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GEOMETRY OF SECOND ADJOINTNESS FOR p-ADIC GROUPS

ROMAN BEZRUKAVNIKOV AND DAVID KAZHDAN,
WITH AN APPENDIX BY YAKOV VARSHAVSKY, ROMAN BEZRUKAVNIKOV,

AND DAVID KAZHDAN

Dedicated to the memory of Izrail’ Moiseevich Gel’fand

Abstract. We present a geometric proof of second adjointness for a reductive
p-adic group. Our approach is based on geometry of the wonderful compact-
ification and related varieties. Considering asymptotic behavior of a function
on the group in a neighborhood of a boundary stratum of the compactifica-
tion, we get a “cospecialization” map between spaces of functions on various
varieties carrying a G × G action. These maps can be viewed as maps of bi-
modules for the Hecke algebra, and the corresponding natural transformations
of endo-functors of the module category lead to the second adjointness. We
also get a formula for the “cospecialization” map expressing it as a composi-

tion of the orispheric transform and inverse intertwining operator; a parallel
result for D-modules was obtained by Bezrukavnikov, Finkelberg and Ostrik.
As a byproduct we obtain a formula for the Plancherel functional restricted to
a certain commutative subalgebra in the Hecke algebra generalizing a result
by Opdam.

Contents

1. Introduction 300
2. Algebraic varieties related to a semi-simple group 302
2.1. Standard notations 302
2.2. The spaces X, Y 302
2.3. Partial compactifications of Y 304
2.4. The wonderful compactification 305
2.5. More on partial compactifications of X 309
3. Co-specializaton from normal bundle for functions

on a p-adic manifold 310
3.1. The almost homogeneous case 312
3.2. The singular case 313
4. An algebraic lemma 313
5. Construction and properties of the maps BI 314
5.1. Definition of BI 314
5.2. The induced map on UP coinvariants 315
5.3. The map BI and K0 cosets 315
6. Second adjointness 316

Received by the editors April 2, 2014 and, in revised form, September 3, 2015 and October 4,
2015.

2010 Mathematics Subject Classification. Primary 20G05, 20G25, 22E35, 22E50.
R.B. was supported by the NSF grant DMS-1102434 and a Simons Foundation fellowship.
D.K. was supported by the ERC grant 669655 and US-Israel Binational Science Foundation

grant 2012365.

c©2015 American Mathematical Society

299

http://www.ams.org/ert/
http://www.ams.org/ert/
http://dx.doi.org/10.1090/ert/471


300 ROMAN BEZRUKAVNIKOV AND DAVID KAZHDAN

6.1. Basic notations 316
6.2. The adjunction maps 317
6.3. Second adjointness 317
7. Bernstein’s map and intertwining operators 318
7.1. Bounded supports 318
7.2. Intertwining operators 318
7.3. Main result 319
8. Some properties of Radon correspondence 319
8.1. Proof of Propositions 7.3, 7.5 319
8.2. The Bernstein center and supports 320
8.3. Completion of the proof of Proposition 7.1 322
9. Proof of Theorem 7.6 323
9.1. The subquotient maps for B� 323
9.2. Proof of Theorem 7.6 325
10. Plancherel type formulas 325
10.1. The map B and the Plancherel functional 325
10.2. Commutative subalgebras in the Hecke algebra 326
10.3. Proof of Proposition 7.2 328
10.4. Plancherel functional on the abelian subalgebra 328
11. Appendix: quasi-normal cone for toric coverings 329
11.1. Quasi-normal cone 330
11.2. Toric covering 330
11.3. Theorem 331
Acknowledgements 331
References 332

1. Introduction

Parabolic induction and restriction (Jacquet) functors play a fundamental role in
representation theory of reductive p-adic groups. It follows directly from definitions
that the parabolic induction functor is right adjoint to the Jacquet functor; we will
call this adjointness the ordinary or Frobenius adjointness. It has been discovered
by Casselman (cf. [8, Theorem 4.2.4]) for admissible representations and generalized
by Bernstein to arbitrary smooth representations that there is another nonobvious
adjointness between the two functors. Namely, the parabolic induction functor
turns out to be also left adjoint to Jacquet functor with respect to the opposite
parabolic (we will refer to this as the second or the Bernstein adjointness). This fact
appears in unpublished notes of Bernstein [1] (see also exposition in [16]), we reprove
it below. Rather than following the original strategy, our approach emphasizes the
relation to geometry of the group and related spaces. More precisely, showing that
the two functors α and β are adjoint amounts to providing morphisms between the
identity functor and the compositions α◦β, β ◦α satisfying certain compatibilities.
When α, β are Jacquet and parabolic induction functors, the arrow between the
endo-functors of the category of representations of the Levi is easy to define, both
for the ordinary and for the second adjointness. To describe the morphisms between
the endo-functors of representations of G, recall that an endo-functor of a category
of modules usually comes from a bimodule. This is so in our case, moreover, the
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bimodules can be realized as spaces of functions1 on a variety equipped with a
G×G-action. Thus showing adjointness amounts to providing a map between the
function spaces satisfying certain properties. For the ordinary induction, this turns
out to be the map from functions on the group to integral kernels acting on the
universal principal series, i.e., on the space of functions on G/U . This well-studied
map (known as the orispheric transform) is given by an explicit correspondence.

In contrast, the map responsible for the second adjointness has not, to our knowl-
edge, received much attention in the literature.2 The goal of this paper is a geomet-
ric description of this map and its basic properties. It is a map (to be denoted by
B) from functions on (the space of F -points of) a certain algebraic variety X to the
space of functions on G. Our first observation is that X is an asymptotic cone of
G. By this we mean that it admits an open embedding to the normal space NG(Z)

where G is the De Concini-Procesi compactification of G and Z ⊂ G is a G × G
orbit.3 The map B is uniquely characterized by the property of being asymptotic
to identity and G × G-equivariant; see Corollary 5.2 (this is also an outgrowth of
an idea communicated to us by Bernstein).

The second main result of the paper addresses the question of presenting this map
by an explicit correspondence. The answer is that the correspondence giving B can
be expressed in terms of the inverse to the intertwining operator (Radon transform);
see Theorem 7.6. As an application of this result we obtain a generalization of a
result of Opdam which describes the Plancherel functional restricted to a certain
commutative subalgebra in the Hecke algebra.

This paper is structured as follows. In section 2 we collect necessary algebro-
geometric facts about the wonderful compactification and related varieties. Section
3 develops the formalism of transferring functions between a p-adic variety and the
normal bundle to its subvariety. Section 4 contains some algebraic preliminaries.
Those sections are mutually logically independent. In section 5 the results of the
earlier sections are combined to get the desired map B. In section 6 second adjoint-
ness is deduced. In section 7 we formulate some properties of the map B, including
the formula expressing it in terms of the inverse to the intertwining operator. In
sections 8 and 9 we prove some statements stated in section 7. Finally, section 10
contains a generalization of Opdam’s formula. In the Appendix (joint with Y. Var-
shavsky) we describe a version of the normal bundle construction which allows us
to extend some statements about De Concini-Procesi’s wonderful compactification
to reductive groups with a nontrivial center.

We did not attempt to reach a maximal reasonable generality. In particular, we
expect that the present methods can be used to obtain a generalization of some
of our results (such as Theorem 7.6) replacing a Borel subgroup by an arbitrary
parabolic.

1Here and elsewhere in the Introduction we ignore the difference between functions and mea-
sures; see the precise statement in section 6.

2See, however, [17] (which appeared after the preprint version of the present paper) where
related ideas have been developed and applied in a more general context.

3When the group G is not of adjoint type the compactification is not smooth. In this case we
use a modification of the notion of normal cone introduced in the Appendix.
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2. Algebraic varieties related to a semi-simple group

In this section we collect algebro-geometric facts to be used in the main con-
struction. Until the end of the section we work over an arbitrary field which we
denote by F . In this section topological notions refer to Zarisky topology.

2.1. Standard notations. Let G be a connected split reductive algebraic group
over F . Let B be the space of Borel subgroups of G and W be the (abstract) Weyl
group. Let T be the abstract Cartan of G, thus T is canonically identified with
B/UB for any B ∈ B, where UB is the unipotent radical of B. The torus T acts on
the right on G/UB for any B ∈ B.

We denote by X∗(T) the lattice of cocharacters of the torus T and by X∗(T)
its lattice of characters. By X∗(T)

+, X∗(T)+ we denote the subsets of dominant
(co)characters. Let Σ be the set of vertices of the Dynkin diagram of G. We use
the bijection between conjugacy classes of parabolic subgroups in G and subsets
in Σ sending a parabolic to the set of i ∈ Σ such that the corresponding root
subspace is in the radical of P . For I ⊂ Σ we let PI = LIUI denote (an arbitrary)
representative of the corresponding conjugacy class.

For i ∈ Σ we denote by αi the corresponding simple root, by α∨
i the correspond-

ing simple coroot and by ωi the corresponding fundamental weight. The abstract
Weyl group W acts on T, for i ∈ Σ denote by si ∈ W the corresponding simple
reflection and let w0 denote the longest element of W . For a pair B, B′ of Borel
subgroups we denote by w(B,B′) ∈ W their relative position, with an alternative

notation B
w
− B′. We often fix a Borel subgroup B0 ∈ B and denote by Bw the

Schubert cell given by Bw = {B ∈ B | B0

w
−B}.

2.2. The spaces X, Y . Fix B1, B2 ∈ B and set XB1,B2
= (G/UB1

×G/UB2
)/(B1∩

B2), where B1∩B2 acts diagonally on the right. Given another choice (B′
1, B

′
2) ∈ B2

in the same conjugacy class, an element g ∈ G such that B′
i = gBig

−1 for i = 1, 2
is defined uniquely up to right multiplication by an element of B1 ∩B2. Then the
map y �→ yg−1 induces isomorphisms G/UBi

−̃→G/UB′
i
. The induced isomorphism

XB1,B2
−̃→XB′

1,B
′
2
does not depend on the choice of g, thus the conjugacy class

of the pair (B1, B2) defines XB1,B2
uniquely up to a unique isomorphism. Such

conjugacy classes are in bijection with W , thus for each w ∈ W we get a well-
defined variety Xw = XB1,B2

, where w = w(B1, B2). By construction the group T2

acts on varieties Xw.
We will only use two extreme cases for which we fix a different notation: X = Xw0

and Y = Xe (where e is the unit element). Fixing B ∈ B we get X = (G/UB)
2/T,

Y = (G/UB)
2/T where the torus acts via the maps T → T2 given by t �→ (t, w0(t))

and t �→ (t, t) respectively.
We denote by pX : X → B2, pY : Y → B2 the natural projections.
Notice that the stabilizer in G of the unit coset (UB1

, UB2
) mod (B1 ∩ B2)

coincides with the stabilizer of its image in B2. It follows in particular that

(2.1) p−1
X (B2

0)
∼= B2

0 × T2/TΔ
∼= B2

0 × T,

(2.2) p−1
Y (ΔB) ∼= ΔB × T2/TΔ

∼= B × T,

where ΔB ⊂ B2 is the diagonal, B2
0 ⊂ B2 is the open orbit of the diagonal G-action,

and TΔ ⊂ T2 is the diagonal subtorus. The isomorphisms T2/TΔ
∼= T are given by

(t1, t2) �→ t−1
1 t2.
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Example 2.1. Let G = SL(2). Then Y parametrizes pairs of nonzero vectors
v1, v2 ∈ F 2 modulo common dilations, while X is the space of rank one 2 × 2
matrices (notice that the symplectic form on the two-dimensional space identifies
it with its dual). Also, p−1

Y (ΔB) parametrizes pairs of nonzero colinear vectors,

the map p−1
Y (ΔB) → T = Gm sends such a pair (v, λv) to λ. The space p−1

X (B2
0)

parametrizes nonnilpotent rank one matrices, the map p−1
X (B2

0) → T sends such a
matrix to its trace.

2.2.1. The space XI . The definition of X can be generalized as follows. Given two
opposite parabolic subgroups P , P− with unipotent radicals UP , UP− , an argument
similar to the one above shows that the space (G/UP ×G/UP−)/(P ∩P−) depends
only on the conjugacy class of P . Thus we get a variety defined uniquely up
to a unique isomorphism for every conjugacy class of parabolic subgroups. The
latter are in a bijection with subsets I ⊂ Σ (see 2.1), for such a subset I we
let XI

∼= (G/UPI
× G/UP−

I
)/(PI ∩ P−

I ) denote the corresponding variety. Thus

X = XΣ.
Similarly, set YI = (G/UPI

×G/UPI
)/LI .

Remark 2.2. The algebraic variety XI has been defined using a choice of the para-
bolic subgroup PI ; however, this variety (likeG/P but unlike G/UP or YI) is defined
canonically given the reductive group G. This is clear in view of the following: given
two pairs of opposite parabolics (PI , P

−
I ) and (P ′

I , (P
−
I )′) in the same conjugacy

class, an element conjugating (P ′
I , (P

−
I )′) to (PI , P

−
I ) is unique up to multiplication

by an element in L, thus the isomorphism between the corresponding quotients is
canonical.

