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Abstract

Nonseparable panel models are important in a variety of economic settings, including discrete

choice. This paper gives identification and estimation results for nonseparable models under time

homogeneity conditions that are like “time is randomly assigned” or “time is an instrument.”

Partial identification results for average and quantile effects are given for discrete regressors,

under static or dynamic conditions, in fully nonparametric and in semiparametric models, with

time effects. It is shown that the usual, linear, fixed-effects estimator is not a consistent estimator

of the identified average effect, and a consistent estimator is given. A simple estimator of

identified quantile treatment effects is given, providing a solution to the important problem of

estimating quantile treatment effects from panel data. Bounds for overall effects in static and

dynamic models are given. The dynamic bounds provide a partial identification solution to the

important problem of estimating the effect of state dependence in the presence of unobserved

heterogeneity. The impact of T , the number of time periods, is shown by deriving shrinkage

rates for the identified set as T grows. We also consider semiparametric, discrete-choice models

and find that semiparametric panel bounds can be much tighter than nonparametric bounds.

Computationally-convenient methods for semiparametric models are presented. We propose a

novel inference method that applies in panel data and other settings and show that it produces

uniformly valid confidence regions in large samples. We give empirical illustrations.



1 Introduction

Interesting empirical questions are often formulated in terms of the ceteris paribus effect of x on y,

when observed x is an individual choice variable partly determined by preferences or technology.

Panel data holds out the hope of controlling for individual preferences or technology by using

multiple observations for a single economic agent. This hope is particularly difficult to realize

with discrete or other nonseparable models and/or multidimensional individual effects. These

models are, by nature, not additively separable in unobserved individual effects, making them

challenging to identify and estimate. There are some simple solutions, such as the conditional

MLE for the slope parameter of a binary-choice logit model with an individual location effect.

However these are rare and dependent on specific models or distributions. For example, the

slope parameter of the binary-choice model with a time dummy is identified only for logit as

shown by Chamberlain (2010), and the average treatment effect is not identified even for logit

without a time dummy, as shown below.

A fundamental idea for using panel data to identify the ceteris paribus effect of x on y is

to use changes in x over time to estimate the effect. In order for changes over time in x to

correspond to ceteris paribus effects, the distribution of variables other than x must not vary

over time. This condition is like “time being randomly assigned” or “time is an instrument.”

In this paper we consider identification via such time homogeneity conditions. They are also

the basis of many previous panel results, including Chamberlain (1982), Manski (1987), and

Honore (1992). Here we consider the identifying power of time homogeneity for nonseparable

models, i.e. for models that are not additively separable in unobserved factors. We allow for

multidimensional heterogeneity, as motivated by models where effects of interest, such as price

and income elasticities, are distributed among individuals in unrestricted ways; see Altonji and

Matzkin (2005), Browning and Carro (2007), and Fernandez-Val and Lee (2010), among others.

We also weaken the strict time homogeneity conditions to allow some time effects.

Models with discrete regressors have many applications and are the subject of most of this

paper. With discrete regressors, time homogeneity only leads to partial identification of many

effects, though some conditional effects are identified. This paper considers partial identification

and estimation of average and quantile effects, under static or dynamic conditions, in fully

nonparametric and in semiparametric models, with time effects.

For the nonparametric, static model we give simple estimators of the identified average effect

of x on y, conditional on x varying over time. These estimators extend Chamberlain (1982, pp.

10-17) to multiple regressors with location and scale time effects. We also find that linear, fixed-

effects estimate a variance-weighted average effect instead of the average effect. For bounded y

we move beyond the analysis of identified effects and give simple estimators of sharp bounds for
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average effects. These bounds provide nonparametric, partial-identification estimates of average

effects in important cases, such as binary choice in panel data.

The quantile estimators given here are more novel than the average-effect estimators. They

provide simple estimators of the effect of x on quantiles of y, conditional on x varying over time,

that allow for location and scale time effects. Estimators of sharp bounds are also provided for the

unconditional, overall quantile effect. The estimators allow for multidimensional heterogeneity,

for example for both location and slope to vary across individuals in an unrestricted way. In

this way we provide a solution for the important problem of nonparametric quantile regression

in panel data with individual effects, for discrete regressors. Graham, Hahn and Powell (2009)

also consider quantile effects in linear, heterogenous coefficients models, but impose conditions

which essentially restrict the heterogeneity to be one-dimensional, and focus on identification of

the distribution of coefficients.

Dynamics is often an important feature of economic models with intertemporal choice. Here

we give a dynamic, nonseparable, panel model that nests the static one. Simple estimators

of bounds on average and quantile effects are provided. We show that these results provide a

partial-identification solution to the important problem of distinguishing state dependence from

heterogeneity.

This paper shows the impact of the number of time periods T on identification. We find that

the identified set of effects shrinks to a point exponentially quickly as T grows, when individual

effects are bounded and time period disturbances are not, and that the rate is some power of

T−1 more generally. In a nonparametric, dynamic, binary-choice model we find that the rate is

faster the larger the variance of the period-specific disturbance relative to the variance of the

individual effect.

In numerical examples we find that the nonparametric bounds can be quite wide, motivating

more informative models. Semiparametric models that specify the distribution of the outcome

given regressors and individual effect is an important class of more informative models. Here we

describe both static and dynamic semiparametric models. When restrictions are imposed on the

heterogeneity, like only some coefficients varying across individuals, semiparametric models can

have substantially tighter bounds than nonparametric models. We find that in the important

binary-logit model with just a location effect the average effect bounds shrink exponentially

quickly as T grows, in both dynamic and static models, even when the nonparametric bounds

shrink slowly. This result quantifies the gain in information of a semiparametric model with just a

location effect over the nonparametric model. We also find quite tight bounds for semiparametric

models relative to nonparametric ones in numerical examples.

We show that semiparametric, discrete-choice models have finite dimensional parameteriza-

tions. This reduces bounds calculation and estimation to a finite-dimensional problem, albeit
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a large dimensional, highly nonlinear, and computationally difficult one. To make computation

more feasible we use grids of fixed values for individual effects, so that average choice probabilities

are finite-dimensional, linear combinations. We combine this with minimum squared distance

fitting of data cell probabilities to obtain a quadratic programming approach for estimating

the individual-effect distributions. This approach is computationally convenient and overcomes

problems with previously proposed methods, as further discussed below. We also allow the grid

to grow in order to approximate the true support points. It turns out that because the model is

finite dimensional there is no need to limit the number of grid points. Mathematically, a richer

fixed grid simply corresponds to a bigger submodel of the finite-dimensional model.

The semiparametric bounds build on Honoré and Tamer (2003, 2006) and Chernozhukov,

Hahn, and Newey (2004). Both papers gave results for bounds in semiparametric, nonlinear,

panel-data models. Honore and Tamer (2006) proposed linear programming, minimum dis-

tance, and maximum likelihood methods for dynamic models. Chernozhukov, Hahn, and Newey

(2004) proposed sieve likelihood estimation of bounds for static models. These approaches are

not very useful for estimation. Plugging in sample frequencies in place of cell probabilities in

the linear-programming algorithm produces empty identification regions because the frequen-

cies need not satisfy constraints imposed by the model. Also, the minimum-distance objective

function is computationally difficult, as is sieve maximum likelihood, given the dimensionality of

the individual-effect distributions. Honore and Tamer (2006) also assumed a fixed known grid

for true individual effects, while we consider an approximation to an unknown grid.

The inferential problem for the semiparametric models is also rather challenging. The models

impose data-dependent constraints that are often infeasible in finite samples or under misspec-

ification, which produces empty confidence regions. We overcome these difficulties by project-

ing these data-dependent constraints onto the model space using the quadratic-programming

approach mentioned above, thus producing an always-feasible, data-dependent constraint set.

We then suggest linear and nonlinear programming methods that use these new modified con-

straints. Our inference procedures have the appealing justification of targeting the true model

under correct specification and targeting a best approximating model under incorrect specifi-

cation. We also develop two novel inferential procedures, one called the perturbed bootstrap,

that is described in the paper, and another called modified projection, that is described in the

Supplementary Material. These methods produce uniformly valid inference in large samples and

may be of substantial independent interest.

We give two empirical illustrations. One is to estimate the effect of unions on earnings

quantiles. There we find that a decline in the union effect as the quantile increases can be

attributed to individual heterogeneity. The other illustration is to estimate the effects of fertility

on women’s labor force participation. There we compare nonparametric and semiparametric

3



estimates.

Recent research has considered nonseparable panel models with time homogeneity and con-

tinuous regressors. Graham and Powell (2011) give estimators of the average effect in a linear

model with heterogeneous slopes. Hoderlein and White (2011) give estimators of the average

derivative conditional on equality of regressors across time periods.

Chamberlain (1980, 1984), Altonji and Matzkin (2005), Bester and Hansen (2008), and others

have used control functions for panel data estimation. We focus instead on time homogeneity

with unrestricted dependence between individual effects and regressors. Bias-corrected, fixed-

effects estimation of semiparametric models has been proposed by Hahn and Kuersteiner (2002),

Alvarez and Arellano (2003), Woutersen (2002), Hahn and Newey (2004), and Fernández-Val

(2009). These estimators depend on large T for consistency while we estimate identified effects

and bounds for fixed T .

Section 2 describes the models and effects we consider. Section 3 discusses estimation of

identified effects. Sections 4 and 5 derive bounds for the static and dynamic nonparametric

models respectively. Section 6 describes the impact of T . Section 7 describes and gives results

for semiparametric, discrete-choice models. Section 8 gives computationally convenient methods

for semiparametric models and numerical examples. Section 9 considers estimation and inference

for semiparametric models. Section 10 gives empirical examples. The Supplementary Material

Chernozhukov et. al. (2012) includes a variety of omitted discussions and results along with the

proofs of results stated in the paper.

2 The Models and Effects

The data consist of n observations on Yi = (Yi1, ..., YiT )
′ and Xi = [Xi1, ...,XiT ]

′, for a depen-

dent variable Yit and a vector of regressors Xit. Throughout we assume that the observations

(Yi,Xi), (i = 1, ..., n), are independent and identically distributed. The nonparametric models

we consider satisfy

Assumption 1: There is a function g0(x, α, ε) and vectors αi and εit of random variables

such that

Yit = g0(Xit, αi, εit), (i = 1, ..., n; t = 1, ..., T ).

The vector αi consists of time invariant individual effects that often represent individual

heterogeneity. The vector εit represents period-specific disturbances. Altonji and Matzkin (2005)

considered models satisfying Assumption 1. The invariance of g0 over time in this Assumption

does not actually impose any time homogeneity. If there are no restrictions on εit then t could
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be one of the components of εit, allowing the function to vary over time in a completely general

way. The next condition, together with Assumption 1, imposes time homogeneity on the model.

Assumption 2: εit|Xi, αi
d
= εi1|Xi, αi, for all t.

This is a static, or “strictly exogenous” time homogeneity condition, where all leads and

lags of the regressor are included in the conditioning variable Xi. It requires that the conditional

distribution of εit given Xi and αi does not depend on t, but does allow for dependence of εit over

time. An equivalent condition is ε̃it|Xi
d
= ε̃i1|Xi for ε̃it = (αi, εit). Thus, the time invariant αi has

no distinct role in this model. The condition is just that whatever the unobserved disturbances

are, their conditional distribution given Xi does not depend on t.

This seems a basic condition that helps panel data provide information about the effect of

x on y. It is like “time is randomly assigned” or “time is an instrument” with the distribution

of factors other than x not varying over time, so that changes in x over time can help identify

the effect of x on y. Assumption 2 also turns out to be a natural strengthening of linear

model conditions, as shown in Theorem A1 and the associated discussion in the Supplementary

Material.

A dynamic model can be obtained by only including current and lagged Xis in the condi-

tioning set for each t, as in the following condition:

Assumption 3: εit|Xit, ...,Xi1, αi
d
= εi1|Xi1, αi, for all t.

This is a “predetermined” version of time homogeneity that is nested within the static

model of Assumptions 1 and 2, as shown in Theorem A2 of the Supplementary Material. Here

the conditional distribution given only current and lagged regressors must be time invariant.

It also implies that the conditional distribution of εit given current and lagged regressors only

depends on Xi1. Here εit can be thought of as additional information that is independent of

the past regressors. A conditional-mean version of this condition arises in rational-expectations

models that implies disturbances have mean zero conditional on past information. Here the

stronger conditional independence restriction is imposed as seems needed for a nonseparable

model. The conditioning on Xi1 is a way to account for the initial conditions of this dynamic

model. Bhargava and Sargan (1983) adopted this approach in a linear model as have Honore

and Tamer (2006) and Browning and Carro (2007) in a likelihood setting.

If Xit includes lagged Yit then Assumption 3 specifies that the model is “dynamically com-

plete,” ruling out Yit = g0(Xit, αi, εit) as one equation of a dynamic system. For instance, Xit

could be Yi,t−1, in which case Yit = g0(Yit−1, αi, εit) is an explicit nonseparable dynamic model

with εit being time shocks that are independent of Yit−1, ..., Yi1. An important example is one
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where Yit ∈ {0, 1} is binary, representing state dependence, with αi representing unobserved

heterogeneity. This example is treated in Section 5.

We will focus in the nonparametric model on two objects, the average structural function

(ASF) of Blundell and Powell (2003) and the quantile structural function (QSF) of Imbens and

Newey (2009). The ASF is

µ(x) = E[g0(x, αi, εit)] =

∫

g0(x, α, ε)dF (α, ε),

where throughout the paper F denotes the cumulative distribution function (CDF) of a random

vector that appears as the arguments of F . This object is useful for quantifying the effect of x

on the mean of the outcome Yit. In the treatment-effects literature the average treatment effect

(ATE) of changing x from xb (before) to xa (after) is

∆ = µ(xa)− µ(xb).

The QSF q(λ, x) is the λth quantile of g0(x, αi, εit). Under conditions specified below the

QSF will equal the inverse of the CDF of g0(x, αi, εit),

q(λ, x) = G−1(λ, x), G(y, x) = E[1(g0(x, αi, εit) ≤ y)].

In the treatment-effects literature the λth quantile treatment effect (QTE) of changing x from

xb to xa is

∆λ = q(λ, xa)− q(λ, xb),

as in Lehmann (1974). This effect does not give the quantile of the treatment effect but does

quantify the shift in the distribution of Yit that is due to a change in x. It accounts for multidi-

mensional individual effects that may be correlated with x.

The static model implies a conditional-mean model that has been considered by Chamberlain

(1982), Hahn (2001), Wooldridge (2005), and Chernozhukov et. al. (2007). This conditional-

mean model specifies that there is an αi and m0(x, α) such that E[Yit|Xi, αi] = m0(Xit, αi). A

conditional mean ATE, as in Wooldridge (2005), is
∫

[m0(x
a, α)−m0(x

b, α)]dF (α). This model

and effect differ from those we consider in specifying conditional-mean restrictions, while we

specify conditional distribution restrictions. In Theorem A3 of the Supplementary Material we

show that the conditional-mean model is implied by Assumptions 1 and 2, or 1 and 3, and that

the conditional mean ATE is equal to the ATE we consider. Thus all results we give for the

ATE, including bounds, apply to the conditional mean models, such as that of Chernozhukov

et. al. (2007).

To help explain the relationship between the conditional-mean model and the model of our

paper, and to illustrate other results, it is useful to consider examples. Binary choice is a very
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important model for panel data, as it has many applications. For this reason we use binary

choice as a main example. The most common model has been one with a scalar individual effect

that is an additive shift to a linear combination of Xit, where

Yit = 1(X ′
itβ

∗ + αi ≥ εit),

for scalar εit and an unknown parameter vector β∗. In this example g0(x, α, ε) = 1(x′β∗+α ≥ ε)

and the ATE is

∆ =

∫

[1(xa′β∗ + α ≥ ε)− 1(xb′β∗ + α ≥ ε)]dF (ε, α).

This is an unusual object in the binary choice literature but is equal to a conditional mean ATE.

In particular, if εit is independent of (Xi, αi) with CDF H(ε) for each t. Then E[Yit|Xi, αi] =

Pr(Yit = 1|Xi, αi) = H(X ′
itβ

∗ + αi) and

∆ =

∫

[H(xa′β∗ + α)−H(xb′β∗ + α)]dF (α).

Thus the ATE is also the effect of changing x on the choice probabilities averaged over the

individual effect, i.e. the conditional mean ATE.

Our model also includes binary choice with individual-specific slopes as a special case. Eco-

nomic motivation for varying slopes is provided by Browning and Carro (2007, 2009) who point

out that with constant slopes the sign of the treatment effect is the same for every individual

and give empirical examples where varying slopes are important. A general model with varying

slopes is Yit = 1(X ′
itαi ≥ εit) whereXit now includes a constant and εit is independent of (Xi, αi)

with CDF H(ε). In this model

∆ =

∫

[H(xa′α)−H(xb′α)]dF (α),

accounting for individual specific slopes. When Xit is discrete and fully saturated (e.g. consists

of a full set of dummies, one for every discrete outcome) this model is actually equivalent to

the general static model. It will be more restrictive when the distribution of α is restricted in

some way, such as having some components of α be constant. In the semiparametric analysis

described below we show how to impose such restrictions.

Time effects are clearly important in practice but identification of treatment effects will

preclude including t among the regressors Xit in the nonparametric model of Assumptions 1

- 3. Identification will be based on variation over time in Xit, and if t is a regressor then

g0(Xit, αi, εit) has unrestricted variation over time, precluding identification of the effect of any

other regressor. Some time effects can be allowed for by restricting the way t enters g0. Below

we will describe how this is done in semiparametric, discrete-choice models. With continuous

Yit one can allow for location and scale time effects that are relatively easy to estimate.
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Assumption 4: There is a function g0(x, α, ε), vectors αi and εit of random variables, and

constants τ t, st, (t = 2, ..., T ) such that for τ1 = 0, s1 = 1,

Yit = gt0(Xit, αi, εit), gt0(x, α, ε) = τ t + stg0(x, α, ε), (i = 1, ..., n; t = 1, ..., T ).

This condition allows the mean and variance of Yit to vary over time in an unrestricted way.

The condition could be generalized to allow for other time effects, but we leave that to future

work. It does not apply to Yit with fixed, discrete support because Assumption 4 does not make

sense in that case. There t must be included “inside” g0, as we do in the semiparametric analysis

described below.

With these time effects the ASF and QSF can depend on t. The ASF and QSF for the first

period will be µ(x) and q(λ, x) as given above, and for the other periods are

µt(x) = τ t + stµ(x), qt(λ, x) = τ t + stq(λ, x), (t = 2, ..., T ).

Corresponding period-specific and time-averaged ATE and QTE are given by

µt(x
a)− µt(x

b) = st[µ(x
a)− µ(xb)], qt(λ, x

a)− qt(λ, x
b) = st[q(λ, x

a)− q(λ, xb)], (1)
(

∑T
t=1 st
T

)

[µ(xa)− µ(xb)],

(

∑T
t=1 st
T

)

[q(λ, xa)− q(λ, xb)],

where s1 = 1.

In the rest of this paper we will focus on discrete regressors, imposing the following condition

from here on:

Assumption 5: The support of Xi is finite.

With discrete Xit the model can also be written as a multiple regression with random coef-

ficients, though we find it convenient to use the notation given here.

3 Identified Effects in the Nonparametric Static Model

The analysis of identification in the static model is quite simple. This simplicity is a virtue,

leading to estimators of identified effects and bounds on unidentified effects that are easy to

calculate in a very general model. For example, this approach gives a simple solution to the

important problem of identification of quantile treatment effects in panel data. The idea is based

on Assumption 2, which states that, conditional on Xi, the distribution of unobservables does

not vary over time. Therefore, conditional on Xi where both xb and xa occur for some time

periods, one can identify effects from the changes in Yit across those time periods. For the ATE,

the identified conditional effects can be averaged to identify effects conditional on Xi being in

8



subsets where both xb and xa occur for some time period. This idea is a slight extension of

Chamberlain (1982, pp. 10-17) to discrete regressors that are not binary. For the QTE the

distribution functions can be averaged and inverted to identify corresponding quantile effects.

This idea appears to be novel.

There is a simple approach to allowing for covariates. Suppose x = (x1, x2), and one is

interested in the effect of x1 holding x2 fixed. Then one can take xb = (xb1, x2) and xa =

(xa1, x2), so that the effect of changing from xb to xa is then the effect of interest. Furthermore,

one could average these effects over x2 to identify an effect that is averaged over covariates.

We explicitly allow for covariates in the semiparametric models given below. Because we are

already attempting to cover so much ground here, we leave averaging over covariates in the

nonparametric model to future work.

To describe identified effects and their estimators we will focus on the ATE and QTE condi-

tional on both xa and xb appearing in Xi for some time period. We could also consider effects

conditional on smaller subsets of Xi but postpone this until later in order to keep the exposition

relatively simple. We need a little more notation to give a precise description. Let 1(Xit = x)

denote the indicator function that is equal to one when Xit = x and zero otherwise and let

Ti(x) =
∑T

t=1 1(Xit = x). Here we let the subscript i denote a random variable that may depend

on Xi and Yi. Let Di = 1(Ti(x
a) > 0)1(Ti(x

b) > 0) be the indicator for the event that Xi

includes both xa and xb for some time period. Define

δ = E[g0(x
a, αi, εi1)− g0(x

b, αi, εi1)|Di = 1]. (2)

This δ is the ATE for those individuals where both xb and xa occur for some time period. This

effect may be of interest in many settings. For example, when Yit is log earnings and Xit ∈ {0, 1}
represents union status, δ would be the average effect of union status on earnings for those who

changed union status over the time periods we observe. For a given number of time periods T,

this is all one could hope to identify nonparametrically. However, we may be interested in other

effects too. We might be interested in union effects for those who ever changed union status at

some time. This is δ. Or we might even be interested in the effect for those who were ever in

a union. Bounds for such an effect are described below.

A simple estimator of the conditional ATE δ is

δ̂ =

∑n
i=1Di[Ȳi(x

a)− Ȳi(x
b)]

∑n
i=1Di

, Ȳi(x) =

{

Ti(x)
−1
∑T

t=1 1(Xit = x)Yit, Ti(x) > 0

0, Ti(x) = 0
. (3)

Consistency of this estimator results from

E[Di{Ȳi(xa)− Ȳi(x
b)}] = E[Di{g0(xa, αi, εi1)− g0(x

b, αi, εi1)}],
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see Lemma A5 of the Supplementary Material. Intuitively, this equation follows from time being

randomly assigned, so that we can estimate the effect by comparing Yit where Xit = xa with Yis

where Xis = xb.

Since Ȳi(x
a)− Ȳi(x

b) is a difference of means it can be interpreted as a coefficient of 1(Xit =

xa) in a regression of Yit on that dummy and on 1(Xit = xa) + 1(Xit = xb). Thus, δ̂ is

an average of least-squares estimates for each i with Di = 1. From this interpretation we

see that δ̂ extends Chamberlain’s (1982, p. 12) estimator to discrete regressors that are not

binary. A consistent estimator of the asymptotic variance of
√
n(δ̂ − δ) is n−1

∑n
i=1 ψ̂

2
i where

ψ̂i = nDi[Ȳi(x
a) − Ȳi(x

b) − δ̂]/
∑n

i=1Di. For brevity we leave the asymptotic theory to the

Supplementary Material (see Theorem A6) and efficiency results to future work.

