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The current understanding of magnetohydrodynamic (MHD) turbulence envisions turbulent eddies
which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this
implies that such eddies become current-sheetlike structures at small scales. We analyze the role of
magnetic reconnection in these structures and conclude that reconnection becomes important at a scale

λ ∼ LS−4=7L , where SL is the outer-scale (L) Lundquist number and λ is the smallest of the field-
perpendicular eddy dimensions. This scale is larger than the scale set by the resistive diffusion of eddies,
therefore implying a fundamentally different route to energy dissipation than that predicted by the
Kolmogorov-like phenomenology. In particular, our analysis predicts the existence of the subinertial,
reconnection interval of MHD turbulence, with the estimated scaling of the Fourier energy spectrum

Eðk⊥Þ ∝ k−5=2⊥ , where k⊥ is the wave number perpendicular to the local mean magnetic field. The same
calculation is also performed for high (perpendicular) magnetic Prandtl number plasmas (Pm), where the

reconnection scale is found to be λ=L ∼ S−4=7L Pm−2=7.

DOI: 10.1103/PhysRevLett.118.245101

Introduction.—Turbulence is a defining feature of mag-
netized plasmas in space and astrophysical environments,
which are almost invariably characterized by very large
Reynolds numbers. The solar wind [1], the interstellar
medium [2,3], and accretion disks [4,5] are prominent
examples of plasmas dominated by turbulence, where its
detailed understanding is almost certainly key to addressing
long-standing puzzles such as electron-ion energy partition,
cosmic ray acceleration, magnetic dynamo action, and
momentum transport.
Weak collisionality implies that kinetic plasma physics is

required to fully describe turbulence in many such envi-
ronments [6]. However, turbulent motions at scales ranging
from the system size to the ion kinetic scales, an interval
which spans many orders of magnitude, should be accu-
rately described by magnetohydrodynamics (MHD).
The current theoretical understanding of MHD turbu-

lence largely rests on the ideas that were put forth by
Kolmogorov and others to describe turbulence in neutral
fluids (the K41 theory of turbulence [7]), and then adapted
to magnetized plasmas by Iroshnikov and Kraichnan [8,9]
and, later, Goldreich and Sridhar (GS95) [10]. Very briefly,
one considers energy injection at some large scale L (the
forcing, or outer, scale), which then cascades to smaller
scales through the inertial range where, by definition,
dissipation is negligible and throughout which, therefore,
energy is conserved. At the bottom of the cascade is the
dissipation range, where the gradients in the flow are
sufficiently large for the dissipation to be efficient.
Turbulence in magnetized plasmas fundamentally differs

from that in neutral fluids due to the intrinsic anisotropy

introduced by themagnetic field. GS95 suggests this leads to
turbulent eddies which are longer in the direction aligned
with the local field than in the direction perpendicular to it.
The relationship between the field-parallel and perpendicular
dimensions is set by critical balance: VA;0=l ∼ vλ=λ, where
VA;0 is the Alfvén velocity based on the background
magnetic fieldB0, l and λ are, respectively, the field-aligned
and field-perpendicular dimensions of the eddy, and vλ is the
velocity perturbation at that scale.
More recently, it was argued [11] that the GS95 picture

of turbulence needs to be amended to allow for angular
alignment of the velocity and magnetic field perturbations
at scale λ. As a result, eddies are also anisotropic in the
plane perpendicular to the local magnetic field, being thus
characterized by three scales: l along the field, and λ and ξ
perpendicular to the field. Although the precise structure
of MHD turbulence remains an open research question,
observational and numerical evidence in support of 3D
anisotropic eddies has since been reported [12–14].
A particularly interesting feature of 3D anisotropic eddies

is that they can be thought of as current sheets of thickness λ
and length ξ in the field-perpendicular plane (with ξ ≫ λ).
Following the standard Kolmogorov-like arguments, one
would then conclude that the inertial interval ends when the
scale λ becomes comparable to the dissipation scale. Below
this scale the energy is strongly dissipated in the current
sheets. Currently available numerical simulations indicate
that a considerable fraction of small-scale current sheets look
like sites of magnetic reconnection [15–20]. We note that
such a dissipation channel is not a feature of theGS95model,
which predicts filamentlike eddies at small scales.
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In this Letter we propose that at sufficiently largemagnetic
Reynolds numbers, the route to energy dissipation in MHD
turbulence is fundamentally different from that envisioned in
the Kolmogorov-like theory. This happens since the aniso-
tropic, current-sheetlike eddies become the sites of magnetic
reconnection before the formal Kolmogorov dissipation
scale is reached. This Letter presents the first analytical
attempt to quantify this phenomenon and to characterize the
role of reconnection in MHD turbulence.
Background.—The 3D anisotropic eddies that we envi-

sion are depicted in Fig. 2 of Ref. [11]. We will characterize
them by the smallest of their field-perpendicular dimen-
sions, λ; other quantities of interest to us here are related to
λ as follows [11]:

