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PERFORMANCE OF SEQUENTIAL LOCAL ALGORITHMS FOR
THE RANDOM NAE-K-SAT PROBLEM∗

DAVID GAMARNIK† AND MADHU SUDAN‡

Abstract. We formalize the class of “sequential local algorithms” and show that these algorithms
fail to find satisfying assignments on random instances of the “Not-All-Equal-K-SAT” (NAE-K-SAT)
problem if the number of message passing iterations is bounded by a function moderately growing

in the number of variables and if the clause-to-variable ratio is above (1 + oK(1)) 2
K−1

K
ln2 K for

sufficiently large K. Sequential local algorithms are those that iteratively set variables based on some
local information and/or local randomness and then recurse on the reduced instance. Our model
captures some weak abstractions of natural algorithms such as Survey Propagation (SP)-guided as
well as Belief Propagation (BP)-guided decimation algorithms—two widely studied message-passing–
based algorithms—when the number of message-passing rounds in these algorithms is restricted to be
growing only moderately with the number of variables. The approach underlying our paper is based
on an intricate geometry of the solution space of a random NAE-K-SAT problem. We show that above

the (1 + oK(1)) 2
K−1

K
ln2 K threshold, the overlap structure of m-tuples of nearly (in an appropriate

sense) satisfying assignments exhibit a certain behavior expressed in the form of some constraints
on pairwise distances between the m assignments for appropriately chosen positive integer m. We
further show that if a sequential local algorithm succeeds in finding a satisfying assignment with
probability bounded away from zero, then one can construct an m-tuple of solutions violating these
constraints, thus leading to a contradiction. Along with [D. Gamarnik and M. Sudan, Ann. Probab.,
to appear], where a similar approach was used in a (somewhat simpler) setting of nonsequential local
algorithms, this result is the first work that directly links the overlap property of random constraint
satisfaction problems to the computational hardness of finding satisfying assignments.
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1. Introduction. In this work we consider a class of algorithms which we dub
“sequential local algorithms,” that capture local implementations of message-passing–
based decimation algorithms, including the Belief Propagation (BP)-guided and the
Survey Propagation (SP)-guided decimation algorithms. We analyze the behavior of
local sequential algorithms on random instances of “Not-All-Equal-K-SAT” (NAE-
K-SAT). We describe the NAE-K-SAT problem and our class of algorithms, in that
order, below. Later we explain how this class of algorithms is motivated by our
attempt to understand our ability to analyze the performance of the message-passing–
based decimation algorithms.

1.1. Our setting and results. The NAE-K-SAT problem is a Boolean con-
straint satisfaction problem closely related to the more commonly studied K-SAT
problem. An instance of the NAE-K-SAT problem consists of a collection of N K-
clauses on n Boolean variables x1, . . . , xn. Each K-clause is given by K-literals, where
each literal is either one of the variables or its negation. The clause is satisfied by a
Boolean assignment to the variables if at least one of the literals is satisfied (set to
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PERFORMANCE OF SURVEY PROPAGATION ALGORITHM 591

1) and at least one is unsatisfied (set to 0). (This symmetry between satisfied and
unsatisfied literals lends a convenient symmetry to the NAE-K-SAT problem that is
not shared by the K-SAT counterpart.) The collection of N clauses is satisfied by a
Boolean assignment if each clause is satisfied. Given � ≤ N , we say that a Boolean
assignment �-satisfies the collection if at most � clauses are violated.

In this work we consider the ability to find satisfying and �-satisfying assignments
to random instances of the NAE-K-SAT problem. Here the N clauses are chosen uni-
formly and independently from the collection of 2K ·

(
n
K

)
possible K-clauses. Through-

out the paper we consider the regime where the number of variables n grows but the
clause size K remains constant. In particular we consider the setting where N = d ·n
for some constant d = d(K), that depends on K but not n, and consider what is the
largest d for which there exists a efficient algorithm for identifying an �-satisfying as-
signment with probability bounded away from zero as n → ∞ by some function going
to zero at some rate with n. We will be interested primarily in the regime where �
is a linear function of N and therefore n as well. The parameter d is often referred
to as the formula density. Of course, no algorithm can find a satisfying assignment if
none exists, and the limit of when such an assignment exists has been well studied. In
particular Coja-Oghlan and and Panagiotou [COP12] have established that random
instances of the NAE-K-SAT problem are satisfiable with high probability (w.h.p.)
when the density d is below ds � 2K−1 ln 2− ln 2/2−1/4−oK(1), and is not satisfiable
w.h.p. when d > ds. An earlier bound was obtained by Achlioptas and Moore [AM06]
in the form ds = 2K−1 ln 2−OK(1). Here oK(·) and OK(·) denote standard order-of-
magnitude notation as K increases. Our interest is in determining how qualitatively
close to this threshold an efficient algorithm can get; i.e., how does the largest density
at which the algorithm manages to find a satisfying or even �-satisfying assignment
compare with ds.

The class of algorithms that we explore in this work is what we call “sequential
local algorithms.” A sequential local algorithm can be described roughly as follows.
The algorithm works by assigning Boolean values to variables sequentially, where
a chosen variable is assigned its value by a potentially probabilistic choice, which
depends on the local neighborhood of the variable at the time the choice is made.
The local neighborhood is defined to be the graph-theoretic B(r) ball of small value r
radius with respect to the underlying factor graph on the set of variables and clauses,
to be defined later. Once a variable is assigned a value, the formula is simplified
(removing some clauses and restricting others). This in turn may influence the local
neighborhoods of other variables, and when the future variables are set to particular
Boolean values, this is done with respect to thus possibly modified neighborhoods.
The algorithm continues with its iterations till all variables are set.

Local sequential algorithms capture restricted versions of BP- and SP-guided dec-
imation algorithms, specifically when the number of message passing iterations used
between every decimation step is bounded by O(r). (BP- and SP-guided decimation
algorithms really form a very general class with many possible implementations and
interpretations. In section 1.3 we discuss the specific assumptions we make and their
potential limitations.) In the specific context of a BP-guided decimation algorithm
based on r iterations, the local rule assigns value 1 to a variable x with probabil-
ity equal to the fraction of assignments in which x is assigned value 1 among all
assignments that satisfy all clauses in the local neighborhood B(r). The SP-guided
decimation algorithm uses a more complex rule for its assignments. It is based on
lifting the Boolean constraint satisfaction problem to a constraint satisfaction prob-
lem involving three decisions, as opposed to two decisions, but otherwise follows the
same spirit.
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592 DAVID GAMARNIK AND MADHU SUDAN

Our main contribution (Theorem 2.4) is to show that, w.h.p. as the size of the in-
stance diverges to infinity, every “balanced” sequential local algorithm fails to produce
an �-satisfying assignment when the ratio d of the number of clauses to the number

of variables exceeds (1 + oK(1))2
K−1

K ln2 K, clause size K is sufficiently large (but

independent from the number of variables), and r = O((ln lnn)O(1)). Specifically, we
will show this when the ratio of � to the total number of clauses dn is below a certain
constant less than unity (see the aforementioned theorem for details). “Balance” is
a technical condition explained in Definition 2.3, which says that the local algorithm
respects the inherent symmetry between 0 and 1. It is a condition satisfied by all
known algorithms including BP- and SP-guided decimation, as we establish.

Our bound on the ratio d is reasonably close to bounds at which simple algo-
rithms actually work. In particular, it is well known that a very simple Unit Clause
algorithm is capable of finding satisfying assignments for this problem when d is be-

low ρ 2K−1

K for some universal constant ρ [AKKT02] for K sufficiently large. The Unit
Clause algorithm is the best known algorithm for this problem. (A better algorithm
is known for the random K-SAT problem that works up to clause-to-variables ratio

(1 − oK(1))2
K

K lnK [CO10]. It is likely that a similar idea can be applied to the
NAE-K-SAT setting, but such a result is not available, to the best of our knowledge.)
One of the hopes was that BP- and SP-guided decimation algorithms might be able
to bridge this factor of K between the Unit Clause algorithm and the satisfiability
threshold ds above. Our result, however, implies that, short of possibly a ln2 K multi-
plicative factor, the “infamous” factor-O(K) gap between the satisfiability threshold
and the region achievable by known algorithms cannot be broken by means of sequen-
tial local algorithms, in particular by BP- and SP-guided decimation algorithms with
O(r) number of rounds of message-passing iterations.

Previously, Coja-Oghlan [CO11] showed that the BP-guided decimation algorithm

fails to find satisfying assignments for random K-SAT problems when d ≥ ρ 2K

K for
some universal constant ρ, for an arbitrary number of iterations r, which in partic-
ular might depend on the number of variables. (Here 2K factor is an “appropriate”
substitution for 2K−1 when switching from NAE-K-SAT to the K-SAT problem. We
maintain this distinction, even though technically it is eliminated by constant ρ.) It
is reasonable to expect that that result holds also for the NAE-K-SAT problem using
the same analysis. Thus our result partially reproduces the main result of [CO11] in
the special case when the number of iterations is bounded by O((ln lnn)O(1)) (short
of an additional ln2 K factor). At the same time, however, our result is applied in a
“blanket way” to a broad class of algorithms, including most notably an SP-guided
decimation algorithm with the number of iterations bounded by the same value, and
our analysis is insensitive to the details of the algorithm.

Since the first version of our paper was posted, we have become aware of the
result by Hetterich [Het16], which shows that the SP-guided decimation algorithm
w.h.p. fails to find a satisfying assignment of a random K-SAT formula above density
(ds/K) lnK for ds = 2K ln 2 for all sufficiently large K. That result, unlike ours,
does not assume any bound on the number of iterations of the SP-guided decimation
algorithm and applies to a slightly smaller formula density (ds/K) lnK, as opposed
to density (ds/K) ln2 K appearing in our main result.

1.2. Techniques. Our main proof technique relies on the intricate geometry of
the solution space of the random NAE-K-SAT problem. Specifically it relies on the
so-called m-overlap structure of nearly satisfying assignments of random NAE-K-
SAT, which relates to the space of possible pairwise Hamming distances between m
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such satisfying assignments. Previously this overlap structure was studied for the case
m = 2 for the random K-SAT problem and several other related problems, including
the problem of proper coloring of sparse random graphs [ACORT11], [ACO08]. A
certain shattering property was established which, roughly speaking, says that above
a certain density, the Hamming distance between every pair of satisfying assignments
(overlap), normalized by the number of variables, is either smaller than a certain
constant δ1 or larger than some constant 1 ≥ δ2 > δ1. As as result, the solution
space can be partitioned into different subsets (clusters) based on their proximity to
each other. For the case of the NAE-K-SAT problem this 2-overlap property can be
established for densities d approximately d > ds/2. (A weaker version of this result
corresponding to “almost” all pairs does hold at densities aboveO

(
ds

K lnK
)
[MRT11].)

Unfortunately, this is not strong enough to cover the regime of d > (ds/K) ln2 K
claimed in our main theorem, so instead we have to establish a certain property
regarding m-overlaps of satisfying assignments for appropriately chosen m > 2. This
is the essence of Theorem 4.1, which we prove in this paper. Roughly speaking, this
theorem says that, with probability at least 1−exp(−Ω(n)), when d ≥ (1+ε)ds

K ln2 K,
and K is sufficiently large, one cannot find m ≈ εK/ lnK satisfying assignments
such that the Hamming distance (overlap) between every pair of the assignments
normalized by the number of variables is ≈ lnK/K. The result applies to �-satisfying
assignments as well for sufficiently small � < dn. Then for every β ∈ (0, 1) we
establish the following result. If a sequential local algorithm is capable of finding an

�-satisfying assignment, with probability at least n−(ln lnn)O(1)

, then by running the
algorithm m times and constructing a certain interpolation scheme, one can construct
m �-satisfying assignments such that the pairwise normalized distance between any
pair of these assignments is ≈ β. This contradicts Theorem 4.1. Our superpolynomial

upper bound n−(ln lnn)O(1)

on the likelihood of success also rules out the possibility of
running the algorithm for polynomially many independent trials in the hope of finding
at least one �-satisfying assignment.

