper is closest to the last of these ideas — we reduce the problem
to one in which all demands are approximately the same by a grouping technique. Specifically,
we cover the graph G with small trees in such a way that (a) no edge is contained in too many
trees, and (b) the amount of demand contained in each tree is approximately the same. We
then build the unsplittable flow in two parts: we first use Corollary 2.4.3 to find unsplittable
flow paths for designated leader nodes in each tree; and we concatenate these flow paths with
paths connecting the terminals in D to the leaders of their trees.

It turns out that in the undirected case, essentially any such “tree cover” of the graph
that satisfies a few simple conditions is sufficient to make this work. Things are much more
complicated in the directed case, which we consider in Chapter 4. Although there is a directed
analogue of Corollary 2.4.3 to work with, one must choose the tree cover very carefully now to
make sure that the source has a flow of large enough value to the leaders of the resulting trees.
It is this careful construction of a “good” tree cover that will require most of the work in the

algorithm for directed graphs.

3.1 Coalitions

Recall our balance assumption (1.2) that p; < ¢, for all ,e. By re-scaling, we will assume that
the minimum edge capacity is equal to 1, and define p* = max; p; < 1.

By a tree in G, we mean a subset of the vertices of G that induces a connected subgraph,
together with a spanning tree for these vertices. If T is a tree, in which each node v € T has an

associated non-negative weight w,, we define a center node of (T',w) to be a node u € T such

52

that T\ {u} has no component X for which

Zw.,> %Z“’v'

veEX veT

It is well-known that every weighted tree contains a center node. (One nice proof of this, which
can be found in [97], is the following. Suppose that (T',w) has no center node; then for each
node u of T there is a unique component X, of T'\ {u} that contains more than half the total
weight in 7. Since T has fewer edges than nodes, the pigeonhole principle implies that there
exist nodes u and v for which the (unique) edge e in 6(X,) and §(X,) is the same. It follows
that e has ends u and v, and that X, N X, = ¢. But this is a contradiction, since each of X,
and X, contains more than half the total weight in T'.)

We now introduce the notion of a coalition, which will serve as our way of grouping demand
in G. A coalition will be a set of trees, no more than two of which contain any edge, with each

terminal assigned to some tree that contains it.

Definition 3.1.1 A (weak) coalition in (G, D, s) is a pair ({T,...,T;},T), where each T; is a
tree in G, 7: D — {Ty,...,T.} is a function, and the following properties are satisfed.

(i) The trees are half-disjoint, by which we mean that each edge of G belongs to at most two
of the T;.

(ii) For each i =1,...,k, t; € 7(t;).

We will be particularly interested in coalitions for which the total demand assigned to each

tree is approximately the same:

Definition 3.1.2 A strong coalition in (G,D,s) of order o is a pair ({T1,...,T,},7), such
that the following properties are satisfed.
(i) {Th,...,T.},7) is a coalition in G.

(ii) For each j =1,...,r, either s € T; or we have

o<). pisa+p. (3.1)
v (ti)=T;

53

The trees of a strong coalition for which inequality (3.1) does not hold will be called the
exceptional trees. Note that all exceptional trees, by property (iii), contain s.

First we show that strong coalitions always exist.
Lemma 3.1.3 For every o > 0, there erists a strong coalition in (G, D, s) of order o.

Proof. We double every edge of G so that it becomes Eulerian, and let C be the edge sequence
of an Eulerian circuit in G beginning at s. Let tr(1),...,tr(x) denote the order in which the
terminals are first encountered while following C, where 7 is a permutation on {1,...,k}. We
partition the sequence t,(1),...,tr(x) into 7 intervals, such that the sum of the values of pi; in
each interval but the last is between o and o + p*. This is possible since each p;; is at most p*.
Let D; denote the set of terminals in the j** such interval, and let C; denote the set of edges
of C that were traversed between the first visit to a vertex in D; and the last visit to a vertex
in D;. In the case j = r, define C, to be the set of edges of C that were traversed between the
first visit to a vertex in D, and the end of the Eulerian circuit (at s).

Now, C; contains the edge set of a spanning tree on a superset of D;; let T; be any such
spanning tree. Moreover, since G[C,] contains s, we choose T} so that it contains s. Define the
function 7: D — {T,...,T,} by setting 7(¢t;) = T; if t; € D;.

We claim first that ({T},...,T}},7) is a coalition. Property (ii) of Definition 3.1.1 is imme-
diate from the construction; to see (i), we observe that each edge e of G appears only twice in
C; so it appears in at most two of the C; and thus in at most two of the trees T;. Now, the
total demand assigned to each tree by 7 is between o and o + p*, except possibly for the tree

T,, which contains s. Thus ({T1,...,7,},7) is a strong coalition of order o. B

If T is a (weak) coalition in (G, D, s), with trees Ty, ...,T,, we define U(I') to be any set of

vertices {u,,...,u,} such that
(i) if T; is not exceptional, then u; is a center node of T;, and
(ii) if T; is exceptional, then u; = s.

We will refer to the node u; € U(T') as the leader of the tree T;. u; will be called ezceptional if
the associated tree T is exceptional, and non-ezceptional otherwise. We define a single-source

UFP (G,U(T'), 8) by associating with each u; € U(I') any demand that does not exceed the total

54

demand assigned by T to the tree T;. We now show that one can route this set of nodes U(T')

without much more relative congestion than was possible for the original set of terminals.

Lemma 3.1.4 Let T be a coalition in (G, D, s), and suppose that (G, D, s) has a feasible frac-
tional routing. Consider the problem (G,U(T'), s) as defined in the previous paragraph, and sup-
pose that the mazimum demand associated with any u; € U(T) is at most €. Then (G,U(T'), s)

has a fractional routing of relative congestion at most 1 + €.

Proof. The feasible fractional routing for D in G assigns to each t; € D a set of ¢;-s paths
!,...,Qf and non-negative weights y},... ,y¥ such that 3,y = p;. We use these paths to
define a fractional flow for U(T') in G.
For u; € U(T'), let ¢; denote the amount of demand associated with u; in the problem
(G,U(T), s), and let ! denote the total amount of demand associated with terminals of D that

are assigned to the tree T;:

€ = Z Pj-

3 (t)=T,
Recall that by the definition of the problem (G,U(T),s), we have ¢; < €;. Now if u; € U(T')
is the leader of an exceptional tree, then u; = s and hence we do not need to construct any
paths at all. Otherwise, for each t; € 77!(T}), let R;; denote the unique u,-t; path in T;. We
now define the fractional flow paths for u; as follows. For those j such that t; € 77!(T;), and
(=1,...,q;, we define P,-‘j to be the concatenation of R;; and Qj. The set of paths for u; is
then
{Pf:tjer™!(Ti), 1< €< g5}

We set the weight associated with the path P} to be

y; - (ei/€]) < v (3.2)

We define the Q-part of a path P‘,‘J to be the portion consisting of edges of Q;, and the R-part
of P,-§ to be the portion consisting of edges of R;;.

We must verify that this set of flow paths, for all non-exceptional u;, has relative congestion
at most 1+¢. First observe that the set of all Q-parts of these flow paths contributes a relative

congestion of at most 1: these Q-parts are in one-to-one correspondence with the original

55

(feasible) fractional flow paths for (G,D,s), and the weight assigned to each Q-part is less
than or equal to the weight assigned to the corresponding fractional flow path for (G, D, s), by
Equation 3.2. The set of all R-parts of these paths contributes a congestion of at most ¢ to each
edge. To see this, observe that since each non-expectional u; is a center node of its associated
tree, the total demand across any edge in G due to R-parts of paths for u; is at most %e,— < ie
Since no edge of G is contained in more than two trees of I, the total demand across any edge
in G due to the R-parts of all flow paths is at most €. Since all edges in G have capacity at least
1, it follows that the total relative congestion due to the R-parts of all paths is also at most &.

Adding the bounds for the two parts of each path, one obtains the statement of the lemma. m

One can also prove this lemma by multiplying the capacities in G by 1+ ¢ and then verifying

the cut condition. We thank Michel Goemans for suggesting the proof given above.

3.2 Congestion

In this section, we use strong coalitions to obtain three related results, in the single-source case:
a bound on the ratio between the optimum relative congestion for fractional and unsplittable
flows, an approximate max-flow min-cut theorem for unsplittable flow, and an approximation

algorithm for the minimum congestion of an unsplittable flow.

Theorem 3.2.1 Let (G,D,3) be fractionally feasible. Then it has an unsplittable routing of
relative congestion at most 1 + 4\/p* + 4p* = (1 + 2\/p*)>.

Proof. We set 09 = ;1/p* > 3p°, and let T be a strong coalition in (G, D, s) of order go. As
before, choose a set of nodes U(I'). To each non-exceptional node u; € U(T'), we associate a
demand of op; to each exceptional u; we associate a demand of 0.

Let G’ denote the graph obtained from G by multiplying all capacties by 1 + o, and then
rounding each capacity up to the nearest multiple of gp. Note that each resulting capacity c,
satisfies

c. < (1+ag)c. + 09 < (1+200)c..

Now, since (G, D, s) is assumed to be fractionally feasible, it follows from Lemma 3.1.4 that

(G',U(T), 8) is fractionally feasible. But all demands in (G',U(T"), s) are equal to 0 or og, and

56

all capacities are multiples of gy, so by Corollary 2.4.3 there is a feasible unsplittable flow for

(G",U(T),).

Figure 3-1: Constructing the unsplittable flow

Let Q;, for i = 1,...,r, denote the u;-s path associated with this feasible unsplittable flow.
We now describe the construction of the unsplittable flow in (G, D,t), by specifying a path for
each terminal ¢;. So let t; € D, and suppose 7(t;) = T;. We define R; to be the unique ¢;-u;
path in T;. We then define P;, the flow path for t;, to be the concatenation of R; and Q;. We
define the Q-part of P; to be the portion consisting of edges of Q;, and the R-part of P; to be
the portion consisting of edges of R;.

It remains only to conipute the relative congestion of the flow defined by the paths {P;}.
The above arguments showed that if each Q; were to carry at most oo units of flow, then the
relative congestion on edge e due to the Q-parts of all flow paths in G would be at most 1+ 205.

But by part (ii) of Definition 3.1.2, each Q; may carry up to oo + p* units of flow, and thus the

57

relative congestion on e due the Q-parts of all paths is at most

""U—tp'.(1+2ao)=(1+2\/;?)(1+\/?)=1+3\/,7+2p*. (3.3)

Now, by part (i) of Definition 3.1.1, e belongs to at most two of the trees in I'. Thus by
part (ii) of Definition 3.1.2, the total amount of flow across e due to the R-parts of all paths
is at most 20y + 2p*. Since c. > 1, the total relative congestion on e due to the R-parts of all

flow paths is at most

200 + 2p* = \/p* + 2p* (3.4)

Adding (3.3) and (3.4), the total relative congestion on e is at most

1+ 4v/p* + 4p*,
from which the theorem follows. m

When p* = 1, so that we are making no assumptions about having “small” demands (aside
from Equation (1.2)), the congestion bound of Theorem 3.2.1 is equal to 9. We note that with
a less clean proof, one can slightly improve the constant in Theorem 3.2.1, as follows. Our
construction of strong coalitions in Lemma 3.1.3 results in at most one exceptional tree. As a
consequence, if e is contained in two trees, then one is non-exceptional, and hence the node u;
for that tree will be a center node. From this it follows that the total flow across edge e due
to the R-parts of all flow paths is at most oy + p* (from the one exceptional tree that might
contain e) plus oo + 3p* (from the other tree containing e, which must be non-exceptional),
and hence is at most 20 + 3p*. Setting 0y = \/E—,}E, we obtain a bound of 1 + /14p* + Ip*,
which is approximately 8.25 when p* = 1. For the sake of simplicity, we will continue to use
the bound stated in Theorem 3.2.1.

Of course, a natural goal is to determine the tightest possible bound for the minimum
relative congestion of an unsplittable routing of (G, D, s), when it is fractionally feasible. The
following example shows that it must be at least 2 — o(1). Let G consist of vertices s and
t, with k parallel edges of unit capacity between them. Let D consist of k + 1 copies of the

vertex t, with each terminal in D having demand 1— 37. Then (G, D, s) is fractionally feasible,

58

but the minimum congestion of an unsplittable routing of (G,D,s) is 2 — k—%l- Whether this
example gives the worst possible gap between the fractional and unsplittable congestions is an
interesting open question.

We say that the cut condition is met by a factor of B if ¢(X) > Bp(X) for all sets X not
containing s. We now use Theorem 3.2.1 to show that if the cut condition is met by a large

enough factor, then there is a feasible unsplittable flow. This result will be useful in Chapter 6.

Corollary 3.2.2 Suppose that in (G, D, s) we have p* < 3, and the cut condition is met by a
factor of at least B = (1 — 24/p*)~2. Then (G, D, s) has a feasible unsplittable solution.

Proof. We define G’ to be the graph obtained from G’ by dividing down all capacities by a factor
of 8. In the resulting problem (G’, D, s), the ratio of the maximum demand to the minimum
capacity is at most Bp*, and so by Theorem 3.2.1 there is an unsplittable flow for (G', D, s) of
relative congestion at most (1 + 2/Bp*)? = . This is a feasible unsplittable flow in (G, D, s).
(Note that we required p* < so that 8 would be well-defined.) m

Finally, we give an approximation algorithm for the minimum congestion of a single-source

unsplittable flow on an arbitrary graph G.
Corollary 3.2.3 There is a 9-approzimation to v(G,D,s) in an arbitrary graph G.

Proof. We can assume that all edges have capacity 1, and that the maximum demand is p* < 1.
In polynomial time, we first compute a fractional flow in (G, D, s) of minimum congestion v*.
We know that v* is a lower bound on the optimal unsplittable congestion, and we know that
p* is also a lower bound on this optimum (since some edge must carry p* units of flow). Thus,
we set ¢ = max(v*, p*), and assign all edges a capacity of c. Since there is a feasible fractional
flow with this choice of capacity, we know by Theorem 3.2.1 that there is an unsplittable flow

of congestion at most (1 + 2\/p*c~1)? < 9, from which the approximation ratio follows. m

3.3 Maximization

We now turn from the problem of minimizing congestion to the basic unsplittable flow problem

as defined in Chapter 1: we wish to maximize total amount of flow that can be sent subject to

59

the capacity constraints. Recall that the optimum for this problem, in the single-source case,
is denoted a(G,D,s). We obtain a constant—factor approximation for oG, D, s); and since
our performance guarantee will in fact be in terms of the fractional optimum, it will imply a
constant—factor gap between the values of the fractional and unsplittable optima.

Again, we let (G,D,s) denote a single-source UFPwith minimum edge capacity 1. If all
demands have roughly the same valne, then it is not difficult to obtain a constant—factor ap-
proximation algorithm by simply assigning the same demand value to all terminals and applying
Corollary 2.4.3. This is the content of Lemmas 3.3.1 and 3.3.2.

We use these lemmas to take care of demands that are “sufficiently large” — in particular,
those larger than a constant p, that we will define below. For the set of all demands smaller
than py, we require a technique involving strong coalitions (Theorem 3.3.3). Specifically, we
first compute a maximum flow on the set of leaders of a strong coalition; we then construct an
unsplittable flow on the terminals in D so that for each leader routed by the initial maximum
flow, we are able to route a constant fraction of the demand in its tree. This will provide us
with a constant—factor approximation ratio.

Recall that p* = max; p;. We define p, = min; p;.

Lemma 3.3.1 There is a polynomial-time algorithm producing an unsplittable flow of value at

least 3p./p* times o/ (G, D,s).

Proof. Write y = p,/p*. Let (G, D, s) be an instance of the single-source UFP. Let G’ denote
the graph obtained from G by first rounding all capacities down to the nearest multiple of p*,
and then multiplying them by y. Thus, each capacity in G’ is between }y and y times what
it is in G. Let D’ denote the set of terminals obtained from D by assigning each a demand of
p.. We first observe that of(G',D’,s) is at least 1y times af(G,D,s). To see this, take any
fractional flow in (G, D, s) and multiply all the flow values by a factor of 2y. The resulting flow
satisfies all capacity constraints in G’, and it does not route more than p, units of flow to any
terminal in D'; thus it is a feasible fractional flow in (G', D', s).

But in (G', D', s), all demands are equal to p,, and all capacities are multiples of p,; thus by
Corollary 2.4.3, we can find an unsplittable flow of value equal to o/ (G', D', s). The flow paths

from this unsplittable solution are in turn feasible in (G, D, s), since the demands in (G, D, s)

60

are at most a factor of y~! greater, while the capacities are at least y~! times greater. Thus,

the value of this unsplittable flow is within a factor of 1y of o/(G,D,s). m

Lemma 3.3.2 There is a polynomial-time algorithm producing an unsplittable flow of value at

least [2e[ln(p*/p,)]]™! times af (G, D, s).

Proof. Write ¢ = [In(p*/p.)]. We partition the terminals into g subsets Dy,...,D,, so that
the demands of all terminals in D; are in the interval [p.e'"!, p.e']. In each of the problems
(G, D;, s), we can produce an unsplittable flow of value at least (2¢)~" times o/ (G, D;, s), using
Lemma 3.3.1. Since o (G, D, s) < Y"1, &/ (G, D;, s), we can obtain the claimed approximation
ratio by taking, from among the g unsplittable flows that we compute, the one of the greatest

value. ®

Theorem 3.3.3 Let p* < -g — V2. There is a polynomial-time algorithm for the single-source
UFP producing a flow of value at least 1 — 4,/p* + 2p* times o/ (G, D, s).

Proof. We require p* < 3 — V2 so that the expression 1 — 4,/p* + 2p* is positive. Let (G, D, s)

be an instance of the single-source UFP in which p* < 3 — V2. We set gy = %; note that

oy — " = Vo =20 + 2977 (p*1/4 — p3/4y2 4 g3/
’ 2-2vp" 2-2p"

> 0.

Let T' be a strong coalition in (G, D, s) of order oo — p*, let T,...,T, denote the trees in T,
and for i = 1,...,r let D; denote the set of terminals assigned to the tree T;.

Let G’ denote the graph obtained by multiplying all capacities of G by 1 + 0o and then
rounding up to the nearest multiple of go. We assign each non-exceptional vertex in U(T') a
demand of gy, and each exceptional vertex in U(I') a demand equal to the amount assigned to
its tree. (Because of this latter point, we are in fact placing demand on s itself; this is simply
to be able to make a comparison to the optimum, below.) We then compute a maximum
unsplittable flow in (G’,U(T), s). Since the only demands not equal to oy are situated at the
source s, Corollary 2.4.3 implies that this maximum unsplittable flow is equal to the fractional
optimum in (G',U(T'), s) and can be computed in polynomial time.

We claim that the value of this unsplittable flow is at least as large as the value of the

maximum fractional flow in (G, D,s). For consider any fractional flow in (G, D, s), and let ¢;

61

denote the demand contained in tree 7; of I' that was routed by this flow. Then by Lemma 3.1.4,
there is a feasible fractional flow in (G’,U(T’), s) that routes €; demand frem u; € U(T"). But
the unsplittable flow that we compute in (G',U(T"), s) has value equal to that of the mazimum
fractional flow, proving the claim.

Let U’ denote the set of non—-exceptional vertices of U(I") that are routed by the maximum
unsplittable flow constructed in the previous paragraph, and I’ the set of indices of such vertices
in {1,...,r}. For i € I', we define D! C D; to be any set which is maximal subject to the

condition that

" 1-— 20’0
)< . .
p(D;) < (1 T 200) o (3.5)

Note that by the maximality of D;, we have

’ 1—2(70 .
) > —-p. .

Let D' = U, D.. Finally, let I" denote the set of indices of the exceptional trees, and D" =
Uier D;.

We will show that D'UD" is realizable in the graph G. We argued above that oo-|I'|+p(D") is
at least as large as the maximum fractional flow in (G, D, s); by Equation (3.6), the unsplittable
flow that we produce has value at least

1"'260 o 1 "
(532) oo -] 111+ (2",

This value is thus within a factor of at least

1—20g —pn* _.2.@ *
(Fa)o-r | 25 2% |, (3.7)
1 - ’ .

(o) 1-Vp* %

times that of the {ractional optimum.

Thus it remains only to show that D' UD" is realizable in G. For u; € U’, let Q; denote the
u;-s flow path in the maximum unsplittable flow we constructed in (G',U(T"), s). Now, consider
any t; € D' UD", with 7(t;) = T;. As in the proof of Theorem 3.2.1, we define R; to be the
unique t;-u; path in T;. We then define P; to be the concatenation of Q; and R;. P; will serve

as the flow path for the terminal ¢;.

We claim that this set {P;} of flow paths does not violate any capacity constraint. To show
this, we consider any edge e. We know that if each flow path Q; were to carry o, units of flow,
then at most (1 + 20o)c. units of flow would pass across e due to the Q-parts of all paths in

{P;}. But now, each flow path Q; carries at most

(1—20.,)0
1+20,/) °

units of flow, and hence at most (1 — 20y)c. units of flow pass across edge e due to the Q-parts

of all paths in {P;}. Also, since e is contained in at most two trees of I', and ¢, > 1, at most
200 < 20,c. units of flow pass across e due to the R-parts of all paths in {P;}. Hence, the
capacity constraint for edge e is satisfed.

Thus the set D’ U D" is realizable in G, using the flow paths {P;}. The theorem follows. m

From this result, we can obtain a constant-factor approximation without any assumptions
about the size of the largest demand {aside from Equation 1.2). Let D, denote the set of
terminals of demand less than e~3, and D; the set of terminals of demand at least e~®. We
can obtain a constant-factor approximation algorithm for a(G, Dy, s) using Lemma 3.3.2, and
a constant—factor approximation algorithm for a(G,Dy,s) using Theorem 3.3.3. Of the two

unsplittable flows produced this way, taking the one of greater value gives us

Corollary 3.3.4 There is a constant—factor approzimation algorithm for a(G,D, s).

3.4 Routing in Rounds

In order to obtain a constant—factor approximation for the problem of routing in rounds, we
make use of a classical connection between flows and matroids (87, 119]. In the following section

we discuss this connection and its consequences; we then present the approximation algorithm.

3.4.1 Tools from Matroid Theory

A matroid M is a pair (U, M), where U is a finite ground set, and M is a collection of subsets

of U that satisties that following two conditions.
(i) (Closure with respect to inclusion.) f Y € M and X C Y, then X € M.

63

(ii) (The ezchange property.) If X,Y € M and |X| < |Y|, then there exists an element y € Y’
such that X U {y} € M.

A subset of U is called independent if it belongs to M; it is called a basis if it is a maximal
independent set, with respect to inclusion. Note that the exchange property ensures that all
bases have the same cardinality. If X C U, we define the rank of X, denoted r(X), to be the
maximum cardinality of an independent subset of X. We refer the reader to a book such as
[119] for further background on matroids.

There are a number of basic problems that are computationally intractable for set systems
in general, but which are tractable when the set system is a matroid. We will be primarily
interested in the following covering problem: for a matroid M = (U, M), what is the minimum
cardinality cover of U by members of M? This question is addressed by the following result of

Edmonds [31].

Theorem 3.4.1 (Edmonds) There is a polynomial-time algorithm to find a minimum cardi-
nality cover of the ground set of a matroid M = (U, M) by independent sets. Moreover, if this
minimum is greater than j, then there is some X C U for which j - r(X) < |X|.

We say that a single-source UFP is integral if all demands are equal to some common value
p, and all capacities are multiples of p. Recall that by Corollary 2.4.3, such integral unsplittable
problems are well-characterized by the max—flow min-cut theorem. The relevance of matroids

to such problems is a consequence of the following result, due to Perfect [87].

Theorem 3.4.2 (Perfect) Let (G,D,s) be an integral single-source UFP. The collection of

realizable subsets of D forms a matroid over the ground set D.
The following fact is immediate.
Lemma 3.4.3 v{(G,D,s) < v(G,D,s) < x(G,D, s).

We now show that when (G, D, s) is integral, the matroid structure of the problem im-
plies that the minimum fractional relative congestion, rounded up to the nearest integer, is in
fact equal to the minimum number of rounds required. This is far from the case for general

unsplittable flow problems.

64

Lemma 3.4.4 If (G,D,s) is integral, then [v{(G,D,s)] = x(G,D,s) (and hence the latter

quantity can be computed in polynomial time).

Proof. In view of the previous lemma, it is enough to show that x(G,D,s) < [V{(G,D,s)].
Let us denote the former quantity by j. If j = 1, then we are done, so let us assume j > 1. By
Theorem 3.4.2, we can view j as the minimum cardinality of a cover of D by members of the
matroid of realizable subsets. Thus by Theorem 3.4.1, there is a set X such that p(X) is more
than j — 1 times as large as the maximum total demand of a realizable set of terminals in X.
Thus, by Corollary 2.4.3, we have ¢(X) < J.—i;p(X). It follows that v{(G,D,s) > j — 1, and so
[V{(G,D,s)] >j. m

3.4.2 The Approximation Algorithm

We are given a single-source problem (G, D, s); we assume by re-scaling that the minimum
edge capacity is 1, and all demands are between 0 and 1. Our approximation algorithm will
be similar to that of the previous section; we choose a threshold value, and treat demands
larger than the threshold separately from those smaller than th: threshold. As above, it is

straightferward to handle the large demands (Lemmas 3.4.5 and 3.4.6).

Lemma 3.4.5 There is a polynomial-time algorithm that routes (G, D, s) in at most [2’}%1/0’ (G,D,s)]

rounds.

Proof. Let G’ denote the graph obtained from G by rounding all capacities down to the nearest
multiple of p*, and D’ denote the set of terminals obtained by assigning each terminal in D a
demand of p*. The problem (G’,D',s) is integral; we compute a routing for this problem in
x(G',D',s) = [V{(G',D',s)] rounds, and use the associated paths for the problem (G,D,s).
Clearly the paths used in each round respect the capacity constraints in (G, D, s).

By an argument strictly analogous to the proof of Lemma 3.3.1, we have vi(G', D', s) <

2’;&:1/({ (G,D,s), from which the result follows. ®

Similarly, by an argument strictly analogous to the proof of Lemma 3.3.2, we have

Lemma 3.4.6 There is a polynomial-time algorithm that routes (G, D, s) in at most

rln(p‘/po)] * r2ch{ (Gv D? S)]

65

rounds.

Theorem 3.4.7 Let p* < 41 — V3. There is a polynomial-time algorithm that routes (G, D, s)
in 2[v{(G, D,)] rounds.

Proof. Let (G, D, s) be an instance of the single-source UFP in which p* < I — V3. We set
gy = ,ﬁ% and let T’ be a strong coalition in (G, D, s) of order oy — p*. Let Ty,..., T, denote
the trees in I', and for ¢ = 1,...,r let D; denote the set of terminals assigned to the tree T;.

Let G’ denote the graph obtained by multiplying all capacities of G by 1 + 0, and then
rounding up to the nearest multiple of 0,. We assign each non-exceptional vertex in U(T') a
demand of ¢, and each exceptional vertex in U(I') a demand of 0. We claim that there is a
fractional routing of (G',U(T), s) with relative congestion at most [v{(G,D,s)]. To see this,
note that if we were to multiply all capacities of G by a factor of [v(G,D,s)], then there
would be a feasible fractional routing of D, and all capacities would be at least 1; thus, by
Lemma 3.1.4, there would be a fractional routing of U(T") of relative congestion at most 1+ oy.
But the capacities in G’ are at least 1 + oy times what they are in G, and hence if we were
to multiply all capacities of G’ by a factor of [¥{(G, D, s)], then U(T") would be fractionally
feasible. It follows that v (G’,U(T),s) < [v{(G, D, s)].

The algorithm is now as follows. We compute a routing of (G', U(T'), s) in [¥{(G’,U(T),s)] <
[v{(G,D,s)] rounds. Now, we break each of these rounds into two rounds: if u; is routed in a
given round j, then we route the terminals in its tree in the pair of rounds associated with j.
This will result in the claimed approximation ratio. It therefore remains to show how to take
a single round of our routing of (G’,UT’), 3), and route the associated terminals in two rounds
in (G,D,s).

Thus, let U’ denote the set of vertices in U(I') routed in a single round of the routing for
(G",U(I'), 8), and I the set of indices of such vertices. Let D; denote the of terminals associated
with a vertex u; € U. Since the total demand of terminals in D; is at most oy, and the maximum
demand is p*, we can partition D; into two sets, D} and D? so that the demand in each is at

most 100 + p*. Recall from Equation (3.7) that

l—zan oo — p-
(”“”“Z =1-4yp" +2p". (3.8)
0

66

Now since p* < I — /3, we have 1 — 4y/p* + 2p" < 3, and hence by Equation (3.8) we have

1 1-20
D!),p(D?) < = *<(°) :
2(D;), p(.)_200+P <1720,/ %

We claim that for £ = 1,2, the set of terminals in Df (i € I') can be routed in a single round.
To show this, we define the following flow path P; for t; € Df: we concatenate the ¢;-u; path
in T}, denoted R;, with the u;-s flow path, denoted Q;. Now for any edge e, the total amount
of flow crossing e due to Q-parts of paths is at most

1'—20'0
1+20'o

(1 + 209)c. - () = (1 - 209)c.,

and the total amount of flow crossing e due to R-parts of paths is at most 20¢ < 209c.. Thus the
capacity constraints are satisfied for the set of paths {P;} associated with terminals in U;¢ Dt

Finally, since terminals in exceptional trees are routed entirely on paths of the form R;, they
can all be routed in one of the rounds already used, without violating the capacity constraints.

The above facts provide us with the main approximation result of this section — namely,
an approximation algorithm for x(G, D, s) when p, and p* are arbitrary numbers in (0,1]. The
approximation is obtained simply by using separate sets of rounds for the terminals of demand
at least I — v/3 and for those of demand less than I — V3. As we are within a constant factor

of optimal for each type of demand, we have

Corollary 3.4.8 Let (G,D,s) be an arbitrary single-source unsplittable flow problem. There

is a polynomial-time constant-factor approzimation for x(G,D,s).
It is also worth noting another natural corollary of the above results.

Corollary 3.4.9 If (G,D,s) is fractionally feasible, then it is routable without splitting in a
constant number of rounds. If additionally p* < % — /3, then it is routable without splitting in

two rounds.