We can also identify and estimate a conditional QTE. LetG(y, x|Di = 1) = Pr(g0(x, αi, εi1) ≤
y|Di = 1) denote the CDF of g0(x, αi, εi1) conditional on Di = 1. The QTE conditional on

Di = 1 is

δλ = G−1(λ, xa|Di = 1)−G−1(λ, xb|Di = 1).

An estimator of this effect can be constructed using a CDF Φ(u) and a scalar bandwidth h. An

estimator of G(y, x|Di = 1) is given by

Ĝ(y, x|Di = 1) =

∑n
i=1DiḠi(y, x)
∑n

i=1Di
, Ḡi(y, x) =

{

Ti(x)
−1
∑T

t=1 1(Xit = x)Φ(y−Yit

h ), Ti(x) > 0,

0, Ti(x) = 0.
.

In this estimator the indicator function 1(Yit < y) has been replaced by a smoothed approxi-

mation Φ(y−Yit

h ), as suggested by Yu and Jones (1998) for estimating a conditional CDF. An

estimator of δλ is then

δ̂λ = q̂aλ − q̂bλ, q̂
a
λ = Ĝ−1(λ, xa|Di = 1), q̂bλ = Ĝ−1(λ, xb|Di = 1).

Note here that we first average, then invert, and then difference. This estimator solves an

important problem of estimating panel quantile effects and appears to be novel.

A consistent estimator of the asymptotic variance of
√
n(δ̂λ − δλ) is n

−1
∑n

i=1 ψ̂
2
λi for

ψ̂λi = − nDi
∑n

i=1Di

[

Ḡi(q̂
a, xa)− λ

Ĝ′(q̂a, xa|Di = 1)
− Ḡi(q̂

b, xb)− λ

Ĝ′(q̂b, xb|Di = 1)

]

,

where Ĝ′(y, x|Di = 1) = ∂Ĝ(y, x|Di = 1)/∂y. Here the denominator terms are actually kernel

density estimates. For this reason one might use different bandwidths h in the numerator and

denominator, with the denominator chosen to be appropriate for density estimation. Asymptotic

theory for this estimator is given in the Supplementary Material (see Theorem A8). Alterna-

tively, one could simply use the bootstrap to construct a confidence interval for δ̂λ.

10



A helpful example is the binary regressor case where Xit ∈ {0, 1}. Here Xit could be thought

of as a treatment variable where Xit = 1 for treated and Xit = 0 for untreated. Let Yit(0) =

g0(0, αi, εit) and Yit(1) = g0(1, αi, εit). Assumption 2 is equivalent to the assumption that

the conditional distribution of (Yit(0), Yit(1)) given Xi does not vary with t. This is the key

assumption that identifies treatment effects from time variation in treatment. In this context

δ = E[Yit(1)−Yit(0)|Di = 1] is the ATE for individuals where both treatment and nontreatment

occurs during the observation period. Similarly, δλ is the difference between the λ quantile of

the distribution of Yit(1) and the λ quantile for Yit(0) conditional on Di = 1. The ATE and

QTE are not identified for those individuals that either receive treatment in every time period

or receive no treatment in every time period.

In general the usual panel data within (linear fixed effects) estimator is not a consistent

estimator of δ. This inconsistency results because the within estimator constrains the slope

coefficient to be the same for each i when the slope is actually varying with i. For simplicity we

demonstrate this inconsistency in the binary Xit example. The within estimator δ̂w is given by

δ̂w =

∑n
i=1

∑T
t=1(Xit − X̄i)Yit

∑n
i=1

∑T
t=1(Xit − X̄i)2

, X̄i = T−1
T
∑

t=1

Xit.

Let σ2i = (T − 1)−1
∑T

t=1(Xit − X̄i)
2 be the sample variance over time of Xit.

Theorem 1: If Assumptions 1 and 2 are satisfied, Xit ∈ {0, 1}, E[Y 2
it ] < ∞, (t = 1, ..., T ),

and E[Diσ
2
i ] > 0, then δ = E[Di{Ȳi(1)− Ȳi(0)}]/E[Di] and

δ̂w
p−→ δw =

E[σ2iDi{Ȳi(1) − Ȳi(0)}]
E[σ2iDi]

. (4)

Note that the limit of the within estimator is a weighted average of individual, least-squares

estimates Ȳi(1) − Ȳi(0) from equation (3). If T ≥ 4 then the weights σ2i vary over the positive

σ2i and so the limit δw of δ̂w is not the identified conditional ATE δ.

Theorem 1 is different than Yitzhaki (1996) and Angrist (1998), who gave weighted average

interpretations of least squares in other, non-panel settings. Theorem 1 is also different from

Hahn (2001), who found that δ̂w consistently estimates the ATE. Hahn (2001) considered T = 2

and assumedXi = (0, 1)′. As noted by Hahn (2001), those conditions are quite special. Theorem

1 is also different from Wooldridge (2005), who showed that if bi = E[Yit(1)− Yit(0)|αi] is mean

independent of Xit − X̄i for each t then linear fixed effects is a consistent estimator of δ. The

problem is that the mean-independence assumption is very strong when Xit is discrete. For

instance, if T = 2, Xi2 − X̄i takes on the values 0 when Xi = (1, 1) or (0, 0), −1/2 when

Xi = (1, 0) , and 1/2 when Xi = (0, 1). Thus mean independence of bi and Xi2 − X̄i actually

implies that

E[bi|Xi = (1, 0)′] = E[bi|Xi = (0, 1)′] = E[bi|Xi ∈ {(0, 0)′, (1, 1)′}].

11



This is quite close to independence of bi and Xi, which is not very interesting if we want to allow

the treatment effect to vary with Xi.

The conditional ATE and QTE estimators can easily be modified to accommodate the time

effects of Assumption 4. The changes in Yit over time for fixed Xit can be used to identify and

estimate the time effects that can then be included in the estimation of the ATE and QTE. To

describe this approach, let m̂t =
∑n

i=1 1(Xit = Xi1)Yit/
∑n

i=1 1(Xit = Xi1) and

ŝt =

∑n
i=1 1(Xit = Xi1)Xi1(Yit − m̂t)

∑n
i=1 1(Xit = Xi1)Xi1(Yi1 − m̂1)

, τ̂ t = m̂t − ŝtm̂1, t = 2, ..., T.

This (τ̂ t, ŝt)
′ is an instrumental variables estimator where the residual is Yit − τ t − stYi1, the

instruments are (1,Xi1)
′, and the estimation is done on the subsample where Xit = Xi1. These

estimators will be consistent and asymptotically normal as long as Cov(Xi1, Yi1|Xit = Xi1) 6= 0

for each t = 2, ..., T. One could also use other functions of Xi1 as instrumental variables to

improve efficiency. We focus on just Xi1 as an instrument for simplicity. Graham and Powell

(2011) use a similar approach to identify time effects in a linear model with continuous regressors.

The time effects are accounted for in ATE and QTE estimation by removing time location

and scale effects from all periods when estimating the first period effect, and then putting the

scale effects back for other periods. Note first that under Assumption 4 δ is the conditional ATE

for the first time period. Let Ỹit = (Yit − µ̂t)/ŝt be the tth period observation with estimated

location and scale removed. Replacing Yit by Ỹit in the formula for δ̂ gives

δ̃ =

∑n
i=1Di[Ỹi(x

a)− Ỹi(x
b)]

∑n
i=1Di

, Ỹi(x) =

{

Ti(x)
−1
∑T

t=1 1(Xit = x)Ỹit, Ti(x) > 0

0, Ti(x) = 0
.

The conditional ATE for the tth time period is given by stδ and a time average by (
∑T

t=1 st/T )δ

for s1 = 1, analogously to equation (1). These can be estimated by ŝtδ̃ and s̄δ̃, respectively

for s̄ =
∑T

t=1 ŝt/T and ŝ1 = 1. These estimators will be consistent and asymptotically normal.

Because of their multistage nature the bootstrap may provide the easiest approach to carrying

out inference on these estimators, where one resamples from the empirical distribution of (Yi,Xi),

(i = 1, ..., n) to form confidence intervals for the true parameter. For brevity we omit explicit

results.

An analogous approach can be followed to account for time effects in the QTE. The inter-

pretation of δλ now becomes QTE for the first time period conditional on Di = 1. An estimator

of G(y, x|Di = 1) = Pr(g0(x, αi, εi1) ≤ y|Di = 1) that adjusts for time, location and scale is

given by

G̃(y, x|Di = 1) =

∑n
i=1DiG̃i(y, x)
∑n

i=1Di
, G̃i(y, x) =

{

Ti(x)
−1
∑T

t=1 1(Xit = x)Φ(y−Ỹit

h ), Ti(x) > 0

0, Ti(x) = 0
.
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Let q̃aλ = G̃−1(λ, xa|Di = 1) and q̃bλ = G̃−1(λ, xb|Di = 1). Estimators for the conditional QTE for

the first period, other periods, and a time average are given by δ̃λ = q̃aλ − q̃bλ, ŝtδ̃λ, (t = 2, ..., T ),

and s̄δ̃λ, respectively. Here again the bootstrap provides a convenient method for inference. One

could also use quantiles to estimate the time effects, but we avoid that for simplicity.

4 Nonparametric Bounds in the Static Model

When g0(x, αi, εit) is bounded we can estimate bounds for the ASF and corresponding bounds

for the ATE. For the QSF and QTE we can also estimate bounds without any restriction on

g0, using the fact that there are known upper and lower bounds for the indicator function

1(g0(x, αi, εit) ≤ y). The idea of the bounds is an extension of the estimation of identified effects

discussed in the previous Section. Time homogeneity allows us to use time averages to estimate

the identified parts of the ASF or QSF when x is an element of Xi, i.e. Xit = x for some t, and

apply the lower or upper bounds when x does not appear in Xi.

We first describe bounds estimation for the ASF. These bounds depend on bounds on g0

imposed in the following condition:

Assumption 6: Bℓ ≤ g0(x, αi, εit) ≤ Bu for constants Bℓ and Bu and all x.

For example, in the binary-choice model, where Yit ∈ {0, 1}, upper and lower bounds are

Bu = 1 and Bℓ = 0 respectively. We could allow Bℓ and Bu to depend on x and using that

information could tighten the ATE bounds given below. To avoid further complication we do

not allow this.

Let Ti(x) and Ȳi(x) be as in Section 3 and P̄ (x) =
∑n

i=1 1(Ti(x) = 0)/n be the sample

frequency of x not occurring in any time period. Estimated lower and upper bounds for µ(x)

are

µ̂ℓ(x) = n−1
n
∑

i=1

Ȳi(x) + P̄ (x)Bℓ, µ̂u(x) = µ̂ℓ(x) + P̄ (x)(Bu −Bℓ).

Here Ȳi(x) estimates the identified part of the ASF, corresponding to Ti(x) > 0, and the upper

and lower bounds are applied for observations where Ti(x) = 0 . Corresponding estimated lower

and upper bounds for the ATE are ∆̂ℓ = µ̂ℓ(x
a)− µ̂u(x

b) and ∆̂u = µ̂u(x
a)− µ̂ℓ(x

b). The width

of these estimated bounds is

∆̂u − ∆̂ℓ = [P̄ (xa) + P̄ (xb)](Bu −Bℓ).

For example, for binary choice with a binary regressor, where Bu = 1 and Bℓ = 0, the width

of the estimated bounds for the ATE is P̄ (0) + P̄ (1), where P̄ (0) and P̄ (1) are the sample

proportions of Xi with Xit = 1 for all t and Xit = 0 for all t, respectively
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These estimators will be jointly asymptotically normal under i.i.d. (Yi,Xi). The asymptotic

variance can be estimated by Σ̂ =
∑n

i=1 Ψ̂iΨ̂
′
i/n, where

Ψ̂i =

(

Ȳi(x
a)− Ȳi(x

b) +Bℓ1(Ti(x
a) = 0)−Bu1(Ti(x

b) = 0)− ∆̂ℓ

Ȳi(x
a)− Ȳi(x

b) +Bu1(Ti(x
a) = 0)−Bℓ1(Ti(x

b) = 0)− ∆̂u

)

.

Confidence intervals for the identified set can then be formed using results of Chernozhukov,

Hong, and Tamer (2007) or Beresteanu and Molinari (2008, pp. 779-781) on estimators of

intervals where the upper and lower endpoints are jointly asymptotically normal.

Turning to the bounds for the QSF, lower and upper estimated bounds for the G(y, x) =

Pr(g0(x, αi, εi1) ≤ y) are Ĝℓ(y, x) =
∑n

i=1 Ḡi(y, x)/n and Ĝu(y, x) = Ĝℓ(y, x)+P̄ (x) respectively.

The idea of these bounds is similar to the ASF, with a known lower bound of 0 and upper bound

of 1 for 1(g0(x, αi, εi1) ≤ y). To obtain quantile bounds we need to invert these functions of y.

For a strictly increasing function G(y) with range contained in [0, 1] let

Q(λ,G(·)) =















−∞, λ ≤ infy G(y)

G−1(λ), infyG(y) < λ < supyG(y)

+∞, λ ≥ supy G(y)

.

This is a function with domain [0, 1] and range equal to the extended real line that can be used

to invert Ĝu(y, x) and Ĝℓ(y, x). Estimators of lower and upper bounds on the QSF are given by

q̂ℓ(λ, x) = Q(λ, Ĝu(·, x)), q̂u(λ, x) = Q(λ, Ĝℓ(·, x)).

Corresponding lower and upper bounds for the QTE are ∆̂λℓ = q̂aℓ − q̂bu and ∆̂λu = q̂au− q̂bℓ where
q̂aℓ = q̂ℓ(λ, x

a), q̂au = q̂u(λ, x
a), q̂bℓ = q̂ℓ(λ, x

b), and q̂bu = q̂u(λ, x
b). The width of these bounds

depends on the shape of the empirical distribution of Yit and on P̄ (x). The width of the bounds

will be finite when

max{P̄ (xa), P̄ (xb)} < λ < min{1 − P̄ (xa), 1 − P̄ (xb)}, (5)

and otherwise they are infinitely wide.

The bounds will be joint asymptotically normal under the following regularity condition:

Assumption 7: Pr(g0(x, αi, εi1) ≤ y|Xi) is twice continuously differentiable in y with uni-

formly bounded derivatives and Gℓ(y, x) = E[E[1(Ti(x) > 0)|Xi] Pr(g0(x, αi, εi1) ≤ y|Xi)] is

strictly increasing in y on the interior of its range for all x. Also nh4 −→ 0 and nh2 −→ ∞.

For λ satisfying equation (5) the asymptotic variance can be estimated by Σ̂λ =
∑n

i=1 Ψ̂λiΨ̂
′
λi/n,

where

Ψ̂λi =





Ḡi(q̂aℓ ,x
a)+1(Ti(xa)=0)−λ

Ĝ′

ℓ
(q̂a

ℓ
,xa)

− Ḡi(q̂
b
u,x

b)−λ

Ĝ′

ℓ
(q̂bu,x

b)

Ḡi(q̂
a
u,x

a)−λ

Ĝ′

u(q̂
a
u,x

a)
− Ḡi(q̂bℓ ,x

b)+1(Ti(xb)=0)−λ

Ĝ′

ℓ
(q̂b

ℓ
,xb)



 .
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As in estimation of the conditional quantile effect, one might want to use different bandwidths

for numerators and denominators, or just bootstrap to estimate the asymptotic variance.

Here is a result for both ATE and QTE bounds:

Theorem 2: Suppose that Assumptions 1, 2, and 5 are satisfied. If Assumption 6 is satisfied

then there are ∆ℓ, ∆u, and Σ such that

√
n[(∆̂ℓ, ∆̂u)

′ − (∆ℓ,∆u)
′]

d−→ N(0,Σ), Σ̂
p−→ Σ.

where ∆ℓ ≤ ∆ ≤ ∆u, and these bounds are sharp. If Assumption 7 is satisfied then there are

∆λℓ, ∆λu, and Σλ such that

√
n[(∆̂λℓ, ∆̂λu)

′ − (∆λℓ,∆λu)
′]

d−→ N(0,Σλ), Σ̂λ
p−→ Σλ.

where ∆λℓ ≤ ∆λ ≤ ∆λu. If Gℓ(y, x) is also everywhere strictly increasing in y then these

bounds are sharp.

The sharpness conclusion of Theorem 2 for the ATE depends on being able to let g0(x, αi, εit)

take any value between Bℓ and Bu. That is not possible for binary choice, where the outcome is

restricted to zero or one. Nevertheless the bounds can still be shown to be sharp.

Similarly to the treatment-effects literature, we may be interested in the ATE or QTE,

conditional on Xi ∈ S for some set S. For example, if Xit ∈ {0, 1} represents treatment then

we might be interested in the effect of treatment conditional on ever treated, i.e. conditional on

Xi 6= (0, ..., 0)′. Tighter bounds for such effects can be formed and in some cases the effects may

be identified. These bounds can be estimated by replacing 1(Xit = x) by 1(Xi ∈ S)1(Xit = x)

in the definition of Ȳi(x) and Ḡi(y, x), 1(Ti(x) = 0) by 1(Xi ∈ S)1(Ti(x) = 0) in the definition

of P̄ (x), and dividing through by
∑n

i=1 1(Xi ∈ S)/n. If 1(Xi ∈ S) ≤ Di for Di from Section 3

the corresponding effects will be identified, and the upper and lower estimated bounds will be

identical.

Time effects can easily be allowed for in quantile-effect bounds by adapting the approach

used earlier. It is not clear that allowing for time effects in that way makes sense for bounds on

the ATE, e.g. for binary choice models where the support of Yit is fixed. Therefore we focus just

on time effects in quantile bounds. For QTE bounds we can replace Yit by Ỹit = (Yit − µ̂t)/ŝt

in the formula for Ĝℓ(y, x) given above, and interpret ∆̂λℓ and ∆̂λu as estimators of the first

period bounds. Estimators of tth period lower and upper bounds for the QTE are then given

by ŝt∆̂λℓ and ŝt∆̂λu respectively. Estimators of time average bounds are s̄∆̂λℓ and s̄∆̂λu, where

s̄ =
∑T

t=1 ŝt/T. These upper and lower bounds will be joint asymptotically normal, and their

asymptotic variance can be estimated by the bootstrap.
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5 Nonparametric Bounds in the Dynamic Model

Analysis of the dynamic model is more challenging than that of the static one. In the dynamic

model of Assumption 3 only the first-period regressor is common to the conditioning sets for

each time period. Consequently location and scale time effects are not identified, because the

conditioning set is different for every time period. For this reason we do not consider time

effects in the nonparametric dynamic model. Also, the identification and bounds analysis is

limited to objects that are conditional on the first period or are unconditional. For example,

we cannot identify or bound the ATE conditional on Xit changing over time because that event

involves information about all time periods. We can bound unconditional objects and ones

that are conditional on just Xi1. These bounds are simple and novel, for example in providing

partial-identification results for the average effect of state dependence with heterogeneity in both

location and slope when Yit is binary and Xit = Yit−1.

The model with a binary, lagged dependent variable has Yit = g0(Yi,t−1, αi, εit), and under

Assumption 3,

Pr(Yit = 1|Xit, ...,Xi1, αi) =

∫

g(Yi,t−1, αi, ε)dF (ε|αi, Yi0)

= Pr(Yit = 1|Yi,t−1, αi, Yi0),

where F (ε|αi, Yi0) denotes the conditional CDF of εit given αi and Yi0.Here Pr(Yit = 1|Yi,t−1, αi, Yi0)

does not vary with t, and the model places no other restrictions on Pr(Yit = 1|Yi,t−1, αi, Yi0).

Conditioning on Yi0 is present to account correctly for the initial condition, as in Honore and

Tamer (2006) and Browning and Carro (2007, 2009). The probabilities can be distributed across

individuals in any way at all through the individual effect αi. That is we can think of the four

conditional probabilities,

Pr(Yit = 1|1, αi, 1),Pr(Yit = 1|0, αi, 1)Pr(Yit = 1|1, αi, 0),Pr(Yit = 1|0, αi, 0),

as having an unrestricted distribution. Here the ATE is

∆ =

∫

[Pr(Yit = 1|Yi,t−1 = 1, α, Y0)− Pr(Yit = 1|Yi,t−1 = 0, α, Y0)]dF (α, Y0).

This object quantifies the effect of state dependence in the presence of individual heterogeneity,

an important problem posed by Feller (1943) and Heckman (1981). The dynamic bounds here

provide a simple, estimable, identified set for this object. This model is considered by Browning

and Carro (2007, 2009), who derive properties of various estimators and restrictions on αi that

lead to identification. We give nonparametric bounds.

A partition of Xi values that preserves the dynamic structure of Assumption 3 is used to

obtain bounds for the ASF and QSF. For each x we partition Xi into realizations where the
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first occurrence of x is at time t and the set where x never occurs. This partition is given by

{X̄ (x),X1(x), ...,XT (x)} where

Xt(x) = {X : Xt = x, Xs 6= x ∀s < t}, t = 1, ..., T ; X̄ (x) = {X : Xt 6= x ∀t}.

Define Ŷi(x) =
∑T

t=1 1(Xi ∈ Xt(x))Yit, which picks out the Yit for the time period where x first

occurs. Estimated lower and upper ASF bounds are

µ̂ℓ(x) = n−1
n
∑

i=1

Ŷi(x) + P̄ (x)Bℓ, µ̂u(x) = µ̂ℓ(x) + P̄ (x)(Bu −Bℓ).

Corresponding lower and upper bounds for ∆ are ∆̂ℓ = µ̂ℓ(x
a)−µ̂u(xb) and ∆̂u = µ̂u(x

a)−µ̂ℓ(xb).
A joint asymptotic-variance estimator Σ̂ can be constructed exactly as for the static case with

Ŷi(x) replacing Ȳi(x).

It is interesting to note that the width P̄ (x)(Bu − Bℓ) of the estimated ASF bounds is the

same for the dynamic and static models. Because the static model is a special case of the

dynamic one we conjecture that the bounds for the dynamic model are sharp like the bounds

for the static one, but have not yet been able to show this.

To construct estimated lower and upper bounds for the CDF of g0(x, αi, εit) let Ĝi(y, x) =
∑T

t=1 1(Xi ∈ Xt(x))Φ(
y−Yit

h ). The estimated CDF bounds are

Ĝℓ(y, x) =
1

n

n
∑

i=1

Ĝi(y, x), Ĝu(y, x) = Ĝℓ(y, x) + P̄ (x).

Estimated lower and upper bounds for the QSF are then given by

q̂ℓ(λ, x) = Q(λ, Ĝu(·, x)), q̂u(λ, x) = Q(λ, Ĝℓ(·, x)).

