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LARGEST EIGENVALUE OF THE LAPLACIAN MATRIX: ITS
EIGENSPACE AND TRANSITIVE ORIENTATIONS˚

BENJAMIN IRIARTE:

Abstract. We study the eigenspace with largest eigenvalue of the Laplacian matrix of a simple
graph. We find a surprising connection of this space with the theory of modular decomposition of
Gallai, whereby eigenvectors can be used to discover modules. In the case of comparability graphs,
eigenvectors are used to induce orientations of the graph, and the set of these induced orientations
is shown to (recursively) correspond to the full set of transitive orientations.
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1. Introduction. Let G “ Gprns, Eq be a simple (undirected) graph, where
rns “ t1, 2, . . . , nu, n P P. The adjacency matrix of G is the nˆ n matrix A “ ApGq
such that

pAqij “ aij :“

"

1 if ti, ju P E,
0 otherwise.

The Laplacian matrix of G is the nˆ n matrix L “ LpGq such that

pLqij “ lij :“

"

di if i “ j,
´aij otherwise,

where di :“ dpGqi is the degree of vertex i in G.
The spectral theory of these matrices, i.e., the theory about their eigenvalues

and eigenspaces, has been the object of much study for the last 40 years. However,
the roots of this line of research can arguably be traced back to Kirchhoff’s matrix-
tree theorem, whose first proof is often attributed to Borchardt (1860) even though
at least one proof was already known by Sylvester (1857). A recollection of some
interesting applications of the theory can be found in Spielman (2009), and more
complete accounts of the mathematical backbone are Brouwer and Haemers (2011)
and Chung (1997). We refer the reader to our references for further inquiries of the
extensive literature on the subject.

One of the first observations that can be made about L is that it is positive-
semidefinite, a consequence of it being decomposable as L “ QQT , where Q “

QpG,Oq is the incidence matrix of an arbitrary orientation O of G. We will thus
let

0 “ λ1 ď λ2 ď ¨ ¨ ¨ ď λn “ λmax “ λmaxpGq

be the (real) eigenvalues of L and note that λ2 ą 0 if G is a connected graph with
at least two vertices. Note that we have effectively dropped G from the notation for
convenience. We will also let Eλi be the eigenspace corresponding to λi.

˚Received by the editors February 16, 2015; accepted for publication (in revised form) September
2, 2016; published electronically November 17, 2016.
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Our work follows the spirit of Fiedler (2011), who pioneered the use of eigenvectors
of the Laplacian matrix to learn about a graph’s structure. In its most primitive form,
Fiedler’s nodal domain theorem (Fiedler (1975)) states that when G is connected then
for all x P Eλ2 , the induced subgraph G rti P rns : xi ě 0us is connected. Related work,
also relevant to the present writing, might be found in Merris (1998).

We will go even further in the way in which we use eigenvectors of the Laplacian
to learn properties of G. To explain this, let us first call a map,

O : E Ñ prns ˆ rnsq Y E “ rns2 Y E,

such that Opeq P te, pi, jq, pj, iqu for all e :“ ti, ju P E, a partial orientation of E or
G, and say that furthermore, O is an orientation if Opeq ‰ e for all e and that O is
acyclic if it is an orientation and the directed graph on vertex-set rns and edge-set
OpEq has no directed cycles. On numerous occasions, we will somewhat abusively also
identify O with the set OpEq. With this setup, eigenvectors of the Laplacian and,
more precisely, elements of Eλmax

will be used to obtain orientations of certain (not
necessarily induced) subgraphs of G. Henceforth, given G and for all x P Rn :“ Rrns,
the reader should always automatically consider the orientation map Ox “ OxpGq
associated to x, Ox : E Ñ rns2 Y E, such that for e :“ ti, ju P E,

Oxpeq “

$

&

%

e if xi “ xj ,
pi, jq if xi ă xj ,
pj, iq if xi ą xj .

The orientation Ox will be said to be induced by x (e.g., Figure 1(c)). We will
generally be interested in certain special vertex-subsets of G associated to x or Ox,
called fibers.

Definition 1. For x P Rn, a fiber of x is a set ξ Ď rns in which x is constant,
i.e., there exists some α P R such that xi “ α if and only if i P ξ.

Broadly, this article aims to fill one of the many gaps in our current knowledge of
the spectra of graphs, namely, the lack of results about eigenvectors of the Laplacian
with largest eigenvalue. More specifically, we will find that the eigenspace Eλmax

is
closely related to the theory of modular decomposition of Gallai (1967), and this re-
lation will be established by exposing how orientations of G induced by elements of
Eλmax

lead naturally to the discovery of modules. In particular when G “ Gprns, Eq is
a comparability graph, n ą 1, we will show (I) that the collection of fibers of a generic
x P Eλmax

is invariant with respect to the choice of x, (II) that these fibers are invari-
ably either the connected components of G, or the connected components of G, or
disjoint unions of pairwise nonadjacent, maximal (by inclusion), proper modules of G
and, furthermore, (III) that the orientations of G induced by all such generic elements
iteratively correspond to and exhaust the transitive orientations of G. Arguably then,
when G is a comparability graph, a recursive consideration of the space Eλmax

is shown
to solve the problem of finding the complete set of transitive orientations of G. It will
be instructive to see Figure 1 at this point.