ξ ∼ Lðλ=LÞ3=4; ð1Þ

l ∼ Lðλ=LÞ1=2; ð2Þ

bλ ∼ B0ðλ=LÞ1=4; ð3Þ

vλ ∼ V0ðλ=LÞ1=4; ð4Þ

τ ∼ l=VA;0 ∼ λ1=2L1=2=VA;0; ð5Þ

VA;λ ∼ VA;0ðλ=LÞ1=4; ð6Þ

where bλ and vλ are the magnetic field and velocity
perturbations at scale λ, τ the eddy turnover time, V0 is
the velocity at the outer scale, and the other quantities have
already been introduced [21]. The scalings (1)–(6) imply
the Fourier energy spectrum of MHD turbulence Eðk⊥Þ ∝
k−3=2⊥ [22–31]. The turbulence is governed by the shear-
Alfvén modes, it is strongly nonlinear and essentially three
dimensional [30,32].
We will, for simplicity, consider the case where the

turbulence is critically balanced at the outer scale such that
the outer-scale Lundquist number, SL ≡ LVA;0=η is com-
parable to the outer-scale magnetic Reynolds number,
Rm ≡ LV0=η. We also introduce the Lundquist number
associated with scale λ, Sλ ≡ λVA;λ=η [33]. A lower bound
on the dissipation scale can be obtained from these scalings
by equating τ with the eddy resistive diffusion time, λ2=η;
this can be thought of as the Kolmogorov inner scale for a
turbulent cascade defined by (1)–(6). It yields

λ=L ∼ S−2=3L ∼ R−2=3
m : ð7Þ

Magnetic reconnection.—Let us begin by observing that
the aspect ratio of an eddy in the perpendicular direction is

ξ=λ ∼ ðL=λÞ1=4; ð8Þ
i.e., it increases as λ → 0. So, in the perpendicular plane,
eddies become ever more elongated current sheets as λ gets
smaller. This is qualitatively different from the GS picture,

where both field-perpendicular dimensions are the same,
and so the eddy tends to a point in the perpendicular plane
as λ → 0.
It is therefore natural to ask at what scale (i.e., aspect

ratio) does reconnection of these current sheets (eddies)
become an important effect, if ever. If it does, it should
leave a well-defined signature in both the magnetic and
kinetic energy spectra. It may not, however, correspond to
the energy dissipation scale, since reconnection, in addition
to dissipating magnetic energy, also accelerates flows.
Sweet-Parker reconnection of eddies.—The simplest

estimate that can be done for eddy reconnection stems
from the Sweet-Parker model [34,35], according to which
the scale λ at which an eddy would reconnect is given by

λ=ξ ∼ S−1=2ξ ; ð9Þ
where Sξ ¼ ξVA;λ=η is the Lundquist number pertaining to
a current sheet of length ξ, at scale λ, defined with the
Alfvén velocity based on the perturbed magnetic field at
that scale, Eq. (6). Using (1)–(6) above, one finds that
Eqs. (9) and (7) are equivalent statements [19].
This important observation immediately points to the

problem with the Kolmogorov-like transition to the dis-
sipation regime. A robust conclusion of the past decade of
reconnection research is that Sweet-Parker current sheets
above a certain critical aspect ratio, corresponding to a
Lundquist number Sc ∼ 104, are violently unstable to the
formation of multiple magnetic islands, or plasmoids (see
Ref. [36] for a recent review). One straightforward impli-
cation of this instability [37–40] is that the Sweet-Parker
current sheets cannot be formed in the first place [37,41–
43]. We now demonstrate that the MHD turbulent cascade
will be affected by this instability before it has a chance to
form Sweet-Parker current sheets at small scales, thus
qualitatively changing the route to energy dissipation in
MHD turbulence.
Dynamic reconnection onset and eddy disruption by the

tearing instability.—According to the above discussion,
turbulent eddies may be viewed as a hierarchy of current
sheets, whose dynamical (eddy turnover) times are given by
Eq. (5). Consider an eddy at some scale λ and askwhatwould
be the rate of a linear tearing instability triggered by its
magnetic profile.Obviously, if the rate of the linear instability
turns out to be much higher than the eddy turnover rate, the
eddy evolution may be considered slow and the linear theory
would apply. The dynamics of the eddy at such a scale then
would be dominated by reconnection. By the same token, the
eddies whose turnover rates are much higher than the
reconnection rates will not be affected by reconnection.
The central result of our work is that for large enough