Corresponding lower and upper bounds for the QTE are ∆̂λℓ = q̂ℓ(λ, x
a)− q̂u(λ, x

b) and ∆̂λu =

q̂u(λ, x
a)− q̂ℓ(λ, xb). A joint asymptotic variance estimator Σ̂λ can be constructed just as for the

static case with Ĝi(y, x) replacing Ḡi(y, x).

Theorem 3: Suppose that Assumptions 1, 3, and 5 are satisfied. If Assumption 6 is satisfied

then there are ∆ℓ, ∆u, and Σ such that

√
n[(∆̂ℓ, ∆̂u)

′ − (∆ℓ,∆u)
′]

d−→ N(0,Σ), Σ̂
p−→ Σ.

where ∆ℓ ≤ ∆ ≤ ∆u. Also if Assumption 7 is satisfied with Xi1 replacing Xi then there are

∆λℓ, ∆λu, and Σλ such that

√
n[(∆̂λℓ, ∆̂λu)

′ − (∆λℓ,∆λu)
′]

d−→ N(0,Σλ), Σ̂λ
p−→ Σλ.

where ∆λℓ ≤ ∆λ ≤ ∆λu.
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Similarly to the static model we may be interested in effects conditional on Xi1 ∈ S1 for some

set S1. For example, if Xit ∈ {0, 1} represents treatment then we might be interested in the effect

of treatment conditional on being treated in the first period, i.e. conditional on Xi1 = 1. Tighter

bounds for such effects can be estimated by replacing 1(Xi ∈ Xt(x)) by 1(Xi1 ∈ S1)1(Xi ∈ Xt(x))

in the definition of Ŷi(x) and Ĝi(y, x), 1(Ti(x) = 0) by 1(Xi1 ∈ S1)1(Ti(x) = 0) in the definition

of P̄ (x), and dividing through by
∑n

i=1 1(Xi1 ∈ S1)/n.

In the binary, lagged-dependent-variable example we have Bℓ = 0 and Bu = 1, so the bounds

on the ATE are

∆̂ℓ =
1

n

n
∑

i=1

[Ŷi(1) − Ŷi(0)] − P̄ (0), ∆̂u = ∆̂ℓ + P̄ (1) + P̄ (0).

Here P̄ (1) + P̄ (0) estimates the width of the bounds, providing a very simple measure of the

severity of the problem of identifying state dependence in the presence of heterogeneity. The

bounds will tend to be wide in short panels but more informative in long ones.

Figure 1 shows the width of corresponding population bounds in a numerical example based

on a dynamic probit model where

Yit = 1(β∗Yi,t−1 + αi ≥ εit), εit ∼ N(0, 1), αi ∼ N(0, 1),Pr(Yi0 = 1) = .5.

We consider different DGPs indexed by β∗ ∈ [−2, 2] and compute the width of the bounds

for T ∈ {2, 4, 8, 16, 32, 64}. The width is asymmetric with respect to β∗ = 0 because Pr(Xi =

(1, ..., 1)′) grows with β∗, whereas Pr(Xi = (0, ..., 0)′) does not depend on β∗. The width growing

with β∗ may therefore be explained by having fewer switches of Yit between one and zero when

β∗ is larger. It is presumably the changes that help identify the ATE. We find that the bounds

can be substantially wide for high values of β∗ even for large T , consistent with the width of the

nonparametric bounds shrinking only at rate 1/T, as shown in the next Section. Semiparametric

bounds for this model that impose the constancy of β∗ across individuals, will shrink much faster

at T grows, as shown in Section 7.

6 The Impact of T

Increasing T improves identification, shrinking the estimated and population-identified sets for

the objects of interest. The rate at which the identified set shrinks quantifies this improvement.

Here we give rates for the ASF and, for brevity, leave the quantile results to the Supplementary

Material.

The width of the population bounds for the ASF is (Bu −Bℓ)P̄(x) where

P̄(x) = Pr(Xi1 6= x, ...,XiT 6= x).

18



Thus, the rate at which the identified set shrinks, that we will refer to as the identification rate,

is the same as the rate at which P̄(x) shrinks. Factors that determine this rate can be seen

when Xit is i.i.d. conditional on αi. In that case

P̄(x) = E[Pr(Xit 6= x|αi)
T ].

The rate at which P̄(x) goes to zero will be determined by how much probability mass of

Pr(Xit 6= x|αi) is close to one. If Pr(Xit 6= x|αi) = 1 with positive probability then P̄(x) does

not go to zero. This corresponds to nonidentification of the ASF, where x does not occur for

some individuals as indexed by αi (see Theorem A11 of the Supplementary Material). On the

other hand, if Pr(Xit 6= x|αi) is bounded away from one then the identified set will shrink

exponentially quickly, since Pr(Xit 6= x|αi)
T ≤ (1 − ε)T for some ε > 0. In between the

nonidentified and exponential rate cases there are a range of rates depending on how much of

the distribution of Pr(Xit 6= x|αi) is close to 1. The following result shows the range of rates.

Theorem 4: Suppose that Assumptions 1, 3, 5, and 6 are satisfied and (Xi1,Xi2, ...) is sta-

tionary and Markov of order J conditional on αi. If for some ε > 0, Pr(Xit = x|Xi,t−1, ...,Xi,t−J , αi) ≥
ε a.s. then µu(x)−µℓ(x) ≤ (Bu−Bℓ)(1−ε)T−J . If Xit is i.i.d. conditional on αi, Pr(Xit 6= x|αi)

is continuously distributed with pdf fP (p), and

fP (p) ≤ Cpγ−1(1− p)v−1, γ > 0, v > 0, (6)

then µu(x)− µℓ(x) = O(T−v).

The upper bound on the rate at which the pdf fP (p) of Pr(Xit 6= x|αi) grows or converges

to zero as p −→ 1 provides an upper bound on the rate at which the identified set shrinks. For

example, if v = 1 so that fP (p) is bounded as p −→ 1, then the identified set shrinks at rate

1/T. All of the rates implied by this result are slower than the exponential rate, reflecting how

having Pr(Xit 6= x|αi) close to 1 affects the rate. Also, γ has no effect on the convergence rate

because that rate is determined by closeness of Pr(Xit 6= x|αi) to 1, and not to 0.

The dynamic, binary-choice model is an example where more explicit conditions can be given.

Suppose Yit = 1(αi1 + (αi2 − αi1)Yi,t−1 ≥ εit) and εit is i.i.d. and independent of αi = (αi1, αi2)

with CDF H(ε). Here Pr(Yit = 1|Yi,t−1 = 0, αi) = H(αi1) and Pr(Yit = 1|Yi,t−1 = 1, αi) =

H(αi2). Unbounded αi and bounded εit will correspond to the unidentified case. Bounded αi

and unbounded εit lead to an exponential convergence rate. The following result covers the

in-between case. Let fε(ε), fα1
(α), and fα2

(α) denote the pdfs of εit, αi1, and αi2 respectively,

all are assumed to be continuously distributed.
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Theorem 5: If Yit = 1(αi1 + (αi2 − αi1)Yi,t−1 ≥ εit), where εit, (t = 1, ..., T ) is i.i.d. and

independent of (αi1, αi2) and there is v,C > 0 such that for all ε

max
j=1,2

fαj (ε) ≤ CH(ε)v−1[1−H(ε)]v−1fε(ε), (7)

then ∆u −∆ℓ = O(T−v).

Here we see that the identification rate in the nonparametric dynamic model is related to the

tail thickness of the distribution of αi1 and αi2 relative to the distribution of εit. The thinner

the tail of fε(ε) relative to the tails of fα1
(α1) and fα2

(α2) the smaller v will need to be to

satisfy the inequality in Theorem 5 and the slower the identification rate will be. In this way the

identification rate is slower the less strong the signal provided by εit relative to the individual

effects. Here there is no γ present because both left and right tails matter, in order to bound

the rate for the ATE, and not just for the ASF at a particular x.

For a specific example consider αi1 and αi2 as N(0, σ2
α) and εit as N(0, σ2ε) where σ

2
ε ≤ σ2α.

Then for constants C1, C2, and v = σ2ε/σ
2
α we have fαj

(ε) = C1[fε(ε)]
v. Also, as is well known

for the Gaussian distribution, fε(ε) ≥ C2Fε(ε)[1−Fε(ε)], where Fε(ε) denotes the CDF of ε. It

follows by v ≤ 1 that

fαj (ε) = C1[fε(ε)]
v−1fε(ε) ≤ C1C

v−1
2 Fε(ε)

v−1[1− Fε(ε)]
v−1fε(ε).

Thus equation (7) is satisfied with v = σ2ε/σ
2
α so that

∆u −∆ℓ = O(T−σ2
ε/σ

2
α).

Hence the width of the bounds shrinks at a rate no larger than T−1 and the rate is slower the

smaller σ2ε/σ
2
α is. It can also be shown that convergence is faster than T−1 when σ2ε > σ2α and

increases with σ2ε/σ
2
α. Thus we see that the stronger the signal provided by ε relative to that

provided by α, in the sense that the higher σ2ε is relative to σ
2
α, the faster will be the identification

rate.

One can obtain analogous results in a static model. If Xit = 1(αi ≥ ηit) is a binary regressor

where ηit is i.i.d. over time then the identification rate will be T−v when the inequality in

Theorem 5 is satisfied with the pdf fη(η) of ηit replacing the pdf fε(ε). If αi and ηit are distributed

as N(0, σ2α) and ηit as N(0, σ2η) respectively with σ2η ≤ σ2α, then the identified set shrinks at rate

T−σ2
η/σ

2
α . For brevity we omit the details.

7 Semiparametric Multinomial Choice Models

The nonparametric bounds are informative but may be quite wide for small T . They can be

tightened by imposing additional structure on the model. One way to do this is to specify a
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parametric model for the conditional distribution of Yi given values for (Xi, αi). We focus here

on multinomial choice models. In those models Yi is one of a finite number of outcomes, denoted

here by {Y 1, ..., Y J}. The parametric part of the model are the known conditional probabilities

Lk
j (α, β) of Yi = Y j given αi and Xi ∈ X k, (k = 1, ...,K), where β is a parameter vector with

true value β∗, and X k is the set of Xi values being conditioned on. Formulating the model

in this way allows for Xi that are lagged dependent variables. The nonparametric part of the

model will be the unknown CDF’s F ∗
k (α), (k = 1, ...,K) of αi conditional on Xi in each X k. The

model then satisfies

Assumption 8: Pr(Yi = Y j |Xi ∈ X k) =
∫

Lk
j (α, β

∗)dF ∗
k (α), (j = 1, ..., J ; k = 1, ...,K).

Some examples may be helpful. An important example is a binary choice model where

Yit ∈ {0, 1}, α is a scalar location individual effect, Pr(Yit = 1|Xi, αi, β
∗) = H(X ′

itβ
∗ + αi) for a

CDF H(ε), and Yi1, ..., YiT are mutually independent conditional on Xi and αi. In this case we

would let X k be a singleton given by the kth value Xk in the finite support of Xi and

Lk
j (α, β) =

T
∏

t=1

H(Xk′
t β + α)Y

j
t [1−H(Xk′

t β + α)]1−Y j
t . (8)

Time effects can be included in this model by specifying that some components ofXk
t only depend

on t. This model can also be generalized to allow for some slopes to vary across individuals by

specifying that

Lk
j (α, β) =

T
∏

t=1

H(z′tβ1 +Xk′
t1β2 +Xk′

t2α)
Y j
t [1−H(z′tβ1 +Xk′

t1β2 +Xk′
t2α)]

1−Y j
t . (9)

This model allows the coefficients of Xk
t2 to vary with individuals, which will include a location

effect when some element of Xk
t2 does not vary with t or k.

This set up also allows for dynamic models. For example, consider a binary choice model

with a lagged dependent variable where Pr(Yit = 1|Yi,t−1, ..., Yi0, αi, β
∗) = H(Yi,t−1β

∗+αi). Here

Xi = (Yi,T−1, ..., Yi0) and we take K = 2, with X k = {Xi : Xi1 = Yi0 = k − 1}. The parametric

part of the model is

Lk
j (α, β) =

T
∏

t=2

H(Y j
t−1β + α)Y

j
t [1−H(Y j

t−1β + α)]1−Y j
t (10)

×H((k − 1)β + α)Y
j
1 [1−H((k − 1)β + α)]1−Y j

1 .

This model could be generalized to allow individual specific coefficients for the dynamic effect,

time effects, and other covariates, including the model of Browning and Carro (2009). For

brevity we omit this generalization.
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The ATE and its bounds can be decomposed into a weighted average of conditional ATE

and corresponding bounds, weighted by the identified Pr(Xi ∈ X k). The semiparametric model

may restrict the conditional bounds so we focus first on them. We will assume that a conditional

ATE takes the form

∆k =

∫

∆(α, β∗)dF ∗
k (α),

where ∆(α, β) denotes a treatment effect conditional on α. For example, in the model of equation

(8) we could take ∆(α, β) = H(xa′β + α)−H(xb′β + α), in which case

∆k =

∫

[H(xa′β∗ + α)−H(xb′β∗ + α)]dF ∗
k (α)

is the ATE conditional on Xi = Xk. One could also consider the ASF conditional on Xi = Xk,

that would be
∫

H(x′β∗ + α)dF ∗
k (α) in this example.

Neither ∆k nor β∗ need be identified. Instead, there may be sets of β∗ and ATE values

that are consistent with the distribution of the data. To describe the identified sets let P =

(P1
1 , ...,P1

J , ...,PK
J )′ denote the vector of population choice probabilities with Pk

j = Pr(Yi =

Y j|Xi ∈ X k) and

Fk(β,P) = {Fk : Pk
j =

∫

Lk
j (α, β) dFk(α), j = 1, ..., J},

where Fk(β,P) may be empty. The identified set for β∗ is

B = {β s.t. Fk(β,P) 6= ∅,∀k = 1, ...,K}.

That is, B is the set where there exist individual effect distributions such that integrals of model

probabilities equal population choice probabilities. Sharp upper and lower bounds ∆k
u and ∆k

ℓ

for ∆k are given by

∆k
u = sup

β∈B,Fk∈Fk(β,P)

∫

∆(α, β)dFk (α) , ∆
k
ℓ = inf

β∈B,Fk∈Fk(β,P)

∫

∆(α, β)dFk (α) . (11)

This characterization of bounds for the ATE extends that of Honore and Tamer (2006) from

a finite dimensional Fk, where α is restricted to a known fixed grid, to infinite-dimensional Fk

where any distribution for α is allowed.

For purposes of comparison with the nonparametric results we consider models without

trends, where the semiparametric models in equations (8) and (10) are nested in the nonpara-

metric static or dynamic model. In those models ∆k will be identified if it is also identified in

the nonparametric model. In the static case ∆k is nonparametrically identified if Xk
t takes on

the values xb and xa for some time periods. This follows similarly to the identification of the

conditional effect δ in Section 3. Therefore, in static models obtaining a smaller identified set
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by imposing the restrictions of a semiparametric model is limited to those ∆k where at least one

of xb or xa does not appear in any time period. In what follows we focus on these ∆k.

When slopes vary across individuals the semiparametric bounds may be no tighter than the

nonparametric ones. To illustrate consider a binary-choice model with a single binary regressor

Xit, where Yit = 1((αi2−αi1)Xit+αi1 > εit), εit is independent of (Xi, αi2, αi1), and εit has known

CDF H(ε) that is strictly increasing on the entire real line. The joint distribution of H(αi1)

and H(αi2) conditional on Xi = Xk is entirely unrestricted. Therefore when Xk = (0, ..., 0)′

the fact that E[H(αi1)|Xi = Xk] = E[Yit|Xi = Xk] for every every t, and so is identified gives

no information about E[H(αi2)|Xi = Xk]. Thus, E[H(αi2)|Xi = Xk] can be anything in the

unit interval. Therefore, the width of the bound for ∆k = E[H(αi2)−H(αi1)|Xi = Xk] will be

equal to the width in the nonparametric case, ∆k
u−∆k

ℓ = 1. More generally, in the panel binary

choice model of equation (9), when there are no time effects, every coefficient of Xit varies across

individuals, and Xit is fully saturated (e.g. is a complete set of dummies, one for every possible

value of Xit), the semiparametric bounds will equal the nonparametric ones.

In the binary-regressor case the width of the overall bound on the ATE is given by

∆u −∆ℓ = P̄(0)(∆1
u −∆1

ℓ) + P̄(1)(∆2
u −∆2

ℓ). (12)

where we assume X1 = (0, ..., 0)′ and X2 = (1, ..., 1)′. The semiparametric bounds will be

smaller than the nonparametric bounds if and only if ∆1
u −∆1

ℓ or ∆2
u −∆2

ℓ are smaller than the

nonparametric values of 1. This decomposition also shows that the semiparametric identification

rate will be determined by the nonparametric rate, which governs how fast P̄(0) and P̄(1)

shrink, and the rate that the conditional bounds converge. When the slope does not vary across

individuals it turns out that the conditional bounds can converge very rapidly. The following

result shows this in static and dynamic, binary-choice logit models with binary regressors.

Theorem 6: Suppose that H(v) = ev/(1 + ev), ∆(β, α) = H(β + α) − H(α), and either

equation (8) is satisfied with, Xit ∈ {0, 1}, and X1 = (0, ..., 0)′ and X2 = (1, ..., 1)′ , or equation

(10) is satisfied with k ∈ {1, 2}. Then there are C > 0 and 1 > ε > 0 such that

∆k
u −∆k

ℓ ≤ C(1− ε)T , k = 1, 2.

This fast rate occurs because T conditional moments of a one-to-one transformation of αi are

identified from probabilities of various Y values, and these moments lead to a fast approximation

of the conditional ATE. For example, Pr(Yi = (1, ..., 1)′|Xi = X1) = E[H(αi)
T |Xi = X1], and

other conditional moments of H(αi) can be similarly identified. For the logit H(α), identification

of these moments leads to fast approximation of ∆1 = E[H(β∗ + αi) − H(αi)|Xi = X1] and

hence to fast shrinkage of the conditional bound.
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From equation (12) we see that the semiparametric identification rate in this example will

be at least exponential, and may be even faster, depending on the nonparametric rate. This

result illustrates how imposing a single, additive individual effect can speed up the identification

rate. We expect that this type of improvement will extend beyond the logit model with binary

regressors.

8 Computation of Semiparametric Bounds

In this section we discuss computation of population bounds, give examples, and present the-

oretical results. A challenge for computation and for estimation is the dimensionality of the

unknown parameters and the nonlinearity of the probabilities in those parameters. A useful

feature of multinomial panel models is that they are finite dimensional, in spite of the presence

of distributions. The following lemma shows that one only need consider discrete distributions

with J unknown support points in the specification of the likelihood and the bounds for the ATE.

Let Υ denote the set of possible values for the individual effect and B the set of parameters for

β.

Lemma 7: If Assumptions 5 and 8 are satisfied and Lk
j (α, β) is a measurable function of α

for each β ∈ B, then for each β and every CDF Fk on Υ there is a discrete distribution F J
k with

no more than J support points such that
∫

Lk
j (α, β) dF

J
k (α) =

∫

Lk
j (α, β)dFk(α) (j = 1, ..., J).

If, in addition, ∆(α, β) is bounded for each β then ∆k
u and ∆k

ℓ are not affected by restricting

attention to Fk ∈ Fk(β) that are discrete with no more than J support points.

Thus, no matter what the dimension of α is, the multinomial panel model is finite dimen-

sional, with the number of parameters given by dim(β)+ (2J − 1)K . Another implication of this

result is that the distribution of the individual effect is generally not identified in multinomial

models. For example, if the true distribution F ∗
k were continuous then Lemma 7 would imply

that there is a discrete distribution that gives exactly the same likelihood. The proof of this

result is similar to Lindsay’s (1983) result that the maximum likelihood estimator of a mix-

ture model has a finite support. It is interesting that the model takes a discrete mixture form,

although the finite-dimensional nature of the model is expected because the data have finite

support.

Although the individual-effect distribution can be taken to be finite dimensional, the di-

mension can be large, and the probabilities depend nonlinearly on the support points for the

individual effect. We overcome this challenge by using an approximation with a fixed but large

number of support points for the individual effects. This approximation makes approximate

probabilities and the ATE linear in parameters, simplifying computation. Honore and Tamer
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(2006) used a similar approach, but assumed that the true distribution of individual effects had

known support points. We explicitly allow for approximation of unknown support points.

To describe how the approximation can be used to calculate the identified set, let M denote

a number of support points for the individual effect and ΥM=(ᾱ1M , ..., ᾱMM )′ be a grid of fixed

values for the individual effect. Also let π = (π1′, ..., πK′)′ denote a MK × 1 vector of possible

probabilities, with each πk an element of the M dimensional unit simplex SM . Approximate

model probabilities are

P k
j (β, π,M) =

M
∑

m=1

πkmLk
j (ᾱmM , β) .

Consider the function

Tλ(β, π,M) =
∑

j,k

wk
j

[

Pk
j − P k

j (β, π,M)
]2

+ λMπ
′π,

where wk
j are positive weights, such as the chi-square ones Pk/Pk

j , for Pk = Pr(Xi ∈ X k), and

λM > 0 is a penalty multiplier that controls the impact of the penalty term λMπ
′π. This term

is present to help regularize the objective function and ensures a nonsingular Hessian matrix.

Let T̃λ(β,M) = minπ∈SK
M
Tλ(β, π,M) and let ǫM > 0 be a positive scalar. We approximate the

identified set for β by

B(M) = {β : T̃λ(β,M) ≤ ǫM}, ǫM > 0.

The use of ǫM here in allowing a range of values of the objective function is analogous to Manski

and Tamer’s (2002) estimation method. A positive ǫM ensures that the set sequence (B(M))∞M=1

is lower hemi-continuous and that B(M) need not be smaller than the identified set, even though

the individual effect distributions are restricted by fixing their support points for each M.

We calculate the identified set by letting M grow and λM and ǫM shrink until there is little

change in B(M). Calculation of T̃λ(β,M) is straightforward because it is the minimum of a

quadratic function. In practice we have found that B(M) changes little as M increases even

whenM is quite small. AsM grows and ǫM shrinks the set B(M) will converge to the identified

set under conditions given below.

For the ATE bounds, note

Dk(M) = {
M
∑

m=1

πkm∆(ᾱmM , β) : Tλ(β, π,M) ≤ ǫM}

is the set of possible conditional ATE (given X ∈ X k) that are consistent with T̃λ(β,M) ≤ ǫM .

Approximate lower and upper bounds are

∆k
ℓ (M) = minDk(M),∆k

u(M) = maxDk(M).
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As M grows and ǫM shrinks these bounds will converge to ∆k
ℓ and ∆k

u respectively, under

conditions given below.