2.2.2. Radon correspondence.

Lemma 2.3. For any w ∈ W there exists unique orbit Cw of the diagonal G2

action on X × Y , such that:

i) For any (x1, x2, y1, y2) ∈ B4 in the image of Cw under pX×pY we have x1

w
−y1,

x2

ww0− y2.
ii) For any x ∈ p−1

X (B2
0), y ∈ p−1

Y (ΔB) such that x, y go to the unit element in
T under the projection to the second factor in the decompositions (2.1), (2.2), we
have (x, y) ∈ Cw.

Proof. It is clear that for any x ∈ X orbits of G2 on X × Y are in bijection with
orbits of the stabilizer StabG×G(x) on Y . If x ∈ p−1

X (ΔB), then StabG×G(x) =
T · (UB0

× UB0
) for some Borel subgroup B0 = T · UB0

. Thus StabG×G(x) has a
unique orbit in p−1

Y (Bw×Bww0
) containing a point y which goes to the unit element

in T under the projection to the second factor in (2.2). It is clear that this orbit is
independent of the choice of x ∈ p−1

X (ΔB) provided that x goes to the unit element
in T under the projection to the second factor in (2.1). �

We call Cw the Radon correspondence.

Example 2.4. Let G = SL(2), the spaces X and Y are described in Example
2.1. Then Ce = {(m; v1, v2) ∈ X × Y | m(v2) = v1} and Cs = {(m; v1, v2) ∈
X × Y | mt(v1) = v2} where mt is the transposed matrix with respect to the
symplectic form on the two-dimensional vector space and e, s are the two elements
in W ∼= Z/2Z.
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2.2.3. Radon correspondence is closed. Variety X is well known to be quasi-affine
(see e.g. [19, Exercise 5.5.9(2)]), let X̄aff be its affine closure.

Lemma 2.5. The image of Cw under the open embedding X × Y → X̄aff × Y is
closed.

Proof. Since the subset Cw ⊂ X̄aff×Y is G×G-invariant and G×G acts transitively
on Y , it is sufficient to show that fibers Cw(y) of the projection Cw → Y are closed
in X̄aff . The fiber over y ∈ Y is an orbit of the stabilizer StabG×G(y). Without
loss of generality we can assume y ∈ Y is the image of e ∈ G × G and therefore
StabG×G(y) = TΔ · (UB ×UB) ⊂ B ×B. It is easy to see from the definition of Cw

that the diagonal Cartan subgroup TΔ stabilizes the point ỹ in the preimage of y
in Cw, where ỹ is the image of e. Thus this fiber is an orbit of the unipotent group
UB × UB. So the lemma follows from Kostant-Rosenlicht Theorem saying that an
orbit of the action of a unipotent algebraic group on an affine variety is closed (see
e.g. [19, Proposition 2.4.14]). �
2.3. Partial compactifications of Y . Variety Y is a principal bundle over B2

with structure group (T× T)/TΔ
∼= T where TΔ ⊂ T× T is the diagonal subgroup

and the last isomorphism comes from the embedding of the first factor to T× T.
Recall thatX∗(T)+ is the subset of dominant weights in the weight latticeX∗(T).

For w ∈ W set X∗(T)+w = w(X∗(T)+). We define a partial compactification Tw of
T by Tw := Spec(F [X∗(T)+w]) ⊃ Spec(F [X∗(T)]) = T. We set Y w = Y ×T Tw =
(Y × Tw)/T, where T acts diagonally; this is a partial compactification of Y .

For example, if G = SL(2), then Y e is the total space of line bundle O(−1, 1)
on P1×P1, while Y s is the total space of O(1,−1); here e, s are as in Example 2.4.

2.3.1. Properness of the closure. Let C̄w be the closure of Cw ⊂ X×Y in X̄aff ×Y w

and C̄′
w the closure of the image of Cw in X̄aff × B2 under the projection

IdX̄aff
× pY1,2 : X̄aff × Y → X̄aff × B2

Proposition 2.6. a) The natural map C̄w → C̄′
w is an isomorphism.

b) The projection C̄w → X̄aff is proper.

Proof. Since B2 is proper, b) follows from a).
We start the proof of a) with the following:

Lemma 2.7. a) The space Y w is a closed subscheme in the fiber product of total
spaces of line bundles on B2 of the form O(λ,−λ), λ ∈ Λ+

w.
b) The subscheme Cw ⊂ X × Y is the graph of sections of the pull-back of those

line bundles to a subvariety Z ⊂ X×B2; here Z is the preimage under the projection

X × B2 → B4 of the subvariety {(B1, B2, B3, B4) | B1

w
−B3, B2

w0w− B4}. �
Proof. a) is clear since Tw is a closed subscheme in a product of affine lines, where
the torus T acts on each of the line by a character in X∗(T )+w. Statement (b)
amounts to the map X × Y → X ×B2 inducing an isomorphism Cw → Z. It maps
Cw to Z by Lemma 2.3(a); now the map Cw → Z is an isomorphism since the action
of G×G on both Cw and Z is easily seen to be simply transitive. �

Now Proposition 2.6(a) would follow if we show that the sections described in
Lemma 2.7(b) extend to the closure of Z in X̄aff × B2. Since X̄aff is the affine
closure of a smooth quasi-affine variety X, it is normal and X̄aff \ X ⊂ X̄aff is of
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codimension at least two, so any section of the line bundle on X × B2 extends to
X̄aff × B2. Thus it suffices to show that the sections of our line bundles extend to
the closure of Z in X × B2.

Since the sections are G×G invariant and X is a homogeneous space, the desired
statement follows from the next lemma.

Lemma 2.8. Fix w ∈ W . For a weight λ ∈ X∗(T) the following are equivalent:
i) λ ∈ X∗(T)+w.
ii) The line bundle O(λ,−λ)|Bw0w×Bw

has a nonzero U × U invariant section.

Proof. Let us recall a description of the divisor of a U -invariant section of O(λ) on
Bw viewed as a rational section on Bw; see e.g. [4, Proposition 1.4.5] and references
therein. Namely, for w ∈ W components of codimension 1 in Bw\Bw are in bijection
with reflections sα, where α is a positive not necessarily simple coroot, such that
�(wsα) = �(w)− 1. The multiplicity of the corresponding component in the divisor
of a U -invariant section of O(λ)|Bw

is then equal to 〈λ, α〉. Thus those α for which

�(wsα) = �(w) + 1 correspond to elements of w−1(Φ) which are positive roots;
while those α for which �(w0wsα) = �(w0w) + 1 correspond to elements of w−1(Φ)
which are negative roots. We see that a nonzero U invariant section exists both
for O(λ) on Bw and for O(−λ) on Bw0w if and only if λ is positive on w−1(Φ), i.e.,
λ ∈ X∗(T)+w. �
2.4. The wonderful compactification. We introduce a version of De Concini-
Procesi’s wonderful compactification relevant for our purposes. If G is of adjoint
type, we let G be the wonderful compactification [9] (see also [11], [18] and [6, §6.1]).
IfG is an arbitrary reductive group we letGad denote the quotient ofG by its center,
and let G′ ⊂ G be the commutator subgroup, and consider the homomorphism
G → (G/G′) × Gad which is surjective and has a finite kernel. We let G denote
normalization of (G/G′)×Gad in G.

Notice that by [6, Proposition 6.2.4] a normal equivariant partial compactifi-
cation of G with an equivariant morphism to Gad (also known as a toroidal G-
embedding) is uniquely determined by the toric variety which is the closure T of a
maximal torus T of G in G. It is easy to see (cf. [6, Lemma 6.1.6]) that in our
case T is the toric variety corresponding to the fan coming from the Weyl chambers
stratification.

The components of ∂G := G \G are indexed by Σ, this easily follows e.g. from
[6, Proposition 6.2.3(ii)]. For i ∈ Σ let Gi be the corresponding component.

If G is a product of a torus and an adjoint group, then G is smooth and ∂G =
G \ G is a divisor with normal crossings (see e.g. [6, Theorem 6.1.8]); this is not
necessarily true in general.

For I ⊂ Σ set GI =
⋂

i∈I Gi. Let GI be the complement in GI to the union of

GJ , J � I. By convention G∅ = G and G∅ = G.

Claim 2.9. a) The action of G×G on GI is transitive.
b) Let PI = LIUI be a parabolic in the conjugacy class corresponding to I, let

P− = LIU
−
I be an opposite parabolic. Then there exists a point in GI with stabilizer

HI := {(ul, u−l−)| u ∈ UI , u
− ∈ U−

I , l, l− ∈ LI , l
−1l− ∈ Z(LI)

0}, where Z(LI)
0

is the identity component in the center Z(LI) of LI .

Proof. a) appears, for example, as [6, Proposition 6.2.3(iii)]. Statement b) for G
adjoint is [18, Lemma 1(ii)], notice that in this case Z(LI)

0 = Z(LI). The general
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case follows: using the adjoint case we find a point xI ∈ G whose stabilizer is a
finite index subgroup in {(ul, u−l−)| u ∈ UI , u

− ∈ U−
I , l, l− ∈ LI , l

−1l− ∈ Z(LI)};
in view of [6, Lemma 6.1.4(i)] we can assume without loss of generality that xI lies
in the closure T of a maximal torus T ⊂ LI , then the above description of T shows
that the stabilizer of xI in T is connected, thus that the stabilizer of xI in G ×G
is connected and coincides with HI .

See also [11, Theorem 2.22, Proposition 2.25] for the case of an adjoint group
over a field of characteristic zero. �
2.4.1. Normal bundles to strata. The isomorphism GI = (G × G)/HI shows that
we have a canonical map XI → GI which is a principal bundle with the structure
group Z(LI)

0.
For a locally closed smooth subvariety Z in a smooth varietyM letNM (Z) denote

the normal bundle. More generally, in the situation described in the Appendix,
section 11.1, we let NM (Z) denote the quasi-normal cone in the sense of 11.1.

If G is adjoint, the normal bundle NG(GI) splits canonically as a sum of line

bundles NG(Gi)|GI
, i ∈ I. We have an action of Z(LI) on NG(GI) such that the

action on NG(Gi)|GI
, i ∈ I is by the character αi. We will need a generalization of

this observation to an arbitrary G.
Let AI denote the closure of Z(LI)

0 in the Taff := Spec(F [Λ+]). This is a toric
variety for the torus Z(LI)

0.

Claim 2.10. a) The fibration NG(GI) → GI is canonically isomorphic to the
bundle with fiber AI associated to the principal Z(LI)

0 bundle XI → GI .
b) There exists a canonical G × G × Z(LI) equivariant open embedding XI →

NG(GI). Its image is the complement to the divisor
⋃

i∈I NGi
(GI).

Proof. (b) follows from (a), while (a) follows from Theorem 11.3(c) in view of
Example 11.2. Alternatively, part (a) can be deduced from [6, Proposition 6.2.3(i)]
which shows that the variety G is locally isomorphic to the product of the affine
toric variety Taff with a smooth variety, the stratification of G by G×G orbits GI

corresponds to the stratification by T orbits on Taff . �

Remark 2.11. The following description of XI , though not used explicitly in this
paper, is closely related to Claim 2.10. The space XI is quasi-affine, it is the dense
G × G orbit in its affine closure X̄I,aff . Thus XI can be reconstructed from the
algebra of global regular functions Ogl(XI). Assume for simplicity that F is of
characteristic zero. Then the space Ogl(G) is isomorphic as a G × G-module to:⊕

λ∈X∗(T)+ Eλ, where Eλ = Vλ ⊗ V ∗
λ for the representation Vλ with highest weight

λ. Let mν
λ,μ : Eλ ⊗ Eμ → Eν be the corresponding component of multiplication

in Ogl(G). Then Ogl(XI) = Ogl(G) as G × G modules and multiplication map in
Ogl(XI) is the sum of maps mν

λ,μ(I) : Eλ ⊗Eμ → Eν , where mν
λ,μ(I) = mν

λ,μ when

λ+ μ− ν is trivial on Z(LI) and mν
λ,μ(I) = 0 otherwise.

Remark 2.12. The correspondence Cw can also be described in terms of geometry
of the wonderful compactification G. Namely, let Γ ⊂ G× B2 be the graph of the
action of G on B, i.e., it is given by Γ = {(g,B1, B2) g(B1) = B2}. Let Γ̄ be the
closure of Γ in G× B2. Let Z ∼= B2 ⊂ G be the closed G2 orbit. According to [5],
[7], the subset

(Z × B2)w := {(B1, B2;B3, B4) | B1

w
−B3, B2

w0w− B4}
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is an open smooth subscheme in Γ̄ ∩ Z × B2. We claim that Cw is canonically
isomorphic to an open part in the quasi-normal cone (see Appendix for a definition
of this term) NΓ̄((Z × B2)w). The projection Cw → X is the restriction of the
natural map (the normal differential of the projection, i.e., the composition of the
differential with projection to the normal bundle) NΓ̄((Z × B2)w) → NG(Z) ⊃ X.
The projection Cw → Y can be described as follows. Recall that there exists a
canonical action map a : Γ = G×B → Y , a : (g,B) → (B̃, g(B̃) mod T ), where B̃
is an arbitrary lifting of B ∈ B to a point in G/U . Let us view a as a rational map
Γ̄ → Y w. We claim that (Z ×B2)w is contained in the domain of definition of this
map, and a : (Z ×B2)w → B2 ⊂ Y w. Thus the normal differential of a gives a map
NΓ̄((Z × B2)w) → NB2(Y w) = Y w, which restricts to the projection Cw → Y .