Lundquist numbers, the small-scale part of the inertial
interval formally predicted by the Alfvénic theory (1)–(6)
inevitably falls in the reconnection-dominated domain.
Indeed, as the scale λ decreases, the rate of the corresponding
tearing instability increases faster than the eddy turnover
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rate (5). We can therefore define a critical scale λcr at which
the two rates become comparable. Below this scale the
Alfvénic turbulencemust cross over to the new, reconnection
dominated regime.
In order to estimate the critical scale λcr we note that the

tearing instability has two well-known regimes, Furth-
Killeen-Rosenbluth (FKR) (small tearing mode instability
parameter, Δ0) [44] and Coppi (large Δ0) [45]. The N ¼ 1
mode, related to the tearing perturbation wave number
through k=2π ¼ N=ξ, is the most unstable mode until it
transitions into the Coppi regime. This happens at the scale
that satisfies

ðξ=λÞS−1=4λ ∼ 1; ð10Þ
yielding the transition scale for the N ¼ 1 mode

λtr;1=L ∼ S−4=9L : ð11Þ
In other words, if λ > λtr;1, the most unstable mode in the
current sheet is an FKR mode; if the opposite is true, it is
instead a Coppi mode which is the most unstable.
We define the critical scale for any mode N, λcr;N , as the

scale at which the growth rate γ of that mode matches the
eddy turn over time at that scale, given by Eq. (5). Strictly
speaking, the tearingmode analysis cannot be performedona
background which is evolving on a time scale comparable to
the growth time of the instability; however, as we discussed
above, the criterion γτ ∼ 1 provides a reasonable estimate for
the turbulence scale at which tearing becomes important.
For theN ¼ 1modewhile in theFKR regime, the growth rate
is γFKR1 ∼ ξ2=5V2=5

A;λ λ
−2η3=5. The equation γFKR1 τ ∼ 1 therefore

yields

λcr;1=L ∼ S−6=11L : ð12Þ
We see that λcr;1 < λtr;1, implying that the modes that will
become critical are not FKRmodes, but rather Coppi modes.
For these modes the largest growth rate is γCoppimax ∼ τ−1A;λS

−1=2
λ ,

where τA;λ ≡ λ=VA;λ, corresponding to a mode number

NCoppi
max ∼ ξ=λS−1=4λ . The criticality condition that the tearing

mode growth rate becomes comparable to the eddy turnover
rate γCoppimax τ ∼ 1 now yields

λCoppicr =L ∼ S−4=7L ; ð13Þ
which is the main result of our work.
It is easy to see that Eq. (13) corresponds to a mode

number, that is, number of magnetic islands, or plasmoids,
that would form inside a sheet of thickness λCoppicr and length
ξCoppicr ≡ ξðλCoppicr Þ ∼ LS−3=7L , given by

NCoppi
max ∼ S1=14L : ð14Þ

Coppi modes, as they become nonlinear, lead to a loss of
equilibrium that happens on the Alfvénic time scale at scale
λ, τA;λ [46,47]. Therefore, Eq. (13) identifies the scale at

which reconnection becomes dynamically relevant to the
turbulence.
Finally, we may compute the width of the inner boundary

layer of the tearing instability corresponding to this
most unstable mode, which is given by [41] δin ∼
½γðξ=NVA;λÞ2λ2η�1=4 evaluated for the scale obtained in
Eq. (13):

