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Abstract

We describe an approach based on topology optimizatiortfziles automatic discovery of wavelength-
scale photonic structures for achieving high-efficienayosel-harmonic generation (SHG). A key distinc-
tion from previous formulation and designs that seek to mé&eé Purcell factors at individual frequencies
is that our method not only aims to achieve frequency matcfaoross an entire octave) and large radiative
lifetimes, but also optimizes the equally important noeéin-coupling figure of merit, involving a compli-
cated spatial overlap-integral between modes. We ap@yntihod to the particular problem of optimizing
micropost and grating-slab cavities (one-dimensionaltitayered structures) and demonstrate that a vari-
ety of material platforms can support modes with the retpifsequencies, large lifetime3 > 10*, small
modal volumes~ (\/n)3, and extremely largg > 102, leading to orders of magnitude enhancements
in SHG efficiency compared to state of the art photonic desi@uch gianf; alleviate the need for ultra-
narrow linewidths and thus pave the way for wavelengthes&#G devices with faster operating timescales

and higher tolerance to fabrication imperfections.

PACS numbers: Valid PACS appear here
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Introduction.—Nonlinear optical processes mediated by second-osd&) fonlinearities play
a crucial role in many photonic applications, includingradshort pulse shaping![L, 2], spec-
troscopy [3], generation of novel frequencies and statelégbft ], and quantum informa-
tion processing ﬂQ]. Because nonlinearities are gelyenadak in bulk media, a well-known
approach for lowering the power requirements of device® isrthance nonlinear interactions
by employing optical resonators that confine light for loimgds (dimensionless lifetime3) in
small volumed/ ]. Microcavity resonators designed for on-chipranéd applications offer
some of the smallest confinement factors available, but thngilementation in practical devices
has been largely hampered by the difficult task of identidyivavelength-scalei{ ~ \?) struc-
tures supporting long-lived, resonant modes at Widﬁr isepd wavelengths and satisfying rigid

frequency-matching and mode-overlap constra 5, 20]

In this letter, we extend a recently proposed formulatiarilie scalable topology optimization
of microcavities, where every pixel of the geometry is a degof freedom, to the problem of
designing wavelength-scale photonic structures for stbanmonic generation (SHG). We apply
this approach to obtain novel micropost and grating mioribga@esigns supporting strongly cou-
pled fundamental and harmonic modes at infrared and visilelengths with relatively large
lifetimes Q, Q> > 10*. In contrast to recently proposed designs based on knonemaricavity
structures hand-tailored to maximize the Purcell factora@de volumes of individual resonances,
e.g. ring resonator&llﬂZS] and nanobeam cav@slﬂp,our designs ensure frequency
matching and small confinement factors while also simuttasl maximizing the SHG enhance-
ment factorQ2@Q,|3|? to yield orders of magnitude improvements in the nonlineapting /3
described by((3) and determined by a special overlap intbgtareen the modes. These particular
optimizations of multilayer stacks illustrate the bendafit®ur formalism in an approachable and
experimentally feasible setting, laying the frameworkfigure topology optimization of 2D/3D

slab structures that are sure to yield even further impreareém

Structure he X hy x hy (A3)] A (pm) | (Q1, Q2) QR4 QR B | FOM, FOM;

(1) AlGaAs/Al, O3 micropost 8.4 x 3.5 x 0.84 |1.5—0.75(5000, 1000)(1.4 x 10°, 1.3 x 10°)[0.018 7.5 x 10°|8.3 x 10
(2) GaAs gratings in Si@ | 5.4 x 3.5 x 0.60 | 1.8 —0.9|(5000, 1000) (5.2 x 10%, 7100) |0.020 7 x 10% | 7.5 x 10°

(3) LN gratings in air 5.4 % 3.5 x 0.80 | 0.8 —0.4/(5000, 1000 (6700, 2400)  |0.0308.4 x 10°| 9.7 x 107

TABLE I. SHG figures of merit for topology-optimized microgtoand grating cavities of different material

systems.



