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Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest

time-reversal symmetric topological orders in 341 dimensions

Xiao-Gang Wen
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 31 January 2017; published 30 May 2017)

We propose a generic construction of exactly soluble local bosonic models that realize various topological
orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a
(3+1)-dimensional [(3+1)D] Z,-gauge theory with emergent fermionic Kramers doublet. We show that the
emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without
pin™ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we
construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z, topological
orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders
which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those
topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders
have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that
some Z, SET orders have stringlike excitations that carry anomalous (nononsite) Z, symmetry, which can be
viewed as a fractionalization of Z, symmetry on strings. Our construction is based on cochains and cocycles
in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory

beyond the twisted gauge theory.

DOI: 10.1103/PhysRevB.95.205142

I. INTRODUCTION

A sign of acomprehensive understanding of a type of phases
of matter is being able to classify all of them. We understand
that the crystal orders are due to spontaneous symmetry
breaking [1] of the translation and the rotation symmetry.
This leads to the classification of all 230 crystal orders
in three dimensions using group theory. Now, we realized
that the phases of matter beyond symmetry-breaking theory
are due to long-range entanglement [2—4] for topologically
ordered phases [5—7], and due to symmetry-protected short-
range entanglement [8,9] for symmetry-protected trivial (SPT)
phases [8,10,11]. This leads to complete classification of many
topological phases. Using projective representations [9], we
can classify all (1+1)-dimensional [(141)D] gapped phases
for bosonic and fermionic systems with any symmetry [12—-15].
We can also classify all (24-1)-dimensional [(2+1)D] gapped
liquid [16,17] phases for bosonic and fermionic systems with
any finite unitary symmetry using unitary modular tensor cat-
egories [18,19], G-crossed unitary modular tensor categories
[20], and/or unitary braided fusion categories over Rep(G)
or sRep(G/) [21,22]. Those phases are symmetry-breaking
phases, topologically ordered phases, SPT phases (such as odd-
integer-spin Haldane phase [23,24] and topological insulators
[25-30]), symmetry-enriched topological (SET) orders, etc. So
far, we still do not have a classification of (3+1)-dimensional
[(3+1)D] gapped liquid phases, although we know that it is
closely related to unitary four-category theory with one object
[31,32].

With those powerful classification results, we would like
to have a systematic construction of those topological phases.
Ideally, we would like to have a universal construction that can
realize any given topological phases. There are very systematic
ways to construct exactly soluble models [32-41] based on
tensor network [31]. Using unitary fusion categories as input,
Turaev-Viro state-sum [34] and Levin-Wen string-net models
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allow us to realize all (241)D bosonic topological orders
with gappable boundary. Using finite group G and group
4-cohomoly classes w; € H*(G; /R/Z) as input, Dijkgraaf-
Witten models allow us to realize all (3+1)D bosonic topolog-
ical orders whose pointlike excitations are all bosons [42]. Us-
ing premodular categories as input, Walker-Wang models can
also realize a large class of (3+1)D bosonic topological orders.
But Walker-Wang models cannot realize all Dijkgraaf-Witten
models. A further generalization of Walker-Wang models in
Refs. [32,39] allow us to include all Dijkgraaf-Witten models
as well. Such systematic constructions were also generalized
to fermion systems [37,40,41,43,44].

The above constructions are very systematic, but also very
complicated and hard to use. Despite their complexity, it is
still not clear if they can realize all (341)D topological orders
or not. [We already know that they cannot realize all (24-1)D
topological orders.] In this paper, we are going to develop a
simpler systematic construction. Our constructed models are
not a subset of any one of the above-mentioned tensor network
constructions. But, our construction also does include any one
of the above-mentioned tensor network constructions, as a
subset.

We will start with topological invariants for topological
orders. Then, we will use cochain theory and cohomology
theory [33,45,46] to construct exactly soluble local bosonic
models whose ground states have topological orders described
by the corresponding topological invariants. In other words, the
low-energy effective field theory of those local bosonic models
is the desired topological field theory. (Here, a local bosonic
model is defined as a quantum model whose total Hilbert
space has a tensor product decomposition Hoy = ); H; where
‘H; is a finite-dimensional local Hilbert space for site i, and
the Hamiltonian is local respect to such a tensor product
decomposition.) Many mathematical techniques developed for
cohomology theory and algebraic topology will help us to do
concrete calculations with our models.

©2017 American Physical Society
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One class of topological invariants is given by volume-
independent partition function Z°?(M¢) on manifolds with
vanishing Euler number and Pontryagin number [31] x (M dy =
P(M“) = 0. For invertible topological orders [31,47] and for
SPT orders [11,48] (which have no nontrivial bulk topological
excitations), such topological invariants are pure phases
[31,47,49-52]

Zlop(Md’asym) — ei27‘r S W(wi,a6)+kwd’ 1)

where w; is the ith Stiefel-Whitney class, a% the flat con-
nection that describes symmetry G twist [53-56], and w, the
gravitational Chern-Simons term. For example, a (24+1)D Z,
SPT state labeled by k € H3(Z,,R/Z) = Z, is characterized
by its SPT invariant [49-51,54,55] (see Sec. V B)

Ztop(MZJrl ’aZn) — eik27” Jy2+1 a®nUB,a”n , )

where a%> becomes a 1-cochain and B, is Bockstein homo-
morphism equation (43).

For other noninvertible topological orders (which have
nontrivial bulk topological excitations), their topological in-
variants can be sums of phases

Zlop(Md’asym) — Z

ce H*(M;M)

€i27r ./Md W(c,w;i,a®™)+kwy ,

where ¢ are cohomology classes. Our constructed local bosonic
model is designed to produce such form of topological
invariants. The construction is very versatile and many exactly
soluble local bosonic models can be constructed systematically
to produce all the topological invariants of the above form (with
k = 0). Some of those models have emergent gauge theories or
emergent Dijkgraaf-Witten theories [33]. Other models have
emergent “twisted” gauge theories beyond Dijkgraaf-Witten
type.

In this paper, we will discuss many different types of
gauge theories. To avoid confusion, here we will explain
the terminology that will be used in this paper. We will use
untwisted (UT) gauge theory to refer to the usual lattice gauge
theories (without any twist) [57]. We will use all-boson (AB)
gauge theory to refer to the lattice gauge theories (may be
twisted) where all the pure gauge charges are bosons. We
will use emergent-fermion (EF) gauge theory to refer to the
lattice gauge theory (may be twisted) where some pure gauge
charges are fermions. We will use the term G gauge theory to
refer gauge theory with G gauge group. The Dijkgraaf-Witten
theories [33] are AB gauge theories. This is because the
Dijkgraaf-Witten theories can be viewed as the G-SPT states
with the gauged symmetry G [53], all the gauge charges are
bosonic in Dijkgraaf-Witten theories.

We will also discuss (34-1)D topological theories beyond
Dijkgraaf-Witten theories. Many of those theories do not
contain gauge fields, and it is hard to call them gauge theories.
However, the pointlike topological excitations in those theories
have the same fusion rule as (3+1)D gauge theories, i.e., fuse
like the irreducible representations of a group G. So, we will
still call those (341)D topological theories as gauge theory,
which include EF gauge theories. Certainly, the EF gauge
theories are not Dijkgraaf-Witten theories in (3+1)D.

We would like to mention that there are many related
constructions of topological field theories using 1-form, 2-
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form gauge fields, etc. [46,58—64]. In contrast to those works,
the cocycle models constructed in this paper are defined
on lattice instead of continuous manifold. Also, cocycle
models are not gauge theories. They are local bosonic models
without any gauge redundancy. In other words, the emergent
topological field theories studied in this paper are free of all
anomalies. In comparison, some 1-form, 2-form gauge field
theories defined on continuous manifold can be anomalous
since they may not be mergeable from local lattice theories
[31,50,65].

In this paper, we will use = to mean equal up to a multiple of

n, and use £ to mean equal up todf (i.e., up to a coboundary).
We will use [f], to mean mod( f,n) and (/,m) to mean the
greatest common divisor of [ and m ({0,m) = m). We also
introduce some modified § functions

1, ifxZ0 < 1, ifxZo
Sp(x)=1" . 8(x) =1 .
) {O, otherwise ) {O, otherwise
. n,d
gn(x)z {1, lfx :O
0, otherwise.