The link between the overlap property and the ensuing demise of local algorithms
was recently established by authors [GS14] in a different context of finding a largest
independent set in a random regular graph. There the argument was used to show
that so-called i.i.d. factor-based local algorithms are incapable of finding nearly largest
independent sets in random regular graphs, refuting an earlier conjecture by Hatami,
Lovász, and Szegedy [HLS]. The result was further strengthened by Rahman and
Virag [RV14], who obtained essentially the tightest possible result, using m-overlap
structures of “large” independent sets. Our use of m-overlaps is inspired by this
work, though the set of restrictions on the m-overlaps implied by Theorem 4.1 is
much simpler than that appearing in [RV14].

An important technical and conceptual difference between the present work and
that of [GS14] and [RV14] is that algorithms considered in the aforementioned papers
are not sequential. Instead the decision taken by each variable in those models is taken
simultaneously for all variables. In the case of sequential local algorithms, since the
variables are set sequentially, the decision for one variable can be nonlocalized for the
remaining variables, thus creating potential long-range dependencies. We deal with
this potential long-range impact of decisions as follows. We associate variables with
random i.i.d. weights chosen from an arbitrary continuous distribution, for example
a uniform distribution. The weights are used solely to determine the order of fixing
the values of the variables during the progression of the sequential local algorithm.
Specifically the largest weight first rule is used. The decision to fix the value of a
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594 DAVID GAMARNIK AND MADHU SUDAN

particular variable then can only impact variables with lower weights. Specifically if
the value of variable x is fixed now, the value of variable y can be impacted only if
there exists a sequence x0 = x, x1, . . . , x� = y such that the distance between xi and
xi+1 is at most r (the radius of the decision making rule) and the weight of xi is larger
than that of xi+1 for all i. For a given set of variables x0, . . . , x� the likelihood of this
total order of variables is 1/�!, which decays faster than any exponential function in �.
This, coupled with the fact that the growth rate of nodes at distance at most r� from
x is at most exponential in r�, will allow us to control the range of influence of the
variable x when its value is set. A similar idea of controlling the range of influence is
used in the analysis of local algorithms in several places, including [NO08]. Bounding
the ranges of influence is a crucial idea in implementing the interpolation scheme and
constructing m assignments with “nonexistent” normalized overlaps β.

1.3. Contrast with empirical studies of SP-guided decimation. Our study
of local sequential algorithms is motivated in part by an attempt to understand the
analytic behavior of some “natural,” statistical-physics-motivated, algorithms for con-
straint satisfaction problems on random instances. These algorithms, specifically
BP-guided and SP-guided decimation algorithms, exhibit a spectacular performance
empirically, capable of finding solutions very rapidly and very close to the thresholds,
beyond which the satisfying assignments do not exist or are conjectured not to exist.
A partial list of references documenting the performance of these algorithms includes
the papers [MPZ02], [BMZ05], [KMRT+07], [RTS09], [DRZ08], [KSS12] as well as
the book by Mezard and Montanari [MM09]. At the same time, mathematically rig-
orous analysis of these algorithms is mostly lacking. Notable exceptions are the works
of Coja-Oghlan [CO11] and Hetterich [Het16], who analyzed the performance of the
BP- and SP-guided decimation algorithm for the random K-SAT problem, and which
we have discussed above, and of Maneva, Mossel, and Wainwright [MMW07], who
reformulate the SP algorithm as the BP algorithm on a “lifted” Markov random field.

The literature on BP- and especially SP-guided decimation (for instance, [BMZ05],
[KMRT+07], [RTS09], [MM09]) has shown that these algorithms perform well empir-
ically on random instances of K-SAT for small values of K (K ≤ 10). There are
several ways in which these implementations differ (or may differ) from the setting we
study: (1) They analyze K-SAT, as opposed to NAE-K-SAT, and the asymmetry in
K-SAT may already make a difference for the algorithm. (2) They study 3-SAT, so
very local constraints, while we study K-clauses where K is constant but large, and
this increase in the locality of the constraints may make it harder for local algorithms
to function effectively (even though the locality of the algorithm can be chosen to be
arbitrarily after K is fixed). (3) In the empirically analyzed algorithms, the order
in which variables are set is not fixed a priori, but may depend on the probability
estimates returned by the message-passing iterations. While this could possibly also
affect the ability of the algorithms to find satisfying assignments, there appears to be
no reason based on the statistical-physics theory which implies that such a presorting
of variables is a crucial for SP-guided decimation algorithm to succeed. Size biasing
rather appears to be a sensible implementation detail of the algorithm. (Some dis-
cussion of the accuracy of the size-biased version versus random order can be found
in [KSS12].) (4) Finally, and probably most significantly, we analyze algorithms that
work with only a moderately growing number of rounds of message-passing itera-
tions, and this allows us to fit our approach within the framework of sequential local
algorithms. In contrast the empirical studies suggest using message passing till the
iterations converge, and this may take more than linear or even exponential number
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of rounds. This gap, however, was recently closed in [Het16], as previously mentioned.
Thus our work and setting make a collection of choices that are different from some

of the earlier works in the hope of getting some formal analysis. Unfortunately our
results show that, when the four choices are combined, it definitely produces a provable
difference, and the algorithms fail to find satisfying assignments at densities that are
qualitatively below the satisfiability threshold. Of course, it would be important to
reduce the number of parameters in which the choices for the negative results differ
from those used in the empirical setting (which yielded positive results), and we hope
this will be a subject of future work.

1.4. Future work. Going beyond specific classes of algorithms, a major chal-
lenge is to understand the intrinsic complexity of finding satisfying assignments in
random instances of K-SAT and NAE-K-SAT problems. Given the repeated fail-
ure to produce polynomial time algorithms for, say NAE-K-SAT, above the density

threshold of (1+oK(1))2
K−1

K ln2 K, it is plausible that the problem is actually average-
case hard in this regime. The formalism of problems which are NP-hard on average
is available [Lev86]; however, the problems which are known to be hard on average
are not particularly natural and are quite distant from the types of problems consid-
ered here. Another problem that has defied designing a fast algorithm, and which is
closer in spirit to the problems considered in this and related papers, is the problem
of finding a largest independent set in a dense random graph. Specifically, consider
the graph G(n, 1/2), where every one of the n(n − 1)/2 undirected edges is present
with probability 1/2 independently for all edges. It is known that the largest indepen-
dent set has size 2(1 + o(1)) ln2 n w.h.p. At the same time the best known algorithm
(greedy) finds only an independent set of size (1 + o(1)) ln2 n, and bridging this gap
has been a major open problem in the field of combinatorics and random graphs
since Karp posed it as an open problem back in 1976 [Kar76]. It is entirely plausible
that this problem is NP-hard in the constant average-degree case (i.e, on the random
graph G(n, d/n) for constant d), and resolving this question one way or the other is
a major open problem in theoretical computer science. By drawing an analogy with
this, and in light of 40 years of repeated failure to produce an algorithm for this prob-
lem, it is plausible to conjecture that NAE-K-SAT and related problems are NP-hard
on average above thresholds corresponding to the emergence of nontrivial restricted
overlap properties, similar to the ones established in this paper. Shedding some light
on this question is perhaps one of the most interesting problems in the area of random
constraint satisfaction problems.

Organization and notational conventions. Our main result and applications to
the BP-guided and SP-guided decimation algorithms are the subject of the next sec-
tion. Some preliminary technical results are established in section 3; in particular,
we establish bounds on the influence range of variables. The property regarding m-
overlaps of satisfying assignments is established in section 4. The proof of the main
result is in section 5.

Throughout the paper we use standard order-of magnitude-notations O(·), o(·)
for sequences defined in terms of the number of Boolean variables n. The constants
hidden by this notation may depend on any other parameters of the model, such as
K and d. Similarly we use notations OK(·) and oK(·) to denote sequences indexed by
K as K → ∞. The constants hidden in these notations are universal.

2. Formal statement of main result. In this section we formally present
our main result. Before doing so, we first introduce the mathematical notation and
preliminaries.
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2.1. The Not-All-Equal-K-satisfiability (NAE-K-SAT) problem. At the
expense of being redundant, let us recall the NAE-K-SAT problem. An instance Φ of
the NAE-K-SAT problem is described as a collection of n binary variables x1, . . . , xn

taking values 0 and 1 and a collection of N clauses C1, . . . , CN , where each clause is
given by a subset of K literals. Each literal is a variable x in x1, . . . , xn or negation
x̄ of a variable. An assignment is a function σ : {x1, . . . , xn} → {0, 1}. σ satisfies a
clause Cj if in this clause there are at least one literal valued 1 and at least one literal
valued 0. σ satisfies the formula Φ if every clause Cj , 1 ≤ j ≤ m, is satisfied. For every
assignment σ = (σ(xi), 1 ≤ i ≤ n), let σ̄ = 1− σ be the assignment given by σ̄(xi) =
1 − σ(xi), 1 ≤ i ≤ n. Given a formula Φ, denote by SAT(Φ) ⊂ {0, 1}n the (possibly
empty) set of satisfying assignments σ. For every 0 ≤ � ≤ m, denote by SAT(Φ, �) ⊃
SAT(Φ) the set of assignments violating at most � clauses, so that SAT(Φ, 0) =
SAT(Φ). Every σ ∈ SAT(Φ, �) will be called an �-satisfying assignment (or simply
satisfying assignment when � = 0). The following “complementation closure” and
resulting “balance” property of NAE-K-SAT are immediate (and do not hold for the
K-SAT problem).

Observation 2.1. For every instance Φ of the NAE-K-SAT problem, every �,
and assignment σ, we have that σ �-satisfies Φ if and only if σ̄ �-satisfies Φ. Con-
sequently, suppose SAT(Φ, �) 
= ∅. Then if σ is drawn uniformly at random from
SAT(Φ, �), for every 1 ≤ i ≤ n we have

P(σ(xi) = 0) = P(σ(xi) = 1) = 1/2.

Reduced instances. We now introduce some notation for reduced instances of NAE-
K-SAT. Informally, “reduced” instances are obtained from normal instances of NAE-
K-SAT by giving a partial assignment to some of the variables. Formally, a clause
of a reduced instance C is given by a set of at most K literals, along with a sign
denoted sign(C) ∈ {+,−, 0}. Furthermore, C has exactly K literals if and only if
sign(C) = 0. (Sometimes we refer to these signs as decorations.) An assignment σ
satisfies a reduced clause C if one of the following takes place: sign(C) = + and some
literal in C is assigned 0 by σ, OR sign(C) = − and some literal in C is assigned
1 by σ, OR sign(C) = 0 and there is at least one 0 literal and one 1 literal in C
under the assignment σ. A reduced NAE-K-SAT instance Φ consists of one or more
reduced clauses, and σ �-satisfies Φ if it violates at most � clauses in Φ. A partial
assignment σ : {xn+1, . . . , xn+t} → {0, 1} reduces a (reduced) NAE-K-SAT instance
Φ on variables x1, . . . , xn+t to a reduced instance Ψ on variables x1, . . . , xn in a natural
way, so that an assignment τ : {x1, . . . , xn} → {0, 1} �-satisfies Ψ if and only if the
combined assignment τ ◦ σ �-satisfies Φ.

Note that Observation 2.1 does not necessarily hold for the reduced instances of
the NAE-K-SAT problem. Instances in which every clause has sign 0 will be called
nonreduced instances.

Complements. Given a clause C in a reduced instance of NAE-K-SAT, its com-
plement, denoted C̄, is the clause with the same set of literals and its sign being
flipped—so if sign(C) = +, then sign(C̄) = −; if sign(C) = −, then sign(C̄) = +; and
if sign(C) = 0, then sign(C̄) = 0. Given a reduced instance Φ of NAE-K-SAT, its
complement Φ̄ is the instance with the complements of clauses of Φ.

We now make the following observation, whose proof is immediate.

Observation 2.2. Given a reduced instance Φ on variables x1, . . . , xn and a re-
duced instance Ψ on variables x1, . . . , xn+t, suppose that Φ is the instance derived by
reducing Ψ with the assignment σ : {xn+1, . . . , xn+t} → {0, 1}. Then Φ̄ is the reduced
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instance obtained by reducing Ψ̄ with the assignment σ̄, where σ̄(xi) = 1− σ(xi).