In section 2, we will introduce the background and definitions necessary to state
the precise main contributions of this article. These punch line results will then be
presented in section 3. The central theme of section 3 will be a stepwise proof of
Theorem 15, our main result for comparability graphs, which summarily states that
when G is a comparability graph, elements of Eλmax

induce transitive orientations of
the copartition subgraph of G. It will be along the natural course of this proof that
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i xi

1 a = −0.1515...
2 b = −0.2587...
3 a
4 c = −0.1021...
5 d = −0.1866...
6 d
7 e = 0.8855...
8 −a

Fig. 1. (a) Hasse diagram of a poset P on r8s. (b) Comparability graph G “ Gpr8s, Eq of the
poset P , where closed regions are maximal proper modules of G. (c) Unit eigenvector x P Eλmax

of G fully calculated, where dim xEλmaxy “ 1. Arrows represent the induced orientation Ox of G.
Notice the relation between Ox, the modules of G, and poset P .

we present our three main results that apply to arbitrary simple graphs: Lemma 27
and Propositions 28 and 29.

Finally, in section 4, we will present a curious novel characterization of compara-
bility graphs that results from the theory of section 3.

2. Background and definitions.

2.1. The graphical arrangement.

Definition 2. Let G “ Gprns, Eq be a simple (undirected) graph. The graphical
arrangement of G is the union of hyperplanes in Rn:

AG :“ tx P Rn : xi ´ xj “ 0 for some ti, ju P Eu.

Basic properties of graphical arrangements and, more generally, of hyperplane
arrangements are presented in Chapter 2 of Stanley (2004).

For G “ Gprns, Eq, we will let RpAGq be the collection of all (open) connected
components of the set RnzAG. An element of RpAGq is called a region of AG, and ev-
ery region of AG is therefore an n-dimensional open convex cone in Rn. Furthermore,
the following is true about regions of the graphical arrangement.

Proposition 3. With G “ Gprns, Eq a simple graph, and for all R P RpAGq and
x, y P R, we have that

OR :“ Ox “ Oy.

Moreover, the map R ÞÑ OR from the set of regions of AG to the set of orientations
of E is a bijection between RpAGq and the set of acyclic orientations of G.

Proof. Clearly our map is well-defined and has as codomain the acyclic orien-
tations of G. Surjectivity can be established by considering, for any O an acyclic
orientation of G, the partial order on rns whereby i is “less” than j if and only if there
exists a directed path in O from i to j. A linear extension of this poset lives in a
region R of AG, and OR “ O. Injectivity follows by considering, for any two disjoint
regions of AG, a separating hyperplane in the arrangement between them, and then
noting that the edge of G corresponding to this hyperplane is oriented differently in
both regions under our map.

Motivated by Proposition 3 and the comments before, we will introduce special
notation for certain subsets of Rn obtained from AG.
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Notation 4. Let G “ Gprns, Eq be a simple (undirected) graph. For an acyclic
orientation O of E, we will let CO denote the n-dimensional closed convex cone in
Rn that is equal to the topological closure of the region of AG corresponding to O in
Proposition 3.

2.2. Modular decomposition. We need to concur on some standard terminol-
ogy and notation from graph theory, so let G “ Gprns, Eq be a simple (undirected)
graph and X a subset of rns.

As customary, G denotes the complement graph of G. The notation NpXq denotes
the open neighborhood of X in G:

NpXq :“ tj P rnszX : there exists some i P X such that ti, ju P Eu .

The induced subgraph of G on X is denoted by GrXs, and the binary operation of
graph disjoint union is represented by the plus sign `. Last, for Y Ď rns, X and Y
are said to be completely adjacent (nonadjacent) in G if

X X Y “ H and

for all i P X and j P Y , we have that ti, ju P E (ti, ju R E).

The concepts of module and modular decomposition in graph theory were in-
troduced by Gallai (1967) as a means to understand the structure of comparability
graphs. The same work would eventually present a remarkable characterization of
these graphs in terms of forbidden subgraphs. Section 3 of the present work will
present an alternate and surprising route to modules.

Definition 5. Let G “ Gprns, Eq be a simple (undirected) graph. A module of
G is a set A Ď rns such that for all i, j P A,

NpiqzA “ NpjqzA “ NpAq.

Furthermore, A is said to be proper if A ‰ rns, nontrivial if |A| ą 1, and connected
if GrAs is connected.

Corollary 6. Two disjoint modules of G are either completely adjacent or non-
adjacent.

Let us now present some basic results about modules that we will need.

Lemma 7 (Gallai (1967)). Let G “ Gprns, Eq be a connected graph such that
G is connected. If A and B are maximal (by inclusion) proper modules of G with
A ‰ B, then AXB “ H.

Corollary 8 (Gallai (1967)). Let G “ Gprns, Eq be a connected graph such
that G is connected, n ą 1. Then, there exists a unique partition of rns into maximal
proper modules of G, and this partition contains more than two blocks.

From Corollary 8, it is therefore natural to consider the partition of the vertex-
set of a graph into its maximal modules; the appropriate framework for doing this
is presented in Definition 9. Hereafter, however, we will assume that our graphs are
connected unless otherwise stated since (I) the results for disconnected graphs will
follow immediately from the results for connected graphs, and (II) this will allow us
to focus on the interesting parts of the theory.

Definition 9 (Ramı́rez-Alfonśın and Reed (2001)). Let G “ Gprns, Eq be a
connected graph, n ą 1. We will let the canonical partition of G be the set P “ PpGq
such that
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‚ if G is connected, P is the unique partition of rns into maximal proper mod-
ules;

‚ if G is disconnected, P is the partition of rns into the connected components
of G.