δCoppiin;max=L ∼ S−9=14L : ð15Þ

Whether this scale is larger or smaller than kinetic scales in
the plasma at hand [the ion (sound) Larmor radius, or the ion
skin depth] decides the adequateness, or lack thereof, of the
MHD tearing mode theory in describing the transition to the
reconnection-dominated domain of the turbulence spectrum.
Large magnetic Prandtl number.—The calculation above

can be straightforwardly repeated for cases in which the
magnetic Prandtl number, Pm≡ ν⊥=η, is large. We are
referring to theperpendicular viscosity, not theparallel one—
see the discussion in Sec. II B ofRef. [40]. The perpendicular
magnetic Prandtl number that we consider here is
Pm ∼ ðmi=meÞ1=2βi, and it can be large in astrophysical
plasmas.
The scalings for the linear tearing mode in the small and

large Δ0 regimes at high Prandtl number were derived in
[48] and are conveniently summarized in Ref. [40]. Since
this calculation is entirely similar to the one in the previous
section, we limit ourselves to stating the main results.
For the N ¼ 1 mode in the Pm ≫ 1 regime, the transition
scale is λtr;1=L ∼ S−4=9L Pm2=9, whereas the critical scale is

λcr;1=L ∼ S−8=15L Pm−2=15. Clearly λcr;1 ≪ λtr;1 implying, as
above, that the modes that will become critical are Coppi
modes. The critical scale is now

λCoppicr =L ∼ S−4=7L Pm−2=7; ð16Þ

corresponding to mode number NCoppi
max ¼ S1=14L Pm2=7.

The inner boundary layer now scales as δCoppiin;max=L∼
S−9=14L Pm−1=14.
We see that Eq. (16) yields a smaller scale than its

inviscid counterpart, Eq. (13). This makes intuitive sense:
viscosity slows down the Coppi modes; as such, the tearing
and turbulence timescales can only match at a scale λ
smaller (and, therefore, larger current sheet aspect ratio,
ξ=λ) than in the absence of viscosity.
The nonlinear evolution of large Pm tearing modes is

less well understood than the low Pm case, but we expect a
similar loss of equilibrium as in the inviscid case to take
place. Thus, as in the inviscid case, Eq. (16) identifies the
scale at which the eddies become affected by tearing
instability.
Spectrum of turbulence below the reconnection scale.—

We now address the spectrum below the reconnection scale
identified by Eq. (13), or Eq. (16) for Pm ≫ 1 plasmas.
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A plausible estimate for such a spectrum may be obtained
based on a simplified phenomenological picture that approx-
imates turbulent structures as a hierarchy of collapsing
plasmoid chains. As the island chain becomes nonlinear, it
may undergo X-point collapse, with new current sheets
formingbetween each twoplasmoids. Thesemay themselves
be unstable to plasmoid formation, and so on. Assuming one
can apply here what is known from the dynamics of large
Lundquist number reconnecting systems (see, e.g.,
Refs. [36,49–53]), the final state would be one where there
is a distribution of plasmoid sizes, whose dynamics is
dictated by advection out of the current sheet, coalescence,
and generation of new plasmoids. This can be viewed as a
new subinertial-range interval of turbulence, which may be
characterized by its own power spectrum [54–56].
In order to derive the spectrum in this “reconnection

interval,” we first note that we expect such plasmoids of
many different sizes to be separated from each other by
Sweet-Parker current sheets of a length Lc such that their
aspect ratio is marginally stable to plasmoid formation,
∼S1=2c [49], where Sc ¼ LcVA;λCoppicr

=η is the critical

Lundquist number, Sc ∼ 104. The rationale is that current
sheets longer than Lc, and, therefore, larger values of the
Lundquist number, are unstable to plasmoid formation; if,
on the other hand, they are shorter than Lc, they will be
stretched to that length by differential background flows
[49] (implying that the total number of plasmoids per
current sheet can be estimated asN ∼ ξCoppicr =Lc ∼ S−1c S3=7L ).
The thickness of these critical current sheets is

estimated as

δc ∼ LcS
−1=2
c ∼ λCoppicr S−1

λCoppicr
S1=2c ; ð17Þ

where SλCoppicr
¼ λCoppicr VA;λCoppicr

=η. Using Eq. (13), we thus
obtain

δc=L ∼ S1=2c S−6=7L : ð18Þ
These critical current sheets are the structures where

Ohmic and viscous dissipation is happening [51]. It is
reasonable to assume that Eq. (18) sets the dissipation
scale, that is, the scale below which the reconnection
interval is ultimately terminated by the dissipation.
Assuming that the energy spectrum in this interval follows
a power law, we write it in the form