Most experimental demonstrations of SHG in chip-basedcpﬁosystemslﬂ&ﬂgﬂfﬁ]
operate in the so-called small-signal regime of weak nealiities, where the lack of pump deple-
tion leads to the well-known quadratic scaling of harmonitpoit power with incident pow3].
In situations involving all-resonant conversion, wherafaeement and long interaction times lead

to strong nonlinearities and non-negligible down con\m'r,], the maximum achievable

. .. out
conversion efficienc n= P2in )1
1

P
(-2 )

occurs at a critical input powO],

Plcrit _ 20)160)\? (1 B Ql )—1
2,5 d ;
(&) 18P \ - QF

(2)

-1
Wherexfjf) is the effective nonlinear susceptibility of the medium [SK) = <ﬁ + Qi) is the
dimensionless quality factor (ignoring material absampfiincorporating radiative decay.; and
coupling to an input/output channgtg. The dimensionless coupling coefficiehis given by a

complicated, spatial overlap-integral involving the fantental and harmonic modes [SM],
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whereé(r) = 1 inside the nonlinear medium and zero elsewhere. Based abthe expressions

one can define the following dimensionless figures of merit,
2
FOM; = QiQ:|f/? <1 - ngrl;d) (1 - ngd) , (4)
FOM, = ( rlad)Z Qrzad‘BP. (5)

whereFOM; represents the efficiency per power, often quoted in thealeecundepleted regime
of low-power conversion_[33], and#OM, represents limits to power enhancement. Note that

for a given radiative loss rat&OM; is maximized when the modes are critically coupléd—=

Qrad
2 )

equivalently, whert'OM; is maximized. From either FOM, it is clear that apart frongtrency

with the absolute maximum occurring in the absence of tagidosses,Q™? — oo, or

matching and lifetime engineering, the design of optimaGStdvities rests on achieving a large
nonlinear couplings.
Optimal designs.—Fable | characterizes the FOMs of some of our newly discal/arerocav-

ity designs, involving simple micropost and gratings stinves of various ) materials, including
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GaAs, AlGaAs and LiNb@. The low-index material layers of the microposts consisalafmina
(Al;05), while gratings are embedded in either silica or air (sgmEment for detailed specifi-
cations). Note that in addition to their performance chenéstics, these structures are also sig-
nificantly different from those obtained by conventionalthmels in that traditional designs often
involve rings ], periodic structures or tapered dts‘], which tend to ignore or sacri-
fice 8 in favor of increased lifetimes and for which it is also difficto obtain widely separated
modes EL)]. Figur€ll illustrates one of the optimized stitet—a doubly-resonant rectangular
micropost cavity with alternating AlGaAs/AD; layers—along with spatial profiles of the funda-
mental and harmonic modes. It differs from conventionalroposts in that it does not consist of
periodic bi-layers yet it supports two localized modes atgely\; = 1.5 um ands = A1 /2. In
addition to having larg@€™ > 10° and smallV’ ~ ()\;/n)?, the structure exhibits an ultra-large
nonlinear couplings ~ 0.018 that is almost an order of magnitude larger than the bestager
found in the literature (see Figl. 2). From an experimentaitpaf view, the micropost system is of
particular interest because it can be realized by a combimaf existing fabrication techniques
such as molecular beam epitaxy, atomic layer depositidactpee oxidation and electron-beam
lithography ]. Additionally, the micropost cavity cae baturally integrated with quantum dots
and quantum wells for cavity QED applications|[26]. Simitarother wavelength-scale struc-
tures, the operational bandwidths of these structuresraretl by radiative losses in the lateral
direction ELS 7], but their ultra-large overlap fastonore than compensate for the increased
bandwidth, which ultimately may prove beneficial in expegirts subject to fabrication imperfec-
tions and for large-bandwidth applicatiorB Mﬂ 28].