In particular, whenever a reduced formula Φ is obtained from a nonreduced for-
mula Ψ by setting some variables of Ψ, setting the same variables to opposite values
generates the complement Φ̄ of Φ.

Random NAE-K-SAT problem. We denote by Φ(n, dn) a random (nonreduced)
instance of the NAE-K-SAT problem on variables x1, . . . , xn and 
dn� clauses C1, . . . ,
CN generated as follows. The variables in each clause Cj are chosen from x1, . . . , xn

uniformly at random without replacement, independently for all j = 1, 2, . . . , N . Fur-
thermore, each x variable is negated (namely, appears as x̄) with probability 1/2
independently for all variables in the clause and for all clauses. We are interested in
the regime when n → ∞ and d is constant. d is called the clauses-to-variables ratio
or the density of the formula.

Graphs associated with NAE-K-SAT instances. Two graphs related to an in-
stance Φ of the NAE-K-SAT problem are important to us. The first is the so-called
factor graph, denoted F(Φ), which is a bipartite undirected graph with left nodes cor-
responding to the variables and right nodes corresponding to the clauses. A clause
node is connected to a variable node if and only if this variable appears in this clause.
The edges are labeled positive or negative to indicate the polarity of the literal in the
clause. In the case when Φ is a reduced NAE-K-SAT instance, clause vertices are
also labelled with the sign of the clause. Thus the factor graph of an NAE-K-SAT
instance uniquely defines this instance.

The second graph that we associate with Φ is the variable-to-variable graph of
Φ, denoted G(Φ), which has nodes corresponding to the variables, and two nodes are
adjacent if and only if they appear in the same clause. Note that in contrast to the
factor graph, the variable-to-variable graph loses information about the NAE-K-SAT
instance Φ.

Local neighborhoods. Given a (possibly reduced) instance Φ of an NAE-K-SAT
problem, a variable x in this instance, and an even integer r ≥ 1, we denote by
BΦ(x, r) the corresponding depth-r neighborhood of x in F(Φ), the factor graph of Φ.
When the underlying formula Φ is unambiguous, we simply write B(x, r). We restrict
r to be even so that for every clause appearing in B(x, r) all of its associated variables
also appear in B(x, r). Abusing notation slightly, we also use B(x, r) to denote the
reduced instance of NAE-K-SAT induced by the clauses in B(x, r) alone. Since r is
even, we have that the factor graph of this induced instance is B(x, r).

2.2. Sequential local algorithms for the NAE-K-SAT problem and the
main result. We now define the notion of sequential local algorithms formally and
state our main result.

Fix a positive even integer r ≥ 0. In our setting r will depend on model parameters
such as the number of variables n in a random formula Φ(n, dn). Denote by SAT r

the set of all NAE-K-SAT reduced and nonreduced instances Ψ with a designated
(root) variable x such that the distance from x to any other variable in Ψ is at most
r in F(Ψ). We note that SAT r is an infinite set. SAT r is the set of all instances Ψ
which can be observed as depth r neighborhood BΦ(x, r) of an arbitrary variable x
in an arbitrary reduced and nonreduced NAE-K-SAT instance Φ.

Consider any function τ : SAT r → [0, 1] which takes as an argument an arbi-
trary member Ψ ∈ SAT r and outputs a value (probability) in [0, 1]. We now describe
a sequential local algorithm, which we refer to as the τ-decimation algorithm, for
solving the NAE-K-SAT problem. Given a positive even integer r, the depth-r neigh-
borhood B(xi, r) = BΦ(n,dn)(xi, r) ∈ SAT r of any fixed variable xi ∈ [n] in the
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598 DAVID GAMARNIK AND MADHU SUDAN

formula Φ(n, dn), rooted at xi, is a valid argument of the function τ when the root
of the instance B(xi, r) is assigned to be xi. This remains the case when some of
the variables x1, . . . , xn are set to particular values and all of the satisfied and vio-
lated clauses are removed. In this case B(xi, r) is a reduced instance. In either case,
the value τ(B(xi, r)) is well defined for every variable xi which is not set yet. The
value τ(B(xi, r)) is intended to represent the probability with which the variable xi

is set to take value 1 when its neighborhood is a reduced or nonreduced instance
B(xi, r), according to the underlying local algorithm. Specifically, we now describe
how the function τ is used as a basis of a local algorithm to generate an assignment
σ : {x1, . . . , xn} → {0, 1}.

τ -decimation algorithm.

INPUT:
an instance Φ of an NAE-K-SAT formula on binary variables x1, . . . , xn,
a positive even integer r and function τ .

Set Φ0 = Φ.
FOR i = 1 : n
Set σ(xi) = 1 with probability τ(BΦi−1 (xi, r)).
Set σ(xi) = 0 with the remaining probability 1− τ(BΦi−1 (xi, r)).
Set Φi to be the reduced instance obtained from Φi−1 by fixing the value of xi as above,
removing satisfied and violated clauses, and decorating newly generated partially
satisfied clauses with + and − appropriately.

OUTPUT σ(x1), . . . , σ(xn).

In particular, even if at some point a contradiction is reached and one of the
clauses is violated, the algorithm does not stop but proceeds after removing violated
clauses from the formula. We denote by σΦ,τ the (random) output σ(x1), . . . , σ(xn)
produced by the τ -decimation algorithm above. We say that the τ -decimation al-
gorithm solves instance Φ if the output σΦ,τ is a satisfying assignment, namely
σΦ,τ ∈ SAT(Φ). Similarly, we say that the τ -decimation algorithm �-solves instance
Φ if σΦ,τ violates at most � clauses. We now define the following important symmetry
condition.

Definition 2.3. We say that a local rule τ : SAT r → [0, 1] is balanced if for
every instance Φ ∈ SAT r we have τ(Φ̄) = 1− τ(Φ).

The balance condition above basically says that the τ -decimation algorithm does
not have a prior bias in setting variables to 1 versus 0. In particular, when the
instance is nonreduced, the τ -decimation algorithm sets variable values equi-probably,
consistent with Observation 2.1. This condition will allow us to take advantage of
Observation 2.2 when applying the rule τ to reduced instances.

We now state the main result of the paper. For every ε > 0, let

κ = κ(ε,K) = (2 ln(2))−1ε3 ln2 K/K2.(1)

Theorem 2.4. For every ε > 0, ξ ∈ (0, 1) there exists K0 such that for every

K ≥ K0, d > (1 + ε)2K−1 ln2 K/K, every even r ≤ (ln lnn)
1−ξ

, and every balanced
local rule τ : SAT r → [0, 1] the following holds:

P
(
σΦ(n,dn),τ ∈ SAT(Φ(n, dn), κn)

)
≤ exp

(
− lnn(ln lnn)ξ/7
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for all large enough n.

Namely, with high probability (asymptotically at least 1−exp(−O(ln(ln lnn))O(1)),

every τ -decimation algorithm will violate at least O
(
ln2 K
K2 n

)
clauses. As we have men-

tioned above, the threshold for satisfiability is ds = 2K−1 ln 2− ln 2/2− 1/4− oK(1).
Thus our theorem implies that sequential local algorithms fail to find even a near
satisfying assignment at densities approximately (ds/K) ln2 K. We note that a su-
perpolynomial decay rate exp(−O(ln(ln lnn))O(1)) prevents the possibility of finding
a good solution by rerunning a τ -decimation algorithm polynomially many times.

2.3. BP-guided and SP-guided decimation algorithms as local sequen-
tial algorithms. We now show that BP-guided decimation and SP-guided decima-
tion algorithms are in fact special cases of τ -decimation algorithms, as described
in the previous section, when the number of message-passing iterations is at most
(ln lnn)1−ξ. As a consequence we have that the negative result given by Theorem 2.4
applies to these algorithms as well.

The BP and SP algorithms are designed to compute certain marginal values
associated with a NAE-K-SAT instance Φ and reduced instances obtained after some
of the variables are set. The natural interpretation of these marginals is that variables
may be set according to these marginals sequentially while refining the marginals as
decisions are made. It is common to call such algorithms BP-guided decimation
and SP-guided decimation algorithms. We now describe these algorithms in detail,
starting from the BP and BP-guided decimation algorithms.

Belief propagation. The BP algorithm is a particular message-passing–type al-
gorithm based on variables and clauses exchanging messages on the bipartite factor
graph F(Φ(n, dn)). After several rounds of such exchanges of messages, the messages
are combined in a specific way to compute marginal probabilities.

However, the relevant part for us is the fact that if the messages are passed
for only r rounds, then for every variable xi such that the neighborhood B(xi, r) is
in fact a tree, the computed marginals μ(xi) are precisely the ratio of the number
of assignments satisfying NAE-K-SAT formula B(xi, r) which set xi to one to the
number of such assignments which set this variable to zero. A standard fact is that,
for the majority of variables, B(xi, r) is indeed a tree even up to r ≤ O(lnn) for an
appropriate constant hidden in O(·). Thus most of the time BP iterations compute
marginal values corresponding to the ratio described above. These marginals are
then used to design the BP-guided decimation algorithm as follows. Variable x1 is
selected and the BP algorithm is used to compute its marginal μ(x1) with respect
to the neighborhood tree B(x1, r). Then the decision σ(x1) for this variable is set
to σ(x1) = 1 with probability μ(x1)/(μ(x1) + 1) and to σ(x1) = 0 with probability
1/(μ(x1)+ 1). Namely, the variable is set probabilistically proportionally to the ratio
of the number of solutions setting it to one versus the number of solutions setting it to
zero. After the decision for variable x1 is set in the way described above, the variable
x2 is selected from the reduced formula on variables x2, . . . , xn. The marginal μ(x2)
with respect to the neighborhood B(x2, r) for this reduced formula is computed, and
the value σ(x2) is determined based on μ(x2) similarly, and so on. The procedure is
called a BP-guided decimation algorithm. It is thus parametrized by the computation
depth r.

It is clear that such a BP-guided decimation algorithm is precisely a τ -decimation
algorithm, where τ(B(xi, r)) = μ(xi)/(μ(xi) + 1) is the marginal probability of the
variable xi corresponding to the reduced formula B(xi, r). Furthermore, the τ -local
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600 DAVID GAMARNIK AND MADHU SUDAN

rule so obtained satisfies the balance condition described in Definition 2.3. Thus,
as an implication of our main result, Theorem 2.4, we conclude that the BP-guided
decimation algorithm fails to find a satisfying assignment for Φ(n, dn) in the regime
where our result on the τ -decimation algorithms applies. Let κ be defined by (1).

Corollary 2.5. For every ε > 0, ξ ∈ (0, 1) there exist K0 and δ > 0 such that

for every K ≥ K0, d > (1 + ε)2K−1 ln2 K/K, and every even r ≤ (ln lnn)
1−ξ

the
following holds:

P (BP-guided decimation algorithm with r iterations violates at most κn clauses)

≤ exp
(
− lnn(ln lnn)ξ/7

)
for all large enough n.

Survey propagation. We now describe the SP-guided decimation algorithm. The
algorithm is significantly more complex to describe, but we will show again that it is
a τ -decimation algorithm when the number of message-passing rounds is bounded by
r ≤ (ln lnn)

1−ξ
, and that τ is a balanced rule. As a consequence we will conclude

that the SP-guided decimation algorithm also fails to find satisfying assignments for
instances with density larger than (ds/K) ln2 K when the number of rounds is bounded
by a constant. This is summarized in Corollary 2.7 below. The details of the algorithm
are delayed till the appendix. The main implication of this discussion is the following
fact, the proof of which is also found in the appendix.

Observation 2.6. The local rule τ corresponding to the SP iterations is balanced.

Theorem 2.4 then becomes applicable, and we conclude that, letting κ be defined
by (1), the following holds.

Corollary 2.7. For every ε > 0, ξ ∈ (0, 1) there exist K0 and δ > 0 such that

for every K ≥ K0, d > (1 + ε)2K−1 ln2 K/K, and every even r ≤ (ln lnn)
1−ξ

the
following holds:

P (SP-guided decimation algorithm with r iterations violates at most κn clauses)

≤ exp
(
− lnn(ln lnn)ξ/7

)
for all large enough n.