67

Chapter 4

Directed Single—Source Problems

. With windlasses and with assays of bias,
By indirections find directions out.

-- William Shakespeare, Hamlet.

We now extend the approximation algorithms of the previous chapter to the case of directed
graphs. That is, for a vertex s in G, terminal set D = {t,,...,%}, and associated demands
P1s.. -, Pk, We are seeking directed paths from s to the terminals in D such that the capacity
constraints are met. We again are able to obtain constant approximation ratios that converge
to 1 as the ratio of the maximum demand to the minimum capacity goes to 0. The underlying
technique here is still based on the construction of coalitions, now using directed arborescences
in place of trees. However, one must be more careful in defining the “right” coalition in the
directed case; we will discuss this below.

This is the only chapter in which we deal with directed graphs. Our motivation in under-
taking this digression into the directed case has several sources. First, as noted in Section 2.9,
the disjoint paths problem in directed graphs is much less well understood than it is in the
undirected case, and so it is of particular interest to develop approximation techniques that are
applicable to directed graphs.

Second, we observe that much of the appeal of the max-flow min-cut theorem has nothing
to do with issue of routing in networks, but rather lies in the ease with which one can reduce
a wide range of problems in combinatorial optimization to it. It turns out that this notion of

reduction is applicable in the setting of single-source unsplittable flow as well; but most of the

68

natural reductions here require that the underlying graph be directed.

As a basic example, consider the following machine scheduling problem. We have a set
J = {j1,-..,Jp} of jobs, such that job j; has weight w;, and a set M = {mi,...,my} of
machines. Associated with job j; is a set S; C M of machines on which it can run. The goal
is to assign each job to a machine in such a way that the maximum weight assigned to any
machine is minimized. In the case in which all S; are equal to M, this is just the classical
minimum makespan problem, for which a (1 + ¢)-approximation can be found in polynomial
time for any fixed ¢ > 0 [50]. But when the S; are arbitrary sets, Lenstra, Shmoys, and Tardos
show that no polynomial-time algorithm can approximate the optimum load to within a factor
better than g- [72]); and they provide a 2-approximation algorithm for a class of problems that
includes this one.

Here, we observe that this load balancing problem can be easily formulated as a single-source
unsplittable flow problem on a three-level directed graph, as in Figure 4-1. We introduce a
node for every m; € M and j; € J, and we include a directed edge (m;, Ji) iff m; € S;. We then
attach a source s by an edge to each m; € M, and give each j; a demand equal to w;. Then the
minimum-congestion routing of an unsplittable flow in this graph corresponds to a minimum-
load assignment of jobs to machines. (We note that the constant factor of approximation we
obtain for the general single-source problem is greater than 2, so we are not claiming to improve
on the bound of Lenstra, Shmoys, and Tardos for this special case.)

Of course, much more elaborate reductions are possible. As another example, one could
consider a multi-stage load balancing problem in which there is a set J of jobs, and sets Sy, ..., Sk
of sites, residing in a metric space M. Each job must be processed by one site from each set
S;, in sequence; but in moving from one site to the next, a job cannot move more than some
distance ¢ in the metric space M. The goal is to find a way of processing each job, so that
the maximum load on any site is minimized. Again, it is straightforward to formulate this
as the problem of finding the minimum congestion of a single-source unsplittable flow in an

appropriate directed graph.

69

O"'// machines

jobs

Figure 4-1: A load balancing problem

Definitions and Techniques

We will work here with graphs whose capacity values are integers; by allowing parallel edges,
we can assume that every capacity is equal to 1.

As in the undirected case, we make use of the notion of coalitions as a way of “grouping”
demand in G. However, since G is now a directed graph, we must make sure that the leader of
each tree in the coalition has a directed path to each of its terminals — in this way, the demand
that has been grouped into this leader node can still reach the terminals in which it resides.
Thus, we first define the types of directed trees that we will be dealing with, and then discuss
some of the additional complications that arise when using directed coalitions.

Let G be a directed graph, with a distinguished source vertex s. Unless we say otherwise,
paths and cycles in G will be directed. As before, we are interested in finding flow paths from
s to the terminals D = {t,,...,¢}. Thus we will assume that there is a path from s to every
other node of G; this is no loss of generality, since no other nodes can participate in a solution
te the unsplittable flow problem defined by (G, D, s). By a tree in G, we mean a subgraph T
of G whose underlying edge set forms a tree if one ignores the directions of the edges. If T is
a tree in G, and v is a vertex in T with a path to every other vertex in T, then we say that v

is a root of T. A tree can have at most one root; if a tree T has a root, then we will say that

70

T is an arborescence. We say that T is a spanning arborescence if it is an arborescence whose
vertex set is equal to V. Finally, a forest is a set of trees in G that do not share vertices.
Given these definitions, a directed coalition will simply be a set of half-disjoint arbores-
cences, with each terminal assigned to an arborescence that contains it. Strong directed coali-
tions can be constructed in a straightforward fashion from a depth-first search of any spanning

arborescence of G rooted at s (Lemma 4.1.3).

fractional
ow paths

O = leader

A = terminal

Figure 4-2: A bad choice of coalition

The main technical complication arises from the fact that the obvious analogue of Lemma 3.1.4
does not hold in the directed case — given a fractionaliy realizable set of terminals, it is possible
to construct a coalition so that the resulting set of leaders can only be routed with a very large
congestion. Such an example is pictured in Figure 4-2: although there are flow paths to all the
terminals, the coalition is built out of edges not participating in this flow, and all the paths from
s to the leaders share a single edge (s,v); this results in very high congestion. Note that this
difficulty cannot arise in the undirected case, where a set of low-congestion paths to the leaders

could be built by taking the fractional flow paths to the terminals in the reverse direction; this

71

is precisely what is taking place in the proof of Lemma 3.1.4.

What we will show, in Lemma 4.1.7, is that one can always choose a “good” coalition, so
that the leaders can be routed with approximately the same congestion as the terminal set.
Given this lemma, the approximation algorithms will follow almost exactly as in the undirected
case.

The construction of a good coalition proceeds roughly as follows. By the max-flow min-cut
theorem for directed graphs (Corollary 2.9.1), we have to avoid the following situation: there is
a set S ¥ s containing a large number of leaders, such that very few edges enter S. Thus, given

a set S containing a large number of leaders (but not s), we consider the following two cases:

(i) S also contains a correspondingly large number of terminals. In this case, since the

terminal set is fractionally routable, there must be many edges entering S.

(ii) S contains very few terminals. Since there are paths from the leaders to their associated
terminals, and very few of these terminals lie in S, it must be that there are many edges
leaving S. In this case, we examine the set of edges leaving S. We say that an edge is
dense if it carries at least -;- units of flow from s to the terminal set, and shallow otherwise.
We arrange the construction of our coalition T so that if a node has any entering edge
that is dense, such an edge enters it in the arborescences of L. We again have two cases

to consider.

(a) If a large fraction of the edges leaving S are dense, then a large amount of flow must
be leaving S. It follows that a large amount of flow also enters S (since s € S), and

hence there are many edges entering S.

(b) Otherwise, suppose that most of the edges leaving S are shallow. This is the most
difficult case, since we cannot argue that a lot of flow enters S. However, if we grow
the set S by following chains of vertices of in-degree 1, and it remains the case that
most of the edges leaving S are shallow, then by the construction of the coalition
T, we can argue that S now has out-edges to a large number of shallow branching

nodes — nodes of in—degree greater than 1, all of whose entering edges are shallow.

Now, the crucial fact that we establish in Lemma 4.1.7, using Lemmas 4.1.4 and

4.1.6, is that there are edge-disjoint paths linking s to all the shallow branching

72

nodes in G. Consequently, we will be able to argue that when most of the edges
leaving S are shallow, S must be entered by many of these edge-disjoint paths, and

consequently there are many edges entering S, as required.

4.1 Coalitions

We first define coalitions in the directed setting.

Definition 4.1.1 A (weak) coalition in (G,D,s) is a triple ({A;,..., A}, {u1,... 0. },7),
where each A; is an arborescence in G with root u;, T : D — {A,,..., A} is a function,
and the following properties are satisfed.

(i) The arborescences are half-disjoint, by which we mean that each edge of G belongs to at
most two of the A;.

(ii) For each i =1,...,k, t; € 7(t;).

Definition 4.1.2 A strong coalition in (G, D, s) of order o is a triple ({Ay, ..., Ac} {u1, ..oy u), 7),
such that the following properties are satisfed.
(i) ({Ai,...,A.},T) is a coalition in G.

(i1) For each j =1,...,7, either u; = s or we have

o< Y, p<o+p. (4.1)
ur(ti)=Aj

As before, an arborescence for which inequality (4.1) does not hold will be called ezceptional.
For i =1,...,r, we say that u; is the leader of A;.

We show that strong coalitions exist in directed graphs. Our construction must be somewhat
different from that of Section 3.1, since we need to produce arborescences rather than just trees.
Thus, we proceed as follows. If A is an arborescence, and X is a set of vertices of A, consider
the collection of subgraphs of A with property that they are arborescences containing X. It is

easy to verify that this collection contains a unique minimal arborescence, which we will denote

by A[X].

73

Lemma 4.1.3 Let A be an spanning arborescence in G with root s, and let o > 0. Then there
exists a strong coalition T' in (G, D, s) of order o, such that the edge sets of all arborescences in

T are subsets of A.

Proof. We perform a depth-first search of A, starting from the root s, and let t,(),...,tx)
denote the order in which the terminal are first encountered in this depth-first search. As in
the proof of Lemma 3.1.3, we partition this sequence into intervals D,,...,D,, such that the
total demand in each interval except possibly the last is between o and o+ p*. We add s to the
set D,. We now construct the coalition T by defining, for i = 1,...,r, A; = A[D;]. We define
u; to be the root of the i*" arborescence, and the function 7 so that 7(t;) = A, if t; € D,.

We show that the arborescences {A;} are half-disjoint; the other properties of Defini-
tions 4.1.1 and 4.1.2 are straightforward to verify. Let C; denote the set of edges traversed
between the first visit to a vertex in D; and the last visit to a vertex in D;. Now the sets
Ci,...,C, are half-disjoint, since every edge of A is traversed exactly twice in a depth-first
search. But C; contains the edge set of an arborescence on D;, and thus the edges of A[D;]

belong to C;. It follows that the {A;} are half-disjoint. m

Given any spanning arborescence A rooted at s, and any o > 0, this lemma gives us a
canonical strong coalition of order ¢ induced by A. Let us use ['(A, o) to denote this coalition.
Now, in the introduction to this chapter, we indicated that the natural analogue of Lemma 3.1.4
does not hold in the directed case, and that we must use information about the fractional flow
from s to the terminal set D in our construction of a directed coalition. In particular, we will
need to prove the existence of disjoint paths from s to the shallow branching nodes of G, and
for this we need Lemmas 4.1.4 and 4.1.6 below.

For a vertex v of a directed graph, let 6} denote the number of edges for which it is the
tail, and 6; denote the number of edges for which it is the head. Let 6, = 6} + 6;. We say
that v is a leaf if 6, = 1; if v is a leaf, we call it an in-leaf if 67 = 1, and an out-leaf if 6} = 1.
Finally, we say that T is a reverse arborescence with root u if reversing the direction of every

edge turns it into an arborescence with root u.

Lemma 4.1.4 Let H be a directed acyclic graph, and u a node of H, such that every node
v € H \ {u} satisfies 67 > 6F. Then there exists a set of edge disjoint paths in H, such that

74

every path has its tail in u, and for every v € H \ {u}, at least §; — 6} paths have their heads

mn w.

Proof. We add a new node u' to H, and for every v € H \ {u}, we add §; — 6 parallel edges
from v to u'. We also add 6 parallel edges from u’ to u. Denote the resulting graph by H'.
Note that in H’, the in-degree of every node is equal to its out-degree, and so H' is Eulerian.
Let C be an Eulerian circuit in this graph. If we delete v’ from H’, then C decomposes into

edge-disjoint paths. It is easy to verify that these paths satisfy the conditions of the lemma. ®

Lemma 4.1.5 Let A’ be a reverse arborescence on at least two nodes, with root v, and let L be
its set of out-leaves. Then there ezists a collection of edge-disjoint paths in A’ such that each
path has its tail in a distinct vertez of L, at least 6] paths have their heads in v, and for every

w € A’'\ (Y U{v}), at least 6, — 1 of the paths have their heads in w.

Proof. Attach a new node u to A’, by a single edge to each node in L, and apply Lemma 4.1.4.

Lemma 4.1.6 Let F be a forest, with vertex set W, and let B = {w € W : §; = 0}. Then
there ezists a collection of edge-disjoint paths in T such that
(i) each path has its tail in a distinct verter of B, and

(ii) for every x € W \ B, at least 67 — 1 paths have their heads in x.

Proof. Tt is enough to prove this for a tree T'; one can then apply the lemma in each component
of F separately. Assuming T has more than one node, we fix an arbitrary node u & B. We
root the tree at u; by this we mean that w will be defined to be below v if either (v, w) or (w,v)
is an edge of T, and the undirected distance from u to v is less than the undirected distance
from u to w. Say that an edge is proper if its tail is below its head; and improper otherwise.
Let Ty,...,T, be the set of trees obtained by deleting all improper edges.

We now observe the following facts.

(i) Each T; is a reverse arborescence, since any node v € T; can be the tail of at most one

edge in T;.
(ii) A node is a out-leaf of some T; if and only if it belongs to the set B.

75

(iii) The in-degree of a node v # u in T; is equal to 6, — 1 if it is the root of T;, and equal to

0, otherwise.
(iv) The in—degree of u in its tree T; is equal to 6.

From these four facts, it follows that applying Lemma 4.1.5 to each of the T; produces the

desired paths in T. ®
We now use these lemmas to construct an appropriate coalition for (G, D, s).

Lemma 4.1.7 Let (G, D,s) be a single-source fractional flow problem, in which terminal t; €
D; has an associated demand p;. Let us assign to each terminal in D a demand p; < p;, in such
a way that (G, D, s) has a feasible fractional routing. Then there exists a spanning arborescence
A of G, rooted at s, such that for every o > 0, the induced coalition T = f(A,U) has the
following property. Suppose we define the problem (G,U (f),s) by assigning to each u; € U (f)
any demand p. not exceeding the total j-demand of terminals in its arborescence. If for all i

we have p; < €, then (G,U(T'),s) has a fractional routing of congestion at most 1 + 6¢.

Proof. By assigning a demand j; < p; to each t; € D, the resulting problem (G, D, s) has a
fractional routing that respects the capacity constraints. Let f. denote the total amount of flow
crossing edge e in this fractional routing. We call an edge tight if f. = 1, and empty if f. = 0.
We may delete any empty edges from G, as this does not affect the feasibility of (G, D, s) with
demand /.

We first perform the following reduction steps on the graph G and the associated fractional

flow.

(i) We can assume that the set of non-empty edges does not induce any directed cycles, and

hence (deleting empty edges if necessary) that the graph G is acyclic and 4; = 0.

(ii) Suppose there exists a set of edges C that induce a simple cycle if one ignores their
directions. Let v,...,v,-; denote the set of nodes in this cycle, with each e € C having
ends v;, U(i+1 mod ¢) for some i. We say that the edge (vi, ¥(i41 mod q)) € C is forward if its
tail is v;, and backward otherwise. We uniformly increase the flow values on forward edges
in C while uniformly decreasing the flow values on backward edges, until some edge in C

becomes tight or empty.

76

(iii) If there are two tight edges (u,v) and (v,w), then we may delete both from G and add
the tight edge (u,w). If we find the desired coalition in the resulting graph, then it is

easy to produce a coalition in the graph G.

1 edge in Ey

® = node in X
0 = nodeinY

O = node in Z

A = terminal

Figure 4-3: Constructing a good coalition

Following these reduction steps, we may assume that G is acyclic, 6; = 0, the set of non-
tight edges induce a forest F, and no node is both the head and the tail of a tight edge. Given
the last point, let X denote the set of vertices, other than s, that are tails of tight edges. Let
Y denote the set containing s and all vertices that are heads of tight edges. Note that X and
Y are disjoint sets.

We say that an edge e of G is dense if fo > }, and shallow otherwise. We say that a node

v is branching if §; > 1, and shallow if all edges for which it is the head are shallow. Let Z

7

denote the set of all shallow, branching nodes.

For u € X, let a, denote the number of tight edges for which u is the tail. Thus at least o,
units of flow leave u; by flow conservation, at least o, must enter u. Since this flow must enter
on non-tight edges, the in—degree of u is at least o, +1. In particular, u is branching. Moreover,
if u € X is shallow (and hence in ZN X), then it must have in-degree at least 2a, +1 > a, + 2.

See Figure 4-3 for an example of all these definitions. To prove Lemma 4.1.7, we first show
(A) Z can be linked to s by edge-disjoint paths.

We prove (A) as follows. Let F' denote the forest consisting of the non-tight edges and all
nodes incident to them. We apply Lemma 4.1.6 to the forest F, obtaining a set of edge-disjoint
paths P. Any node v whose in—-degree in F is zero must, by flow conservation, either be the
head of a tight edge or be equal to s. Thus such a node belongs to Y, and so by Lemma 4.1.6,
each of the paths in P has its tail in a distinct vertex of Y. Any node u € X U Z is not the
head of any tight edge, and hence has the same in-degree in both G and F; thus u is the head
of at least 67 — 1 paths in P.

For each node y € Y \ {s}, we now choose a single tight edge whose head is y, obtaining a
collection of tight edges Ey. Let E' denote the union of Fy with the edges of P, and let G’
denote the subgraph of G consisting of the edges of E’ and all nodes incident to them. For a
node v of G’, let 6, 5 and 6} . denote its in-degree and out-degree in the subgraph G'.

We claim that G’, with source s, satisfies the hypotheses of Lemma 4.1.4. To see this, let v

be any node of G’ \ {s}; we show that 6; . > 67 ..

(i) If v € Y, then it is at the tail of at most one path in P, and at the head of one edge in
Ey.

(ii) If v € X, then it is at the tail of at most «, edges in Ey, and at the head of at least
6; — 12> a, paths in P.

(iii) If v ¢ X UY, then any edge for which it is the tail corresponds to an internal node of

some path in P, and can therefore be paired with some edge for which it is the head.

Let Q denote the set of edge-disjoint paths, anchored in s, that is provided by Lemma 4.1.4.

We claim that for every 2z € Z, the in-degree of z in G’ is strictly greater than its out-degree;

78

this will show that at least one path in Q has its head in 2. To show this, we observe that if
z € Z\ X, then the edges of G’ incident to it correspond to paths in P for which z is internal,
and at least one path in P for which z is the head; thus §7¢ > 6. And if z € ZN X, then
6} > a, +2, and so z is the head of at least o, + 1 paths in P. But z is the tail of at most o,
edges in Ey, and so again we have 6] > 67 .

Thus there exists a set of edge-disjoint paths @ C Q, with their tails in s, such that for
every z € Z, some path in Q' has its head in 2. This proves Claim (A).

In this set of edge-disjoint s—-Z paths, let P, denote the path with ends s and z € Z. We
can now define the arborescence A. Since G is an acyclic graph in which s has a path to every
other vertex, it is enough, in defining an arborescence, to specify an in-edge for every node of

V' \ {s}. For A, we do this as follows. Let v € V' \ {s}.
(i) If v is not a branching node, then we choose the unique edge whose head is equal to v.
(ii) If v is at the head of a dense edge, then we choose one of these dense edges arbitrarily.

(iii) Otherwise, v is a shallow branching node. In this case, we choose the final edge of the

path P,, constructed in the proof of Claim (A).

We now prove the main statement of the lemma. Let p) denote the demand assigned to

u; € U(T) in the problem (G,U (T'), s). By hypothesis,

pi< Y pi<e (4.2)
Jir(t)=Ai

We claim that if every edge is given a capacity of 1 + 6¢, then the problem (G,U (T),) is
fractionally feasible. In order to show this, we must verify the cut condition, by showing that

(14 6¢)|67(S)| = p'(S) for every set S ¥ s.
Suppose that there is a set violating this cut condition; let us choose such a set S whose
cardinality is maximal. Suppose that S contains the leaders u;,,...,u;. For each of the
associated arborescences A; , we say that A, is unsplit if its node set is entirely contained in

S, and split otherwise. We consider the following two cases.

79

(i)

(ii)

At least a - fraction of the total p’-demand of S is associated with leaders of unsplit

arborescences. Thus, by Equation (4.2), we have

- p'(S)
pS) 2 1+6¢

By the feasibility of the problem (G, D, s) with demands p, we have |6=(S)| > 4(S), and
hence

(14 66)|67(S)| = (1 +6¢)A(S) 2 p'(S).

At least a 1%5 fraction of the total p'-demand of S is associated with leaders of split

arborescences. Since the maximum demand contained in any single arborescence is at

most £, there are at least
6 p(S) _6'(S)
(1+6e) ¢ 1+ 6¢

split arborescences in S. Since these arborescences are half-disjoint, it follows that

3p'(S
+ >
|AN6*(S)| > T 6

~—

We now have two sub-cases.

(a) At least a 2 fraction of the edges in ANS*(S) are dense. Thus, a total flow value of at
least (1+62)~!p'(S), in the problem (G, D, s), is leaving the set S, and consequently
at least this much flow is entering the set. But since edges have unit capacity in

(G,D,s), we must have |6=(S)| > (1 + 6¢)7!p'(S). Thus,
(14 6<)|67(S)| > p'(S).

(b) At least a } fraction of the edges in A N 6%(S) are shallow. By the definition of
A, all these edges have their heads in shallow nodes, z;,...,2,. Because we are
considering a violated cut whose cardinality is maximal, it must be that each z; is
also a branching node - for otherwise, S U {z;} would be a violated cut of larger
cardinality. Thus {z,,...,2,} C Z, and hence each of P, ,..., P, has an edge in

6*(S). But from this it follows that each of P, ,..., P, must also have an edge in

80

6~(S). Since

we have

(1+60)|5(S)] 2 H(S).

Thus in 2ll cases, we have (1+ 6¢)|6=(S)] > p'(S), contradicting our assumption that S was
a set violating the cut condition. Hence there are no violated cuts in (G, U(f), 8), and so it is

fractionally feasible with edge capacities equal to 1 + 6c. ®

4.2 The Approximation Algorithms

Using Lemma 4.1.7 in place of Lemmas 3.1.3 and 3.1.4, we will be able to obtain approximation
algorithms for the three basic objective functions of the previous chapter; the constants will be
somewhat larger due to the weaker bound provided by Lemma 4.1.7.

The only essential difference between Lemmas 3.1.4 and 4.1.7, in terms of their application,
is the following. The coalition produced by Lemma 4.1.7 depends on the structure of (G, D, s),
and in particular on the demand associated with each terminal in D. This issue did not arise

in the undirected case, since Lemma 3.1.4 applied to any coalition.

Congestion

Theorem 4.2.1 Let G be directed and (G, D, s) be fractionally feasible. Then it has an un-
splittable routing of relative congestion at most 1+ 9/p* +9p* = (14 3/p")*.

Proof. We set 0o = 3/p*, and use Lemma 4.1.7 to construct a coalition T' with respect to the
demands {p,} on the terminals in D. Now, following the proof of Theorem 3.2.1, we multiply
all capacities in G by 1 + 60, and then round each capacity up to the nearest multiple of oo.
By Lemma 4.1.7, there is a feasible fractional routing of s to the leaders of T in the resulting
graph. Thus, by Corollary 2.9.1, there is a feasible unsplittable routing of s to the leaders of
T, using paths {Q;}.

Again following the proof of Theorem 3.2.1, if t; € D belongs to 77'(A;), then we concate-

nate the path Q; with the unique path u;-t; path in the arborescence A;; we use R; to denote

81

this path. This produces an unsplittable flow path for each terminal ¢; € D. The total relative

congestion due to the Q-parts of all these flow paths is at most

o+ p°

. (1 + 70’0),

v
v

and the total relative congestion due to the R-parts of all these flow paths is at most

2(o0+p°) =

DL (2,).
g,

Adding these two bounds, we obtain a total relative congestion of at most

@—goi-(ugao) = (1435

When p* =1, this gives a bound of 16. Again, it would be interesting to determine whether
the correct bound could be as low as 2.

From this theorem, as in Section 3.2, we obtain the following corollaries.

Corollary 4.2.2 Let G be directed. Suppose that in (G,D,s) we have p* < %, and the cut
condition is met by a factor of at least § = (1 — 3/p*)~2. Then (G,D,s) has a feasible

unsplittable solution.

Corollary 4.2.3 There is a 16-approrimation to v(G,D, s) in an arbitrary directed graph G.

Maximization

We first observe that, using Corollary 2.9.1 in place of Corollary 2.9.1, Lemmas 3.3.1 and 3.3.2

hold in the directed case. The directed analogue of Theorem 3.3.3 is the following.

Theorem 4.2.4 Let G be a directed graph and p* < it — 644?. There is a polynomial-time
algorithm for the single-source UFP producing a flow of value at least 1 — 6\/p* + Tp° times

ol (G, D,s).

Proof. Set oy = 5:\4% We require p* < 31 — ngé so that the expression 1 — 6\/p* + 7p° is

positive and oy is well-defined.

82

We compute a fractional maximum flow in (G, D, s), and let ¢, denote the demand routed
to the terminal ¢; € D. Using the set of demand values {¢;} for the terminals in D, we apply
Lemma 4.1.7 to produce a strong coalition T' of order o,.

Let G’ denote the graph obtained by multiplying all capacities of G by 1 + 60, and then
rounding up to the nearest multiple of 0. We assign each non-exceptional vertex in U (1:") a
demand of gy, and each exceptional vertex in U(I') a demand equal to the amount assigned to
its arborescence. As in the proof of Theorem 3.3.3, there is a maximum flow in (G’, U(T), s)
that is an unsplittable flow. Moreover, by Lemma 4.1.7, if we were to assign to u; € U (T) a

demand equal to

Z €5

Jit;€EA;
we would obtain a fractionally feasible flow problem. It follows that the maximum flow value
in (G',U(T), s) is at least as large as the fractional maximum flow value in (G, D, s).
Now, still following the proof of Theorem 3.3.3, we take each u; € U (T') that is routed by

this optimum unsplittable flow and route a subset of the terminals in its arborescence of total

(1—200)0 .
1+7Uo 0 P

One argues as before that the set of flow paths for all these routed terminals satisfies the

demand at least

capacity constraints, and we therefore calculate that we have routed a total demand that is

within a factor of

1—209 * 93@'
(l+700) P 3—Tvp" P - "
=1- 3 - =16/ + Th (4.3)
o =T e

of the fractional optimum in (G,D,s). ®

Corollary 4.2.5 There is a constant—factor approzimation algorithm for (G, D, s) in an ar-
bitrary directed graph G.
Routing in Rounds

Theorem 3.4.2, that the realizable subsets in an integral single-source UFP form a matroid,

holds in the directed case as well. Consequently, Lemmas 3.4.4, 3.4.5, and 3.4.6 hold in the

83

directed case. Finally, the analogue of Theorem 3.4.7 is the following; the proof is again a direct

modification of the undirected version.

Theorem 4.2.6 Let p* < 22— 3—@. There is a polynomial-time algorithm that routes (G, D, s)
in 2[v{(G, D, s)] rounds.

Corollary 4.2.7 Let (G,D, s) be an arbitrary single-source unsplittable flow problem, with G

a directed graph. There is a polynomial-time constant—factor approzimation for x(G,D, s).

Corollary 4.2.8 Let G be directed. If (G,D,s) is fractionally feasible, then it is routable
without splitting in a constant number of rounds. If additionally p* < g% - 3449@, then 1t 1s

routable without splitting in two rounds.

84

Chapter 5

The Greedy Algorithm

Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.
— Robert Frost, The Road Not Taken.

We now turn our attention to disjoint paths problems in which all terminal pairs do not
necessarily share a common vertex; this will essentially be our focus for the remainder of
this work. In this chapter, we analyze the performance of a one-pass greedy algorithm in
approximating the MDP. Although this algorithm does surprisingly well in certain classes of
graphs, its approximation ratio is very large in planar graphs such as the two-dimensional
mesh. The development of improved, “non-greedy” algorithms for the mesh and related planar
graphs will be taken up in the following chapter.

If G is an arbitrary graph, and 7 an arbitrary set of terminal pairs in G, a very natural

algorithm to consider for approximating the MDP is the following greedy algorithm:
e Proceed through the terminal pairs in one pass.

e When (s;,t;) is considered, check whether s; and ¢; belong to the same connected compo-

nent of G. If so, route (s;,t;) on a shortest s;-t; path P;. Delete P; from G and iterate.

In addition to its simplicity, the greedy algorithm is both on-line and deterministic. As such,
lower bounds of [10, 17] imply a fortiori that it cannot achieve a good performance ratio on

graphs such as trees and two—-dimensional meshes.

85

In this chapter, we consider a slight variant of the greedy algorithm, the bounded greedy
algorithm (BGA). The BGA is also a determinstic on-line algorithm; it is given an implicit

parameter L and runs as follows.
e Proceed through the terminal pairs in one pass.

e When (s;,t;) is considered, check whether s; and ¢; can be joined by a path of length of

at most L. If so, route (s;,¢;) on such a path P;. Delete P; from G and iterate.

While the BGA suffers from the same bad behavior suggested by the lower bounds of [10, 17],
its performance appears to be somewhat easier to analyze in a number of cases than that of the
(pure) greedy algorithm. Indeed, developing methods for analyzing the pure greedy algorithm
is an interesting open question.

In this chapter, we first prove an upper bound on the performance of the BGA for the
maximum disjoint paths problem in an arbitrary graph. We also provide an analogous bound
for the UFP. Although there are graphs in which the BGA does quite poorly, the bound we prove
here will be useful in analyzing one step of the on-line algorithm we develop in Chapter 6.