To understand the mechanism of improvement,iit is instructive to consider the spatial pro-
files of interacting modes. Figuié 1b plots thieomponents of the electric fields in the-plane
against the background structure. Sintés a net total of positive and negative contributions
coming from the local overlap factdt? F, in the presence of nonlinearity, not all local contribu-
tions are useful for SHG conversion. Most notably, one olesethat the positions of negative
anti-nodes off’, (light red regions) coincide with either the nodesHfor alumina layers (where
x? = 0), minimizing negative contributions to the integrated ae. In other words, improve-
ments in3 do not arise purely due to tight modal confinement but alsmftbe constructive

overlap of the modes enabled by the strategic positioniriglof extrema along the structure.

Based on the tabulated FOMs (Table 1), the efficiencies amgepoequirements of realistic

devices can be directly calculated. For example, assumiﬁg{AlGaAs) ~ 100 pm/V [@],
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FIG. 1. (a) Schematic illustration of a topology-optimizeitropost cavity with alternating AlGaAs/AD;
layers and dimensions, x h, x h, = 8.4 x 3.5 x 0.84 ()\}). For detailed structural specifications, please
refer to the supplement. (b)-z cross-section of th&, components of two localized modes of frequencies

A1 = L.5um and)\, = A\;/2 and large spatial overlap E;E?.

the AlGaAs/ALO; micropost cavity (Figlll) yields an efficiency @fg’T“‘ = 2.7 x 10*/W in
the undepleted regime when the modes are critically couglee @j. For larger operational
bandwidths, e.g®; = 5000 and@, = 1000, we find that2zge — 16/W. When the system is

77

in the depleted regime and critically coupled, we find thataximum efficiency of 25% can be
achieved af’"'* ~ 0.15 mW whereas assuming smali@; = 5000 and@, = 1000, a maximum
efficiency of96% can be achieved & ~ 0.96 W.

Comparison against previous designsFable || summarizes various performance character-
istics, including the aforementioned FOM, for a handful eéypously studied geometries with
length-scales spanning fromm to a few wavelengths (microns). Fig 2 demonstrates a trend
among these geometries towards increagimgd decreasing™® as device sizes decrease. Max-
imizing 3 in millimeter-to-centimeter scale bulky media translatethe well-known problem of
phase-matching the momenta or propagation constants ehdes [[33]. In this category, tra-
ditional WGMRs offer a viable platform for achieving higlffieiency conversion@g]; however,
their ultra-large lifetimes (critically dependent uponteraal-specific polishing techniques), large
sizes (millimeter length-scales), and extremely weak ineak coupling (large mode volumes)
render them far-from optimal chip-scale devices. Althoaoghiature WGMRSs such as microdisk

and microring resonatorgl 32] show increased p@mige to their smaller mode vol-
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FIG. 2. Scatter plot O(Q'f"d)2 Q"4 versus nonlinear overldp|? for representative geometries, including

WGMRs ], micro- and nano-ring resonat [B, 18], phatarystal slab and nanobeam caviti [16,
]. A trend towards decreasing lifetimes and increasingrlaps is readily observed as devices become

increasingly smaller. Meanwhile, it remains an open pnobie discover structures with highs, smallV's

and large 3| (shaded region).

umes, improvements ifi are still hardly sufficient for achieving high efficiencigsiaw powers.
Ultra-compact nanophotonic resonators such as the rgceriposed nanorings [18], 2D pho-
tonic crystal defectiﬂG], and nanobeam cavi [19]spss even smaller mode volumes but
prove challenging for design due to the difficulty of findinghlxconfined modes at both the fun-
damental and second harmonic frequen [16]. Even wherstawh resonances can be found
by fine-tuning dimited set of geometric parameteg[g 19], the frequency-magcbonstraint

invariably leads to sub-optimal spatial overlaps whichesely limits the maximal achievable