3. Local algorithms and long-range independence. In this section we ob-
tain some preliminary results needed for the proof of our main result, Theorem 2.4.
Specifically we prove two structural results about the τ -decimation algorithm for a
local rule τ .

The first result is simple to state—we show that balanced local rules lead to unbi-
ased decisions for every nonreduced NAE-K-SAT instance: specifically the marginal
probability that a variable is set to 1 is 1/2. More generally we show that the prob-
ability that a variable is set to 1 in any reduced or nonreduced instance Φ equals
the probability that the same variable is set to 0 in the complementary instance Φ̄.
(See Lemma 3.1.) This lemma later allows us to find satisfying assignments with an
appropriately small overlap in random instances Φ(n, dn).

Next, we consider the “influence” of a decision σ(xi) ∈ {0, 1} and ask how many
other variables are affected by this decision. In particular, we show that the decisions
σ assigned to a pair of fixed variables xi and xj are asymptotically independent as
n → ∞. Namely, the decisions exhibit a long-range independence. Such a long-range
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independence is not a priori obvious, since setting a value of a variable xi can have
downstream implications for setting variables xj , j ≥ i. We will show, however, that
the chain of implications appropriately defined is typically short. Definition 3.2 and
Proposition 3.5 formalize these claims.

In what follows, we first introduce some notation that makes the decisions of our
randomized algorithm more formal and precise. We then prove the two main claims
above in the following subsections.

3.1. Formalizing random choices of a τ -decimation algorithm. The τ -
decimation algorithm described in the previous section is based on the ordering of the
variables xi, since the values σ(xi) are set in the order i = 1, 2, . . . , n. In the case of
the random NAE-K-SAT formulaΦ(n, dn), due to symmetry we may assume, without
the loss of generality, that the ordering is achieved by assigning random i.i.d. labels
chosen uniformly from [0, 1] and using order statistics for ordering of variables. (This is
equivalent to renaming the variables at random, and this renaming will be convenient
for us.) Specifically, let Z = (Zi, 1 ≤ i ≤ n) be the i.i.d. sequence of random variables
with distribution uniform in [0, 1], independent from the random formula Φ(n, dn).
Let π : [n] → [n] be the permutation induced by the order statistics of Z. Namely,
Zπ(1) > Zπ(2) > · · · > Zπ(n). We now assume that when the τ -decimation algorithm
is performed, the first variable selected is xπ(1) (as opposed to x1), the second variable
selected is xπ(2) (as opposed to x2), etc. Namely, we assume that the τ -decimation
algorithm performed on a random instance of the NAE-K-SAT problem Φ(n, dn) is
conducted according to this ordering.

To facilitate the randomization involved in selecting randomized decisions based
on the τ rule, consider another i.i.d. sequence U = (Ui, 1 ≤ i ≤ n) of random variables
with the uniform in [0, 1] distribution, which is independent from the randomness of
Φ and sequence Z. The purpose of the sequence is to serve as random seeds for the
decision σ(xi) based on τ . Specifically, when the value σ(xi) associated with variable
xi is determined, it is done so according to the rule σ(xi) = 1 if Ui < τ(B(xi, r))
and σ(xi) = 0 otherwise, where B(xi, r) = BΦi−1(xi, r) is the reduced NAE-K-SAT
instance rooted at xi, observed at a time when the decision for xi needs to be made.
Namely, the τ -decimation algorithm is faithfully executed. Conditioned on Z, U, and
Φ, the output σ : [n] → {0, 1} is uniquely determined. We denote by σΦ,z,u(xi), 1 ≤
i ≤ n, the output of the τ -decimation algorithm conditioned on the realizations Φ, z,u
of the random instance Φ(n, dn), vector Z, and vector U, respectively. Similarly, we
denote by BΦ,z,u(xi, r), 1 ≤ i ≤ n, the (possibly) reduced NAE-K-SAT instance
corresponding to the r-depth neighborhood of variable xi at the time when the value
of xi is determined by the τ -decimation algorithm. In particular, σΦ,z,u(xi) = 1 if
ui ∈ [0, τ(BΦ,z,u(xi, r))], and σΦ,z,u(xi) = 0 if ui ∈ (τ(BΦ,z,u(xi, r)), 1].

3.2. Implications of balance. We now establish the following implication of
Definition 2.3 of balanced local rules.

Lemma 3.1. For every formula Φ and vectors z,u, the following identities hold
for every variable xi, 1 ≤ i ≤ n:

BΦ,z,ū(xi, r) = B̄Φ,z,u(xi, r),(2)

σΦ,z,ū(xi) = 1− σΦ,z,u(xi),(3)

where ū is defined by ūi = 1− ui, 1 ≤ i ≤ n. As a result, when U is a vector of i.i.d.
random variables chosen uniformly from [0, 1], for Φ and z, the following holds for all
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602 DAVID GAMARNIK AND MADHU SUDAN

i = 1, 2, . . . , n:

P(σΦ,z,U(xi) = 0) = 1/2.(4)

Note that the randomness in the probability above is with respect to U only, and
the claim holds for every formula Φ and every vector z.

Proof. We prove the claim by induction on xπ(1), xπ(2), . . . , xπ(n), where π is the
permutation generated by z, that is, zπ(1) > zπ(2) > · · · > zπ(n). Specifically, we will
show by induction that for every i = 0, 1, 2, . . . , n, just before the value of variable
xπ(i) is determined, the identity (3) holds for all variables xπ(j), j ≤ i − 1 (namely,
for variables whose values are already determined at time i), and the identity (2)
in fact holds for all neighborhoods BΦ,z,u(xπ(k), r), i ≤ k ≤ n, and BΦ,z,ū(xπ(k), r),
i ≤ k ≤ n, and not just for BΦ,z,u(xπ(i), r) and BΦ,z,ū(xπ(i), r).

For the base of the induction corresponding to i = 1, no variables are set yet,
and all the neighborhoods BΦ,z,u(xk, r), BΦ,z,ū(xk, r), 1 ≤ k ≤ n, correspond to
nonreduced instances, for which, by our convention, its symmetric complement is the
instance itself. Namely, BΦ,z,ū(xk, r) = B̄Φ,z,ū(xk, r) = BΦ,z,u(xk, r), and thus (2) is
verified.

Fix i ≥ 1, and assume now that the inductive hypothesis holds for j ≤ i. In par-
ticular, the values σ(xπ(j)) determined for j = 1, . . . , i− 1 under u and ū satisfy (3).
Now consider the step of assigning the value of xπ(i). We have σΦ,z,u(xπ(i)) = 1 if
and only if uπ(i) ≤ τ(BΦ,z,u(xπ(i), r)), and σΦ,z,ū(xπ(i)) = 1 if and only if ūπ(i) ≤
τ(BΦ,z,ū(xπ(i), r)). By the inductive assumption we have that BΦ,z,ū(xπ(i), r) =
B̄Φ,z,u(xπ(i), r). Since τ is balanced, we have τ(B̄Φ,z,u(xπ(i), r)) = 1−τ(BΦ,z,u(xπ(i), r)).
Since ū = 1 − u, we conclude that σΦ,z,u(xπ(i)) = 1 if and only if σΦ,z,ū(xπ(i)) = 0.
Namely, σΦ,z,u(xπ(i)) = 1− σΦ,z,ū(xπ(i)), and identity (3) is verified.

It remains to show that identity (2) still holds for all variables after the value
σ(xπ(i)) is determined. All neighborhoods B(xk, r) which do not contain xπ(i) are
not affected by fixing the value of xπ(i), and thus the identity holds by the inductive
assumption. Suppose B(xk, r) contains xπ(i). This means that this neighborhood
contains one or several clauses which contain xπ(i). Fix any such clause C. If this
clause was unsigned under u, then by the inductive assumption it was also unsigned
under ū (as the instances under u and ū are complements of each other). The clause
then becomes signed after fixing the value of xπ(i), and, furthermore, the signs will
be opposite under u and ū, since (3) holds for xπ(i) as we have just established.

Now suppose the clause was signed + under u. Then again by the inductive
assumption it was signed − under ū. In this case if the assignment σΦ,z,u(xπ(i))
satisfies C, then the clause remains signed + after setting the value of xπ(i). At the
same time this means that σΦ,z,ū(xπ(i)) = 1−σΦ,z,u(xπ(i)) does not satisfy C and the
clause remains signed − after setting the value of xπ(i). In both cases the variable
xπ(i) is deleted, and the identity (2) still holds. On the other hand, if σΦ,z,u(xπ(i))
does not satisfy C when u is used, then (since it was signed +) the clause C is now
satisfied and disappears from the formula. But at the same time this means that
σΦ,z,ū(xπ(i)) satisfies C, since it was signed − under ū, and therefore C is satisfied
again and disappears from the formula. The variable xπ(i) is deleted in both cases,
and again (2) is verified.

The case when clause C is signed − under u and signed + under ū is considered
similarly. Finally, suppose that σΦ,z,u(xπ(i)) violates a clause C containing xπ(i). This
means that C contains only this variable when setting this variable to σΦ,z,u(xπ(i)).
By the inductive assumption we see that the same is true under ū. In both cases both
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the variable and clause are removed from the formula. This completes the proof of
the inductive step.

Finally, since the distribution of U and Ū is identical for i.i.d. sequences chosen
uniformly at random from [0, 1], we obtain (4).

3.3. Influence ranges. We now define the notion of influence (which depends on
the formula Φ(n, dn) and ordering Z, but not on random choices of the τ -decimation
algorithm). With some abuse of notation, we write Zx for the random label associated
with variable x. In particular, Zxπ(1)

= Zπ(1), Zxπ(2)
= Zπ(2), etc. We introduce the

following relationship between the variables x1, . . . , xn of our formula.

Definition 3.2. Given a formula Φ and random sequence z = (zi, 1 ≤ i ≤ n),
we say that xi influences xj if either xj = xi or in the underlying node-to-node graph
G = G(Φ) there exists a sequence of nodes y0, y1, . . . , yt ∈ {x1, . . . , xn} with the
following properties:

(i) y0 = xi and yt = xj .
(ii) yl and yl+1 are connected by a path of length at most r in graph G for all

l = 0, 1, . . . , t− 1.
(iii) Zyl−1

> Zyl
for l = 1, 2, . . . , t. In particular, Zxi > Zxj .

In this case we write xi � xj. We denote by IRxi the set of variables xj influenced
by xi and call it the influence range of xi.

Note that indeed the randomness underlying the sets IRxi , 1 ≤ i ≤ n, as well
as the relationship � are functions of the randomness of the formula Φ(n, dn) and
vector Z, but independent from the random vector U.

While the definition above is sound for every r > 0, we will apply it in the case
where r is the parameter appearing in the context of the τ -decimation algorithm,
namely, in the context of the function τ defined on the set of rooted instances SAT r

introduced above. In this case the notion of influence range is justified by the following
observation.

Proposition 3.3. Given realizations Φ and z of the random formula Φ(n, dn)
and random ordering Z, respectively, suppose u = (ui, 1 ≤ i ≤ n) and u′ = (u′

i, 1 ≤
i ≤ n) are such that ui0 
= u′

i0 and ui = u′
i for all i 
= i0 for some fixed index i0. Then

σΦ,z,u(x) = σΦ,z,u′(x) for every x /∈ IRi0 . That is, changing the value of u at i0 may
impact the decisions associated only with variables x influenced by xi0 .

Proof. Fix any variable xi such that σΦ,z,u(xi) 
= σΦ,z,u′(xi). If i = i0, then triv-
ially xi0 � xi0 and thus xi0 ∈ IRxi0

. Otherwise assume i 
= i0 and thus u′
i = ui. Then

it must be the case that τ(BΦ,z,u′ (xi, r)) 
= τ(BΦ,z,u(xi, r)), since otherwise with the
same value of ui = ui′ we would have the same assignment: σΦ,z,u′(xi) = σΦ,z,u(xi).
This implies that there exists a variable xi1 with distance at most r (with respect to
the node-to-node graph G = G(Φ)) from xi such that zxi1

> zxi and such that the de-
cision for xi1 is affected by the switch, namely, σΦ,z,u′(xi1 ) 
= σΦ,z,u(xi1 ). Then either
i1 = i0 and in particular xi0 � xi1 , or again τ(BΦ,z,u′(xi1 , r)) 
= τ(BΦ,z,u(xi1 , r)),
further implying the existence of a variable xi2 with distance at most r from xi1 such
that zxi2

> zxi1
and σΦ,z,u′(xi2 ) 
= σΦ,z,u(xi2). Continuing this reasoning, we will

eventually arrive at node i0, implying that xi0 � xi and completing the proof.