We then consider the BGA in bounded-degree expander graphs. Here, we prove that with
parameter L = ©(log nloglogn), the BGA is in fact an O(logn(loglogn)?)-approximation for
the maximum disjoint paths problem. The nature of this bound is interesting for a number
of reasons. First of all, it shows that bounded-degree expanders are a natural class of graphs
in which routing algorithms that are both on-line and deterministic can be provably close to
optimal. Secondly, the approximation ratio we prove is smaller than the O(log®n) ratio one
obtains from the techniques developed by Aumann-Rabani [9] and Raghavan-Upfal [95] for
the problem of routing in rounds. (These papers considered the deterministic off-line and
randomized on-line settings respectively.) This naturally raises the question of whether the
techniques developed here, when incorporated into an algorithm that did not have to contend
with the on-line constraint, could lead to even tighter approximation bounds. We leave this as
a question for future research.

In the following section, we prove a general bound for the BGA. We then consider the case

of bounded-degree expanders in Section 5.2.

86

5.1 General Bounds

Let G = (V, E) be an arbitrary graph of diameter d, and 7 a set of terminal pairs in G.

Theorem 5.1.1 Define d' = max(d, /|E|). The BGA with parameter d’ is a (2d'+1)-approzimation.

Proof. Let B denote the set of paths routed by the BGA when run on G with terminal pairs 7,
and let O denote a set of disjoint paths connecting a subset of 7 of maximum cardinality. Let
O’ C O denote the set of paths in O corresponding to terminal pairs not routed by the BGA.
Call a path Q € O' restricted if it intersects some path in B, and unrestricted otherwise. Let
O’ and O! denote the set of restricted and unrestricted paths in O, respectively.

Now, every path @ € O’ must have length greater than d'; for otherwise the BGA could

have routed the endpoints of @ on the path @ itself. Thus
ry E ’ ' I
o <P <o <y, (5.1)

with the last of these inequalities following from the fact that |B| is always at least 1.
For each path Q € O., we charge it to some path P € B that it intersects. Since the paths
of O are edge-disjoint, at most |P| < d’ paths are charged to P. But since every path in O, is

charged to some path in B, we have

01 < &1B]. (5.2)

Finally, by the definition of O' we have
|0\ O'| < |B]. (5.3)

Adding Equations (5.1), (5.2), and (5.3), we obtain the claimed bound. =

Now, the approximation ratio implied by this general result is quite large — it has the form
O(n¢) for a constant € > 0. A lower bound due to Blum, Karloff, Fiat, and Rabani {17] implics
that no qualitatively better bound is possible for the greedy algorithm on a graph such as the
two-dimensional mesh. As the proof of their result is not readily accessible, we provide an

alternative proof of it here.

87

Proposition 5.1.2 (Blum-Karloff-Fiat—Rabani) For any deterministic on-line algorithm
A for the MDP on the n x n two-dimensional mesh G, there exists a sequence of terminal pairs

T, depending on A, such that the ratio of o(T) to the number of pairs routed by A is Q(/n).

Proof. For simplicity, we assume that \/n is an integer. Let A = {a,,...,q,} denote the
set of nodes in the first column of G, and let B = {b;,...,b,} denote the set of nodes in

the ntt

column of G, indexed so that a; and b; belong to the ** row of the mesh. Let 7, =
{(ar,b,),...,(a,-1,b2)}, which we observe is realizable in G (cf. Theorem 2.2.4). If A, on
input 7o, fails to route at least 1 + /n terminal pairs, then it is no better than an Q(/n)
approximation. Otherwise, let 7 be the minimal prefix of 7y with the property that A, given
7y, routes at least 1+ \/n terminal pairs.

Of the paths produced by A in routing (a subset of) 7, cach pair must cross. Let X denote
the set of vertices of G at which two of these paths cross; so | X| > ('+2‘/R) > +n. Consider the
order in which an arbitrary Hamiltonian path of G meets X, and pair consecutive elements in
this order to obtain a partition of X into a set Tx of terminal pairs. Note that subpaths of this
Hamiltonian path constitute a realization of Ty, and hence a(7x) = [Tx| > 4171.

Finally, we construct 7 by concatenating 7 and Tx. Thus we have o(7) > in. But
A only routes 1 + y/n terminal pairs from 7, and it then cannot route any pairs from 7y,

since all the edges incident to vertices in X have been used. Thus, A is no better than an

}(\/n)-approximation. m

Note that the n x n mesh contains ©(n?) nodes and edges, and has diameter ©(n), so the
upper bound for the approximation ratio of the BGA provided by Theorem 5.1.1 is O(n). Also,
the above lower bound applies only to on-line algorithms that are deterministic; in Chapter 6,
we will see that it is possible to obtain an on-line O(log n)-approximation through the use of
a randomized algorithm.

We now formulate and prove an analogue of Theoremn 5.1.1 for the unsplittable flow problein
on uniform capacity graphs. By re-scaling, we therefore assume that every edge in the under-
lying graph has capacity 1. We must first take care of the following issue - it turns out that
for the general UFP, the BGA does not achieve an approximation ratio that can be bounded in
terms of the size of the underlying graph G. Specifically, let G consist of a single edge of unit

capacity; let (s, t,) request a demand of < across this edge, and let (s3,t,) request a demand

88

of 1 across this edge. Then the BGA will accept the first request and therefore not be able to
accept the second; hence its approximation ratio is €', which is independent of the size of G.

Thus, the natural generalization of Theorem 5.1.1 in fact shows that the BGA with parameter
d' = max(d, /|E]) is an O(p;'d’)-approximation, where p, = min; p; < 1. However, it turns
out that the BGA also obtains an O(d') approximation ratio if we require that the mazimum
demand be bounded away from 1. In particular, let us define an instance of the UFP to be

e-bounded if the maximum demand is at most (1 — ¢). Then we show

Theorem 5.1.3 Let G be a unit-capacity graph, and T a set of terminal pairs with demands,
such that the resulting UFP is e-bounded. As before, let d be the diameter of G and d' =

max(d, \/]E]). Then the BGA with parameter d' is an O(e~'d')-approzimation.

Proof. The proof will be quite similar to the previous one. For any set P of paths, we use p(P)
to denote the total demand of terminal pairs routed by P. Define the sets of paths B, O, and
O’ as before, except that the optimum set of paths O is now the one with maximum p(O). We
now define a path Q € O’ to be restricted if it uses an edge on which the BGA has routed total
demand more than . Let O’ and O, denote the set of restricted and unrestricted paths in O,
respectively.

First, note that p(B) > ¢, since the BGA will clearly not reject a terminal pair until it has

routed at least ¢ demand. By direct analogy with the previous proof, one can then show that
p(0,) < d < e 'd'p(B).

By definition we have

p(O\ O') < p(B).

It remains only to bound p(O.), which we do as follows.
Let Q € 0, and e be any edge in Q on which the BGA has routed total demand more than
. We charge Q to e. Let E' denote the set of edges to which some path in O] has been charged;

and for e € E’, let O'(e) denote the set of paths charged to e. Thus we have

p(0L) =" p(OL(e)) = |E|.

ecE’

89

But every edge in E’ carries more than ¢ units of flow that has been routed by the BGA; thus

we have

e| £ e|E'|
> >
p(B) 2 maxpep |P| ~ d'
From this it follows that

p(OL) < e7'd'p(B).

5.2 The Algorithm on Bounded-Degree Expanders

We now analyze the BGA on bounded-degree expander graphs. Expanders were introduced in
Section 2.8, and we refer the reader to this section for the relevant definitions. Throughout the
discussion here, let G be an n-node a-expander graph, with maximum degree A. In this section,
we deal only with the maximum disjoint paths problem, when all demands and capacities are
equal to 1.

The analysis of the BGA on G will in fact be almost the same as it was in the previous
section — we consider any set of edge-disjoint paths joining terminal pairs in G, charge these
appropriately to paths routed by the BGA, and conclude that the number of paths routed by
the BGA is large relative to the optimum. What gives our analysis considerable power in this
case is the set of results discussed in Section 2.8, which essentially say that very large partial
permutations in G can be routed on short paths.

In particular, Theorem 2.8.2 says the following here: there are constants ¢;, ¢, and c3
such that any partial permutation in G of size at most ¢;n/(log n loglogn) can be routed with
congestion at most ¢, log log n using paths of length at most c; log n. Using this, we prove the

following. For simplicity, we will suppose that n > 2(cs/a18),

Theorem 5.2.1 The BGA with parameter L = c¢,Alognloglogn is an O(log n(loglogn)?*) -

approzimation for the MDP in G.

Proof. We use analogous notation to the proof of Theorem 5.1.1. Let B denote the set of paths
routed by the BGA when run on G with terminal pairs 7, and let O d:iv. - set of vaths of

maximum cardinality. Let O’ C O denote the set of paths in O correspondiing to icrinal pairs

90

not routed by the BGA. Since the paths in O’ are edge-disjoint, at most A of the pairs routed
by ©' contain any fixed vertex v € G. Thus, by Vizing’s Theorem (cf. [18]), the pairs routed by
' can be partitioned into at most A + 1 partial permutations; let O] C O’ denote the set of
paths corresponding to the largest of these partial permutations. We now define a set of paths

O/ as follows.

(i) If |O}| > eyn/(log nloglogn), then by the pigeonhole principle, at least half of the paths
in O} have length at most |E(G)|/(;]0}]) < c;Alognloglogn. We define Of to be this

set of paths.

(ii) If |O}] < cin/(log nloglogn), then by Theorem 2.8.2, the pairs routed by O] can instead
be routed on paths of length at most ¢;logn and congestion at most c; loglogn. We

define O} to be this set of paths.

First, we claim that every path in O} intersects some path in B. For suppose that Q € Oy
is disjoint from all the paths in B. Then the BGA with parameter L would have routed the
endpoints of O} on the path Q — a contradiction.

Given this, we charge each path in O] to some path in B that it intersects. Since the
paths in O} have congestion at most c;loglogn, and the paths in 5 have length at most
L = c;Alognloglogn, each path in B is charged at most coc3A log n(loglogn)? times. Thus

we have

10|

IN

(A+1)-|0]

IA

2(A+1)-107]

< 2coc3A(A + 1) log n(loglogn)? - |B|.
Since by the definition of O’ we also have
0\ O'| < |8,

the result follows. m

We can obtain a slight strengthening of this result in the case in which 7 is a permutation.

Here we make use of Theorem 2.8.3, which in our case can be phrased as follows: There exist

91

constants ¢4 and cs such that every permutation in G can be routed with congestion at most

cq log n, using paths of length at most c5 logn.

Theorem 5.2.2 The BGA with parameter L = cslogn is an O(logn)-approzimation for the

MDP in G, when the set of terminal pairs is restricted to be a permutation.

Proof. We define B, O, and O’ as before. Let 7' denote the partial permutation consisting
of pairs not routed by the BGA. We define Q to be a set of paths, one for each pair in the
partial permutation 7", such that each path in Q has length at most ¢5 logn and the set Q has
congestion at most c4logn. As in the previous proof, we observe that each path in Q must

intersect some path in B; thus, charging paths in Q to paths in B, we have
|T'] = |Q| < cacslog” n|B.

Since we also have |7 \ 7'| < |B|, it follows that

T 1
B> — 2" (5.4)
1+ ceslog"n 14cqc5log™n
Now, if
|E| An

0’| < - ,
| I"cslogn cslogn

2

then by Equation (5.4), we have |B| < O(logn) - |O|, as desired. Otherwise, by the pigeonhole
principle, there is a set 0" C O’ of size at least 3|O'|, consisting of paths of length at most
cs logn. Each such path must meet a path in B; charging paths in O” to paths in B as usual,

we have |O"| < ¢5 log n|B|. The bound now follows in this case as well, since

o] < |O0]+]|0\0O|
< 200"+ B

< (2c5logn + 1)|B|

92

Chapter 6

The Two—Dimensional Mesh

“I declare, it’s marked out just like a large chess-board!” Alice exclaimed at
last.

— Lewis Carroll, Through the Looking-Glass.

In the previous chapter, we saw that the greedy algorithm for approximating the maximum
disjoint paths problem could only provide a very weak approximation ratio on planar graphs
such as the two—dimensional mesh. This tells us that alternative techniques must be developed
for dealing with such graphs. Previous work in this direction was undertaken by Awerbuch,
Gawlick, Leighton, and Rabani [12], and by Aumann and Rabani [9]. The first of these papers
gives an on-line O(logn loglog n)-approximation for the MDP on the two-dimensional mesh;
the second of these gives an off-line O(log n)-approximation.

In this chapter, we obtain a constant-factor approximation for the unsplittable flow problem
on the uniform-capacity two-dimensional mesh. This is the first constant-factor approximation
for any class of graphs other than trees, and also the first algorithm in the context of the mesh to
deal with arbitrary unsplittable demands, rather than just the problem of edge-disjoint paths.
We also use the same techniques to provide an on-line O(log n)-approximation algorithm. This
matches a lower bound of Awerbuch et al. [12], showing that no on-line algorithm for the MDP
on the two-dimensional mesh can be better than an Q(log n)-approximation.

The algorithms developed have the property, in common with the previous algorithms for
the mesh [12, 9], that they are quite specific to the fixed row/column structure of the mesh.

Our basic method, however, can be generalized to a broader class of graphs; in Chapter 7, we

93

obtain a constant-factor approximation for the UFP in a class of locally planar, Eulerian graphs.

The (constant) factor of approximation that we obtain, while not astronomical, is large
enough to push the algorithm outside the range of immediate practical utility. While we have
not attempted to optimize the constants involved in the development of the algorithm, it seems
very likely that obtaining an approximation ratio of 2 or 3 would involve non-trivial work
beyond what is presented here. Having said this, it is worth noting two additional points.
First, the previous best approximation bounds — both off-line and on-line — for the two-
dimensional mesh [12, 9] involve similarly large constants inside the O(-) notation. Moreover,
we feel that many of the ideas and components used in the algorithms here may well be of use
in suggesting more practical heuristics.

Throughout this chapter, let G = (V, E) denote the n x n mesh, in which all edges have
been given the same capacity. (We can assume by re-scaling that this common capacity is 1.)
A very rough sketch of the algorithms is as follows. Since much stronger results are known for
cases in which edges have capacity Q(logn), we want to model G by a high-capacity “simulated
network” N. To do this we choose, for a constant v, a maximal set of v logn x ylog n subsqures
of G subject to the condition that the distance between subsquares is at least 2ylogn. These
will serve as the nodes of N. We now label some pairs of subsquares as “neighbors” and connect
them with Q(log n) parallel edges; these are the high-capacity edges of V.

On this network A we run the algorithm of Awerbuch, Azar, and Plotkin [10] in the on-line
case, and the algorithm of Raghavan and Thompson [94] in the off-line case. The algorithms
running in A will return routes consisting of a sequence of neighboring subsquares. To convert
such a route into a path in G, we construct disjoint paths between neighboring subsquares. We
livk a sequence of neighboring pairs together by the natural “crossbar” structures surrounding
each subsquare. This leaves us with the problem of routing from each original terminal to the
boundary of its subsquare. In the on-line case we will route a total demand of at most 1 from
each subsquare, and hence routing out of a subsquare will be easy. In the off-line case, we use
the single-source unsplittable flow algorithm from Chapter 3 to route the appropriate subset
of terminals to the boundary of the subsquare. Finally, to prove the approximation ratios, we
argue that the total demand routed by the optimum in G is upper-bounded by the maximum

demand that can be routed in a copy of A/ in which all edges have capacity O(logn).

94

6.1 The Simulated Network

When G denotes the two-dimensional mesh, let G[i,j] denote the vertex with row number ¢

and column number j, and G[i : ¢, : j']| the subsquare

{Glp,q):i<p<i, j<qg<j'}

As before, let d(u,v) denote the fewest number of edges in a u-v path. By the Lo distance
between vertices G[i,j] and G[i', j'], we mean Loo(G[i,j], G[¢',5']) = max(|¢ — 7|, |5 — j']).

We choose a constant v > 1 (any constant will do; it will have an influence on the approxi-
mation ratio we obtain). Our first goal is to choose a maximal set of “mutually distant” vertices
around which to grow nodes of the simulated network. We divide the the mesh into ylogn by

v log n subsquares as follows.

Definition 6.1.1 A subsquare of V is called a y-block if for some natural numbers i and j, it

is equal to the set
G[(i — 1)ylogn : iylogn,(j — 1)ylogn : jylogn|.

If X is a y-block with associated natural numbers i and j, then the vertex

A | o1
v=G[{i-3) logn, (j = 5)7 log n]

will be called the center of the y-block, and we will denote X by C,. A boundary vertez of X
iz one with mazimal or minimal row or column number. We use X* to denote the union of X

with the (at most) eight other y-blocks that share boundary vertices with X.

By a wall of X, we mean a maximal set of boundary vertices having the same row or column
number. A vertex of X is internal if it is not a boundary vertex.

Let V' denote the set of all centers of y-blocks. We build a graph G’ on V' by joining
u,v € V' if the corresponding sets C: and C; intersect at an internal vertex. We now run
a randomized version of Luby’s maximal independent set algorithm [79] on this graph. That
is, each vertex picks a random number between 1 and j, where j is large enough that the

probability of ties is small. If v has a number higher than any of its neighbors’, it enters the

95

block added to D,

Figure 6-1: A cluster and its surroundings

MIS and its neighbors drop out. We then iterate.

Let M C V' denote the resulting MiS. For any v € V', C? intersects C* internally for at
most 24 other vertices u € V’; thus with probability ;- — o(1), v will enter M on the first
iteration. Moreover, if u,v € V' are at a distance of at least 11ylogn from each other, then

they have no common neighbors in G’, and so these events are independent. Thus,

Lemma 6.1.2 Let u,v € V' be such that d(u,v) > 11ylogn. Then with constant probability,

both u and v belong to the set M constructed above.

If v e M, we will call C, a cluster. We now want to construct internally disjoint enclosures
D, around each Cj, for v € M, such that every vertex of G belongs to some enclosure and such
that each D, is a union of y-blocks. The sets C: are disjoint and are unions of y-blocks, but
they do not cover all of G. However, by the maximality of M, any «-block X that does not
belong to C; for some v € M must share a boundary vertex with such a C;. For each such X,
we pick such a C; arbitrarily and add X to D,. Thus the D, now form a partition of G, and
each D, is a union of y-blocks.

We now define N to be the graph on vertex set M, with u and v joined by an edge if some
v-block of D, shares a wall with a v-block of D,. As argued above, any y-block in D, must
belong to the 5 x 5 set of y-blocks centered at C,, and from this it is easy to argue that at most

20 v-blocks not contained in D, can share a wall with a y-block of D,. Thus we have
Lemma 6.1.3 The degree of a vertez in N is at most 20.

If we were to contract each enclosure D,, the resulting graph would contain all the edges of

N with multiplicity ©(log n) — enough to run a “high-capacity” algorithm. But given a routing

96

in A, we then run into the following problem: we need to convert the sequence of neighboring
clusters connecting the clusters of s; and ¢; in the contracted graph back to a routing in G. For
this we use the natural “crossbar” structures in the mesh in the on-line case, with additional
flow techniques in the off-line case.

We start by developing the “crossbar” structures we use.

Definition 6.1.4 A v-ring is a subgraph G[X], where X is the set of vertices at Lo, distance
ezactly r from v, for some r between %'y logn and ylogn. Thus a v-ring is either a cycle or a
path, depending on whether C, has a wall on the boundary of G. If R and R' are v-rings, we
say that R is inside (resp. outside) R' if the distance from R to v is less than (resp. greater

than) the distance from R' to v.

Note that the set of v-rings are the }vlogn disjoint cycles around v right outside the boundary
of C,, in the “inner half” of C: \ C,.

For each pair (v,w) that is an edge of NV, we choose, for a sufficiently small constant f,
a set 7,, of Blogn edges in §(D,,D,). Let 7, denote the set of all vertices in D, that are
incident to an edge in some 7,,. We also choose a set g, of Blogn vertices evenly spaced
on the outer boundary of C,. Now by Lemma 6.1.3, we can choose # small enough that
|T2U0,| < ivlogn, and hence we can associate a different v-ring to each vertex in 7, U o,
Moreover, in a straightforward fashion we can construct edge-disjoint paths from each such
vertex to its associated ring. We assign the outermost $logn rings to the vertices of 5;. For
u € 7' Ud’, let Y,* denote the union of the ring associated with u with the path from u to this

ring. Then we have

Lemma 6.1.5 The (non-simple) paths Y* are mutually edge-disjoint, and each pair meets at

some vertez of C; \ C,.

Proof. The paths are edge-disjoint by construction. Now suppose u,w € 7,, and that the ring
associated with u is inside the ring associated with w. Then the path from u to its ring must
intersect the ring associated with w, and so Y,* and Y, meet at a vertex. The same argument
applies if u,w € o', and also if u € ¢/, and w € 7, because in this case the ring associated with

u lies outside the ring associated with w. ®

97

Finally, let us show that the optimal unsplittable flow in this simulated network A provides
an approximate bound on the optimal unsplittable flow in G. Let A(c) denote the graph N
in which each edge has been given a capacity of c. If u is a vertex in a cluster C,, we define
v(u) = v; we say that ¥(u) is undefined if u & U,eyC,. If (s;,1,) is a terminal pair with both
ends in clusters of the form C,, we define ¥(s;,t;) = (¥(s;), ¥(t;)). We now have the following

fact.

Lemma 6.1.6 Let 7' be a realizable subset of T, with the property that all terminals in T'
belong to U,epC,. Then y(T") is realizable in N'(5vlogn).

Proof. Consider a realization of 7' in G, and let P; denote the path associated with (s;,t;) € 7.
We construct the following path for (y(s;),¥(t;)) in N — when P crosses from D,, into D,,,
we add an edge from w to w'. Since |6(D,,,D,)| < 5vlogn, this is an upper bound on the

total demand of paths in the constructed routing that use the edge (w,w’') in A. m

We are now ready to describe and analyze the routing algorithms themselves.

6.2 The On—Line Algorithm

For the on-line algorithm, as suggested at the beginning of this chapter, we will use a variant of
the high-capacity algorithm of Awerbuch, Azar, and Plotkin [10] to determine “global routes”
in the simulated network A. However, deciding whether the terminals selected by this high-
capacity algorithm can be routed out of the clusters in which they originate must be made by
separate on-line algorithms, one for each cluster. Our goal is to show that the final on-line
algorithm obtained in this way is an O(logn)-approximation.

Thus, in the following subsection, we discuss a general method for analyzing such “combina-
tions” of on-line algorithms. We then develop the variant of the high-capacity algorithm that
we need in Section 6.2.2. Finally, in Sections 6.2.3 and 6.2.4, we describe the on-line algorithm

itself.

6.2.1 Combining Maximization Algorithms

In routin; connections on-line, we adopt an approach in which the decision whether to accept a

given connection is made by a combination of several algorithms — the connection is accepted if

98

each of the individual algorithms accepts it. From the approximation ratios of these individual
algorithms one can infer an approximation ratio for this combined algorithm; in this section we
show how this can be done, in a fairly general framework.

Let U denote a finite set, with Sy,...,S, subsets of U such that U = U;S;. Let F; denote

a collection of subsets of S; closed with respect to inclusion, and let
F={C:Vi(CnNS;) € Fi}.
Each element u € U has associated with it a positive weight w,. Given a set U’ C U, define

w(U'") = E Wy,

uelU’

and define u(U’) to be the maximum weight of a member of F contained in U i

We wish to design an algorithm for the following on-line maximization problem with respect
to U and F. Elements of some U’ C U arrive in an arbitrary order, and on each element our
algorithm either accepts or rejects it; the goal is to accept a subset of these elements that is
in F and whose weight is as large as possible relative to (U’). Our algorithm will be called a
c-approximation if it always accepts a set of size at least LuU).

We can define the corresponding on-line maximization problems with respect to S; and F;,
for each i = 1,...,n, in exactly the same way. Say that for each 7, we are given an algorithm A,
which is a ¢;-approximation for the problem associated with S; and F;. Moreover, we assume
that the state of A; is completely determined by the set of elements it has accepted so far. We
then define our “combined algorithm” A = A, A; for the on-line maximization problem with
respect to U and F as follows. As each u € U’ is presented to A, it accepis u iff for each i
such that u € S;, A; accepts u. The total set accepted so far, intersected with S, serves as the
state for A;. Let ¢* denote the maximaum approximation ratio of any of the algori:ims 4, and

suppose each element of U appears in at most d of the S;.
Theorem 6.2.1 A is a c*d-approzimation.

Proof. Assume the algorithm A was presented with a set U’ and it returned X. Let Y denote

a member of F contained in U’ of maximum weight; we show that w (Y) < ¢*d - w(X). Let R;

99

denote the elements of Y \ X that were rejected by algorithm A;, J; = X NY N S; the elements
o' S; accepted by both A and the optimal solution Y, and R; = J; U R!. Note that Y = U;R;,
and R, CYNS; € F,.

We want to prove that w(R;) < ctw (X NS;) (i =1,...,n). Set U/ = (X NS;)UR;; these
are the elements of U’ N S; either accepted by A or rejected by A;. Order U] as it appears in
U’, and present it as input to A;. Then as in the running of the combined algorithm A, A; will

accept precisely the set X N S;. Since A; is a c*-approximation, and R; € F;, we have
w(R;) <cw(XNS;).

We also have w (Y) < 3, w (R;), and by the definition of d we have 3, w (X N S;) < d-w (X).
Thus
w(Y) SZw(R.-) gc‘Zw(XﬂS,-) <c'd-w(X). 6.1)

In the natural way, one can define & fractional version of this model, as follows. A “frac-
tional” choice of a subset of U is specified by 2 vector Y & RIV!, indicating the fraction of each

element that is taken. The weight of such a fractional subset Y is now defined to be

w(Y) = z Y(u) - w,.
uel
A collectinn F; of “feasible” subsets of U is now specified by some subset of [0,1]!Y! that is
closed downward in the sense that Y € F; and Y’ <Y coordinatewise implies that Y' € F;.
The algorithms A; work as before, and in particular can only choose integer-valued subsets
of U. However, their respective approximation ratios ¢; are now with respect to the fractional
optimum. In this setting, one can show the following by a minor modification of the proof

above.

Theorem 6.2.2 If each A; is a c*-approzimation relative to the fractional optimum, then A is

a ¢*d-approrimation relative to the fractiona! optimum.

Proof. As in the previcus proof, let U’ denote the sequence of elements presented to A, X

the integer-valued set returned by A, and Y a fractional subset of U’ of maximum weight. (A

100

fractional set attaining the maximum exists since the F; are closed subsets of {0, 1)'Y!, and hence
compact.) Define R to be the fractional set obtained by assigning zero to all coordinates of Y
except those corresponding to elements rejected by algorithm A;, J; the fractiunal set obtained
by assigning zero to all coordinates of Y except those corresponding to elements in X N S;,
and R; = R. + J;. Note in this last definition that R and J; are non-zero on disjoint sets of
coordinates; thus, R; <Y, and hence R; € F;.

With these definitions, one can simply follow the previous proof. One verifies that w (R;) <

c¢tw (X N S;), by the definition of c*, and hence that

w(Y)SZw(R;)Sc‘Ew(XnS;)5c‘d-w(X). (6.2)

6.2.2 The AAP Algorithm

If H is a graph with n nodes in which each edge has capacity at least log 2n, the on-line
UFP algorithm of Awerbuch, Azar, and Plotkin [10] achieves an approximation ratio of 2log4n
for arbitrary sets of terminal pairs. For our purposes, we need to develop a strengthening of
this “AAP algorithm”: we want an approximation guarantee that holds against the fractional
optimum; and when we deal with the more general class of graphs developed in the next chapter,
we want only to require capacities to be ¢logn, for an arbitrary € > 0. Here, we show how to

obtain such an algorithm.

Theorem 6.2.3 If all edge capacities are at least (elogn + 1 + ¢€), there is a deterministic
on-line UFP algorithm that provides an O(2'/¢ log n)-approzimation relative to the fractional

optimum.

Proof. We follow the AAP algorithm and its analysis very closely. We vary a little from
their notation, since we assume all requests have infinite duration, and the profit of a request
is proportional to its demand. Thus, the ith request is specified by a pair (s;,t;) of terminals,

and a demand p; < 1. We define the profit of the connection to be w; = np;.

101

Define p = 2'*'/¢n, so we have
clogp=clogn+1+c¢.
Let u. denote the capacity of edge e; thus we can assume that for all j and e,
u, > €log p.
With this value of y, we now run the AAP algorithm - for the sake of completeness, we state

this algorithm here.

For j =1,2,...,k:
Define M to be the fraction of u. consumed by paths already routed.
Define ¢ = u,(u* — 1).
For a request (s;,t;), route it on any path P satisfying 3-.cp Z-cl < w;.

If no such path is available, then reject the request.

First we argue why the relative load on an edge will never exceed 1. At the moment before

this happened, on edge e say, we had

/\{>1—&21— !)
U, elogp
Thus
Cj A
Ze _ t .1
U, #
> p‘"zosn—l
_ _H —
= 21/£—1—2n—1
> n
So we have
J
&&>npj=wj

e

102

and thus the connection could not have used this edge.
Suppose there are a total of k requests. Let A denote the set of requests routed by the AAP

algorithm. Then we show
24V e log p Y w; > Y k. (6.3)

jEA e
As in the proof in [10] we show this by induction on the number of admitted requests, via

proving that if the algorithm admits the j*" request, we have
Yot — ¢ <2 ew;log p.
e
So consider edge e, on the path used by the AAP algorithm for connection j. We have

It = U, (ﬂ'\i (2(l°8n)-p;‘/uc _ 1)) .

e e

Now the exponent on the 2 is at most 1/e, and for z € [0,1/¢] we clearly have 27 —1 < 21/ . g,

Thus

Gt —c] < w-ph 2 logp-pi/ue

= ﬂxi.zlls.logp.pj

d
= 2Y¢.logp- [u— * Pj +pj] :
Summing over all edges gives the desired bound.
Finally, we show that the expression
>kt (6.4)

is an upper bound on the profit of the fractional optimum minus the profit of the on-line

algorithm. ([10] shows this for the integer optimum, but the proof is essentially the same.)
Let Q denote the set of indices which were rejected by the on-line algorithm but for which

a positive fraction of the demand was routed by the optimum. For j € Q, suppose that the

fractional optimum uses paths P},..., P}, with weights Yj»+++»¥i- Then since j was rejected

103

by the on-line algorithm, and the costs are monotonic in the indices, we must have

k+1
an ____wJ S Z p]::
e€P} €
for any ,j. Also, for any edge e we have
Z '7_;:pj <1
we ~

i,j:eEP;
and hence we have

i) k41

; v;P;5€

i 2 €

Y mw < X3

i i i eeP} e

i
k+1 V;Pi
Dot 3 2=
e i,jic€ P} €

< Z cf-l—l.
e

IN

Combining the bounds in Equations (6.3) and (6.4), we obtain the claimed approximation

ratio. m

A lower bound of [10] implies that the factor of 2!/¢ is unavoidable for deterministic on-line

algorithms.