II. A SUMMARY OF RESULTS

The cocycle models introduced in this paper not only can
realize many types of topological orders, SPT orders, and SET
orders, they are exactly soluble in the sense that that their
partition function can be calculated exactly on any space-time
manifold [34]. Those models are realizable by commuting
projectors. Because the models are exactly soluble, we can use
them to compute many physical properties of those topological
phases, such as ground-state degeneracies, fractional quantum
numbers on pointlike and stringlike topological excitations,
braiding statistics, topological partition functions, dimension
reduction, etc.

A. Symmetry fractionalization on stringlike
defects in SPT states

One way to probe SPT order is to measure fractional
quantum number carried by symmetry twist defect (see Fig. 1).
For example, consider a (24-1)D Z,, SPT state which is labeled
by k. In [55] it was shown that a symmetry-twist defect can
carry a Z,, quantum number 2k (i.e., each defect will carry a

FIG. 1. Three identical Z; symmetry twist defects (blue triangles)
on a torus. The red line is the symmetry twist line. A symmetry twist
defect is an end of symmetry twist line.
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fractional Z,, quantum number %). We can use this property
to measure the (24+1)D Z,, SPT order.

Similar results also appear in higher dimensions. Consider
a 3+1D Z, x Z, SPT state which is labeled by k =
0,....n—1and ky =0,...,n—1. A Z, symmetry-twist
defect will be a line defect in (34-1)D. We show that such a line
defect must be gapless or symmetry breaking, which behaves
just like the edge state of some (2+1)D SPT state. These
phenomena can be viewed as symmetry fractionalization on
defect lines.

To see the edge state of which (2+1)D SPT state that
the defect line carries, we need to specify that the (3+1)D

Z, x Z, SPT state is described by the following SPT in-

. S2m [ 4 Z 4 Z 4 Z,
variant: Z©°P — 617” Jy3+1 kia?nUa®n UB,a?n +-kya?n Ua?n uB,,a7". Then,

a Z, symmetry-twist defect line will carry the edge state of a
(24+1)D Z,, x Z, SPT state characterized by the SPT invariant
2P — ¢i 5 fyzrt kia?nUB,a? —kea”n UB,a”" (ea Sec TIT D 3).

To be more precise, the Z, symmetry-twist defect line
in (34+1)D has a nononsite (anomalous) Z, x Z, symmetry
[10,11,65] along the defect line. This (I1+1)D anomalous
symmetry makes the defect line to be either gapless or
symmetry breaking [10]. This result generalizes the one in
[55]. This (141)D anomalous symmetry can be viewed as the
symmetry fractionalization on the strings.

The (14+1)D anomalous symmetry also appears on the
edge of (24-1)D SPT state. The (141)D anomalous symmetry
on the Z, symmetry-twist defect line happens to be the
same (14-1)D anomalous symmetry on the edge of a (24+1)D
Z, x Z, SPT state characterized by the SPT invariant Z'? =
ei%’ Sy kia?n UBya?n —kya?n UB,a%n .

Pointlike and stringlike symmetry-twist defects are extrin-
sic defects in the SPT states. The above results indicate that
extrinsic defects in the SPT states can carry fractional quantum
numbers or anomalous symmetry. We would like to remark
here we need to distinguish extrinsic defects from excitations
which are intrinsic. The pointlike or stringlike excitations, by
definition, can all be trapped by potential traps of the same
dimension. For example, a pointlike excitation at x( can be
trapped by a potential V(x), which is nonzero only near x.
Those pointlike or stringlike excitations in SPT states do not
have symmetry fractionalization. In contrast, extrinsic defects
cannot be trapped by potentials of the same dimension. For
example, a pointlike symmetry-twist defect in (241)D can
only be trapped by a “potential” (a change of Hamiltonian)
that is nonzero along a line, where the pointlike defect is
trapped at an end of the line.

B. Statistical transmutation in (3+1)D

We have constructed a (3+1)D exactly soluble local bosonic
model

eiﬂ fM3+1 bUb’ (3)

Z(M3+1) — Z

beC2(M3+1:Z,5)
ab2o
where b is a 2-cochain field (see Sec. III A for a definition of
cochain field) and U the cup product of cochains. The model
has an emergent fermion, and its low-energy effective theory
is a EF Z,-gauge theory. Such kind of EF Z,-gauge theory has
been constructed in terms of strings in (341)D [36,66]. Here,
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we give a construction in terms of membranes (see Sec. II1 E)
[60,63].

As acorollary of the above construction, we find a statistical
transmutation in (3+1)D lattice M3*! (expressed in terms of
partition function):

Z(M3+1) — Z

beC2(M3+1:Z,5)
prem

ei?‘[ fM3+] bUb’ (4)

where j is a cycle corresponding to the world line of a
bosonic scalar particle, and *j is the 3-cocycle corresponding
to the Poincaré dual of j. The term & f w3+ b U b changes
the statistics of the particle from bosonic to fermionic.
This is similar to the statistical transmutation in (24+1)D by

Chern-Simons term. Note that the condition db = j means
db = xj mod 2 which can be enforced using energy penalty
o=U Jys1 ldb—j

Is the transmuted fermion a spin-up—spin-down doublet?
To address this issue, we would like to mention that the term
7T [0 b U Db is compatible with time-reversal symmetry. If
the total model has a time-reversal symmetry, then the particle
dressed by the b field, i.e., the fermion, will be a time-reversal
singlet, which corresponds to a scalar fermion. However, this
behavior can be adjusted by changing the topological term to
T fMH,(dg Udg + b)Ub, where g; is a Z,-0-cochain field
which is a pseudoscalar. So, the new statistical transmutation
is given by

Z(M3+1) — Z

geCOM3+1:7Z,)
beC2 M3 Z), db2x

eijt fM3+] [dg'Ud§+b]Ub. (5)

The second type of statistical transmutation can still change the
statistics of the particle from bosonic to fermionic, but now the
fermion, dressed by b and g fields, will be a Kramers doublet
which corresponds to a Spin—% fermion (see Sec. VI C 4).

C. (241)D time-reversal symmetric topological orders

We have constructed 2° = 8 time-reversal symmetric local
bosonic models in (24-1)D [see Eq. (203)]:

3
ZiokkostZraT (M7)

- ¥

ol Jus bZ2Uda?2—koBrdg%2)

L Z Z
it zv"ijz-bi/kz}
% '™ Jus kia?2ua%20a%2 +kydg%2Udg%2Ua%2 ©)
Zo T 1.7 . .
where g;7,a; ; ,b; Jx are Z»-valued 0-cochain, 1-cochain, and

2-cochain fields (see Sec. III A), and ko ;2 = 0,1. Also, the
time-reversal symmetry is described by group ZI with 72 =
2 bl — [mod(g? +
1,2),a52,bi_zi,i] plus the complex conjugation. {The above
model also has an additional Z) symmetry generated

by (8.2 .b2) — [mod(g”* +1.2).a.* b1 without the

complex conjugation. } We see that g,Zz is a pseudoscalar field.
The above eight models realize five types of time-reversal SET
orders.

The four constructed models (labeled by koOk,) reduce to
the Z, topological order described by UT Z,-gauge theory

1, whose action is given by (giZ{a

205142-3
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TABLE I. The (241)D time-reversal (T') symmetric topological orders from four 1-cocycle models in Eq. (6). They have three or four
types of pointlike topological excitations. d;’s and s;’s are the quantum dimensions and spins of those excitations. A quantum dimension d = 2
means that the excitation has two internal degrees of freedom. 2, means that the two internal degrees of freedom form a T2 = 1 time-reversal
doublet or a T? = —1 Kramers doublet. Spin s = % corresponds to a fermion and s = % a semion. Spin s = % is the time-reversal conjugate
of a semion. The fourth and fifth columns are volume-independent partition functions Z;;g with M3 = S' x Z,,8! x 22", where X, is the

genus ¢ Riemannian surface and X;°" is the genus g nonorientable surface.

kokik, d.d., ...) (S1:8er--.) Z s, Zg, sy Comments

000 (1,1,1,1) (0,0,0, %) 48 28 Z,-gauge theory (three bosons and one fermion)
001 (1,1,2_,2) (0,0,0, %) 48 28711 4+ (—)9] A boson and a fermion are Kramers doublets

10 (1,2_,1,22) (0,0,0, %) 48 28711 4+ (—)8] The same SET order as above

010 (1,1,24) (0,0,[5.3D 48 281 Two semions form a T2 = 1 time-reversal doublet
011 (1,1,20) (0,0,[5.3D 4¢ 287! Two semions form a 7> = —1 Kramers doublet
11 (1,2-2_.2,) 0,0,[5.31.5.3D 48 2572[1 + (—)¢] A boson is Kramers doublet

after we break the time-reversal symmetry (see top three rows
in Table I). But, three of them have identical topological orders.
Thus, the four models only give us two types of time-reversal
symmetric Z,-gauge theories [67]. They correspond to two
types of time-reversal symmetric Z,-gauge theories. Those
four models are obtained by gauging the Z, subgroup in two of
the four Z, x Z1 SPT states and by gauging the Z, subgroup
of ZI' SPT states (ZI' has T? = —1). There is another type
of time-reversal symmetric Z,-gauge theory where the time-
reversal transformation exchanges the Z, charge and Z, vortex
[68]. Such a theory is missing from the table.