Comparing Tables | and Il, one observes that for a compam@blthe topology-optimized
structures perform significantly better in bdtwM; andFOM, than any conventional geometry,
with the exception of the LN gratings, whose 6% lead to slightly lowei*OM,. Generally, the
optimized microposts and gratings perform better by vidi large and robust which, notably,
is significantly larger than that of existing designs. Heve,have not included in our comparison
those structures which achieve non-negligible SHG by spgmling techniques and/or quasi-
phase matching metho&34], though their performasséli sub-optimal compared to the
topology-optimized designs. Such methods are highly nadtdependent and are thus not readily

applicable to other material platforms; instead, ours isr@ly geometricalopology optimization
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<«——1D DOF —

finite extension
into y dimension

FIG. 3. Work flow of the design process. The degrees of freeionur problem consist of all the pixels
alongz-direction in a 2D computational domain. Starting from thewum or a uniform slab, the optimiza-
tion seeks to develop an optimal pattern of material laywith (@ fixed thickness in the-direction) that can
tightly confine light at the desired frequencies while eimgumaximal spatial overlap between the confined
modes. The developed 2D cross-sectional patterns is tetheda finite width in thg-direction to produce

a fully three-dimensional micropost or grating cavity whis then simulated by FDTD methods to extract
the resonant frequencies, quality factors, eigenmodegsamdsponding modal overlaps. Here, it must be
emphasized that we merely performed one-dimensional gattian (within a 2D computational problem)

because of limited computational resources; consequentiydesign space is severely constrained.

technique applicable to any material system.

Optimization formulation.—Optimization techniques have been regularly employed ley th
photonic device community, primarily for fine-tuning theachcteristics of a pre-determined ge-
ometry; the majority of these techniques involve probabdiMonte-Carlo algorithms such as par-
ticle swarms, simulated annealing and genetic algoriti8&s37]. While some of theggadient-
free methods have been used to uncover a few unexpected restlt§ auimited number of
degrees of freedom (DOFR) [38]radient-basedopology optimization methods efficiently handle
a far larger design space, typically considering everylpxeoxel as a DOF in an extensive 2D
or 3D computational domain, giving rise to novel topologaesl geometries that might have been
difficult to conceive from conventional intuition alone. dlearly applications of topology opti-
mization were primarily focused on mechanical problempsfd@ only recently have they been ex-

panded to consider photonic systems, though largely larddinear device designs [38, 40-44].
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Structure A (pm) (Q1, Q2) (74, QP 5 FOM; | FOM,
LN WGM resonator [29] 1.064 — 0.532| (3.4 x 107,-) | (6.8 x 107, -) - ~ 1010 -
AIN microring [17] | 1.55 — 0.775 |(~ 10*, ~ 5000) - - 12.6x10° -
GaP PhCslab [16] |1.485 — 0.742| (= 6000, -) - - |m2x10° -

1.7—-0.91T | (5000, 1000) | (> 106, 4000) |0.00021 820 |1.8 x 10%

GaAs PhC nanobeam [19}
1.8 -0.91 (5000, 1000) |(6 x 104, 4000)0.00012 227 |2.1 x 10°

AlGaAs nanoring [18] | 1.55 — 0.775 | (5000, 1000) | (10% > 10°) | 0.004 10°  [1.6 x 107

TABLE Il. SHG figures of merit, including the frequencigs overall and radiative quality factorg, Q¢
and nonlinear couplings of the fundamental and harmonic modes, of representativenggies. Also
shown are the FOMand FOM figures of merit described ifl(4L1(5).

* SHG occurs between a localized defect mode (at the fundaieaguency) andh an extended index-
guided mode of the PhC.

t Resonant frequencies are mismatched.

In what follows, we describe a technique for gradient-baseadlogy optimization of nonlinear

wavelength-scale frequency converters.