6.2.3 Routing Long Connections

Say that a terminal pair (s;,t;) € T is short if d(s;,t;) < 16ylogn, and long otherwise. Say
that (s;,t;) is light if p; < ,i—,, and heavy otherwise. The on-line algorithm makes an initial
random decision whether to accept only short connections or only long connections, and an
independent random decision whether to accept light or heavy connections; this costs at most a
factor of two in the approximation ratio. In this section, we give an O(log) approximation for
long connections (either light or heavy); in the following section, we show the bounded greedy
algorithm of Chapter 5 gives an O(log n)-approximation for short connections.

For concreteness, we will present the following in terms of light connections. The algorithm

is essentially identical for the case of heavy connections; this can be easily verified.

104

First, we only consider terminal pairs with both ends in sets of the form C, — denote
this set of terminal pairs by Tj. If 7* denotes a realizable subset of maximum size, then by
Lemma 6.1.2, the expected demand associated with terminal pairs in 7* that belong to Ty is
a constant fraction of p(7*). Thus we only lose a constant factor in the approximation ratio
by restricting attention to Ty.

We first define an on-line routing problem in the simulated network N(;8logn); we will
use the solution generated by this problem to guide the construction of paths in G. Recall that
for u € C,, we define 1(u) = v. The input for our problen in the simulated network will simply
be the sequence of terminal pairs (¥(s;), ¥(t:)), where (s;,;) is the sequence of pairs presented
to the algorithm running in G. (We omit those pairs for which both ends do not lie in clusters
of the form C,.) The demand for (1(s;), ¥(¢;)) will be p;, the same as it is in G. Our algorithm

for this problem in the simulated network is as follows: we route (v, w) if
(i) the AAP algorithm on N(}Blogn) accepts (v,w), and

(ii) routing (v, w) will not cause the total routed demand with an end equal to v (resp. w) to

exceed 1.

Lemma 6.2.4 The above algorithm is an O(log n)-approzimation relative to the fractional op-

timum in N'(38logn).

Proof. Let (v,w) be a requested connection in N. ‘Following the approach developed in Sec-
tion 6.2.1, we view (v, w) as being “judged” by three on-line algorithms: the AAP algorithm,
an algorithm A, that will only accept a total demand of 1 originating at v, and an algorithm
A,, that will only accept a total demand of 1 originating at v.

By Theorem 6.2.3, the AAP algorithm is an O(log n)-approximation relative to the frac-
tional optimum. To see that the algorithm A, is an O(log n)-approximation, let y, denote the
total amount of demand associated with terminal pairs with one end equal to v. If y, < 1,
then A, by itself can accept all the demand; otherwise, A, by itself will accept at least 7 units
of demand, while the maximum fractional weight of connections that the optimum can accept
originating at any one node of A is O(log n). The same argument applies to A,.

Thus, applying Theorem 6.2.2 with ¢* = O(logn) and d = 3, we see that the combined

routing algorithm is an O(logn)-approximation relative to the fractional optimum. m

105

Our on-line algorithm in G simply runs the above simulation; whenever (¥(s;),¥(t;)) is
accepted, it routes the pair (s;,%;) in G using the paths constructed in Lemma 6.1.5. The

following lemma says that it will not run out of “bandwidth” while doing this.
Lemma 6.2.5 The algorithm in G can route all the connections accepted by the simulation.

Proof. ~ When the simulation accepts (v(s;),¥(t:)), it specifies a sequence of neighboring
clusters C,,,C,,,...,C,, , where v; = 9(s;) and v, = ¥(¢;).

The algorithm in G routes (s;,¢;) by simply moving from one cluster in this sequence to the
next using paths of the form Y;. More concretely, it first chooses any w € o, and w' € o, and
sets Zo = Y, and Z, = Y,’. Then foreach j =1,...,7 — 1, it chooses any edge (u,u') € T, .,,,

on which the available capacity is at least p; < 1, and it sets Z; = Yiu Y* . We observe that

= Vit1’

such an edge can always be found; for if not, then more than units of demand cross each of

the Blog n edges in 7,, ,,,,, contradicting the fact that our set of paths in N (28 logn) respected
the capacity constraint of edge (vj, vj41)-

Finally, by Lemma 6.1.5, the union Z U--- U Z, contains a path from w on the boundary

of C,, to w’ on the boundary of C,,_. Since the total amount of demand routed out of C,, and

C,, is at most 1, s;-w and w'-t; paths respecting the capacity constraints can be easily found.

Now, since the on-line algorithm is an O(logn)-approximation relative to the fractional
optimum in N'(8 log n), it is also an O(log n)-approximation relative to the fractional optimum
in N(5vlogn). By Lemma 6.1.6, this is at least the weight of the maximum realizable subset
of Ty, which by Lemma 6.1.2 is, in expectation, within a constant factor of the weight of the
maximum realizable subset of 7. Thus the algorithm here is an O(log n)-approximation for the

case of long connections.

6.2.4 Routing Short Connections

Again, we will discuss the case of light connections; the algorithm for heavy connections is

essentially the same, and easier. We first require the following fact.

Lemma 6.2.6 Let X =G[(: —7): (i+7),(j —7): (j +)] for some natural numbers i, j, and
r;letY = G[(i—2r): (i427),(j —2r) : (j +2r)]; and let T' be a set of terminal pairs with both

106

ends in X. Then the mazimum weight of a subset of T' that is realizable in G[Y] is at least §

the mazimum weight of a subset of T' that is realizable in G.

Proof. Let T" C T' denote a realizable set of maximum weight, and consider the set of paths
in a routing of T". Since |6(X)| < 8r, a total demand of at most 47 can make use of paths
that leave X. Let 7" denote the terminal pairs corresponding to these paths. We show how to
route at least 1 of the demand of 73’ within G[Y], which will imply the lemma.

Let W,,..., W, denote the r disjoint rings in G[Y \ X| (as defined in the previous section).
For (si,t;) € T, let (a;,b;) denote the first and last intersection points of the s;-¢; path with
8(X). We arbitrarily choose a set of terminal pairs in 7y’ whose total demand is between 3 and
1; we route all these pairs by joining their “breakpoints” using a subpath of W;. We then do

the same for W, ..., W,; in this way, we route at least ;‘,— of the demand in 7;". m

The algorithm for short (and light) connections is now as follows. Set 7 = 32ylogn, and run
Luby’s algorithm to find a subset M’ of V, maximal subject to the property that Lo (u,v) > 4r
for u,v € M'. For u € M, define X, to be the set of all vertices whose L, distance from u is

at most 7, and Y, to be the set of all vertices whose L, distance from u is at most 2.

Lemma 6.2.7 If (si,t;) is a short connection, then with constant probability there is a u such

that si,t; € Xu.

Proof. A sufficient condition for some X, containing both s; and ¢; to enter the MIS in the first
iteration is that among all vertices within L, distance 4r of s;, the one that picks the highest

number has L, distance at most 17 from s;. This happens with constant probability. m

Let 7, denote the set of short connections both of whose ends lie in X,. We now run
the greedy algorithm of Theorem 5.1.3 on the (disjoint) subgraphs G[Y,] simultaneously, using
the 7, as the sets of terminal pairs. By Theorem 5.1.3 and Lemma 6.2.6, this is an O(logn)
approximation in each subgraph. Thus, by Lemma 6.2.7, we are, in expectation, within a
constant factor of optimal in routing short connections. Thus, we have the main result of this

section.

Theorem 6.2.8 There is an on-line O(log n)-approzimation for the UFP in the two-dimensional

mesh.

107

6.3 The Off-Line Algorithm

In the off-line case, when the entire set of terminal pairs is given as input, we are able to obtain
a constant—factor approximation. As in the on-line case, we will partition the terminal pairs
based on whether they are long and short connections; and whether they are heavy or light.
Changing terminology slightly from the previous section, we will say that a terminal pair (s;, t;)
is light if p; < ;‘5. Thus we obtain a partition into four sets; by approximating the maximum
realizable subset in each set and taking the one in which we route the most demand, we obtain
a constant—factor approximation for the overall problem. Throughout this section, we will
consider the problem of routing light connections. Again, the algorithm for heavy connections
is essentially the same, and easier; we will discuss this in a little more detail at the end.

First we deal with the long connections. As in the on-line case, our algorithm only considers
the set 7Ty, of terminal pairs with both ends in clusters of the form C,; this results in a loss of only
a constant factor in the approximation ratio. But whereas we previously used the high—capacity
on-line algorithm of Awerbuch, Azar, and Plotkin, we now apply the randomized rounding
algorithm of Raghavan and Thompson [94, 93] in the simulated network. (See Section 2.5 for
the details of this algorithm.) For the problem in which we have terminal pairs (¥(s;), ¥(t;)) in
the simulated network N, this gives a constant-factor approximation. But to get a constant-
factor approximation for the problem in G, we also have to be within a constant factor of the
optimum in routing terminals out of the clusters. (In the on-line algorithm it was enough to
route only a single unit of demand). To this end, we build the following more complicated
network A”. Let z, denote the node representing v € M in the network N; we construct A/’ by
attaching C, to z, via an edge from z, to each node in 7(C,). Let N’(v) denote the network N’
in which each edge between nodes of the subgraph N has capacity v, and all other edges have
unit capacity.

Let f* denote the value of the fractional optimum solution to the UFP in N"(38logn). We
now run the randomized rounding algorithm on N’ (%ﬁlog n), with a sufficiently small scaling
factor u. With high probability the parts of all selected paths lying in the subgraph A (%ﬂ log n),
taken together, do not violate any capacity constraint; and the number of pairs that are rounded
up is within a constant factor of the fractional optimum f*. We now must convert the selected

paths in AN’(}8logn) into s;-t; paths in G. We can use the technique of the previous section

108

to produce, for each selected pair (s;,t;), a “global” path P; that begins at 7., C 7(Dy(,))
and ends at 7y, , C 7(Dye,))-

The real problem is how to find paths within the clusters such that each s; (resp. ¢;) that has
been rounded up can reach the endpoint of this associated global path on 7., (resp. 7,,)).
For this, the paths returned by the randomized rounding are of no value, since the edges of N
within the clusters C, have only unit capacity. Instead we argue as follows.

Let S, denote the set of terminals in C, that are rounded up. Each is trying to “get out”
to its associated path that begins at 7. Given the crossbar in C; \ C,, it is sufficient to route
cach terminal in S, to any vertex in o,. So this leaves us with the following escape problem.
We ace given the set S, of terminals that have been rounded up, and we want to route a large
fraction of their total demand to o/. The following lemma, whose proof contains the central
step of the algorithm, says that this can be done. By abuse of notation, if X is a set of vertices,

we will we use p(X) to denote the total demand of terminal pairs with both ends in X.

Lemma 6.3.1 For a sufficiently small (constant) value of i, there is a constant ¢ <1 so that
the following holds. We can find sets S, C S,, such that

(i) if one end of a pair (s;,t;) belongs to U, S, then so does the other,

(1i) each set S, can be linked to o, C w(C,) via edge-disjoint paths, and

(iii) the probability that p(U,S.) > cf* is at least a constant, where the probability is taken

over the randomized rounding that produced the sets S,.

Proof. We will first construct such a set with condition (ii) weakened to the requirement that
each S! can be linked to 7(C,) via edge-disjoint paths (rather than to the smaller set o,). This
is sufficient to imply the lemma, as follows. Suppose we obtain such sets S;. For each s € Sy,
identify the vertex in o, closest to s. From among the terminal pairs in U, S, we now choose
a set 7' of terminal pairs that is mazimal subject to the constraint that the total demand of
all terminals in 7’ with the same closest vertex in o/, is at most 1. It is easy to verify that by

the maximality of 7', we have
p(U.Sy)

] >_—.
o(T') 2 8yB-1 +1

Thus, letting the terminals in 7' constitute the sets S, we satisfy the requirements of the
g v

lemma.

109

This allows us to deal with a standard escape problem on a rectangular mesh: each terminal
is allowed to “escape” to any vertex on the boundary. By attaching a source v* by an edge to
every node in 7(C,), we obtain a single-source unsplittable flow problem, with terminal set S,.
Now we observe the following fact: the cut condition for this problem holds by a factor of « if
and only if, for all p, ¢, it holds by a factor of a for every p x g sub-rectangle. To see this, note
that on a rectangular mesh, the smallest rectangle enclosing any connected cut has no greater
capacity, and contains at least as many terminals, as the original cut; thus the cut condition
holds by a factor of a if and only if it holds by a factor of o for all subrectangles.

Recall that the maximum demand is 7, so by Corollary 3.2.2, our unsplittable escape
problem in C, is feasible if the cut condition holds by a factor of 4. This suggests the following
algorithm to construct the set S!. Call a rectangle overfull if it does not meet the cut condition
by a factor of 4. We go through each s € S,, deleting it if it is contained in any overfull rectangle
— we also then delete its matching terminal in some other cluster. This results in a set S,
which by the above argument can be completely routed, unsplittably, to =(C,).

It remains to lower-bound the expected size of U,S!'. Say that a terminal s survives if

(i) it is initially rounded up, and hence included in a set S,, and

(i1) it is not deleted because it or its matching terminal is contained in an overfull rectangle.

So what is the probability that a terminal s survives? We will let p, denote the demand of
the terminal pair associated with s, and f, € [0,1] the weight assigned to it by the fractional
optimum. First we consider the probability that s is contained in a fized overfull p x ¢ rectangle
R, given that s has been rounded up. In order for this rectangle R to become overfull, it must

g

be that a total demand of at least

1 15
d —-_d. > =
5(P+4a)—d, 2 = (p+4q)

was rounded up by the Raghavan-Thompson algorithm, associated with terminals in R other
than s. But since the un-scaled fractional flow was feasible, the total fractional weight contained
in R, after scaling down, is at most 2u(p + ¢q). Thus, setting

_ [64ep)
”'(15)

110

and applying Corollary 2.5.2, the probability that the rectangle R becomes overfull after round-
ing, given that s is rounded up, is at most yP+9.

Now, since s is contained in at most pq rectangles of dimensions p x g, the probability that
s is contained in any overfull rectangle after rounding, given that it is rounded up, is clearly

bounded by the infinite sum

pHa v
ST =

b 4
8 can also be deleted if its matching terminal is contained in an overfull rectangle, so the
probability of s being deleted, after having been -ounded up, is at most (1—3_9:7 By taking u
small enough, we can make this last expression a constant less than 3.

Finally, the probability that s survives is equal to the probability that it is rounded up,
which is pf,, times the probability that it is not deleted after being rounded up, which is at
least 1. Thus, the expected size of U,S] is at least juf*, for a small enough constant value
of u. So by Markov’s inequality, the probability that p(U,S)) > ipf* is at least an absolute

constant; and the lemma follows. ®

To turn the above lemma from a statement holding with constant probability to one with
high probability, we repeat the randomized rounding O(logn) times and take the best routing
obtained. A single run of randomized rounding fails if one of the following two bad events
happens:

(1) one of the high capacity edges of the simulated network is used by too many selected
paths, or

(2) the set 11,8’ selected by Lemma 6.3.1 contains too little demand.

The first event has inverse polynomially small probability, and the probability of the second
is bounded by a constant, so the total probability of any bad event is bounded by a constant
less than 1. This implies that out of the O(log n) tries, one must succeed with high probability.

This gives a constant-factor approximation for long (light) connections: if (s;,¢;) is rounded
up, and s;,t; € U,S", then we concatenate the paths from s; to 7(Cy(,,)) (given by Lemma 6.3.1)
to m(Dy(,,)) (given by the crossbar in C; \ C,) to m(Dy(,)) (given by the edges o the path
in M(13logn), joined together with crossbars as in Lemma 6.2.5), and ncw symmetrically to

1l'(C¢,(¢'.)) and to t;.

111

We handle short connections as in Section 6.2.4. That is, we use a randomized algorithm
to construct subsquares X, C Y, with all Y, disjoint, and only handle short connections both
of whose ends lie in a single X,. In this case, however, we now run the above algorithm
recursively on each G[Y,]. Call a connection “medium” if it is now a long connection in this
recursive call, and “small” otherwise. Medium connections are treated as long connections in
the recursion, and handled as described above. Small connections take place within clusters
of size O(loglogn) and therefore can be simply solved to optimality by brute force. We can
then take the largest realizable set we find among the long, medium, and small connections,
obtaining a constant-factor approximation for light connections.

Finally, a word about heavy connections; i.e. those with p; > {. For those that are long,
we assign a demand of 1 to each, and run the above algorithm. In Lemma 6.3.1, all demands
are the same, and we can therefore use the max-flow min-cut theorem directly, rather than
the unsplittable flow theorem, 3.2.2. This would give us a constant factor approximation, if
all demands were equal to 1. We are in fact overestimating each demand by up to a factor of
16; but since our constant—factor approximation is with respect to the fractional optimum, this
results in a loss of only a factor of 16 in the approximation ratio. Short connections are still
handled recursively.

Thus we have

Theorem 6.3.2 There is a randomized (off-line) UFP algorithm in the two-dimensional mesh

that produces a constant-factor approximation with high probability.

6.4 Routing in Rounds

We now use the constant—factor UFP approximation just developed to provide an approximation
algorithm for routing a set 7 of terminal pairs in the minimum number of rounds of communi-
cation, on the two—dimensional mesh. Thus, we are addressing the following question: what is
the minimum size of a partition of 7 into realizable sets? We use x(7') to denote this minimum.

The quantity x(7') also arises in the analysis of routing algorithms for all-optical networks
[1, 95, 9]. Here, one is given a graph G and set of terminal pairs 7 (with all demands equal to

1); for each pair (s;,t;) € 7 one must choose a path in G and a wavelength to use for routing the

112

path. Two paths with the same wavelength must be edge-disjoint; the goal is to minimize the
number of wavelengths used. Clearly the minimum number of wavelengths possible is precisely
x(7T).

Within the context of optical routing — so that all demands are 1 — approximations for
x(T) have been given by Raghavan and Upfal [95] and Aumann and Rabani [9] for restricted
types of graphs. Raghavan and Upfal provide a %-approxima,tion for x(7) in trees, and a
2-approximation in cycles. They also show, using the methods discussed in Section 2.8, that
x(T) = O(log® n) for every permutation on a bounded-degree expander. Aumann and Rabani
obtain the same bound for expanders, via different methods, and also provide an O(log® n)-
approximation for x(7") in the two-dimensional mesh.

The notion of partitioning 7 into realizable sets also arises in certain VLSI problems; we
will encounter this in Chapter 9.

Our approach is based on a direct application of the greedy set cover technique of (inde-
pendently) Chvital, Johnson, and Lovész 24, 53, 77]; this allows one to take an approximation
algorithm for the MDP and obtain an approximation for routing in rounds with a performance
guarantee that is only larger by a logarithmic factor. This reduction method was applied by
Aumann and Rabani [9] to derive their O(log® n)-approximation for x(7") on the mesh from an
O(log n)-approximation for a(7") on the mesh. In the present case, our constant—factor approxi-
mation for the MDP in the two—dimensional mesh allows us to obtain an O(log n)-approximation
for x(T) in the mesh, when all demands and capacities are 1. Finally, it is easy to extend the
approximation for x to handle a set of terminal pairs with arbitrary demands in [0, 1], and edges
of unit capacity. When the minimum demand of any pair of terminals is p., the approximation
ratio we obtain is O(logn + log p;').

We present the framework in a fairly general setting, and then show how to apply it to the
problem of approximating x(7). Let U denote a finite set, and F a collection of “feasible”

subsets of U that is closed with respect to inclusion, and which satisfies

I s=U.

SeF

For a subset U’ C U, let u(U’) denote the maximum cardinality of a member of 7 N V',

113

Suppose we are given a maximization algorithm A which works as follows: there is a number a
so that on any set U’ C U, it returns a set in F N2Y" of cardinality at least Lp(U").

Our goal is to cover U by as few feasible sets as possible. For this purpose, we define
the following algorithm A’, which is simply the greedy set-cover algorithm, making use of the

maximization algorithm A.
e Define Uy =T1J.
e Fori=0,1,...

— If U; = ¢ then terminate.

— Else run A on Uj, obtaining a set U!. Define U;,, = U; \ U/.

The size of the cover of U produced is simply the number of non-empty sets U;. Let H,, denote

the m*h karmonic number, defined by H,, = Yi=, 1. Given this definition we have the following
result — it is simply the main result of [24, 53, 77], for the case in which the maximization

algorithm A only produces a set whose cardinality is approzimately maximum.

Theorem 6.4.1 The size of the cover produced by A’ is at most aH,y) times more than the

size of the smallest cover of U by sets of F.

Proof. Suppose that A’ produces a cover with r sets. For each u € U, we identify the unique 3
such that u € U/, and we define the cost c, of u to be [U!|™". Thus we have 3,y ¢, = 7. Now
we claim that for any set X € F, we have 3 . x ¢, < aH|x|; the theorem follows directly from
this.

To verify the claim, consider any set X € F, and suppose that it contains a subset X' =
{Z1,...,Zat+1}, such that each z; € X' has cost at least -}- Let j be the maximum index such
that X’ C Uj; hence there is some z; € X' N Uj. Thus, IUJ’I = c;‘,l < t. But X' is a set of
cardinality at least at + 1 that is contained in F; and it is a subset of U; — this contradicts the
performance guarantee of A. From this contradiction, it follows that for each ¢, X' contains at

most at elements of cost at least }; and hence ¥ cx ¢, < aHx|. ®

We can easily specialize this to the present setting as follows. Let G denote the n x n

two-dimensional mesh, with every edge having unit capacity, and let 7 denote a set of terminal

114

pairs each of demand 1. Let F denote the collection of realizable subsets of 7, and A the
constant—factor approximation for the MDP develop in Chapter 6. Then defining the algorithm

A’ as above, we have

Corollary 6.4.2 There is an O(log n)-approzimation for x(T) in G, when all terminals have

demand 1.

The above set-cover algorithm A’ can be implemented without any modification in the
on-line setting, provided that the maximization algorithm A is on-line. That is, we define an
infinite number of copies of the on-line maximization algorithm A: we label these A;, As,.. ..
As each terminal pair arrives, it is evaluated by the algorithms A, A, ... in succession, until
one of them accepts it. The set of terminal pairs accepted by algorithm A; constitutes the ith

round. Using the on-line algorithm of Theorem 6.2.8, together with Theorem 6.4.1, we have

Corollary 6.4.3 There is an on-line O(log® n)-approzimation for x(T) in G, when all termi-

nals have demand 1.

We now turn to the case of a set 7 of terminal pairs, with arbitrary demands in the interval
[0,1], again on a unit-capacity two-dimensional mesh G. Let p. denote the minimum demand

associated with any pair of terminals in 7.
Theorem 6.4.4 There is an O(log n + log p;*)-approzimation for x(T) in G.

Proof. Let A denote the UFP maximization algorithm provided by Theorem 6.3.2. We use A
to define a partitioning algorithm A’ exactly as above. However, in analyzing A’, we run into
the following technical complication: Theorem 6.4.1 deals only with unweighted cardinalities,
whereas the algorithm A approximately maximizes the total demand routed. There are a
number of straightforward ways to get around this difficulty; we handle it by creating an
artificial set cover problem in which each demand is “discretized” in units of p,.

For a terminal pair (s;,t;), with demand p;, let W; denote a set of ¢; = |p:p;'| dummy

elements w;;, . .., w;,. For any set 7' C 7, define

W(T,) = U Wiy

i:(si,t;)ET’

115

and U = W(T). The set F of feasible sets will consist of all subsets of sets of the form W (7"),
where 7" is realizable in G. Now we observe that the algorithm A has the following property:
on any set 7' C T of terminal pairs, it produces a realizable set 7" C 7' such that |W(7")|
is within a constant factor of u(W(7')). Since the maximum demand that can be routed in a
single round in G is at most 4n?, the maximum cardinality of any set in F is at most 4n%p_?,

and hence the result follows from Theorem 6.4.1. m

116

Chapter 7

Generalizing the Mesh

What have you urged that I cannot reprove?
The path is smooth that leadeth on to danger ...

— William Shakespeare, Venus and Adonis.

We remarked at the beginning of the previous chapter that the approximation algorithms
given there rely crucially, in places, on the precise row/column structure of the two—dimensional
mesh. This is true for previous approximation algorithms as well [12, 9]. Our goal in this chapter
is to exteild our algorithms to a more general class of graphs, defined below.

There are a number of motivations for generalizing the algorithms in this way. Dealing
with a broader class of graphs results in algorithms that are more robust, in that they are not
sensitive to small variations in the structure of the underlying graph. This could be of value
in the context of network routing, where the underlying network may often have a “mesh-like”
topology, without having the completely regular structure of the mesh itself. Thus, designing
algorithms in this setting helps to isolate the basic techniques involved, and suggests general
approaches for constructing disjoint paths in planar graphs.

In our case, we see that the main respect in which we used the “fine structure” of the mesh
was in the construction of the simulated network A/, using a decomposition into blocks and
crossbar structures within these blocks. Once the simulated network was in place, the routing
‘algorithm was much less dependent on the nature of the underlying graph. This suggests that
the approach of the previous chapter should be applicable to any type of graph in which one

can construct an analogous simulated network; and this is the direction we investigate here.

117

Our main result in this chapter is a constant-factor approximation for the UFP in the class
of densely embedded graphs, which we define in the following section. We also obtain an on-line
O(log n)-approximation. Finally, we note that the general analysis of Section 6.4 is applicable

here as well, and provides an approximation algorithm for the problem of routing in rounds.

7.1 Definitions and Properties

Following the definition of expansion in Section 2.8, let us make precise the type of “expansion”

exhibited by the two-dimensional mesh.

Definition 7.1.1 A graph H is an a-semi-ezpander if for every X C V(H) for which |X| <
FIV(H)|, we have |§(X)| > av/|X].

Since our goal is to generalize the two-dimensional mesh, let us note the following properties
of the mesh.

(i) It is a planar graph with bounded degree, and (aside from one “exceptional face”) it is
Eulerian and has bounded face size.

(ii) It is an a-semi-expander, for a constant o > 0 based on the ratio of the two side lengths
of the mesh.

(iii) Square sub-meshes of the mesh satisfy (i) and (ii).

In the arguments to follow, it is quite cumbersome — though not technically difficult —
to deal with “exceptional faces” of the type in (i). Thus, for the sake of presentation, we will
work in this chapter with a class of Eulerian graphs in which all faces have bounded size. While
this class therefore will include the n x n torus but not the mesh, it is straightforward to adapt
our algorithms and their analysis to handle graphs with an exceptional face, which may be of
arbitrary size and contain odd-degree vertices. In this way, we can obtain a class of graphs that
includes the mesh as well.

Our class of graphs is defined to satisfy analogues of properties (i), (ii), and (iii) locally.

Definition 7.1.2 A graph G = (V, E) is densely embedded with parameters a, A, A, and € if:
(i) G is strongly embedded on a compact orientable surface ¥, it has mazimum degree A,

and each face is bounded by at most € edges.

118

(#) For each r < Alogn and each v € V, the drawing of G[B,(v)] is contained in a L-disc.
(iii) For each r < Alogn and each v € V, the graph G[B,(v)] is an a-semi-ezpander.

Thus, for the remainder of this chapter, we will assume that G is a simple Eulerian graph
that is densely embedded on a surface ¥ with parameters a, A, A, and £. It is worth noting that
Definition 7.1.2 is strictly local in nature, and places no restrictions on the global structure of

the graph G.

Some Basic Properties

We now show that our definition implies G has some additional mesh-like properties. First of
all, for any v € V and r < Alogn, the fact that G[B,(v)] is a bounded-degree semi-expander
implies that the set B,(v) has size at least quadratic in r; by also using the planarity of G[B,(v)],

one can show an analogous upper bound. We summarize this as follows.

Lemma 7.1.3 There are constants & and 3 depending only on a and A such that the following

holds. For each r < Alogn and each v € V, we have ar* < |B,(v)| < pr2.

Proof. Fix r < Alogn and v € V, and let S = B,(v). To see the lower bound, note that for

any ¢ < r, if z; = | B;(v)|, then by the semi-expansion of H we have

o
T 2 Ti1 + A__l'\/mi—-l-

For at least o,/Z;_; edges leave B;_;(v), and at most A — 1 are incident to any one vertex. Let

v = z%7; now one verifies by induction that z; > l‘—svzizz

1 1
> = 20 _ 1)2 a2
T 2 gV (i-1) +4V (i-1)
1 ,. .
= — -1
T (E-1)(i+3)
> l1/2722.

16

To see the upper bound, we observe that G[S] is planar and has diameter at most 2r. Let

n = |S|. By the Lipton-Tarjan planar separator theorem [75], there is a set of at most 4r + 1

119

vertices whose removal breaks H into components each of size at most %n Let X be a union

of these components of size between ;n and in. Then

a/IX|

16(X)]

S5

IN

< (A-1)4r+1)

from which the result follows. m

We introduce some additional notation. If C is a connected subset of G\ X, we use I'(X, C)
to denote the (unique) connected component of G\ X containing C. The set of vertices in 7(X)
which have a neighbor in I'(X, C) will be called the segment of 7(X) bordering C and denoted
o(X,C). We say that a set X C V is simple if G \ X is connected.

The following two facts are quite useful; the first essentially relates the size of the “perimeter”

of a set B,.(v) (r < Alogn) to its radius.

Lemma 7.1.4 Let ¢ > b > 1 and r a positive integer be such that cr < Alogn. Then for some

' between br and cr, we have |w(B.(v))| < 8- % T

Proof. Since n(B,(v)) C {u : d(v,u) = r'}, the sets 7(By(v)), 7(Bor+1(v)), ..., (B (v)) are
all disjoint and contained in B..(v). Since |B..(v)| < Bc*r?, one of these sets has size at most

2

ﬁ';_,c?s'T..