The other three of five constructed time-reversal SET orders
correspond to three types of time-reversal symmetric double-
semion theories [35,36] (see bottom three rows in Table I).
Those theories are obtained by gauging the Z, subgroup in
two of the four Z, x Z2T SPT states. Two of four constructed
models (labeled by kglk,) have identical topological orders.
They give us three types of time-reversal symmetric double-
semion theories.

It the interesting to note that one of the time-reversal
symmetric double-semion topological orders (the last row in
Table I) contains four types of pointlike excitations: (1) a
trivial type which is a time-reversal singlet; (2) a bosonic
Kramers doublet (denoted by quantum dimension, i.e., internal

J

Zikoksksksks(M*) = Z

Zy Zy 7
(& 24jj sb,‘,’k}

degrees of freedom, d =2_); (3) a T? = 1 time-reversal
doublet formed by two semions with spin i and % (denoted by
quantum dimension d = 2.,); (4) a T? = —1 Kramers doublet
formed by two semions with spin }1 and % (denoted by quantum
dimensiond = 2_).

D. (3+1)D time-reversal symmetric Z,-gauge theories

We also have constructed 2° = 64 local bosonic models in
(34+1)D which can realize 20 types of simplest topological
orders with time-reversal symmetry (see the black rows in
Table II). Those topological orders are simplest since they have
only one type of nontrivial pointlike topological excitation
and one type of nontrivial stringlike topological excitation.
The pointlike topological excitations in those (3+1)D SET
orders can be Kramers doublet (which corresponds to the
fractionalization [69,70] of time-reversal symmetry) and can
be fermionic. If we break the time-reversal symmetry, 16 of
the 20 SET orders reduce to the (3+1)D Z, topological order
described by the UT Z,-gauge theory, and the other 4 of the 20
SET orders reduce to the (3+1)D topological order described
by the EF Z,-gauge theory.

Those 64 bosonic models are given by [see Eq. (218)]:

ol Jys aZ20[db%2 +kja%20a%2Ua”2 +(k +ky)d §Ud§Ud B

w o Jalkeb®2 +(k3+k4)dgud§]ubzz+k5dgudgudgud§+k6szwz’ )

where k; = 0,1, bZ2 is a Z, 2-cocycle field, al: g Zo 1-
cocycle field, and g; a pseudoscalar field which changes under
the time-reversal transformation g; — mod(g; + 1,2). The
above local bosonic models have a time-reversal symmetry:
the action amplitude is invariant under the combined trans-
formation of g; — mod(g; + 1,2) and complex conjugation.
The models also have a Z/, symmetry: the action amplitude
is invariant under g; — mod(g; + 1,2) (without the complex
conjugation).

But, the above model is exactly soluble only when k1 k4 = 0.
Those 48 exactly soluble models produce the rows in Table II.

(

The models described by the boldface rows in Table II produce
topological orders that are identical to some of the other
rows. Those identities come from the relations between the
Stiefel-Whitney classes on four-dimensional space-time [see
Eq. (D14)]:

wiUw, =0, wiUwsz =0,
wiUwiUwi Uw; +wy Uwy +wy =0. ®)

We see that w; U w; + w, = 0 implies w; U w; Uw; + wy U
w; =w; Uw; Uw; = 0. Thus, 3(W?)5(W% + wp) = S(W% +
w»), which implies that the first and the second rows in the

205142-4
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TABLE II. The (3+1)D time-reversal (T') symmetric Z,-gauge theories emerged from lattice bosonic models Z, k4454 0 Eq. (7). Each
row corresponds to a root family which contains a few (Ng;s) T-symmetric topological orders labeled by ks,ks = 0,1. Topological orders in
the same root family differ only by Z7 SPT states. d;’s and s;’s are the quantum dimensions and spins of pointlike excitations. The models
described by the boldface rows produce topological orders that are identical to some of the other rows. A quantum dimension d = 2 means that
the excitation has two internal degrees of freedom. 2_ means that the two internal degrees of freedom form a Kramers doublet with 72 = —1.
The fourth column is the volume-independent partition function on space-time M*, where w; is the ith Stiefel-Whitney class.

: 4
w4zt K51

kikokskakske (dy,dy) (51,52) Zwp = L1 B Nais As gauged SPT state
IHOM* Z)le'™ T 46™2

0000kske (1,1) (0,0) 4 Bosonic Z, x ZT trivial state

0100 * k¢ (1,1) (0,0) (S(W?) 2 Bosonic Z, x Z1 SPT state

1000kskq (1,1) (0,0) §(W3) 4 Bosonic Z, x Z2T SPT state

1100 * kg (1,1 (0,0) S(ws + w?) 2 Bosonic Z, x ZI' SPT state

0001ks* (1,20) (0, %) §(W») 2 Free fermion Z! SPT state

0101 * * (1,20) (0,%) (WS (wy) 1 unknown

0010 s kg (1,22) (0,0) s(wh) 2 Bosonic ZI SPT state

0110 * k¢ 1,20) 0,0) 8(wf)6(w§) = §(w}) 2

1010 * kg (1,22) (0,0) S(w3)8(w?) 2 Bosonic ZI' SPT state

1110 * kg 1,2) 0,0) 8(ws + w)d(w3) = 3(w3)8(w3) 2

0011 * % (1,1) (0, %) S(Wf + ws) 1 Fermionic Z{ x Z7 trivial state

0111 * = 1,1 ©.DH S(WH3(W: + wy) = §(W? + wy) 1

fourth block in Table II have the same partition function and
thus correspond to the same theory.

We note that the four types of (3+1)D ZJ SPT states
[11,71] can be labeled by ks,k¢ = 0,1 and are characterized
by the SPT invariant Z(M*) = ei™ Jus ksWi+kews The ZT SPT
state (kskg) = (10) is the one described by group cohomolgy
H4(Z2T ;(R/Z)r) [11], and has a time-reversal symmetric
boundary described by an anomalous Z;-gauge theory where
the Z, charge e and the Z, vortex m are both Kramers doublet,
while the ¢ and m bound state ¢ is a time-reversal singlet
fermion [71]. The Z2T SPT state (kskg) = (01) is beyond
H4[ZT; (R/Z)r], and has a time-reversal symmetric boundary
described by an anomalous Z, gauge theory where e, m, and
€ are all fermions.

The model with the same k;kyk3k4 but different kskg only
differs by stacking those four ZI SPT states. We call two
time-reversal SET orders that differ only by stacking of ZJ
SPT states as to have the same root since those SETs have
identical bulk pointlike and stringlike excitations. We find that
the 20 SET orders belong to 9 root families. This is because
stacking the four ZI SPT states does not always produce four
distinct time-reversal SET phases since the partition function
may vanish on space-time with nontrivial w; U w; U w; U wy,
wo Uws, or wy Uw; Uw; Uw; + wy Uw,. The number N
of distinct time-reversal SET phases in each root family is
given in Table II. The nine root families correspond to nine
types of (3+1)D time-reversal symmetric Z,-gauge theories.

From Table II and from the discussions in Sec. VI C 5, we
also see the physical meaning of each topological term labeled
by k] k2k3k42

(1) k4 = 1 makes the pointlike excitations to be fermions.

(2) k4 + k3 = 1 mod 2 makes the pointlike excitations to
be Kramers doublet.