Hence, in Definition 9, every element of the canonical partition is a module of the
graph. Elements of the canonical partition of a graph on vertex-set r8s are shown in
Figure 1(b).

Definition 10. Let G “ Gprns, Eq be a connected graph with canonical partition
P. The copartition subgraph of G is the graph GP on vertex-set rns and edge-set
equal to

E
H

tti, ju P E : i, j P A for some A P Pu .

Lemma 11. We have that
i. GP is connected,

ii.
`

GP
˘P
“ GP , i.e., the copartition subgraph of GP is GP itself.

Proof. For claim i, note that for all A P P, i, j P A, ti, ju P E, there must exist
some k P rnszA such that ti, ku, tj, ku P E since A is a proper module of G and G is
connected. Hence, two vertices in G are connected if and only if they are connected
in GP .

Claim ii is evident when G is disconnected from the definition of canonical par-
tition. When G is connected, then clearly GP is connected and claim i shows that
GP partitions into maximal proper modules, its canonical partition. But P is also
a partition into proper modules of GP , and therefore it must be a refinement of its
canonical partition. However, then, from the edge-removal condition in the defini-
tion of copartition subgraph, every member of the canonical partition of GP is also a
module of G, and claim ii follows.

2.3. Comparability graphs. We had anticipated the importance of compara-
bility graphs in this work, so we need to define what they are.

Definition 12. A comparability graph is a simple (undirected) graph G “ GpV,Eq
such that there exists a partial order on V under which two different vertices u, v P V
are comparable if and only if tu, vu P E.

A comparability graph on vertex-set r8s is shown in Figure 1(b).
Comparability graphs are perfectly orderable graphs and, more generally, perfect

graphs. These three families of graphs are all large hereditary classes of graphs.
Note that given a comparability graph G “ GpV,Eq with E ‰ H, we can find at

least two partial orders on V whose comparability graphs agree precisely with G, and
the number of such partial orders depends on the modular decomposition of G. Let
us record this idea in a definition.

Definition 13. Let G “ GpV,Eq be a comparability graph, and let O be an
acyclic orientation of E. Consider the partial order on V whereby for u, v P V , u
is “less” than v if and only if there is a directed path in O from u to v. If the
comparability graph of this partial order agrees precisely with G, then we will say that
O is a transitive orientation of G.

2.4. Linear algebra. Some standard terminology of linear algebra and other
related conventions that we adopt are presented here. First, we will always be working
in Euclidean space Rn, and all (Euclidean-normed real) vector spaces considered are
assumed to live therein. Euclidean norm is denoted by || ¨ ||. The standard basis of
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Rn will be teiuiPrns, as customary. Generalizing this notation, for all I Ď rns, we will
also let

eI :“
ÿ

iPI

ei.

The orthogonal complement in Rn to erns will be of importance to us, so we will use
special notation to denote it:

R˚rns :“ eKrns.

For an arbitrary vector space V and a linear transformation T : V Ñ V, we will
say that a set U Ď V is invariant under T , or that U is T -invariant, if T pUq Ď U . In
the case when V is a linear subspace of Rn and dim xVy ą 0, often we will consider
a uniformly chosen unit vector (u.c.u.v.) from V, i.e., a vector chosen uniformly at
random from the unit sphere ty P V : ||y|| “ 1u.

2.5. Spectral theory of the Laplacian. We will need only a few background
results on the spectral theory of the Laplacian matrix of a graph. We present these
below in a single statement but refer the reader to Brouwer and Haemers (2011) for
additional background and history.

Lemma 14. Let G “ Gprns, Eq be a simple (undirected) graph. Let L “ LpGq be
the Laplacian matrix of G and 0 “ λ1 ď λ2 ď ¨ ¨ ¨ ď λn “ λmax “ λmaxpGq be the
eigenvalues of L:

1. The number of connected components of G is equal to the multiplicity of the
eigenvalue 0 in L.

2. If L is the Laplacian matrix of G, then L “ nI ´ J ´L, where I is the nˆ n
identity matrix and J is the nˆ n matrix of all-1’s. Consequently, λmax ď n
and the number of eigenvectors of L with eigenvalue n is equal to the number
of connected components of G minus 1.

3. If H is a (not necessarily induced) subgraph of G on the same vertex-set rns,
and if µ1 ď µ2 ď ¨ ¨ ¨ ď µn are the eigenvalues of the Laplacian of H, then
λi ě µi for all i P rns.

The proof of part 1 is readily obtained from the decomposition L “ QQT pre-
sented in the introduction (section 1), where Q “ QpG,Oq is an incidence matrix of
an arbitrary orientation O of G, so notably,

rankpQq “ n´# connected
components of G.

The equality of part 2 is a straightforward verification, and the second claim follows
after noting that since erns is an eigenvector of L, we can always select a basis β

for R˚rns of eigenvectors of L. Then for x P β with eigenvalue λ, we have that
Lx “ nx´ 0´ Lx “ pn´ λqx, so x is an eigenvector of L with eigenvalue n´ λ, and
part 1 can be applied.

Part 3 is a more advanced result (Brouwer and Haemers (2011), Proposition
3.2.1).

3. Largest eigenvalue of a comparability graph. The main goal of this
section is to prove the following theorem (see section 2 for the main definitions).