We neither prove nor use these statements.

2.4.2. Quotient by the UP action. Let P = PI = LIUI be a parabolic subgroup
whose conjugacy class corresponds to I ⊂ Σ, let ZI = Z(LI)

0 denote the neutral
component in the center of LI .

The map G/UI → G/(UIZ(LI)
0) is a principal Z(LI)

0 bundle. We let G/UI :=
(AI ×G/UI)/ZI be the associated bundle over G/(UIZI) with fiber AI .

In view of Claim 2.9(b) we have a canonical projection GI → G/P−
I ; let G0

I ⊂ GI

be the preimage of the open UI orbit under that projection.
Consider the closure of the subgroup ZI in G. This is a toric variety for the

torus ZI .

Claim 2.13. a) The closure of ZI intersects G0
I at a unique point, which we denote

by z.
b) Let Z̃I be the open subvariety in this toric variety which is the union of all

ZI-orbits whose closure contains z. Let G
0
(I) denote the image of Z̃I under the

action of G× UI . Then the subset G
0
(I) ⊂ G is an open subvariety, such that:

i) G
0
(I) is invariant under the left action of G and the right action of UI , the

action of UI on G
0
(I) is free.

ii) The quotient G
0
(I)/UI is isomorphic to G/UI .

iii) We have G ⊂ G
0
(I), G0

I ⊂ G
0
(I) and the induced embeddings of the quotient

spaces coincide respectively with the tautological embedding G/UI → G/UI and the

embedding G/(UIZI) → G/UI induced by the embedding {0} → AI .

Proof. Fix a maximal torus T ⊃ ZI and Borel subgroups B = TU ⊂ PI and
B− = TU− ⊂ P−

I . According to [6, Proposition 6.2.3(i)] there exists an open

subvariety U ⊂ G (denoted by X0 in loc. cit.) such that the action of U− × U
on U is free, where U− acts on the left and U acts on the right. Furthermore,
U ∼= U− × Taff × U (where Taff = AΣ is as in the proof of Claim 2.10; in loc. cit.
it is denoted by X ′

0). By [6, Proposition 6.2.3(ii)] the intersection Taff ∩GI is a T
orbit, to be denoted by Taff(I). The closure of ZI in Taff (recall that it is denoted
by AI) intersects the T -orbit Taff(J) iff J ⊇ I. Also the intersection of this closure
with Taff(I) consists of a single point z. This point z ∈ GI lies on a free U− × U

orbit, hence it lies in G
0
(I). Conversely, any other point z′ in the intersection of

GI with the closure of ZI is stabilized by the diagonal action of LI , as well as by
a subgroup which is conjugate to but different from UI ×U−

I and is normalized by
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LI , hence z′ does not lie in G0
I . This proves (a). Notice also that we have shown

that AI
∼= Z̃I .

To check that G0(I) is open it is enough to show that it contains a neighborhood

of ZI . For such a neighborhood we can take the image of Z̃I under the action of
U−×T ×U : on the one hand it coincides with the

⋃
J⊇IU

−Taff(J)U which is open

in U, hence in G; on the other hand, it is contained in G
0
(I) since B ⊂ LI ·UI and

LI commutes with ZI .
Since Z̃I is contained in U, it lies in the union of free (right) UI orbits, so the

right action of UI on G0(I) is free. The image of the map AI
∼= Z̃I �→ G0(I)/UI is

clearly invariant under UIZI and the action of UI on this image is trivial, while the

action of ZI is the canonical one. Thus we get a surjective map G/UI → G
0
(I)/UI .

The stabilizer of any point in Z̃I under the left action of G is contained in UI , hence

the stabilizer of any point in the image of Z̃I under the map to G
0
(I)/UI equals

UI , this implies that the map G/UI → G
0
(I)/UI is an isomorphism. Property (iii)

is clear from the construction. �
Example 2.14. Let G = PGL(2), thus G = P(End(V )) where V = k2 is the two-
dimensional vector space. Let PI = BI be the group of upper triangular matrices.

Then G
0
(I) is the projectivization of the set of matrices with a nonzero second

column. The quotient G
0
(I)/UI maps to P1 by the map sending a matrix to the

line of its second column, this identifies G
0
(I)/UI with the total space of the line

bundle OP1(2).

2.4.3. Compactified Bruhat cells. Fix B ∈ B. For w ∈ W let Gw ⊂ G denote the
corresponding B ×B orbit. Let Gw denote the closure of Gw in G.

To unburden notations we state the next claim for a semi-simple group G, the
answer in the general case differs by replacing B2 and its subvarieties by their
product with the torus G/G′.

Claim 2.15. a) The components of the intersection of Gw with the closed stratum
B2 ⊂ G are in bijection with pairs w1, w2 such that �(w) + �(w0) = �(w1) + �(w2).

b) Given such a pair (w1, w2), the smooth part of the corresponding component
contains the B ×B orbits Bw1

× Bw2
.

c) The open part of the quasi-normal cone to the smooth locus of the correspond-
ing component is identified with Xw1,w2

where Xw1,w2
is the corresponding B × B

orbit in X.

Proof. If G is adjoint, then (a), (b) follow from [5, Theorem 2.1(ii)]. In view of
Claim 2.10, part (c) in this case follows from [5, Theorem 2.1(i)] which implies that
the normal bundle to Gw ∩B2 in Gw is isomorphic to the restriction of the normal
bundle to B2 in G. The general case follows since Gw is easily shown to coincide
with the preimage of of (Gad)w, this implies in particular that the quasi-normal
cone to the smooth part of Gw ∩ B2 is the fiber product of the quasi-normal cone
to B2 in G by the smooth part of Gw ∩ B2. �
Corollary 2.16. For w, w1, w2 as in Claim 2.15 we have a canonical isomorphism
of T torsors: UB\Gw/UB

∼= UB\Xw1,w2
/BU .

Proof. It easy to see that for a smooth toric variety C the normal bundle to a torus
orbit is canonically identified with an open subvariety in C. The same is true for
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a not necessarily smooth normal toric variety with a fixed finite equivariant map
to a smooth one, where instead of the normal bundle we consider the quasi-normal
cone introduced in the Appendix.

One can apply this to the closure Cw of a generic orbit of a maximal torus
T acting on Gw by left translations and the T orbit Cw1,w2

:= C ∩ Bw1
× Bw2

.
The open orbit of T on Cw maps isomorphically to UB\Gw/UB , while the open
orbit in NCw1,w2

(C) maps isomorphically to UB\Xw1,w2
/UB . Thus the sought for

isomorphism is obtained by restricting the isomorphism described in the previous
paragraph to the open T orbit. �
2.5. More on partial compactifications of X.

2.5.1. Torus closure. Let T := T1 denote the partial compactification of the ab-
stract Cartan T attached to the unit element in W by the construction of section
2.3.

Claim 2.17. a) The closure in X̄aff of any orbit of the abstract Cartan T acting
on X is isomorphic to T.

b) For any w1, w2 there exists a T equivariant isomorphism T ∼= Xw1,w2
/U2

B.
The corresponding projection Xw1,w2

→ T = Xw1,w2
/U2

B extends to a regular map

Xw1,w2
→ T where Xw1,w2

denotes the closure in X̄aff .

Proof. It is clear that the weights of T acting on the space of regular functions on
X are precisely the dominant weights; also, given such a weight λ and an orbit of T
there exists a function transforming by the character λ with a nonzero restriction to
the orbit. This implies part (a). The first statement in part (b) is clear, the second
one amounts to existence for every dominant weight λ of a section of the line bundle
O(λ, λ) on B2 whose restriction to Bw1

× Bw2
is nonzero and U2

B invariant. Since
U2
B is unipotent it suffices to see existence of a section with a nonzero restriction

which is clear. �
2.5.2. Embedding into the matrix space and its compactification. For a vector space
V let P(V) denote the projectivization of V , let P̃(V) = P(V ⊕F ) = P(V)∪V be its

projective compactification, and set V0 = V \ {0}, P̃(V)0 = P̃(V) \ {0}.
We set X̄ = NG(GΣ); in view of Claim 2.10 it is identified with the fibration over

GΣ associated to the T-bundle X → GΣ and the T space Taff . In other words, X̄
is the relative spectrum of the sheaf

⊕
λ∈Λ+ OB(λ)�OB(λ̌) of commutative rings

on B2 where λ̌ = −w0(λ) is the dual dominant weight.

Claim 2.18. a) Let M be a G-module. Then there exists a canonical map ρM :

X → End(M). This map extends to a map ρM : X̄ → P̃(End(M))0.
b) There exists a finite collection of G-modules Mi, such that the map

∏
ρMi

:

X̄ →
∏

P̃(End(Mi))
0 is a closed embedding. This embedding sends the zero section

of NG(GΣ) = X̄ to
∏

P(End(Mi)).

Proof. Fix a pair of opposite Borels B = TU , B− = TU−, so that X = (G/U ×
G/U−)/T . Let λi be the set of highest weights of M (i.e. maximal elements in
the set of weights of M) and let Eλi

∈ End(M) be T -invariant projection to the
corresponding weight space. The operator E =

∑
i Eλi

is invariant under the left
action of U , the right action of U− and the diagonal action of T , thus we get a map
ρM : X → End(M) sending the unit coset to E. Since any two pairs of opposite
Borel subgroups are conjugate by an element of G which is defined uniquely up to
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multiplication by an element in the Cartan subgroup, the map X → End(M) does

not depend on the auxiliary choice. The extension to map ρM : X̄ → P̃(End(M))
comes from the standard highest weight morphism of G2 equivariant bundles over
B2: M∗⊗M⊗OB×B →

⊕
i O(λi, λ̌i); this proves part (a). According to [6, Lemma

6.1.1] there exists a module M0 for which the map B × B → P(End(M0)) induced
by ρM0

is a closed embedding. We can choose modules M1, . . . ,Mk and a highest
weight λi of Mi so that the weights λ1, . . . , λk generate the lattice of dominant

weights. Then the map
∏k

i=0 ρMi
is easily seen to be a closed embedding. The last

property stated in (b) is clear from the construction. �

3. Co-specializaton from normal bundle for functions

on a p-adic manifold

From now on F is a non-Archimedian local field with the ring of integers O ⊂ F
and a uniformizer π. From now on topological notions are in reference to the
F -topology on the space of F -points of an algebraic variety over F or its subspaces.

For a totally disconnected space X we let S(X) denote the space of locally
constant compactly supported functions on X.

Let W be a smooth analytic variety over a non-Archimedian local field F,D ⊂
W an open subset such that the complement W \ D is a union S =

⋃
i∈Σ Si of

smooth divisors Si with normal crossing. For I ⊂ Σ we define SI =
⋂

i∈I Si,

S0
I := SI −

⋃
j∈Σ−I SI∪j and denote by rI : NI → SI the normal bundle to SI . For

any J ⊂ I we denote by NJ
I ⊂ NI the normal bundle to SI in SJ . Locally in SI

we can identify NI with the product AI × SI .
The following is immediate.

Claim 3.1. a) We have a canonical direct sum decomposition

NI =
⊕
i∈I

N
I−{i}
I .

b) r∗J(N
J
I ) is the normal bundle to r−1

J (SI) in NJ .

c) The complement NI − r−1
I (S0

I ) is a union of smooth divisors r−1
I (SI∪j), j ∈

Σ \ I with normal crossing.

Definition 3.2. Let U ⊂ W be an open subset. We say that an analytic open
embedding τI : U → NI is admissible if:

τI |SI∩U = Id,

τI(U ∩ SJ ) ⊂ NJ
I for J ⊂ I and

the normal component of dτI |SI∩U equals the canonical projection TW|SI
→ NI .

Any admissible map τI : U → NI defines an embedding τI
∗
V : S(V ) → S(U) for

any open subset V of τI(U) ⊂ NI .
We denote by (a, y) → ay the natural action of the group GI

m on the bundle
p
I
: NI → SI and define XI ⊂ NI as the open subvariety of points with trivial

stabilizer; thus XI = NI \
⋃

j∈I N
{j}
I .

Definition 3.3. a) For any λ ∈ Hom(Gm,GI
m) = ZI we write zλ := λ(π−1) ∈

(F×)I , zI := z(1,...,1).
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b) For any λ ∈ ZI we define an operator Tλ ∈ End(S(NI)) by

Tλ(f)(y) := f(zλy).

For λ = (λi), μ = (μi) ∈ ZI we will say that λ ≥ μ if λi ≥ μi for all i ∈ I.

Lemma 3.4. For any f ∈ S(NI) and a pair τI1, τI2 : U → NI of admissible maps
there exists λ0 ∈ ZI such that supp(Tμ(f)) ⊂ τI1(U) ∩ τI2(U) and τI

�
1(T

μ(f)) =
τI

�
2(T

μ(f)) for all μ ≥ λ0.

Proof. The following obvious claim implies the lemma.

Let S be an analytic F -variety, S̃ := Fn × S and let τ : S̃ → S̃ be an analytic
morphism such that:

a) τ |{0}×S = Id.

b) dτ |{0}×s induces the identity map Fn → Fn for every s ∈ S.