(3) ki + k> = 1 mod 2 makes the stringlike excitations to
carry an anomalous Z; symmetry that appear on the boundary

of a (2+1)D Z} SPT state. Such an anomalous (nononsite)
Z 17L‘7IZ+U;+I7(71:/0111

Z), symmetry is given by U’ =[], o7 [], o} 5 ,

3 l+oi+0}, —0ofo} z .
T __ I 1 I ) S z z
where o] = ()% and ——H5——* = CZ(o;,0/, ) is the

controlled-Z gate acting on the two qubits o; and o4 ;.

Certainly, when k; + k; = 0 mod 2, the string will not
have anomalous symmetry, and are in general gapped and
symmetric.

There are also many other ways to realize time-reversal
symmetric Z,-gauge theories. For example, one can use non-
linear o-model field theory to realize many of the above time-
reversal SETs with bosonic pointlike excitations [72]. More
generally, one may start with Z, x ZI bosonic SPT states.
There are eight such states since HZy x ZT R/ Z)7] =
Zgﬁ [11]. Gauging the Z, symmetry gives us eight time-
reversal symmetric Z, topological orders. But, some of them
only differ by a ZI SPT state. We only obtain four root
states (i.e., four time-reversal symmetric Z,-gauge theories),
that correspond to the first four rows in Table II. We can
also start with Z! bosonic SPT states. There are two such
states since H*[Z]; (R/Z)r] = Z,. After gauging the unitary
Z, subgroup of ZI', we obtain two time-reversal symmetric
Z,-gauge theories (see the two black rows in the third block in
Table IT). Those two root states have a property that stacking
with the (kske) = (10) ZZT SPT state gives us the same root
states back. The other two root states (the boldface rows) are
identical to the two black rows in the third block.

The second block in Table II contains two root states. The
first one can be obtained by gauging Z] fermionic SPT states,
which is also known as the T? = —1 fermionic topological
superconductor [73,74]. There are at least 16 ZZ fermionic
SPT states labeled by v = 0,1, ...,15 [75-77]. Gauging the
fermion-parity Z{ subgroup in Z! fermionic SPT states
will produce several time-reversal symmetric topological
orders that contain Kramers-doublet fermions. The stringlike
excitations (i.e., the Z'Zf vortex lines or the Z‘{ symmetry-twist
defect line) in those topological orders must be gapless unless
v = even, if the time-reversal symmetry is not broken [78]. In
comparison, the strings in the three time-reversal symmetric
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TABLE III. Volume-independent partition function Z'°°(M*) for the constructed local bosonic models, on closed four-dimensional space-

time manifolds. The space-time M* considered here satisfies x (M*) = P,(M*) =
The topological invariants listed below are also the ground-state degeneracy on the correspondlng spatial manifold M3

three-dimensional lens space and F*

0, which makes Z'P(M*) to be a topological invariant [31].
Here, L3(p) is the

space

=(S' x SHS' x § 3)#(DPZ#(DP F* is not spin. The different models are labeled by k; which all have

arange k; =0,1,....n — 1.
Models\M* T* T? x §? S' x L3(p) F* Low-energy effective theory
}Za(M4) n’ n (n,p) n UT Z,-gauge theory
t (2k,n) if 2k L7 = even
kOZZZ (M*) (2k,n)3 (2k,n) (2k,n,p) 2k Zk.ny-gauge theory with fermions
0 1f 21 = odd Zn__
iff B = odd
Z/l:.)iz;aa’lsa'z,, (M*) n® n? (n,p)(n,p.k,ky) if n2 Z, x Z, Dijkgraaf-Witten theory
p has no repeated
prime factors
o n(2ky.n) if 2"2:>2 = even
Zklizg,,ga,hhzn (M%) n*(2kp,n)®  n(2kp,n)  (n,p)(2ka,n, p, o) > (Z nptom X Zigy 240.m))-gauge theory

0if ”’" >~ = odd

Ty 2k )
with fermions 1ff 2 2 = = odd

topological orders described by the two rows in the second
block do not carry any anomalous time-reversal symmetry. In
other words, the excitations on the strings can be gapped even
if we do not break the time-reversal symmetry.

All the states in the second block have a property that
stacking with the (ksk¢) = (01) bosonic ZZT SPT state (char-
acterized by the SPT invariant '™ Jus kswabw2y does not change
their Z' SET orders. Similarly, the Z] fermionic topological
superconductors also have the property that stacking with the
(kske) = (01) ZZT SPT state does not change the SPT order. For
example, the v = 0 Z fermionic topological superconductor
has a boundary with two types of quasiparticles {1,c}, where
1 is the trivial type and c is a Kramers-doublet fermion.
The (kske) = (01) ZZT SPT state has boundary with four
types of quasiparticles {1, f1, f>,e}, where f; and f, are
Kramers-doublet fermions and & is a time-reversal singlet
fermion. Also, fi, and & have m-mutual statistics among
them. The stacking of the two states has a boundary with
quasiparticles {1, f1, f2,e} x {1,c}. We may condense the
time-reversal singlet boson f,c. Then, the new boundary
state has quasiparticles {1,c}. The quasiparticle f, is also
not confined, but it is equivalent to ¢ since the two only
differ by a condensed boson. Thus, the stacking of the
v = 0 state and the (kskg) = (01) state can have the same
boundary as the v = O state. The stacking of (kske) = (01) state
does not change the SPT order in Z! fermionic topological
superconductor.

The two states that correspond to the first row in the second
block differ by stacking with the (kskg) = (10) ZZT SPT state
characterized by the SPT invariant ¢ Jus ksWiowibwiuwi - Eor
ZI fermionic topological superconductors, stacking with the
(kskes) = (10) state will shift v by 8 [75,78,79]. This suggests
that the two states are the v = 0 and the 8 Z fermionic topo-
logical superconductor with gauged Z{ symmetry [75,78,79].

On the other hand, for the time-reversal symmetric topo-
logical order described by the second row in the second block,
stacking with any Z1" SPT states does not change its Z! SET
order. It is not clear if the ZzT SET order can be viewed as the

sz -gauged v = +4 ZI fermionic topological superconductor
or not.

E. Vanishing of the volume-independent partition function

We have calculated many volume-independent partition
functions, and find they vanish some times. In general, a
partition function may have a form

Z(Md) — e*Cl]Lde‘df]Ldi]7“‘7C0L07C71L717‘“ (9)

where L is the linear size of M?. If the ground state does
not contain pointlike, stringlike, etc., defects, then ¢; = ¢;

= ... =cg—1 = 0. In this case,
o ZMY
Ztop(Md) = Lh_?;c W —e coL (]0)

is the volume-independent partition function. When the calcu-
lated volume-independent partition function vanishes, it does
not mean the partition function to vanish nor the theory to
be anomalous. It just means that ¢; > 0, for some 0 < i < d.
This implies that the given space-time topology M? induces
pointlike, stringlike, etc., topological excitations.

We have calculated volume-independent partition functions
for many constructed systems and for many space-time
manifolds (see Tables I, II, and III). From those results, we
conjecture the following: A local bosonic model with emergent
fermion always has vanishing volume-independent partition
function Z'P(M?) = 0 if the orientable M¢ is not spin.

In the presence of time-reversal symmetry, we have the
following results: (1) A local bosonic model with emergent
Kramers doublet fermions always has vanishing volume-
independent partition function Z'?(M?) =0 if M? is not
pin® (i.e., wa # 0). (2) A local bosonic model with emergent
time-reversal singlet fermions always has vanishing volume-
independent partition function Z'?(M?) =0 if M? is not
pin~ (ie., Wy +W% #0). (3) A local bosonic model with
emergent Kramers doublet bosons always has vanishing
volume-independent partition function Z"?(M?) = 0 if w% #*
0 on M“. (See Appendix E for a brief introduction of spin,
pin™, and pin~ manifolds.) Those properties have been used
to develop cobordism theory for fermionic SPT states [80].

In the rest of this paper, we will present detailed construc-
tions and calculation.
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III. A GENERIC CONSTRUCTION OF EXACTLY
SOLUBLE BOSONIC LATTICE MODELS
ON SPACE-TIME LATTICE

In this section, we are going to introduce a general way to
construct exactly soluble local bosonic models. Those models
are written in terms of path integral on space-time lattice.
Those models are also designed to have topologically ordered
ground states. In other words, those models have emergent
topological field theory at low energies.