Using this, we show that we can extend any small enough set U to a simple set with at most

a constant-factor increase in its radius.

Lemma 7.1.5 There is a constant § such that the following holds. Let U C B.(v), where
r < %)\log n. Then there is a component T of G\ U and a planar simple set U’ such that
UcU CBg(v), G\U' =T, and o(U,T") = o(U',T).

Proof. Choose ' between r and 2r so that |7(B,.(v))| < 48r. Let Uy = B.(v), and G\ U,
have components I'y,...,T,.
Now set s = 8a~'/2a~! A and £ = 25 + 2. We claim that all but one of the components T';

are contained in B¢, (v). For suppose not; then for ¢ # j there are w € I'; and w' € I'; such that

120

w and w' are each at distance s from Uy, B,(w) C I';, and B,(w') C I';. Now consider the edge
cut of size at most 43Ar formed by 6§(Uy); one of the two spheres B,(w) and B,(w'), say the
latter, is contained in a small component of this cut in G[Bg,(v)]. But then the semi-expansion
of G[Bg,(v)] requires that 43Ar > a/[B,(w’)], which is a contradiction since by Lemma 7.1.3
we have |B,(vw')| > as?.

So for some i, only I'; is not contained in Be,(v). Now let I'},...,I; denote the components
of G\ U; so T; is contained in one of these, say I'j, and T'j,..., T are all contained in B (v).
Now define

U'=UU|JT} C Ber(v).

i>1
In particular, U’ is planar since £r < Alogn, and it is simple since G\U' has only the component

I'}. Thus U’ satisfies the conditions of the lemma. ®

Finally, we show a general property of planar graphs H with small face size: if the distance
between two nodes in H is large, than the value of any edge cut which contains both in the

same segment of its boundary must also be relatively large.

Lemma 7.1.6 Let H be a planar graph, with distinguished faces ®,,...,®, bounded by cycles
Q.,...,Q, respectively. Suppose that all faces other than ®,,...,®, are bounded by at most ¢
edges, and for a constant d' and all i # j we have d(Q;,Q;) > d'.

Let U c V(H) and v,w € o(U,C) for some component C of G\U. Then

|6(U)| = min(¢~'d', £ d(v, w)).

Proof. Let S = o(U,C) C U. In the graph H[U], S lies on a single facial cycle Q. Traversing Q
in a clockwise direction starting at v, we encounter faces Ry, ..., R, whose boundaries contain
vertices both of U and of H\ U.

Suppose that among the {R;} there are two distinct large faces ®,, and ®,,,. Choose such
a pair for which R, = ®,,, R, = ®,, and R, ¢ {®;} for a < ¢ < b. Let P denote the
corresponding maximal subpath of Q whose internal vertices are incident only to faces R., for

a < ¢ < b. Then among every ¢ consecutive vertices of P, there must be one incident to an

121

edge in §(U); since |P| > d’ by the hypotheses of the lemma, this implies the claimed bound.
Otherwise, there is a single large face ®,, among the {R;}; note that ®,, may appear several
times on the traversal of Q. Now there are two sub-paths of @ from v to w, which we denote
P, and P,. Since v, w border the same component of H \ U, the face ®,, does not appear in a
traversal of one of P, or P, — suppose it is P,. So as above, among every ¢ consecutive vertices
of Py, there must be one incident to an edge in §(U); since we have |Py| > d(v,w), the result

follows. m

Related Classes of Graphs

In this section, we show a natural construction which produces densely embedded graphs. The
material here is independent of the rest of the chapter.

We say that a graph H is geometrically well-formed if it can be embedded on the unit
sphere in such a way that every face has, geometrically, about the same size. That is, there is
a constant ¢ so that for every pair of faces ®, and ®, in the embedding of H, one can dilate
®, by a factor of ¢ from some point in its interior so that it contains a congruent copy of ®,.

One can show that every geometrically well-formed graph is densely embedded; we will
prove this by way of a more general definition that applies to arbitrary surfaces. Let ¥ be a
compact orientable surface, embedded in R3. For z € I, we let B)(r) denote the set of all

points of ¥ whose distance from x (as measured on ¥) is at most d.

Definition 7.1.7 A set X C ¥ is (7o, 71)-flat for some positive constants yo, 11, if there is a
Y-disc D such that

(i) X CD.

(i) For all points x € X and s > 0 such that B.(z) C X, the surface area of B(x) is at
least 082 and at most v, 5.

(#1) For all £-discs D' such that D' C X, if the boundary of D' has length s, then the
surface area of D' is at most v, s%.

We say that T is (7,7, 7)-locally flat if it is orientable, and for all x € X the set B)(x) is
(70, m)-flat.

Now we say that a graph is locally well-formed if it is drawn on a locally flat surface, and

each face has, geometrically, about the same (small) size.

122

Definition 7.1.8 A graph H drawn on X is locally well-formed with parameters A, £, v, 71, po, p1
if there ezxists an r > 0 so that

(i) it has mazimum degree A,

(i) The mazimum number of edges on a face in the drawing of H is £, and

(iiz) X is (r log n, o, 71)-locally flat,

(iii) for each face ® of G there is an x € ¥ so that B, .(z) C @ C B, ().

T

Note that a geometrically well-formed graph, as defined above, is locally well-formed for an
appropriate choice of parameters. We now want to show that every locally well-formed graph
is densely embedded. To show this, the following routine lemma is useful: in Definition 7.1.1 it

is enough to require semi-expansion for cuts that produce only two components.

Lemma 7.1.9 H is an a-semi-ezpander if and only if the condition of Definition 7.1.1 holds
for all sets X for which H[X] and H \ X are both connected.

Proof. We proceed by induction on the number of connected components of H[X] and H \ X.
Assume H[X] is not connected, and let I',...,I', be components. Then each of the sets

Iy,...,I, must satisfy Definition 7.1.1 by the induction hypothesis. From this we get

I60)] = S 16| 2 3 /I 2 a/JUi] = e/ X1.

If H connected but H \ X is not, and each connected component has size at most 3|V (H)|,
then the above argument applies to the components of H \ X. Otherwise, removing the edges
between H and the single large component of H \ X produces a cut both of whose sides are

connected; the semi-expansion condition holds in this case by assumption. ®

Proposition 7.1.10 If H is locally well-formed with parameters A, ¢, vy, 11, po, p1, then there
are positive constants o and) such that H is densely embedded with parameters o, A, A, and
L.

Proof. Let H be locally well-formed with the given parameters, and with an associated r > 0 as
in Definition 7.1.8. Then for any v € V, if s < p;* logn, the set B,(v) is contained in B;,,,(v)

and hence in a X-disc. Now let X C B,(v); we wish to show that it satisfies the semi-expansion

123

requirement in H[B,(v)]. By Lemma 7.1.9, we may assume that both H[X] and H[B,(v) \ X]
are connected. Thus §(X) lies on a single face of H[X]. Let ¢ = |6(X)|; then there is a closed
curve L on ¥ of length at most p,rq that bounds a ¥-disc containing X. Thus, X is contained
in a disc of area at most v, p?r?¢®. But each face in H[X] has area at least yyp2r?, so X has at

most v, p275 ' 5 2q? faces, and hence at most ¢ times this many vertices. ®

In their series of papers proving, among other things, that the disjoint paths problem for
a fixed number of terminal pairs is solvable in polynomial time [102], Robertson and Seymour
make use of another notion of “denseness” of surface embeddings — namely representativity.
It turns out that our definition of densely embedded graphs could also have been expressed in
these terms. We say that a drawing of a graph G on X is c-representative [99, 101] if any non-
null-homotopic closed curve on £ meets the drawing of G at least ¢ times. In this terminology,
we could have replaced the condition that each G[B,(v)] (r < Alogn) be contained in a X-disc

by the condition that the drawing of G be Q(log n)-representative. More precisely,

Proposition 7.1.11 If G satisfies parts (i) and (iii) of Definition 7.1.2, and the drawing of
G is (M logn)-representative, then there is a constant X' such that G is densely embedded with
parameters a, X', A, and (. Conversely, if G is densely embedded with parameters a, A, A,

and ¢, then there is a constant \' such that the drawing of G is (X logn)-representative.

Proof. The converse statement is easier. If G is densely embedded with parameters o, A, A,
and ¢, then any closed curve R on ¥ meeting G at fewer than £~'\logn vertices meets it only
at vertices contained in B)jogn(v) for some v € V. Thus R is contained in a X-disc and is
null-homotopic.

Now suppose G satisfies parts (i) and (iii) of Definition 7.1.2, and the drawing of G is
(A log n)-representative. We must show that for some X', every G[Byogn(v)] is drawn in a Z-
disc. Choose X' < 1\ and let U = By ogn(v) for some v € V. We claim that every simple cycle
of G[U] is null-homotopic in £. For suppose not, and choose the shortest non-null-homotopic
cycle Q contained in G[U]. Say for simplicity that @ contains an even number of vertices,
Uy +.oyUky... U = Vg, and let Qp and @, denote the two sub-paths of @ with ends equal to
vo and v,. Now suppose there were somne path P in G[U] with ends equal to v, and v of

length less than k; then one of @y U P or Q; U P would contain a non-null-homotopic simple

124

cycle of G[U] of length less than 2k, contradicting our choice of Q. Thus k < 2A’'logn, and so
|Q| < 4X logn < Alogn. Now since G is strongly embedded, there is a simple closed curve R
on T, meeting G at precisely the vertices of @, that is homotopic to @ in X; but since R meets
G fewer than \logn times, it is null-homotopic in X. This contradicts our assumption that Q
is non-null-homotopic.

Thus G[U] contains only null-homotopic simple cycles. By Theorems (11.2) and (11.10) of
[99], this implies that G[U] is contained in a -disc. m

7.2 Smooth Cycles

In the sections to follow, we will construct a simulated network in an arbitrary densely embedded
Eulerian graph, following roughly the outline of the previous chapter. We will be working with
connected, planar subsets of G; and a property that will prove crucial to the construction is
that their outer cycles be smooth. By this we mean that the distance between two vertices on
the outer cycle of such a set, as measured along this outer cycle, is not significantly greater
than the distance between these vertices as measured through the interior of the set.

To be more concrete, let H denote an arbitrary graph, and Q a simple cycle of H. For
u,v € Q, let dg(u,v) denote the shortest-path distance from u to v on @ — that is, the length
of the shorter of the two u-v paths on Q.

Definition 7.2.1 We say that Q is e-smooth if for all u,v € Q we have edg(u,v) < d(u,v).

Definition 7.2.2 IfU and W are two subsets of V(H), we say that U is ¢'-close to W if for
each u € U there is a w € W such that d(u,w) < €'|W]|.

What we are after is a result of the following form. Let H be embedded on some compact
surface ¥;, and let Q be a non-null-homotopic cycle of H. We want to find a cycle &', also
non-null-homotopic, such that (i) Q' is (sufficiently) smooth, and (ii) Q' is (sufficiently) close
to Q. These two conditions are in tension — to satisfy the first, one could simply take a shortest
non-null-homotopic cycle in H; any such cycle is 1-smooth. But such a cycle might not be close
Q. To satisfy the second, one could take Q itself; but Q might not be sufficiently smooth.

The following result shows that oue can always find a cycle @’ that satisfies parametrized

versions of conditions (i) and (ii).

125

Theorem 7.2.3 For each € > 0 the following holds. Let , be a compact surface (possibly with
boundary), H a graph embedded on X, and Q a simple cycle of H that is non-null-homotopic
on ¥,. Then in polynomial time one can find an T3¢ -smooth simple cycle Q' such that

@) 11 <1Ql,

(it) Q' is e-close to Q, and

(111) Q' is also non-null-homotopic on T,.

Proof. For u,v € @, let [u,v]p denote the shorter of the two u-v paths contained in Q (ties

broken arbitrarily), and let £ = 13- I Q is not &-smooth, then there are u,v € Q such that
gdg(u,v) > d(u,v). (7.1)

Moreover, we can efficiently find such a u and v so that there is a shortest u-v path P,, in
H that is vertex-disjoint from @ (for example, the pair u,v satisfying (7.1) for which |P,,| is
minimum).

Now one of the two simple cycles [u,v]q U P,, and (@ \ [¢,v]q) U P,, is not null-homotopic
on X;; and each is shorter than Q. We thus update @, replacing it with the cycle from among
these two that is not null-homotopic. We will say that the portion of Q that was deleted when
adding P,, is “marked,” and the remaining portion of @ is “unmarked.”

We now iterate this process of “slicing off” parts of Q@ using short paths through H. Since
the length of the cycle decreases with each iteration, this process must terminate in a cycle
Q' that is &-smooth. Moreover, each iteration maintains the invariant that the current cycle is
non-null-homotopic on ¥,. Thus, we only have to verify that the final cycle is e-close to Q.

This is clearly true after the first iteration: since |P,,| < &dg(u,v) < €|Q|, every vertex on
the updated cycle can reach a vertex of Q by a path of length at most €|Q|. Now, let Q; denote
the cycle obtained after i iterations of slicing off. As long as portions of Q remain that are
still unmarked, we say that we are in the “first phase”; other phases will be defined below. In
the first phase, Q; consists of alternating intervals Q;;, P, Qi2, . .., Qir, P;r, where Qi; CQis
unmarked, and the interval @Q; of @ lying between Q;; and Q; ;4 is marked (and replaced by
P;;). We show by induction on the number of iterations that |P;| < élQ;jl — as was true after

the first iteration.

126

This is done by the following case analysis. In the (i + 1)* iteration, we find a new path;

there are three cases to consider.

1. One end of P lies on Q;; and the other on Q;x, where possibly j = k. Then the property
clearly continues to hold, since |P| is at most £ times the number of current cycle vertices

cut off, which is in turn at most the number of original vertices of Q between the endpoints

of P.

2. One end of P lies on P;; and the other on Q. (so P;; is lengthened). Suppose that the
amount of original cycle cut off in addition to Q; is equal to z, and the amount of P;

that is cut off by P is y. Then if P, ; denotes P; after this iteration, we have

IN

Pyl < @y
|P| < &=z +y)

| Piga,

|P| + 1P|~y

IN

§(|Q1_1| +z+y)-y
g(lQ:;' +)

IA

3. One end of P lies on P;; and the other lies on P (so P glues some of the new paths

together). There are two subcases.

(i) j = k. Then |P;;| goes down while |Q;;| is not affected, so the property still holds.

(ii) j # k. Again suppose that the amount of original cycle cut off in addition to Q;;
and @/, is equal to z, the amount of P,; cut off by P is y, the amount of P, cut off

by P is z, and the new interval is denoted Py, ;. Then

Pil < &l
|Pe| < ElQul
|P| < &z+y+2)
|Pivrl = |Pyl+|P|+|Pu| -y -2
< Q| +e+y+a+IQu) -y -2

127

< §(|Q;,.| ++ Q)

If the iterations come to an end before the end of the first phase, then indeed Q' is e-close
to Q — any vertex on P;; can reach Q by a path of length at most §|Q2j| < &|@|. Otherwise,
consider the iteration in which the first phase comes to an end. By analogous arguments, we
obtain a cycle Q' such that |Q']| < £|Q| and every vertex on Q' can reach @ by a path of length
at most £|Q|.

We say that all vertices of Q' are initially “unmarked.” Each phase now proceeds exactly
like the previous one, except that it begins with a cycle whose length has been reduced by at
least a factor of £ Thus when the process terminates, all vertices on Q' will be able to reach Q

by a path of length at most
Q- & =¢lQl.

i=1

Thus Q' is e-close to Q. m

7.3 Clusters and Enclosures

We are now ready to begin defining the simulated network. One encounters a number of
difficulties in extending the construction of Chapter 6 to densely embedded graphs in general.
Some of these are easily taken care of — for example, we cannot define “subsquares” of G
anymore; but we can use balls of the form B,(v) instead, and we have seen above that these
behave in much the same way. We similarly may choose a maximal set of mutually distant balls
and grow enclosures around them. Two major problems are the following. (1) We used the
natural crossbars inside a mesh for routing; do these enclosures have similar crossbhars inside
them? (2) How do we join the clusters together into a simulated network?

To build crossbars inside the enclosures, we make use of a construction based on the
Okamura-Seymour theorem [84], which we describe in this section. To define the high-capacity
simulated network N, we want to grow the enclosures out until they touch. However, at this
point their boundaries might not be “smooth” enough to allow us to build crossbars inside
them; additionally, there is no reason for enclosures that do touch to have Q(logn) edges in

their common boundary.

128

Nevertheless, it is still possible to build a simulated network N, as follc vs. We grow
enclosures that have smooth boundaries, and are large enough that they contain large crossbars,
but we keep them mutually distant from one another. Then we define the notion of a Vorono:
partition of G to allow us to determine which clusters are “neighbors”; we define the simulated
network A by putting Q(logn) parallel edges between neighboring clusters (whether or not
they have that many edges in the common boundary of their Voronoi regions).

We show that the collection of these parallel edges “represents” the graph G well enough
that it can be used as the network A. In particular, we need to show that all paths accepted
by the simulated network can be routed in G. For this we make use of a theorem of Schrijver
[104]; we show that there exist Q(logn) paths in G between the neighboring enclosures, such
that all paths between all pairs are mutually disjoint.

We make no attempt to optimize constants here. Set Ay = A, and choose positive constants
ALy Az, ... 80 that Aj;1 < A; (the exact relationship between these constants is easy to determine
from the analysis below). A connection (s;,¢;) is short if d(s;,t;) < A2logn and long otherwise.
As before, we handle long and short connections separately; for now we concentrate on pre-
processing the graph as described above for handling long connections.

To start, we wish to choose a maximal set of mutually distant vertices around which to grow
clusters. Let G denote the graph obtained from G by joining u and v if d(u,v) < r. We first
run Luby’s randomized maximal independent set algorithm [79] in G*3'e&",

Let M denote the resulting Mis. For any = € V, some vertex within A;logn of it will enter
M on the first iteration if the largest number chosen in Bjy, 0z n(Z) is chosen by a vertex in
By, 10gn(z). This happens with constant probability, by Lemma 7.1.3. Moreover, if d(z,y) >

Az log n, then these events are independent for and y. Thus,

Lemma 7.3.1 Let z,y € V be such that d(z,y) > N:logn. Then with constant probability
there are u,v € M such that d(z,u) < Aslogn and d(y,v) < Aslogn.

We use the following procedure to build the clusters and the enclosures around each node

vin M. Let K,, = BAslogn(v)-
(i) By Lemma 7.1.4, we can choose a radius r between 2A; logn and 3); log n so that
|m(B.(v))| < 9BXslogn.

129

(ii)

(iti)

N

2 Aglog n paths

enclosure

Figure 7-1: Building the simulated network
Set C, = B,(v).

Now extend C, to a simple set as in Lemma 7.1.5; by choosing the \; appropriately, we
can ensure that A3 > 2€);, and hence no C, will be grown enough by this process that it

overlaps any other.

We now apply the e-smoothing algorithm of Theorem 7.2.3 to the facial cycle Q, of G[C,]
containing n(C,). Here

Hu = G[BAg logn(v) \ I{:]

plays the role of H, and the cylinder formed by removing the portions of ¥ on which
G[K?] and G \ Bj,1gn(v) are drawn plays the role of ¥,. Now for a constant ¢, the

resulting cycle @, is e-smooth in this subgraph H, of G, and it is also ;*--close to Q,.

130

We choose
1

c<I88+1

All vertices on the resulting smooth cycle Q’, will thus be within a distance of

1

1
< =
18ﬁ IQUl - 2A5 logn

of Q,. Hence Q, encloses the set Baj;ign O Ko, and is contained in the set By, ioqn-
It follows that any path with both ends on Q! that leaves the subgraph H, must have

length at least
1
98

and hence @, is e-smooth in the graph G (and not just in the subgraph H).

Xslogn > %IQ.J > —|QL),

The smooth cycle @', encloses a set S of vertices containing K,. Update C, to be this set

S.

We now grow an enclosure D, D C, by the same three-step process, except that we now
use the constant A\ in place of A5, and the set C? in place of K Thus, we have clusters of
radius & A5 log n, enclosures of radius = A\ logn, and they are separated by a mutual distance
of = A;logn.

Following the algorithm of Chapter 6, we now must build crossbar structures in the enclo-
sures to replace the natural crossbars of the mesh. We build crossbars using Frank’s extension

(Theorem 2.2.4) of the Okamura-Seymour theorem [84, 37]. To be precise,

Definition 7.3.2 If X C V, we say a crossbar anchored in X is a set of edge-disjoint paths,

each with at least one end in X, such that every pair of paths meets in at least one vertez.

Let o, = 7(C,), and recall that by @’ we mean the facial cycle of G[C,] containing o,. Anal-
ogously, let 7, = n(D,), and ¢, the facial cycle of G[D,] containing 7,. We wish to build a
crossbar in G[D, \ C¢], anchored in o, U 7,, of size at least a constant fraction of |o, U 7,|. For
a large enough constant x« depending on ¢, we choose a set o, of |o,|/k vertices on o, spaced

about k apart, and a set 7. of |7,]/k on 7, spaced about £ apart.

Lemma 7.3.3 There is a crossbar anchored in 0., U T,, such that each vertez of o, U T, is the

endpoint of a distinct path of the crossbar.

131

Proof. Consider the planar graph G[D, \ C?]. This graph has only two large faces — the outer
face bounded by ¢,, and the inner face left by the deletion of C?, and bounded by the cycle Q..
We find a shortest path P* in the planar dual graph whose endpoints are equal to these two
large faces, and we delete the edges used by this path. Denote the resulting graph by G,; note
that it has only a single large face, bounded by a cycle ¢} which contains ¢! U 7). We observe

that

A

leul < ool +1Q51 +2¢| P
< 9B8Mlogn + 9BAslogn + Tl logn
< 9B€(2)4 + Xs)

where the last inequality is merely for the sake of having a simpler expression to use in the
discussion below.
We claim that the cycle ¢, is €1-smooth in the graph G,, where

. € -
& = mm(m, (27ﬁf) 1).

To see this, suppose that P is a path in G, with endpoints u,w € ¢/,. There are four cases to

consider.

(i) Ifu and w both belong to @', or both belong to ¢,, then this follows from the e-smoothness
of these two cycles in G[D, \ C?].

(ii) If one belongs to each, then |P| > (A — 4);5) log n, while || < 98€(2)4 +)5), and again
the bound follows.

(iii) If both w and w lie on the short dual path P*, then since P* is a shortest path in the

planar dual, we have |P| > ¢~'d,; (u,w).

(iv) Finally, suppose one end lies on P* and the other does not — let us assume that the
other end is on Q). Let P’ denote the subpath of P* lying between @/, and the endpoint
of P, and P, denote the (shorter) subpath of Q) lying between the endpoints of P and
P* on Q). Since P* is a shortest path in the planar dual, we have |P| > ¢7!|P’|; by

132

the e-smoothness of Q) we have |PU P'| > €|P,|. Combining these two inequalities, we
obtain

€
> ! '
Pl 2 sl VB

and so the bound holds in this case as well.

Write X = o/ U7’. Let us assume for simplicity that | X| is odd. Now for v € X, define u*
to be the vertex on ¢, that is 3« steps clockwise from u, and write X* = {u* : u € X}. Now
|X U X*| is even, so we can pair each u € XUX* with its unique “antipodal” point # € XUX*
under the clockwise ordering of ¢!. Note that vertices in X are paired with vertices in X+,
and vice versa. We now define a disjoint paths problem in G,, with the set of terminal pairs
T, equal to {(u,4) : u € X}. Note that all terminals are at least }« from one another on the
cycle ¢,,.

We now want to show that 7, is realizable in G,. First, say that a cut is non-trivial if it
separates at least one pair of terminals. We are dealing with a disjoint paths problem in a
planar graph with all terminals on the outer face. Moreover, every node of G, not on the outer
face has even degree. Thus, by Theorem 2.2.4, the following strict cut condition is sufficient for
the realizability of 7, — every non-trivial cut has more capacity than the number of terminal
paire it separates.

By Lemma 2.1.2, it is enough to consider non-trivial cuts of the form §(U) with both G,[U]
and G, \ U connected. For such a set U, there must be two vertices v,w € w(U) such that
v,w € .. Suppose that the distance from v to w in G, is d; then by Lemma 7.1.6, we have
|6(U)| > €~*d. Since the facial cycle ¢, is £;-smooth, the number of terminal pairs disconnected
by 6(U) is at most 2¢7'd/k. Thus taking k > 2fe;" ensures that the strict cut condition will
be satisfied.

Finally, observe that the edge-disjoint paths in a realization of 7, provide the crossbar

required by the lemma, since each pair of paths must meet at some vertex of G,. B

In the crossbar just constructed, let Y,* denote the path with an endpoint equal to u, where

u€ao,UrT,.

133

7.4 Defining the Simulated Network

We now define the simulated network; the nodes of this network are the clusters, which we
represent by the vertices in M. We define a neighbor relation on the clusters using the notion
of a Voronvi partition; two clusters will be joined by an edge in A if they are neighbors in this
sense.

Let us first introduce the Voronoi partition at a general level. Let H be a graph and

S C V(H). We fix a lexicographic ordering < on the elements of S. For s € S, let
U,={veG:Ys' € S:d(v,s) <d(v,8') and Vs' < s:d(v,s) < d(v,5")}.

That is, U, is the set of vertices that are at least as close to s as to any other s, with ties broken

based on <.

Definition 7.4.1 The Voronoi partition V(H, S) of H with respect to S is the partition {U, :
s € S}.

The following fact is immediate.
Lemma 7.4.2 For each s € S, H|U,] is connected.

Proof. Suppose v € U,; we claim that any shortest s-v path P is contained in I,. For suppose
not, and let v’ € P be the closest vertex to s that lies in U, for some s’ # s. Then d(s',v) <

d(s,v), and in fact d(s’,v) < d(s,v) if s < s'. It follows that v € U,., a contradiction. m

We can now build a graph N'(H, S) on the vertices in S, joining two if their Voronoi cells

share an edge.

Definition 7.4.3 The neighborhood graph of S in H, denoted N(H,S), is the graph with
vertez set S, and an edge (s,s’) iff there is an edge of H with endpoints in U, and U, .

The simulated graph we use will be the neighborhood graph N (G, M) with every edge given
capacity =~ Aglogn. Let V and N denote V(G, M) and N (G, M) respectively, and N(7y) the
graph NV in which each edge is given capacity +.

We now establish some basic facts about A. First, by the maximality of M, we have

134

Lemma 7.4.4 For allv € M, U, C B),10gn(V).

Proof. Suppose u € U, but d(v,u) > Azlogn. Then d(v',u) > Azlogn for all v' € M; this

contradicts the fact that M is a maximal independent set in G**'°¢", m

Definition 7.4.5 For v € M, and a number p > 0, we define g,(p) to be the number of u € M
Jor which U, C By, 15n(v). We define g,(p) to be the number of w € M for which U, has a

non-empty intersection with By, 105 (v). Finally, we define

9(p) = max g,(p)

! _ '
9'(p) = maxg,(p)

Using Lemmas 7.1.3 and 7.4.4, we show
Lemma 7.4.6 g(p) < 4a~'p8p® = O(p?).

Proof. By the definition of M, we see that By,, logn(v) C U, for every v € M. Thus,
l ~—1142 2
U, > 3 A3 log” n.
Now by Lemma 7.1.3, we have
IBpA: log n(v)l .<. ﬂpz’\g lOg2 n
for every v € G; from this it follows that g(p) < 4a~!'6p*. m

Lemma 7.4.7 ¢'(p) < 9(p + 2).

Proof. Let v € M be a vertex maximizing g, (p). If u € M is such that U, has a non-
empty intersection with Bpy;10gn(v), then by Lemma 7.4.4, u € Bp11)r;10gn(v), and U, C

Bip12)rs10gn (V) B
Lemma 7.4.8 The degree of a vertex in N is at most A' < g(3).

135

Proof. Consider a vertex v € M. By Lemma 7.4.4, any ©v € M that is a neighbor of v with
respect to V(G, M) has the property that U, intersects B),jog+(v). Thus, the number of such
neighbors u is at most ¢’(1) < g(3). ®

We can now make explicit the sense in which the network N (©(logn)) “represents” the
graph G sufficiently well; this will serve as the analogue of Lemma 6.1.6. As in Chapter 6, if u

is a vertex in a cluster C,, we define ¥/(u) = v; we say that 1¥(u) is undefined if u ¢ U,y C..

Lemma 7.4.9 There is a constant v such that the following holds. If T' be a realizable subset
of T, with the property that all terminals in T' belong to U,emC,, then (T') is realizable in
N(ylogn).

Proof. Set v =98A(Asg(5) + A3). For each s;-t; path P in the optimal routing, construct the
following path for (¥(s;),%(t;)) in N — when P crosses from U,, into U,,, add an edge from
w to w’. Now consider how much demand in our constructed routing uses the edge (w,w’).
This demand corresponds to paths in the original routing that used an edge in 6(U,,, U,).
We can’t bound the size of this set directly, since it could be quite “meandering.” Thus
we invoke the following argument. 6(U,,U.') C Boy,ign(z) for some vertex z € G; thus
there is some r between 2A;logn and 3A;logn so that |7(B.(x))] < 98A3logn, and hence
[6(B,(x))] < 9ABA;3logn. This is an upper bound on the total demand crossing 6(U,,, U,)
associated with terminal pairs with both ends more than r away from z. But closer than this,
there are at most g’'(r) < g(5) clusters, each of which is the origin of at most 9A8)\; log n total

demandin7'. m

7.5 Building the Simulated Network

The goal of this part is, for a constant Ag, to construct Ag log n disjoint paths between each pair
of enclosures D,, D,, where (v,w) is an edge in N. This will allow us to convert a routing in
the simulated network N ()\glogn) into actual disjoint paths in G. Recall that the outer facial

cycle of G[D,] is denoted ¢,, and it contains a set 7, of vertices evenly spaced at distance .