Let t ∈ (F×)n be such that |ti| < 1. Consider the sequence of morphsims

φn : S̃ → S̃, φn(s̃) := t−nτI(t
ns̃), where t(v, s) := (tv, s). �

Claim 3.5. We have φn(x) → x as n → ∞ for every x ∈ S̃. Moreover, φn → Id

uniformly on every compact subset in S̃.

Definition 3.6. For a set S consider the set of partially defined maps ZI → S

whose domain contains a set of the form {λ | λ ≥ λ0} for some λ0 ∈ ZI . We
say that two such maps agree asymptotically if they coincide on {λ | λ ≥ λ0} for
λ0 ∈ ZI . This defines an equivalence relation on the set of such maps, let Sas(I)
denote the set of equivalence classes.

We restate the result of Lemma 3.4 by saying that we have a well-defined as-
ymptotic embedding of

S(NI) → S(W)as(I), f �→ (λ �→ τI
�(Tλ(f))).

Given two subsets J ⊂ I ⊂ Σ we can apply Lemma 3.4 to the case considered in
Claim 3.1 to obtain the asymptotic embedding

jJI : S(NI) → S(NJ)as(I \ J), f �→ (λ �→ τI
�(T λ̃(f)).

The following is immediate.

Claim 3.7. For any f ∈ S(NI) we have

jJ (j
J
I (f)(λ̃))(μ) = jI(f)(λ̃+ μ)

for λ̃ ∈ ZI/ZJ , μ ∈ ZJ , λ̃, μ � 0 where we use the canonical isomorphism ZI =
ZI/ZJ ⊕ ZJ .

The following two statements follow easily from the definitions.

Suppose that an analytic unimodular F -group H acts freely on W preserving
irreducible components of S = W \D. Then for any strata S0

I we have a natural
action of H on NI and on N0

I . We denote by π : W → W̄ := W/H the natural
projection. Then π defines projection πI : NI → N̄I where N̄I is the normal bundle
to S̄0

I := S0
I /H in W̄. We define push-forwards π� : S(W) → S(W̄), πI� : S(NI) →

S(N̄I) as integration along H.
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Claim 3.8. The asymptotic embeddings

jI : S(NI) → S(U)as(I), j̄I : S(N̄I) → S(Ū)as(I)

are compatible with push-forwards π�, πI�.

Claim 3.9. Let Z ⊂ W be a locally closed smooth subvariety which intersects each
of SI transversely. Then the asymptotic embeddings for W and Z are compatible
under the restriction map.

Let UI ⊂ W, I ⊂ Σ be open neighborhoods of SI and let

τI : UI → NI , I ⊂ Σ, τJI : Ñ I
J → r�J (N

I
J ), J ⊂ I

be a family of admissible maps (cf. Claim 3.1 b) where Ñ I
J ⊂ NJ are open neigh-

borhoods of r−1
J (SI).

Definition 3.10. We say that a family (UI , τI , τ
J
I ) is admissible if for any pair

∅ ⊂ J ⊂ I ⊂ Σ there exists an open neighborhood U ′ ⊂ U of SI in W such that the
restriction of τJI ◦ τJ on U ′ coincides with τI .

The following result is easy to prove by induction on |Σ|.

Claim 3.11. An admissible family exists for any W, D as above.

3.1. The almost homogeneous case. In this section we suppose that the variety
W (hence also S = W\D) is compact, that an analytic unimodular F -group H acts
on W preserving irreducible components of S and that the action on S0

I is transitive
for all I ⊂ Σ. Let K ⊂ H be an open compact subgroup and let (UI , τI , τ

J
I ) be an

admissible family as in Definition 3.10.

Lemma 3.12. For any s ∈ SI and a compact subset C of H there exists an open
neighborhood U of s in W such that τI(cKu) = cKτI(u) for all c ∈ C, u ∈ U .

Proof. We can assume without loss of generality that U = cK for some c ∈ H.
Then the statement follows by applying Lemma 3.4 to τI1 = τI , τI2 = τI ◦ c and
f = δKu for some u ∈ U . �

Proposition 3.13. For any compact subset C of H there exists an open neighbor-
hood V of S in W, such that V ⊂ ∪UI and τI(hKv) = hKτI(v) for all h ∈ C,
v ∈ V , I ⊂ Σ.

Proof. By induction in n we construct an open set Vn such that the required equality
holds for all I with |Σ− I| ≤ n.

Consider first the case I = Σ. Then the variety S0
I is compact and therefore is a

finite union of K-orbits. Therefore there exist a K-invariant open neighborhood U
of SI in NI and a finite number of points ua ∈ U, a ∈ A such that any u ∈ U ∩D
can be written in the form

u = kTλua, a ∈ A, k ∈ K, λ ∈ ZI
+.

The statement now follows from Lemma 3.4.

Assume now that the statement is known for all J ⊂ Σ containing I. For any j ∈
Σ− I we choose an open neighborhood Ñ I

I∪j of r−1
I∪j(SI) satisfying the requirement

of Definition 3.10. Then there exist a K-invariant open neighborhood U of SI in NI
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and a finite number of points ua ∈ U, a ∈ A such that any u ∈ U∩D−
⋃

j∈Σ−I Ñ
I
I∪j

can be written in the form

u = kTλua, a ∈ A, k ∈ K, λ ∈ ZI
+.

The statement follows now from Lemma 3.4 and the definition of the admissible
family. �

3.2. The singular case. We now drop the assumption that the analytic variety
W is smooth and the divisor S ⊂ W is a divisor with normal crossing. Instead we
assume that each stratum SI is well approximated in the sense of the Appendix.
The definition of an admissible map applicable to this case is given in the Appendix.
Other definitions and results of the present section carry over to this case mutatis
mutandis.

4. An algebraic lemma

Let A be a Noetherian C-algebra, M a finitely generated A-module, T an auto-
morphism of M as an A-module.

Definition 4.1. Let M , T be as above and M0 ⊂ M be a T−1-invariant C-
subspace such that M =

⋃
r>0 T

rM0. Let N be an A-module. A C-linear map

a : M0 → N will be called A-compatible if for any m ∈ M , h ∈ A there exists an
integer N(m,h) > 0 such that ha(T−nm) = a(hT−nm) for n > N(m,h).

Lemma 4.2. For any A-compatible C-linear map a : M0 → N there exists a unique
A-morphism ã : M → N such that for any m ∈ M we have ã(T−nm) = a(T−nm)
for n � 0.

Proof. Fix a finite set of generators mi of M over A. For some n > 0 we have
T−nmi ∈ M0. If ã satisfies the assumption of the lemma, then for large n we have:
ã(T−nmi) = a(T−nmi); however, for any n the elements T−nmi generate M , so
uniqueness is clear.

We now proceed to show existence. Assume without loss of generality that the
generators mi lie in M0. Let M̃ ∼= As be the free A module with free generators
denoted m̃1, . . . m̃s, and Π : M̃ → M be the surjection sending m̃i to mi. Let
τ : M̃ → M̃ be an endomorphism lifting T−1.

For n ≥ 0 define a homomorphism αn : M̃ → N by requiring that αn(m̃i) =

a(T−nmi). Given x ∈ M̃ the A-compatibility condition implies that

αn(x) = a(T−nΠ(x))

for large n.
Applying this to xi = τ (m̃i) we conclude that there exists n0 > 0 such that

αn+1 = αn ◦ τ when n ≥ n0. Set α = αn0
.

Given x ∈ M̃ we have

(4.1) α(τnx) = a(T−n−n0Π(x))

for large n.
Since τ induces an invertible map on M̃/Ker(Π) = M , it follows that for n > 0

we have: Π(x) = 0 ⇐⇒ Πτn(x) = 0, hence τn : Ker(Π) � (Ker(Π) ∩ Im(τn)).
Since A is Noetherian, Ker(Π) is finitely generated. Fix a finite set of gener-

ators, and pick n for which (4.1) holds when x belongs to this set of generators.
Then α vanishes on Ker(Π) ∩ Im(τn) = τn(Ker(Π)). Since Π|Im(τn) is onto, the
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homomorphism α|Im(τn) factors through a homomorphism ã′ : M → N . Now set
ã = ã′ ◦ Tn0 , then (4.1) implies that ã satisfies the required condition. �

5. Construction and properties of the maps BI

We modify the meaning of notation: from now on G, B, B, X, etc. will denote
the groups/spaces of F -points of algebraic groups or varieties considered in section
2; these are equipped with the p-adic topology.

We apply the construction of section 3 to W = G being the wonderful com-
pactification, with D = G. If G is adjoint this is a particular case of the situation
introduced at the beginning of section 3, otherwise, one should apply considerations
of subsection 3.2. We fix an admissible system τI .

5.1. Definition of BI . Let K ⊂ G be a nice (in the sense of [2]) compact open
subgroup and let

H = S(G)K×K , HL = S(L)K∩L×K∩L

be the corresponding Hecke algebras. We use an arbitrarily chosen Haar measure
on G to identify H with the space of compactly supported K bi-invariant measures
on G, thereby endowing it with an algebra structure and the same applies to HL.

It is clear that S(XI) = iI ◦ r−I (S(G)). We set M := S(K\XI/K). We define

T ∈ Aut(M) by T = T (1,...,1) (notations of Definition 3.3). We also fix a finite
subset {hq}, q ∈ Q in H⊗2 which generates H⊗2 as a ring.

Let C :=
⋃

q∈Q supp(hq) ⊂ G × G, let V ⊂ NI be an open neighborhood of S0
I

as in Proposition 3.13 and set

M0 := {f ∈ MK | supp(f) ⊂ V }.

Let N = H, and a : M0 → N be the map coming from the admissible system (τI).

Proposition 5.1. The above data of A = H⊗2 modules M , N , the subspace M0 ⊂
M and automorphism T satisfy conditions of Lemma 4.2.

Proof. Noetherian property of H⊗2 and finite generation of M = S(K\XI/K)
follows from [2] (see in particular Remark 3.11 in loc. cit.). The linear map a :
M0 → N satisfies the compatibility condition of Definition 4.1 when h = hq

by Proposition 3.13. It follows that it also holds when h = hq1 · · ·hqn for any
q1, . . . , qn ∈ Q, hence it holds for any h ∈ H⊗2. �

Now Lemma 4.2 implies our main existence result:

Corollary 5.2. There exists unique H⊗2-covariant map BK
I : MK → H such that

BI(T
−nf) = τ∗I (T

−nf) for all f ∈ M0, n � 0.

Definition 5.3. We denote by BI : S(XI) → S(G) the linear operator whose
restriction to S(K\XI/K) is equal to BK

I for all nice compact open subgroups
K ⊂ G.

We will sometimes refer to BI as Bernstein’s map.
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5.2. The induced map on UP coinvariants. Fix a parabolic P = PI . Consider

the projection XI → G/PI×G/P−
I

pr2−→ G/P−
I . Let X0

I be the preimage of the open

UP orbit on G/P−
I under the composed map. Notice that the right action of UP on

X0
I is free and X0

I /UP
∼= G/UP canonically. It follows that S(X0

I )UP
= S(G/UP ).

Likewise, let 0XI be the preimage of the open U−
P orbit under the composition

XI → G/PI×G/P−
I

pr1−→ G/PI . Then the UP− action on 0XI is free and
0XI/U

−
P

∼=
G/UP− canonically, hence S(0XI)UP− = S(UP−\G).

Proposition 5.4. a) The composed map

S(G/UP ) = S(X0
I )UP

→ S(XI)UP
→ S(G)UP

= S(G/UP ),

where the first arrow is induced by the open embedding and the second one by the
map BI , is equal to identity.

b) The composed map

S(G/UP−) = S(0XI)UP− → S(XI)UP− → S(G)UP− = S(G/UP−),

where the first arrow is induced by the open embedding and the second one by the
map BI , is equal to identity.

Proof. Consider first the composed map in (a). In view of Claim 3.8 and Claim 2.13
this map restricted to K-bi-invariant functions on a neighborhood of G/UIZI ⊂
G/UI comes from an admissible mapG/UI ⊃ V → U ⊂ N

G/UI
(G/UIZI). However,

it is easy to see that there exists an algebraic isomorphism

NG/UI
(G/(UIZI)) ∼= G/UI

such that the composed map

X0
I ↪→ NG(G

0
(I)) → NG/UI

(G/(UIZI)) ∼= G/UI

coincides with the projection X0
I → G/UI ⊂ G/UI . (Here the second arrow in the

displayed formula is the differential of the projection G
0
(I) → G/UI).

Thus identity map S(G/U) → S(G/U) comes from an admissible map for G/UI .
It follows that the map in part (a) restricted to K-biinvariant functions on some
neighborhood of the zero section G/(UIZI) equals identity. Since the map is G
equivariant, it is equal to identity on all functions. This proves (a), part (b) is
similar. �

5.3. The map BI and K0 cosets. Let K0 ⊂ G be the standard open compact,
i.e., K0 is the group of O points in the standard O form of G (recall that G is
assumed to be split).