First, we will briefly review the related mathematics.
Then, we will construct models that realize some well-known
topological orders, such as those described by discrete gauge
theories, and by Dijkgraaf-Witten theories. After that, we will
construct models that realize more general topological orders
whose low-energy effective theories are beyond Dijkgraaf-
Witten theories. We will also compute the volume-independent
partition functions for those constructed models on several
choices of space-time manifolds. The results are summarized
in Table III.

A. Space-time complex, cochains, and cocycles

Our local bosonic models will be defined on a space-
time lattice. A space-time lattice is a triangulation of the
d-dimensional space-time, which is denoted as Mffm. We will
also call the triangulation lem as a space-time complex. A cell
in the complex is called a simplex. We will use i, j, . .. to label
vertices of the space-time complex. The links of the complex
(the 1-simplices) will be labeled by (i, j),(j,k), . . .. Similarly,
the triangles of the complex (the 2-simplices) will be labeled
by (i, j,k),(j,k.D), ....

A cochain f, is an assignment of values in M to each
n-simplex, for example, a value f,; ; .« € M for n-simplex
@i,j,...,k).Soacochain f, can be viewed as a bosonic field on
the space-time lattice. In this paper, we will use such cochain
bosonic field to construct our models.

In this paper, we will assume M to be a ring which supports
addition and multiplication operations, as well as scaling by
an integer:

xX+y=z,
x,y,2€M, meZ. (11)

Xkxy=z, mx=y,

We see that M can also be viewed a Z module (i.e., a vector
space with integer coefficient) that also allows a multiplication
operation. In this paper we will view M as a Z module. The
direct sum of two modules M; @ M, (as vector spaces) is
equal to the direct product of the two modules (as sets):

M; @ M, “E M, x M. (12)

We like to remark that a simplex (i,j,...,k) can have
two different orientations. We can use (i,j,...,k) and
(j,i,...,k)=—(,j,- -+ ,k) to denote the same simplex with
opposite orientations. The value f,; ; i assigned to the
simplex with opposite orientations should differ by a sign:
Suijrk = = fnsji,...k- SO, to be more precise f, is a linear
map f, : n-simplex — M. We can denote the linear map as
(fu,n-simplex), or

(furGos o)) = frsiiji.k € ML 13)

PHYSICAL REVIEW B 95, 205142 (2017)

Y
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FIG. 2. A 1-cochain a has a value 1 on the red links: a;; = aj; =
1 and a value O on other links: a;; = a; = 0. da is nonzero on
the shaded triangles: (da);i; = ajx + ay — aj;. For such 1-cohain,
we also have a Ua = 0. So, when viewed as a Z,-valued cochain,
Bra # aUa mod 2.

More generally, a cochain f, is a linear map of n-chains:

fn : n-chains — M (14)
or (see Fig. 2)

(fu,n-chain) € M, (15)

where a chain is a composition of simplices. For example, a
2-chain can be a 2-simplex: (i, j,k), a sum of two 2-simplices:
@i,j,k) + (j,k,I), a more general composition of 2-simplices:
@i,j,k) —2(j,k,l), etc. The map f, is linear with respect to
such a composition. For example, if a chain is m copies of a
simplex, then its assigned value will be m times that of the
simplex. m = —1 corresponds to an opposite orientation.
The total space-time lattice M,‘fm corresponds to a d-chain.
We will use the same M{.,, to denote it. Viewing f; as a linear

map of d-chains, we can define an “integral” over Mffm:

fa=(fa. ML), (16)
MILL]lll
In this paper, we usually take M to be integer Z or mod n
integer Z,, = {0,1, ...,n — 1}. So, not only the field f; ; .«
is defined on a discrete space-time lattice, even the value of the
field is discrete. We will use C"(M{.,; M) to denote the set of
all n-cochains on Ml‘itt. c" (Ml‘fm; M) can also be viewed as a set
all M-values fields (or paths) on Mf,fm. Note that C ”(Mfm; M)
is an Abelian group under the + operation.
We can define a derivative operator d acting on an n-cochain
fn, which give us an n + 1-cochain (see Fig. 2)

n+l1
(dfp-oiria .. ing1)) = D (=" (fusGoiriz - D - - ing1)),

m=0

a7

where igiqis ... fm ...in41 18 the sequence igpiqiy . ..I,4+1 With
i, removed, and iy,i1,i . ..i,; are the ordered vertices of the
(I’l + l)-simplex (i0i1i2 . in+1).

A cochain f, € C”(M{jm; M) is called a cocycleif df,, = 0.
The set of cocycles is denoted as Z”(Ml‘fm;M). A cochain
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FIG. 3. A 1-cochain a has a value 1 on the red links. Another
1-cochain a’ has a value 1 on the blue links. On the left, a Ua’ is
nonzero on the shade triangles: (a U a’);j; = a; ,-a}, = 1, while on the
right, a’ U a is zero. Thus, a U a’ + a’ U a is not a coboundary.

fn is called a coboundary if there exists a cochain f,_;
such that df,_ = f,. The set of coboundaries is denoted
as B"(Mﬁn;M). Both Z"(Ml‘fm;M) and B"(Mﬁtt;M) are
Abelian groups as well. Since d* = 0, a coboundary is always
a cocycle: B"(Ml”én;M) C Z”(Mﬁn;M). We may view two
cocycles differ by a coboundary as equivalent. The equivalence
classes of cocycles [ f;,] form the so-called cohomology group

denoted as
H" (M M) = 2" (M M)/B" (M{,; M). (18)

H"(Mld M), as a group quotient of Z”(Ml’étt;M) by
B"(M,; M), is also an Abelian group.

From two cochains f,, and h,, we can construct a third
cochain p,,,, via the cup product (see Fig. 3)

>

Pm+n = fm V) hna
(Pman>(o « -+ ipn)) = <fms(i0i1 N )
X (i, (mim1 - - Iman)). - (19)
The cup product has the following property (see Fig. 3):
d(fm Uhy) = (dhp) U fon +(=)"hy U df). (20)

We see that f,, U h,, is acocycle if both f,, and A,, are cocycles.
If both f,, and h,, are cocycles, then f,, U h, is a coboundary
if one of f,, and h, is a coboundary. So, the cup product is
also an operation on cohomology groups U : H"(M%; M) x
H"(M4; M) — H"™" (M, M). When both f,, and h, are
cocycles, we also have

fuUh, =(=)"h, U f, + coboundary. 20

In the rest of this paper, we abbreviate the cup producta U b
as ab by dropping U. Also, we will use Z, ={0,1,...,n—1}
and Z, = {1,ei7 e25% ... i@ DT} (o denote the same
Abelian group. In Z,,, the group multiplication is mod-n “+”

[Tk

and in Z,, the group multiplication is “x”.

B. Z,-1-cocycle model and emergent Z,-gauge theory
1. Model construction

Using the above mathematical formalism, let us construct
a local bosonic model on a space-time lattice M’ ", where the
local degrees of freedom live on the links. The possible values
on each link are @’ = 0,1,....n — 1 € Z,.

The action amplitude e™>«" for a (d + 1)-simplex (ij ...l)

- - Zy. ,~Li.(a;") -
is a complex function of a;": ™™/~ V. The total action

PHYSICAL REVIEW B 95, 205142 (2017)

amplitude ¢S for a configuration (or a path) is given by

Zn Zn
e SUa") — 1_[ e~ Lija; }), (22)
@j...)

where [[;; ; is the product over all the (d + 1)-simplices
(ijkl). Our local bosonic model is defined by the following
imaginary-time path integral (or partition function)

Zn Zn
Z7,. = Z e~ SUay" ) — Z ¢ o Lialai™n - (23)

{afimy {almy
where ) (@) is a sum over all paths (i.e., the path integral).