Theorem 15. Let G “ Gprns, Eq be a connected comparability graph with Lapla-
cian matrix L “ LpGq and canonical partition P “ PpGq. Let λmax “ λmaxpGq be the
largest eigenvalue of L and Eλmax

its associated eigenspace. Then, the following are
true:
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i. If O is a transitive orientation of G, then

dim xCO XEλmax
y “ dim xEλmax

y .

ii. Eλmax Ď
Ť

O CO, where the union is over all transitive orientations of G.
iii. Let x P Eλmax

be a u.c.u.v. Almost surely,
1. if A P P, then A belongs to a fiber of x;
2. if A,A1 P P are (completely) adjacent in G, then A and A1 belong to

different fibers of x;
3. x induces a transitive orientation of GP; in particular, GP is a compa-

rability graph;
4. all transitive orientations of GP can be induced by x with positive prob-

ability;
5. if ξ is a fiber of x, then

Grξs “ GrB1s ` ¨ ¨ ¨ `GrBks,

where for all i P rks, Bi is a connected module of G and GrBis is a
comparability graph;

6. G has exactly two transitive orientations if and only if dim xEλmax
y “ 1

and every fiber of x is an independent set of G.
iv. If G is connected, then dim xEλmax

y “ 1. If G is disconnected, then dim xEλmax
y

is equal to the number of connected components of G minus one.

Remark 16. In fact, as will be explained, all transitive orientations of G can be
obtained with the following procedure: Select an arbitrary transitive orientation for
GP , and select arbitrary transitive orientations for (the connected components of)
each GrAs, A P P . Therefore, claims i–iii imply an iterative algorithm that obtains
every transitive orientation of G with positive probability. Even more remarkably,
when G is selected uniformly at random from the set of comparability graphs on n
vertices, nÑ8, then only one calculation of Eλmax suffices to achieve this (Möhring
(1984)).

The proof of Theorem 15 will be stepwise and its notation and conventions will
carry over to the next results, unless otherwise stated. Let us begin with this work.

Using notation 4, we have the following.

Proposition 17. Let G “ Gprns, Eq be a connected comparability graph, n ą 1,
and let O be a transitive orientation of G. Then, CO satisfies that

dim xCO XEλmax
y “ dim xEλmax

y .

In particular, CO contains a nonzero element of Eλmax .

Proof. The proof consists of two main steps. First, we will prove that CO is
invariant under left-multiplication by L. Then, we will prove that dim xCO XEλmax

y “

dim xEλmax
y.

Step 1. Lx P CO whenever x P CO.
To show that Lx P CO whenever x P CO, we will show that for an arbitrary

ti, ju P E with pi, jq in O, so that xi ď xj , we also have that pLxqi ď pLxqj .
To start,
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pLxqj ´ pLxqi “ pxjdj ´
ÿ

kPNpjq

xkq ´ pxidi ´
ÿ

`PNpiq

x`q

“
ÿ

kPNpjq

pxj ´ xkq ´
ÿ

`PNpiq

pxi ´ x`q

“ |Npiq XNpjq| pxj ´ xiq `
ÿ

`PNpjqzNpiq

pxj ´ x`q

´
ÿ

mPNpiqzNpjq

pxi ´ xmq.

Now, since O is transitive and G is a comparability graph, if ` P NpjqzNpiq, then we
must have that p`, jq is an edge in O, so that x` ď xj . Otherwise, we would require
that ti, `u P E, which is false. Similarly, if m P NpiqzNpjq we must have that pi,mq
is an edge in O, so xm ě xi. Since also xj ě xi then, we see that pLxqj ´ pLxqi ě 0.
This completes the proof.

Step 2. dim xCO XEλmax
y “ dim xEλmax

y.
Using Step 1, as CO is a closed set, it is closed under

lim
NÑ8

LN

λNmax

“ πEλmax
,

the orthogonal projection onto Eλmax . But since the relative interior of CO is an open
subset of Rn, then πEλmax

pCOq “ CO XEλmax contains an open subset of Eλmax , and
hence the claim follows.

Let us now recall Definition 5.

Lemma 18. Let G “ Gprns, Eq be a connected comparability graph, n ą 1, and
let O be a transitive orientation of G. Then for any x P CO X Eλmax

, x ‰ 0, the
connected components of fibers of x are proper modules of G.

Proof. It is enough to prove that any choice of maximal (by inclusion) set A Ď rns
such that (I) GrAs is connected and (II) for some α P R, we have that xk “ α for all
k P A is also a proper module of G.

Primarily, for such an A we observe that GrAs cannot be equal to G since that
would imply that x is equal to αerns and therefore that x is an eigenvector with
eigenvalue 0 ‰ λmax, which contradicts our choice of x. Hence, GrAs is a proper
connected induced subgraph of G.

We will show that A is a (proper connected) module of G. Suppose on the
contrary that A is not a module of G. Then, there must exist two vertices i, j P A
such that NpiqzA ‰ NpjqzA. Since GrAs is connected, we can consider a path in
GrAs connecting i and j and observe that we may further assume that ti, ju P E.
Under this assumption, suppose now that pi, jq is an edge in O. As O is transitive,
we must have that pi, kq is an edge in O whenever pj, kq is. Similarly, pk, jq must be
an edge in O whenever pk, iq is. Hence, it must be the case that

xi ď xk for all k P NpiqzpAYNpjqq

and xk ď xj for all k P NpjqzpAYNpiqq.