We now obtain a probabilistic bound on the size of a largest in cardinality influence
range class IRxi , 1 ≤ i ≤ n. Fix a variable x in Φ(n, dn). First we obtain a
probabilistic bound on the size of a neighborhood B(x, t) around x for appropriately
small values of t.
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604 DAVID GAMARNIK AND MADHU SUDAN

Lemma 3.4. For every 0 < ε < 1/5, δ = ε/(4 ln(edK)), and t = 
δ lnn�,

P(|B(x, t)| ≥ nε) ≤ exp
(
− nε/5

)
(5)

for all sufficiently large n.

Proof. For the proof it will be convenient to switch to a model of Φ(n, dn) in
which the number of clauses is distributed as a Poisson random variable with mean
(1 + α)dn for a fixed α > 0, rather than taking the precise value 
dn�. We denote

such a random formula by Φ̂(n, dn, α). By a straightforward concentration result, we

have that the number of clauses in Φ̂(n, dn, α) exceeds dn with probability at least
1 − exp(−γn) for some γ which depends on α, K, and d. Since the bound in (5) is
of the form exp(−nε/5), and ε/5 < 1, it suffices to establish a bound on B(x, t) for

Φ̂(n, dn, α) instead. For notational convenience we assume that the mean number of
clauses is dn as opposed to (1 + α)dn. It will be easy to see that the argument does
not really depend on the actual value of d as long as it is constant.

Next we use a standard approximation of B(x, t), t = 1, 2, . . . , t, by a branch-
ing process with outdegree distribution given by a Poisson random variable with
mean dK. In fact we will use the property that such a branching process stochas-
tically dominates B(x, t), for every t, which we now establish. Towards this goal,
we introduce the following revelation process, which is again a standard method of
analysis of neighborhoods of a node in a random graph. In each step of the reve-
lation process, the nodes [n] are partitioned into three groups: “dead,” “alive,” and
“unexplored,” denoted respectively by Dk, Ak, Ik, k ≥ 0. For k = 0 we set D0 = ∅,
A0 = {x}, I0 = [n] \ {x}. Assuming the sets Dk−1, Ak−1, Ik−1 are defined, we de-
fine the sets with index k as follows. If Ak−1 = ∅, we set Dk = Dk−1, Ak = Ak−1,
Ik = Ik−1, and the revelation process stops. Otherwise, we pick an arbitrary node
y ∈ Ak−1 and let y1, . . . , yΔ ∈ Ik−1 be the neighbors of y in Ik−1 with respect to
graph G(Φ(n, dn)). Then we set Dk = Dk−1 ∪ {y}, Ak = Ak−1 ∪ {y1, . . . , yΔ} \ {y},
and Ik = Ik−1 \ {y1, . . . , yΔ}. The process Dk, Ak, Ik, k ≥ 0, can be viewed as a
branching process with root x, where in every step one of nodes y of the tree is chosen
and its children y1, . . . , yΔ are revealed. Conditional on sets Dk−1, Ak−1, Ik−1, Δ is
distributed as a Poisson random variable with mean at most dK. Thus the Poisson
branching process with mean β � dK ≥ 1 stochastically dominates B(x, t) for all t,
and it suffices to obtain a bound on the number of nodes in the first t generations of
the Poisson process with mean dK. For notational convenience, the Poisson branch-
ing process is also denoted by B(x, t). More specifically, letting W�, � ≥ 0, denote
the number of nodes in the �th generation of this process, with W0 = 1 correspond-
ing to the root x, we have |B(x, t)| =

∑
0≤�≤t W�. In particular W1 has a Poisson

distribution with mean β.
We claim that the following upper bound holds for each l ≤ t = 
δ lnn�,

P(Wl > nε/2) ≤ exp(−nε/4 + o(nε/4)),(6)

from which the claim of the lemma follows by a union bound. To establish this bound
we rely on the following known representation of the probability generating function
of Wl. That is, let G(θ) = E[θW1 ] for θ > 0, where we recall that W1 has a Poisson
mean β distribution. Then G(θ) = exp(βθ−β) and E[θWl ] = G(l)(θ) is the lth iterate
of function G(θ). Let θ = 1 + 1

(eβ)t . Define γl = 1/(eβ)l, 0 ≤ � ≤ t. We now obtain

an upper bound on G(l)(θ). We have

G(1)(θ) = exp(βθ − β) = exp(βγt) ≤ 1 + γt−1,
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where we have used that β > 1 implies βγt < 1, and inequality ez ≤ 1+ ez for z ≤ 1.
Then

G(2)(θ) = exp(βG(1)(θ)− β) ≤ exp(βγt−1) ≤ 1 + γt−2,

since βγt−1 < 1. Continuing, we obtain G(l)(θ) ≤ 1 + γt−l, 1 ≤ l ≤ t. Applying this
bound,

P(Wl ≥ nε/2) = P(θWl ≥ θn
ε/2

)

≤ θ−nε/2

E[θWl ]

≤ θ−nε/2

(1 + γt−l)

≤ 2θ−nε/2

.

Now

θ−nε/2

= exp(−nε/2 ln(θ))

= exp(−nε/2(γt + o(γt))).

Now since t ≤ δ lnn, then γt ≥ (eβ)−δ lnn = n− ln(eβ)δ, implying the upper bound
exp(−nε/4 + o(nε/4)), by the choice of δ. This completes the proof of the bound (6)
and of the lemma.

We now return to obtaining bounds on the sizes of the influence ranges IRxi .

Proposition 3.5. For every 0 < ε < 1/5,

P

(
max
1≤i≤n

|IRxi | ≥ nε

)
≤ exp

(
− lnn(ln lnn)ξ/4

)
(7)

for all large enough n.

Proof. Similarly to the proof of Lemma 3.4, it will be convenient to switch to an
equivalent model where instead of generating 
dn� clauses uniformly at random for
the formula Φ(n, dn), each of the total universe of 2K

(
n
K

)
clauses is placed into the

formula Φ(n, dn) with probability pn,d = dn/(2K
(
n
K

)
), independently for each clause.

Thus the expected number of clauses is dn. Conditional on generating N clauses, the
new model is precisely Φ(n,N). As before, by a simple concentration inequality, for
every fixed ε > 0 the probability that the actual number of clauses deviates from dn
by more than εn is exponentially small in n. In particular, if instead we set pn,d to
be (1+ ε)dn/(2K

(
n
K

)
), the probability that the number of clauses in the new model is

less than dn is exponentially small in n. Thus obtaining a probabilistic upper bound
on the size of IRxi in the modified model implies the same bound on the original
model Φ(n, dn), with estimate difference at most exponential in n, which is subsumed
by a smaller rate in (7). Thus we now switch to the new model, but for simplicity we
assume that pn,d = dn/(2K

(
n
K

)
), dropping the 1 + ε term. It will be easy to see that

this does not impact the estimates. Also for simplicity we use Φ(n, dn) to denote the
modified model as well.

For every variable x we write IRx = ∪tIRx,t, where we define IRx,t to be the
set of all variables y who are influenced by x through a path of length exactly t in
graph G(Φ(n, dn)). Note that the sets IRx,t by this definition are not necessarily
mutually disjoint since a variable x can influence another variable y via several paths
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of different lengths. Thus IRx = ∪tIRx,t. Let Ix,t � |IRx,t|. We split the analysis

into two cases: t ≥ lnn/(ln lnn)1−ξ/2 � τn and t < τn.
Suppose t < τn. Then every node y ∈ IRx,t is within distance

rt ≤ (ln lnn)1−ξ lnn/(ln lnn)1−ξ/2

= lnn/(ln lnn)ξ/2

= o(lnn)

from x. Applying Lemma 3.4, we conclude that

P (| ∪t≤τn IRx,t| ≥ nε) ≤ exp
(
− nε/5

)
for all large enough n. Note that for this case we have not used the fact that the labels
zyi of the influence path from x to y ∈ IRx,t have to be ordered but have simply used
a bound from Lemma 3.4 on the size of the neighborhoods around x.

Next we consider the case t ≥ τn. It is here that the ordering of labels zyi will be
important. We claim that

E [| ∪t≥τn IRx,t|] ≤ exp
(
−(1/6) lnn(ln lnn)ξ/3

)
(8)

for large enough n, which by Markov’s inequality implies

P (| ∪t≥τn IRx,t| ≥ 1) ≤ exp
(
−(1/6) lnn(ln lnn)ξ/3

)
for large enough n. Combining the two bounds, we obtain

P (| ∪t IRx,t| ≥ nε) ≤ exp
(
− nε/5

)
+ exp

(
− (1/6) lnn(ln lnn)ξ/3

)
≤ exp

(
− lnn(ln lnn)ξ/4

)
for all large enough n, and the proof of the proposition is complete by taking a union
bound over the n choices of x.

We now establish (8). Consider an influence path of length t starting from x,
namely a path y0 = x, y1, . . . , yt such that zy0 > zy1 > · · · > zyt and such that yi and
yi+1 are connected by a path in G(Φ(n, dn)) denoted by yi0 = yi, y

i
1, . . . , y

i
ri = yi+1

with length ri ≤ r. This implies the existence of clauses denoted by Ci,j , 0 ≤ i ≤ t−1,
0 ≤ j ≤ ri − 1, such that the clause Ci,j contains both variables yij and yij+1 for all
0 ≤ i ≤ t− 1, 1 ≤ j ≤ ri. Each such clause contains K − 2 additional variables. We
now fix any such path yi, 0 ≤ i ≤ t, we fix the corresponding “connecting” variables
yij , and we fix the clauses Ci,j . The probability that such a path exists in the graph
G(Φ(n, dn)), by the independence of choices of variables in the clauses, is

(2Kpn,d)
∑

0≤i≤t−1 ri =

(
dn(
n
K

)
)∑

0≤i≤t−1 ri

,

where 2K in front of pn,d accounts for the possibilities of negations in clauses. Given
that this path exists in graph G(Φ(n, dn)), the probability that it is also a path
of influence is 1/t! by the independence of labels z from all other randomness in
the model. The total number of such paths is crudely upper bounded by ((K −
1)n)(K−1)

∑
0≤i≤t−1 ri−1, where 1 is subtracted since the first variable y0 = y00 = x
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is fixed, and factor K − 1 in front of n accounts for K − 1 choices for variables in
a clause containing yij serving as connectors with the next clause. We obtain the
following upper bound:

E[Ix,t] ≤ (t!)−1((K − 1)n)(K−1)
∑

0≤i≤t−1 ri−1

(
dn(
n
K

)
)∑

0≤i≤t−1 ri

≤ K!
(Kd)Krt

t!n
+O

(
(Kd)Krt

t!n2

)

= O

(
(Kd)Krt

t!n

)
,(9)

where the constant hidden in O(·) may depend on K but not on r, t. Recall that r ≤
(ln lnn)1−ξ. When t ≥ τn, we have ln t ≥ ln lnn− (1− ξ/2) ln(3) n, where ln3 denotes
a three times iterated logarithm. Since ξ > 0, this implies (Kr) ln(Kd) ≤ (1/4) ln t
for large enough n. Then, using the Stirling’s approximation which gives t! ≥ t

t
2 for

large enough t, we obtain that for all large enough n

(Kd)Krt

t!
≤ exp(Krt ln(Kd)− (t/2) ln t)

≤ exp (−(t/4) ln t)

≤ exp
(
−(1/5) lnn(ln lnn)ξ/2

)
.

Next observe that for every λ > 0 and k0 > 2λ we have (2λ)k/k! ≤ (2λ)k0/k0! for all
k ≥ k0. This implies

∑
k≥k0

λk

k!
≤ λk0

k0!

∑
k≥k0

2−(k−k0)

= 2
λk0

k0!
.