Theorem 7.5.1 There exist vertez-disjoint paths in G, each with ends in sets) and otherwise
disjoint from all D,, such that for (v,w) € E(N), there are at least Aglogn such paths with

one end in 7, and the other in 7.,

136

pull out these crossings

Figure 7-2: Pulling out a crossing

Proof. The proof is based on Theorem 2.3.3, due to Schrijver [104]. Recall that a curve is G-
normal if it meets the drawing of G only at vertices; we define its G-length to be the number of
times it meets the drawing. For each v, v’ that are neighbors in A/, we draw a simple G-normal
curve A,,» on ¥ with endpoints v and »'. We can ensure that all these curves are disjoint, since
each U, is connected, and for each (v,v') € E(N), there is at least one edge of G with endpoints
in U, and U,.. Choose a small constant Ag < |75|/A’ (say, less than j502aA' "' A~2A7! Mig(6)7";
the reason for this will become clear below). We construct Aglogn copies of each A,,, all
running “parallel” to one another. By pushing them apart appropriately, we can assume that
each curve runs through a different vertex in 7 and 7,,. Let A,. denote the G-normal curve
that runs through v € 7} and v’ € 7),.

Define G’ to be the graph obtained by deleting D? for each v € M. We now cut £ along
the facial cycles ¢, to obtain ', a surface with boundary. Note that G’ is properly embedded

on ¥'. The theorem is now a consequence of the following claim. ®

Claim 7.5.2 There ezist vertez-disjoint paths P, in G’ such that P,, is homotopic to Ay, .

137

Proof. If curves R and R' are homotopic, we write R ~ R'. From Theorem 2.3.3, we can
obtain the following somewhat simpler sufficient condition for the existence of the desired paths:

for each essential curve R on X', one has

cr(R,G') > Z mincr(R, Auw). (7.2)
(u,u)
Note that in verifying this inequality, we may assume R is G’-normal and has no self-crossings.

For an essential curve R, define its indez to be

cr(R,G') - Z mincr(R, Ay).
(u,u')
So it is enough to consider curves R whose index is minimum in their homotopy class, and to
show that such R in fact have positive index.

Set r = 1A~'aa'/?),logn. We claim that no G-normal closed curve of G-length less than
2r can enclose a set of the form D,. For if it did, then D, could be disconnected by an edge cut
of size less than 2Ar = aa'/?)\, log n, which is not possible since |D,| > @A2log® n. From this
it follows that any G’-normal closed curve of G'-length less than 2r must be null-homotopic in
Y.

We now consider two cases, based on the G’-length of R.

Case 1. cr(R,G') < r. Then R must have both endpoints on the same facial cycle (it
is too short to touch two such cycles, and if it were a closed curve it would have to be null-
homotopic, by the above argument.) But then it is easy to produce curves {4/} for which
ci(R,G') > X,y cr(R, A,,) since g, is e-smooth.

Case 2. cr(R,G’) > r. Again, we just have to exhibit simple curves A/, ~ A, lying on
¥’ so that

cr(R,G') > Y er(R,A,,), (7.3)

(')
If the set {A,. } satisfies (7.3), we are done; otherwise, we show how to modify this set of curves
so that it does. See Figure 7-2.
If the set {A,.} does not satisfy Inequality (7.3), then there is some interval R’ of R of
G'-length r for which (7.3) is violated. Let us consider such an R'.

138

Observe that each curve A,., as initially constructed, can be assumed to have G-length at
most 3); log n, since u and u’ belong to enclosures in neighboring Voronoi cells. Thus at most
A’g(6)\g log n of these curves can meet R’, since at most A’g(6) pairs of clusters have at least
one end close enough to R’'. Now suppose the total number of crossings of these curves with

R' exceeds
(3)3 log n)(A'g(6)A¢ log n)
T

< cr(R,G).

Then some curve A,, meets R’ more than 3);logn/r times, and hence the interval of A,.
between some pair of consecutive crossings with R’ has G'-length less than 7.

Suppose that this pair of consecutive crossings occurs at vertices w and w’. Let R" denote
the G’-normal curve formed from this interval of A,. and the portion of R’ between w and w'.
R" has G'-length less than 2r, and so it must be null-homotopic by the argument given above.

Now, since R has minimum index over all curves in its homotopy class, the portion of Ay
between w and w’ meets G’ at least as many times as the portion of R’ between w and w'. We
can therefore modify A, so that it runs along R’ for this interval. This does not increase the
G'-length of A, ; and it decreases the number of crossings of R with A,..

Thus this process terminates; when it does, we have a set of curves {4} for which In-

equality 7.3 holds. ®

Let us denote one such path with ends u and v’ by Z,, . Moreover, we have u € 7, and
u' € 7),, and they are ends of paths Y;* and Y¥ respectively. Denote by Z,, the concatenation

of the three paths Y*, Z,,., and Y}¥".

7.6 The On-Line Algorithm

With the simulated netv:ork A in place, the routing algorithms themselves are essentially the
same as those for the mesh; here we just describe what must be modified.

First of all, the analogue of Lemma 6.2.6 is the following.

Lemma 7.6.1 Let r < A\ logn, U C B,(v) for some v € V, and T' a set of terminal pairs
in U. Then the mazimum weight of a subset of T' that is realizable in Bgg,(v) is within a

constant factor of the mazimum weight of a subset of T' that is realizable in G.

139

Proof. First choose a radius 7’ between 2r and 3r for which |7(B,(v)| < 987'. Then construct
a simple set extension of B,.(v) as in Lemma 7.1.5; and e-smooth its outer facial cycle to obtain
a set U’' D U contained in By, (v). Let U” C By, denote a simple set extension of Bger(v), as
in Lemma, 7.1.5. For a constant &', we can pick a set S of vertices on the outer facial cycle of
U’ spaced «' apart, and use Frank’s theorem [37] as in Lemma 7.3.3 to construct a set of edge-
disjoint paths connecting “antipodal” pairs in S, such that all paths stay within U” \ U’. Note
that we must take care to ensure that the parity condition is met, since the outer facial cycle
of U” can contain odd-degree vertices. To do this we remove sub-paths of this cycle between
consecutive pairs of the (necessarily even number of) odd-degree vertices; U” is large enough
that the strict cut condition will remain satisfied.

Consider the set of paths in a realization of a maximum-weight subset of 7’ in G, and let
T" denote the subset of pairs whose paths meet w(U’). We break each at their first and last
intersections with w(U’). We now connect a subset of these paths to their respective closest
vertices in S, following the outer facial cycle of U’ — the subset is chosen to be maximal subject
to the constraint that no more than 1 unit of demand is connected to any single vertex in S. It
is casy to argue that any such maximal set contains a constant fraction of the demand in 7.
We now use the crossbar of the previous paragraph to connect all of these pairs together; in this
way we are routing an amount of demand that is within a constant fraction of the maximum

achievable in G, using paths that do not leave U". m

The algorithm for short connections is now as follows. We run a randomized version of
Luby’s algorithm, this time in G* 6", Let M’ denote the resulting MIS. With constant
probability, both ends of a short connection are within #/\, logn of the same v € M’, as in
Lemmas 6.2.7 and 7.3.1. We now let U, denote B, 1ogn/16¢2(v) and only route connections both
of whose ends lie in the same U,. To route such connections, we run the greedy algorithm of
Theorem 5.1.3 in each By, o5 (v); by Lemma 7.6.1, this is within O(logn) of optimal in each
U,.

For long connections, we run the same simulation as in the case of the mesh, this time in the
graph N'(1)glogn). The analogue of Lemma 6.2.4 holds exactly as before, as does Lemma 6.2.5

— making use of the paths Z,,, since all such paths incident to the same enclosure must cross.

Thus the optimum for long connections in G is bounded by the fractional optimum in

140

N (7log n), which is at most a constant factor more than the fractional optimum in A'(} g log n),
which is at most an O(log n) factor more than the total demand routed by the on-line algorithm

in G. Thus we have

Theorem 7.6.2 The on-line algorithm is an O(log n)-approzimation in any densely embedded

Eulerian graph G.

7.7 The Off-Line Algorithm

The off-line algorithm too is essentially the same, now working with the larger simulated network
N'(Xglogn). The only non-trivial change required is in the proof of Lemma 6.3.1. Here, we
are no longer able to talk about “overfull rectangles”; however, we can define a round cut to be
a set of the form B,(w) N C,. Since a given u € C, is only contained in O(r?) round cuts of
radius r, the following lemma establishes that round cuts can be used instead of rectangles in

the analogue of Lemma 6.3.1 for densely embedded graphs.

Lemma 7.7.1 Let G, denote G[C,] with an additional vertex z, joined by an edge to each
vertez in o',. Then there is a constant &, such that for every U C G, not containing z,, there

is a round cut R D U satisfying |6(R)| < £|6(U)|.

Proof. Set &, = k+a ' 2a7! and & = 4A¢&(B+¢€7"). Let U C G, be a set not containing 2,,
and write p = |6(U)|; we construct a round cut R containing U for which |§(R)| < &p.

Now if we contract G, \ U to a single vertex, we obtain a planar graph with maximum face
size k (as opposed to ¢; this is due to the large spacing of the vertices of o). So by Lemma 7.1.6,
the maximum distance between two points on 7(U) is at most kp.

Next we claim that every vertex in U must be within distance a~'/2a~'p of #(U). The
reason for this is analogous to the proof of Lemma 7.1.5 — if not, then U would contain a ball
of more than this radius, which would contain more than a~2p? vertices; a contradiction since
[6(U)| = p.

Thus for any u € w(U), we have U C B,(u), where

r=(k+a o)p=¢Ep.

141

Now by Lemma 7.1.4, there is an 7' between r and 2r such that

16(B ()| < 4BAE,p.

Now let R D U denote the round cut B,.(u) N C,. Every edge of §(R) is an edge of either
6(B(u)) or of 6(C, N R). The former quantity was just shown to be at most 48A¢&;p. To
bound the latter quantity, note that any two vertices in 7(C, N R) are at most 27’ < 4€!p apart;
since the facial cycle containing 7(C,) is e-smooth, this means that 7(C, N R) contains at most

4e~'¢ p vertices, and hence

16(C, N R)| < 4A7€]p.

The claim now follows since

|6(R)| < 4A&(B+e7")p = &ip.

Thus we have

Theorem 7.7.2 There is a randomized (off-line) UFP algorithm in densely embedded Eulerian

graphs that produces a constant-factor approzimation with high probability.

142

Chapter 8

Minimizing Congestion

... Here the street is narrow:

The throng that follows Caesar at the heels,
Of senators, of praetors, common suitors,
Will crowd a feeble man almost to death ...

— William Shakespeare, Julius Caeser.

For the previous three chapters, our concern has been with maximizing the total amount
of demand routed, when given a graph with edge capacities, and terminal pairs with specified
demands. Here, we consider a different objective function that also serves to measure the
“quality” of a routing: we wish to route all the demand, and exceed the capacity constraints
by as little as possible.

To be more concrete, let us recall the definitions given in Chapter 1. We say that a routing
of T in G is a choice of an s;-t; path P; for each (s;,t;) € 7. The congestion of a given routing,
v(T,{P.}), is defined to be the maximum, over all edges e € G, of the total demand crossing

e. That is,
w(T,{P}) =max }_ pi

i:e€EP;
We use v(7) to denote the minimum congestion of a routing of 7 in G. In Chapter 1, we
indicated some of the ways in which the issue of congestion minimization arises.
We will sometimes speak of an X-Y routing (or a routing from X to Y) where X and Y

are two sets of vertices in a graph G. By this we mean a set of paths in G such that each path

143

has one end in a distinct vertex of X and its other end in some vertex of Y.

The simulated network construction of the previous chapter, though designed with the UFp
in mind, also allows us to give a constant-factor approximation for the problem of minimizing
congestion in any densely embedded graph. (For this result, we do not require the graph to be
Eulerian.) We describe this algorithm in Section 8.2, after first discussing some previous work

in Section 8.1.

8.1 Preliminaries

Algorithmically, the problem of minimizing congestion is much better understood than the uFp
(which seeks to maximize the amount of demand routed). One of the primary reasons for this
is that the natural fractional version of this problem gives much more information about the
unsplittable optimum than was the case for the UFP. Recalling the terminology of Section 2.4,

we define a fractional routing of T in G as follows. For each pair (s;,t;) € T, we choose
(i) a set of s;-t; paths P}!,..., P¥ and
(ii) associated non-negative weights y;,...,y{" € R such that 37, vl = pu.

The congestion of this routing is now defined to be

J 1) = J
We use v/(T) to denote the minimum congestion of a fractional routing of 7 in G.

The randomized rounding method of Raghavan and Thompson is clearly applicable in this
setting: one computes a fractional routing for 7; and then for (s;,t;) one chooses the path
P’ with probability y [94]. Since we are no longer worried about respecting the capacity
constraints, there is no need to impose any “high-capacity” requirements — the algorithm can
be used in any graph. The performance guarantee of the algorithm can be analyzed using tail
bounds of the type in Theorem 2.5.1; one can show [94] that with high probability, the resulting
unsplittable routing has congestion v/(T) + o(v/(T)) + O(log |E|). For our purposes here, it is

enough to state a somewhat weaker version of this performance guarantee.

144

Theorem 8.1.1 (Raghavan—Thompson) There are constants by and b, (independent of G
and T) such that the following holds. If all edge capacities are 1, and all demands are at most
1, then the above algorithm produces a routing of congestion at most bov!(T) + by log |E| with
high probability,

Thus, there are never large gaps between the fractional and integral optima — this is in contrast
to Theorem 2.4.4, which applied to the UFP. Indeed, the fractional and integral optima for
congestion are always within an O(log|E|) factor of one another in general, and within a
constant factor when v/(7) is at least Q(log |E|).

It is interesting to note, though it not relevant to the material here, that good on-line

approximations have recently been developed by Aspnes, Azar, Fiat, Plotkin, and Waarts [8].

Theorem 8.1.2 (Aspnes et al.) There is an on-line O(log n)-approzimation to v(T) in any

n-node graph.

Thus, the principal question left open by the Raghavan-Thompson algorithm is the follow-
ing. The algorithm provides a constant—factor approximation whenever the fractional optimum
is sufficiently large; but it is only an O(log | E|)-approximation in general. Thus, for example, if
we are given a set 7 of terminal pairs that is in fact realizable in G (and hence routable with con-
gestion 1), the algorithm of Theorem 8.1.1 will still produce a routing of congestion Q(log |E|)
with high probability. It is therefore natural to ask whether one can obtain a constant—factor
approximation for v(7T) for all ranges of the fractional optimum; it appears that techniques
beyond pure randomized rounding will be necessary to resolve this question.

In this chapter, we address this question for the case of densely embedded graphs, and
provide a constant—factor approximation for »(7) in such graphs, independent of the value of
v/(T). Combined with Theorem 8.1.1, this settles an open question of Karp, Leighton, Rivest,
Thompson, Vazirani, and Vazirani [57] on the existence of a constant—factor approximation for
congestion on the two-dimensional mesh. The algorithm makes use of randomized rounding
within the simulated network defined in the previous two chapters, and is thus quite similar
to the UFP approximation algorithms just developed. However, it is less difficult, in large part

because we are no longer faced with problem of choosing which subset of terminals to route.

145

8.2 The Approximation Algorithm

We will not make use of all parts of the simulated network construction; we begin by recalling
those aspects that we do use, and consolidating the notation. First of all, let G be an n-node
densely embedded graph with parameters e, A, A, and ¢; by doubling every edge of G, we lose
only a factor of 2 in the approximation ratio, and we may therefore suppose that G is Eulerian.

As in Chapter 7, M is a set of vertices of G, maximal subject to the condition that no
two vertices of M are closer than A3 logn to one another. V is the Voronoi partition of G with
respect to M, and N is the neighborhood graph of M in G. Recall that &/, denotes the “Voronoi
region” associated with v € M in the partition V. The cluster/enclosure structures inside each
Voronoi region are no longer necessary; however, we will be using the inter-cluster paths that

pass through them. Thus, we recall that for each v € M, there is an e-smooth cycle

Py C B3A4 log n(v) \ B2,\4 Iogn(v)°

For a large enough constant k, we choose a set of vertices 7, spaced (approximately) k apart
on ¢,. Finally, by Lemma 7.3.3 and Theorem 7.5.1, there exist edge-disjoint paths in G, such
that

(i) for each pair (v, w) that is an edge of NV, at least Ag log n paths pass through both a vertex

in both 7, and 7,
(ii) at most one path passes through any one vertex in U,epm 7!,
(iii) if two paths pass through nodes in the same set 7/, then they meet at some node.

Deleting vertices from 7, if necessary, we may assume that every vertex in 7/ lies on one of
these paths. If u € 7, and u’ € 7.+ lie on a common path, then we use Z,,. to denote this path.
Let

Zyy = {Zyw w € Ty u' € Ty},

and

Z,= U Ze
w:(v,w)EE(N)

146

By analogy with the construction of clusters and enclosures from Section 7.3, we construct

a simple set F, around each v € M, such that, for constants € and v,

(i)
(ii)
(iii)

G|F,] has an e-smooth outer facial cycle R, that contains w(F,),
|R,| < mlogn, and

Ru C B3A3 losn(v) \ B233 108’1(”)‘

We define a function 9 : 7 — M by setting ¥(u) = v if u € U,. We can now describe the

routing algorithm. Recall that a connection is long if d(s;,t;) > Az logn. Below, we present the

algorithm for long connections; short connections are handled recursively as in the algorithm

of Section 7.7, and we will briefly elaborate on this at the end. Thus, for the time being, we

assume that all connections are long. The algorithm is as follows.

(i)

(ii)

(i)

Apply the randomized rounding algorithm to the graph A, with terminal pairs

{(0(s:),9(t:) : (s0,t:) €T}
The result is, for each (s;,t;), a sequence

B = g3y e

of neighboring vertices of M, such that u? = 9(s;) and pf* = ¥(t;).

For an edge (v,w) of N, let T,,, denote the set of terminal pairs that are routed on the
edge (v, w) by step (i). We assign terminal pairs to paths in Z,,, so that the maximum

demand across any one path is minimized.

By using the fact that all pairs of paths incident to a given set 1, cross, we thus obtain

for each pair (s;,t:), a path P; that has one end in 7;,,) and the other end in 7).

For each v € M, we run the algorithm of Corollary 3.2.3 in the graph G[F,] to produce
a routing of ¥~!(v) to 7, whose congestion is within a constant factor of optimal. Now
suppose that s; € 9~!(v) is routed by this algorithm to « € 7/ on a path Q,,; and let Z,,,
denote the path in Z that passes through u. Then Q,, U Z,, contains a path P, which
meets the path P/ returned by step (ii).

147

(iv) For each (s;,t;) € 7, we concatenate the path P; found in step (ii) with the two paths
P;;, P! found in step (iii). This is the path we use for routing (s;,t;) in G.

The remainder of this section is devoted to showing that the above algorithm provides
a constant-factor approximation to (7). In order to do this, it is useful to work with the
following two lower bounds on this optimum. First, for v € M, let vp, denote the minimum

congestion of a routing of the terminals in 1/~!(v) to the cycle R,, in the subgraph G[F,]. Define
Vp = MaxXvp,.

Now we have
Lemma 8.2.1 v(T) > vg.

Proof. Let v € M be such that v = vp,. Now consider any routing of 7; since all terminals
in 9~!(v) are ends of long connections, the path associated with each must leave the subgraph
G[F,]. Consequently, a prefix of each of these paths constitutes a routing of 9~ (v) to the cycle
R, that bounds G[F,]. m

A simple consequence of this is the following.

Lemma 8.2.2 The total demand of terminals in y~'(v), for anyv € M, is at most vipy; Alogn <
v(T)y,Alogn.

Proof. Since |R,| < 7 logn, there are at most vy, Alogn edges incident to nodes in R,. Each
edge carries at most v; units of demand, and every unit of demand in %~!(v) must traverse

one of these edges (since all this demand is associated with long connections. m

Recall that in step (i) of the approximation algorithm, we considered the routing problem in
which the underlying graph is A and the set of terminal pairs is {(¥(s;), ¥(t:)) : (si, ;) € T)}

Let v}, denote value of the optimum congestion for this problem.

Lemma 8.2.3 y(7) > i)

logn

Proof. Using the minimum-congestion routing of 7 in G, we construct a routing of congestion

O(v(T) - logn) in N. The construction of the routing in A is straightforward — for each

148

i=1,...,k, we use the sequence of Voronoi regions through which the s,—¢; path in G' passes
to define the ¥(s;)-¥(t;) path in N.

Now we must bound how much demand is sent across an edge (v,w) of N. First, as in
the proof of Lemma 7.4.9, §(U,,U,,) C Bax,10gn(z) for some vertex x € G; thus there is some
r between 2)\;logn and 3A;logn so that |7(B,(z))] < 98X;logn, and hence [6(B.(x))| <
9AB);logn. Since each edge in §(B.(z)) carries at most »(7) units of demand, the total
demand sent across (v, w) that is associated with terminal pairs having at least one end outside
B.(z) is at most v(T) - 9ABA; logn. But there are only ¢'(r) < g(5) Voronoi regions that do
not lie outside B,(z), and by Lemma 8.2.2, each is the origin of at most v(T') - 1 Alogn units

of demand. The bound follows from this. ®

We now provide an upper bound on the congestion of the routing produced by the above

algorithm, in terms of the two quantities v} and v},. First, the following fact is useful.

Lemma 8.2.4 There is a constant ko such that the following holds. Let v € M. There exists a
routing from R, to 7. in G[F,] such that at most ko paths in the routing traverse any one edge

of G|F,].

Proof. It will follow from the calculations below that
Ko = 60118 ?(aer)g) ™!

is a sufficiently large constant. We attach a source s* to each vertex in R, by an edge of unit
capacity, attach a sink ¢* to every vertex in 7, by an edge of capacity |R,|, and give every edge
in G[F,] a capacity of k5. We now show that there is a feasible flow from s* to t* of value |R,|,
which will imply the lemma.

It is enough to verify the cut condition: for any set X containing s*, we have ¢(X) > |R,|.
First note that X N7’ = ¢, for otherwise §(X) would contain an edge of capacity |R,|. Now we

consider the following two cases.

(i) R, ¢ X. Let R!,...,R? be the intervals of R, that are contained in X. Then there
are |R,| — 3, | R}| edges of unit capacity incident to s* in §(X). Now, in G[F,]\ {s}, X

has ¢ connected components, one containing each of R.,...,R%. Since R, is e-smooth,

149

Lemma 7.1.6 implies that the component of X containing RJ has at least ¢£~!|R}| edges
in its boundary, and hence contributes a capacity of at least xoef=!|R%| > |RI| to ¢(X).

It follows that the cut condition holds in this case.

(ii) R, € X. Now if there is some vertex u of 7/ that does not lie within distance r =
$€K g log n of some vertex in m(X), then G[F,]\ X contains B,(u). By the semi-expansion

of G[Biogn(v)], it follows that |6(X)| > aa'/?r, and hence ¢(X) > v, logn > |R,|.

Otherwise, every vertex of 7, lies within distance 7 of some vertex of m(X). We know that
7, consists of at least A logn vertices spaced x apart on an e-smooth cycle ,. Thus, we
may choose vertices u,u’ € 7, whose distance, measured along ., is %n/\s logn = 3¢~ 1r.
By the e-smoothness of @, we have dg(u,u’) > 3r; and hence there are two vertices of
7(X) that are at separated by a distance of at least r in G. By Lemma 7.1.6, it follows
that [§(X)| > €-'r, and hence

c(X) 2 kol™'r > 1 logn > |R,|.

In analyzing the approximation algorithm, we observe that only steps (ii) and (iii) produce
paths in G — step (i) simply computes “global routes” in A, and step (iv) concatenates
paths already constructed. We therefore provide upper bounds on the congestion of the paths

produced by steps (ii) and (iii).

Lemma 8.2.5 The total congestion of the paths produced in step (ii) is

0(W p') = OW(T)).

logn

Proof. By Theorem 8.1.1, the total demand of terminals assigned to the edge (v, w) in A is at
most

bovyr + p*by log |E(N)| < bovy, + p*b; logn.

150

Since the number of paths in Z,,, is at least \g logn, we can assign terminal pairs to paths in

Z,w S0 that none of these paths carries more than

bo V;r
Aglogn

+b1/\;lP' +p—

units of demand. ®
Lemma 8.2.6 The total congestion of the paths produced in step (iii) is O(vy) = O(v(T)).

Proof. By Lemma 8.2.4, any routing from 3 ~!(v) to R, can be converted into a routing from
¥~!(v) to 7/ with only a constant—factor increase in the congestion. It follows that the minimum
congestion of a ¥~!-7/ routing is O(v}). Now, we produce paths whose congestion is within a
constant factor of the minimum; and since every edge of G appears in only a constant number

of sets of the form F,, the congestion of the set of paths we produce in step (iii) is O(vy). B

By the previous two lemmas, we have

Theorem 8.2.7 The above algorithm produces a routing for the long connections in T whose

congestion is within a constant factor of optimal.

Finally, we discuss how to handle short connections. As this is completely analogous to
what was done in Section 7.7, we will be somewhat brief. We choose a set of vertices M’ which
is maximal subject to the constraint that no two are within distance } A, log n of each other. For
each v € M', we let 7! denote the set of terminal pairs with both ends in By, 105 »(v); We run the
above algorithm recursively in G[Bgg:s, 105(?)], With terminal pairs 7. By the construction
used to prove Lemma 7.6.1, it is easy to show that the minimum congestion of a routing of 7
in G[Bsea», 10gn(v)] is within a constant factor of the minimum congestion of a routing of 7, in
G. Moreover, every edge of G appears in only a constant number of the sets Bgez», 1051 (?), and
by the definition of M’ every short connection belongs to some set 7.

Thus, we are within a constant—factor of optimal in routing connections that are classified
as “long” in the first recursive call. Connections that are classified as “short,” as in the previous
chapter, belong to balls of radius O(log log n); we can compute the optimum routing for them
by brute force in one additional recursive call. We overlay all the paths produced in these three

levels of recursion; this costs at most a factor three in the approximation ratio. Thus we have

151

Theorem 8.2.8 Let G be a densely embedded graph, and T a set of terminal pairs. There
is a polynomial-time algorithm that with high probability produces a routing of T in G whose

congestion is within a constant factor of optimal.

152

Chapter 9

Node—Disjoint Paths

My man, from sky to sky’s so far,
We never crossed before;
Such leagues apart the world’s ends are,
We’re like to meet no more.
— A.E. Housman, A Shropshire Lad.

In all the previous chapters, the underlying constraint has been related to the notion of edge-
disjointness — each edge can only carry a limited amount of demand. Here, we investigate some
of the problems that arise when one instead requires paths that are node-disjoint — that is,
paths such that no two pass through the same node.

Finding node-disjoint paths between designated pairs of vertices in a planar graph is fun-
damental to a number of routing and embedding problems. In particular, in many models of
VLSI layout, effective layout strategies rely on heuristics for finding node-disjoint paths; many
current routing software systems rely extensively on such an approach (see e.g. [91]). Node-
disjointness constraints can arise as well in the context of virtual circuit routing in networks,
when one requires paths to be node-disjoint for the sake of fault-tolerance or because of bot-
tlenecks involving switches rather thar links. At the same time, the basic node-disjoint paths
problem is NP-hard even for the two-dimensional mesh [65], and essentially nothing is known
in the way of reasonable approximation algorithms for the problem.

Although the node-disjoint and edge-disjoint paths problems are quite similar at the level

of general graphs, their underlying structures are very different in the case of planar graphs,

153

and even in the case of the two-dimensinoal mesh. This is true even in a technical sense;
the approximation algorithm of Chapter 6 could be analyzed, for the most part, with respect
to the fractional optimum. But this is far from true in the node-disjoint case, where simple
examples show that the optimum fractional and integral solutions can be very different in value.
In particular, one now encounters obstacles to the existence of paths that have nothing to do
with saturated cuts; they can best be described as “topological” in nature. We will discuss this
further in Section 9.1.

Thus, it appears that a new range of techniques must be explored in dealing with node-
disjoint paths problems in planar graphs, and this will be our motivation in this chapter. In
particular, we will concentrate on the objective functions a(7) and x(7), defined now for
the case of node-disjoint paths. It is interesting to note that for approximating the node-
disjoint analogue of v(7'), the approach developed for the edge-disjoint case turns out to be
sufficient; the algorithm of Chapter 8, with some small modifications, provides a constant—factor

approximation for this problem in densely embedded graphs.

9.1 Node—Disjoint Paths on the Mesh

Let us discuss a very basic problem that arises in this setting. Recall that a set of terminal pairs
is said to be a permutation if each vertex of the graph appears in exactly one pair. If G denotes
the n x n two-dimensional mesh graph, and we are given a permutation 7 in which every pair
needs to cross the center column, then the standard bisection bound says that a(7) < n, and
hence x(7) > in.

The lack of understanding of these problems is such that the following has remained open.

Again, let G denote the mesh.

(1) For every permutation on G, does there exist a set of Q(n!~¢) pairs that can be

simultaneously routed on node-disjoint paths, for every € > 0?

(1') Can every permutation on G be routed in O(n!*¢) rounds, for every ¢ > 0?

Again, by way of contrast, these questions are straightforward to resolve in the affirmative when

one only requires edge-disjoint paths.

154

These latter questions turn out to be closely related to open problems of Aggarwal, Klawe,
Lichtenstein, Linial, and Wigderson [2] in the setting of multi-layer VLSI layout. In multi-layer
VLSI layouts, typically a pin (a node, in our terminology) goes through several layers at the
same location, and the routing among pins at each layer is planar. If a routing wire needs to
change a layer, then a via (or contact cut) has to be made between two layers, and this usually
affects the yield of the output chip (as well as affecting the general quality of the circuit).
Consequently, it is practically useful to route as many connections on a single layer as possible
(in order to reduce the vias); for more details see [2, 27, 96]. These constraints thus result
directly in problems involving a(7") and x(7), with layers now playing the role of “rounds.”

One typically reduces the number of layers by introducing spacing between the terminals.
In the model of [2, 27, for a parameter d, consider a dn x dn mesh G4, with an n x n grid
of terminals at a uniform spacing of d. By this we mean that terminals are placed at the set
of nodes of G; whose row and column numbers are multiples of d; thus, d — 1 paths can now
be routed between adjacent terminals. The goal in this model is to find the tightest trade-off
possible between the spacing d and the number of layers required in the worst case.