Recall the canonical bijections K0\G/K0 = X∗(T)/W = X∗(T)
+,K0\XI/K0 =

X∗(T)WI
= X∗(T)

+
I , where WI is the corresponding parabolic Weyl group and

X∗(T)
+
I is the set of coweights positive on simple roots in the Levi. These are

constructed by fixing a maximal torus T ⊂ G and a Borel subgroup B containing
T . Without loss of generality we can assume that the parabolic PI , I ⊂ Σ contains
B. Thus we get an embedding T → (G/UI ×G/U−

I )/LI = XI . Let ιI be the com-
position of this embedding with the embedding X∗(T ) → T sending a cocharacter
ν to ν(π), where π is a uniformizer. For λ ∈ X∗(T)

+, ν ∈ X∗(T)
+
I the subsets

Gλ = K0ι(λ)K0, (XI)ν = K0ιI(ν)K0 do not depend on the auxiliary choices (here
we abbreviated ι = ι∅ : Λ → G = X∅).
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Assume that K is normalized by the maximal compact subgroup K0. Then
K0 × K0 acts on K\Gλ/K. It is easy to see that if λ is such that (λ, α) � 0
for any root α in the radical of P , then the stabilizer of the point Kι(λ)K in K2

0

contains K+
0 ×K−

0 , where K+
0 = K0 ∩ Rad(PI), K

−
0 = K0 ∩ Rad(P−

I ). Since the
group K admits a triangular decomposition: K = K+KLK− where KL = L ∩K,
K+ = K ∩ Rad(PI), K− = K ∩ Rad(P−

I ), it is easy to see that this stabilizer
coincides with the stabilizer of the corresponding point in K\(XI)λ/K. Therefore
there is a natural K2

0 -equivariant bijection ΨP : K\(XI)λ/K−̃→K\Gλ/K.

Lemma 5.5. Fix a congruence subgroup K � K0. There exists N > 0 such that
for any λ ∈ Λ+ satisfying (λ, α) > N for all roots α in the radical of UI ⊂ PI , the
following holds:

a) The map BI sends SK×K((XI)λ) to SK×K(Gλ) and induces an isomorphism
BI : SK×K((XI)λ)−̃→SK×K(Gλ).

b) Moreover, the map BI |S(XI)λ coincides with the map induced by bijection ΨP .

Proof. For an integer N let (XI)N be the union of (XI)λ over λ satisfying the
condition of the lemma. These sets form a system of fundamental neighborhoods
of the closure SI of the corresponding stratum. For each stratum SJ in the closure
choose a neighborhood VJ of SJ in G. Without loss of generality we can assume that
for each J and an admissible system of maps φJ : VJ → XJ the map BJ |S(φJ (VJ ))

coincides with φ∗
J . We can also assume that VJ ⊂ V where V is as in Proposition

3.13 for C = K2
0 . Thus the maps φ∗

J on K-biinvariant functions are K2
0 equivariant.

Fix T ⊂ B as in subsection 5.3. The choice of Borel subgroup B defines an
isomorphism T −̃→T. In view of Claim 2.17a), the resulting embedding (Gm)Σ → G
extends to an embedding T → G. Moreover, the intersection of its image with any
stratum GI (notations of subsection 2.4) is a single T -orbit. It is easy to see
that there is an admissible system for T where each map is a T -equivariant open
embedding sending ιI(ν) to ιJ (ν) for I ⊂ J ; here we use that the image of ιI lies in

N(A1)Σ((A
1)Σ ∩GI) ⊂ NG(GI) ⊃ XI .

It also follows from the definitions that under the closed embedding this admissible
system is compatible with the one for G. This yields part (b) of the lemma, which
clearly implies part (a). �

6. Second adjointness

6.1. Basic notations. Notice that the spaces XI , G carry G2 invariant measures
(though YI does not) andG/UI carries aG-invariant measure. We fix such measures
and identify the space S of locally constant compactly supported functions on XI ,
G, G/UI with the space of locally constant compactly supported measures.

We let M(YI) be the space of locally constant compactly supported sections of
the locally constant sheaf μpr2 of fiberwise measures with respect to the second
projection pr2 : YI → G/PI . One can interpret elements φ ∈ M(YI) as operators

φ̂ : S(G/UI) → S(G/UI) where

φ̂(ψ)(ḡ) :=

∫
ḡ′∈G/UI

φ(ḡ, ḡ′)ψ(ḡ′)dg′, ψ ∈ S(G/UI).

Definition 6.1. We define the action map

AI : S(G) → M(YI), f �→ π2∗π
∗
1(f),
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where π1 : (G × G)/PI → G, π1(g1, g2) = g1g
−1
2 ; π2 : (G × G)/PI → YI ,

π2((g1, g2)PI) = (g1, g2) and π2∗ is the fiberwise integration map S((G×G)/P ) →
M(YI); here we use the observation that the tensor product of the sheaf μπ2

of
fiberwise measures for the map (G×G)/PI → YI and π∗

2(μpr2) is canonically triv-
ialized.

Remark 6.2. In terms of the interpretation of elements in M(YI) as operators,
the map A is easily seen to correspond to the action of the Hecke algebra on the
universal principal series S(G/UI).

Let P = LUP ⊂ G be a parabolic subgroup and P− = LU−
P be the opposite

parabolic subgroup. Let iI , rI be, respectively, the normalized parabolic induction
and the normalized Jacquet functors with respect to PI and i−I , r

−
I be those with

respect to P−
I .

6.2. The adjunction maps. For a smooth LI -module N one defines canonical
morphisms

can : rI iI(N) → N, Can : N → r−I iI(N).

To recall these observe that elements of the space of induced representations are
N -valued functions on G, the map can comes from restriction of functions to the
closed subset PI ⊂ G, while Can comes from push-forward of compactly supported
functions from the open subset UP−

I
PI ⊂ G. Using these canonical morphisms one

can define for any smooth G-module M and a smooth LI -module N the following
maps:

(6.1) Hom(M, iI(N)) → Hom(rI(M), N), φ �→ can ◦ r(Φ),

(6.2) Hom(iI(N),M) → Hom(N, rI(M
−), N), ψ �→ r−I (ψ) ◦ Can.

Frobenius adjointness amounts to the morphism (6.1) being an isomorphism.
This is a standard fact, one of possible proofs is as follows. It suffices to define
α : Id → iIrI so that the compositions iI → iI ◦ rI ◦ iI → iI , rI → rI ◦ iI ◦ rI → rI
are equal to identity. Here the arrows iI → iI ◦ rI ◦ iI , rI → rI ◦ iI ◦ rI come from
α, and the arrows iI ◦ rI ◦ iI → iI , rI ◦ iI ◦ rI → rI come from (6.1).

The morphism α comes from the map AI : S(G) → M(YI), since it is easy to
see that M(YI) ⊗H M = iIrI(M), and it is obvious that S(G) ⊗H M = M . The
compatibilites are easy to check.

6.3. Second adjointness. We apply a similar strategy to show that (6.2) is also
an isomorphism.

We have isomorphisms iI ◦ r−I (M) ∼= S(X)⊗G M and M ∼= S(G)⊗G M . Thus
the map BI yields for every M ∈ Sm(G) a map

BI(M) : iI ◦ r−I (M) → M.

In other words Bernstein’s morphism BI defines a morphism β : iI ◦ r−I → Id.
Consider the compositions:

νI : iI
Id⊗Can−→ iI ◦ r−I ◦ iI

β⊗Id−→ iI

and

τI : r−I
Can⊗Id−→ r−I ◦ iI ◦ r−I

Id⊗β−→ r−I .
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Theorem 6.3. a) The morphisms νI and τI are the identity morphisms.
b) The map (6.2) is an isomorphism. In particular, iI is the left adjoint of r−I .

Proof. (b) follows from (a) by a standard argument. To check (a) observe that the
maps of functors νI , τI come from the maps of bimodules considered, respectively,
in parts (a) and (b) of Proposition 5.4. Thus part (a) of the theorem follows from
that proposition. �

7. Bernstein’s map and intertwining operators

In this section we formulate some properties of the maps introduced above and
state a result which says that the maps A and B are related by the intertwining
operator. The proof occupies the next two sections.

To simplify notation we only treat the case of the spaces X,Y attached to the
Borel subgroup, we expect that similar results can be proved in a similar way for
spaces XI , YI .

Let S ′(G), S ′(X) denote the space of functions which are invariant under K×K
for some open compact subgroup K (but are not necessarily compactly supported).
Our choice of Haar measure defines a pairing between S(X) (respectively, S(G))
and S ′(X) (respectively, S ′(G)), identifying S ′(X), S ′(G) with smooth dual of
S(X), S(G) respectively. We let B� : S ′(G) → S ′(X) denote the operator dual to
B.

7.1. Bounded supports. Recall that X̄aff denotes (the space of F -points of) the
affine closure of the quasi-affine algebraic varietyX. Let us say that a subset C ⊂ X
is bounded if the closure of C in X̄aff is compact.

Let Sb(X) denote the space of locally constant functions on X which are sup-
ported on a bounded subset in X.

Proposition 7.1. For f ∈ H the support of B�(f) is bounded, i.e.,

B� : S(G) → Sb(X).

In view of potential applications we mention a more precise version of this result
in a special case; it will not be used in this paper.

Proposition 7.2. The support of B�(δK0
) is contained in X̄aff(O).

The proof of Proposition 7.2 appears in section 10.

7.2. Intertwining operators. Fix w ∈ W . Recall the Radon correspondence Cw

appearing in Lemma 2.3. We define the intertwining operator (or Radon transform)
Iw : S(X) → M′(Y ), Iw : f �→ prw2∗(pr

w
1 )

∗(f) where prw1 : Cw → X, prw2 : Cw → Y
are the projections and M′(Y ) is the space of locally constant sections of the sheaf
μpr2 (see subsection 6.1).

Proposition 7.3. Let S ⊂ X be a closed bounded subset. Then the map prw2 :
(prw1 )

−1(S) → Y is proper.

Corollary 7.4. The intertwining operator Iw naturally extends to a map Iw :
Sb(X) → M′(Y ).

Let us say that a subset in Y is w-bounded if its closure in Y w is compact.
Let Mw

b (Y ) denote the space of locally constant sections of the sheaf μpr2 whose
support is w-bounded.



GEOMETRY OF SECOND ADJOINTNESS 319

Proposition 7.5. a) The map Iw sends Sb(X) to Mw
b (Y ).

b) The map Iw : Sb(X) → Mw
b (Y ) is an isomorphism.

7.3. Main result.

Theorem 7.6. For any w ∈ W we have A = IwB
�.

Remark 7.7. The latter equality (in the special case w = 1) resembles the result
of [3, Corollary 6.2]. More precisely, in loc. cit. one finds an isomorphism of two
functors between the categories of D-modules. Following a standard analogy be-
tween maps of function spaces and functors on the categories of D-modules given
by “the same” correspondence one gets that one of the two functors considered in
loc. cit. is analogous to the map I−1

w A. The other functor in [3] is that of nearby
cycles, or specialization. The characterization of B via cospecialization of functions
on an F -manifold to normal cone makes it natural to consider B� as an analogue of
specialization functor between the categories of D-modules. It would be interesting
to find a precise mathematical statement underlying these heuristic considerations.

The proof of the theorem is given in section 9.

Corollary 7.8. For any w ∈ W we have B = A�(I�w)
−1.

8. Some properties of Radon correspondence

8.1. Proof of Propositions 7.3, 7.5. Proposition 7.3 follows from Lemma 2.5.
Proposition 7.5(a) follows from Proposition 2.6.
In order to prove Proposition 7.5(b) we show the following more precise result.
Along with Iw we will also consider the adjoint operator I ′w = prw1∗(pr

w
2 )

∗ :
Mb(Y ) → S ′(X).

Proposition 8.1. There exists an element σ in the group algebra of the torus T
with the following properties.

i) The element σ is a product of elements of the form [αi] − ci where ci is a
constant and [αi] ∈ T is a representative of the coset of T 0 corresponding to a
positive coroot.

ii) For f ∈ S(X) the element Iw(σ(f)) has compact support.
iii) For f ∈ S(X) the element I ′wIw(σ(f)) (which is well defined by ii) has

compact support.
iv) For a character χ of T 0 let Sχ(X) ⊂ S(X) be the subspace of χ semi-

invariants with respect to the action of T 0. For every χ the restriction of the
map f �→ I ′wIw(σ(f)) to Sχ equals the action of an element σχ in the group algebra
of T , where σχ is a product of nonzero elements of the form bχ,i[αi]− cχ,i where αi

is as in (i).

Proof. Fix a minimal decomposition for elements w, w−1w0. This defines a presen-
tation of Iw as a composition of �(w) simpler correspondences. Thus it suffices to
prove a similar statement for each of these simpler correspondences.

This reduces to the following well-known properties of Radon transform.

Claim 8.2 ([10, §II.2.5, II.2.6]). Let R denote Radon transform for functions on
the plane, R(f)(y) =

∫
f(x0 + ty)dt where x0 is such that 〈x, y〉 = 1 for a fixed

skew-symmetric bilinear pairing 〈 , 〉.
a) If f ∈ S(F 2 \ {0}) is such that the integral of f over any line passing through

zero vanishes, then R(f) has compact support.
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b) If π ∈ F is the uniformizer and q is the cardinality of the residue field of F ,
then π(f)− q−1f satisfies the assumption of (a) for any f ∈ S(F 2 \{0}), where for
t ∈ F× we write t(f)(x) := f(t−1x).

c) Let Φ denote Fourier transform for functions on the plane. Then there exists
a rational scalar valued function γ on the set of multiplicative characters, such that
for any f ∈ S(F 2 \ {0}) satisfying the assumption of (a) and any multiplicative
character χ in the domain of definition of γ we have

γ(χ) ·R(f)χ = Φ(f)χ.