. Z, . .
We may view a;;" as Z,-valued I-cochain on the space-time

complex Mj,:

alr = @ (). a® € C (Mp.Z,).  (24)
The Lagrangian L; j___l({al%”}) will produce an emergent low-
energy Z,-gauge theory (i.e., have a Z, topological order) if
we choose it to be

Lijml({a,%“}) = 400
Lij...l({al%”}) =0

So, the action amplitude e~ is nonzero only when a
is a cocycle, and the nonzero value is always 1. In other words,
our local bosonic model is described by an action S(aZ)=0
when a?" is a cocycle, and S(a%"y = 400 when a?r is
not a cocycle. We see that the configurations described by
noncocycles cost an infinity energy. We will call the local
bosonic model described by the above L;; ; as a Z,-1-cocycle
model.

if (da®)#0on(ij...l),
if (da®)=0on(ij...l). (25)

Lij.(a™) z,

2. Topological partition functions
The partition function Zz, (M’ ") of the Z,-1-cocycle
model can be calculated exactly, which is given by the number

of 1-cocycles | Z'(M{; Z,)|, where |S| denotes that number

elements in set S. The number of 1-cochains is given by

|H! (Ml‘f;t“[L L Z.,,)| times the number of 0-cochains whose deriva-

tives are nonzero. The number of 0-cochains whose derivatives

are nonzero is the number of O-cochains, |COML;Z,)|,

divided by |H'(Mt':7Z,)|. Since |COM{T';Z,) =2,
where N, is the number of vertices (the “volume” of space-
time), we find that the partition function is

Zz,a(Mi") = 2! (M5 Z2,))|

latt latt >
[C (M 2,)
|[HO (M5 Z2)|
o [ H (M 5 2|

latt >

— |H1(Md+l, Zn)

latt >

(26)

According to [31], the topological information is given by
the volume-independent part of partition function, which is
obtained by taking the limit N, — 0:

|H' (M Z,)]

ZmP Md-H — )
2 M) = [T )]

27)
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The volume-independent partition function can be a topolog-
ical invariant [31] if the Euler number and the Pontryagin
number vanish: x(M9*') = P(M9*') = 0. Such topolog-
ical invariant characterizes the topological order realized
by the model. Since the Z,-gauge theory will produce the same
volume-independent partition function Z," (M“*') in large
system size and low-energy limit, this allows us to determine
that the Z,,-1-cocycle model realizes the Z, topological order
[81,82], the topological order described UT Z,-gauge theory.

In (2+1)D and for n = 2, the Z, topological order has
two bosonic topological quasiparticles, Z, charge e and Z,
vortex m, and one fermionic topological quasiparticles f
which is a bound state of e and m. In higher dimensions,
the Z, topological order has n types of bosonic pointlike
excitations: the Z, charge ¢ =0,1,...,n — 1. It also has n

types of (d — 2)-dimensional branelike excitations: the Z, flux
m=0 2 2r(n—1) l)
[P

n
We note that the Volume -independent partltlon function on
space-time S' x ' x §97! = T? x §9~!is given by

z," (T2 x 8§71 = n. (28)

Since the volume-independent partition function on §' x M¢
is equal to the ground-state degeneracy (GSD) on space M¢,

GSD(M?%) = 7'°P(S' x M%), (29)

we find that the GSD of our Z,-1-cocycle model on space
S' x 841 is given by GSD(S' x §¢7!) = n.
It turns out that

for any topological order; GSD(S' x §?~') is always equal to
the number of types of pointlike topological excitations.

Such a result can be understood by the particle-hole tunneling
process in Fig. 4. Such a particle tunneling process changes one
ground state to another degenerate one, and relates the number
types of pointlike topological excitations to GSD(S' x §¢—1).
It is also true that

for any topological order, GSD(S' x S~ is always equal
to the number of types of (d — 2)-dimensional branelike
topological excitations [83].

(The notion of types of topological excitations, in particular
high-dimensional topological excitations was discussed in
[31]. It is very tricky to define the types of high-dimensional
topological excitations.) This can be understood by a similar
brane tunneling process around S~

Six §d-1

FIG. 4. A particle-hole tunneling process is a process where we
create a particle-hole pair, move the particle around a noncontractible
loop, and then annihilate the particle and the hole. The GSD on
a d-dimensional space S' x $¢7! is generated by the particle-hole
tunneling process described by the blue loop. Thus, each degenerate
ground state corresponds to a type of particle, and GSD(S' x §¢7!) =
number of types of pointlike excitations. Similarly, GSD(S* x
§9=%) = number of types of (k — 1)-dimensional excitations.

PHYSICAL REVIEW B 95, 205142 (2017)

In general,

in d-dimensional space, the number of types of (k — 1)-
dimensional branelike excitations is equal to the number of
types of (d — k — 1)-dimensional branelike excitations, and
they both equal to GSD(S* x §¢7%).

3. Boundary effective theory

Using the cocycle model, we can also easily study the
properties of the boundary. Consider a space-time M*! whose
boundary is N¢ = dM“. What is the low-energy effective
theory of our Z,-1-cocycle model on the boundary N¢? To be
more concrete, what is the partition function for the boundary
effective theory? Here, we propose that the partition function
for the boundary effective theory is simply given by

bndr(Nd) _ ZZ a(Md+l) (30)

However, the above definition has a problem: the same N¢
can be viewed as boundary of different space-time manifolds
= dM¥! = JM*! In general,

27, (MY £ Zg, (M) @31

so the above definition of Zb“dr(N 4y is not self-consistent.
In order for the definition to be self-consistent, we require
that

Z7,(M) = Zz, (M) (32)

for all M4*! and M*+" with dM4*! = dM?+!. This implies
that the bulk model on M“*! has no topological order. So the
boundary effective theory is well defined by itself iff the bulk
theory on M“*! has no topological order. This is exactly the
gravitational-anomaly-free condition discussed in [31,50,65].

Since the bulk Z,-1-cocycle model has a nontrivial topo-
logical order, the boundary effective theory is anomalous.
This implies that the boundary effective partition function
Z ¢ (N“) not only depends on N, it also depends on how N“

is extended to one higher dimension, i.e., depends on M d+1
The definition (30) correctly reflects such anomaly effect, and
thus is a proper definition. However, to stress the dependence
on the extension, we rewrite Eq. (30) as

bndr(Nd Md+1) _ ZZ a(Md+1) (33)

Even though the boundary partition function depends on the
bulk extension, it is still very useful in determining boundary
low-energy properties, such as if the boundary gapped or not.
Let us first choose NY = S¢ and choose its extension to be
M = B4+ where BY*! is a (d + 1)-dimensional ball. We
find the boundary partition function to be

1 bndr blk
andr(Sd Bd+1) N nN

(34)
where NP is the number of vertices on the boundary ¢
and NP is the number of vertices inside the ball B!,
The partition function only depends on the “volume” of the
boundary and does not depend on the shape of the boundary.
This implies that the boundary theory is gapped.

Next, let us choose N¥ = S} x S9!, where we use S! to
represent the closed time direction. We choose its extension to
be M?*! = S! x B?. We find the boundary partition function
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to be
bndr ( Sl

We see that the volume-independent boundary partition func-
tion is

SUS! X BY) =a™ N (35)

andr Jtop (Sl

Zoa §1S! x BY) = 1. (36)

This implies that the gapped boundary has no ground-state
degeneracy (for the boundary §¢~!). For example, there is no
symmetry breaking.

To see if the boundary carries an anomalous topological
order, let us choose N¢ = S! x S¥1 x §9-2=* and choose its
extension to be M4 = §! x S¥1 x B4=17k_Since the tunnel-
ing process of k-dimensional branelike topological excitations
around S¥*! on the boundary corresponds to a noncontractible
loop in the bulk S! x S¥*! x B4=1-kthe tunneling process
will generate a map between different degenerate ground
states. In contrast, the brane tunnel process around S¢~2% on
the boundary corresponds to a contractible “loop” in the bulk
S x S¥+1 x B4=1=k and does not generate nontrivial map
between degenerate ground states. Therefore, similar to the
bulk case, andr(Sl Sk+l Sd 2—k Sl Sk+l Bd 1— k)
can tell us the number of types of k- d1men510nal branelike
topological excitations on the boundary.

For our Z,-1-cocycle model, we found the volume-
independent partition function to be

Z%n(ilrtop(sl S+ §d-27k g1 s ghtl o pa=ioky
_|H'(S! x s % BT Rz,)| {1, k>0 3
- |HO(S! x Sk+1 x Bd—1-k;7,)| " |n, k=0.

Thus, the boundary theory contains n types of pointlike exci-
tations, and no nontrivial branelike excitations of dimensions
greater then 0.