Left-multiplying x by the Laplacian of G, we obtain
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0 “ λmaxα´ λmaxα “ λmaxxj ´ λmaxxi

“ pLxqj ´ pLxqi “
ÿ

kPNpjq

pxj ´ xkq ´
ÿ

`PNpiq

pxi ´ x`q

“
ÿ

kPNpjqzpAYNpiqq

pxj ´ xkq ´
ÿ

`PNpiqzpAYNpjqq

pxi ´ x`q

“
ÿ

kPNpjqzpAYNpiqq

|xj ´ xk| `
ÿ

`PNpiqzpAYNpjqq

|xi ´ x`|.

Since NpiqzA ‰ NpjqzA and A was chosen maximal, then at least one of the terms
in the last summations must be nonzero and we obtain a contradiction. This proves
that A is a module of G with the required properties.

Corollary 19. Let G “ Gprns, Eq be a connected comparability graph, n ą 1,
without proper nontrivial connected modules, and let O be a transitive orientation of
G. If x P CO XEλmax

, x ‰ 0, then x is in the interior of CO.

Proof. This follows from Lemma 18 since for all ti, ju P E we must have that
xi ‰ xj , as otherwise a ti, ju P E such that xi “ xj is contained in some proper
nontrivial connected module of G, contradicting our assumption about G.

Theorem 20. Let G “ Gprns, Eq be a connected comparability graph, n ą 1,
without proper nontrivial connected modules. Then

i. any x P Eλmaxzt0u induces a transitive orientation of G;
ii. dim xEλmax

y “ 1;
iii. G has exactly two transitive orientations.

Proof. Fix a transitive orientation O of G and consider the cone CO. Per Proposi-
tion 17, we have that COX pEλmax

zt0uq ‰ H. By Corollary 19, Eλmax
zt0u does not in-

tersect the boundary of CO, so the set COXpEλmax
zt0uq is a nonempty open and closed

subset of Eλmaxzt0u. However, since this set is also convex, then it cannot be equal
to Eλmaxzt0u, and hence Eλmaxzt0u is disconnected. It follows that dim xEλmax

y “ 1
and then easily that Eλmax

zt0u is covered by intpCOq and intpCOdual
q, where Odual is

obtained from O after a reversal of the orientation of all the edges.

The remaining part of the theory will rely heavily on some standard results of the
spectral theory of the Laplacian (subsection 2.5). These will be of central importance
to establish Lemma 27 and Propositions 28 and 29, which deal with arbitrary simple
graphs.

Lemma 21. Let G “ Gprns, Eq be a complete p-partite graph, p ą 1, with partite
sets A1, . . . , Ap. Then, λmax “ n and

Eλmax
“ tx P R˚rns : xi “ xj for all i, j P Aq, q P rpsu

“
@

eAq : q P rps
D

X R˚rns.

In particular, dim xEλmax
y “ p´ 1.

Proof. The complement of G has p connected components, so following part 2 in
Lemma 14 we observe that λmax “ n and dim xEλmax

y “ p ´ 1. Let b1, . . . , bp P R
and let x P R˚rns be such that xi “ bq for all i P Aq, q P rps. Hence,

ř

qPrps |Aq| bq “
ř

iPrns xi “ 0 and for i P Ar, r P rps, we have that
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pLxqi “ pn´ |Ar|qbr ´
ÿ

qPprpsztruq

|Aq| bq

“ pn´ |Ar|qbr ´ p0´ |Ar| brq

“ nbr “ nxi.

The set of all such x has dimension p´ 1.

Lemma 22. Let G “ Gprns, Eq be a connected bipartite graph with bipartition
tX,Y u. Then, dim xEλmax

y “ 1. Furthermore, if x P Eλmax
zt0u, then either xi ă 0

for all i P X and xj ą 0 for all j P Y or vice versa.

Proof. If G is complete 2-partite, this is a consequence of Lemma 21. Otherwise,
as a connected bipartite graph, G is also a comparability graph and it has no proper
connected nontrivial modules, so Theorem 20 shows that dim xEλmax

y “ 1 and that G
has precisely two transitive orientations; in particular, these are the ones obtained by
directing all the edges of G from one side of the bipartition to the other. The same
theorem also shows that the elements of Eλmax

zt0u induce transitive orientations, so
take x P Eλmax

zt0u and suppose that x induces the transitive orientation of G where
all edges are directed from X to Y . Then for all i P X, j P Npiq Ď Y , we have that
xi ă xj . Hence for i P X,

λmaxxi “ pLxqi

“
ÿ

jPNpiq

pxi ´ xjq,

which is a nonempty sum of negative terms, and so xi ă 0. Similarly, we obtain the
reverse inequality for elements of Y .

We have not found an agreed-upon notation in the literature for the following
objects, so we will need to introduce it here.

Definition 23. Let G “ Gprns, Eq be a simple graph and let Q “ tX1, . . . , Xmu

be a partition of rns with nonempty blocks. Then, for all k P rms,
‚ G˚Xk denotes the graph on vertex-set rns and edge-set tti, ju P E : i, j P Xku;
‚ R˚Xk :“ tx P R˚rns : for all i P prnszXkq, xi “ 0u.

Also,
‚ RQ :“ tx P R˚rns : x is constant on each Xk, k P rmsu “ xeXk

: k P rmsy X
R˚rns.

Observation 24. We note that

R˚rns “ RQ ‘

$

’

’

’

’

%

à

kPrms

R˚Xk

,

/

/

/

/

-

,

so R˚rns decomposes as a direct sum of RQ and the R˚Xk ’s.