Here for φ ∈ S(F 2 \ {0}) we let φχ denote the image of φ in the space S(F 2 \ {0})χ
of χ-coinvariants with respect to the dilation action of F×.

We also have Φ2 = Id.

Remark 8.3. The above proof does not apply in the case when a Borel subgroup
is replaced by a parabolic one. It is possible to give an alternative proof admitting
such a generalization.

8.1.1. Proof of Proposition 7.5(b). In view of Proposition 8.1 Iw induces an iso-
morphism between the spaces S(X) and M(Y ) tensored with localization of the
group algebra of the torus T by some elements of the form [αi]− ci where αi, ci are
as in Proposition 8.1. The subset {αn

i | n ≥ 0} ⊂ T is bounded, which shows that
for f ∈ Sb(X) the infinite sum

∑∞
n=0 c

−n
i αn

i (f) is a well-defined element of Sb(X).
Thus [αi] − ci acts by an invertible operator on Sb(X), a similar argument shows
that it also acts by an invertible operator on Mw

b (Y ). Proposition 7.5(b) follows.
The rest of the section is devoted to the proof of Proposition 7.1.

8.2. The Bernstein center and supports.

8.2.1. The Bernstein center. Let Z denote the Bernstein center ofG. Recall [2] that
Spec(Z) is the union of connected components, and each component has the form
Spec(Zk) = Tk/Wk where the torus TLk

is dual to Lk/L
′
k for a Levi subgroup Lk in

G, while Wk is a finite group acting on Tk (in fact, Wk is a subgroup in TLk
�Wk

where Wk is the Weyl group; here we used the standard notation L′ = [L,L] for the
commutant). Thus for every k, the summand Zk is a subalgebra in C[X∗(Lk/L

′
k)].

We have embeddings X∗(Ak) → X∗(Lk/L
′
k), X∗(Ak) → X∗(T) where Ak is the

center of Lk; the first embedding has a finite index. Thus X∗(Lk/L
′
k) ⊂ X∗(T)Q :=

X∗(T)⊗Q canonically.
We will need the following property of elements in the Bernstein center Z which

follows directly from the description of Z in [2].

Claim 8.4. For any element h ∈ Z there exists an element hL ∈ Z(L) such that
the left action of h on S(G/UP ) coincides with the action of hL coming from the
right action of L.

8.2.2. Filtrations by support. We define an increasing filtration on Z as follows. For
μ ∈ X∗(T)

+ set

X∗(T)
≤μ
Q = {λ ∈ X∗(T)Q | (w(λ), α) ≤ (μ, α) for all simple coroots α, w ∈ W},

and define

(Zk)≤μ = Zk ∩ C[X∗(T)
≤μ
Q ], Z≤μ =

∏
(Zk)≤μ.
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This equips Zk, Z with filtrations indexed by the partially ordered semi-group
of dominant weights. It is easy to see that the Rees ring

⊕
μ(Zk)≤μ is finitely

generated for each k.
We will need an auxiliary result relating this filtration to a filtration on the Hecke

algebra.
Recall notations K0, Gλ, etc., from subsection 5.3.
We let G≤λ =

⋃
μ≤λ Gμ and we let H≤λ = {h ∈ H | supp(h) ⊂ G≤λ}; here ≤

denotes the standard order on dominant coweights.
Fix a congruence subgroup K � K0. Thus K is a normal open subgroup in K0

and K is nice in the sense of [2]. We change notation and write H instead of HK

and H≤λ instead of H≤λ ∩HK .

Proposition 8.5. There exists λ0 such that for λ ≥ λ0 and any μ we have

Z≤μ · H≤λ ⊂ H≤λ+μ.

The proof of the proposition is preceded by two auxiliary statements.
The first one is a property of the element hL introduced in Claim 8.4, it is an

immediate consequence of characterization of hL formulated in that claim.

Claim 8.6. For h ∈ Z≤μ let hL be as in Claim 8.4. Then the support supp(hL)
satisfies the following condition. Let Lc ⊂ L be the subgroup generated by compact
subgroups, so that L/Lc

∼= X∗(L/L
′) ⊂ X∗(T)Q. The image of supp(hL) in L/Lc

is contained in X∗(L/L
′)≤μ.

To state another lemma, note that we can identify the double quotientK0\XI/K0

with X∗(T)/WI = X∗(T)
+
I , where WI is the corresponding parabolic Weyl group

and X∗(T)
+
I is the set of coweights positive on simple roots in the Levi subgroup

LI . For ν ∈ X∗(T)
+
I we denote by (XI)ν the corresponding K2

0 orbit.

Lemma 8.7. Fix I ⊂ Σ. For any μ ∈ X∗(T)
+ there exists a finite set Sμ

of linear combinations of the form
∑

riα
∨
i , i ∈ I such that Z≤μS(XI)

K×K
ν ⊂∑

S(XI)η, η ∈ ν + conv(W (μ)) + Sμ where conv is the convex hull.

Proof. We have a fibration XI → G/P−
I with fibers G/UI ; the set K0\G/(UI ·

KLI
0 ) maps isomorphically to K0\XI/K0. The left action of H we consider here is

fiberwise, thus it suffices to prove a similar statement about the action on S(G/UI).
An element h ∈ H(L) supported on the preimage of a given ζ ∈ X∗(L/L

′) sends
S(G/UI)ν to the sum of S(G/UI)η where η ∈ ν + ζ + S for some finite subset
S = S(h) of linear combinations of α∨

i , i ∈ I. Thus the lemma follows from Claim
8.6. �

8.2.3. Proof of Proposition 8.5. Since the Rees ring
⊕

μ(Zk)≤μ is finitely generated
for each k and ZkH = 0 for almost all k, it suffices to show that for fixed k, μ and
sufficiently large λ we have

(8.1) (Zk)≤μ · H≤λ ⊂ H≤λ+μ.

Fix N ∈ Z>0 as in Lemma 5.5. We can and will assume that N > 2ri for ri as in
Lemma 8.7, μ ∈ M . We can and will assume also that 〈λ, α〉 > 2N for any simple
root α.

Fix ν ∈ X∗(T), ν ≤ λ and let f be a K-bi-invariant function supported on Gν .
Let P = PI be the parabolic subgroup such that the simple roots in its Levi are
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exactly those simple roots α for which (α, ν) ≤ N . By Lemma 5.5(a) we have
f = BI(fP ) for some fP ∈ S(XI)ν . Thus for z ∈ Z≤μ we have z(f) = BI(zfP ). In
view of Lemma 8.7, z(fP ) ∈

∑
S(XI)η with η ∈ ν + conv(W (μ)) + Sμ for a fixed

finite set Sμ of linear combination
∑

riαi where αi are coroots of the Levi.
To finish the proof of Proposition 8.5 it suffices to check that ν +

∑
riαi ≤ λ.

To do this, notice that for every simple coroot αi of the Levi and the corresponding
fundamental weights ωi we have

(λ− ν, ωi) >
1

2
(λ− ν, αi) >

1

2
(2N −N) =

1

2
N > ri,

where the first inequality follows from the fact that λ − ν is a sum of positive
coroots, while the other ones follow from the assumptions on N . �

In the next subsection we will need the following consequence of Proposition 8.5.

Lemma 8.8. Fix an open compact subgroup K ⊂ K0. There exists a finite subset
S ⊂ X∗(T) such that for any μ ∈ X∗(T)

+
I , φ ∈ S(XI)μ and λ ∈ X∗(T)

+ and any
w ∈ W there exist ψi ∈ S(XI), hi ∈ H, such that

φ =
∑

hi(ψi), supp(hi) ⊂ G≤λ, supp(ψi) ⊂ (XI)μ−w(λ)+S.

Proof. The space S(X) is acted upon by the maximal torus T; for our current
purposes it suffices to consider the action of the subgroup X∗(T) ⊂ T (where the
embedding depends on the choice of a uniformizer π ∈ F ).

It follows from the description of Z in [2] that the action of an element s ∈
C[X∗(T)]

W on S(X)K×K coincides with an action of some element in s′ ∈ Z.
Moreover, if s ∈ C[X∗(T)]≤μ for some μ ∈ X∗(T)

+, then s′ can be chosen in Z≤λ.
It is clear that S(X)0 generates S(X) as a module over X∗(T). Choose a finite

dimensional space of generators for C[X∗(T)] over C[X∗(T)]
W , then applying it to

S(X)K×K
0 we get a space of generators for S(X)K×K over C[X∗(T)]

W , let us denote
it by V . We can also assume without loss of generality that C[X∗(T)]≤λS(X)0 ⊂
C[X∗(T)]

W
≤λV for all λ ∈ X∗(T)

+.

Let us now choose λ0 as in 8.5 and choose S such that S(X)S ⊃ C[X∗(T)]
W
≤λ0

·V .
We claim that this S satisfies the condition of Lemma 8.8. Indeed, for λ ≥ λ0 we
have

S(X)≤λ ⊂ C[X∗(T)]≤λV = C[X∗(T)]
W
≤λ−λ0

C[X∗(T)]
W
λ0
V ⊂ H≤λS(X)S.

Here in the last inclusion we used the inclusion C[X∗(T)]
W
≤λ−λ0

δK ⊂ Z≤λ−λ0
δK ⊂

H≤λ which follows from Proposition 8.5. �
The last ingredient needed in the proof of Proposition 7.1 is the following easy

statement.

Claim 8.9. For any λ0 ∈ X∗(T) the subset X≤λ0
:=

⋃
λ≤λ0

XI,λ has compact

closure in X̄aff .

8.3. Completion of the proof of Proposition 7.1. Since the space of bounded
distributions is clearly invariant under the G × G action, it suffices to prove the
statement for f = δK .

In view of Claim 8.9 it is enough to show existence of λ0 ∈ X∗(T)
+
I such that

for φ ∈ S(X)K×K the condition supp(φ) ⊂ XI,μ, μ �≤ λ0 implies that B(φ)|1 = 0.
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Assume φ ∈ S(X)μ and write μ = λ1 − λ2, where λ1, λ2 ∈ Λ+. Apply Lemma
8.8 with w = w0. We get that φ = h(ψ), for some h ∈ H≤λ′

2
and supp(ψ) ⊂ Xλ1+S ;

here λ′
2 = −w0(λ2) is the dual weight. We can and will assume without loss of

generality that the pairing of each coweight in λ1+S with any fundamental weight
is larger than N where N is as in Lemma 5.5. This lemma implies then that
supp(B(ψ)) ⊂ Gλ1+S . Thus f ∗ B(ψ)|1 = 0 for f ∈ H≤ν unless λ1 + σ ≤ ν′ for
some σ ∈ S, ν′ = −w0(ν). If we choose λ0 so that λ0 �≤ −σ for σ ∈ S, we get that
λ2 = λ1 − μ �≥ λ1 + σ, so h ∗ B(ψ)|1 = 0 since h ∈ H≤λ′

2
. �

9. Proof of Theorem 7.6

Recall that Sb(X), Sb(T ) denotes the space of locally constant functions on X
(respectively, T ) with bounded support; Xw1,w2

denotes the corresponding B × B
orbit on X.

Recall the Jacquet and induction functors rI = rPI
, iI = iPI

introduced in
subsection 6.1; when PI = B is Borel we abbreviate this to r, i. We will also
abbreviate r(S(G)) to r(G) etc.

Proposition 9.1. The stratification of X by B×B orbits Xw1,w2
induces a filtration

on r(Sb(X)) which splits canonically, yielding a canonical isomorphism:

(9.1) r(Sb(X)) ∼=
⊕

W×W

Sb(T ).

We denote the summand corresponding to (w1, w2) ∈ W ×W by r(Sb(X))w1,w2
.

The proposition follows from the next lemma which shows that for every B ×B
orbit Xw1,w2

⊂ X the map r(Sb(X)) → Sb(T ), f �→ (prw1,w2
)∗(f |Xw1,w2

) is well

defined; here prw1,w2
: Xw1,w2

→ T ∼= Xw1,w2
/(UB × UB) is the projection. It is

clear that the direct sum of these maps provides an isomorphism (9.1) which splits
the filtration. �

Lemma 9.2. Let � ⊂ X be a bounded subset. Fix w1, w2 ∈ W and let Xw1,w2
be the

corresponding B ×B-orbit. Then the map prw1,w2
: �∩Xw1,w2

→ T = Xw1,w2
/U2

B

is proper and its image is bounded.
For every w1, w2 ∈ W , every bounded subset in T is the image of � ∩ Xw1,w2

under prw1,w2
for some bounded subset � ⊂ X.

Proof. Without loss of generality we can assume that � is invariant under an open
compact subgroup in G × G. Then properness amounts to compactness of the
intersection of � with every fiber of the projection Xw1,w2

∩ � → T , which follows
from the fact that the fibers of projection Xw1,w2

→ Xw1,w2
/U2 are closed in X̄aff .