Computation of these ATE bounds is challenging because it requires searching over a large

dimensional set of possible π. In practice we start with a smaller set of probabilities and then

try others. Specifically, let π̃(β) ∈ argminπ∈SK
M
Tλ(β, π,M), S̃k(β) = {πk : P k

j (β, π,M) =

P k
j (β, π̃(β),M), j = 1, ..., J}, and

∆̃k
ℓ (M) = min

β∈B(M),πk∈S̃k(β)

M
∑

m=1

πkm∆(ᾱmM , β), ∆̃k
u(M) = max

β∈B(M),πk∈S̃k(β)

M
∑

m=1

πkm∆(ᾱmM , β).

For each β these bounds are easy to calculate by linear programming. We have done so and

then checked to see if other values π violate these bounds. We have not found this to be so for

values of M that we use to compute β. We conjecture that these bounds also converge to the

population bounds as M −→ ∞ although we have not yet been able to prove this (because we

have not been able to show that the ATE bounds are continuous in the true probabilities).

We carry out some numerical calculations for the probit model where

Yit = 1(β∗Xit + αi ≥ εit), εit ∼ N(0, 1),Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1).

We consider different DGPs indexed by β∗ ∈ [−2, 2] and T ∈ {2, 3}. Figures 2 and 3 show

nonparametric bounds for ATEs and semiparametric bounds for β∗ and ATEs for T = 2 and

T = 3, respectively. The semiparametric bounds are obtained using the computational algorithm

described above with M = 100 and λM = 1.3 × 10−8. The elements of the fixed grid ΥM are

located at the percentiles of the standard normal distribution. We find that β∗ is not identified

for T = 2, extending the result of Chamberlain (2010) to this example without time dummy. This

result also holds for T = 3, although it is difficult to appreciate in the figure because the identified

set B is very small. The nonparametric bounds for the ATEs (NP-bounds) can be very wide, even

when we impose monotonicity (NPM-bounds) as described in the Supplementary Material. The

semiparametric bounds for the ATEs (SP-bounds) are tighter than the nonparametric bounds

and shrink very fast with T . In the Supplementary Material we report similar results for the

logit, including nonidentification of the ATEs, except that β∗ is identified, as is well known.

Honore and Tamer (2006) also found tight bounds for the coefficient of a dynamic model.

To show that the approximate sets converge to the identified set asM grows we impose some

conditions. Let d(α, α̃) denote a metric on the set Υ of possible values for α.

Assumption 9: (i) Υ is a compact metric space with metric d(α, α̃); ii) η(M) = supα∈Υminα̃∈ΥM
d(α, α̃)

−→ 0 as M −→ ∞; (iii) B is a compact subset of ℜb; (iv) there is C such that for all

(α, β), (α̃, β̃) ∈Υ×B,
∣

∣

∣
Lk
j

(

α̃, β̃
)

− Lk
j (α, β)

∣

∣

∣
≤ C[d(α̃, α) +

∥

∥

∥
β̃ − β

∥

∥

∥
]; and v) ∆(α, β) is con-

tinuous on Υ×B.
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Although condition (i) seems restrictive, unbounded individual effects may be allowed if Υ

is chosen appropriately. For example, in the binary-choice model of equation (8) this condition

will be satisfied if Υ is taken to be a two-point compactification of the real line and d(α, α̃) is

specified appropriately, as shown in the following result.

Lemma 8: If Assumptions 5 and 8 and equation (8) are satisfied, where H(v) is strictly

monotonic on ℜ with bounded continuous derivative, and B is a compact subset of ℜb, then

there is a metric d(α, α̃) and for each M there is ΥM = {ᾱ1M , ..., ᾱMM} such that Assumption

9 is satisfied with η(M) = 1/(M − 1).

For the convergence results for the identified set we use the Hausdorff set metric,

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Theorem 9: If Assumptions 5, 8, and 9 are satisfied, ǫM −→ 0, and (η(M) + λM ) /ǫM −→
0 then as M −→ ∞,

dH(B(M), B) −→ 0,∆k
ℓ (M) −→ ∆k

ℓ ,∆
k
u(M) −→ ∆k

u.

9 Estimation and Inference

Under Assumptions 5 and 8 the complete description of the data-generating process is provided

by the parameter vector (P ′
X ,P

′)′, where PX = (P k, k = 1, ...,K)′ and P = (P k
j , j = 1, ..., J, k =

1, ...,K)′. The true value of the parameter vector is Π = (P ′
X ,P ′)′, where PX = (Pk, k =

1, ...,K)′ and P = (Pk
j , j = 1, ..., J, k = 1, ...,K)′, and the empirical estimate is Π̂ = (P̂ ′

X , P̂
′)′,

where P̂X = (P̂ k, k = 1, ...,K)′ and P̂ = (P̂ k
j , j = 1, ..., J, k = 1, ...,K)′.

The estimation method is like the computational one in using linear-in-parameters approx-

imations to the probabilities. Here we describe the estimation method and give a consistency

result, and in the Supplementary Material we provide the implementation details. We follow the

same steps as the computational one except that we use estimated weights ŵk
j and estimated

probabilities P̂ k
j . Let M̂ be a choice of M that may depend on the data and sample size, and

T̂λ(β, π) =
∑

j,k

ŵk
j

[

P̂ k
j − P k

j (β, π, M̂ )
]2

+ λnπ
′π.

Let T̂λ(β) = minπ∈SK
M
T̂λ(β, π) and ǫn > 0 be a positive scalar. We estimate the identified set

for β by

B̂ = {β ∈ B : T̂λ(β) ≤ ǫn},
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where B is the parameter space and ǫn is a cut-off parameter that shrinks to zero with the

sample size, as in Manski and Tamer (2002) and Chernozhukov, Hong, and Tamer (2007). The

ATE bounds can be estimated by

∆̂k
ℓ = min D̂k, ∆̂k

u = max D̂k, D̂k = {
M
∑

m=1

πkm∆(ᾱmM , β) : T̂λ(β, π) ≤ ǫn}.

This approach to estimation (and computation) can be easily modified to handle the case

where the distribution of the individual effect is restricted to be the same across some values of k.

Such a modification could be implemented by imposing equality of πkm across those values of k.

An example would be a model where the distribution of αi did not depend on some component

of Xit. That restriction could be imposed setting πkm to be equal across k where the other

components of Xit do not vary. Or in a case with a lagged dependent variable we could restrict

the distribution of α to only depend on the initial condition by imposing equality of πkm across

all k where Yi0 takes on a particular value.

The following is a consistency result.

Theorem 10: If Assumptions 5, 8, and 9 are satisfied, ŵk
j

p−→ wk
j > 0, P̂ k

j
p−→ Pk

j ,

ǫn −→ 0, and
(

n−1 + η(M̂) + λn

)

/ǫn
p−→ 0, then dH(B̂, B)

p−→ 0, ∆̂k
ℓ

p−→ ∆k
ℓ , ∆̂

k
u

p−→ ∆k
u.

It is interesting to note that no upper limit is placed on M in this result or in Theorem

9. The reason for this is that the model is finite dimensional, so there is no need for such

a limit. Mathematically, a richer, fixed grid simply corresponds to a bigger submodel of the

finite-dimensional model.

Turning now to the inference for the semiparametric models, we note that it is rather chal-

lenging. The estimators of parameters and ATE are obtained by nonlinear programming subject

to data-dependent constraints that are modified to respect the constraints of the model. The

distributions of these highly-complex estimators are not tractable, and are also non-regular in

the sense that the limit versions of these distributions do not vary with perturbations of the DGP

in a continuous fashion. This implies that the usual bootstrap is not consistent. To overcome

all of these difficulties we will rely on a variation of the bootstrap, which we call the perturbed

bootstrap. We also give an alternative inference method based on a modified projection in the

Supplementary Material.

The usual bootstrap computes the critical value – the α-quantile of the distribution of a

test statistic – given a consistently-estimated data-generating process (DGP). If this critical

value is not a continuous function of the DGP, the usual bootstrap fails to consistently estimate

the critical value. We instead consider the perturbed bootstrap, where we compute a set of

critical values generated by suitable perturbations of the estimated DGP and then take the
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most conservative critical value in the set. If the perturbations cover at least one DGP that

gives a more conservative critical value than the true DGP does, then this approach yields a

valid inference procedure.

The approach outlined above is most closely related to the Monte-Carlo inference approach

of Dufour (2006); see also Romano and Wolf (2000) for a finite-sample inference procedure for

the mean that has a similar spirit. In the set-identified context, this approach was first applied

in the MIT thesis work of Rytchkov (2007); see also Chernozhukov (2007).

We consider the problem of performing inference on a real parameter θ∗. For example, θ∗

can be an upper (or lower) bound on the conditional ATE ∆k such as

θ∗(P ) = max
β∈B∗(P ),Fk∈Fk(β,P ∗(P ))

∫

∆(α, β)dFk (α) ,

where P ∗ denotes the projection of P onto the model space Ξ = {P : ∃β ∈ B with Fk(β, P ) 6=
∅,∀k = 1, ...,K}, i.e.

P ∗(P ) = argmin
P̃∈Ξ

W (P̃ , P ), W (P̃ , P ) = n
∑

j,k

P̂ k
(P k

j − P̃ k
j )

2

P̃ k
j

,

and B∗(P ) is the corresponding projection for the identified set of the parameter, i.e.

B∗(P ) =
{

β ∈ B : ∃P̃ ∈ P ∗(P ) with Fk(β, P̃ ) 6= ∅, k = 1, ...,K
}

.

Alternatively, θ∗ can be an upper (or lower) bound on a scalar functional c′β∗ of the parameter

β∗. Then we define

θ∗(P ) = max
β∈B∗(P )

c′β.

In both cases we project P onto the model space in order to address the problem of infeasibility of

constraints defining the parameters of interest under misspecification or sampling error. Under

misspecification, we interpret our inference as targeting the parameters of interest in a best

approximating model; see the Supplementary Material on the modified projection method for

further details. Under correct specification, our inference targets the parameters of interest in

the true model.

In order to perform inference on the true value θ∗ = θ∗(P) of the parameter, we use the

statistic

Sn = θ̂ − θ∗,

where θ̂ = θ∗(P̂ ). Let Gn(s, P ) denote the distribution function of Sn(P ) = θ̂− θ∗(P ), when the

data follow the DGP P . The goal is to estimate the distribution of the statistic Sn under the

true DGP P = P, that is, to estimate Gn(s,P).

The method proceeds by constructing a confidence region CR1−γ(P) that contains the true

DGP P with probability 1−γ, close to one. For efficiency purposes, we also want the confidence
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region to be an efficient estimator of P, in the sense that as n → ∞, dH(CR1−γ(P),P) =

Op(n
−1/2), where dH is the Hausdorff distance between sets. Specifically, in our case we use

CR1−γ(P) = {P ∈ SK
J : W (P, P̂ ) ≤ c1−γ(χ

2
K(J−1))}, (13)

where c1−γ(χ
2
K(J−1)) is the (1− γ)-quantile of the χ2

K(J−1) distribution and W is the goodness-

of-fit statistic:

W (P, P̂ ) = n
∑

j,k

P̂ k

(

P̂ k
j − P k

j

)2

P k
j

.

Then we define the estimates of the lower and upper bounds on the quantiles of Gn(s,P) as

G−1
n (α,P)/G

−1
n (α,P) = inf / sup

P∈CR1−γ(P)
G−1

n (α,P ), (14)

where G−1
n (α,P ) = inf{s : Gn(s, P ) ≥ α} is the α-quantile of the distribution function Gn(s, P ).

Then we construct a (1− α− γ) · 100% confidence region for the parameter of interest as

CR1−α−γ(θ
∗) =

[

θ, θ
]

where, for α = α1 + α2,

θ = θ̂ −G
−1
n (1− α1,P), θ = θ̂ −G−1

n (α2,P).

This formulation allows for both one-sided intervals (either α1 = 0 or α2 = 0) or two-sided

intervals (α1 = α2 = α/2).

For the inference results we condition on the observed distribution of X and thus set PX =

PX = P̂X . We make the following assumption about the data-generating process.

Assumption 10: Π ∈P ={(PX , P ) : P k > ε,P k
j > ε; j = 1, ..., J, k = 1, ...,K} for some

ε > 0.

The following theorem shows that this method delivers (uniformly) valid inference on the

parameter of interest.

Theorem 11: If Assumptions 5, 8, and 9 are satisfied then for any sequence of data-

generating process Π = Πn satisfying Assumption 10,

lim
n→∞

PrΠ(θ
∗ ∈

[

θ, θ
]

) ≥ 1− α− γ.

In practice, we use the following simulation approach to compute the confidence intervals.

Algorithm: Perturbed Bootstrap
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1. Draw a potential DGP Pr = (P ′
r1, ..., P

′
rK), where Prk ∼ M(nP̂ k, (P̂ k

1 , ..., P̂
k
J ))/(nP̂

k) and

M denotes the multinomial distribution.

2. Keep Pr if it passes the chi-square goodness-of-fit test at the γ level in equation (13), using

K(J − 1) degrees of freedom, and proceed to the next step. Otherwise reject, and repeat

step 1.

3. Estimate the distribution Gn(s, Pr) of Sn(Pr) by simulation under the DGP Pr.

4. Repeat steps 1 to 3 for r = 1, ..., R, obtaining {Gn(s, Pr), r = 1, ..., R}.

5. Let Ĝ
−1
n (α,P)/Ĝ

−1

n (α,P) = min /max{G−1
n (α,P1), ..., G

−1
n (α,PR)}, and construct a 1 −

α − γ confidence region for the parameter of interest as CR1−α−γ(θ
∗) =

[

θ, θ
]

, where

θ = θ̂ − Ĝ
−1

n (1− α1,P), θ = θ̂ − Ĝ
−1
n (α2,P), and α1 + α2 = α.

10 Empirical Examples

We illustrate the estimation and inference results with two empirical examples. One estimates

identified effects and calculates bounds for the effect of unions on earnings quantiles. The other

compares nonparametric and semiparametric bounds for the effect of fertility on women’s labor

force participation.

10.1 Union Premium

We revisit the empirical question of how unions impact wage structure using panel data. Our

major contribution here is to estimate the effect without imposing the assumption that unob-

served heterogeneity is some additive term that can be simply differenced out. In our model

unobserved heterogeneity can have an almost unrestricted impact on the structural/causal re-

sponse functions, with the time homogeneity serving as the only restriction.

Our analysis is motivated by previous empirical studies that find differences in unobservables

between union and nonunion workers. For instance, in an influential study, Chamberlain (1982)

finds strong evidence of heterogeneity bias in the estimation of the union effect by comparing

estimates of cross-sectional models and panel data models with additive heterogeneity. This

finding demonstrates the important need of controlling for unobserved heterogeneity. Also,

Angrist and Newey (1991) reject the hypothesis that the unobserved heterogeneity acts solely in

an additive fashion, motivating the need to control for more general unobserved heterogeneity.

Card (1996) found differences in the union and selection effect across skill levels. Here we account

fully for differences across individuals in the union effect while allowing correlation of that effect

31



with union status, thus accounting for selection. Recently Frandsen (2011) focused on quantile

union effects using a regression-discontinuity design that estimates union effects for those near a

union election discontinuity rather than for those whose union status changes. We find a flatter

quantile profile than he does, consistent with his theoretical results that suggest a flatter profile

away from the discontinuity.

We use data from the National Longitudinal Survey (Youth Sample). The sample consists

of full-time, young, working males, 20 to 29 years old in 1986, followed over the period 1986 to

1993. We exclude individuals who failed to provide sufficient information for each year, were in

the active armed forces or were students any year, or who reported too high (more than $500 per

hour) or too low (less than $1 per hour) wages. The final sample includes 2,065 men followed

over 8 years. We use the union membership and the log-hourly wage rate in 1980 dollars as the

covariate and the outcome variables. The union membership variable reflects whether or not

the individual had his wage set by a collective bargaining agreement. Vella and Verbeek (1998)

also used data from the NLSY for different years and found evidence of important union effect

heterogeneity with a random effects model.

We begin by imposing the stationarity condition that income with and without union mem-

bership has the same distribution in each time period but also will allow for location and scale

time effects. It turns out that time effects are not important in this data. Some covariates are

also allowed for since time-invariant covariates are absorbed in the individual effects. Insensi-

tivity to time effects also suggests that time-varying covariates may not be important though a

fuller exploration would be useful. For brevity we focus on the case without covariates.

In our analysis, we focus on estimating the union quantile effect for the subpopulations

of workers that ever became unionized within the sample (47% of the sample) or that were

unionized in the first year (20% of the sample). For these subpopulations, the union effect is not

point-identified, since there are 13% of the ever-unionized workers that always stayed unionized

between 1986 and 1993, and there are 32% of the workers unionized in 1986 that remained

unionized until 1993. However, we hope to construct informative bounds on the union effect.

We consider both a static model that allows for the union membership decisions to be strictly

exogenous with respect to wage-setting decisions, and a dynamic model that allows for the

union-membership decisions to be only predetermined with respect to wage-setting decisions.

We shall also report the estimates of the union effect for the subpopulation of workers who

change their union status at least once within the sample. For this subpopulation, the effect is

point-identified in the static model, that is, the bounds on the union effect collapse to a point.

We shall not estimate the union effect for the entire population of workers, since the bounds are

completely uninformative in this case. This happens because more than half of the workers are

never unionized within the sample (see Table 1).
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All the results are reported in Table 1 and Figure 4. Table 1 assesses the plausibility of

the time-homogeneity assumption by comparing moments and quantiles of the cross-sectional

distributions of log-wages across years for workers that do not change union status. Under time

homogeneity, these cross sectional distributions should remain time invariant in the static model.

In the table we observe distributional changes across years, but most of the variation can be

captured by additive location effects for both always-unionized and never-unionized workers.

Panels A and B of fig. 4 present the estimates of the union effect in the static model for

the subpopulation of workers who change their union status at least once within the sample.

In panel A we compare our panel data estimates of quantile effects that control for individual

heterogeneity with pooled estimates that do not control for individual heterogeneity. In the

pooled estimates, we see that the quantile effect of union membership is positive but declines

sharply at the upper end of the distribution, which agrees with previous cross-sectional findings

(Chamberlain, 1994). A common explanation for this phenomenon is that the high-skill workers

at the lower end of the earning distribution tend to join the union, whereas the high-skill

workers at the high end of the earning distribution tend not to join the union. The estimated

quantile effect in the cross-section therefore captures this selection effect of unobserved skills.

In the panel-data estimates, which control for unobserved skills, we see that the quantile effects

of union membership become very flat across the quantile indices. Thus, by controlling for

individual heterogeneity, we have eliminated the selection effect. Panel B shows that the results

are not sensitive to the inclusion of location and scale effects.

Panel C presents estimated bounds on the union effect for the subpopulation of workers that

ever became unionized within the sample using the static model with time effects. The bounds

are informative, and show that the effect is positive for most of the quantile indices. The panel

also shows bounds obtained using the assumption of monotonic and positive union effect on

earnings described in the Supplementary Material. These bounds are also informative, and in

fact are substantially tighter than the bounds obtained without the monotonicity assumption.

Panel D presents similar bounds on the union effect for the subpopulation of workers unionized

in the first period using the dynamic model. The bounds in this case are not informative, even

after imposing monotonicity.

All the panels include 90% uniform confidence bands for the quantile union effects con-

structed by bootstrap with 200 repetitions. These bands allow us to make visual simultaneous

inference on the entire quantile functions. For example, we cannot reject that the identified

union effect is constant and positive for all the quantiles. For the ever unionized, the quantile

union effect is positive for a large range of quantiles.
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10.2 Female Labor Force Participation

For an application of the semiparametric bounds we consider a binary choice panel model of

female labor force participation. We focus on the relationship between participation and the

presence of young children in the household. Other studies that estimate similar models of

participation in panel data include Heckman and MaCurdy (1980, 1982), Chamberlain (1984),

Hyslop (1999), Chay and Hyslop (2000), Carrasco (2001), Carro (2007), and Fernández-Val

(2009).

The empirical analysis is based on a sample of married women from the National Longitudinal

Survey of Youth 1979 (NLSY79). The sample consists of 1,587 married women. Only women

continuously married, not students or in the active forces, and with complete information on the

relevant variables in the entire sample period are selected from the survey. Descriptive statistics

for the sample are shown in Table 2. The labor force participation variable (LFP ) is an indicator

that takes the value one if the woman’s employment status is “in the labor force” according to

the CPS definition, and zero otherwise. The fertility variable (kids) indicates whether the

woman has any children younger than 3 years. We focus on very young, preschool children

as most empirical studies find that their presences have the strongest impact on the mother’s

participation decision. LFP is stable across the years considered, whereas kids is decreasing.

The proportion of women that change fertility status grows steadily with the number of time

periods of the panel, but there are still 49% of the women in the sample for which the effect of

fertility is not identified after 3 periods.

The empirical specification we use is similar to Chamberlain (1984). In particular, we esti-

mate the following equation

LFPit = 1 {β∗ · kidsit + αi ≥ ǫit} ,

where αi is an individual-specific effect. The parameters of interest are β∗ and the ATE of fertility

on participation. We compute nonparametric and semiparametric probit and logit bounds for

these parameters. We also obtain linear and nonlinear fixed effects estimates, together with

large-T analytical bias corrected estimates and conditional fixed effects logit estimates.1 The

nonparametric bounds impose monotonicity on the effects. For the semiparametric bounds, we

use the method described in Section 9 with penalty λn = 1/(n log n) and iterate the quadratic

program 3 times with initial weights ŵk
j = P̂ k. This iteration makes the estimates insensitive to

the penalty and weighting. We search over discrete distributions with M̂ = 23 support points

at {−∞,−4,−3.6, ..., 3.6, 4,∞} for the parameter β∗, and with M̂ = 163 support points at

{−∞,−8,−7.9, ..., 7.9, 8,∞} for the ATE. The estimates are based on panels of 2 and 3 time

periods, both of them starting in 1990.

1The analytical corrections use the estimators of the bias based on expected quantities in Fernández-Val (2009).
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Table 3 reports estimates and 95% confidence regions for the parameters of interest. The

confidence regions for the nonparametric bounds are constructed using the normal approximation

(95% N) and nonparametric bootstrap with 200 repetitions (95% B). The confidence regions

for the semiparametric bounds are obtained using the procedures described in Section 9 and

the Supplementary Material. For the perturbed bootstrap method (95% PB) we use R = 100,

γ = .01, α1 = α2 = .02, and 200 simulations from each DGP to approximate the distribution of

the statistic. For the modified projection method (95%MP ), the confidence interval for P in the

first stage is approximated by 5,000 DGPs drawn from the empirical multinomial distributions

that pass the goodness-of-fit test. Together the modified projection and the perturbed bootstrap

took several days to compute on a personal computer. We also include confidence intervals

obtained by a canonical projection method (95% CP ) less robust to model misspecification

than the modified projection method, that intersects a nonparametric confidence interval for P
with the space of probabilities compatible with the semiparametric model Ξ:

CR1−α(P) =
{

P ∈ Ξ : W (P, P̂ ) ≤ c1−α(χ
2
K(J−1))

}

.

For the fixed-effects estimators, the confidence regions are based on the asymptotic normal

approximation. The semiparametric estimates are shown for ǫn = 0, i.e., for the solution that

gives the minimum value in the quadratic problem.