Cutler and Shiloach [27] showed that spacing d = O(n?) suffices to route all pairs in a single
layer; and [2] showed that this value of d was tight up to constant factors. In terms of a general
trade-off between d and the minimum number of layers required, the techniques of [27, 2] are
only sufficient to show that, for spacing d, O((;}‘E)qa) layers are sufficient. However, guided

by (1), a reasonable question was the following.

1+
(2") With spacing d, are O((—\’/‘;) e) layers sufficient to route any permutation on

the mesh, for every € > 0?7

This contains the result of [27] in the case d = ©(n?) and question (1) in the case d = 1.
The main results of this chapter provide affirmative answers to questions (1), (1'), and (2').

Specifically, we prove

Theorem 9.1.1 Every permutation on the mesh contains a set of Q(n/logn) terminal pairs
that can be simultaneously routed on node-disjoint paths. Moreover, every permutation on the

mesh can be routed in O(nlog®n) rounds.

155

Theorem 9.1.2 With spacing d, every permutation on the mesh contains a set of Q(n\/c—i/ logn)
pairs that can be routed in one layer, and the entire permutation can be routed in O(nd~* log® n)

layers.

This strengthens the bounds of [27, 2] on the number of layers required for routing a per-
mutation. Within the context of VLSI, where the number of layers is typically a fixed small
number, the “dual” maximization versions of these theorems may in fact be of greater interest.
Namely, these are the first algorithms that can provably extract from any permutation on the
mesh a routable set of terminal pairs whose size is within polylogarithmic factors of the bisec-
tion bound. Moreover, the approach we develop is fundamentally different from that of Cutler
and Shiloach [27], which was essentially the only previous method applicable in this setting.

We mentioned above that questions (1) and (1’) are easy in the case of edge-disjoint paths;
in fact, one can construct a set of paths meeting the bisection bound using only one bend in
each path. On the other hand, the paths in the Cutler-Shiloach construction, as well as our
constructions in Theorems 9.1.1 and 9.1.2, use many bends. Thus, it is natural to ask how
many rounds are required with a routing that uses only a constant number of bends. Getting
o(n?) rounds is not immediate, and it appears that no previous construction in the literature

achieves it. We show

Theorem 9.1.3 Every permutation on the mesh can be routed in O(n"/3) rounds, with each

path in the routing using only 6 bends.

Within the context of the above results, it is worth mentioning what we feel is probably the
most natural open question here. The algorithm of Theorem 9.1.1 gives a routing of a set 7
for which the number of rounds used is close to the best possible in the worst case; however, it
is not an approzimation algorithm, since we do not have a result relating the number of rounds
we require for a given set 7 to the optimum value x(7). It would be very interesting to obtain
such an algorithm, since it would appear to require new techniques for analyzing x(7") in cases

when the fractional solution gives essentially no information.

Some Basic Examples

For the remainder of this chapter, let G denote the n x n two-dimensional mesh.

156

Let us indicate some ways in which the node-disjoint paths problem on the mesh differs
fundamentally from its edge—disjoint counterpart. First of all, letting v; ; denote the node at row
i and column j of the mesh, consider the set 7 of consisting of all pairs of the form (v;1,v,,),
i =1,...,n. This set of terminal pairs satisfies the usual cut condition, stating that there is no
way to delete k nodes and separate k + 1 pairs of terminals, and in fact the set 7 is routable
in one round on edge-disjoint paths. However, since any pair of paths in a routing of 7 must
cross, T requires n rounds when paths must be node-disjoint.

This example does not fundamentally rely on the terminals being positioned near the bound-
ary of the mesh. Consider an infinite grid graph, let p = m? for some parameter m, and 7
denote the set of all pairs of the form (vim+j,0, Vjm+i,p), With 1 < 4,5 < m. Then it is not hard to
show by a crossing number argument (using a lemma of [67]) that x(7") = ©(/p), even though
T is again routable in a single round using edge-disjoint paths.

As a final example, we show that while Theorem 9.1.3 implies that 6 bends are sufficient to
route any permutation in O(n7/3) rounds, there exist partial permutations that require (n?)

rounds in any one-bend routing.

Proposition 9.1.4 There ezists a partial permutation T on G for which there is no one-bend

routing using fewer than ¢n? rounds.
Proof. Assume for simplicity that n is even; so n = 2m. Let T consists of all pairs of the form
(vi,5» Ym4j,m+i), where 1 < 4,57 < m. Let

X={v;;:1<i<m<j<2m}

Y={v;:1<j<m<i<2m}.

Then in any one-bend routing of 7, at least 3n? of the paths pass though either X or Y, and

every pair of such paths must cross at some node. ®

It is also worth noting that the algorithm of Schrijver [104] (see Section 2.3) can be applied to
provide a polynomial-time algorithm for the related, but simpler, problem in which all terminals
lie on the boundaries of a designated set of faces, and we require node-disjoint paths whose

homotopies with respect to this set of faces is specified. Indeed, for the two-dimensional mesh,

157

efficient algorithms for this “homotopic routing” problem were given by Cole and Siegel (25]
and Leiserson and Maley [71] for the mesh; Schrijver’s work can be viewed as a generalization of
this work to arbitrary graphs on arbitrary surfaces. This approach based on homotopy actually
provides a polynomial-time algorithm for the node-disjoint paths problem in planar graphs,
when all terminals lie on the boundaries of a fixed number of faces — for in this case, there
are only a polynomial number of sets of possible homotopies to try. Of course, in the problem
we are considering, there are an exponential number of sets of possible homotopies (and the

problem is NP-complete).

Sketch of the Algorithm

We will show that it is possible, with a constant—factor loss in the bound, to reduce the problem
for an arbitrary set of terminals to one in which there are two k x k subsquares of G, denoted
A and B, which are spaced 4k apart from one another; and every terminal pair has one end in
A and the other in B. If there are p terminal pairs, we will show how to route p/(k log k) of
them simultaneously; applying this process greedily gives the bound of Theorem 9.1.1.

The approach of Cutler and Shiloach [27] requires, in order to route ¢ terminals in a single
round, that the inter-terminal spacing be at least ¢. Using this, one can therefore only be sure
of routing a set of size p'/3, resulting in an overall bound of n*/3 for x(7).

We start by considering the following simple notion: suppose we tried choosing at most one
terminal from cach row of A and at most one from each row of B, and then joining as many of
these terminals as possible in the region between A and B. There are a number of difficulties
with this; in particular, there may be no way to choose terminals in this way so that nearly
p/k can be joined in node-disjoint fashion. Let us call this above approach row-selection —
one tries to pick a unique terminal from each row so that the selected terminals in A can be
routed out of A on their rows, and then joined with their selected counterparts in B, in such a
way that no paths cross.

Our main technique is the following generalization of row-selection: although there may be
no good way to choose unique terminals from the rows of A and B, we show that there exists a
“rotation” of A and a “rotation” of B, so that the resulting set of rows allows for such a good

selection. Now, meshes are discrete objects, so the notion of rotation has to be defined carefully

158

— we use monotone random walks of varying biases as a basic way of “rotating” A and B.

Having chosen a candidate pair of rotations, we decompose A and B into pseudo-rows. The
task of pseudo-row selection — choosing a unique terminal from each pseudo-row — is based
on analyzing the bipartite graph H on the set of pseudo-rows, in which a pseudo-row of A is
joined to a pseudo-row of B if there is some terminal pair with one end in each. We show that
one can choose rotations of A and B so that this bipartite graph contains a large monotone
matching — one in which no edges cross. The pairs corresponding to the edges of this matching
can be routed in a single round.

With inter-terminal spacing of d > 1, a very similar approach is applicable. The main
difference is that we can now afford to choose edge sets of the bipartite graph H which are not
necessarily monotone matchings; we can handle a limited amount of non-monotonicity using

the technique of Cutler—Shiloach within each pseudo-row.

9.2 Preliminary Facts

In this section, we develop some basic lemmas that will be useful in analyzing our algorithms.
In Section 9.3, we consider the basic problem of a permutation on the mesh, and prove Theo-
rem 9.1.1. In Section 9.4, we give our algorithm for routing with inter-terminal spacing in the
model of {27, 2]. Finally, in Section 9.5, we discuss algorithms for routing with only a constant

number of bends per path.

Lemma 9.2.1 Let z,,...,z4 be positive integers for which 3;z; = a and 3 ;22 = b. Then

d>a%b?.
Proof. a® = (¥;z:)* <dY ;22 =db.m
The following is easily proved by induction on b.

Lemma 9.2.2 For non-negative integers a and b, one has

/lm“(l—x)b dx=(a+b+1)"‘(a:b)— :

159

Lemma 9.2.3 Consider the following random ezperiment: we first choose a bias o for a coin
uniformly from the interval [0, 1], and then flip the coin n times. The probability that the number

of heads is k is equal to .

Proof. The probability is equal to

(:') /l o*(1 —a)"* do,

which by Lemma 9.2.2 is equal to 7. ®

There is also a purely combinatorial proof of this, which we leave as an exercise for the

reader.

Monotone Matchings

We make use of a notion that we call a monotone matching. Here we define and develop some
basic facts about monotone matchings at a general level.

In this section, let H denote a bipartite graph with bipartition (U,V), U = {u,...,u,},
V = {v,...,v,}; and let e denote the number of edges of H. As usual, by a matching in H we
mean a set of edges that have no endpoints in common, and we let x(H) denote the size of the

largest matching in H.

Definition 9.2.4 A matching in H is said to monotone if it consists of edges (ui,,vj,), - - - » (Wi, , V5,)
such that the sequence i,,. ..,y is increasing, and the sequence j,,...,jx is either increasing or

decreasing. We say the matching is increasing in the former case and decreasing in the latter.
We give two lower bounds on the size of the largest monotone matching in H.
Lemma 9.2.5 H has a monotone matching of size at least \/u(H).

Proof. Let M be a matching of maximum size in H, and order its edges so that their endpoints
in U have increasing indices. Consider the resulting sequence of indices in V. By a lemma
due to Erddés and Szekeres [33], this sequence must have either an increasing sequence or a

decreasing sequence of length at least /|M| = /u(H). The edges corresponding to this

sequence constitute a monotone matching. ®

160

v

Figure 9-1: Decomposing into pssudo-rows
Lemma 9.2.6 H has an increasing monotone matching of size at least e/2n.

Proof. Let M, denote the set of all edges (u;,v;) for which j = i 4+ k mod n. Let M; denote
the subset of M, in which j > %, and M}’ the subset of M, in which j < i. Now, each M; and

M is a monotone matching, and since they are all disjoint, one has size at least e/2n. ®

An example due to Don Coppersmith shows that for every d < m, there exist d-regular
bipartite graphs on 2n nodes with no monotone matching of size greater than O(max(d, /n)).
Finally, it is also useful to establish “covering” versions of these lemmas. We state these

here.

Lemma 9.2.7 The edges of H can be covered by O(A+/n) monotone matchings.

Lemma 9.2.8 The edges of H can be covered by 2n increasing monotone matchings.

9.3 The bound for x(7)

For vertices x,y € G, let d(x,y) denote the shortest-path distance between them. As indicated
above, we will first consider the following special case: there are k x k subsquares A and B of
G, with d(A, B) > 4k, each terminal pair has one end in A and the other in B, and we must
use paths that stay within d(A, B) of AU B. Below we show how a bound for this special case
this can be used to prove Theorem 9.1.1.

We represent A as a union of pseudo-rows, as follows. Let v, denote the lower left vertex
of A. We choose a € [0,1] uniformly at random, and perform the following random walk for k

time steps starting from v,:
(i) With probability 1 — a, move one step to the right.

161

(ii) With probability «, move one step up and then one step to the right.

Let LY denote the path traversed by this walk; note that it is contained in A. For —k < i < k,
define LY to be a copy of this path translated (i — 1) steps upward and then intersected with
A. The sets L will be called pseudo-rows.

For x € A, let R = {i : x € L?}. The following is immediate from the construction, but

worth noting.

Lemma 9.3.1 Ifv € A belongs to both L and LS, then |j —i| = 1. Thus |RS| < 2 (v belongs

to at most two of these sets); and in particular, E|R%| < 2.

We say that z,y € A are collinear if there is some pseudo-row that contains them both; in
this case we write z ~ y.
For a vertex z € G, let a(x) denote its row number and b(z) denote its column number. For

two vertices = and y, let do(z,y) denote the L, distance between them; that is,

oo (2,y) = max (|a(z) — a(y)|, [b(z) — b(y)]) .

Lemma 9.3.2 The probability that x,y € A are collinear is at most Zﬁ'

Proof. Suppose without loss of generality that b(z) < b(y). We have
1
Pr(z~y) = / Prz~y|a=t)dt
0
1
< / > Pr(z,y € L) dt
0
1
= / ZPr(a: €L})-Prye L |z e Lt)dt
0
1
= / Priye L} |z € L)) Pr(z € L) dt
0 i
1
= / Pr(ye Lt |z € L!)- E|R!| dt
0

1
< 2/ Priye L' |z € L) dt.
0

If it is not the case that b(y) — b(x) > a(z) — a(y) > 0, then this last integral is 0. Otherwise, it

is simply the probability, over a uniformly distributed bias, that a given number of heads will

162

come up when a coin with that bias is flipped do(z, y) times. By Lemma 9.2.3, this is m.

The lemma follows. ®

Lemma 9.3.3 There is an absolute constant ¢’ so that if there are p terminal pairs with ends

in A and B, then there is a realizable subset of size at least p/(c'klog k).

Proof. We first choose a random a and decompose A into pseudo-rows. We do the same for
B, using a random . Now by Lemma 9.3.1, we can choose half the pseudo-rows of A and half
the pseudo-rows of B so that all pseudo-rows are disjoint and at least ¢ = p/4 of the terminal
pairs have both ends in these chosen pseudo-rows. Let 7' denote a set of ¢ such pairs.

Define a collineation to be a pair i,j such that s; and s; are collinear in A and ¢; and t; are
collinear in B. We wish to bound the expected number of collineations among the pairs in 77;

this is simply the sum
Z PT(S,' ~ 8]') . Pr(t,’ ~ tj).

iJ
This can be viewed as the dot product of two vectors of dimension (J), one with coordinates
Pr(s; ~ s;) and the other with coordinates Pr(t; ~ t;). We observe that this dot product will
be maximized if Pr(s; ~ s;) = Pr(t; ~ t;) for all pairs i,j. For the dot product is certainly
maximized, once the lengths of the vectors is fixed, by having them parallel to one another; and
in this case, if their lengths differ, one can increase the dot product by changing the coordinates
of the shorter one to be equal to the longer one.

Thus, the expected number of collineations is bounded by the largest possible sum

Y. Pr(z~y),

z,y€S

where S is a subset of A of size g. We can write this sum as

12 Y P~ Y ¥ g

::GS y€S\{=z} 365 yeS\{z} oo(m, y)2

with the inequality following from Lemma 9.3.2. This inner sum is maximized by having the

163

vertices y fill in a ball centered at z, in which case its value is bounded by

VA oo
2
E %$32+161nq501nq

i=1

for an absolute constant ¢. Thus, summing over all z, we see that the expected number of
collineations in 7" is at most 1cqlng.

Thus, there exist a, # and decompositions of A and B into pseudo-rows for which there is a
subset 7’ of ¢ terminal pairs whose number of collineations is at most 2cqIng. For this set 77,
let us build the following bipartite multigraph H. There is one vertex u; on the left for each
chosen pseudo-row A, and one vertex v; on the right for each chosen pseudo-row B. We now
put w;; parallel edges from u; to v; if there are w;; terminals with one end in the pseudo-row u;
and the other end in v;. From H, we build a simple graph H’ which contains an edge (u;,v;)
iff w;; > 0.

We claim that the number of edges of H' is at least ¢/(2clngq). To see this, note that the

number of collineations in 7 is precisely

(%)

whence we have 3, ; w¥; < 2cqIng. Since ¢ = |T'| = T, ; w;;, the claim follows from Lemma 9.2.1.
Finally, the number of vertices in each half of the bipartition of H' is at most k, so by

Lemma 9.2.6, H' has a monotone matching of size at least

q p P
> > .
4cking ~ 16ckIng ~ 32cklogk

We can route one terminal for each edge of the monotone matching, which implies the lemma
with ¢/ = 32c. Note that we need d(A, B) = Q(k) in order to ensure that we correctly align the

matched pseudorows of A with the corresponding pseudorows of B. m
Lemma 9.3.4 All terminal pairs with ends in A and B can be routed in O(klog® k) rounds.

Proof. We produce the partition into realizable sets greedily, using Lemma 9.3.3. The bound

follows since the number of remaining terminals goes down by a (1 — k—hc;?k-) fraction for each

164

realizable set we produce. &

Proof of Theorem 9.1.1. For an integer 7, let 7, denote the set of terminal pairs (s;,¢;)
for which 17 < d(s;,t;) < 7. We prove that 7, can be routed in O(r log® 7) rounds; the overall

bound on the number of rounds then follows since, for an absolute constant ¢”,

[log n]

XT) < 3 x(T)

=0
[log n]) ‘
Y "2 log?(2°)

=0

IA

< 4c"nlog’n.

To prove that x(7;) = O(7 log®), we show that 7, can be partitioned into a constant number
of sets, and each of these sets can be partitioned into pairs of well-separated squares; we then
invoke the algorithm of Lemma 9.3.4 on all the pairs in a single set simultaneously.

Choose 7' = &7, and define S;; to be the 7' x 7' subsquare of G whose upper-left corner
lies in row i7’' and column j7'. Each pair of squares (S;;, S;) defines a subset of 7, consisting
of those terminal pairs with one end in S;; and the other in S,,,. We call such a pair active if

it contains a terminal pair in 7;. By definition, any active pair (S;;, Sem) satisfies
6 <|t—i|l+|m-j| <16.

Thus, by Lemma 9.3.4, we can route all the terminal pairs in the set defined by any active pair
in O(r log® 7) rounds.

We say that active pairs (S;;, Sem) and (Sij, Seme) interfere with one another if there is
some vertex within distance 7 of both S;; U S¢, and Sy ;» U Sy Let us build a graph K on
the set of active pairs, joining two by an edge if they interfere with one another. This graph
has constant degree, and hence can be colored with a constant number of colors. But we can
use the same set of rounds for routing all the active pairs in a single color class, and thus
X(T;) = O(r log® 7).

The proof of the other statement of Theorem 9.1.1, that every permutation contains a

routable set of size Q(n/logn), is strictly analogous. We first argue, using the interference

165

\.

graph K and Lemma 9.3.3 instead of Lemma 9.3.4, that 7, contains a routable set of size
(|T;|/7log 7). The bound now follows, since for some 7 € {2° : 0 < i < [logn]} we have
7] = Qnt). W

9.4 Terminals with Spacing

The proof of Theorem 9.1.2 is essentially that of Theorem 9.1.1, with one additional step added.
As before, we can specialize to the case of two kd x kd squares A and B that contain p terminal
pairs. To construct pseudo-rows, we first partition A and B into disjoint d x d subsquares,

contract these subsquares, and then use the previous construction.

Lemma 9.4.1 There is an absolute constant ¢’ so that if there are p terminals with ends in A

and B, then there is a realizable subset of size at least p\/ﬁ/(c’ klogk).

Proof. We follow the proof of Lemma 9.3.3 up through the construction of the bipartite graph
H' with at most k vertices in each half of its bipartition, and with at least ¢/(cln ¢) edges. Now
define a slice in H' to be a set of the form U’ UV’, where U’ is a set of v/d consecutive vertices
on the left side of H' and V' is a set of v/d consecutive vertices on the right side. The crucial
point is that there are only d edges of H' with both ends in a given slice, and so using the
technique of [2, 27], we can route one terminal pair for each of these edges in a single round.
We now construct a graph H” by identifying blocks of v/d consecutive vertices of H' on the
left and on the right. (We can essentially think of edges of H” as corresponding to particular
slices of H'.) Let us give each edge (u*,v*) in H" a weight equal to the number of edges of H'
that have ends in the super-nodes u* and v*; thus these weights are integers between 0 and d.

By the weighted analogue of Lemma 9.2.6, H” has a monotone matching of weight at least

weight(H") _ |E(H')| qvdlogk _ _pVd
2(V(H")| ~ 2|V(H")| = 4cklng = 32cklogk’

We can route a number of terminals equal to the weight of any monotone matching in H”, as

argued above; this implies the lemma. @

Proof of Theorem 9.1.2. Again reducing to the case of kd x kd squares A and B, we

use a greedy approach based on Lemma 9.4.1. Each time we reduce the number of remaining

166

Figure 9-2: Routing with a constant number of bends

terminals by a factor of at least (1 — k—";—g%); thus we route all terminal pairs in O(kd~?% log?® k)

rounds. M

9.5 Constant-Bend Routing

As in the previous sections, let us first consider the case in which all terminal pairs have ends
in k x k squares A and B, with d(A, B) > 4k. Here, we additionally assume that A and B are
each at a distance of at least 2(k7/!°) from the boundary of the mesh. Let us suppose that the
lowest column number of a node in A is less than or equal to the lowest column number of a
node in B.

The main difficulty we encounter here is the following: since we wish to use only a constant
number of bends, the approach based on pseudo-rows appears to be inherently inapplicable,
as it involves partitioning A and B into paths with many bends. Thus, in this case, we build
a graph H with a vertex u; for each row of A, and a vertex v; for each row of B. We give the
edge (u;,v;) a weight w;; equal to the number of terminal pairs with one end in each row.

To give a sense of the algorithm, we first mention a very easy algorithm for routing in
O(k®?) rounds. This is as follows. First replace each edge (u;,v;) of H with w;; parallel
edges. Now by Lemma 9.2.7, the edges of H can be covered by O(k*2) monotone matchings.
Moreover, we may assume that each matching in the cover contains at most O(k'/?) edges. We

claim that all the terminal pairs corresponding to a single one of these matchings can be routed

167

in a single round. For if the matching is increasing, then the pairs can be routed by having
each terminal leave A along its row through the east wall, and enter B along the matching row
through the west wall; and if the matching is decreasing, then the pairs can be routed by having
each terminal leave A along its row through the west wall and enter B along the matching row
through the west wall. (See Figure 9-2 for a version of the latter case.) Moreover, since A and
B are at least Q(k'/2) distance from the boundary of the mesh, there is room for all the paths
corresponding to a single matching to be routed in the region outside A U B.

To get a bound of O(k"/%), we need a slight strengthening of this technique. We divide
the edges into log k classes, by assigning each edge to the smallest power of 2 greater than its
weight. Let H, denote the subgraph of H consisting only of edges that are assigned the weight

w, and let 7,, denote the set of terminals corresponding to edges of H,,.
Lemma 9.5.1 T, can be routed in at most 2kw rounds, using at most four bends.

Proof. Using Lemma 9.2.8, we can partition the edges of H,, into 2k (increasing) monotone
matchings. Each edge of H,, corresponds to w terminals, so all terminals can be routed in 2kw

rounds. It is easy to construct paths for these terminals using at most four bends. m

Lemma 9.5.2 7, can be routed in at most
max{O(K*/? /1), O(k*3/10)]

rounds, using at most siz bends.

Proof. The maximum degree of a vertex in H,, is k/w, so we can partition the edges of H,, into
k/w matchings. Let us say that a matching M is well-spaced if for edges (u;,v;) and (uy,v,)
of M, the difference between i and k is at least \/w, and the distance between j and ¢ is at
least \/w. By an easy coloring argument, we can partition any matching in H,, into O(w)
well-spaced matchings, and thus we can partition the edges of H,, into O(k/\/w) well-spaced
matchings. Finally, each of these well-spaced matchings is only on O(k/\/w) vertices, so by
Lemma 9.2.7 we can partition each one into O(Vk/w'/*) monotone matchings.

Thus, we now have a total of O(k%/2/w®*) monotone matchings covering the edges of H,,
and each has the property that the endpoints of its edges are mutually at distance v/w. We use

a different set of rounds for routing each monotone matching.

168

Now, how many rounds are needed for a single monotone matching M? (Recall that each
edge of M represents up to w terminals.) Let A; (resp. B;) denote the set of vertices in the ith
row of A (resp. B). Since the edges of M are anchored in rows of A and B that are mutually
VW apart, we can assign to each edge e = (u;,v;) a “band” of rows of width Q(y/w) around row
A; and a similar band around row B;. The pairs corresponding to an edge e are themselves a
matching on the vertex set A;UB;. Thus these pairs can be partitioned, again by Lemma 9.2.7,
into O(y/w) monotone matchings, and each of these monotone matchings can be routed in a
single round in the bands surrounding rows A; and B;.

Finally, we can do this simultaneously (i.e. using the same set of rounds) for all edges of a
single well-spaced monotone matching, provided there is sufficient room between the squares
A and B and the boundary of the mesh for routing all the paths. If there is sufficient room,
then the number of rounds used is O(k%/2/w'/4). Otherwise, we must break up the rounds that
use too many paths into sub-rounds that only route O(k7/1°) terminals at a time; the resulting

bound is O(k!3/1°) rounds. m

Lemma 9.5.3 The set of terminals with ends in A and B can be routed in O(k"/®) rounds,

using at most six bends.

Proof. Let r(T) denote the total number of rounds required for routing 7 with six bends. Then

r(T) < ZT(Tw)

w=2¢
< X T+ Y T+ X r(T)
'w=2"5k2/5 k2/5$w=2‘5k‘/5 w=2i >k4/5
< O(k) Z w+0(k3/2) Z w—1/4+0(k13/10) Z 1.
w=2‘5k2/5 k°/55w=2‘5k"/5 w=2"2k‘/5

Since all three of the terms in this last sum are easily seen to be O(k7/®), the bound follows. ®

Proof of Theorem 9.1.3. We use the notion of an interference graph K on pairs of subsquares
as in the proof of Theorem 9.1.1. The only change is that we can now only work with & x k&
squares that have either no row or no column within O(k7/1°) of the boundary. (It is enough to
have this guarantee for either rows or columns, since we could just as well have built our graph

H on the set of columns of one of the squares.) To handle this, we define G’ to be the subgraph

169

of G induced by all nodes within distance O(n?/®) of the boundary, or within distance O(n?/10)
of a corner of the mesh. Since |G’| = O(n"/%), we can use a different round for each terminal

pair with an end in G’; we then run the algorithm above (using the interference graph K) in

G\G. =

170

Chapter 10

Conclusion

... Given the already-secreted true experience of the regeneratively-evolving
world-design effort against fire flood pestilence violent atmospheric disturbance
and providing seventeen cubic feet of air per minute per person free of tozic
or disagreeable odors or dust, we feel that metals broadly speaking and synthet-
ics narrowly speaking will interlink into continuously improving world-around
extra—corporeal networks, networks within which only individual man presents
himself as an inherent island of physical discontinuity, sad to say, sad to say,
physical discontinuity and torpor, total velocities of which known practices have
proved inadequate to solve. ...

Quite extraordinary, said Emma, what did it mean?

Thank you, said the Dead Father, it meant I made a speech.

— Donald Barthelme, The Dead Father.

The focus of this work has been the development of approximation algorithms for disjoint
paths problems, and along these lines there are a number of fundamental directions for further
research. Clearly, the development of improved approximation guarantees is of interest; but the
framework of approximation also provides us with a concrete way to elucidate structural proper-
ties of disjoint paths in graphs, in pdrticular through their relation to fractional multicommodity
flow. There are a number of optimization problems involving disjoint paths in graphs that we
have not touched on here; for many of these, essentially nothing non-trivial is known about
their combinatorial structure. The development of efficient approximation algorithms for these

problems would undoubtedly be of value in the search for such structure.

171

With this in mind, we will use this chapter to outline a number of directions for further work.
In particular, this will give us a chance to mention a number of basic NP-hard problems for which
there appear to be no relevant algorithmic techniques currently available. In Section 10.1, we
address the question of strengthening the approximation ratios presented here. In Section 10.2,
we present some open problems in the on-line model, and also discuss some of the limitations
of the model as it currently stands. Finally, in Section 10.3, we describe a number of possible
extensions of this line of work to more complicated optimization problems.

Most of the open questions we will be discussing hold not only for the general unsplittable
flow problem, but also for the maximum disjoint paths problem. For the sake of concreteness,
we will phrase things (for the most part) in terms of the MDP; the extension of these questions

to the UFP, when applicable, is straightforward.

10.1 Improved Approximation Ratios

Probably the most natural question raised by this work is the following: what is the best
approximation ratio that can be obtained for the maximum disjoint paths problem in arbitrary
graphs? The only algorithm we have analyzed here that is applicable in arbitrary graphs is the
bounded greedy algorithm, which has an approximation ratio of O(max[\/|E(G)], diam(G)]).
However, while the constant—factor approximation of Chapters 6 and 7 applies only to the class
of densely embedded graphs, there is currently no evidence to indicate that constant—factor
approximation algorithms should not exist for broader classes of graphs.

In particular, both of the following situations are possible.

(1) Itis possible that there is an e > 0 so that there is no polynomial-time O(n¢)-approximation
algorithm for the maximum disjoint paths problem on an arbitrary n-node graph unless
P = NP. Such strong lower bounds are known for other basic optimization problems such
as finding a maximum independent set in an arbitrary graph (see e.g. [7]). However, all
that is currently known for the maximum disjoint paths problem is that it is MAX-SNP-
hard [44]; hence by the well-known result of Arora et al. [7], there is a constant ¢ > 1

such that there is no polynomial-time c-approximation for the MDP uuless P = NP.

It is worth noting, in light of the previous work discussed in Chapter 2, as well as the

172

algorithms of Chapters 6 and 7, that the best approximation ratio obtainable for the
maximum disjoint paths problem might conceivably be much better in the class of Eulerian
graphs than in the class of all graphs. At present, however, we have no complexity-

theoretic evidence to support this intuition.

(2) It is also possible that there is a constant—factor approximation for the maximum disjoint
paths problem in an arbitrary graph. For Eulerian graphs, we do not have an example to
refute the stronger possibility that, for any graph G with terminal pairs 7, the maximum
fractional flow never exceeds the maximum size of a realizable subset of 7 by more than
a constant factor. (For non-Eulerian graphs Theorem 2.4.4, which uses the brick wall

graph, implies that there can be a large gap between these quantities.)