Last, we introduce a block decomposition of the Laplacian of a connected graph
(with at least two vertices) based on its canonical partition. It will be convenient to
recall Definitions 9 and 10 at this point.

Definition 25. Let P “ tA1, . . . , Apu be the canonical partition of a (connected)
graph G “ Gprns, Eq with Laplacian L. We will let LP denote the Laplacian matrix of
the copartition subgraph GP of G and let L˚Aq denote the Laplacian matrix of G˚Aq

for q P rps.
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Remark 26 (block decomposition of the Laplacian L of G). Since

L “ LP `
p
ÿ

q“1

L˚Aq ,

we see that for any x P R˚rns, if we let x “ y ` x1 ` ¨ ¨ ¨ ` xp be the decomposition of
Observation 24, so y P RP and xq P R

˚Aq for all q P rps, then

Lx “ LPy `
p
ÿ

q“1

p|NpAqq| I ` L
˚Aq qxq,

where I is the nˆn identity matrix, and furthermore, this gives the unique analogous
decomposition of Lx.

Proof. Since the Aq’s are modules of G, then for all q P rps, R˚Aq is an eigenspace
of LP with eigenvalue |NpAqq|, and also RP is LP -invariant. More directly, for all
r P rps and q P rpsztru, both RP and R˚Aq are in the null space of L˚Ar , and R˚Ar is
L˚Ar -invariant.

We are now ready to present the results about the space Eλmax
for arbitrary

simple graphs.

Lemma 27. Let G “ Gprns, Eq be a connected simple graph with canonical parti-
tion P “ tA1, . . . , Apu, and L, Eλmax

as usual. Then,
i. Eλmax

Ď RP ,
ii. Eλmax

coincides with the eigenspace of LP with largest eigenvalue.

Proof of Lemma 27. From Remark 26, it follows that there exists a basis for
R˚rns of eigenvectors of L such that its elements are either eigenvectors of LP in RP

or eigenvectors of L˚Aq in R˚Aq for some q P rps. Hence, to prove our lemma, it
suffices to prove that the largest eigenvalue of LP in RP is strictly greater than the
eigenvalues of |NpAqq| I ` L

˚Aq for all q P rps. This will be enough since then Eλmax

is the space of eigenvectors of LP in RP with largest eigenvalue, so Eλmax Ď RP and
claim i follows; therefore, observing that the copartition subgraph of GP is GP itself

(Lemma 11) and in particular that
`

LP
˘P
“ LP , we obtain that Eλmax

is also the
eigenspace of LP with largest eigenvalue, proving claim ii.

The proof will be divided into two cases, depending on whether G is connected.
Case 1. G is connected. From part 2 in Lemma 14 we know that for all q P rps, the

largest eigenvalue of L˚Aq is at most |Aq|, so the largest eigenvalue of |NpAqq| I`L
˚Aq

is at most |NpAqq|`|Aq|. Consequently, in this case we will then prove that the largest
eigenvalue of LP in RP is strictly greater than

max
qPrps

t|NpAqq| ` |Aq|u.

Our strategy will be to find, for an arbitrary q P rps, a (not necessarily induced)
subgraph H of GP whose largest eigenvalue is strictly greater than |NpAqq| ` |Aq|,
and then to directly apply part 3 in Lemma 14.

To start, first note that both GP and its complement are connected graphs, and
that for q P rps, Aq is both a maximal proper module and an independent set of
GP (Lemma 11). So, for an arbitrary q P rps, consider the (not necessarily induced)
subgraph Hq of GP on vertex-set Aq YNpAqq and with edge-set

tti, ju P E : i P Aq and j P NpAqqu .
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First, since GP is connected, then NpAqq ‰ H and so Hq is a complete 2-partite
graph with largest eigenvalue |NpAqq| ` |Aq|, from Lemma 21. Second, since the
complement of GP is connected, we have that Aq Y NpAqq ‰ rns, and then again,
since GP is connected, it follows that N pAq YNpAqqq ‰ H. Hence, there exists
a (not necessarily induced) connected bipartite subgraph H of GP such that H is
obtained from Hq by adding a new vertex j P rnsz pAq YNpAqqq and connecting it
to some vertex i P NpAqq. We claim that H is the subgraph that we are looking
for. Indeed, consider a nonzero eigenvector x of the Laplacian of Hq with largest
eigenvalue |NpAqq| ` |Aq|, and extend x to the vertex-set of H by placing a 0 in the
new coordinate j. Let us call this new vector y, so yk “ xk for all k P Aq Y NpAqq

and yj “ 0. If LH denotes the Laplacian of H, then straightforward calculations show
that

pLHyqi “ p|NpAqq| ` |Aq| ` 1qyi,

pLHyqj “ ´yi, and

pLHyqk “ p|NpAqq| ` |Aq|qyk for all k P pAq YNpAqqq ztiu.

But crucially, from Lemma 22 we know that yi “ xi ‰ 0, which implies that ||LHy|| ą
p|NpAqq| ` |Aq|q ||y|| and hence that the largest eigenvalue of LH must be strictly
greater than |NpAqq| ` |Aq|.

Case 2. G is not connected. In this case, for all q P rps we have that |NpAqq| “

n´ |Aq|, and we observe that GP is complete p-partite so Lemma 21 applies. Hence,
we must only verify that the largest eigenvalue of L˚Aq is strictly less than |Aq|.
However, by the definition of canonical partition, for each q P rps the complement of
GrAqs is connected and then part 2 in Lemma 14 implies that the largest eigenvalue
of L˚Aq is strictly less than |Aq|.