The latter is a consequence of the Kostant–Rosenlicht Theorem [19, Proposition
2.4.14], since each fiber is an orbit of an affine algebraic group acting on an affine
algebraic variety.

In fact, the image of the projection is bounded and the last statement follows
respectively from parts b) and a) of Claim 2.17. �

9.1. The subquotient maps for B�. In the next statement we use identifications
of T -torsors UB\Gw/UB and UB\Xw1,w2

/UB where w1w2w0 = w ∈ W . Such an
identification follows from Corollary 2.16.
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Lemma 9.3. Suppose that w = w1w2w0 and �(w) + �(w0) = �(w1) + �(w2). Then

the composition r(G)≥w
r(B�)−→ r(Sb(X)) → r(Sb(X))w1,w2

factors through a map
r(G)w → r(Sb(X))w1,w2

. This map equals the canonical embedding S(T ) → Sb(T ).

Proof. The composed map in question factors through a map r(G)w→r(Sb(X))w1,w2

because there are no nonzero T 2 equivariant maps (r(G)<w) → r(Sb(X))w1,w2
.

The statement readily follows from the following formula:

(9.2) prw1,w2∗(B
�(f)|Xw1,w2

) = f ;

here f ∈ S(G) is such that f |G<w
= 0 and f is the image of f in r(S(G))w = S(T ).

Notice that the direct image is well defined since the map

supp(B�(f)) ∩Xw1,w2
→ T = Xw1,w2

/U2
B

is proper in view of Lemma 9.2 and Proposition 7.1.
Since the map prw1,w2∗ factors through coinvariants with respect to the action of

UB ×UB , we have prw1,w2∗(B
�(f)|Xw1,w2

) = F (f) for some T × T equivariant map

F : S(T ) → Sb(T ). Thus (9.2) would follow if we show that restrictions of both
sides to a nonempty open subset C ⊂ T (which may depend on K but not on f)
coincide. The construction of the map B in section 5 (see Corollary 5.2) makes it
clear that for some neighborhood VG of Z = B×B in G, a neighborhood VX of the
zero section in the normal bundle NG(Z) and an admissible bijection τ : VX → VG

we have B(f) = τ∗(f) for any f ∈ S(X)K×K , supp(f) ⊂ VX . In view of Claim 3.8,
we will be done if we show that for some UB ×UB invariant subset V ⊂ Xw1,w2

we
have V ⊂ VX . This follows from the next geometric lemma. �

Lemma 9.4. For a representation M of G let ρM : X → End(M) be the canonical
map as in Claim 2.18.

a) Suppose that a subset Z ⊂ X is such that for any M the closure of ρM (Z) does
not contain zero. Then for any neighborhood V of the zero section in NG(Z) ⊃ X
we have zNI (Z) ⊂ V for N � 0 (where we use the notation of Definition 3.3).

b) Every orbit of the group UB ×UB ×T0, where T0 is a compact subgroup in the
abstract Cartan, satisfies the conditions of part (a).

Proof. (a) follows from Claim 2.18, in view of the following easy observation: given
finite dimensional vector spaces Vi over F , and a subset Z in

∏
V0
i such that the

image of Z under the i-th projection does not contain zero in its closure, the closure
of Z in

∏
P̃(Vi)

0 is compact (where we used notations from 2.5.2); hence for any
neighborhood V of

∏
P(Vi), multiplication by π−N sends Z to V for some N .

To prove (b) it is enough to show the same statement for a UB ×UB orbit. The
image of such an orbit in End(M)i is also a UB × UB orbit different from {0}.
Since an orbit of a unipotent group on an affine algebraic variety is Zariski closed
by Kostant-Rosenlicht Theorem, we get the statement. �

Remark 9.5. The implication in part (a) of the lemma is actually an “if and only
if” statement, we only proved the direction we need to save space.

The last auxiliary fact needed in the proof of Theorem 7.6 is the following prop-
erty of intertwining operators which is immediate from its definition.

For w1, w2 ∈ W we let r(Mv
b (Y ))w1,w2

denote the corresponding subquotient of
the filtration on r(Mv

b (Y )) induced by the stratification of Y by B ×B orbits.
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Claim 9.6. The component r(Sb(X))w1,w2
→ r(Mv

b (Y ))w′
1,w

′
2
of Iv equals identity

if w′
1 = vw1, w

′
2 = w2w0v

−1 and �(w1) = �(v) + �(w′
1), �(w2) = �(w′

2) + �(w0v
−1).

9.2. Proof of Theorem 7.6. Comparing Proposition 7.1 with Corollary 7.4 we
see that the composition IwB

� is well defined.
Then Lemma 9.3 together with Claim 9.6 show that r(IwB

�) induces a quotient
map r(S(G))1 → r(Mw

b (Y ))1,1 which is equal to the canonical embedding S(T ) →
Sw
b (T ). By Frobenius adjointness this implies that IwB

� is the composition of A
with the embedding M(Y ) → Mw

b (Y ). �

10. Plancherel type formulas

In this last section we present an application of Corollary 7.8.

10.1. The map B and the Plancherel functional. The equality B = A�(I�w)
−1

allows one to write down a spectral expression for the value f(1) for a function
f ∈ S(G) presented in the form f = B(φ), φ ∈ S(X). To spell this out we need
some preliminaries.

Let Char denote the space of characters of the torus T viewed as an affine
ind-algebraic variety over C. We have Char ∼=

⊔
χ∈T(O)∨ Charχ, where T(O)∨

is the discrete set of characters of T(O) and Charχ is the space of characters
whose restriction to T (O) is equal to χ. Then Charχ is a principal homogeneous
space for the dual torus T∨ over C. Let Of (Char) =

⊕
χ O(Charχ) denote the

(nonunital) ring of regular functions on Char which vanish on all but a finite
number of components. We have a canonical isomorphism Of (Char) ∼= S(T), and
a noncanonical isomorphism Of (Char) ∼=

⊕
χ∈T(O)∨ O(T∨).

Recall the partial compactification Taff of the torus T given by

T = Spec(F [X∗(T)+))

where X∗(T)+ ⊂ X∗(T) is the semigroup consisting of positive rational combina-
tions of simple roots in X∗(T). Let Sb(T) be the space of distributions on Taff

invariant with respect to an open subgroup in T whose support is contained in
a compact subset of Taff . To give a spectral description of this ring introduce

the affine toric variety T
∨
= Spec(C[X∗(T)

+]), where X∗(T)
+ is the dual cone to

X∗(T)+, i.e., X∗(T)+ ⊂ X∗(T) = X∗(T∨) is the set of weights which are positive
rational linear combinations of dominant weights of T∨. This defines a partial com-
pactification Charχ = (T× Charχ)/T of the principal homogeneous space Charχ.

Let Ô(Charχ) be the ring of functions on the punctured formal neighborhood of the

divisor ∂Charχ = Charχ\Charχ. Set Ô(Char)f =
⊕

χ Ô(Charχ). Then it is easy

to see that Ô(Char)f ∼= Sb(T). Choosing a point in Charχ we get identifications

Charχ ∼= T∨, Charχ ∼= T
∨
,

Ôχ
∼= {φ : X∗(T) → C | supp(φ) ⊂ S +X∗(T)

+ for S ⊂ X∗(T), |S| < ∞}.

We define a linear functional
∫

: Ôχ → C sending a function φ : X∗(T) → C to
φ(0). It is easy to see that this is independent of the choice of a point in Charχ. If

f ∈ Ô(Charχ) is a Laurent expansion of a rational function on Charχ (we assume
that the divisor of poles of f does not pass through the zero-dimensional orbit {tχ0}
of T∨ on Charχ, so that the Laurent expansion is well defined), then

∫
f is the

integral of f over a coset of the maximal compact subtorus close to tχ0 , hence the
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notation. We let
∫

: Ô(Char)f → C be the linear functional coinciding with the
above functional on Charχ for every χ. It is easy to see that under the isomorphism

Ô(Char)f ∼= Sb(T), the functional
∫
goes to the functional h �→ h(1).

For a character χ of T let iχ : H → End(Vχ), i
−
χ : H → End(V −

χ ) denote the

induced representations iGB(χ), i
−G
B (χ) respectively.

Recall from subsection 6.1 that elements inM(Y ) can be interpreted as operators
acting on S(G/U) which commute with the action of the abstract Cartan T and
are invariant with respect to an open compact subgroup, or as family of operators
acting on the space Vχ for every χ. In particular, for f ∈ M(Y ) we get a regular
function τ (f) ∈ Of (Char) whose value at χ equals Tr(f, Vχ).

It is easy to see that (M1
b)sm(Y ) = Ô(Char)⊗O(Char) M(Y ), where (M1

b)sm ⊂
M1

b denotes the subspace of elements invariant under some open subgroup in G×G.

Thus for f ∈ (M1
b)sm(Y ) we get τ (f) ∈ Ô(Char).

In the next statement we use Proposition 7.5.

Claim 10.1. a) For f ∈ (M1
b)sm(Y ) we have

(10.1)

∫
τ (f) =

∫
ΔB×{1}

f = A�(f)(1),

where ΔB×{1} ⊂ pr−1
Y (B2) ⊂ Y is defined by means of (2.2).4

b) For any φ ∈ S(X) we have

B(φ)(1) =

∫
τ ((I�1 )

−1(φ)).

Proof. Pick an open compact subgroup K ⊂ G such that f ∈ (M1
b)

K×K(Y ). The
O(Char)-module S(G/U)K splits as a sum where each summand is free over the
ring functions on a component of Char; moreover, each module has a basis in-
dexed by the finite set K\G/B. For f ∈ M(Y ) the sum of diagonal entries of the
corresponding operator on S(G/U) in this basis is readily seen to equal the element

pr2∗(f |pr−1
Y
(ΔB)) ∈ S(T) ∼= Of (Char),

where pr2 denotes projection to the second factor in (2.2) and we use the observation
in footnote 4 to make sense of pr2∗. Applying the functional

∫
: Of (Char) → C

to this sum of diagonal elements yields
∫
τ (f), which is thus seen to be equal to

the second expression in (10.1). This proves the first equality for f ∈ M(Y ),
the case of f ∈ (M1

b)sm(Y ) follows. The second equality in (a) is clear since the
preimage of 1 ∈ G under the projection (G × G)/B → G maps isomorphically to
B × {1} ⊂ pr−1

Y (ΔB) ⊂ Y .
This proves part (a); part (b) follows from (a) compared to Corollary 7.8. �

Remark 10.2. A similar equality holds where I1 is replaced by Iw for some w ∈ W .

10.2. Commutative subalgebras in the Hecke algebra. We fix a maximal
split torus T ⊂ G and a subgroup K ⊂ K0 ⊂ G (where K0 is as in subsection 5.3)
which is nice in the sense of [2] and is in a good relative position to T . Recall that
this means that

(10.2) K = K+ ·K0 ·K−

4Notice that for f ∈ (M1
b)sm(Y ) the restriction f |ΔB×{t}, t ∈ T is a locally constant measure

on B, thus the second integral in the displayed formula is well defined.
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for any pair of opposite Borel subgroups B+ = U+T , B− = U−T , where K+ =
U+ ∩K, K− = U− ∩K, K0 = T ∩K. We fix a Borel subgroup containing T , this
defines the cone of dominant coweights X∗(T )

+ ⊂ X∗(T ).
The following technical statement is not hard but it plays an important role in

Bernstein’s theory.
Recall notation ι, ιI introduced in subsection 5.3. For ν ∈ X∗(T )

+ let eν ∈ H
be the delta-function of the two-sided coset Kι(ν)K.

Let xν ∈ S(X) be the delta-function of the K × K orbit of ιX(ν). We set
θν = B(xν).

Proposition 10.3. The map X∗(T ) → H, ν �→ θν is uniquely characterized by the
following two properties.

i) θμ1+μ2
= θμ1

θμ2
.

ii) There exists ν0 such that for ν ∈ ν0 +X∗(T )
+, we have θν = eν .

We will need the following lemma.

Lemma 10.4. [2] a) For μ, ν ∈ X∗(T )
+ we have eμeν = eμ+ν .

b) Given λ ∈ X∗(T )
+, there exists N > 0 such that the kernel of left multiplica-

tion by eNλ on HK equals the kernel of left multiplication by e(N+1)λ.

Proof. (a) follows directly from (10.2). (b) follows from the fact that HK is right
Noetherian. �

Proof of the Proposition. To check uniqueness, assume θμ and θ′μ are different col-

lections of elements satisfying (i), (ii). Fix ν ∈ X∗(T )
+ such that θν = eν = θ′ν .

We have also θμ+Nν = eμ+Nν = θ′μ+Nν for some N . Thus θμ − θ′μ lies in the image
of left multiplication by eν , as well as in the kernel of left multiplication by eNν .
Lemma 10.4(b) implies that θμ = θ′μ, which proves uniqueness.