Overall, we find that the nonparametric bound estimates and confidence regions are too

wide to provide informative evidence about the relationship between participation and fertility.

The semiparametric bounds offer a good compromise between producing more informative re-

sults without adding too much structure to the model. Thus, these estimates are always inside

the confidence regions of the nonparametric model and do not suffer important efficiency losses

relative to the fixed-effects estimates. Another salient feature of the results is that the misspeci-

fication problem of the canonical projection method clearly arises in this application. Thus, this

procedure gives empty confidence regions for the panel with 3 periods. The perturbed bootstrap

and modified projection methods produce similar (non-empty) confidence regions for the model

parameters and ATEs.

The semiparametric intervals for the ATE cover the -9.6% estimate of Chamberlain (1984)

for the expected effect of having an additional young child on the participation probability. He

obtained this estimate from a correlated, random-coefficient probit model, a richer specification

that includes education and fertility covariates, and a different sample from the PSID.
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Year Mean Std. Dev. Q 10% Q 25% Q 50% Q 75% Q 90%

1986 1.67 0.47 1.11 1.33 1.65 1.99 2.32

1987 1.76 0.52 1.08 1.42 1.75 2.11 2.40

1988 1.83 0.51 1.20 1.50 1.82 2.17 2.46

1989 1.85 0.51 1.24 1.52 1.84 2.19 2.49

1990 1.90 0.53 1.22 1.53 1.89 2.23 2.52

1991 1.90 0.51 1.28 1.55 1.87 2.22 2.55

1992 1.92 0.52 1.28 1.55 1.89 2.28 2.58

1993 1.96 0.53 1.30 1.59 1.94 2.30 2.60

1986 2.04 0.31 1.67 1.85 2.05 2.24 2.44

1987 2.10 0.33 1.68 1.91 2.12 2.30 2.48

1988 2.17 0.36 1.71 1.91 2.20 2.37 2.53

1989 2.18 0.30 1.79 1.97 2.20 2.36 2.56

1990 2.21 0.29 1.80 2.01 2.24 2.40 2.55

1991 2.21 0.29 1.85 2.00 2.22 2.37 2.55

1992 2.22 0.38 1.84 2.01 2.20 2.42 2.59

1993 2.25 0.29 1.85 2.03 2.25 2.49 2.58

Source: NLSY79 1986-1993, 2,065 men.  

Never unionized (53 %)

Always unionized (6 %)

Table 1: Moments and quantiles of  log wages by year and union sequence
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Variable Mean Changes (%)

LFP1990 0.75

LFP1992 0.74 0.17

LFP1994 0.75 0.28

kids1990 0.38

kids1992 0.35 0.31

kids1994 0.28 0.51

Table 2: Descriptive Statistics for NLSY79 sample

Notes: LFP - 1 if woman is in the labor force, 0 otherwise; kid - 1 

if woman has any child of age less than 3, 0 otherwise. Changes 

(%) measures the proportion of women who change status 

between 1990 and the year corresponding to the row.

(n = 1,587)

42



Nonparametric Linear

model Logit FE-Logit BC-Logit CMLE Probit FE-Probit BC-Probit model

β* -.36 -.78 -.36 -.39 [-.412, -.408] -.88 -.51

(95% N)  (-1.11, -.46) (-.67, -.05 ) (-.70, -.08) (-1.24, -.52) (-.86, -.16)

(95% CP) (-.75, .02) (-.85, .03)

(95% MP+) (-.84, .01) (-.92, .04)

(95% PB^) (-.87, .12) (-1.10, .09)

 

ATE [-.49, -.02] [-.06, -.05] -.06 -.04 [-.07, -.05] -.06 -.05 -.07

(95% N) (-.53, .00) (-.08, -.04) (-.06, -.02) (-.08, -.04) (-.07, -.02) (-.11, -.03)

(95% B*) (-.52, -.01)

(95% CP) (-.15, .00) (-.17, .00)

(95% MP+) (-.17, .00) (-.18, .01)

(95% PB^) (-.18, .02) (-.21, .02)

 

β* -.42 -.71 -.46 -.46 [-.461, -.460] -.78 -.55

(95% N) (-.90, -.52) (-.64, -.28) (-.65, -.28) (-.99, -.57) (-.75, -.35)

(95% CP) (-) (-)

(95% MP+) (-.76, -.07) (-.74, -.17)

(95% PB^) (-.69, -.01) (-.73, -.16)

 

ATE [-.40, -.04] [-.07, -.07] -.08 -.07  [-.08, -.07] -.08 -.07 -.08

(95% N) (-.46, .00) (-.09, -.06) (-.09, -.05)  (-.09, -.06) (-.09, -.05) (-.11, -.06)

(95% B*) (-.41, -.02)

(95% CP) (-) (-)

(95% MP+) (-.13, -.01)  (-.14, -.03)

(95% PB^) (-.12, -.00)  (-.14, -.03)

 

T = 3

Notes: Dependent variable is labor force participation indicator; regressor is a fertility indicator that takes the value 1 if the woman has a child 

less than 3 years old. Time periods: 1990, 1992 and 1994. Source: NLSY79. N denotes nornal approximation; B denotes nonparametric 

bootstrap; CP denotes canonical projection; MP denotes modified projection; PB denotes perturbed bootstrap; FE denotes fixed effects 

maximum likelihood estimator (FEMLE); BC denotes bias corrected FEMLE; CMLE denotes conditional logit FEMLE; Linear denotes the 

linear within groups estimator. *200 boostraps repetitions. 
+
Based on 5,000 DGPs. ^Based on 100 DGP's and 200 simulations for each DGP.  

Table 3: Female LFP and Fertility (n = 1,587)

T = 2

Semiparametric model
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Figure 1: Width of nonparametric bounds for the ATE in dynamic binary choice probit models

with Yit = 1(β∗Yi,t−1 +αi ≥ εit), εit ∼ N(0, 1), αi ∼ N(0, 1), Pr(Yi0 = 1) = .5, β∗ ∈ [−2, 2], and

T ∈ {2, 4, 8, 16, 32, 64}.
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Figure 2: Identified set for parameter and ATEs in binary choice probit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ N(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 2.
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Figure 4: Quantile union effects for male workers. Panel A displays point and interval estimates

of the identified quantile union effects in the static model with and without accounting for

individual heterogeneity. Panel B displays point and interval estimates of the identified quantile

union effects in the static model with location and scale time effects, averaged across time periods

with and without accounting for individual heterogeneity. Panel C displays point and interval

estimates of the bounds for the quantile effect on the ever unionized in the static model with time

effects, with and without imposing monotonicity. Panel D displays point and interval estimates

of the bounds for the quantile effect on the unionized in the first period in the dynamic model,

with and without imposing monotonicity. Estimates based on NLSY79 for the years 1986–1993.

90% confidence intervals obtained by bootstrap with 200 repetitions.
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Supplemental Material for Average and Quantile Effects in Nonseparable

Panel Models

Victor Chernozhukov, Iván Fernández-Val, Jinyong Hahn, and Whitney Newey

A1 Introduction

In this supplemental material we provide omitted discussions, results, and proofs by Section

in the same order they are referred to in the paper. Let w.p.a.1 denote ”with probability

approaching one” and C denote a generic constant that may be different in different uses.

A2 Supplements to Section 2

We begin with the omitted discussion and results referred to in Section 2 of the paper. These

concern the general, nonseparable model of Assumptions 1 - 3 and apply whether or not the

regressors are discrete.

A2.1 Time homogeneity in the linear model

We will first show that Assumption 2 is a natural generalization of the following linear model:

Yit = X ′
itβ0 + αi + εit, E[Xisεit] = 0 for all s and t. (15)

This is a standard linear model that leads to consistency of the within and other estimators.

Let Ē(·|Xi) denote the linear projection on vec(Xi), as in Chamberlain (1982).

Theorem A1: Suppose that Yi and Xi have finite second moments. Then equation (15) is

satisfied if and only if there is ε̃it with

Yit = X ′
itβ0 + ε̃it, Ē(ε̃it|Xi) = Ē(ε̃i1|Xi), (t = 2, ..., T ). (16)

Proof: If eq. (15) is satisfied let ε̃it = αi + εit. By orthogonality of εit with Xis for all s and

t we have Ē(εit|Xi) = 0 for all t, so that

Ē(ε̃it|Xi) = Ē(αi|Xi) + Ē(εit|Xi) = Ē(αi|Xi) = Ē(αi|Xi) + Ē(εi1|Xi) = Ē(ε̃i1|Xi).
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Now suppose eq. (16) is satisfied. Let αi = Ē[ε̃i1|Xi] and εit = ε̃it−αi. Then Yit = X ′
itβ0+αi+εit

by construction and

E[Xisεit] = E[Xis(ε̃it − Ē[ε̃i1|Xi])] = E[Xis(ε̃it − Ē[ε̃it|Xi])] = 0,

where the second equality follows by Ē(ε̃it|Xi) = Ē(ε̃i1|Xi) and the third quality by orthogo-

nality of each element of Xi with the projection residual. Q.E.D.

This result shows that the standard linear model of equation (15) is equivalent to the model

of equation (16). The second model is one that satisfies a time homogeneity condition analogous

to Assumption 2. In equation (16) the linear projection of the disturbance on the elements

of Xi is time invariant. What Assumption 2 does is strengthen this to time invariance of the

conditional distribution. This strengthening seems like a natural thing to do when moving from

a linear model to a nonlinear, nonseparable model.

A2.2 Relationship between static and dynamic models

We next show that the static model is nested within the dynamic model.

Theorem A2: If Assumptions 1 and 2 are satisfied then Assumptions 1 and 3 are satisfied.

Proof: Note that Assumptions 1 and 2 allow some flexibility in the definition of αi, because

Assumption 1 just specifies that there exists αi with Yit = g0(Xit, αi, εit). This equation continues

to hold if more variables are added to αi. Furthermore, we can add any function of Xi to αi

without changing Assumption 2. Let α̃i = (αi,Xi). Then Assumptions 1 and 2 are also satisfied

for this α̃i. Furthermore, since Xit, ...,Xi1 are included in α̃ and Assumption 2 for the original

αi implies that εit|α̃i
d
= εi1|α̃i we have

εit|Xit, ...,Xi1, α̃i
d
= εit|α̃i

d
= εi1|α̃i

d
= εi1|Xi1, α̃i.

Thus we see that Assumptions 1 and 2 imply existence of αi = α̃i such that Assumptions 1 and

3 are also satisfied. That is, Assumptions 1 and 2 imply Assumptions 1 and 3. Q.E.D.

A2.3 Relationship between nonseparable models and conditional mean mod-

els

Next we show that the nonseparable models given here imply conditional mean models where

the ATE is also the conditional mean ATE.
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Theorem A3: Suppose that Assumption 1 is satisfied and E[|g0(x, αi, εit)|] < ∞ for all x.

If Assumption 2 is satisfied then for α̃i = Xi and m0(x, α̃) =
∫

g0(x, α, ε)dF (α, ε|α̃),

E[Yit|Xi, α̃i] = m0(Xit, α̃i), µ(x) =

∫

m0(x, α̃)dF (α̃).

If Assumption 3 is satisfied then for α̃ = (α,X1) and m0(x, α̃) =
∫

g0(x, α, ε)dF (ε|α̃),

E[Yit|Xit, ...,Xi1, α̃i] = m0(Xit, α̃i), µ(x) =

∫

m0(x, α̃)F (dα̃).

Proof: By Assumption 2, for α̃ = X and m0(x, α̃) =
∫

g0(x, α, ε)dF (α, ε|X) we have

E[Yit|Xi, α̃i] = E[g0(Xit, αi, εit)|Xi] =

∫

g0(Xit, α, ε)dF (α, ε|α̃i) = m0(Xit, α̃i),
∫

m0(x, α̃)dF (α̃) =

∫

g0(x, α, ε)dF (α, ε|α̃)dF (α̃) = µ(x).

Similarly, Assumption 3 implies, for α̃i = (αi,X1i),

E[Yit|Xit, ...,Xi1, α̃i] =

∫

g0(Xit, αi, ε)dF (ε|Xit, ...,Xi1, αi)

=

∫

g0(Xit, αi, ε)dF (ε|αi,Xi1) = m0(Xit, α̃i),
∫

m0(x, α̃)dF (α̃) =

∫

g0(x, α, ε)dF (ε|α,X1)dF (α,X1)

=

∫

g0(x, α, ε)dF (ε, α,X1) = µ(x).Q.E.D.

It may be helpful to explain this result and relate it to Chamberlain (1982). First, it should

be noted that Assumptions 1 and 2 only assume the existence of some αi such that the conditions

are satisfied. Thus, we are free to choose αi in whatever way is convenient. A convenient choice

for Theorem A3 turns out to be α̃i = Xi, where we use the α̃i notation to distinguish this time

invariant effect from the one in Assumptions 1 and 2. Note then that the first conclusion implies

that for m0(x,X) =
∫

g(x, α, ε)dF (α, ε|X),

E[Yit|Xi] = m0(Xit,Xi). (17)

This statement has no content for any one time period, because the effect of Xit in the first

argument of m(Xit,Xi) is indistinguishable from the effect of Xit that appears in the second

argument. However, for multiple time periods it does have content, because m0(x,X) is time

invariant. Equation (17) implies that the effect of changing Xit on E[Yit|Xi] will be different

than the effect on E[Yis|Xi] for s 6= t. Furthermore, this form leads directly to identification of

conditional mean ATE conditioned on Xi. For any Xi where Xit = xb and Xis = xa for some t

and s,

E[Yis − Yit|Xi] = m0(x
a,Xi)−m0(x

b,Xi),
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that is a conditional mean ATE given Xi.

It may also help to think of m(Xit,Xi) as a nonlinear version of Chamberlain’s (1982)

multivariate regression for panel data. In the linear model of equation (15), for Ē[αi|Xi] =

π′vec(Xi) we have

Ē[Yit|Xi] = X ′
itβ0 + π′vec(Xi) = m̄(Xit,Xi), m̄(x,X) = x′β0 + π′vec(X).

For a single time period β0 is indistinguishable from coefficients in π, but multiple time periods

can be used to identify β0 from these regressions. Equation (17) is like this except it is jointly

nonlinear in its first and second arguments.

A3 Supplements to Section 3

A3.1 Auxiliary results

We turn now to identification and estimation with discrete regressors in the static case. Here

we use the idea that “time is an instrument” or “time is randomly assigned.” This allows us to

vary the time period so as to match x with Xit and achieve identification.

The following Lemma applies this idea to obtain specific results. Let git(x) = g0(x, αi, εit).

Lemma A4: If Assumptions 1 and 2 are satisfied then

E[Ḡi(y, x)|Xi] = 1(Ti(x) > 0)E[Φ(
y − gi1(x)

h
)|Xi].

If in addition E[|g0(x, αi, εit)|] <∞ for all x then

E[Ȳi(x)|Xi] = 1(Ti(x) > 0)E[gi1(x)|Xi].

.

Proof: By Assumptions 1 and 2,

E[1(Xit = x)Φ(
y − Yit
h

)|Xi] = E[1(Xit = x)Φ(
y − git(x)

h
)|Xi]

= 1(Xit = x)E[Φ(
y − git(x)

h
)|Xi] = 1(Xit = x)E[Φ(

y − gi1(x)

h
)|Xi].

Therefore, we have

E[Ḡi(y, x)|Xi] = 1(Ti(x) > 0)Ti(x)
−1

T
∑

t=1

E[1(Xit = x)Φ(
y − Yit
h

)|Xi]

= 1(Ti(x) > 0)Ti(x)
−1

T
∑

t=1

1(Xit = x)E[Φ(
y − gi1(x)

h
)|Xi]

= 1(Ti(x) > 0)E[Φ(
y − gi1(x)

h
)|Xi].
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We also have

E[1(Xit = x)Yit|Xi] = E[1(Xit = x)git(x)|Xi] = 1(Xit = x)E[git(x)|Xi]

= 1(Xit = x)E[gi1(x)|Xi]

so the second conclusion follows similarly to the first. Q.E.D.

We can use the previous result to show how δ is identified.

Lemma A5: If Assumptions 1 and 2 are satisfied, E[|g0(x, αi, εit)|] < ∞ for all x, and

Pr(Di = 1) > 0 then δ = E[Di{Ȳi(xa)− Ȳi(x
b)}]/E[Di].

Proof: Note that Di = Di1(Ti(x
b) > 0) = Di1(Ti(x

a) > 0). Therefore, by Lemma A4

E[Di{Ȳi(xa)− Ȳi(x
b)}|Xi] = DiE[Ȳi(x

a)|Xi]−DiE[Ȳi(x
b)|Xi]

= Di1(Ti(x
a) > 0)E[gi1(x

a)|Xi]−Di1(Ti(x
b) > 0)E[gi1(x

b)|Xi]

= DiE[gi1(x
a)− gi1(x

b)|Xi] = E[Di

{

gi1(x
a)− gi1(x

b)
}

|Xi]

The conclusion then follows by iterated expectations. Q.E.D.

The asymptotic normality of δ̂ and consistency of the asymptotic variance estimator are

simple applications of standard theory, as in the following result, that forms a prototype for the

asymptotic normality of the nonparametric ATE bounds. Let P = E[Di].

Theorem A6: If Assumptions 1 and 2 are satisfied, E[|g0(x, αi, εit)|2] < ∞ for all x, and

Pr(Di = 1) > 0, then
√
n(δ̂ − δ)

d−→ N(0, V ) and
∑n

i=1 ψ̂
2
i /n

p−→ V, where V = E[ψ2
i ] and

ψi = P−1Di

[

Ȳi(x
a)− Ȳi(x

b)− δ
]

.

Proof: Let di = Di{Ȳi(xa)− Ȳi(x
b)} so that δ̂ = d̄/D̄. By the central limit theorem (CLT),

d̄ and D̄ are root-n consistent for µd = E[di] and P . Then by P > 0 and δ = µd/P,

√
n(δ̂ − δ) =

√
n(
d̄

D̄
− µd
P

) =
√
nD̄−1[d̄− µd − δ(D̄ − P )]

=
√
nP−1[d̄− µd − δ(D̄ − P )] + op(1) =

n
∑

i=1

ψi/
√
n+ op(1).

The first conclusion then follows by the CLT. For the second conclusion note that

∑

i

(ψ̂i − ψi)
2/n ≤ C(D̄−1 − P−1)2

∑

i

d2i /n+ C(D̄−1δ̂ − P−1δ)2
∑

i

D2
i /n

p−→ 0.

Therefore, the second conclusion follows by a standard argument. Q.E.D.
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We now give an intermediate result that is useful for showing asymptotic normality for the

estimator of the identified quantile treatment effect. This will also serve as a prototype for

the proofs of Theorems 2 and 3 in the body of the paper. Let Ĝ1(y, x) = Ĝ(y, x|Di = 1),

G1(y, x) = G(y, x|Di = 1), Gi(y, x) = 1(Ti(x) > 0)Ti(x)
−1
∑T

t=1 1(Xit = x)1(Yit ≤ y), and

G′
1(y, x) = ∂G1(y, x)/∂y.

Lemma A7: If Assumption 7 is satisfied with Gℓ(y, x) replaced by G1(y, x) then for any

0 < λ < 1 and any x, there exists q̂λ with Ĝ1(q̂λ, x) = λ satisfying

√
n(q̂λ − qλ) = −G′

1(qλ, x)
−1 1√

n
P−1

∑

i

Di [Gi(qλ, x)− λ] + op(1).

Proof: Note that Ĝ1(y, x) is strictly monotonic increasing in y and converges to 0 and 1

as y goes to −∞ and ∞ respectively. Therefore there is a unique q̂λ such that Ĝ1(q̂λ, x) = λ.

Also, by G1(y, x) strictly monotonic in y there is a unique qλ solving G1(qλ, x) = λ. By G1(y, x)

strictly monotonic and continuous, it follows that for all ε > 0 small enough,

0 < G1(qλ − ε, x) < G1(qλ, x) = λ.

By Ĝ1(qλ − ε, x)
p−→ G1(qλ − ε, x) it follows that w.p.a.1, for all y ≤ qλ − ε

Ĝ1(y, x) ≤ Ĝ1(qλ − ε, x) < G1(qλ, x) = λ.

Thus, it follows that q̂λ ≥ qλ − ε w.p.a.1. Similarly it follows that q̂λ ≤ qλ + ε w.p.a.1. Since ε

is arbitrary, we have q̂λ
p−→ qλ.

Next, note that G1(y, x) is differentiable in y by Assumption 7, so that gi1(x) is continuously

distributed conditional on Di = 1. Thus, git(x) is also continuously distributed conditional

on Di = 1 by Assumption 2. It follows that as h −→ 0, Φ(y−git(x)
h ) −→ 1(git(x) ≤ y) with

probability one. By the dominated convergence theorem this convergence is also in mean-square.

Recall that

Gi(y, x) =

{

Ti(x)
−1
∑T

t=1 1(Xit = x)1(Yit ≤ y), Ti(x) > 0,

0, Ti(x) = 0.

We have Ḡi(y, x) −→ Gi(y, x) in mean square, so that

n
∑

i=1

[DiḠi(y, x)−DiGi(y, x)]/n
p−→ 0,

n
∑

i=1

{DiḠi(y, x)− E[DiḠi(y, x)] −DiGi(y, x) + E[DiGi(y, x)]}/
√
n

p−→ 0.

LetWi = g0(x, αi, εi1) and f(w) and F (w) denote the pdf and CDF of Wi conditional on Di = 1

and P = E[Di]. Note that Φ(y−w
h )F (w) converges to zero as w −→ ∞ and as w −→ −∞.
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Therefore, integration by parts gives

E[Ḡi(y, x)|Di = 1] =

∫

Φ(
y − w

h
)f(w)dw = h−1

∫

φ(
y − w

h
)F (w)dw

=

∫

φ(u)F (y − hu)du = F (y) + (h2/2)

∫

φ(u)F ′′(y − h̄u)u2du

= F (y) + o(h2) = G1(y, x) + o(h2),

where the fifth equality follows by an expansion

F (y − hu) = F (y)− F ′(y)hu+ F ′′(y − h̄u)h2u2/2,

and h̄ can depend on u. Therefore it follows by E[DiGi(qλ, x)] = PG1(qλ, x) = Pλ that

n
∑

i=1

Di[Ḡi(qλ, x)− λ]/
√
n =

n
∑

i=1

{DiḠi(qλ, x)−E[DiḠi(qλ, x)]}/
√
n

+
√
n{E[DiḠi(qλ, x)]− λP} − λ

n
∑

i=1

(Di − P )/
√
n

=
n
∑

i=1

{DiGi(qλ, x)−E[DiGi(qλ, x)]}/
√
n+ op(1)

+O(
√
nh2)− λ

n
∑

i=1

(Di − P )/
√
n

=

n
∑

i=1

Di[Gi(qλ, x)− λ]/
√
n+ op(1) = Op(1).