Two immediate applications of Lemma 27 now follow.

Proposition 28. Let G “ Gprns, Eq be a connected simple graph such that G
is connected, n ą 1. For any fixed proper module A of G, the following is true: If
x P Eλmax , then A belongs to a fiber of x.

Proof. Since G is connected, G partitions nontrivially into maximal proper mod-
ules and this partition is P. But then, A is contained in a member of P and claim i
of the lemma applies.

Proposition 29. Let G “ Gprns, Eq be a connected simple graph such that G is
disconnected. Then, λmax “ n and

Eλmax “tx P R˚rns : xi “ xj

whenever i and j belong to the same connected component of Gu.

In particular, dim xEλmax
y is equal to the number of connected components of G mi-

nus one, and GP is a complete p-partite graph, where p is the number of connected
components of G.

Proof. As it was previously observed, from the definition of canonical partition
and of copartition subgraph it follows that GP is a complete p-partite graph. Using
claim ii of the lemma, the result is exactly Lemma 21.

Let us now turn back our attention to comparability graphs and to the proof of
Theorem 15. Comparability graphs are, as anticipated, specially amenable to apply
the previous lemma and its two propositions. In fact, the following result already
establishes most of Theorem 15.
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Proposition 30. Let G “ Gprns, Eq be a connected comparability graph with
canonical partition P.

i. For x P Eλmax
a u.c.u.v., the following hold true almost surely:

1. If A P P, then A belongs to a fiber of x.
2. If A,A1 P P are (completely) adjacent in G, then A and A1 belong to

different fibers of x.
3. x induces a transitive orientation of GP . In particular, GP is a compa-

rability graph.
4. The connected components of the fibers of x are comparability graphs,

and their vertex-sets are modules of G.
ii. If G is connected, then

1. dim xEλmax
y “ 1, and also, GP has exactly two transitive orientations

and each can be obtained with probability 1
2 in claim i;

2. Eλmax
Ď

Ť

O CO, where the union is over all transitive orientations of
G.

iii. If G is disconnected, then dim xEλmax
y “ p ´ 1, where p is the number of

connected components of G. Also, GP has exactly p! transitive orientations
and each can be obtained with positive probability in claim i.

Proof. We will work on each case, whether G is connected or disconnected, sep-
arately.

Let O be a transitive orientation of G, and note that COX pEλmax
zt0uq ‰ H from

Proposition 17.
Case 1. G is connected. Our strategy to prove claims i–ii will be to first prove

claim i in the special case when x P CO X pEλmax
zt0uq and then to argue that GP is a

connected comparability graph without proper nontrivial connected modules, which
from Theorem 20 and claim ii in Lemma 27 directly implies part 1 of claim ii. From
dim xEλmax

y “ 1, it then follows that CO and COdual
cover Eλmax

zt0u. Hence,
(I) for x P Eλmax

a u.c.u.v., x falls in CO or COdual
almost surely, so our proof of

claim i in the special case also applies (almost surely) to x;
(II) indeed Eλmax

Ď CO Y COdual
, proving part 2 of claim ii.

So take any x P CO X Eλmax , x ‰ 0. From Proposition 28, we know that x is
constant on each A P P, so part 1 of claim i holds. Moreover, since the elements of P
are maximal proper modules of G, then Lemma 18 shows that (completely) adjacent
A,A1 P P must belong to different fibers of x, so part 2 of claim i holds. But then x
induces an orientation of GP and this orientation coincides with the restriction of O
to GP . As a consequence, if pi, jq, pj, kq are edges on this orientation of GP , they are
also edges of O and so must be pi, kq since O is transitive, showing that ti, ku P E.
But as xi ă xj ă xk and xi ‰ xk, then i and k cannot both belong to the same
member of P, and so ti, ku is also an edge of GP , and moreover pi, kq is an edge of
the orientation induced by x. This orientation of GP is then transitive and it follows
that GP is a comparability graph, proving part 3 of claim i. Last, as the restriction
of a transitive orientation to an induced subgraph is always transitive, part 4 of claim
i follows directly from Lemma 18. Now, it is immediate from Lemma 11 that GP is a
connected graph without proper nontrivial connected modules, and we have already
observed that GP is a comparability graph, so part 1 of claim ii follows.

Case 2. G is disconnected. This is precisely the setting of Proposition 29, so
parts 1–3 of claim i and claim iii follow after noting first that for x P Eλmax

a u.c.u.v.,
the fibers of x are the connected components of G, second that p-partite graphs are
comparability graphs, and last that their transitive orientations are exactly the acyclic
orientations such that
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‚ for every pair of maximal independent sets, all the edges between them (or
having endpoints on both sets) are oriented in the same direction.

The proof of part 4 of claim i follows since the connected components of G are modules
of G and since all connected components of induced subgraphs on modules of G are
also modules. Again, restrictions of transitive orientations to induced subgraphs are
transitive.

Corollary 31. Let G “ Gprns, Eq be a connected comparability graph with canon-
ical partition P, and let O be a transitive orientation of G. Then

1. the restriction of O to each of GP and GrAs, A P P, is transitive;
2. conversely, if we select arbitrary transitive orientations for each of GP and
GrAs, A P P, and then take the union of these, we obtain a transitive orien-
tation for G.