Recent WOI’k@l] considered topology optimization of theitgaPurcell factor by exploiting
the concept of local density of states (LDOS). In particutlais previous formulation exploited
the equivalency between LDOS and the power radiated Ippiat dipole in order to reduce
Purcell-factor maximization problems to a series of smedittering calculations. Defining the
objectivemax: f (é(r);w) = — Re[[ drJ* - E], it follows that E can be found by solving the
frequency domain Maxwell’s equations E = iwJ, whereM is the Maxwell operator [SM] and
J = 6 (r —rp) &. The maximization is then performed over a finely discretigpace defined
by the normalizeddielectric function,{¢, = €(r,), a < (iAz,jAy, kAz)}. A key realiza-
tion in [41] is that instead of maximizing the LDOS at a sindlscrete frequency, a better-
posed problem is that of maximizing the frequency-averafj@uthe vicinity of w, denoted by
(f) = [ dw' W(W';w,T') f(w'), whereW is a weight function defined over some specified band-
widthI". Using contour integration techniques, the frequencygiratiecan be conveniently replaced
by a single evaluation of at a complex frequenay + iI" [41]. For a fixed[', the frequency aver-
age effectively shifts the algorithm in favor of minimizifgover maximizing?); the latter can be

enhanced over the course of the optimization by gradualhimg down the averaging bandwidth
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r [H]. A major merit of the frequency-averaged LDOS formigatis that it features a mathe-
matically well-posed objective as opposed to a direct maation of the cavity Purcell facto@,

allowing for rapid convergence of the optimization alglonitinto an extremal solution.

As suggested iAﬂll], a simple extension of the optimizagiosblem from single- to multi-
mode cavities maximizes the minimum of a collection of LD@8iHierent frequencies. Applying
such an approach to the problem of SHG, the optimizatiortibgbecomesmax; min [LDOS(wl), LDOS(2w;
which would require solving tweeparatescattering problemsM E; = J; and MyE; = Jo,
for the two distinctpoint sources]y, J, atw; andw, = 2w; respectively. However, as discussed
before, rather than maximizing the Purcell factor at ingdiidl resonances, the key to realizing
optimal SHG is to maximize the overlap integrabetweenE; andE,, described by[{3). Here,
we suggest an elegant way to incorporatey couplingthe two scattering problems. In particu-
lar, we consider not a point dipole but an extended soliscer E? atw, and optimize a single
combinedradiated powerf = —Re [fdr Ji - Eg] instead of two otherwiseanrelatedLDOS.

The advantage of this approach is tlfatields precisely theg parameter along with any resonant
enhancement factors~ Q/V) in E; andE,. Intuitively, J, can be thought of as a nonlinear
polarization current induced d§, in the presence of the second order susceptibility tegSor

and in particular is given by, = &(r) Ejk XZ(.?,ZEMEM where the indices, j, k run over the
Cartesian coordinates. In gene@lﬁ mixes polarizations and hengés a sum of different con-
tributions from various polarization-combinations. InatHollows and for simplicity, we focus

on the simplest case in whidl, andE, have the same polarization, corresponding to a diagonal
x? tensor determined by a scalﬁﬁf). Such an arrangement can be obtained for example by
proper alignment of the crystal orientation axes [SM]. Whils simplification, the generalization

of the linear topology-optimization problem to the case lfcsbecomes:

mas, (f(ewien)) = ~Re[( [ 33 Eaar)]. ©
MlEl = ilel,
M2E2 = 7:(,{)2.]2, Wo = 2(4)1



where

Jl = 5<ra - rO)éju .] € {.T,y,Z}

J2 = E(ra)Eféj,
1

./\/ll:V x —V X —el(ra)wlz, l:1,2
1

€(ry) = €m+ €, (€ — €m), € € [0, 1],

and wherecy denotes the dielectric contrast of the nonlinear mediumegnid that of the sur-
rounding linear medium. Note that is allowed to vary continuously between 0 and 1 whereas
the intermediate values can be penalized by so-calledibigprojection fiItersﬂS]. The scatter-
ing framework makes it straightforward to calculate thev@gives of f (and possible functional
constraints) with respective & via the adjoint variable metho 41]. The optimizatioalp

lem can then be solved by any of the many powerful algorittonsdnvex, conservative, separable
approximations, such as the well-known method of movingraggtes|[46].