The n types of pointlike topological excitations on the
boundary contain a trivial type and n — 1 nontrivial type. When
n > 1, the existence of nontrivial topological excitations on
the boundary implies that the boundary carries a nontrivial
topological order (which is anomalous). This agrees with the
previous known result [31,84].

A given bulk model can have many types of boundaries. For
our Z,-1-cocycle model, the bulk contain n types of pointlike
topological excitations and n types of (d — 2)-dimensional
branelike topological excitations. One type of the boundary
is formed by the brane condensation. Such a boundary has
n types of pointlike topological excitations only. Another
type of boundary is formed by the particle condensation.
Such a boundary has n types of (d — 2)-dimensional branelike
topological excitations only. We see that our boundary of Z, -
1-cocycle model is the first type induced by the condensation
of branes. We will call such boundary as “free boundary”
since the 1-cocycle field has a free boundary condition on the
boundary.

To realize the second type of the boundary, we need to
use the fixed boundary condition by setting the 1-cocycle
field to be af =0 on the boundary. Again, Zb“dr(S !
Sk x §4=27k 1 x S¥+1 x B4=17%) can tell us the number
of types of k-dimensional branelike topological excitations on
the boundary. To compute such partition function, we notice
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that when k < d — 2, the 1-cocycle aZ» can be written as
a% = dg? is a Z,-valued 0O-cochain which Vanishes on the
boundary. The correspondence between a and 81 Zn is one to

one. This is because even when k = 0, fs“' a®" = ( since we

have fixed aZ» = 0 on the boundary. Thus,

_n_ 1 blk
Z%nir(stl x Sk+1 x Sd 2 k,Sll x Sk+1 X Bd 1 k) :nNV .
n

(38)
The volume-independent partition function is

bndr, i, i
ZZnar op(Sl Sk+l % Sd 2 k,Stl % Sk+l x Bd 1 k)
n

=1, fork<d-2. (39)

Thus, there are no nontrivial k-dimensional branelike excita-
tions on the boundary for k < d — 2. There are no nontrivial
pointlike excitations on the boundary which is the k = 0 case
included above. When k = d — 2, $9727% = §0 is a set of two
points. In this case, the boundary contains two disconnected
pieces. We may set the O-cochain field gZ» = 0 on one piece.
But, we need to set g% = const on the other piece. We find
that

Zb“dr(S1 x 8971 x 89, S1 x 8471 x 1) = nn™" (40)
or the volume-independent one

Z%nclrtop(sl « §4-1 & SO Sl % §9-1 « B ) =n. 41

There are n types of (d — 2)-dimensional branelike excita-
tions on the boundary. The a%" = 0 boundary gives us the
second type of boundary formed by condensing the pointlike
excitations.

C. Twisted (24+1)D Z,-1-cocycle model and emergent
Dijkgraaf-Witten theory

1. Model construction

To construct another local bosonic model that realizes a
different topological order, we may choose L;jy; to be

Liju = 400 if (da®) #0,

2
Lijw = —ik = (@% Bya®)G,jkl) if (da)=0. (42)
n
Here, we have used Bockstein homomorphism B, :
H™ (M Z,) > H™ (M Z,),

a1
B,x = —dx,
n

x € H"(M*;Z,), B,x € H"™ '\ (M*;Z,). (43)

To understand the Bockstein homomorphism, we note that x
in the above is a cocycle with Z,. If we view it as a cochain
with integer coefficient Z, then dx is a cochain whose values
are always multiples of n. Thus, Ldx is a valid cochain with
integer coefficient. In fact, it is (m + 1)-cocycle with integer
coefficient. After a mod »n reduction, %dx mod n becomes a
(m + 1)-cocycle with Z,, coefficient. This is why 5, is a map
from H™(M?;Z,) to H"tY(M?; Z,). Therefore, B,a%" is a
2-cocycle and a?"B,a?" is a 3-cocycle. Here, we use such a
3-cocycle to construct the action L; ;.
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Zn . .
The total action amplitude ¢ 544"V is given by

ikﬁf 3 aZ"B,,aZ”

oSt — S i, (44)

Zin
for da” = 0, and e 5"%" ) = 0 for da?" # 0. The partition

function is given by

ik 2T ZuBn Zn
> ST )

{a").da%n =0

Zk;aBaZn (Mlsan) =

Such a partition function defines the twisted (24+1)D Z,-1-
cocycle model.

The volume-independent part of partition function (45) is
given by
Zazﬂ GHI(M:‘;Z") eik zr,:r qu a/AnB aLn
|HO(M?3; Zy)
Since the Euler number on odd-dimensional closed manifolds

vanishes, the above volume-independent partition function is
a topological invariant.

Zihgaz, (M) = (46)

2. Topological partition functions

In this section, we are going to calculate some topolog-
ical invariants. On M3 = S3, S' x 82, or T3> = §' x §' x
S!. B,a% =0 and the topological term sz” fM3 aZn B,q%n
vanishes. We find

1
l 3
202, (8) = .
2z, (8" x SH =1,
20 g, (T =1 47)

From ZE?EBQZ (M? x §"), we can determine the ground-state
degeneracy (GSD) on M?:

§°§M (M? x S") = GSD\.4paz, (M?). (48)
Using
EOEBaZ (S2 X S ) = 1

(49)

Z\apaz, (T? X 81 =n’

we find that the GSD on a sphere S is 1 and the GSD on a
torus T2 = S' x S'is n.

To obtain the topological invariant that detects the topo-
logical term, we put the system on the lens space L3(p) (see
Appendix F 4). We find from

H\(L’(p).Z) = Z
Hy(L*(p).Z) =0
Hy(L*(p).Z) = Z. (50)
that [using Eq. (A8)]
H'(L*(p).Zn) = Zp.ny = {a},
H*(L*(p).Zn) = Zp.ny = {b}. (1)
H>(L*(p).Zy) = Zn = {c},
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where we have also listed the generators {a,b,c}. Here, (I,m)
is the greatest common divisor of / and m, and (0,m) = m.
In Appendix F 4, we have computed the cohomology ring
H*(L3(p),Z,) [see Eq. (F32)]:

2
-1
»_nmpp—D 2) =" e P —ac=0. (52)
2(p.n) (p.n)
We have also computed the Bockstein homomorphism
Bya=—"b (53)
{p.n)
We can parametrize aZ" as
a?r = aa, o € Ly p 54)
and find that
1 (n,p)—1 2 kp
top
Z sz, [L (P =~ ZO TR (55)

We find the above topological invariant is identical to the
topological invariant of (24-1)D Z, Dijkgraaf-Witten theory
on lens space L3(p) for any p [see Eq. (168)]. In fact, one
can show that the Z,-1-cocycle model realize the (2+1)D
Z, Dijkgraaf-Witten theory [33] [see discussions below
Eq. (169)]. In other words, the above topological invariant
is the topological invariant of a Z,-gauge theory twisted by
a quantized topological term [85] k27” sz aZiB,a%. The
quantized topological term corresponds to a group cocycle in
H3(Z,,R/Z) = Z,.1tis the simplest Dijkgraaf-Witten theory.
Such a Dijkgraaf-Witten theory can be obtained by gauging
the Z, symmetry of a Z, SPT state [53]. When k = 0, our
model realizes the Z, topological order described by UT
Z,-gauge theory. For (n,k) = (2,1), our model realizes the
double-semion topological order [35,36,53].

We like to remark that the twisted (24+1)D Z,-1-cocycle
model and Dijkgraaf-Witten theory are different. Dijkgraaf-
Witten theory is a gauge theory where two a% " configurations
differing by a Z,-gauge transformation are regarded as the
same configuration. In other words, two a%” configurations
differing by a coboundary are regarded as the same con-
figuration. Thus, the Dijkgraaf-Witten Z,-gauge theory may
be called twisted Z,-1-cohomology model. In our twisted
(24+1)D Z,-1-cocycle model, different “5 " configurations are
always different with no gauge redundancy. So, the cocycle
model is not a gauge theory but a local bosonic system.
However, the cocycle model has an emergent gauge theory at
low energies which is described by Dijkgraaf-Witten theory.

D. Twisted (3+1)D (Z, & Z,)-1-cocycle model
and emergent Dijkgraaf-Witten theory

1. Model construction

In this section, we like to design a (3+1)D local bosonic
model that realizes the Dijkgraaf-Witten twisted gauge theory
at low energies. Since H*(Z,,R/Z) =0, there is no Z,
Dijkgraaf-Witten gauge theory in (3+1)D. So, here we try
to realize the Z, x Z, Dijkgraaf-Witten gauge theory. Such
theory exists since H*(Z, x Z,,R/Z) = Z, ® Z,.