Next, note that from standard uniform convergence of kernel density results, Ĝ′
1(y, x) con-

verges uniformly in probability to G′
1(y, x), where the ”prime” superscript denotes the partial

derivative with respect to y. Therefore, for q̄λ
p−→ qλ, Ĝ

′
1(q̄λ, x)

p−→ G′
1(qλ, x) > 0, and hence

Ĝ′
1(q̄λ, x)

−1 = Op(1). An expansion then gives λ = Ĝ1(q̂λ, x) = Ĝ1(qλ, x) + Ĝ′
1(q̄λ, x)(q̂λ − qλ).

Solving and inverting gives

√
n(q̂λ − qλ) = −Ĝ′

1(q̄λ, x)
−1√n[Ĝ1(qλ, x)− λ]

= −Ĝ′
1(q̄λ, x)

−1

(

n
∑

i=1

Di/n

)−1 n
∑

i=1

Di[Ḡi(qλ, x)− λ]/
√
n

= −G′
1(qλ, x)

−1P−1
n
∑

i=1

Di[Gi(qλ, x)− λ]/
√
n+ op(1).Q.E.D.

Theorem A8: If Assumptions 1, 2, and 7 are satisfied and E[Di] > 0, then
√
n(δ̂λ−δλ) d−→

N(0, Vλ) and
∑n

i=1 ψ̂
2
λi/n

p−→ Vλ, where Vλ = E[ψ2
λi] and

ψiλ = −Di

P

{

Gi(q
a, xa)− λ

G′
1(q

a, xa)
− Gi(q

b, xb)− λ

G′
1(q

b, xb)

}
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Proof: By Lemma A7 we have

√
n(δ̂λ − δλ) =

n
∑

i=1

ψiλ/
√
n+ op(1).

The CLT gives the first conclusion. Next, note that by Φ(v) having a bounded derivative,

n
∑

i=1

[Ḡi(q̂
a, xa)− Ḡi(q

a, xa)]2/n ≤ Ch−1(q̂a − qa) = Op((h
√
n)−1)

p−→ 0.

Then by mean square convergence of Ḡi(q
a, xa) to Gi(q

a, xa) and the triangle inequality we have
∑n

i=1[Ḡi(q̂
a, xa)−Gi(q

a, xa)]2/n
p−→ 0. The second conclusion then follows similarly to the proof

of Theorem A6. Q.E.D.

A3.2 Proof of Theorem 1

Note that σ2i > 0 if and only if Di = 1, so that

σ2i = Diσ
2
i ,Xit − X̄i = Di(Xit − X̄i).

Furthermore, since Xit is a dummy variable, the usual difference in means formula for the slope

of a regression on a constant and dummy variable gives

Di

∑T
t=1(Xit − X̄i)Yit
∑T

t=1(Xit − X̄i)2
= Di{Ȳi(1)− Ȳi(0)}.

Also, by the Khintchine’s weak law of large numbers (LLN),

n−1(T − 1)−1
n
∑

i=1

T
∑

t=1

(Xit − X̄i)
2 = n−1

n
∑

i=1

σ2i
p−→ E[σ2i ] = E[Diσ

2
i ].

Furthermore, by LLN

n−1(T − 1)−1
n
∑

i=1

T
∑

t=1

(Xit − X̄i)Yit = n−1(T − 1)−1
n
∑

i=1

T
∑

t=1

Di(Xit − X̄i)Yit

= n−1
n
∑

i=1

Diσ
2
i {Ȳi(1)− Ȳi(0)}

p−→ E[Diσ
2
i {Ȳi(1)− Ȳi(0)}].

The conclusion then follows by the continuous mapping theorem. Q.E.D.
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A4 Supplements to Section 4

Here we include the proof of Theorem 2 as well as bounds that impose monotonicity.

A4.1 Proof of Theorem 2

Let
(

mℓi

mui

)

=

(

Ȳi(x
a)− Ȳi(x

b) +Bℓ1(Ti(x
a) = 0)−Bu1(Ti(x

b) = 0)

Ȳi(x
a)− Ȳi(x

b) +Bu1(Ti(x
a) = 0)−Bℓ1(Ti(x

b) = 0)

)

.

Note that ∆̂ℓ =
∑n

i=1mℓi/n and ∆̂u =
∑n

i=1mui/n. Then for Σ = V ar((mℓi,mui)), ∆ℓ =

E[mℓi], and ∆u = E[mui] the first and second conclusions follow by standard arguments for a

vector of sample means.

Next, note that by Lemma A4 and iterated expectations

∆ℓ = E[1(Ti(x
a) > 0)gi1(x

a) +Bℓ1(Ti(x
a) = 0)] (18)

−E[1(Ti(x
b) > 0)gi1(x

b) +Bu1(Ti(x
b) = 0)] ≤ E[gi1(x

a)]− E[gi1(x
b)] = ∆.

It follows similarly that ∆ ≤ ∆u. To show sharpness, let α̃i = (αi,Xi). Define

g(x, α̃i, εit, Ca, Cb) = 1(Ti(x) > 0)g0(x, αi, εit)

+1(Ti(x) = 0)[Ca1(x = xa) + Cb1(x = xb)],

where Bℓ ≤ Ca ≤ Bu and Bℓ ≤ Cb ≤ Bu. Note that Ti(Xit) > 0 with probability one, so that

g(Xit, α̃i, εit, Ca, Cb) = g0(Xit, αi, εit) = Yit. Hence the conditional distribution of (Yi1, ..., YiT )
′

given Xi is the same for g and α̃i as for g0 and αi. Also, because (αi,Xi) is a one-to-one function

of (α̃i,Xi) it follows that Assumption 2 is satisfied with α̃i replacing αi. When (Ca, Cb) =

(Bℓ, Bu) we have

∆ = E[g(xa, α̃i, εit, Bℓ, Bu)− g(xb, α̃i, εit, Bℓ, Bu)]

= E[1(Ti(x
a) > 0)gi(x

a) + 1(Ti(x
a) = 0)Bℓ]

−E[1(Ti(x
b) > 0)gi(x

b) + 1(Ti(x
b) = 0)Bu] = ∆ℓ,

and the lower bound is attained. Similarly the upper bound is attained when (Ca, Cb) = (Bu, Bℓ).

Turning now to the quantile bounds, it follows as in the proof of Lemma A7 applied to

Ĝℓ(y, x
a) and to Ĝℓ(y, x

b) + P̄ (xb) that

q̂du
p−→ qdu, q̂

d
ℓ

p−→ qdℓ , Gℓ(q
d
u, x

d) = λ,Gℓ(q
d
ℓ , x

d) + P̄(xd) = λ, d ∈ {a, b}.

56



It also follows as in eq. (18) that Gℓ(y, x) ≤ G(y, x) ≤ Gℓ(y, x) + P̄(x), implying ∆λℓ ≤ ∆λ ≤
∆λu. Next, it follows as in Lemma A7 that

√
n(q̂au − qau) = −G′

ℓ(q
a
u, x

a)−1 1√
n

∑

i

[Gi(q
a
u, x)− λ] + op(1),

√
n(q̂bℓ − qbℓ) = −G′

ℓ(q
b
ℓ , x

b)−1 1√
n

∑

i

[

Gi(q
b
ℓ , x

b) + 1(Ti(x
b) = 0)− λ

]

+ op(1).

Differencing then gives

√
n(∆̂u −∆u) = −

n
∑

i=1

Ψu
λi√
n
+ op(1),Ψ

u
λi =

Gi(q
a
u, x

a)− λ

G′
ℓ(q

a
u, x

a)
− Gi(q

b
ℓ , x

b) + 1(Ti(x
b) = 0)− λ

G′
ℓ(q

b
ℓ , x

b)
.

It follows similarly that

√
n(∆̂ℓ −∆ℓ) = −

n
∑

i=1

Ψℓ
λi√
n
+ op(1),Ψ

ℓ
λi =

Gi(q
a
ℓ , x) + 1(Ti(x

a) = 0)− λ

G′
ℓ(q

a
ℓ , x

a)
− Gi(q

b
u, x

b)− λ

G′
ℓ(q

b
u, x

b)
.

Then for Σλ = V ar(Ψℓ
λi,Ψ

u
λi) the next conclusion follows by the CLT. It also follows by similar ar-

guments to the proof of Theorem A8 that
∑n

i=1

(

Ψ̂ℓ
λi −Ψℓ

λi

)2
/n

p−→ 0 and
∑n

i=1

(

Ψ̂u
λi −Ψu

λi

)2
/n

p−→
0. The consistency of Σ̂λ then follows by standard methods.

To show sharpness of the QTE bounds, define α̃i and g(x, α̃i, εit, Ca, Cb) as in the proof of the

ATE bounds, but now for any Ca, Cb ∈ R. Let G(y, x,Ca, Cb) = E[1(g(x, α̃i, εit, Ca, Cb) ≤ y)].

Note that for d ∈ {a, b},

G(y, xd, Ca, Cb) = Gℓ(y, x
d) + 1(y ≥ Cd)P̄(xd).

Let q(λ, x,Ca, Cb) be the associated QSF. For d ∈ {a, b},

q(λ, xd, Ca, Cb) =















qu(λ, x
d), λ < Gℓ(Cd, x

d),

Cd, Gℓ(Cd, x
d) ≤ λ ≤ Gℓ(Cd, x

d) + P̄(xd),

qℓ(λ, x
d), λ > Gℓ(Cd, x

d) + P̄(xd).

For λ with P̄(xd) < λ < 1 − P̄(xd) we have q(λ, xd, Ca, Cb) = qℓ(λ, x
d) for Cd small enough

that Gℓ(Cd, x) + P̄(xd) < λ and q(λ, xd, Ca, Cb) = qu(λ, x
d) for Cd big enough. For λ ≤

P̄(xd) we have q(λ, xd, Ca, Cb) = qu(λ, x) for all Cd big enough (by λ < 1 − P̄(xd)) and

limCd−→−∞ q(λ, xd, Ca, Cb) = −∞ = qℓ(λ, x). For λ ≥ 1 − P̄(xd) we have q(λ, xd, Ca, Cb) =

qℓ(λ, x
d) for all Cd small enough and limCd−→∞ q(λ, xd, Ca, Cb) = +∞ = qu(λ, x

d). Therefore,

we have

lim
Ca−→−∞,Cb−→+∞

[q(λ, xa, Ca, Cb)− q(λ, xb, Ca, Cb)] = qℓ(λ, x
a)− qu(λ, x

b),

lim
Ca−→+∞,Cb−→−∞

[q(λ, xa, Ca, Cb)− q(λ, xb, Ca, Cb)] = qu(λ, x
a)− qℓ(λ, x

b),

showing the bounds are sharp. Q.E.D.
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A4.2 Bounds under monotonicity

We now turn to the bounds when g0 is known to be monotonic, satisfying the following condition.

Assumption A1: For some xa and xb, g0(x
a, αi, εit) ≥ g0(x

b, αi, εit).

This condition leads to tighter bounds for the ASF and QSF. Here we will give results

showing estimable population bounds under monotonicity. We will also briefly describe how to

estimate them but for brevity do not give the full asymptotic theory. Define 1ai = 1(Ti(x
a) > 0),

1bi = 1(Ti(x
b) > 0), P̄(xb, xa) = Pr(Ti(x

a) = Ti(x
b) = 0), and

G∗
u(y, x

a) = E[Gi(y, x
a) + (1− 1ai )Gi(y, x

b)] + P̄(xb, xa),

G∗
ℓ (y, x

b) = E[Gi(y, x
b) + (1− 1bi )Gi(y, x

a)].

Theorem A9: Suppose that Assumptions 1, 2, 5, and A1 are satisfied. If E[|g0(x, αi, εit)|] <
∞ for x ∈ {xa, xb} then ∆ ≥ Pδ. Also, if G∗

u(y, x
a) and G∗

ℓ (y, x
b) are continuous and strictly in-

creasing on the interior of their range then q(λ, xa) ≥ Q(λ,G∗
u(·, xa)) and q(λ, xb) ≤ Q(λ,G∗

ℓ (·, xb)),
so that

∆λ ≥ Q(λ,G∗
u(·, xa))−Q(λ,G∗

ℓ (·, xb)).

Proof: Note that 1 = 1ai + (1− 1ai )1
b
i + (1− 1ai )(1 − 1bi). By Lemma A4,

E[1ai gi1(x
a)] = E[Ȳi(x

a)], E[1bigi1(x
b)] = E[Ȳi(x

b)].

Then by monotonicity

µ(xa) = E[gi1(x
a)] ≥ E[{1ai + (1− 1ai )(1− 1bi )}gi1(xa)] + E[(1 − 1ai )1

b
igi1(x

b)]

= E[1ai Ȳi(x
a) + (1− 1ai )1

b
i Ȳi(x

b) + (1− 1ai )(1 − 1bi)gi1(x
a)].

Similarly

µ(xb) ≤ E[1bi Ȳi(x
b) + (1− 1bi)1

a
i Ȳi(x

a) + (1− 1ai )(1− 1bi )gi1(x
b)].

Subtracting this inequality from the previous one, and noting that 1ai − (1− 1bi )1
a
i = 1bi1

a
i = Di

and −1bi+ (1− 1ai )1
b
i = −Di,

µ(xa)− µ(xb) ≥ E[Di

{

Ȳi(x
a)− Ȳi(x

b)
}

] + E[(1− 1ai )(1 − 1bi){g0(xa, αi, εit)− g0(x
b, αi, εit)}]

≥ E[Di

{

Ȳi(x
a)− Ȳi(x

b)
}

] = Pδ,

giving the first conclusion.

Next, similarly to above,

G(y, xa) = E[{1ai + (1− 1ai )(1 − 1bi) + (1− 1ai )1
b
i}1(gi1(xa) ≤ y)]

≤ E[Gi(y, x
a)] + E[(1 − 1ai )Gi(y, x

b)] + P̄(xb, xa) = G∗
u(y, x

a).

G(y, xb) ≥ G∗
ℓ (y, x

b).
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Inverting gives the second conclusion. Q.E.D.

Estimation of the bounds under monotonicity is straightforward. We can estimate the lower

bound for the ATE by (
∑n

i=1Di/n) δ̂. We can estimate the quantile bounds by inverting

Ĝ∗
u(y, x

a) =
n
∑

i=1

[Ḡi(y, x
a) + (1− 1ai )Ḡi(y, x

b) + 1(Ti(x
b) = Ti(x

a) = 0)]/n,

Ĝ∗
ℓ (y, x

b) =

n
∑

i=1

[Ḡi(y, x
b) + (1− 1bi )Ḡi(y, x

a)]/n.

Asymptotic theory for these estimators of bounds under monotonicity is straightforward. We

do not know if they are sharp.

A5 Supplements to Section 5

Here we give the proof of Theorem 3 as well as bounds that impose monotonicity.

A5.1 Proof of Theorem 3

We first prove the second part of Lemma A4 for the dynamic model. Let dit(x) = 1(Xi ∈
Xt(x)). By Assumption 3,

∑T
t=1 dit(x) = 1(Ti(x) > 0), and the fact that dit(x) depends only on

Xit,Xi,t−1, ...,Xi1 we have

E[Ŷi(x)|Xi1] =
T
∑

t=1

E[dit(x)Yit|Xi1] =
T
∑

t=1

E[dit(x)E[git(x)|Xit, ...,Xi1]|Xi1]

=

T
∑

t=1

E[dit(x)E[gi1(x)|Xi1]|Xi1] = E[1(Ti(x) > 0)|Xi1]E[gi1(x)|Xi1].

Let
(

mℓi

mui

)

=

(

Ŷi(x
a)− Ŷi(x

b) +Bℓ1(Ti(x
a) = 0)−Bu1(Ti(x

b) = 0)

Ŷi(x
a)− Ŷi(x

b) +Bu1(Ti(x
a) = 0)−Bℓ1(Ti(x

b) = 0)

)

.

Note that ∆̂ℓ =
∑n

i=1mℓi/n and ∆̂u =
∑n

i=1mui/n.Then for Σ = V ar((mℓi,mui)), ∆ℓ = E[mℓi],

and ∆u = E[mui] the first and second conclusions follow by standard arguments for a vector of

sample means.

Next, note that E[gi1(x
a)|Xi1] ≤ Bu by Assumption 6, so that

E[Bu1(Ti(x
a) = 0)|Xi1] ≥ E[1(Ti(x

a) = 0)|Xi1]E[gi1(x
a)|Xi1].

Then by iterated expectations and Ti(x
a) ≥ 0,

E[Ŷi(x
a) +Bu1(Ti(x

a) = 0)|Xi1] ≥ E[1(Ti(x
a) > 0)|Xi1]E[gi1(x

a)|Xi1]

+E[1(Ti(x
a) = 0)|Xi1]E[gi1(x

a)|Xi1] = E[gi1(x
a)|Xi1].
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Taking expectations of both sides of this inequality gives

E[Ŷi(x
a) +Bu1(Ti(x

a) = 0)] ≥ µ(xa).

Similarly we have E[Ŷi(x
a) + Bℓ1(Ti(x

a) = 0)] ≤ µ(xa). Replacing xa by xb and differencing

gives ∆ℓ ≤ ∆ ≤ ∆u.

Turning to the quantile bounds, we next prove the first part of Lemma A4 for a dynamic

model. Let Gi(y, x) here, in the dynamic case, be given by

Gi(y, x) =
T
∑

t=1

dit(x)1(Yit ≤ y) =
T
∑

t=1

dit(x)1(git(x) ≤ y),

Gℓ(y, x) = E[E[1(Ti(x) > 0)|Xi1]1(gi1(x) ≤ y)].

Note that since
∑T

t=1 dit(x) = 1(Ti(x) > 0) and dit(x) depends only on Xit,Xit−1, ...,Xi1,

Assumption 3 implies

E[Gi(y, x)] = E[

T
∑

t=1

dit(x)1(git(x) ≤ y)] = E[

T
∑

t=1

dit(x)E[1(git(x) ≤ y)|Xit, ...,Xi1]]

= E[

T
∑

t=1

dit(x)E[1(gi1(x) ≤ y)|Xi1]] = E[1(Ti(x) > 0)E[1(gi1(x) ≤ y)|Xi1]]

= Gℓ(y, x).

Also, since dit(x)dis(x) = 0 for any s 6= t and dit(x)
2 = dit(x), Assumption 3 implies that

E[{Ĝi(y, x)−Gi(y, x)}2] = E[

T
∑

t=1

dit(x){Φ(
y − git(x)

h
)− 1(git(x) ≤ y)}2]

≤ E[
T
∑

t=1

dit(x)E[{Φ(y − git(x)

h
)− 1(git(x) ≤ y)}2|Xit, ...,Xi1]]

= E[1(Ti(x) > 0)E[{Φ(y − gi1(x)

h
)− 1(gi1(x) ≤ y)}2|Xi1]]

= E[E[1(Ti(x) > 0)|Xi1]{Φ(
y − gi1(x)

h
)− 1(gi1(x) ≤ y)}2]

By Assumption 7 with Xi1 replacing Xi it follows that gi1(x) is continuously distributed for the

probability measure weighted by E[1(Ti(x) > 0)|Xi1]. Therefore it follows similarly to the proof

of Lemma A7 that E[{Ĝi(y, x) − Gi(y, x)}2] −→ 0 as h −→ 0. It also follows similarly to the

proof of Lemma A7

E[Ĝi(y, x)] = E[Gi(y, x)] +O(h2).

The conclusion now follows exactly like the proof of Theorem 2. Q.E.D.
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A5.2 Bounds under monotonicity

We now turn to the bounds when g0 is known to be monotonic, satisfying Assumption A1, in the

dynamic model. This condition leads to tighter bounds for the ASF and QSF. Here we will give

results showing estimable population bounds under monotonicity. We will also briefly describe

how to estimate them but for brevity do not give the full asymptotic theory. For d ∈ {a, b},
define 1dit = 1(Xi ∈ Xt(x

d)), t = 1, ..., T , 1̄di = 1(Xi ∈ X̄ (xd)), and 1̃diT = 1(XiT = xd). Let

G∗
u(y, x

a) = E[Gi(y, x
a) + 1̄ai {1̃biT 1(YiT ≤ y) + (1 − 1̃biT )}],

G∗
ℓ (y, x

b) = E[Gi(y, x
b) + 1̄bi 1̃

a
iT 1(YiT ≤ y)].

Theorem A10: Suppose that Assumptions 1, 3, 5, and A1 are satisfied. If E[|g0(x, αi, εit)|] <
∞ for x ∈ {xa, xb} then

∆ ≥ E[Ŷi(x
a)− Ŷi(x

b)] + E[1̄ai (1̃
b
iTYiT + (1− 1̃biT )Bℓ)]− E[1̄bi (1̃

a
iTYiT + (1− 1̃aiT )Bu)].

Also, if G∗
u(y, x

a) and G∗
ℓ (y, x

b) are continuous and strictly increasing on the interior of their

range then q(λ, xa) ≥ Q(λ,G∗
u(·, xa)) and q(λ, xb) ≤ Q(λ,G∗

ℓ (·, xb)), so that

∆λ ≥ Q(λ,G∗
u(·, xa))−Q(λ,G∗

ℓ (·, xb)).

Proof: Note that 1 =
∑T

t=1 1
a
it + 1̄ai 1̃

b
iT + 1̄ai (1− 1̃biT ). By Lemma A4,

T
∑

t=1

E[1aitgit(x
a)] = E[Ŷi(x

a)],

T
∑

t=1

E[1bitgit(x
b)] = E[Ŷi(x

b)].

Then by Assumption 3, monotonicity and giT (x
a) ≥ Bℓ,

µ(xa) =

T
∑

t=1

E[1aitgit(x
a)] + E[1̄ai giT (x

a)]

≥
T
∑

t=1

E[1aitgit(x
a)] + E[1̄ai 1̃

b
iT giT (x

b)] + E[1̄ai (1− 1̃biT )]Bℓ

= E[Ŷi(x
a)] + E[1̄ai 1̃

b
iTYiT ] + E[1̄ai (1− 1̃biT )]Bℓ.

Similarly we have

µ(xb) ≤ E[Ŷi(x
b)] + E[1̄bi 1̃

a
iTYiT ] + E[1̄bi (1− 1̃aiT )]Bu.

Subtracting this inequality from the previous one gives the first conclusion.

Next, similarly to above,

G(y, xa) =
T
∑

t=1

E[1ait1(git(x
a) ≤ y)] +E[1̄ai 1(giT (x

a) ≤ y)]

≤ E[Gi(y, x
a)] + E[1̄ai 1̃

b
iT 1(YiT ≤ y)] + E[1̄ai (1− 1̃biT )] = G∗

u(y, x
a).

G(y, xb) ≥ G∗
ℓ (y, x

b).
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Inverting gives the second conclusion. Q.E.D.

If Xit ∈ {0, 1}, xb = 0, and xa = 1, then 1̄bi (1− 1̃aiT ) = 1̄ai (1− 1̃biT ) = 0 and the lower bound

for ∆ does not depend on Bℓ and Bu.