We obtain that for large enough n,

∑
t≥τn

(Kd)Krt

t!
≤ exp

(
−(1/6) lnn(ln lnn)ξ/2

)
,

where the factor 2, as well as the constant factor hidden in O(·) in (9), is consumed
by lowering the factor 1/5 to 1/6. We then obtain

E

⎡
⎣∑
t≥τn

Ix,t

⎤
⎦ =

∑
t≥τn

E[Ix,t]

≤ exp
(
−(1/6) lnn(ln lnn)ξ/3

)
for all large enough n, and (8) is established.

4. The overlap structure of nearly satisfying assignments. In this section
we establish a certain property regarding overlaps of multiple assignments of the
NAE-K-SAT problem. Recall that the random NAE-K-SAT formula Φ(n, dn) is
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satisfiable with probability approaching unity as n → ∞, when d ≤ ds, where ds =
2K−1 ln 2− ln 2/2− 1/4− f(K) for some function f(K) satisfying limK→∞ f(K) = 0.
Recalling our notation SAT(Φ, �) for the set of assignments violating at most � ≤ dn
clauses, and SAT(Φ) for the set of satisfying assignments of a formula Φ, we have
P(SAT(Φ(n, dn)) 
= ∅) → 1 as n → ∞ for every d < ds.

The solution overlap property we consider in this section is with respect to the
Hamming distance ρ(σ1, σ2) between two assignments σ1 and σ2, denoted ρ(σ1, σ2),
which is the number of variables xi with different assignments according to σ1 and σ2.
In the prior literature the nontrivial overlap property of satisfying assignments was
established by proving a certain clustering property, which says that the “satisfac-
tion graph,” the graph of satisfying assignments where two assignments are deemed
adjacent if the Hamming distance between them is o(n), has many connected compo-
nents. A condition which in turn implies this simple notion is that for every pair of
satisfying assignment σ1 and σ2 it is the case that ρ(σ1, σ2)/n 
∈ (β − η, β) for some
η > 0, and there are at least two solutions σ1, σ2 with ρ(σ1, σ2)/n ≥ β. Note that
this implies that any pair of satisfying assignments σ1 and σ3 with ρ(σ1, σ3) > βn
must be disconnected in the satisfaction graph, or else there will be a point σ2 on the
path between them with ρ(σ1, σ2)/n ∈ (β − η, β).

Unfortunately, working purely with this notion, one gets such a clustering result
only for very high densities d, specifically for d at least ds/2. (We skip details since
this fact is not needed for our main result.) To obtain a result for smaller density d
we establish a more complicated nontrivial overlap property, which was inspired by
the development in [RV14]. Roughly speaking, we show that there cannot be many
assignments σ1, . . . , σm for some constant m which satisfy a certain minimum number
of clauses such that all pairwise Hamming distances ρ(σi, σj) fall between (β − η)n
and βn. We now give the formal definition.

Fix β, η ∈ [0, 1], κ ≥ 0, and a positive integer m. Given an NAE-K-SAT formula
Φ, denote by SAT(Φ;β, η, κ,m) the set of all m-tuples (σ1, . . . , σm) of assignments
σj : {x1, . . . , xn} → {0, 1}, 1 ≤ j ≤ m, satisfying the following properties:

(a) Every σj , 1 ≤ j ≤ m, is an assignment violating at most κn clauses. Namely,
SAT(Φ;β, η, κ,m) ⊂ SAT

m(Φ, κn).
(b) For every j, k, (β − η)n ≤ ρ(σj , σk) ≤ βn.

In our application we will choose η to be much smaller than β. In this case the
pairwise distances ρ(σj , σk) are nearly βn. Thus we may think of such an m-tuple as
a set of m equidistant points in the Hamming cube {0, 1}n with pairwise distances
nearly βn.

We now state the main result of this section.

Theorem 4.1. Fix arbitrary 0 < ε < 1, and let β = lnK
K , η =

(
lnK
K

)2
, κ =

(2 ln(2))−1ε3 ln2 K/K2, and m = � ε2K
lnK �. Then there exist K0 = K0(ε) and δ > 0

such that for all K ≥ K0 and d ≥ (1 + ε)2K−1 ln2 K/K the following holds:

lim
n→∞n−1 lnP (SAT (Φ(n, dn), β, η, κ,m) 
= ∅) ≤ −δ.

Intuitively Theorem 4.1 states that for certain choices of β, η, κ, and m which
depend on K only, when d crosses the threshold ≈ (ds/K) ln2 K, the probability of
finding m equidistance assignments which violate at most ≈ κn clauses is at most
e−δn for large enough K and n.

Proof. The proof is based on the application of the first moment argument. We
consider the expected number of m-tuples satisfying the conditions (a)–(b) and show
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that this expectation converges to zero exponentially fast as n → ∞. Applying
Markov’s inequality, the result then will follow.

We begin by computing asymptotically the number of m-tuples σ1, . . . , σm satis-
fying condition (b) only. We have 2n choices for σ1. For any fixed choice of σ1 and
any fixed j = 2, . . . ,m the number of choices for σj is

∑
n(β−η)≤r≤nβ

(
n

r

)
,

by considering all the subsets of variables x1, . . . , xn where σ1 and σj disagree. Since
this applies for every j, we obtain the following upper bound on the number of m-
tuples satisfying (b):

2n

⎛
⎝ ∑

n(β−η)≤r≤nβ

(
n

r

)⎞⎠
m−1

.

This bound appears to be loose, since it ignores the constraints on ρ(σj , σk) for
j, k ≥ 2. Nevertheless, it suffices for our purposes. We now obtain an asymptotic
upper bound on this expression in terms of ε, K, and n.

Using Stirling’s approximation and since the function −x lnx is increasing in the
range x < e−1 and decreasing in the range x > e−1, the expression is at most

exp (n ln 2− nmβ lnβ − nm(1− β + η) ln(1− β + η) + o(n)) .(10)

Here we use β = lnK/K < e−1 and 1 − β − η = 1 − lnK/K > e−1 for sufficiently
large K. Further, the same asymptotics gives − lnβ = lnK +OK(ln lnK), implying

−mβ lnβ = m (β lnK + βOK(ln lnK))

= ε2 lnK +OK(ln lnK).

Next, we have for sufficiently large K

−m(1− β + η) ln(1 − β + η)) ≤ m((lnK/K) + oK(lnK/K))

≤ ε2 + oK(1).

We conclude that for sufficiently large K the term (10) is at most

exp(nε2 lnK + nOK(ln lnK)).(11)

We now compute an upper bound on the probability that a given m-tuple σ1, . . . ,
σm satisfying (b) consists of assignments violating at most κn clauses. Should this
be the case, then the total number of violated clauses is at most mκn, and thus there
exist at least dn −mκn = rn clauses satisfied by all of the assignments σ1, . . . , σm,
where r � d − mκ. We fix any set of clauses with cardinality rn, which without
loss of generality we assume to be C1, . . . , Crn, and obtain an upper bound on the
probability that each σj , 1 ≤ j ≤ m, satisfies every clause C1, . . . , Crn. Then we will
take the union bound on the all subsets of C1, . . . , Cdn of cardinality rn.

Let C be a clause generated uniformly at random from the space of all clauses (a
generic element of the formula Φ(n, dn)). Applying the truncated exclusion-inclusion
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610 DAVID GAMARNIK AND MADHU SUDAN

principle, the probability that C is satisfied by every assignment σ1, . . . , σm is

P(C satisfied by σj ∀j = 1, . . . ,m) = 1− P(∃j : C is not satisfied by σj , 1 ≤ j ≤ m)

≤ 1−
∑

1≤j≤m

P(C is not satisfied by σj)

+
∑

1≤j1<j2≤m

P(C is not satisfied by σj1 , σj2).

Now P(C is not satisfied by σj) = 2−K+1. Also for every two assignments σ1 and σ2

which disagree in n0 ≤ n variables

P(C is not satisfied by σ1, σ2) = 2−K+1

((n0

n

)K
+
(
1− n0

n

)K)
.

We conclude that, for every m-tuple σ1, . . . , σm satisfying (b), the probability that
this m-tuple satisfies clauses C1, . . . , Crn is at most(

1−m2−K+1 + (m(m− 1)/2)2−K+1(βK + (1− β + η)K)
)rn

≤
(
1− ε2K(lnK)−12−K+1 + ε4K2(lnK)−22−K+2(K−1 + oK(K−1))

)rn
.

Here we used the fact that for β = lnK/K and η = (lnK/K)2 we have

lnβK + (1− β + η)K = K−1 + oK(K−1).

The upper bound then simplifies to(
1− ε2K(lnK)−12−K+1 + oK(K(lnK)−12−K)

)rn
,

which using r = d −mκ and applying the lower bound d ≥ (1 + ε)(2K−1/K) ln2 K,
leads to a bound

exp
(
−n(1 + ε)ε2 lnK + noK(lnK)

)
.(12)

On the other hand, the number of ways of choosing rn out of dn clauses using Stirlings’
approximation is(

dn

mκn

)
= exp (−dn(mκ/d) ln(mκ/d)− dn(1−mκ/d) ln(1−mκ/d) + o(n)) .

We now analyze the exponent. Since 1/(mκ) = OK(K/ lnK), then

− ln(mκ/d) = ln(d)− ln(mκ)

= K ln 2 + oK(K).

Thus

−d(mκ/d) ln(mκ/d) = mκK ln(2)(1 + oK(1)),

which by our choice of κ is (1/2)ε3 lnK + oK(lnK). For the second term in the
exponent, using a first order Taylor expansion,

−d(1−mκ/d) ln(1−mκ/d) = dmκ/d

= mκ

= oK(lnK).
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Applying our bounds for (12), we obtain the following upper bound on the probability
that there exist at least rn clauses satisfied by all of the assignments σ1, . . . , σm:

exp
(
−n(1 + ε)ε2 lnK + (1/2)nε3 lnK + noK(lnK)

)
= exp

(
−nε2 lnK − (1/2)nε3 lnK + noK(lnK)

)
.

Now combining this with (11), we conclude that the expected number of m-tuples
satisfying conditions (a) and (b) is at most

exp(−n(1/2)ε3 lnK + noK(lnK)).

The proof of the theorem is complete by applying Markov’s inequality.

5. Proof of Theorem 2.4. The main result of this section states that if a τ -
decimation algorithm works well on random instances of NAE-K-SAT, then it can be
run several times to produce several nearly satisfying assignments, and in particular
such that their overlaps (Hamming distances) satisfy properties (a) and (b) described
in the previous sections with parameters β, η, κ, and m given in Theorem 4.1. Since
such overlaps are “forbidden” by this theorem, we will obtain a contradiction. We
state our main proposition below and show how Theorem 2.4 follows almost immedi-
ately. The rest of this section is devoted to the proof of the proposition.

We first recall some notation from section 3. Given a local rule τ : SAT r → [0, 1],
let σΦ,Z,U denote the assignment produced by the τ -decimation algorithm on input
Φ, ordering given by Z, and using U to determine the rounding of the probabilities
given by τ . Recall that ρ(σ1, σ2) denotes the Hamming distance between assignments
σ1 and σ2. Let κ again be defined by (1). Let αn denote the probability that the
τ -decimation algorithm finds an assignment in a random formula Φ(n, dn) violating
at κn clauses. Namely, αn = P

(
σΦ(n,dn),Z,U ∈ SAT(Φ(n, dn), κn)

)
.

Proposition 5.1. Suppose αn > exp
(
− lnn(ln ln)ξ/6

)
for all large enough n.

Then for every 0 < η < β such that [β − η, β] ⊂ [0, 1/2] and every positive integer m,
K, and d,

PΦ(n,dn) (SAT(Φ(n, dn);β, η, κ,m) 
= ∅) ≥ exp
(
− lnn (ln ln)

ξ/5
)

for all sufficiently large n.

Proof of Theorem 2.4. The result follows immediately from Theorem 4.1 and
Proposition 5.1 by setting β, η, and m exactly as in Theorem 4.1 and noting that
[β−η, β] ⊂ [0, 1/2] is satisfied for sufficiently largeK and, on the other hand, observing
that

exp
(
− lnn (ln ln)

ξ/5
)
> exp(−δ/2n)

for all large enough n, where δ is as in Theorem 4.1.