Eðk⊥Þ ∝ k−3=20 ðk⊥=k0Þ−α; ð19Þ
where k0 ∼ 1=λCoppicr is the wave number corresponding to
the reconnection scale (13), where the reconnection-inter-
val spectrum matches the inertial-interval spectrum of
MHD turbulence Eðk⊥Þ ∝ k−3=2⊥ . The power-law spectrum
(19) extends up to the wave number k� ∼ 1=δc correspond-
ing to the dissipation scale (18), after which it is expected to
decline fast.
We now calculate the rate of magnetic energy dissipation

using the spectrum (19):

−
dE
dt

¼ η

Z
k�
k2⊥Eðk⊥Þdk⊥ ∝ S

4
7
ð−3

2
þαÞþ6

7
ð3−αÞ−1

L : ð20Þ

In a steady state, the rate of energy dissipation must be equal
to the constant rate of energy cascade from the large-scale
MHD turbulence, and, hence, independent of the Lundquist
number. This defines the scaling of the energy spectrum:
α ¼ 5=2. The energy spectrum and the eddy structure
envisioned in our model are represented in Fig. (1).
Finally, note that the validity of Eq. (18) rests on it being

smaller than Eq. (13) (or, equivalently, ξCoppicr ≫ Lc); this
yields a criterion for the minimum value of the outer scale
Lundquist number that is needed to observe this k−5=2⊥
spectrum: SL ≫ S7=4c ∼ 107.
Discussion and conclusion.—The results derived above

present a compelling case for revisiting the mechanism of
energy dissipation envisioned in existing Kolmogorov-like
theoretical models of MHD turbulence. Because of progres-
sively increasing eddy anisotropy at small scales [11,31,57],
at a sufficiently small scale the reconnection time becomes
comparable to the eddy turnover time.Reconnection,we have
argued, disrupts the eddies at that scale, and implies that no
such eddies can form at smaller scales. The energy cascade
from the large scales, where it is injected, to the smallest
scales, where it dissipates, must, therefore, proceed through a
new subinertial stage where reconnection, the resulting
structures, and associated flows are key players.
As has been noted in the past, the presence of the large-

scale magnetic field and the Alfvénic time scale implies
that the Kolmogorov first self-similarity hypothesis may
not hold for MHD turbulence [58]. In particular, the
spectrum of MHD turbulence may depend not only, or
not at all, on the Kolmogorov-like dissipation scale. The
presented analysis provides physical arguments for the
existence of alternative scales (13) and (18) that play a
crucial role in MHD turbulence. The dissipation scale (18)
decreases faster with the Lundquist number than the

FIG. 1. Sketch of the Fourier energy spectrum (log-log scale)
and the shapes of eddies as a function of k⊥ ∼ 1=λ. The arrows
indicate the direction of the magnetic field lines. For
k⊥ < kcr ∼ 1=λcr, the turbulent eddies become progressively
more anisotropic as k⊥ approaches kcr. For k⊥ > kcr, the tearing
instability is an essential part of the turbulence.
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Kolmogorov scale (7). This means, for example, that in
order for the numerical simulations of MHD turbulence to
be resolved, their discretization scale should decrease faster
than the Kolmogorov scale (7) as the Lundquist number
increases. This property of MHD turbulence has also been
discussed in Ref. [58].
Finally, we point out that the generation of secondary

islands in two-dimensional MHD turbulence has been
previously numerically detected at Lundquist numbers
up to ∼104–105 [15–18]. The transition to the new spectral
scaling, however, was not observed in these studies.
Although the 2D case is qualitatively different from its
3D counterpart [32,59], these numerical results may also be
explained by insufficiently large SL numbers, or they may,
possibly, indicate our incomplete understanding of the
reconnection-dominated interval. Indeed, the scaling (18)
and the spectrum (19) are phenomenological estimates in
that they have not been self-consistently derived from a
theory of a reconnection-dominated cascade. Such a theory
is not currently available; the definitive conclusion on the
scaling and the structure of this interval should, therefore,
await further analytic studies and numerical investigations.
We may, however, compare our results with available

numerical simulations of reconnection-induced turbulence
[55]. Although in these simulations the reconnecting
magnetic profile was not generated by a turbulent cascade
but rather imposed as an initial condition, they may capture
the dynamics of the reconnection-dominated spectral inter-
val. These simulations produce the spectra ranging from
−2.1 to −2.5, which are broadly consistent with our model.
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Note added.—In the advanced stages of preparation of this
Letter, we became aware that a similar calculation [in
particular, the derivation of Eq. (13)] has concurrently and
independently been performed by A. Mallet, A.
Schekochihin, and B. Chandran [60].
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