Estimation of the bounds under monotonicity is straightforward. We can estimate the lower

bound for the ATE by

n
∑

i=1

[Ŷi(x
a)− Ŷi(x

b) + 1̄ai (1̃
b
iTYiT + (1− 1̃biT )Bℓ)− 1̄bi (1̃

a
iTYiT + (1− 1̃aiT )Bu)]/n.

We can estimate the quantile bounds by inverting

Ĝ∗
u(y, x

a) =

n
∑

i=1

[Ĝi(y, x
a) + 1̄ai {1̃biT 1(YiT ≤ y) + (1− 1̃aiT )}]/n,

Ĝ∗
ℓ (y, x

b) =
n
∑

i=1

[Ĝi(y, x
b) + 1̄bi 1̃

a
iT 1(YiT ≤ y)]/n.

Asymptotic theory for these estimators of bounds under monotonicity is straightforward. We

do not know if they are sharp.

A6 Supplements to Section 6

In addition to the proofs of the rate results of Section 6, we here give necessary and sufficient

conditions for identification as T −→ ∞ and extend the identification and rate results to the

QTE.

A6.1 Identification as T → ∞

We begin with the identification result. The necessary and sufficient condition for identification

of ∆ as T grows is

Assumption A2: Pr(Pr (Xit = x|αi) > 0) = 1 for x ∈ {xa, xb} and some t ∈ {1, . . . , T}.

If this condition does not hold for both xb and xa then some individuals, as represented

by αi, will never reach either xb or xa, so we cannot nonparametrically identify the treatment

effect for those individuals, and hence the overall treatment effect is not identified. A related

condition was formulated in Chamberlain (1982, p. 17) but was used for a different purpose,

as a sufficient condition for a least squares estimate for a single individual to converge to that

individual’s coefficient.

The following result shows the key role of Assumption A2 in achieving identification as

T −→ ∞.
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Theorem A11: Suppose that Assumptions 1 and 5 are satisfied. If Assumption A2 is not

satisfied then P̄(x) is bounded away from zero uniformly in T for x = xa or x = xb, so that

if Assumption 6 is satisfied, ∆u −∆ℓ does not converge to zero as T grows. Suppose also that

(Xi1,Xi2, ...) is stationary and ergodic conditional on αi. If Assumptions 2 and A2 are satisfied

and E[|g0(x, αi, εi1)|] < ∞ for x = xa and x = xb, then δ −→ ∆ as T −→ ∞. If Assumptions

3, 6, and A2 are satisfied then ∆u −∆ℓ −→ 0 as T −→ ∞.

Proof: First, note that if Assumption A2 is not satisfied then for some xd ∈ {xa, xb} there

is a set A with Pr(A) > 0 such that Pr(Xit = xd|αi) = 0 for all t and αi ∈ A. Then

E[Ti(x
d)|αi ∈ A] =

T
∑

t=1

E[1(Xit = xd)|αi ∈ A] = 0.

Since Ti(x
d) is a nonnegative random variable, this implies that Pr(Ti(x

d) = 0|αi) = 1 for all T

and αi ∈ A. Therefore

P̄(xd) = E[Pr(Ti(x
d) = 0|αi)] ≥ E[1(A) Pr(Ti(x

d) = 0|αi)] = Pr(A) > 0.

Thus P̄(xd) is bounded away from zero for all T, and hence under Assumption 6, (Bu −
Bℓ)[P̄(xa) + P̄(xb)] ≥ (Bu −Bℓ)P̄(xd) does not converge to zero.

Next suppose that Assumptions 2 and A2 are satisfied, (Xi1,Xi2, ...) is stationary and ergodic

conditional on αi, and that x ∈ {xa, xb}. Recall that Ti(x) =
∑T

t=1 1(Xit = x). By the ergodic

theorem, there is a set of αi having probability one such that

Ti(x)/T
a.s.−→ E[1(Xit = x)|αi] = Pr(Xit = x | αi).

Under Assumption A2 Pr(Xit = x | αi) > 0 on a set of αi with probability one (a.s. αi

henceforth). Therefore 1(Ti(x) > 0)
a.s.−→ 1 a.s. αi. Since this holds for both x

a and xb, it follows

that

Di = 1(Ti(x
a) > 0)1(Ti(x

b) > 0)
a.s.−→ 1

a.s. αi. Let ∆i = gi1(x
a)− gi1(x

b). Note that |Di∆i| ≤ |∆i| and E[|∆i||αi] < ∞ a.s. αi. Then

by the dominated convergence theorem (DCT henceforth),

E[Di∆i|αi] −→ E[∆i|αi], E[Di|αi] −→ 1 a.s. αi.

Then by the applying the DCT again,

E[Di∆i] −→ E[∆i] = ∆, E[Di] −→ 1,

giving the first conclusion.
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Suppose next that Assumptions 3 and 6 are satisfied, and (Xi1,Xi2, ...) is stationary and

ergodic conditional on αi. Recall that ∆u −∆ℓ = (Bu −Bℓ)[P̄(xa) + P̄(xb)]. If Assumption A2

is satisfied then since 1(Ti(x
a) > 0) ≥ Di we have

P̄(xa) = E[1(Ti(x
a) = 0)] ≤ 1− E[Di] −→ 0

Similarly we have P̄(xb) −→ 0 so the second conclusion holds. Q.E.D.

A6.2 Proof of Theorem 4

Let ΠT
t=11(Xit 6= x) be the indicator function for the event that none of the elements of Xi is

equal to x so that P̄(x) = E[ΠT
t=11(Xit 6= x)]. By iterated expectations, for T > J ,

P̄(x) = E[ΠT−1
t=1 1(Xit 6= x)E[1(XiT 6= x)|Xi,T−1, ...,Xi1, αi]]

= E[{ΠT−1
t=1 1(Xit 6= x)}Pr(XiT 6= x|Xi,T−1, ...,Xi,T−J , αi)] ≤ (1− ε)E[ΠT−1

t=1 1(Xit 6= x)].

Repeating the argument for T − 1, ..., J gives

P̄(x) ≤ (1− ε)T−JE[ΠJ−1
t=1 1(Xit 6= x)] ≤ (1 − ε)T−J ,

giving the first conclusion.

For the second conclusion, note that the conditional i.i.d. assumption and the bound implies

that for Pi = Pr(Xit 6= x|αi) we have P̄(x) = E[P T
i ] being no greater than a constant times the

T th raw moment of a Beta distribution with parameters γ and v. Also, it is well known that

T vΓ(T + γ)/Γ(T + γ + v) −→ 1 as T −→ ∞. Therefore, we have

E[P T
i ] ≤ C[Γ(γ + v)/Γ(γ)Γ(v)]

∫ 1

0
pT+γ−1(1− p)v−1dp

≤ C[Γ(γ + v)/Γ(γ)Γ(v)][Γ(T + γ)Γ(v)/Γ(T + γ + v)]

= CΓ(T + γ)/Γ(T + γ + v) ≤ CT−v. Q.E.D.

A6.3 Proof of Theorem 5

Note that Pr(Yit = 0|Yi,t−1 = 0, αi) = 1−H(α1i)

P̄(1) = E[Pr(Yi,T−1 = Yi,T−2 = ... = Yi0 = 0|αi)]

= E[ΠT−1
t=1 Pr(Yit = 0|Yi,t−1 = 0, αi) Pr(Yi0 = 0|αi)]

≤ E[{1−H(αi1)}T−1].
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By a change of variables we find that the pdf f(p) of 1−H(αi1) is

f(p) = f1(H
−1(1− p))/fε(H

−1(1− p)) ≤ C(1− p)v−1pv−1.

Thus, the pdf of 1 − H(αi1) is bounded above by a Beta pdf with parameters v, v. It then

follows as in the proof of Theorem 4 that P̄(1) ≤ C(T − 1)−v ≤ CT−v. It follows similarly that

P̄(0) ≤ CT−v. Q.E.D.

A6.4 Identification rates for QTE

Finally, we show that the nonparametric rates and nonidentification results apply to the QTE.

We do this by giving Lemmas for quantile bounds that apply to both static and dynamic models.

The first Lemma shows that the identification rate is at least as fast as the rate at which P̄(x)

decreases.

Lemma A12: Suppose that G(y) is a CDF that is strictly increasing and continuously differ-

entiable on {y : 0 < G(y) < 1} and that GT (y) is a continuous function and P̄T a nonnegative

constant satisfying

GT (y) ≤ G(y) ≤ GT (y) + P̄T , GT (−∞) = 0, GT (∞) + P̄T = 1.

If P̄T −→ 0 as T −→ ∞ then for 0 < λ < 1 and large enough T there are qℓT ≤ q ≤ quT

satisfying

λ = GT (quT ) = G(q) = GT (qℓT ) + P̄T .

Also, any such quT and qℓT satisfy: quT − qℓT = O(P̄T ).

Proof: Choose T large enough that P̄T < min(λ, 1 − λ). Then GT (∞) = 1 − P̄T > λ

and GT (−∞) + P̄T = P̄T < λ. Therefore by continuity of GT (y) there exist quT such that

λ = GT (quT ) and qℓT such that λ = GT (qℓT ) + P̄T . Also, by G(y) being a strictly increasing

CDF there is a unique q with λ = G(q). Note G(q) = GT (quT ) ≤ G(quT ) so that quT ≥ q by G(q)

strictly monotonic. It follow similarly that qℓT ≤ q. Also, for any ε > 0 we have G(q−ε) < G(q),

so that for large enough T it follow

G(q − ε) < G(q)− P̄T = GT (qℓT ) ≤ G(qℓT ).

By strict monotonicity of G(q) it follows that qℓT > q−ε for large enough T . Since ε is arbitrary
we have qℓT −→ q. It follow similarly that quT −→ q.

Next, choose ε small enough that ∂G(q̃)/∂q ≥ C > 0 for q̃ ∈ I =[q − ε, q + ε]. Note that for

T large enough, qℓT , quT ∈ I. Also we have

G(qℓT ) + 2P̄T ≥ GT (qℓT ) + 2P̄T = G(q) + P̄T = GT (quT ) + P̄T ≥ G(quT ).
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Subtracting G(qℓT ) from both sides and expanding gives

2P̄T ≥ G(quT )−G(qℓT ) =
∂G(q̄T )

∂q
(quT − qℓT ) ≥ C(quT − qℓT ).

Dividing through by C gives quT − qℓT ≤ CP̄T , implying the conclusion. Q.E.D.

The next result gives conditions under which the identification rate is no faster than the rate

at which P̄(x) decreases. This result will also show that quantile effects are not identified as

T −→ ∞ if P̄(x) does not go to zero.

Lemma A13: If the conditions of Lemma A12 are satisfied and GT (y) is continuously

differentiable with |∂GT (y)/∂y| ≤ C for all y and T then there is C such that for P̄T > 0,

quT − qℓT ≥ CP̄T .

Proof: As in the proof of Lemma A12 we have GT (quT ) = GT (qℓT ) + P̄T . By the intermediate

value theorem it follows that for some qℓT ≤ q̄ ≤ quT

∂GT (q̄)

∂q
(quT − qℓT ) = P̄T .

For P̄T > 0 we must have ∂GT (q̄)/∂q 6= 0, so that

quT − qℓT =

[

∂GT (q̄)

∂q

]−1

P̄T ≥ C−1P̄T . Q.E.D.

Taken together these two results show that the identification rate for the QTE is the same

as the rate at which P̄(x) decreases. Together they also show that if P̄(x) does not go to zero

the bounds do not shrink to a point. It is straightforward to check that the conditions of these

results are satisfied.

A7 Supplements to Section 7

We now turn to the results of Section 7 and to one additional result on the consistency of

non-linear fixed effects estimators for the identified ATE.

A7.1 Proof of Theorem 6

Consider first the static case where Xit ∈ {0, 1}. We show the result for Xk = (0, ..., 0)′ . The

result for Xk = (1, ..., 1)′ will follow similarly. Note that β∗ is identified for logit so B = {β∗}.
Let Z = H(α) and let G(z) be the CDF of Z when F ∈ Fk = Fk(β

∗,P) is the CDF of α. By

(Yi1, ..., YiT ) mutually independent conditional on α we have

Mt = Pr(Yit = 1, ..., Yi1 = 1|Xi ∈ Xk) =

∫

H(α)tdF (α) =

∫

ZtdG(Z),
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so that Mt is identified for t = 1, ..., T . Now consider a T th order polynomial P (z, T ) = b0 +

b1z + ...+ bT z
T in z. Note that

∫

P (Z, T )dG(Z) = b0 +

T
∑

t=1

btMt

does not depend on F ∈ Fk. As a special case,
∫

ZdG(Z) =M1 also does not depend on F ∈ Fk.

Define the function h(z) = H(β∗+H−1(z)) = zeβ
∗

/1−(1−eβ∗

)z. Note ∆k =
∫

[h(Z)−Z]dG(Z)
for all F ∈ Fk. For any polynomial P (z, t) let R(z, t) = h(z) − P (z, t) be the remainder. Then

we have

∆k
u −∆k

ℓ = sup
F∈Fk

∫

[h(Z)− Z]dG(Z)− inf
F∈Fk

∫

[h(Z)− Z]dG(Z) (19)

= sup
F∈Fk

∫

[P (Z, T ) +R(Z, T )]dG(Z) − inf
F∈Fk

∫

[P (Z, T ) +R(Z, T )]dG(Z)

= sup
F∈Fk

∫

R(Z, T )dG(Z) − inf
F∈Fk

∫

R(Z, T )dG(Z) ≤ 2 sup
0≤z≤1

|R(z, T )|.

The function h(z) is continuously differentiable of order r for every r with
∣

∣

∣

∣

drh(z)

dzr

∣

∣

∣

∣

≤ r!e|β
∗|(e|β

∗| − 1|)r−1.

Then by Jackson’s Theorem (e.g. Judd (1998) Chap. 3) there exists P (z, T ) such that for

γ = π(e|β
∗| − 1|)/4

sup
0≤z≤1

|R(z, T )| ≤ (T − r)!

T !

(π

4

)r
sup

0≤z≤1

∣

∣

∣

∣

drh(z)

dzr

∣

∣

∣

∣

≤ (T − r)!r!

T !

(π

4

)r
e|β

∗|(e|β
∗| − 1|)r−1 ≤ C

(rγ

T

)r
.

This inequality continues to hold if γ is replaced by max{γ, 1}, so we can assume γ > 1. Then

choose r equal to T/γe, so that

sup
0≤z≤1

|R(z, T )| ≤ Ce−T/γe.

The conclusion then follows by eq. (19).

Next consider the dynamic binary logit model where Xit = Yi,t−1. It is known from Cox

(1958) and Chamberlain (1985) that β∗ identified for T large enough. We show the result for

∆1 where X 1 = {Xi : Xi1 = 0}. The result for the ATE conditional on Xi1 = 1 will follow

analogously. Then

Pr(Yit = 0, ..., Yi1 = 0|Xi1 = 0) =

∫

[1−H(α)]tdF (α)

is identified for t = 1, ..., T . It follows by a standard argument that Mt =
∫

H(α)tdF (α) is

identified for t = 1, ..., T . The proof then proceeds exactly as for the static case. Q.E.D.
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A7.2 Consistency of fixed effects for identified ATE

We now consider the fixed effects estimator in a binary choice model with a binary regressor

and T = 2. In some models fixed effect (FE) estimators of the ATE appear to have small biases;

e.g. see Hahn and Newey (2004) and Fernández-Val (2009). Here we show consistency of FE for

δ. To describe this result, note that the FE estimator of the ASF conditional on Xi = Xk is

µ̂FE
k (x) =

n
∑

i=1

1(Xi = Xk)H(xβ̂FE + α̂i)/

n
∑

i=1

1(Xi = Xk),

β̂FE, α̂1, ..., α̂n = arg max
β,α1,...,αn

∑

i,t

ln{H(Xitβ + αi)
Yit [1−H(Xitβ + αi)]

1−Yit}.

Let βT denote the limit of β̂FE. In the multinomial choice model α̂i will have a limit distribution

conditional on Xi = Xk that is discrete with J support points αk
j (βT ) and Pr(α = αk

j (βT )) =

Pk
j , (j = 1, ..., J). These limits will satisfy

βT = argmaxβ

K
∑

k=1

Pk
J
∑

j=1

Pk
j logLk

j

(

αk
j (β), β

)

, (20)

αk
j (β) = argmaxαLk

j (α, β) , (j = 1, ..., J ; k = 1, ...,K),

where Pk = E[1(Xi = Xk)]. The corresponding limit of µ̂FE
k (x) is then given by

µTk (x) =

J
∑

j=1

Pk
jH(x′βT + αk

j (βT )).

Note that with binary Xit and T = 2 we have K = 4. Let X1 = (0, 0), X2 = (0, 1), X3 = (1, 0),

and X4 = (1, 1), so that the identified effect equals δ =
∑3

k=2Pk∆k/
∑3

k=2Pk.

Theorem A14: If H ′(x) > 0, H(−x) = 1 − H(x), Xit ∈ {0, 1}, T = 2 and P2 + P3 > 0

then
3
∑

k=2

Pk[µTk (1)− µTk (0)]/
3
∑

k=2

Pk = δ.

Proof: Let Y 1 = (0, 0)′, Y 2 = (0, 1)′, Y 3 = (1, 0)′, Y 4 = (1, 1)′ and X1 = (0, 0)′, X2 = (0, 1)′,

X3 = (1, 0)′, X4 = (1, 1)′. The identified effect is

δ =
{

P2E[Yi2 − Yi1|Xi = X2] + P3E[Yi1 − Yi2|Xi = X3]
}

/(P2 + P3)

=
[

P2(P2
2 − P2

3 ) + P3(P3
3 − P3

2 )
]

/(P2 + P3).

Next, the symmetryH(−x) = 1−H(x) implies that αk
j (β) take the form

αk
j (β) =















−∞, j = 1,

−β(Xk
1 +Xk

2 )/2, j = 2, 3,

∞, j = 4.
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Note that for k = 2 or k = 3 we have Xk
1 +Xk

2 = 1, so that αk
j (β) = −β̃ for β̃ = β/2. Thus,

H(β + αk
j (β))−H(αk

j (β)) = H(β̃)−H(−β̃) = 2H(β̃)− 1.

Therefore the limit of the fixed effects estimator of the identified effect is

A[2H(β̃)− 1], A =
[

P2(P2
2 + P2

3 ) + P3(P3
2 + P3

3 )
]

/(P2 + P3).

Next, the limit of the concentrated log likelihood is

2P2[P2
2 lnH(β̃) + P2

3 lnH(−β̃)] + 2P3[P3
2 lnH(−β̃) + P3

3 lnH(β̃)].

The first-order conditions for maximization of this object are

0 = 2P2[P2
2λ(β̃)− P2

3λ(−β̃)] + 2P3[−P3
2λ(−β̃) + P3

3λ(β̃)],

where λ(x) = H ′(x)/H(x). By symmetry, H ′(−β̃) = H ′(β̃). Divide the first order conditions by

H ′(β̃) and multiply by H(β̃)H(−β̃) to obtain

0 = 2P2[P2
2H(−β̃)− P2

3H(β̃)] + 2P3[−P3
2H(β̃) + P3

3H(−β̃)]

= 2(P2 + P3)[δ −A(2H(β̃)− 1)]. Q.E.D.

In numerical examples this same result continues to hold for T = 3 and T = 4. It would be

interesting to extend this result to larger T but it is beyond the scope of this paper to do so.

Unfortunately this result does not extend to the overall ATE.

A8 Supplements to Section 8

Here we give the proofs of Section 8 and additional numerical results for the logit model.

A8.1 Proof of Lemma 7

Let the vector of model probabilities for (Y 1, ...., Y J) be

Lk (α, β) ≡
(

Lk
1 (α, β) , ...,Lk

J (α, β)
)′
.

Let Γk(β) ≡
{

Lk (α, β) : α ∈ Υ
}

and Γ̆k(β) be the convex hull of Γk(β). By Lemma 3 of Cham-

berlain (1987), Γ̆k(β) = {
∫

Lk (α, β) dF (α) : F is a CDF on Υ}. Therefore,
∫

Lk (α, β) dFk(α) ∈
Γ̆k (β) . Note that Γk(β) is contained in the unit simplex and so has dimension J − 1. By the
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Carathéodory Theorem there exist J vectors Lk
(

αk
m, β

)

, (m = 1, ..., J) and 0 ≤ πkm ≤ 1 with
∑J

m=1 π
k
m = 1 such that

∫

Lk (α, β) dFk(α) =

J
∑

m=1

πkmLk
(

αk
m, β

)

,

giving the conclusion for the discrete distribution F J
k with J support points at (αk

1, ..., α
k
J) and

probabilities (πk1 , ..., π
k
J).

Next, for any ǫ > 0 let β ∈ B and Fkβ ∈ Fk(β,P) satisfy

∆k
u − ǫ <

∫

∆(α, β)dFkβ (α) ≡ ∆̄(β).

Similarly to the previous paragraph, let Γ∆
k (β) ≡

{

(Lk (α, β)′ ,∆(α, β))′ : α ∈ Υ
}

and Γ̆∆
k (β) be

the convex hull of Γ∆
k (β). Then (Pk

1 , ...,Pk
J , ∆̄(β))′ ∈ Γ̆∆

k (β) , so by Caratheodory’s Theorem

there exists a discrete distribution F J+1
kβ with J+1 support points (αk

1 , ..., α
k
J+1) and probabilities

πk1 , ..., π
k
J+1 such that F J+1

kβ ∈ Fk(β,P) and
∫

∆(α, β)dF J+1
kβ (α) = ∆̄(β).

We now show that it suffices to have mass over just J points. Consider the problem of

allocating πk1, ..., π
k
J+1 among

(

αk
1, ..., α

k
J+1

)

in order to solve

max
(πk

1
,...,πk

J+1)

J+1
∑

m=1

∆(αk
m, β)π

k
m, s.t.

J+1
∑

m=1

πkmLk
j

(

αk
m, β

)

= Pk
j ,

J+1
∑

m=1

πkm = 1, πkm ≥ 0, (m = 1, ..., J + 1).

This is a linear program of the form

max
πk∈RJ+1

c′πk such that πk ≥ 0, Aπk = b, 1′πk = 1,

and any basic feasible solution to this program has J + 1 active constraints, of which at most

rank (A)+1 can be equality constraints. This means that at least J+1−rank([A′, 1]′) of active

constraints are of the form πkm = 0, see, e.g., Theorem 2.3 and Definition 2.9 (ii) in Bertsimas

and Tsitsiklis (1997). Since each column of A sums to 1, rank([A′, 1]′) ≤ J and a basic solution

to this linear programming problem will have at least one zero. Thus, there are at most J strictly

positive πkm’s.2 Therefore, we have shown that there exists a distribution F J
kβ ∈ Fk(β,P) with

just J points of support such that

∆k
u − ǫ <

∫

∆(α, β)dF J+1
kβ (α) ≤

∫

∆(α, β)dF J
kβ (α) .

This construction works for every ǫ > 0. Q.E.D.