For computational convenience, the optimization is cdraat using a 2D computational cell
(in thezz-plane), though the resulting optimized structures arermg# finite transverse extension
h, (along they direction) to make realistic 3D devices (see [ig. 3). In @pte, the wider the
transverse dimension, the better the cavity quality facsimce they are closer to their 2D limit
which only consists of radiation loss in thedirection; however, a%, increasesj decreases
due to increasing mode volumes. In practice, we cligsen the order of a few vacuum wave-
lengths so as not to greatly compromise eittyeor 5. We then analyze the 3D structures via
rigorous FDTD simulations to determine the resonant hfes and modal overlaps. By virtue
of our optimization scheme, we invariably find that frequen@atching is satisfied to within the
mode linewidths. We note that our optimization method séeksaximize thentrinsic geometric
parameters such &3 and 5 of an un-loadedcavity whereas théoadedcavity lifetime @) de-
pends on the choice of coupling mechanism, e.g. free-sfibee, or waveguide coupling, and is
therefore an external parameter that can be consideregaendently of the optimization. When
evaluating the performance characteristics such@sl;, we assume total operational lifetimes
@, = 5000, @2 = 1000. In the optimized structures, it is interesting to note tppemrance of
deeply sub-wavelength featuresl — 5% of A—nl creating a kind ometamaterialn the optimiza-
tion direction; these arise during the optimization precegjardless of starting conditions due to

the low-dimensionality of the problem. We find that theseuess are not easily removable as
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their absence greatly perturbs the quality factors andugeqy matching.

Concluding remarks.-We have presented a formulation that allows for large-soptaniza-
tion of SHG. Applied to simple micropost and grating strue) our approach yields new classes
of microcavities with stronger performance metrics ovastxg designs. One potentially chal-
lenging aspect for fabrication in the case of gratings ispresence of deeply sub-wavelength
features, which would require difficult high-aspect-ragtohing or growth techniques. This is not
an issue for the micropost cavities since each materiat lzgq@ be grown/deposited to a nearly ar-
bitrary thicknes Elj6]. Another caveat about wavelersgtale cavities is that they are sensitive
to structural perturbations near the cavity center, whesstiof the field resides. In our optimized
structures, the figures of merit are robust to witkin-20 nm variations (approximately one com-
putational pixel). One possible way to constrain the optation to ensure some minimum spatial
feature and robustness is to exploit so-called regulaoizdilters and worst-case optimization

techniquesJﬂS], which we will consider in future work.

Our results provide just a glimpse of the kinds of designs ¢bald be realized in structures
with 2D and 3D variations, where we expect even better perdoice metrics due to the larger de-
sign space. In fact, preliminary application of our formtida to 2D systems reveals overlap fac-
tors and lifetimes at least one order of magnitude larger thase attained here. Apart from SHG
optimization, our approach can be generalized to consitter monlinear processes, even those
involving more than two frequencies [SM]. Preliminary istigations reveal orders-of-magnitude
improvements in the efficiency of third harmonic and sunafiency generation processes. These

findings, together with higher-dimensional applicatiom#l, be presented in future work.