5.1. Proof of Proposition 5.1.

Proof of Proposition 5.1. Given a random formula Φ(n, dn) and a random se-
quence Z generating the order of setting the variables, let us consider m independent
vectors U0, . . . ,Um−1 which can be used to generate assignments. By definition we
have

P(σΦ(n,dn),Z,Uj ∈ SAT(Φ(n, dn))) = αn
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612 DAVID GAMARNIK AND MADHU SUDAN

for j = 0, . . . ,m − 1. We now construct a sequence of vectors Vt,j , 0 ≤ t ≤ n,
0 ≤ j ≤ m − 1, where for each j = 1, . . . ,m − 1 the sequence Vt,j will interpolate
between vectors U0 and Uj . Specifically, let Vt,j = (V t,j

1 , . . . , V t,j
n ), where V t,j

i = U j
i ,

i ≤ t, and V t,j
i = U0

i , t < i ≤ n. Note that for every t = 0, 1, . . . , n, Vt,j is a
vector of i.i.d. random variables with a distribution uniform in [0, 1]. Furthermore,
V0,j = U0, Vt,0 = U0, and Vn,j = Uj . Recall the notation IRxt for the influence
region of variable xt, i.e., all variables whose decision is potentially influenced by the
assignment of xt by the τ -decimation algorithm. Observe that, given any realizations
uj , 0 ≤ j ≤ m− 1, of vectors Uj , and the corresponding realizations vt,j of Vt,j , we
have

ρ(σΦ,z,vt+1,j , σΦ,z,vt,j ) ≤ |IRxt+1 |, 0 ≤ t ≤ n− 1,(13)

since vt,j and vt+1,j differ only in one coordinate t + 1, and by Proposition 3.3,
changing the value of ut+1 impacts only the decisions for variables in IRxt+1 .

Lemma 5.2. For all large enough n the following holds:

P
(
∀ 0 ≤ j1 
= j2 ≤ m− 1, ρ(σΦ(n,dn),Z,VT,j1 , σΦ(n,dn),Z,VT,j2 ) ∈ [(β − η)n, βn]

)
≥ 1− exp

(
− lnn(ln lnn)ξ/5

)
.(14)

Thus, per Lemma 5.2, the sequence of assignments σj � σΦ(n,dn),Z,VT,j , 0 ≤ j ≤
m− 1, satisfies property (b) of the definition of SAT(Φ;β, κ, η,m) with probability at
least 1− exp

(
− lnn(ln lnn)ξ/5

)
for large enough n.

Proof. We now consider a realization Φ of a formula Φ(n, dn) and realization z
of the order Z. Φ and z uniquely determine sets IRxi , 1 ≤ i ≤ n. Let En denote the
event (the set of Φ and z) that max1≤i≤n |IRxi | ≤ n1/6. By Proposition 3.5 we have

P(En) ≥ 1− exp
(
− lnn(ln lnn)ξ/4

)
(15)

for large enough n. Here the choice of 1/6 is somewhat arbitrary, and in fact any
value less than 1/5 is fine by Proposition 3.5. We assume without loss of generality
that n is large enough so that n1/6 < (β − η)n.

We first suppose that Φ and z are realizations such that the event En takes place.
We have by property (4) of Lemma 3.1 that, for every Φ and z,

E[ρ(σΦ,z,U0 , σΦ,z,Uj )] = n/2

for each j = 1, . . . ,m − 1. Here the randomness is with respect to Vt,j , as Φ and z
are fixed. Then, we can find t0 = t0(Φ, z) such that

E[ρ(σΦ,z,U0 , σΦ,z,Vt0,j )|Φ, z] ∈
[
(β − η/2)n, (β − η/2)n+ n1/6

]
for all j = 1, . . . ,m− 1, as by (13) the increments ρ(σΦ,z,Vt+1 , σΦ,z,Vt,j ) are bounded

by n1/6 with probability one with respect to the randomness of Vt,j .
Note that t0 does not depend on j since Vt,j are identically distributed for 1 ≤

j ≤ m− 1. Furthermore, since U0 and Uj are identical in distribution, we also have
for every 0 ≤ j1 < j2 ≤ m− 1

E[ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0 ,j2 )] ∈
[
(β − η/2)n, (β − η/2)n+ n1/6

]
.
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We now fix j1 
= j2 and argue that in fact ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0 ,j2 ) is concentrated
around its mean as n → ∞. The distance is a function of n+t0 i.i.d. random variables
U j1
1 , . . . , U j1

t0 ;U
j2
1 , . . . , U j2

t0 ;U
0
t0+1, . . . , U

0
n. Further, changing any one of these n + t0

random variables changes the distance ρ by at most 2n1/6, again by Proposition 3.3
and by our assumption that Φ and z are realizations such that the event En holds.
Applying Azuma’s inequality,

P

(∣∣∣ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0,j2 )− (β − η/2)n
∣∣∣ ≥ η

4
n
)

≤ 2 exp

(
−
(η4n− n

1
6 )2

4(n+ t0)n
1
6

)

= exp
(
− δn5/6 + o(n

5
6 )
)

for some constant δ > 0, and the concentration is established. The event∣∣∣ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0 ,j2 )− (β − η/2)n
∣∣∣ < η

4
n

implies the event

ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0 ,j2 ) ∈ [(β − η)n, βn].

We conclude that for every Φ and z such that the event En takes place we have

P
(
ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0,j2 ) ∈ [(β − ηn), βn]

)
≥ 1− exp

(
− δn5/6 + o(n

5
6 )
)

(16)

for all n satisfying n1/6 < (β − η)n. Since m does not depend on n, we obtain by the
union bound

P

(
∀ 0 ≤ j1 
= j2 ≤ m− 1, ρ(σΦ,z,Vt0 ,j1 , σΦ,z,Vt0 ,j2 )(17)

∈ [(β − η)n, βn]
)
≥ 1− exp(−δn2/3)

for all large enough n, where again the choice 2/3 was arbitrary as long as it is smaller
than 5/6. For completion, let us set t0 = 0 when Φ and z are such that the event En
does not take place. Let now T = t0(Φ(n, dn),Z) be a random variable thus defined.
This way we have assignments σΦ,z,VT,j , 0 ≤ j ≤ m− 1, defined for all realizations of
Φ and z, in particular whether the event En takes place or not. Since the former is
the high probability event, we conclude from above that

P

(
∀ 0 ≤ j1 
= j2 ≤ m− 1, ρ(σΦ(n,dn),Z,VT,j1 , σΦ(n,dn),Z,VT,j2 ) ∈ [(β − η)n, βn]

)
≥ 1− exp(−δn2/3)− exp

(
− lnn(ln lnn)ξ/4

)
≥ 1− exp

(
− lnn(ln lnn)ξ/5

)
for all large enough n, and the bound (14) is established.

Our next goal is to show that the assignments σj , 0 ≤ j ≤ m − 1, above are
also κn-satisfying formula Φ(n, dn) with probability at least αm

n , for large enough n.
Namely, we have the following result.

Lemma 5.3. For all large enough n,

P(σΦ(n,dn),Z,VT,j ∈ SAT(Φ(n, dn), κn), 0 ≤ j ≤ m− 1) ≥ αm
n .(18)
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614 DAVID GAMARNIK AND MADHU SUDAN

Proof. Observe that σΦ(n,dn),Z,VT,j have identical distribution for all j. Further-
more, each of them individually is distributed as σΦ(n,dn),Z,Uj , 0 ≤ j ≤ m− 1, since

the random variable T only affects the indices i for which we switch from U0
i vs U j

i ,
and since each vector Uj is an i.i.d. vector of random variables. Therefore,

P(σΦ(n,dn),Z,VT,j ∈ SAT(Φ(n, dn))) = αn

for each j. Suppose Φ, z are such that the event En takes place, and fix the corre-
sponding deterministic value t0 = t0(Φ, z). In the derivation below we use notation
PZ to indicate probability with respect random variable Z. We have

PU0,...,Um−1(σΦ,z,VT,j ∈ SAT(Φ), 0 ≤ j ≤ m− 1)

= EU0,...,Um−1 [1(σΦ,z,Vt0 ,j ∈ SAT(Φ), 0 ≤ j ≤ m− 1)]

= EU0
t0+1,...,U

0
n

[
EUj

i ,1≤i≤t0,1≤j≤m−1[1(σΦ,z,Vt0 ,j ∈ SAT(Φ)),(19)

0 ≤ j ≤ m− 1
∣∣ U0

t0+1, . . . , U
0
n]
]
.

Since Uj are independent vectors of i.i.d. random variables, the last expression equals

EU0
t0+1,...,U

0
n

[
E
m
U0

1 ,...,U
0
t0

[1(σΦ,z,U0 ∈ SAT(Φ))
∣∣ U0

t0+1, . . . , U
0
n]
]
.(20)

Applying Jensen’s inequality and the convexity of the polynomial function tm on
t ∈ [0,∞) for all positive integers m, we obtain

EU0
t0+1,...,U

0
n

[
E
m
U0

1 ,...,U
0
t0

[1(σΦ,z,U0 ∈ SAT(Φ))
∣∣ U0

t0+1, . . . , U
0
n]
]

≥ E
m
U0

t0+1,...,U
0
n

[
EU0

1 ,...,U
0
t0
[1(σΦ,z,U0 ∈ SAT(Φ))

∣∣ U0
t0+1, . . . , U

0
n]
]

= E
m
U0

[
1(σΦ,z,U0 ∈ SAT(Φ))

]
= P

m
U0(σΦ,z,U0 ∈ SAT(Φ)).(21)

Suppose now that Φ and z are such that the event En does not take place. Then
σΦ,z,VT,j = σΦ,z,U0 , implying

PU0,...,Um−1(σΦ,z,VT,j ∈ SAT(Φ), 0 ≤ j ≤ m− 1) = PU0(σΦ,z,U0 ∈ SAT(Φ))

≥ P
m
U0(σΦ,z,U0 ∈ SAT(Φ)).

Combining this with (21), we conclude that for every Φ, z we have

PU0,...,Um−1(σΦ,z,VT,j ∈ SAT(Φ), 0 ≤ j ≤ m− 1) ≥ P
m
U0(σΦ,z,U0 ∈ SAT(Φ)).

Since PU0(σΦ,z,U0 ∈ SAT(Φ)) = αn, then integrating over Φ(n, dn) and Z, we obtain

P(σΦ(n,dn),Z,VT,j ∈ SAT(Φ(n, dn)), 0 ≤ j ≤ m− 1)

≥ P(σΦ(n,dn),Z,U0 ∈ SAT(Φ(n, dn))

= αm
n ,

and (18) is established. This concludes the proof of Lemma 5.3.

Combining Lemmas 5.3 and 5.2, the set SAT(Φ(n, dn);β, η, κ,m) is nonempty
with probability at least

1− exp
(
− lnn(ln lnn)ξ/5

)
− (1 − αm

n ) = αm
n − exp

(
− lnn(ln lnn)ξ/5

)
> exp

(
−m lnn(ln lnn)ξ/6

)
− exp

(
− lnn(ln lnn)ξ/5

)
≥ exp

(
− lnn(ln lnn)ξ/5

)
for all sufficiently large n, and thus the proof of Proposition 5.1 is complete.
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Appendix A. A detailed description of the SP-guided algorithm and
its balancing property. The setup is similar to that for BP. In particular, in steps
i = 1, 2, . . . , n certain marginal value is computed, and the decision for xi is again
based on this marginal value, except now the marginal values do not correspond to the
ratio of the number of assignments, but rather correspond to ratios when the problem
is lifted to a new certain constraint satisfaction problem with decision variables 0, 1, ∗.
We do not describe here the rationale for this lifting procedure, as this has been doc-
umented in many papers, including [BMZ05], [MMW07], [MPZ02], [MM09]. Instead
we simply formally present the SP algorithm and SP-guided decimation algorithm,
following closely [MM09] with the appropriate adjustment from the K-SAT problem
to the NAE-K-SAT problem. We will convince ourselves that SP-guided decimation
algorithm is again a special case of a balanced τ -decimation algorithm. We will then
be able to conclude that the SP-guided decimation algorithm fails to find a satisfying
assignment with probability approaching unity, in the regime outlined in our main
result, Theorem 2.4.