2Note that rank([A′, 1]′) ≤ J , since
∑J

j=1
Lk

j (α, β) = 1. The exact rank of [A′, 1]′ depends on the sequence

Xk, the parameter β, the form of Lk
j (α, β), and T . For example in the model of equation (8) of the main text

with T = 2 and X binary, rank(A) = J − 2 = 2 when x1 = x2, β = 0, or H is the logistic distribution; whereas

rank(A) = J − 1 = 3 for Xk
1 6= Xk

2 , β 6= 0, and H is any continuous distribution different from the logistic.
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A8.2 Numerical results for logit model

We carry out some additional numerical calculations for the logit model where

Yit = 1(β∗Xit + αi ≥ εit), εit ∼ L(0, 1),Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1),

where L(0, 1) denotes the standard logistic distribution normalized to have zero mean and unit

variance. We consider different DGPs indexed by β∗ ∈ [−2, 2] and T ∈ {2, 3}. Figures 1 and 2

show nonparametric bounds for ATEs and semiparametric bounds for β∗ and ATEs for T = 2

and T = 3, respectively. The semiparametric bounds are obtained using the computational

algorithm described in Section 8 of the paper with M = 100 and λM = 1.3 × 10−8. The

elements of the fixed grid ΥM are located at the percentiles of the standard normal distribution.

As is well-known, we find that β∗ is identified for T ≥ 2. The nonparametric bounds for the

ATEs (NP-bounds) can be very wide, even when we impose monotonicity (NPM-bounds). The

semiparametric bounds for the ATEs (SP-bounds) are tighter than the nonparametric bounds

and shrink exponentially fast with T , as shown in Theorem 6.

A8.3 Proof of Lemma 8

Consider the set ℜ̄ = (−∞,+∞) ∪ {−∞,+∞}. By assumption H(v) is strictly monotonic and

continuous on ℜ̄ with H(−∞) = 0 and H(+∞) = 1. Let H−1(u) be the inverse function defined

on [0, 1]. Let v̄ = maxXk∈{X1,...,XK},β∈B |Xk′
t β| and define the function

T (u) =















v̄ +H−1(u), 3
4 ≤ u ≤ 1

(4u− 2)
[

v̄ +H−1(34 )
]

, 1
4 < u < 3

4

−v̄ +H−1(u), 0 ≤ u ≤ 1
4 .

This function is continuous and differentiable except at u = 1
4 and u = 3

4 . At u = 1
4 the left

derivative is
[

h(H−1
(

1
4

)

)
]−1

and the right derivative is 4
[

v̄ +H−1
(

3
4

)]

.

Consider the functionH(v+T (u)). By the chain rule, H(v+T (u)) is differentiable everywhere

on [−v̄, v̄]×
(

1
4 ,

3
4

)

and right differentiable at
(

v, 14
)

and left differentiable at
(

v, 34
)

with derivative

(right or left) equal to

h(v + T (u))4

[

v̄ +H−1(
3

4
)

]

.

This derivative is uniformly bounded on [−v̄, v̄] ×
(

1
4 ,

3
4

)

by h uniformly bounded. Also

H(v + T (u)) is differentiable everywhere on [−v̄, v̄] ×
{(

3
4 ,∞

)

∪
(

−∞, 14
)}

, right differentiable

at [−v̄, v̄]×
{

3
4

}

and left differentiable at [−v̄, v̄]×
{

1
4

}

. For u ∈ [3/4, 1] the (right) derivative is

∂

∂u
H(v + T (u)) = H ′(v + T (u))T ′(u) =

h(v + v̄ +H−1(u))

h(H−1(u))
≤ h(H−1(u))

h(H−1(u))
= 1
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where the inequality holds by v̄ + v ≥ 0 (implied by v ≥ −v̄) and by H−1(u) > 0. It follows

similarly that ∂H(v + T (u))/∂u is uniformly bounded by 1 on [−v̄, v̄] × [0, 14 ]. It follows that

there is a constant C such that for all v ∈ [−v̄, v̄] and u, ũ ∈ [0, 1],

|H(v + T (ũ))−H(v + T (u))| ≤ C|ũ− u|.

Note that T−1(α) is a strictly monotonic increasing function on ℜ̄. Define d(α̃, α) =

|T−1(α̃) − T−1(α)|. Note that d(α̃, α) ≥ 0 with equality if and only if α̃ = α, and for any

three points ᾱ, α̃, and α, the triangle inequality implies

d(α̃, α) = |T−1(α̃)− T−1(α)| ≤ |T−1(α̃)− T−1(ᾱ)|+ |T−1(ᾱ)− T−1(α)| = d(α̃, ᾱ) + d(ᾱ, α).

Therefore d(α̃, α) is a metric. Also, for ũ = T−1(α̃) and u = T−1(α), we have

sup
v∈[−v̄,v̄]

|H(v + α̃)−H(v + α)| ≤ C|T−1(α̃)− T−1(α)| = Cd(α̃, α).

Also, by |Xk′
t β| ≤ v̄, and 0 ≤ H(Xk′

t β + α) ≤ 1, for all t, k, and β ∈ B,

∣

∣

∣
Lk
j

(

α̃, β̃
)

− Lk
j (α, β)

∣

∣

∣
≤

∣

∣

∣
Lk
j

(

α̃, β̃
)

− Lk
j

(

α, β̃
)∣

∣

∣
+
∣

∣

∣
Lk
j

(

α, β̃
)

− Lk
j (α, β)

∣

∣

∣

≤ Cd(α̃, α) + sup
α,t,k

|H(Xk′
t β̃ + α)−H(Xk′

t β + α)|

≤ Cd(α̃, α) + sup
v
h(v) sup

t,k

∥

∥

∥Xk
t

∥

∥

∥

∥

∥

∥β̃ − β
∥

∥

∥

≤ C[d(α̃, α) +
∥

∥

∥β̃ − β
∥

∥

∥].

Finally, for every M let ᾱmM = T ((m− 1)/(M − 1)), (m = 1, ...,M). Then

η(M) = sup
α∈ℜ̄

min
α̃∈ΥM

d(α, α̃) = sup
u∈[0,1]

min
ũ∈{0,1/(M−1),2/(M−1),...,1}

|u− ũ| = 1/(M − 1). Q.E.D.

A8.4 Proof of Theorem 9

This proof is omitted because it is very similar (but easier) than the proof of Theorem 10 to

follow.

A9 Supplements to Section 9

Here we describe the estimation algorithm, give the proofs of Theorems 10 and 11, and present

an alternative inference method based on projection.
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A9.1 Estimation: Implementation Details

To implement the estimation method, we also start from simpler estimates of the bounds corre-

sponding to those described in the computation section. Specifically, for π̂(β) ∈ argminπ∈SK
M
T̂λ(β, π)

let Ŝk(β) = {πk : P k
j (β, π, M̂) = P k

j (β, π̂(β), M̂ ), j = 1, ..., J} and let

∆̌k
ℓ = min

β∈B̂,πk∈Ŝk(β)

M
∑

m=1

πkm∆(ᾱmM , β), ∆̌k
u = max

β∈B̂,πk∈Ŝk(β)

M
∑

m=1

πkm∆(ᾱmM , β).

We use these estimated bounds as starting values and then search over other possible values of

π, similar to the computational approach.

The choice of M̂ is important for this estimator. In our empirical examples we have proceeded

by starting with a small M̂, and stopping when the change in the estimated sets is small. We have

found that quite small M̂ often suffices. The choice of weights ŵk
j is also important. The optimal

choice, corresponding to minimum chi-square would be ŵk
j = Pk/Pk

j . Using sample frequencies

in place of population frequencies does not work well due to small cell sizes. One could use a

two-step procedure where one first computes the identified set for weights like ŵk
j = P̂ k and

then reestimates the identified set using weights ŵk
j = P̂k/P

k
j (β, π̂(β), M̂ ) for some β ∈ B̂.

A9.2 Proof of Theorem 10

For notational convenience we here denote the probabilities associated with the fixed grid

{ᾱ1M , ..., ᾱMM} by π̄k. Let π̄ = (π̄1′, ..., π̄K′)′ be a KM × 1 vector with each π̄k in the M -

dimensional unit simplex SM . Also, let the probabilities associated with a variable grid {αk
1 , ..., α

k
J+1}

be πk so that π = (π1′, ..., πK′)′ is a [(J + 1)K] × 1 vector of probabilities with each πk in the

J + 1-dimensional unit simplex SJ+1. Let α
k = (αk

1, ..., α
k
J+1)

′, α = (α1′, ..., αK′)′, γ = (α′, π′)′,

θ = (β′, γ ′)′, P̃ k
j (θ) =

∑J+1
ℓ=1 Lk

j

(

αk
ℓ , β
)

πkℓ , ∆
k(θ) =

∑J+1
ℓ=1 ∆

(

αk
ℓ , β
)

πkℓ , Θ = B×Υ(J+1)K ×SK
J+1,

and

Q̂(θ) =
∑

j,k

ŵk
j

[

P̂ k
j − P̃ k

j (θ)
]2
, Q(θ) =

∑

j,k

wk
j

[

Pk
j − P̃ k

j (θ)
]2
.

By applying the Caratheodory Theorem as in the proof of Lemma 12, for every π̄ there is

θ(π̄, β) = (β′, γ(π̄, β)′)′ with

∆k(θ(π̄, β)) =
M
∑

m=1

∆(ᾱmM , β)π̄
k
m, P̃

k
j (θ(π̄, β)) = P k

j (β, π̄,M), (j = 1, ..., J ; k = 1, ...,K).

Let ΘI = {θ : Q(θ) = 0},

Θ̃ = {θ(π̄, β) : Q̂(θ(π̄, β)) + λnπ̄
′π̄ ≤ ǫn},ΘM = {θ(π̄, β) : π̄ ∈ SK

M , β ∈ B}.

By construction the projection of Θ̃ on B coincides with B̂ and the projection of ΘI on B

coincides with B. Also the identified set of marginal effects is {∆k(θ) : θ ∈ ΘI}, ∆k(θ) is a
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continuous function of θ, and D̂k = {∆k(θ) : θ ∈ Θ̃}. Since the minimum and maximum of a

set are continuous in the Hausdorff metric, it suffices to show that dH(Θ̃,ΘI)
p−→ 0.

Let d(θ, θ̃) = maxj,kmax{d(αk
j , α̃

k
j ), |πk

j − π̃kj |,
∥

∥

∥β − β̃
∥

∥

∥}. From Assumption 9 and M̂
p−→ ∞

we have

sup
α∈Υ

min
α̃∈Υ

M̂

d(α, α̃) ≤ η(M̂ )
p−→ 0.

Therefore for every α ∈ Υ there is ᾱm(α),M̂ with d(α, ᾱm(α),M̂ ) ≤ η(M̂), so that for any θ ∈ Θ

there are ᾱm(αk
ℓ ),M̂

with max1≤ℓ≤J+1,k{d(αk
ℓ , ᾱm(αk

ℓ ),M̂
)} ≤ η(M̂ ). Let αk(θ) = (ᾱm(αk

1
),M̂ , ..., ᾱm(αk

J+1
),M̂ )′,

α(θ) = (α1(θ)′, ..., αK(θ)′)′, and θ̄(θ) = (β′, α(θ)′, π′)′. By construction, θ̄(θ) ∈ ΘM and d(θ̄(θ), θ) ≤
η(M̂ ). Thus,

sup
θ∈Θ

inf
θ̃∈Θ

M̂

d(θ, θ̃) ≤ η(M̂).

Also, by Assumption 9,

|P̃ k
j (θ)− P̃ k

j (θ̃)| ≤
J
∑

ℓ=1

∣

∣

∣Lk
j

(

αk
ℓ , β
)

πkℓ − Lk
j

(

α̃k
ℓ , β̃
)

π̃kℓ

∣

∣

∣ ≤ Cd(θ, θ̃).

It then follows by standard calculations that there is Ĉ = Op(1) such that

|Q̂(θ)− Q̂(θ̃)| ≤ Ĉd(θ, θ̃) for all θ, θ̃ ∈ Θ.

Therefore we have

sup
θ∈Θ

inf
θ̃∈Θ

M̂

|Q̂(θ)− Q̂(θ̃)| ≤ Ĉη(M̂).

Also note that

sup
θ∈ΘI

Q̂(θ) =
∑

j,k

ŵk
j [P̂

k
j − Pk

j ]
2 = Op(n

−1).

Next let δ > 0 be any positive constant and define the events

E1 =
{

η(M̂ ) < δ
}

, E2 =
{

Ĉη(M̂ ) <
ǫn
3

}

, E3 =
{

sup
θ∈ΘI

Q̂(θ) <
ǫn
3

}

, E4 = sup
π̄∈SK

M

λnπ̄
′π̄ <

ǫn
3
.

By (n−1 + η(M̂ ) + λn)/ǫn
p−→ 0 it follows that

Pr(E1) −→ 1,Pr(E2) = Pr

(

Ĉ <
η(M̂)−1ǫn

3

)

−→ 1,

Pr(E3) = Pr

(

n sup
θ∈ΘI

Q̂(θ) <
nǫn
3

)

−→ 1,Pr(E4) ≥ Pr(λnK ≤ ǫn
3
) −→ 1.

It follows that Pr(∩4
r=1Er) −→ 1. When ∩4

r=1Er occurs then for every θ ∈ ΘI there is π̄ with

θM = θ(π̄, β) ∈ ΘM such that d(θ, θ̄) < δ and

Q̂(θ̄) + λnπ̄
′π̄ ≤ Q̂(θ̄) +

ǫn
3

≤ Q̂(θ) + Q̂(θ̄)− Q̂(θ) +
ǫn
3

≤ sup
θ∈ΘI

Q̂(θ) + Ĉη̂(M) +
ǫn
3

≤ ǫn,
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i.e. θ̄ ∈ Θ̃. Thus, with probability approaching one,

sup
θ∈ΘI

inf
θ̃∈Θ̃

d(θ, θ̃) ≤ δ.

Next, note that Q̂(θ)
p−→ Q(θ) so it follows by Theorem 2.1 of Newey (1991) that supθ∈Θ

∣

∣

∣
Q̂(θ)−Q(θ)

∣

∣

∣

p−→

0. Define Θδ
I =

{

θ : inf θ̃∈ΘI
d(θ, θ̃) < δ

}

. Note that Θδ
I is open so that Θ\Θδ

I is compact, so by

continuity of Q(θ), inf
Θ\Θδ

I

Q(θ) = ρ > 0. It follows by uniform convergence that inf
Θ\Θδ

I

Q̂(θ) > ρ
2

with probability approaching 1 (w.p.a. 1). By ǫn → 0,

sup
θ∈Θ̃

Q̂(θ) ≤ sup
π̄
{Q̂(θ(π̄, β)) + λnπ̄

′π̄ ≤ ǫn} < ρ/2,

so that Θ̃ ⊆ Θδ
I . Therefore w.p.a.1 for all θ̃ ∈ Θ̃ there exists θ ∈ ΘI such that d(θ̃, θ) < δ, i.e.

supθ̃∈Θ̃ infθ∈ΘI
d(θ, θ̃) ≤ δ. It follows that with w.p.a.1, dH(Θ̃,ΘI) ≤ δ. Since δ > 0 is arbitrary,

it follows that dH(Θ̃,ΘI)
p−→ 0. Q.E.D.

A9.3 Proof of Theorem 11

We have that for Sn(P) = θ̂ − θ∗ = θ̂ − θ∗(P)

PrΠ{θ∗ 6∈
[

θ, θ
]

} = PrΠ{Sn(P) 6∈ [G−1
n (α2,P), G

−1
n (1− α1,P)]}

≤ PrΠ[{Sn(P) 6∈ [G−1
n (α2,P), G

−1
n (1− α1,P)]} ∩ {P ∈ CR1−γ(P)}] + PrΠ{P 6∈ CR1−γ(P)}

≤ PrΠ[{Sn(P) 6∈ [G−1
n (α2,P), G−1

n (1− α1,P)]} ∩ {P ∈ CR1−γ(P)}] + PrΠ{P 6∈ CR1−γ(P)}

≤ PrΠ{Sn(P) 6∈ [G−1
n (α2,P), G−1

n (1− α1,P)]} + PrΠ{P 6∈ CR1−γ(P)}

≤ α+ PrΠ{P 6∈ CR1−γ(P)}.

Thus if lim supn→∞PrΠ{P 6∈ CR1−γ(P)} ≤ γ, we obtain that limn PrΠ{θ∗ 6∈
[

θ, θ
]

} ≤ α + γ,

which is the desired conclusion.

It now remains to show that lim supn→∞PrΠ{P 6∈ CR1−γ(P)} ≤ γ. We have that

PrΠ{P 6∈ CR1−γ(P)} = PrΠ{W (P, P ) > c1−γ(χ
2
K(J−1))}.

By the uniform central limit theorem, W (P, P̂ ) converges in law to χ2
K(J−1) under any sequence

Π in P. Therefore,

lim
n→∞

PrΠ{W (P, P̂ ) > c1−γ(χ
2
K(J−1))} = Pr{χ2

K(J−1) > c1−γ(χ
2
K(J−1))} = γ.

Q.E.D.
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A9.4 Modified Projection Method

The following method projects a confidence region for conditional choice probabilities onto a

simultaneous confidence region for all possible ATEs and other structural parameters. In general,

this method is more conservative than the perturbed bootstrap method when a single ATE or

structural parameter is of interest. We include a more detailed comparison between the two

methods at the end of this section.

It is convenient to describe the modified projection method in two stages.

Stage 1. The probabilities Pk
j belong to the product SK

J of K unit simplexes of dimension J.

We can begin by constructing a confidence region for the true choice probabilities P by collecting

all probabilities P = (P 1
1 , ..., P

1
J , ..., P

K
J )′ ∈ SK

J that pass a goodness-of-fit test:

CR1−α(P) =
{

P ∈ SK
J :W (P, P̂ ) ≤ c1−α(χ

2
K(J−1))

}

,

where c1−α(χ
2
K(J−1)) is the (1−α)-quantile of the χ2

K(J−1) distribution and W is the goodness-

of-fit statistic:

W (P, P̂ ) = n
∑

j,k

P̂ k

(

P̂ k
j − P k

j

)2

P k
j

.

Stage 2. To construct confidence regions for marginal effects and any other structural param-

eters we project each P ∈ CR1−α(P) onto Ξ = {P : ∃β ∈ B with Fk(β, P ) 6= ∅,∀k = 1, ...,K},
the space of conditional choice probabilities that is compatible with the model. We obtain this

projection P ∗(P ) by solving the minimum distance problem:

P ∗(P ) = argmin
P̃∈Ξ

W (P̃ , P ), W (P̃ , P ) = n
∑

j,k

P̂ k
(P k

j − P̃ k
j )

2

P̃ k
j

.

The confidence regions are then constructed from the projections of all the choice probabilities in

CR1−α(P). For the identified set of the model parameter, for example, for each P ∈ CR1−α(P)

we solve

B∗(P ) =
{

β ∈ B : ∃P̃ ∈ P ∗(P ) with Fk(β, P̃ ) 6= ∅, k = 1, ...,K
}

.

Denote the resulting confidence region as

CR1−α(B
∗) = {B∗(P ) : P ∈ CR1−α(P)}.

We may interpret this set as a confidence region for the set B∗ of β that are compatible with a

best approximating model. Under correct specification, this will be a confidence region for the

identified set B.
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If we are interested in bounds on marginal effects, for each P ∈ CR1−α(P) we get

∆k
ℓ (P ) = min

β∈B∗(P ),Fk∈Fk(β,P ∗(P ))

∫

∆(α, β)dFk(α),

∆k
u(P ) = max

β∈B∗(P ),Fk∈Fk(β,P ∗(P ))

∫

∆(α, β)dFk(α).

Denote the resulting confidence regions as

CR1−α[∆
k∗
ℓ ,∆

k∗
u ] = {[∆k

ℓ (P ),∆
k
u(P )] : P ∈ CR1−α(P)}.

These sets are confidence regions for the sets [∆k∗
ℓ ,∆

k∗
u ], where ∆k∗

ℓ and ∆k∗
u are the lower and

upper bounds on the marginal effects induced by any best approximating model. Under correct

specification, these will include the true upper and lower bounds on the marginal effect [∆k
ℓ ,∆

k
u]

induced by any true model in (B,P).

In a canonical projection method we would implement the second stage by simply intersecting

CR1−α(P) with Ξ, but this may give an empty intersection either in finite samples or under

misspecification. We avoid this problem by using the projection step instead of the intersection,

and also by re-targeting our confidence regions onto the best approximating model.

Theorem A15: If Assumptions 5, 8, and 9 are satisfied then for any sequence of data-

generating process Π = Πn satisfying Assumption 10 ,

lim
n→∞

PrΠ

[

{P ∈ CR1−α(P)} ∩ {B∗ ∈ CR1−α(B
∗)} ∩ {[∆k∗

ℓ ,∆
k∗
u ] ∈ CR1−α[∆

k∗
ℓ ,∆

k∗
u ],∀k}

]

= 1−α.

Proof: By the uniform central limit theorem, W (P, P̂ ) converges in law to χ2
J(K−1) under

any sequence of true DGPs with Π in P. It follows that

lim
n→∞

PrΠ{P ∈ CR1−α(P)} = 1− α.

Further, the event P ∈ CR1−α(P) implies then the event P ∗(P) ∈ {P ∗(P ) : P ∈ CR1−α(P)} by

construction, which in turn implies the events B∗ ∈ CR1−α(B
∗) and [∆k∗

ℓ ,∆
k∗
u ] ∈ CR1−α[∆

k∗
ℓ ,∆

k∗
u ],∀k.

Q.E.D.

We conclude giving a comparison of the modified projection and perturbed bootstrap meth-

ods. The modified projection method is well suited for performing simultaneous inference on

all possible functionals of the parameter vector. In contrast, the perturbed bootstrap is better

suited for performing inference on a given functional of the parameter vector, such as the average

structural effect. In order to understand why the latter method can be much sharper than the

former method in the case where a single functional is of interest, it suffices to think of how

these methods perform in the simplest situation of inference about the mean of a multinomial
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distribution. In this case, the perturbed bootstrap will become asymptotically equivalent to the

usual bootstrap, since the limit distribution is continuous with respect to the DGP in this exam-

ple, and our local perturbations of DGP converge to the true DGP (note that, more generally,

in cases with limit distributions being discontinuous with respect to the DGP, the introduc-

tion of the local perturbations ensures that the resulting confidence interval possesses locally

uniform coverage). Therefore in this example perturbed bootstrap inference asymptotically be-

comes first-order equivalent to the t-statistic-based inference on the mean, and is efficient. Now

compare that with the Scheffe-style projection based confidence interval, whereby one creates a

confidence region for multinomial probabilities and projects it down to the confidence interval

for the mean, a linear functional of these probabilities. It is clear that the latter is very con-

servative, and is much less sharp than the t-statistic based confidence interval. We refer the

reader to Romano and Wolf (2000) for the pertinent discussion of this example in the context

of a closely related inference method.
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Figure 5: Identified set for parameter and ATEs in binary choice logit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ L(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 2.
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Figure 6: Identified set for parameter and ATEs in binary choice logit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ L(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 3.
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