* zlin@seas.harvard.edu
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Abstract
We review the temporal-coupled mode equations descrit#agral harmonic generation in doubly res-
onant cavities and motivate the dimensionless nonlineaplow 3 described in Eq. 3 of the main text.
We provide further details on the topology optimizationnfiolation for second harmonic generation and
describe generalizations to other nonlinear processesllfiwe present more detailed descriptions of the

optimized micropost and gratings cavities.
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COUPLED-MODE THEORY FOR SECOND HARMONIC GENERATION

The temporal coupled mode equations describing seconddmézngeneration (SHG) in a

doubly-resonant cavity coupled to a channel are [1]:

da1

% = ’iwl (1 + %621) ay — iwlﬁla’{ag

1 1
. V o (r - g @

da )
d—t2 Wy (1 + TQz) uugﬁgal, (2)

S1— = \/wl <& - Qirlad) a1 — Si4, 3)
So— = \/wz <é - %) 5) (4)

such thata,|? is the modal energy in the cavity aig... |* is the input/output power in the waveg-

uide, and wher), and Q!4 denote the total and radiative quality factors correspogmth mode
k. The nonlinear coupling coefficient, obtained from perturbation theory [1], is given by:

lf dr € Ez’jk Xg/)g( ) (Eikz‘E%Eikk + EikiEikjE%)
4 (f dr 6061 ‘El (\/f dr 6062 |E2‘ )

with g, = /2 far off from material resonances where Kleinman symmetwaigd 2], as re-

b=

quired by conservation of energy [1]. In general, the oyendegral in the numerator is a sum
of products between differerfi-field polarizations weighted by off-diagonal componeritshe
nonlineary® tensor. For simplicity, however, in the main text we only sioler the simple case
of diagonaly® involving same—polarization interactions described byeﬁmctivexé?, resulting
from an appropriate orientation of the crystal axes of thelinear material. All of these consid-

erations suggest a simple dimensionless normalizatigh given by:

5 [ dr &(r)E3 E} \/)\7‘1’, 5)

([ dr &|E[?) <m>

such thatg, = 4B><§f)/\/eo)\§’. As defined in the texté(r) = 1 for nonlinear dielectric and

é(r) = 0 for the surrounding linear medium.

Most SHG experiments operate in the small-signal regimardlisinput powers, leading to

negligible down-conversion and pump depletion. Ignorihg down-conversion of; term in

2



Eq.[d, one obtain the following simple expression for theosecharmonic output power:

pout 8 2) 2 B 2
G (\/Xee;A3> Gl (1 ) gﬁi‘d) (1 B Qéid) | ©
1 1

In the limit of large up-conversion and non-negligible deaanversion, solution of the coupled-

mode equations yields the maximum efficiency (defined)as P9/ PI") and corresponding

(-8 (%)

; 20)160)\3 1 < Ql )_1
Pcnt — 1 1 — 2 ) (8)
' <ng))2 1B12Q7Qs Qe

critical power [1]:

FORMULATION FOR TOPOLOGY OPTIMIZATION OF ARBITRARY NONLINEAR FRE-
QUENCY CONVERSION PROCESS

Nonlinear frequency conversion processes can be viewedegsehncy mixing schemes in
which two or moreconstituenfphotons at a set of frequenciés,, } interact to produce an out-
put photon at frequenc§ such that? = > ¢,w,, where the photon number coefficiedts, }
can be either negative or positive, depending on whethecah@sponding photons are created
or destroyed in the process. In general, because the optiodihear response of materials is a
tensor and hence the frequency conversion process mixeredf polarizationﬂZ]. However, for
notational simplicity, we will describe our optimizatiomgblem only for a single component of
the susceptibility tensor. If one wishes to consider thetéuisorial properties, one can easily add
extra optimization terms (weighted by the tensor compa)dny following the same approach
described below.