In relation to point (2) above, a number of interesting questions arise from considering a
graph G with a set of terminal pairs 7 that is fractionally realizable. Essentially, the problem
here is to determine what one can say about the realizability of 7 by disjoint paths. Questions
related to this are discussed in a survey by Sebé [109], which also contains many references. We
note first of all that the example of the brick wall graph from Chapter 2 shows that, in general,
it is possible for the set 7T to be fractionally realizable, and for the maximum realizable subset
of T to consist of a single pair of terminals.

However, as Seymour observed {112], things seem to be much better behaved if we consider
the relation between fractional flow and half-integral flow. By the latter term we mean, as in
Chapter 2, a fractional flow in which each terminal pair can only be routed on at most two flow
paths, each of which is assigned a weight of 1 or 1. Seymour’s conjecture, that a fractionally
realizable set of terminals can always be realized by a half-integral flow, was disproved by
Lomonosov [76]. But, for example, we know of nn evidence to refute the following possibility:
every fractionally realizable set of terminals can be partitioned into a constant number of sets,
each of which is realizable by a half-integral flow. And should this turn out not to be the case,
one can ask the analogous question for a “l-integral flow,” defined by the obvious analogy with
half-integral flows. Thus, for example, do there exist absolute constants cy and ¢, such that any
fractionally realizable set of terminals can be partitioned into ¢, sets, each of which realizable
by a _--integral flow?

Any such result would imply a constant—factor approximation for the minimum congestion

173

problem in an arbitrary (uniform-capacity) graph. To see this, we simply argue as follows.
Take a fractional routing of 7 of minimum congestion. Partition 7 into c, sets, each of which
has a ﬁ—integral routing of the same congestion. For each terminal pair (s;,t;), choose any of
the (at most) ¢, paths assigned to it by this routing, and use this as the path for (s;,¢;) in an
unsplittable routing. The resulting unsplittable routing has congestion at most cyc; times the
fractional optimum.

Before leaving the subject of improved approximation ratios, it is worth highlighting two

more concrete problems that have already appeared in earlier chapters.

Routing in Rounds. For a set 7 of terminal pairs on the two-dimensional mesh G, is there
a constant-factor approximation for the minimum partition of 7 into rounds? The result of
Chapter 6 provides an O(logn)-approximation; an improved approximation ratio would be
interesting in particular because it presumably would have to use a technique not based on the

greedy set cover algorithm.

A Tight Bound for Single-Source Unsplittable Flow. As discussed in Chapter 3, we
would like to know whether every fractionally feasible single-source flow problem has an un-
splittable routing of congestion at most 2. If so, it would show that the following trivial example
gives (asymptotically) the worst possible gap: Let G consist of vertices s and t, with k parallel
edges of unit capacity between them; let D consist of k + 1 copies of the vertex ¢, with each
terminal in D having demand 1 — k+d More generally, is the worst possible gap at most 1+ p*,

where p* as usual denotes the maximum demand of a terminal in D?

10.2 The On-Line Model

The on-line model, in which terminal pairs arrive over time and must be processed immediately,
is designed to capture the issues arising in “dynamic” problems in network routing, where one
must establish routes without knowledge of the future. As such, it is of value to investigate
ways in which the model can best represent such problems.

Currently, for example, the objective function being used is simply the total demand routed.

But in many of the applications in which these problems arise, connections have varying priority;

174

and one does not want to route a low—priority connection if it will block a later, high—priority,
connection — even if this high—priority connection has a smaller amount of demand. It is
not clear how best to incorporate this into the on-line model, or how the design of on-line
algorithms would be affected by such a constraint.

At a more general level, there is the question of fairness in routing connections. We observe
that many of the current randomized on-line algorithms — including some of the algorithms
discussed here — have performance guarantees that hold in ezpectation. That is, the expected
amount of demand that they route is close to optimal. As a result, it is possible for these
algorithms to choose arbitrarily to reject a large fraction of the terminal pairs and not be
heavily penalized in the objective function. One can argue that it would be desirable to modify
the on-line model so that such algorithms are not viable, and there are several possible ways
to do this. One way would be to try defining some explicit notion of fairness to connection
requests, that on-line algorithms must observe. Alternately, it is possible that one would obtain
much more robust randomized on-line algorithms if one simply required approximation ratios
to hold with high probability. Namely, an on-line c-approximation would be required to have
the property that with probability 1 —o(1), it is within 2c of optimal. (Here the o(1) term could
hide a dependency on the input size.)

We note that this qualitative distinction between expected and high-probability perfor-
mance guarantees has not typically arisen for randomized off-line algorithms. For example,
the off-line algorithm we presented in Chapters 6 and 7 has, in its basic version, a performance
guarantee that holds in expectation; but by running it ©(k) times independently, it can be
made to hold with probability 1 — 27%. The point is that on-line algorithins, by definition,
cannot be run many times independently.

One additional question is whether the “worst-case” nature of the on-line model is too
strong to be representative of the types of traffic patterns that arise in practice. A possibility
worth investigating is the requirement that the input be chosen subject to some underlying
probability distribution, rather than by an arbitrary adversary that operates with knowledge of
the algorithm’s behavior. This has been suggested within the context of on-line algorithms in
general by a number of researchers (see e.g. Raghavan [92]); and it has been investigated within

the framework of on-line routing by Kamath, Palmon, and Plotkin [54]. This latter paper

175

obtains very strong approximation results under the assumption that requests for connections
between each pair of vertices arrive subject to an unknown Poisson process, and that each
request only lasts for a period of time that is determined by an exponentially distributed
random variable.

If one believes that the worst-case on-line model in its full generality is too pessimistic, but
that one does not want to design algorithms that rely crucially on probabilistic assumptions
about the input, then it makes sense to consider the notion of “hybrid” on-line models. Thus,
for example, it would be interesting to explore models in which the traffic pattern between all
pairs of vertices is specified by a Poisson process; but for some small number k, an adversary can
disregard this probabilistic assumption for k of the pairs of vertices, and generate connection
requests arbitrarily. This is related to the notion of “k-resilient” algorithms — those which
must continue to operate correctly even in the presence of up to k “failures.” (In this case,
a failure would correspond to a violation of one of the probabilisiic assumptions about the
distribution of input.) It also captures the notion of a network traffic pattern that has been
modeled probabilistically, but which is susceptible to a limited number of large, unpredictable

variations.

An On-Line Single-Source Problem. Finally, it is worth mentioning one interesting open
question that arises in the “pure” on-line model that we have concentrated ca in this work.
This is simply the on-line, single-source maximum disjoint paths problem, which we can define
in more detail as follows. Let G be an arbitrary undirected graph, s a vertex of G, and D a
set of vertices in G. We wish to design an on-line algorithm that is given G and s initially; it
receives the terminals in D one at a time, and must construct disjoint paths from s to as many
of them as possible. (As usual, it must irrevocably route or reject each terminal in D when it
arrives.)

We do not know of any reasonable on-line algorithm for this problem even when we are
guaranteed that the entire set D can be linked to s by edge-disjoint paths. This is of particu-
lar interest by way of contrast with standard “augmenting paths” algorithms for constructing
single-source disjoint paths — in the current setting, approaches based on re-routing are ex-

plicitly ruled out.

176

10.3 Extensions

Finally, we discuss three directions for further work, of which only the last was covered at all

in the previous chapters.

Disjoint Paths of Bounded Length. Many of the constraints that arise in routing problems
put upper bounds on the maximum length of any path used in the solution. This can have the
effect of making disjoint paths problems that were otherwise tractable NP-hard.

Probably the most basic example of this is the following. Let G be an undirected graph,
with vertices s and ¢, and let k¥ and L be natural numbers. The problem is to decide whether
there exist k¥ mutually edge-disjoint s—t paths, each of which uses at most L edges. This is
NP-hard for k = 2 and variable L [73], and for L = 5 and variable k [52]. Related to this is the
well-known minimum-cost flow problem, which is solvable in polynomial time (see [32, 115, 48])
For our purposes, we can view minimum-cost flow as addressing the following problem: for a
given k, find k edge-disjoint s-t paths in G whose total length is minimum.

Thus, a fundamental open problem concerns the following “max-min” objective function.
Given a graph G, vertices s and ¢, and a number k, find a set of k edge-disjoint s—t paths
whose maximum length is minimum. If we compute a minimum-cost flow (on k paths) from s
to t, then it is easy to see that this provides a k-approximation for the above problem. Thus
we ask: is there a o(k)-approximation for this problem? Work of Lovisz, Neumann-Lara, and
Plummer [78] and Galil and Yu [40] is related to these questions.

There are also some basic questions related to the “min-sum” objective function. We noted
in Chapter 2 that work of Robertson and Seymour [102] provides a polynomial-time algorithm
for deciding whether a set 7 of terminal pairs is realizable, for fixed |7|. Dean [28] and Galil
and Yu [40] ask whether the following is also decidable in polynomial time, again for fixed |T'|:

can T be realized using paths of total length at most L, for some given value of L?

Re-routing. In many network routing problems, connections that are already established
cannot be “re-routed” without incurring a great cost; this fact provides much of the justification
for the on-line model of routing. Consequently, it could be interesting to look at optimization

problems in which some form of this “re-routing cost” is the objective function.

177

We state one such problem here, which we have chosen because it does not seem to be
hopelessly difficult. Let G be graph, s a vertex of G, and D a subset of the vertices of G, such
that D can be linked to s by edge-disjoint paths. Let us partition D into sets A and B, and
let us choose a set P of edge-disjoint paths from s to the vertices in A. Thus, the vertices in A
are terminals that have already been routed; the vertices in B are the terminals that have yet
to be routed. The problem is to find a set of edge-disjoint paths from s to D = A U B, such
that as many of the paths as possible in the intermediate routing P are preserved.

We do not known whether this problem is NP-complete; though if this should turn out to

be the case, there is still a natural approximation problem to be dealt with.

Node-Disjointness Constraints. Finally, we recall the main issue addressed in Chapter 9
— the design of approximation algorithms for node-disjoint paths problems. The algorithm
presented in Chapter 9 provides an absolute performance guarantee that holds for all permuta-
tions on the two-dimensional mesh; however, it is not a proper approximation algorithm since it
does not provide a solution that is close to optimal for every set of terminal pairs on the mesh.
Thus the natural open question is to find an approximation algorithm for the node-disjoint
paths problem, even on the two-dimensional mesh, that is within a polylogarithmic factor of
optimal on every set of terminal pairs.

Designing approximation algorithms for problems with node—disjointness constraints is par-
ticularly interesting because it requires the development of techniques that do not rely solely
on the fractional solution; we have seen that the fractional and integral optima can be far apart
for these problems. This is an interesting issue for approximation algorithms in general — good
approximation ratios are linked, an overwhelming majority of the time, to a corresponding
bound for a fractional version of the problem being approximated. Exploring methods that are
applicable even when this link to the fractional solution is broken promises to be an interesting

direction for future work.

178

Bibliography

[1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, M. Sudan,
“Efficient routing and scheduling algorithms for optical networks,” Proc. 5th ACM-SIAM
Symp. on Discrete Algorithms, 1994, pp. 412-423.

[2] A. Aggarwal, M. Klawe, D. Lichtenstein, N. Linial, A. Wigderson, “Multi-layer grid embed-
dings,” Proc. 26th IEEE Symp. on Foundations of Computer Science, 1985.

[3] A. Aggarwal, M. Klawe, D. Lichtenstein, N. Linial, A. Wigderson, “A lower bound on the
area of permutation layouts,” Algorithmica, 6(1991), pp. 241-255.

[4] A. Aggarwal, M. Klawe, P. Shor, “Multi-layer grid embeddings for VLSL,” Algorithmica,
6(1991), pp. 129-151.

[5] A. Aggarwal, J. Kleinberg, D. Williamson, “Node-Disjoint Paths on the Mesh, and a New
Trade-Off in VLSI Layout,” Proc. 28th ACM Symp. on Theory of Computing, 1996.

[6] N. Alon, P.D. Seymour, R. Thomas, “A separator theorem for non-planar graphs,” J.
American Math. Soc., 3(1990), pp. 801-809.

[7] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, “Proof verification and the hardness
of approximation problems,” Proc. 83rd IEEE Symp. on Foundations of Computer Science,
1992.

(8] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, “On-line load Balancing with
applications to machine scheduling and virtual circuit routing” Proc. 25th ACM Symp. on

Theory of Computing, 1993. pp. 623-631.

179

[9] Y. Aumann, Y. Rabani, “Improved bounds for all-optical routing,” Proc. 6th ACM-SIAM
Symp. on Discrete Algorithms, 1995, pp. 567-576.

[10] B. Awerbuch, Y. Azar, S. Plotkin, “Throughput-competitive online routing,” Proc. 34th
IEEE Symp. on Foundations of Computer Science, 1993, pp. 32-40.

[11] B. Awerbuch, Y. Bartal, A. Fiat, A. Rosén, “Competitive non-preemptive call control,”
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms.

[12] B. Awerbuch, R. Gawlick, F.T. Leighton, Y. Rabani, “On-line admission control and circuit
routing for high performance computing and communication,” Proc. 35th IEEE Symp. on

Foundations of Computer Science, 1994, pp. 412-423.

[13] B. Awerbuch, F. T. Leighton, “A simple local-control approximation algorithm for mul-
ticommodity flow,” Proc. 34th IEEE Symp. on Foundations of Computer Science, 1993, pp.
459-469.

(14] B. Awerbuch, F. T. Leighton, “Improved approximations for the multi-commodity flow
problem and local competitive routing in networks,” Proc. 26th ACM Symp. on Theory of
Computing, 1994, pp. 489-496.

[15] Y. Bartal, A. Fiat, S. Leonardi, “Lower bounds for on-line graph problems with application
to on-line circuit and optical routing,” Proc. 28th ACM Symp. on Theory of Computing, 1996.

[16] S. Ben-David, A. Borodin, R. Karp, G. Tardos, A. Wigderson, “On the power of random-
ization in on-line algorithms,” Proc. 22nd ACM Symposium on Theury of Computing, 1990,
pp. 379-386.

(17] A. Blum, A. Fiat, H. Karloff, Y. Rabani, manuscript.
(18] B. Bollobas, Eztremal Graph Theory, Academic Press, 1978.

(19] A. Broder, A. Frieze, S. Suen, E. Upfal, “Optimal construction of edge-disjoint paths in
random graphs,” Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, 1994, pp. 603-612.

[20] A. Broder, A. Frieze, E. Upfal, “Existence and construction of edge-disjoint paths on
expander graphs,” SIAM J. Computing, 23(1994), pp. 976-989.

180

[21] A. Broder, A. Frieze, E. Upfal, manuscript.

[22] Y.M. Chen, G. Sasaki, “Irregular torus networks: deadlock avoidance and throughput
analysis,” Proc. INFOCOM, 1993, pp. 312-320.

[23] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Annals of Math. Stat., 23(1952), pp. 493-509.

[24] V. Chvétal, “A greedy heuristic for the set covering problem,” Mathematics of Operations
Research, 4(1979), pp. 233-235.

[25] R. Cole, A. Siegel, “River routing every which way but loose,” Proc. 25th IEEE Symp. on

Foundations of Computer Science, 1984.

[26] S. Cosares, 1. Saniee, “An optimization problem related to balancing loads on SONET
rings,” Telecommunications Systems, 3(1994), pp. 165-181.

[27) M. Cutler, Y. Shiloach, “Permutation layout,” Networks, 8(1978), pp. 253-278.

[28] N. Dean, “Open problems,” in Graph Structure Theory, N. Robertson, P.D. Seymour, eds.,
AMS Press, 1991.

[29] G. Ding, A. Schrijver, P.D. Seymour, “Disjoint paths in a planar graph — a general
theorem,” SIAM J. Discrete Math, 5(1992), pp. 112-116.

[30] E.A. Dinic, “Algorithm for solution of a problem of maximum flow in networks with power

estimation,” Soviet Math. Dokl. 11(1970), pp. 1277-1280.

[31] J. Edmonds, “Minimum partition of a matroid into independent subsets,”, J. Res. Nat.

Bur. Standards B, 69(1965), pp. 67-72.

[32] J. Edmonds, R.M. Karp, “Theoretical improvements in algorithmic efficiency for network

flow problems,” Journal of the ACM, 19(1972), pp. 248-264.

[33] P. Erdos, G. Szekeres, “A combinatorial problem in geometry,” Compositio Math., 2(1935),
pp. 463-470.

181

[34] L.R. Ford, D.R. Fulkerson, “Maximal flow through a network,” Canadian J. Math, 8(1956),
pp. 399-404.

[35] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press, 1962.

[36] S. Fortune, J. Hopcroft, J. Wyllie, “The direcetd subgraph homeomorphism problem,”
Theoretical Computer Sci., 10(1980), pp. 111-121.

[37) A. Frank, “Edge-disjoint paths in planar graphs,” J. Comb. Theory Ser. B, 39(1985), pp.
164-178.

[38] A. Frank, “On disjoint homotopic paths in the plane,” in Polyhedral Combinatorics, W.
Cook, P.D. Seymour, eds., DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science (vol. 1), 1990, pp. 163-170.

[39] A. Frank, “Packing paths, cuts, and circuits — a survey,” in Paths, Flows, and VLSI-
Layout, B. Korte, L. Lovéasz, H.J. Promel, A. Schrijver, Eds., Berlin: Springer-Verlag, 1990,
pp. 49-100.

[40] Z. Galil, X. Yu, “Short length versions of Menger’s theorem,” Proc. 27th ACM Symp. on
Theory of Computing, 1995.

[41] J. Garay, I. Gopal, “Call preemption in communication networks,” Proc. INFOCOM, 1992,
pp. 1043-1050.

[42] J. Garay, I. Gopal, S. Kutten, Y. Mansour, M. Yung, “Efficient on-line call control algo-
rithms,” Proc. 2nd Israel Conference on Theory of Computing and Systems, 1993.

[43] M. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman. 1979.

[44] N. Garg, V. Vazirani, M. Yannalakis, “Primal-dual approximation algorithms for integral
flow and multicut in trees, with applications to matching and set cover,” Proc. International

Collog. on Automata, Languages, and Programming, 1993, pp. 64-75.

[45] N. Garg, V. Vazirani, M. Yannakakis, “Approximate max-flow min-(multi)cut theorems

and their applications,” Proc. 25th ACM Symp. on Theory of Computing, 1993, pp. 698-707.

182

[46] R. Gawlick, C. Kalmanek, K.G. Ramakrishnan, “On-line routing for permanent virtuai

circuits,” Prvc. INFOCOM, 1995, pp. 278-288.

[47] J. Gilbert, J. Hutchinson, R.E. Tarjan, “A separation theorem for graphs of bounded
genus,” J. Algorithms, 5(1984), pp. 391-407.

[48] A. Goldberg, E, Tardos, R.E. Tarjan, “Network flow algorithms,” in Paths, Flows, and
VLSI-Layout, B. Korte, L. Lovasz, H.J. Promel, A. Schrijver, Eds., Berlin: Springer-Verlag,
1990, pp. 101-164.

[49] M. Grotschel, L. Lovész, A. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion, Springer-Verlag, 1987.

[50] D. Hochbaum, D. Shmoys, “Using dual approximation algorithms for scheduling problems:
theoretical and practical results,” Journal of the ACM, 34(1987), pp. 144-162.

[51] W. Hoeffding, “On the distribution of the number of successes of independent trials,”

Annals of Math. Stat., 27(1956), pp. 713-721.

[52] A. Itai, Y. Perl, Y. Shiloach, “The complexity of finding maximum disjoint paths with
length constraints,” Networks, 12(1982), pp. 277-286.

[53] D.S. Johnson, “Approximation algorithms for combinatorial problems,” J. Computer and

System Sci., 9(1974), pp. 256-278.

[54] A. Kamath, O. Palmon, S. Plotkin, “Routing and Admission Control in General Topology
Networks with Poisson Arrivals,” Proc. 7th ACM-SIAM Symp. on Discrete Algorithms, 1996.

[55] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinator-

ica, 4(1984), pp. 373-396.

[56] R.M. Karp, “Reducibility among combinatorial problems,” Complezity of Computer Com-
putations, R.E. Miller, J.W. Thatcher, Eds., New York: Plenum Press, 1972. pp. 85-103.

[57] R.M. Karp, F.T. Leighton, R. Rivest, C. Thompson, U. Vazirani, V. Vazirani, “Global

wire routing in two-dimensional arrays,” Algorithmica, 2(1987), pp. 113-129.

183

[58] L. Khachiyan, “A polynomial algorithm for linear programming,” Soviet Math. Dokl
244(1979), pp. 1093-1096.

[59] M. Klawe, F.T. Leighton, “A tight lower bound on the area of planar permutation layouts,”
SIAM J. Discrete Math., 5(1992), pp. 558-563.

[60] P. Klein, A. Agrawal, R. Ravi, S. Rao, “Approximation through multicommodity flow,”
Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990, pp. 726-737.

[61) J. Kleinberg, S. Rao, E. Tardos, “Routing with low congestion in densely embedded

graphs,” manuscript.
[62] J. Kleinberg, R. Rubinfeld, “Short paths in expander graphs,” submitted for publication.

[63] J. Kleinberg, E. Tardos, “Approximations for the Disjoint Paths Problem in High-Diameter
Planar Networks,” Proc. 27ti. ACM Symp. on Theory of Computing, 1995, pp. 26-35.

[64] J. Kleinberg, E. Tardos, “Disjoint Paths in Densely Embedded Graphs,” Proc. $6th IEEE
Symp. on Foundations of Computer Science, 1995, pp. 52-61.

[65] M.E. Kramer, J. van Leeuwen, “The complexity of wire routing and finding the minimum
area layouts for arbitrary VLSI circuits,” Advances in Computing Research 2: VLSI Theory,
F.P. Preparata, Ed., London: JAI Press, 1984. pp. 129-146.

(66] R. Krishnan, N.F. Maxemchuk, “Is there life beyond linear toplogies? A comparison of

DQDB and the Manhattan Street Network,” Proc. INFOCOM, 1993, pp. 690-698.

[67] F.T. Leighton, Layouts for the Shuffle-Exchange Graph and Lower Bound Techniques for
VLSI, Ph.D. Thesis, MIT Math Dept., 1981

[68] F.T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, S. Tragoudas, “Fast approxi-
mation algorithms for the multicommodity flow problem,” Proc. 23rd ACM Symp. on Theory
of Computing, 1991, pp. 101-111.

[69] F.T. Leighton, S. Rao, “An appoximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms,” Proc. 29th IEEE

Symp. on Foundations of Computer Science, 1988.

184

[70] F.T. Leighton, S. Rao, “Circuit switching: a multicommodity flow based approach,”

Proc. 9th International Parallel Processing Symposium, 1995.

[71] C. Leiserson, F.M. Maley, “Algorithms for routing and testing routability of planar VLSI
layouts,” Proc. 17th ACM Symp. on Theory of Computing, 1985.

[72] J.K. Lenstra, D.B. Shmoys, E. Tardos, “Approximation algorithms for scheduling unrelated
parallel machines,” Proc. 28th IEEE Symp. on Foundations of Computer Science, 1987.

(73] C. Li, T. McCormick, D. Simchi-Levi, “The complexity of finding two disjoint paths with
min-max objective function,” Discrete Appl. Math., 26(1990), pp. 105-115.

[74] N. Linial, E. London, Y. Rabinovich, “The geometry of graphs and some of its algorithmic
applications,” Proc. 35th IEEE Symp. on Foundations of Computer Science, 1994.

(75] R. Lipton, R. Tarjan, “A separator theorem for planar graphs,” SIAM J. Applied Math.
36(1979), pp. 177-189.

[76] M. Lomonosov, “Combinatorial approaches to multiflow problems,” Discrete Appl. Math.,

11(1985), pp. 1-94.

[77] L. Lovédsz, “On the ratio of optimal integral and fractional covers,” Discrete Math.,

13(1975), pp. 383-390.

[78] L. Lovasz, V. Neumann-Lara, M. Plummer, “Mengerian theorems for paths of bounded

length,” Periodica Mathematica Hungarica, 9(1978) pp. 269-276.

[79] M. Luby, “A simple parallel algorithm for the maximal independent set problem,” SIAM
J. Computing, 15(1986), pp. 1036-1053.

[80) W. Massey, Algebraic Topology: An Introduction, New York: Springer-Verlag, 1967.

[81] N.F. Maxemchuk, “Regular mesh topologies in local and metropolitan area networks,”

ATET Technical Journal, 64(1985), pp. 1659-1685.

[82) K. Menger, “Zur allgemeinen Kurventheorie,” Fundam. Math., 19(1927), pp. 96-115.

185

[83] M. Middendorf, F. Pfeiffer, “On the complexity of the disjoint paths problem,” Combina-
torica, 13(1993). pp. 97-107.

(84] H. Okamura, P. Seymour, “Multicommodity flows in planar graphs,” J. Comb. Theory
Ser. B, 31(1981), pp. 75-81.

(85] H. Okamura, “Multicommodity flows in graphs,” Discrete Applied Mathematics, 6(1983),
pp. 95-62.

(86] D. Peleg, E. Upfal, “Disjoint paths on expander graphs,” Combinatorica, 9(1989), pp.
289-313.

[87] H. Perfect, “Applications of Menger’s graph theorem,” J. Math. Analysis Appl. 22(1968),
pp. 96-111.

[88] S. Plotkin, D. Shmoys, E. Tardos, “Fast approximation algorithms for fractional packing
and covering problems,” Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991.

[89] S. Plotkin, E. Tardos, “Improved bounds on the max-flow min-cut ratio for multicommod-

ity flows,” Proc. 25th ACM Symp. on Theory of Computing, 199, -pp. 691-697.

[90] M. de Prycker, Asynchronous Transfer Mode: Solution for Broadband ISDN, Ellis Horwood
Ltd., 1993.

[91] W.R. Pulleyblank, “T'wo Steiner tree packing problems,” invited talk at ACM Symposium
on Theory of Computing, 1995.

(92] P. Raghavan, “A statistical adversary for on-line algorithms,” in On-Line Algorithms, D.
Sleator and L. McGeoch, Eds., DIMACS Series in Discrete Mathematics and Theoretical
Computer Science (vol. 7), 1992.

(93] P. Raghavan, “Probabilistic construction of deterministic algorithms: approximating pack-

ing integer programs,” J. Computer and System Sciences, 37(1988), pp. 130-143.

[94] P. Raghavan, C.D. Thompson, “Randomized rounding: a technique for provably good
algorithms and algorithiic proofs,” Combinatorica, 7(1987), pp. 365-374.

136

[95] P. Raghavan, E. Upfal, “Efficient all-optical routing,” Proc. 26th ACM Symp. on Theory
of Computing, 1994, pp. 134-143.

[96] R. Rivest, “The placement and interconnect system,” Proc. 19th Design and Automation

Conference, 1982.

[97} N. Robertson, P.D. Seymour, “Graph Minors II. Algorithmic aspects of tree-width. J. Al-
gorithms, 7(1986), pp. 309-322.

(98] N. Robertson, P.D. Seymour, “Graph Minors VI. Disjoint paths across a disc,” J. Combi-
natorial Theory Ser. B, 41(1986), pp. 115-138.

[99] N. Robertson, P.D. Seymour, “Graph Minors VII. Disjoint paths on a surface,” J. Combi-
natorial Theory Ser. B, 45(1988), pp. 212-254.

[100] N. Robertson, P.D. Seymour, “Graph Minors IX. Disjoint crossed paths,” J. Combinato-
rial Theory Ser. B, 49(1990), pp. 40-77.

[101] N. Robertson, P.D. Seymour, “Graph Minors XI. Circuits on a surface,” J. Combinatorial
Theory Ser. B, 60(1994), pp. 72-106.

[102] N. Robertson, P.D. Seymour, “Graph Minors XIII. The disjoint paths problem,” J. Com-
binatorial Theory Ser. B, 63(1995), pp. 65-110.

[103] A. Schrijver, “The Klein bottle and multicommodity flow,” Combinatorica 9(1989), pp.
375-384.

[104] A. Schrijver, “Disjoint circuits of prescribed homotopies in a graph on a compact surface,”

J. Combinatorial Theory Ser. B, 51(1991), pp. 127-159.

[105] A. Schrijver, “Disjoint homotopic paths and trees in a planar graph,” Discrete and Com-

putational Geometry, 6(1991), pp. 527-574.

[106] A. Schrijver, “Finding k disjoint paths in a directed planar graph,” STAM J. Computing,
23(1994), pp. 780-799.

[107] A. Schrijver, personal communication, 1995.

187

[108] A. Schrijver, P.D. Seymour, P. Winkler, “The ring loading problem,” submitted for pub-

lication.

[109] A. Sebd, “The cographic multifiow problem: an epilogue,” in Polyhedral Combinatorics,
W. Cook, P.D. Seymour, eds., DIMACS Series in Discrete Mathematics and Theoretical
Computer Science (vol. 1), 1990, pp. 203-234.

[110] P.D. Seymour, “Directed circuits on a torus,” Combinatorica, 11(1991), pp. 261-273.
[111] P.D. Seymour, “Disjoint paths in graphs,” Discrete Math., 29(1980), pp. 293-309.

[112] P.D. Seymour, “On odd cuts and planar multicommodity flows,” J. London Math. Soc.,

42(1981), pp. 178-192.

(113] Y. Shiloach, “A polynomial solution to the undirected two paths problem,” Journal of

the ACM, 27(1980), pp. 445-456.

[114] D. Sleator, R. Tarjan, “Amortized efficiency of list update and paging rules,” Comm.

ACM, 23(1985), pp. 202-208.

[115] E. Tardos, “A strongly polynomial minimum-cost circulation algorithms,” Combinatorica,

5(1985), pp. 247-255.
[116] C. Thomassen, “2-linked graphs,” European J. Combinatorics, 1(1980), pp. 371-378.

[117] T. Todd, “The token grid: multidimensional media access for local and metropolitan

networks,” Proc. INFOCOM, 1992, pp. 2415-2421.

[118] D. Wagner, K. Weihe, “A linear time algorithm for multicommodity flow in planar

graphs,” Proc. First European Symposium on Algorithms, 1993, pp. 384-395.

[119] D.J.A. Welsh, Matroid Theory, London: Academic Press, 1976.

188