Proof. To prove part 1, we note that the restriction of O to any induced subgraph
of G is transitive and then argue that a u.c.u.v. of Eλmax belongs to CO with positive
probability, so part 3 of claim i in Proposition 30 applies for some x P CO. To
prove this last claim, from Proposition 17, dim xCO XEλmax

y “ dim xEλmax
y. Hence,

CO X Eλmax
is a full-dimensional, closed, convex cone of Eλmax

, and then its relative
interior is a nonempty open cone of the same space. As a nonempty open cone, the
later intersects with the unit sphere of Eλmax

and this intersection is open in the
sphere, so the claim follows.

For part 2, select transitive orientations for each of GP and GrAs, A P P, and let
O be the orientation of E so obtained. Since each element of P is independent in GP

and since the restriction of O to GP is transitive, then
(‹) for A,A1 P P (completely) adjacent, the edges between A and A1 must be

oriented in O in the same direction.
This rules out the existence of directed cycles in O, so O is acyclic. Now, if O is not
transitive, then there must exist i, j, k P rns such that pi, jq and pj, kq are in O but not
pi, kq. By the choice of O, it must be the case that exactly two among i, j, k belong
to the same A P P and the other one to a different A1 P P. The former cannot be i
and k, per the argument above (‹). Hence, without loss of generality, we can assume
that i, j P A and k P A1. But then, A and A1 must be (completely) adjacent and pi, kq
must exist in O, so we obtain a contradiction.

Note. The argument for part 2 is essentially found in Ramı́rez-Alfonśın and Reed
(2001), and the construction corresponds to a partially ordered union of posets.

Corollary 32. Let G “ Gprns, Eq be a connected comparability graph with at
least one proper nontrivial connected module B and canonical partition P. Then, G
has more than two transitive orientations.

Proof. Suppose, on the contrary, that G has only two transitive orientations. We
will prove that, then, G cannot have proper nontrivial connected modules and so B
does not exist.

From Corollary 31 and claims ii–iii in Proposition 30, a necessary condition for
G to have no more than two transitive orientations is

(‹) G “ GP , and either G is connected or it has exactly two connected compo-
nents.

Now, if G is connected, then B Ď A for some A P P, so B is an independent set of G
since A is independent. This contradicts the choice of B. Also, if G has two connected
components, then G is a complete bipartite graph. However, it is clear that no such
B can exist in a complete bipartite graph.
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Proof of Theorem 15. The different numerals of this result have, for the most
part, already been proved.

‚ Claim i was proved in Proposition 17.
‚ Claim ii was proved in part 1 of claim ii in Proposition 30 whenG is connected.

When G is disconnected, let x P Eλmax be a u.c.u.v., so part 3 of claim i in
Proposition 30 shows that x induces a transitive orientation of GP , and this
orientation can be extended to some transitive orientation O of G by part 2
of Corollary 31, hence x P CO. However, the union in claim ii is a closed set,
so we are done.

‚ Parts 1–5 of claim iii and claim iv are precisely Proposition 30.
‚ For part 6 of claim iii, from Corollary 32 and claim iii of Theorem 20, G has

exactly two transitive orientations if and only if G has no proper nontrivial
connected modules. Now, if G has no proper nontrivial connected modules,
then part 4 of claim i in Proposition 30 shows that the fibers of x are in-
dependent sets of G, and on the other hand, claim ii in Theorem 20 gives
dim xEλmax

y “ 1. Conversely, assume that the fibers of x are independent
sets of G and that dim xEλmax

y “ 1. From the first assumption, G “ GP by
Part 1 of Claim i in Proposition 30 and the definition of copartition subgraph.
From the second assumption, per Claims ii-iii in Proposition 30, then G has
at most two connected components. Hence, G “ GP and G has at most
two connected components. Consequently, G cannot have proper nontrivial
connected modules, as observed before.

4. A characterization of comparability graphs. This section offers a cu-
rious novel characterization of comparability graphs that results from our theory in
section 3.

Theorem 33. Let G “ Gprns, Eq be a simple undirected graph with Laplacian
matrix L, and let I be the nˆ n identity matrix.

Then, G is a comparability graph if and only if there exists α P R and an acyclic
orientation O of E such that CO is invariant under left-multiplication by αI ` L.

If G is a comparability graph, the orientations that satisfy the condition are pre-
cisely the transitive orientations of G, and we can take α “ 0 for them.

Proof. If G is a comparability graph and O is a transitive orientation of G, then
Step 1 of Proposition 17 shows that, indeed, Lx P CO whenever x P CO.

Suppose now that G is an arbitrary simple graph, and let O be an acyclic orien-
tation (of E) that is not a transitive orientation of G. Then, there exist i, j, k P rns
such that pi, jq and pj, kq are in O but not pi, kq, and the following set is nonempty:

X :“ tk P rns : there exist i, j P rns and directed edges

pi, jq, pj, kq in O, but pi, kq is not in Ou.

In the partial order on rns induced by O, take some ` P X maximal, and consider
the principal order filter `_ generated by `. The indicator vector of `_ is e`_ . Then,
e`_ P CO. Now, choose i, j P rns so that pi, jq and pj, `q are in O but not pi, `q. As `
was chosen maximal in X, for every k P `_, k ‰ `, then both pi, kq and pj, kq are in
O. Therefore, for any α P R we have

ppαI ` Lqe`_ qi “ ´ |`
_| ` 1 and

ppαI ` Lqe`_ qj “ ´ |`
_| .

Hence, ppαI ` Lqe`_ qi ą ppαI ` Lqe`_ qj and pαI ` Lqe`_ R CO since pi, jq is in O.
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