Given a specific nonlinear tensor compongpy..., wherei, j, k, ... € {z,y, z}, mediating an
interaction between the polarization componeits?) and £y, Ey, ..., we begin with a collec-
tion of point dipole currents, each at thenstituenfrequencyw,,, n € {1,2,...} and positioned
at the center of the computational céllsuch thatl,, = ¢,,6(r —r'), wheree,,, € {€;;, €, ...}
is a polarization vector chosen so as to excite the dediréidld polarization components of the
corresponding mode. Given the choice of incident currdptsve solve Maxwell's equations to
obtain the correspondingpnstituentelectric-field responsg,,, from which one can construct a

nonlinear polarization currerk(2) = &(r) [], El'®e, whereE,, = E, - &,, andJ(Q) has

3



polarizatione; generally different from the constituent polarizatians. Here, (*) denotes com-
plex conjugation for negative, and no conjugation otherwise. Finally, we maximize theatet
power—Re[ [3(Q) - E(Q) dr| from J(Q).

The formulation is now given by:
max, f(e:w,) = —Re| / 3(©Q)" - B(Q) dr, )
M(&,wn)E, = iw,Jp, I, =¢€,,0(r —1'),

M(e, QE(Q) =iQJ(Q), J(Q) =[] Elg'We;,

MEW) =V X 2V x — er)?,
1

In practice, we maximize a frequency-aver:t{ied version efpibwer output f(w)) rather than
e[3],i.e., wemiae(f) = [ dw W(w';w,T)f(w'),

where we simply choose the weighting functidhto be a simple lorentzian with the desired res-

f(w) itself since the latter has poor converge

onancev and a certain linewidth,

N _ L/m
W(w) - (w/ o (.U)Z + Fg (10)

(Note that this linewidth is not necessarily the same as nitensic radiative linewidth of the
cavity in thatl" is a computational artifice introduced to aid rapid convacxgaeEL].) In Ref. BB],
it is shown by means of contour integration that this averggs equivalent to evaluating at a
complex frequency (w + iI"), also equivalent to adding a uniform l6d% w to x(r) ande(r). In
our implementation of the optimization process, we typgychegin with a largd™ which affords
rapid convergence to a stable geometry in a few hundrediderl’ is then decreased by an order
of magnitude every time the optimization converges unti- 10~> at which point the structure
settles to within a linewidth' of the desired frequencies (perfect frequency matching).
Application of this formulation to the problem of second manic generation is straight-
forward and described in the main text, in which cdse= w, = 2w; andJ(Q) = J, =
é(r) (é1; - E1)*éy. Note that for the structures described in the text, we ckgse: &, = &,. In
addition to the problem statement of [E{). 9, the optimizagilgorithm also benefits from gradient
information of the objective function, which exploits théj@int variable methocﬂ:ﬂ-S]. Here, we

simply quote the result for the gradient of our SHG objectivgction (dropping the polarization
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indexy for simplicity), (f(&;w1)) = —Re[< [ I35 Ey dr>],

—ag? = —Re |:E2 (EX)? + (eq1 — em)wulE?

2 , 2
+ (edp — €m)wauz Ey + iwous B3

+ iwow? (€g1 — €m)us By |,
where the functions, are solutions of the following scattering problems:

Miuy = EETEQ,
MQUQ = gE%,
Miusg = 2€Efu2.

OPTIMIZED 1D CAVITY DESIGNS

Figure[1 shows the dielectric arfg, field profiles of the three optimized structures, includ-
ing (a) AlGaAs/ALO; micropost, (b) GaAs gratings in SiQand (3) LN gratings in air. Along
the x cross-section, each computational pixel of thicknAsgepresentgither a high dielectric
(nonlinear) or low dielectric (linear) material. For exaepn the AIGaAs/A}O; micropost cav-
ity (assumingn; (AlGaAs) = 3.02 andny(AlGaAs) = 3.18 for AlGaAs with 70% Al [6], and
n(Al,03) = 1.7), we tookA = 0.015 A;.
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(a) AlGaAs/Al,O; micropost
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FIG. 1. Cross-sectional dielectric profiles and electritdfdistributions for AlGaAs/A}O3 micropost (a),

GaAs gratings in SiQ(b) and LN gratings in air (c).
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