It remains to check that θν = B(xν) does satisfy (i), (ii). It follows from Lemma
5.5(b) that given an admissible bijection between U ⊂ G and V ⊂ X there exists
ν0 ∈ X∗(T )

+ such that the bijection sends the set KιG(ν)K into the set KιX(ν)K
for ν ∈ ν0 + X∗(T )

+. Thus (ii) follows from the construction of B. Given ν ∈
X∗(T )

+, Proposition 3.13 implies that there exists ν0 ∈ X∗(T )
+ such that

(10.3) eν ∗ xμ = xν+μ = xμ ∗ eν

for μ ∈ ν0 + X∗(T )
+. Since the elements xμ are permuted by the action of T

commuting with the action of H ⊗ H, we see that (10.3) holds for all μ. Hence
eνθμ = θν+μ for all μ. We now proceed to check (i). Pick ν such that eη = θη when
η is either ν+μ1, or ν+μ1+μ2. Then we see that eνθμ1+μ2

= eν+μ1+μ2
= eνθμ1

θμ2
.

Also, both θμ1+μ2
and θμ1

, θμ2
lie in the image of left multiplication by eNν for all

N . Thus the desired equality follows from Lemma 10.4(b). �

Example 10.5. The case most often encountered in the literature is when K = I
is the Iwahori subgroup. Then H = HI is isomorphic to the affine Hecke algebra, it
contains invertible elements θIν , ν ∈ Λ such that θIν1+ν2

= θν1
· θIν2

and θIν = δIι(ν)I
when ν is dominant; they form a part of a system of generators for this algebra
discovered by Bernstein [13], which have found numerous important applications.
It is clear that these are exactly the elements described in Proposition 10.3 in the
case K = I.
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We point out a special case of this potentially useful in applications. Setting
ν = 0 we get

B(δIιX(0)I) = θI0 = δI .

Furthermore, applying averaging with respect to K0 ×K0 to both sides and using
that X(O) = K0 · ιX(0) ·K0 we get

B(δX(O)) = δK0
.

10.3. Proof of Proposition 7.2. It is easy to see that

X ∩ X̄aff(O) =
⋃

λ�Q0

Xλ,

where we write λ �Q μ if μ − λ is a linear combination of positive coroots with
nonnegative rational coefficients.

Using the notation and the content of Example 10.5 we reduce the claim to
showing that

supp(θIλ) ∩K0 = ∅ unless λ �Q 0.

In fact, we will show that

(10.4) supp(θIλ) ∩K0 = ∅ unless λ � 0,

where � is standard order on weights, i.e. λ � μ if μ−λ is a sum of positive roots.
We have the standard basis tw of HI , w ∈ Waff where Waff is the extended affine

Weyl group. We also have an algebra anti-involution i : HI → HI sending tw to
t−1
w and a pairing HI ×HI → k given by 〈f, g〉 = c1 where i(f)g =

∑
cwtw. Then

(10.4) reduces to

(10.5) 〈tw, θIλ〉 = 0 for w ∈ W, λ �� 0,

where W is the finite Weyl group.
Pick a dominant weight μ such that μ+λ is also dominant. Then for w ∈ W we

have

〈tw, θIλ〉 = 〈tμtw, tμθλ〉 = 〈t(μ)·w, θIμ+λ〉.
It is easy to see that for w, v ∈ Waff we have 〈tw, tv〉 = 0 unless v ≤ w where ≤
refers to the Bruhat order on Waff .

For dominant coweights η, ν the inequality η ≤ (ν)w, w ∈ W implies that η � ν.
So〈tw, θIλ〉 �= 0 implies that μ + λ � μ, i.e. λ � 0, which proves (10.5) and hence
Proposition 7.2 for adjoint groups. �

10.4. Plancherel functional on the abelian subalgebra. Corollary 7.8 shows
that

(10.6) θν(g) = B(xν)(g) = A�I1(g).

This yields a spectral expression for the Plancherel functional f �→ f(1) restricted
to the subalgebra AK ⊂ H spanned by θν . To state it we introduce the following
notation.

We define a rank one operator Π : V K
χ → (V −

χ )K as follows. Notice that the

space V K
χ splits as a direct sum of one-dimensional subspaces indexed by the set

K\G/B; likewise, V −
χ is a direct sum of one-dimensional subspaces indexed by

K\G/B−. The one-dimensional summands corresponding to the coset of 1 in the
two spaces are canonically isomorphic (both are identified with the space of the
one-dimensional representation χ of T ), let us denote this space by Cχ. We define
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Π : (V −
χ )K → V K

χ as the composition (V −
χ )K → Cχ → V K

χ , where the first arrow
is the projection arising from the above splitting into a direct sum, and the second
arrow is the embedding.

In the next theorem we consider a function χ �→ Tr(hΠR−1, Vχ), h ∈ H, where
R : V −

χ → Vχ is the intertwining operator defined for χ in a Zariski open dense
subset of Char. This is a rational function on Char vanishing on all but a finite
number of components. Moreover, in view of Proposition 8.1, for every χ the point
t0 ∈ Charχ does not lie in the divisor of poles of this function. Thus the functional∫
introduced in subsection 10.1 is well defined on such a function.

Theorem 10.6. For h ∈ AK we have

h(1) =

∫
Tr(hΠR−1, V K

χ ).

Proof. We can assume that h = θν . Applying Corollary 7.8 with w = 1, we get
θν = A∗I−1(xν).

A function φ ∈ Mw=1
b (Y ) defines an operator on the completion of the universal

principal series, S(G/U)⊗O(Char) Ô(Char).
By Claim 10.1(a) we have∫

Tr(φ, Vχ) = A∗(φ)(1),

where integral in the left-hand side has the same meaning as in the statement of
the theorem.

Thus the proof will be complete once we show that

(10.7) iχ(I1(xν)) = iχ(θν)ΠR−1.

A function f ∈ S(X) defines an operator between the principal series and the
opposite principal series, σχ(f) : V −

χ → Vχ. In particular, it is easy to see that

σχ(x0) = Π for all χ. Also, it follows from the definitions that iχ((I
�
1 )

−1(f)) =
R−1 ◦ σχ(f)

−1. Finally, using that all the maps involved commute with the H⊗H
action, we get

iχ((I
�
1 )

−1(xν)) = iχ(θν ∗ x0) = iχ(θν)ΠR−1.

Thus we have proven (10.7), and hence the theorem. �

Remark 10.7. In the special case when K = I is the Iwahori subgroup Theorem
10.6 reduces to (an equivalent form) of [15, Theorem 1.14].

Remark 10.8. We expect that a version of Claim 10.1(b) holds for the space of
rapidly decreasing functions on X and that it can be used to deduce the standard
Plancherel formula. We plan to develop this application in the future.

11. Appendix: quasi-normal cone for toric coverings

by Yakov Varshavsky, Roman Bezrukavnikov, and David Kazhdan

In this section we introduce a version of the definition of a normal cone which
behaves well for a class of singular varieties, including De Concini-Procesi compact-
ifications of not necessarily adjoint groups.
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11.1. Quasi-normal cone. Let X be a smooth variety over a field F and Z ⊂ X
be a smooth locally closed subvariety. Let X ′ be a normal scheme and X ′ → X be a
finite flat morphism, let Z ′ be the preimage of Z equipped with reduced subscheme
structure. Let NX(Z) be the normal bundle.

Let ÑX(Z) be the deformation to the normal cone; thus (A1 \ {0}) × X ⊂
ÑX(Z) ⊃ NX(Z). Recall that Ñ comes equipped with a Gm action which dilates
the fibers of the normal bundle and acts on (A1 \ {0})×X by t : (z, x) �→ (tz, x).

Let ÑX′(Z ′) be the normalization of ÑX(Z) in (A1\{0})×X ′, and setNX′(Z ′) =

ÑX′(Z)×A1 {0}. We call NX′Z ′ the quasi-normal cone of Z ′ in X ′.

We have a locally closed embedding Z ′ × A1 → ÑX′Z ′.
Definition. We say that X ′ is well approximated around Z if the following

conditions hold.

(a) For some d > 0 the composition of the natural action of Gm on ÑZ(X) with

the map Gm → Gm, t �→ td, lifts to an action αd of Gm on ÑZ′(X ′).
(b) Zariski locally on Z there exists an isomorphism τ between the formal neigh-

borhoods of Z ′ × A1 in NX′(Z ′)× A1 and in ÑZ′(X ′), such that:
(i) τ restricted to the preimage of 0 ∈ A1 equals identity.

(ii) τ isGm-equivariant where Gm acts on ÑZ′(X ′) via αd and onNX′(Z ′)
×A1 by t : (x, z) �→ (αd(x), t

dz).

If F is a local field, we can repeat the definition replacing an isomorphism of
formal neighborhoods by an analytic isomorphism of actual F× invariant neighbor-
hoods in the space of F -points; “Zariski local” should then be replaced by local in
the sense of F -topology. We will use the term “analytically well approximated” for
this version of the property. If F is non-Archimedian, existence of local isomor-
phisms implies existence of a global isomorphism of appropriate neighborhoods.

In the latter case, the restriction of τ to the fiber over 1 ∈ A1 will be called an
admissible bijection.

Example 11.1. If X ′ = X, then τ amounts to an isomorphism between a neigh-
borhood of Z in X and a neighborhood of the zero section in the normal bundle
NX(Z), whose differential in the normal direction equals identity.

11.2. Toric covering. Again let X be a smooth variety over F , and let Di, i ∈ I
be smooth divisors with normal crossing in X. For a subset J ⊂ I we have the
corresponding stratum XJ =

⋂
Di, i ∈ J. We fix J ⊂ I and let Z = XJ .

We have line bundles Li = O(Di) on X, each coming with a canonical section
si. They can be combined into a T -bundle E for the torus T = (Gm)I .

Let T ′ be another torus and T ′ → T be a fixed isogeny. Suppose that the above
T -bundle on X lifts to a T ′-bundle E ′ (i.e. E is the push-forward of E ′); we fix such
a T ′-bundle E ′. This data defines a ramified covering X ′ → X as follows.

Let A = (A1)I , thus T acts on A making it a toric variety. The T -bundle E
defines an associated bundle AE with the fiber A; of course AE is nothing but the
total space of the sum of line bundles Li; the sections si combine to a section
s : X → AE .

Let A′ be the normalization of A in the covering T ′ → T . We can also form
an associated bundle A′

E′ . Set X ′ = X ×AE A′
E′ . We call X ′ obtained by this

construction a toric covering.
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For a subset J ⊂ I we let A′(J) be the normalization of (A1)J in the quotient
of T ′ by the neutral connected component of the preimage of (Gm)I\J ⊂ T , let
A′

E′(J) be the corresponding bundle over X.

Example 11.2. Let G be a reductive algebraic group. Let Gad = G/Z(G), where
Z(G) ⊂ G is the center, and let G′ ⊂ G be the derived (commutator) subgroup.
Let X = (G/G′)×Gad where Gad is the wonderful compactification of Gad, and Di

be the components of the complement X \ (G/G′)×Gad. The torus T is identified
with the (abstract) Cartan subgroup of Gad. The total space of E is easily seen
to be identified with (G/G′) × S0(Gad), where S0(Gad) ⊂ S(Gad) is an open part
in Vinberg’s semi-group S(Gad). Let T ′ be the abstract Cartan of G′, and let E
be the T -bundle whose total space is S0(G). (If G is simply-connected, this is a
universal torus bundle over X, i.e., the map from X∗(T ) to Pic(X) given by this
bundle is an isomorphism; we neither prove nor use this fact.) It is easy to see that
the preimage of (G/G′) × Gad ⊂ X in X ′ is isomorphic to G. It follows from the
theorem below that X ′ is the normalization of (G/G′)×Gad in G.

Example 11.3. Assume that the line bundles Li are trivial (i.e. Di is cut out by
a global function). Fix E ′ to be the trivial T ′-torsor. Then s amounts to a smooth
morphism X → A, so that Z is the preimage of the closure of a T -orbit in A; we
have X ′ = X ×A A′.

11.3. Theorem. Let X ′ → X ⊃ Di be a toric covering and Z = XJ as above.
a) X ′ is a normal variety and the map X ′ → X is finite and flat.
b) X ′ is well approximated around Z. If F is a local field it is also analytically

well approximated.
c) The quasi-normal cone NX′(Z ′) is canonically isomorphic to A′

E′(J)×X Z.

Remark. If T ′ = T , so that X ′ = X, the isomorphism of part (c) amounts to the
adjunction formula O(D)|D ∼= NX(D).

Proof. It is easy to check that all the definitions above are compatible with smooth
base change. Thus it suffices to check that the statements hold after base change
with respect to the morphism from the total space of the torsor E toX. This reduces
the proof to the situation of Example 11.3. Using compatibility with smooth base
change again, we see that it suffices to show that A′ is normal, A′ → A is flat and
finite; that A′ is well approximated around the closure AJ of a T -orbit in A, and
that NA′(A′

J) = A′. Normality and finiteness are clear from the definition, and

flatness is easy to show. The deformation to the normal cone ÑA(AJ) is constant,
which implies the rest. �

Remark. Part (c) of the theorem shows that an open part of NX′(Z ′) is identified
with the total space of E ′|Z . In the situation of Example 11.2, this is the space
denoted by XJ in this paper.
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Boston, Boston, MA, 2003, pp. 301–323. MR1985730 (2004f:20013)

[16] D. Renard, Représentations des groupes réductifs p-adiques (French), Cours Spécialisés
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