The SP algorithm is an iterative scheme described as follows. The details and no-
tation are very similar to those described in [MM09]. Specifically, iterations (22)–(26)
below correspond to iterations (20.17)–(20.20) in that book. Consider an arbitrary
reduced or nonreduced NAE-K-SAT formula Φ on variables x1, . . . , xN . For each iter-
ation t = 0, 1, . . ., each variable/clause pair (x,C) such that x appears in C (namely,
there is an edge between x and C in the bipartite factor graph representation) is asso-
ciated with five random variables, Qt

x,C,U , Q
t
x,C,S, Q

t
x,C,∗, Q

t
C,x,S, and Qt

C,x,U . Here
is the interpretation of these variables. Each of them is a message sent from a variable
to a clause containing this variable, or a message from a clause to a variable which
belongs to this clause. Specifically, Qt

x,C,U (Qt
x,C,S) is interpreted as the probability

computed at iteration t that the variable x is forced by clauses D other than C to
take a value which does not (does) satisfy C. Qt

x,C,∗ represents that none of these

forcings takes place. Qt
C,x,S is interpreted as a probability computed at iteration t

that all variables y ∈ C other than x do not satisfy C, and thus that the only hope
of satisfying C is for x to do so. Similarly, Qt

C,x,U is the probability that all variables
y in C other than x do satisfy C and thus that the only hope of satisfying clause C
is for x to violate it. The latter case is an artifact of the NAE variant of the problem
and need not be introduced in the SP iterations for the K-SAT problem.

The variables Qt are then computed as follows. At time t = 0 the variables
are generated uniformly at random from [0, 1], independently for all five variables.
Then they are normalized so that Q0

x,C,U +Q0
x,C,S +Q0

x,C,∗ = 1, which is achieved by

dividing each term by the sum Q0
x,C,U +Q0

x,C,S +Q0
x,C,∗. Similarly, variables Q0

C,x,S

and Q0
C,x,U are normalized to sum to one.

Now we describe the iteration procedures at times t ≥ 0. For each such pair
x,C let Sx,C be the set of clauses containing x other than C, in which x appears
in the same way as in C. Namely, if x appears in C without negation, it appears
without negation in clauses in Sx,C as well. Similarly, if x appears as x̄ in C, the
same is true for clauses in Sx,C . Let Ux,C be the remaining set of clauses containing
x, namely clauses where x appears opposite to the way it appears in C. Now for each
t = 0, 1, 2, . . . assume that Qt

x,C,U , Q
t
x,C,S, Q

t
x,C,∗, Q

t
C,x,S, and Qt

C,x,U are defined.

Define the random variable Qt+1
x,C,S and Qt+1

x,C,U as follows. Suppose C is unsigned in
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Φ. Then

Qt+1
C,x,S =

∏
y∈C\x

Qt
y,C,U(22)

and

Qt+1
C,x,U =

∏
y∈C\x

Qt
x,C,S.(23)

Here C \x is the set of variables in clause C other than x. The interpretation for these
identities is as follows. When C is not signed, the clause C forces its variable x to
satisfy it if all other variables y in C were forced not to satisfy C at previous iterations
due to other clauses. The first identity is the probability of this event, assuming
the events “y is forced not to satisfy C” are independent. The second identity is
interpreted similarly, though it is relevant only for the NAE-K-SAT problem and
does not appear for the corresponding iterations for the K-SAT problem.

If the clause C is signed +, then we set Qt+1
C,x,S = 0 and

Qt+1
C,x,U =

∏
y∈C\x

Qt
x,C,S.(24)

The interpretation is that if C is signed +, then one of the variables was already set
to satisfy it. Thus the only way the clause C can force x to violate it is when all other
variables y are forced to satisfy C. Again this is relevant only for the NAE-K-SAT
problem. Similarly, if C is signed −, then Qt+1

C,x,U = 0 and

Qt+1
C,x,S =

∏
y∈C\x

Qt
x,C,U .(25)

Next we define variables Rt+1
x,C,S, R

t+1
x,C,U , and Rt+1

x,C,∗ which stand for Qt+1
x,C,S, Q

t+1
x,C,U ,

and Qt+1
x,C,∗ before the normalization. These random variables are computed using the

following rules:

Rt+1
x,C,S =

∏
D∈Ux,C

(1−Qt
D,x,S)

∏
D∈Sx,C

(1−Qt
D,x,U)(26)

−
∏

D∈Ux,C

(1 −Qt
D,x,∗)

∏
D∈Sx,C

(1−Qt
D,x,∗),

which is interpreted as follows. The first term on the right-hand side of the expression
above is interpreted as the probability that none of the clauses D in Ux,C forces x to
take a value which satisfiesD and therefore violates C (since otherwise a contradiction
would be reached) and none of the clauses D in Sx,C forces x to take value which
violatesD and therefore violates C (since otherwise a contradiction would be reached).
The second term on the right-hand side is interpreted as the probability variable that
x is not forced to take any particular value by clauses it belongs to other than C. The
difference of the two terms is precisely the probability that x is forced to take a value
satisfying C and is not forced to take a value contradicting this choice.

Similarly, define

Rt+1
x,C,U =

∏
D∈Ux,C

(1−Qt
D,x,U )

∏
D∈Sx,C

(1 −Qt
D,x,S)(27)

−
∏

D∈Ux,C

(1−Qt
D,x,∗)

∏
D∈Sx,C

(1−Qt
D,x,∗).
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The interpretation for Rt+1
x,C,U is similar: it is the probability that x is forced to take

a value violating C and is not forced to take a value satisfying C. Next, define

Rt+1
x,C,∗ =

∏
D∈Sx,C∪Ux,C

(1−Qt
D,x,S −Qt

D,x,U ).(28)

Rt+1
x,C,∗ is interpreted as the probability that x is not forced in either way by clauses

other than C. Finally, we let Qt+1
x,C,S, Q

t+1
x,C,U , and Qt+1

x,C,∗ be quantities Rt+1
x,C,S, R

t+1
x,C,U ,

and Rt+1
x,C,∗, respectively, normalized by their sum Rt+1

x,C,S + Rt+1
x,C,U + Rt+1

x,C,∗, so that
the three variables sum up to one. The iterations (22)–(26) are conducted for some
number of steps t = 0, 1, . . . , r. Next variablesWx(1), Wx(0), andWx(∗) are computed
for all variables x as follows. Let Sx be the set of clauses where x appears without
negation, and let Ux be the set of clauses where x appears with negation. Then set

Wx(1) =
∏

D∈Ux

(1−Qt
D,x,S)

∏
D∈Sx

(1 −Qt
D,x,U)−

∏
D∈Ux

(1 −Qt
D,x,∗)

∏
D∈Sx

(1 −Qt
D,x,∗).

(29)

Wx(1) is interpreted as the probability (after normalization) that variable x is forced
to take value 1 but is not forced to take value zero by all of the clauses containing x.
Similarly, we set

Wx(0) =
∏

D∈Sx

(1−Qt
D,x,S)

∏
D∈Ux

(1 −Qt
D,x,U)−

∏
D∈Sx

(1−Qt
D,x,∗)

∏
D∈Ux

(1 −Qt
D,x,∗),

(30)

with a similar interpretation. Then set

Wx(∗) =
∏

D∈Sx∪Ux

(1 −Qr
D,x,S −Qr

D,x,U),(31)

which is interpreted as the probability (after normalization) that x is not forced to be
either 0 or 1. Finally, the values Wx(0),Wx(1),Wx(∗) are normalized to sum up to
one. For simplicity we use the same notation for these quantities after normalization.

The random variables Wx(0),Wx(1),Wx(∗) are used to guide the decimation al-
gorithm as follows. Given a random formula Φ(n, dn), variable x1 is selected. The
random quantities Wx1(0), Wx1(1), and Wx1(∗) are computed, and x1 is set to 1 if
Wx1(1) > Wx1(0) and set to zero otherwise. The formula is now reduced and con-
tains variables x2, x3, . . . , xn. Variable x2 is then selected, and the random quantities
Wx2(0),Wx2(1) are computed with respect to the reduced formula. Then Wx2 is com-
puted, and x2 is set to 1 if Wx2(1) > Wx2(0) and to zero otherwise. The procedure is
repeated until all variables are set. This defines the SP-guided decimation algorithm.

It is clear again that the SP-guided decimation algorithm is a special case of the
τ -decimation algorithm, where the τ function corresponds to the probability of the
event Wx(1) > Wx(0), when it applies to a reduced instance B(x, r) with x as its
root. The depth r of the instance corresponds to the number of iterations of the SP
procedure.

We now turn to the proof of Observation 2.6.

Proof of Observation 2.6. Recall that at the iteration t = 0, the variables Qt are
chosen independently uniformly at random from [0, 1], normalized appropriately. The
main idea of the proof is to use the symmetry of the uniform distribution. Given a
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formula Φ, we claim that if we initialize random variablesQr with variablesQ0
x,C,U and

Q0
x,C,S swapped, variables Q0

C,x,S and Q0
C,x,U swapped, variables Q0

x,C,∗ left intact,

and apply it to formula Φ̄ instead of Φ, we obtain valuesWx(0),Wx(1), andWx(∗) such
that under this initializationWx(1) > Wx(0) holds if and only ifWx(0) < Wx(1) under
the original initialization for the original formula Φ. The claim of the proposition then
follows.

We now establish the claim by a simple inductive reasoning. As suggested above,
given Q0

x,C,U , Q
0
x,C,S, Q

0
x,C,∗, Q

0
C,x,S, and Q0

C,x,U (after normalization for concrete-
ness), define

P 0
x,C,U = Q0

x,C,S,

P 0
x,C,S = Q0

x,C,U ,

P 0
x,C,∗ = Q0

x,C,∗,

P 0
C,x,S = Q0

C,x,U ,

P 0
C,x,U = Q0

C,x,S.(32)

Then define variables P t
x,C,U , P

t
x,C,S , P

t
x,C,∗, P

t
C,x,S , and P t

C,x,U with respect to the

formula Φ̄ similarly to the way variables Qt
x,C,U , Q

t
x,C,S, Q

t
x,C,∗, Q

t
C,x,S, and Qt

C,x,U

are defined with respect to the formula Φ. We now prove by induction that the
identities (32) hold for general t and not just when t = 0. The base of the induction
is given by (32). Assume the claim holds for t′ ≤ t− 1. Consider any unsigned clause
C in Φ̄. Then this clause is unsigned in Φ as well. Applying (22) and (23) and the
inductive assumption, we conclude that the claim holds for P t

C,x,S and P t
C,x,U as well.

Similarly, if a clause C is signed + in Φ̄, then it is signed − in Φ. Applying identities
(24) and (25), the claim holds for P t

C,x,S and P t
C,x,U as well. The case when C is

signed − in Φ̄ is considered similarly.
We now establish the claim for the three remaining variables, P t

x,C,S , P t
x,C,U ,

P t
x,C,∗. Note that the sets of clauses Sx,C and Ux,C are the same for the formulas Φ and

Φ̄. Applying (26) to compute P t
x,C,U , using the inductive assumption P t−1

C,x,S = Qt−1
C,x,U ,

P t−1
C,x,U = Qt−1

C,x,S, and comparing with (27), we see that P t
x,C,S = Qt

x,C,U . Similarly,

we see that P t
x,C,U = Qt

x,C,S. Finally, applying (28), we see that P t
x,C,∗ = Qt

x,C,∗.
This completes the proof of the induction.

Now define Zx(0), Zx(1), and Zx(∗) in terms of P r in the same way as Wx(0),
Wx(1), and Wx(∗) are defined in terms of Qr, namely via identities (29), (30), and
(31). Again we see that Zx(0) = Wx(1), Zx(1) = Wx(0), and Zx(∗) = Wx(∗), further
implying P(Zx(1) > Zx(0)) = 1 − P(Wx(1) > Wx(0)). Thus the rule τ(BΦ(x, r)) =
P(Wx(1) > Wx(0)) is balanced.
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