Torealize Z,, x Z, gauge theory, we constructa (Z, ® Z,)-
1-cocycle theory on (341)D space-time lattice. The local

205142-11



XIAO-GANG WEN

degrees of freedom of the model correspond to two 1-cochains
aIZ”,azz” € C2(Mﬁalt;Zn) (i.e., the local degrees of freedom

are described by Z, @ Z, on each 1-simplex). The partition
function on an oriented space-time M,! is given by [59,63]

att
4
Zklkz aa'Ba' 7, (Mlatt)
z

. Z Z Zn 7 Z,
127” fM4 kiay " ay " Byay " +kaay " ay " Byay"
= e latt s (56)

{al ). dal" =0

where ki,ko =0,1,...,n — 1, We have assumed that the
configuration with da,Z” # 0, I = 1,2, have infinite energy
and do not contribute to the partition function. The term
%fMgnklaIZ”aZZ”Bna?" +k2a2Z"a1Z"BnaIZ” corresponds to a
cocycle (ki,k2) € HY(Z, x Z,,R/Z) = Z, ® Z,.

There are other possible choices of the action amplitude,
such as

2 Zn Zn
esz f"”ﬁm Bya; " Bya,

(57)

But,

B a% B gPr Lzl 2,

way " Bray" = —da;y" —day," =0, (58)
Mlt[l Ml‘:m n n

it M},

another possible choice is |, M aIZ” (azZ ")3. But when n = 2,

it is the same as [, aIZ”aZZ”B,,aZZ", and when n = odd, it
latt

vanishes. So, here we do not discuss it further.

is orientable. So, such a term always vanishes. Yet

2. Topological partition functions

When kj,k; =0, the partition function is given by
the square of the number of Il-cocycles, |Z'(M};Z,)I*.
|ZV (M} Z,)) is |H' (M} Z,)| times the number of 0-
cochains whose derivatives are nonzero. The number of
0-cochains whose derivatives are nonzero is the number of
0-cochains [|[CO(M} ; Z,)| = n™] divided by |[HO(M}} s Z,,)|.

Thus, the partition function is

ZO,O;aa’Ba’Z,, (Mltm) = |Z1 (Méatt; Zn) |2

(M4 .7, 2
it )L i 21
|H (MLatt;Z”)|
2
— Ny iHl (Mfall; Z”) | (59)

5
}HO (Mfatt; Z”) ’
The volume-independent topological partition function is

given by

_ a' (i z)f

Z0.0.0a'Ba'Z, (Mlitt) - |H0(M4 7 )|2 (60)
latt> #n

When ky,k; # 0, the volume-independent topological par-
tition function is given by
Zklkz saa'Ba'Zy, (Mlin)
= X -

a?"eH' (M*Z,)

.27 Zn 7. Z Zn 7 Z
1277 fMlin kiay " ay " Byay " +kaay " ay " Buay "

o2,
(61)

PHYSICAL REVIEW B 95, 205142 (2017)

where |H' (M} ; Z.,)|? is replaced by the summation of phase
factors.

Now, let us compute Zi i,:ua'Ba2Z, (M*) on several
M* On M*=S'xS'xS'x8'=T* or M*=5%x
S x S =82 x T2, Bya® = 0. Thus, Zi kyaaBaz,(M*) =
Z0.0:aa'Baz, (M) on those manifolds. Using

H\(TYZ,) = 4Z,, H'T*>x S%Z,) =13,  (62)
we find that (see Table III)
Zklkzgaa’Ba’Z,, (T4) = n67
Zikowabaz, (S x T?) = n’. (63)
On M* = S' x L3(p), from

H(L*(p),Z) = Z,, Hy(L*(p),Z) =0, Hy(L*(p),Z) = Z,

(64)
we find that [using (A4)]
Hi(S'x L’(p),Z)=Z®Z,,
Hy(S' x L*(p),Z) = Z,,,
Hy(S' x L(p),Z) = Z,
Hy(S' x L3(p),2) = 7. (65)
This allows us to obtain [using (AS8)]
H'(S" x L (p),Zy) = L & Lp.ny = far,a},
H*(S" x L} (). Z) = Zipy ® Zipny = {ara,b)}, 66)

H3(S' x L} (p),Z) = Ly, ® Zyp.ny = {ca1b),
HY(S' x L*(p),Z,) = Z, = {aic},

where we have also listed the generators, where a; comes from
S' and a,b,c from L3( p). Here, (I,m) is the greatest common
divisor of [ and m, and (0,m) = m.

In Appendix F 4, we have computed the cohomology ring
H*(S' x L3(p),Z,) [see (F32)]:

2
-1
a12=0, aZ:%Z)b, ab = " c, b*=ac=0.
2(p.n) (p.n)
(67)
We have also computed the Bockstein homomorphism
Ba=-—"L—b Ba=0. (68)
{p.n)

We see that for (n,p) =1, a =b =0, and thus B,,aIZ” =0.
Therefore, [, kiaZa? B,a?" + kya? a® B,a™ = 0. So
> Imp 1E G2 Pt 26 & Pntyp =1
ZklkzgaaﬁaZ,, [Sl X L3(P)] =1
For (n,p) # 1, we can parametrize a,Z" as

a,Z" =ajay +&a, o €Ly, a5 € Ly, p)- (69)
Using Egs. (66), (67), and (68), we find that
Zklkg;aa’Ba’Z,, [Sl X L3(p)]

Z s (01— o)+ (n@} — @201 81)]

e

12€ZLy,@12€ 2, p)
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m—1

=5" Y bu(ki@3 — kal182) 8, (Kot} — ki),
@12,=0
p
§ = <_ﬂ<nvp>>v m = <n»p)/5 (70)
(n,p)

When p has no repeated prime factor, the above sum has a
simple expression

Zklkzgau’Ba’Z,, [Sl X L3(p)]
= (n,p)(n,p.ki,k) = s*m{m,ky, k). (71)

On M*=F*=(S'"x SM(S' x Sq)#CPZ#(DP we note

that the cup product of l-cocycles is always zero (see

Appendix F 5) ThllS, Zklkz;aa’Ba’Z,,(F4) = ZO,O;aa’ﬁa’Zn(F4) =
2

n-.

3. Dimension reduction

Last, let us consider M* = M3 x S!, where M* and M?
are assumed to be closed manifolds. We write aIZ" as

Z, _ Z, Zy
a;" =apys +a;, (72)
where al "« lives on M3 anda +,on S'. We also fix 5531 a;s =
oy € 7. The partition functlon now has a form
3 1
Zklkz;aa’Ba/Zn (M x S ,ay,07)
— 1 Z P [ 3k — kzﬂtl)aZ"3B aizl";g
[HOWSZP
n EHI(M? Z“)
1,M3
’ z z,
% @ = fM3 klotlaz M;E @, M3+k2aza] /'\7438"‘11,/\;3 ) (73)

In fact, a; in the above happens to label the different sectors.
We find the topological theory in each sector from the partition
function Z t,.a8az, (M? x S',a1,02). As we can see, they
are (241)D Dijkgraaf-Witten theories.

Since the Dijkgraaf-Witten theories can be viewed as
gauged SPT states [53], the dimension reduction of the
Dijkgraaf-Witten theories implies a similar dimension reduc-
tion of SPT states: If we compact a (3+1)D Z{V x Z? SPT
state to (24+1)D via a circle S!, and add a symmetry twist
around S! described by e>®/" for the Z(! and e/>"®2/" for the
Z?) then the resulting (241)D SPT state is a stacking of a Z{"
SPT state labeled by kaas € H3(Z\V,R/Z) = Z,,a ZP SPT
state labeled by kjo; € H3(ZP ,R/Z) = Z,,anda ZV x Z@
SPT state labeled by ki, — kyay € H3(Z\V x ZP R/Z)
[51,59].

This implies that the symmetry-twist defect line (twisted
by €27/ for the ZV and e>™/" for the Z¥) in the
(3+1)D Z\V x Z@ SPT state [labeled by (k;,ky) € H*(ZD x

VAS, ]R/Z) Z, ® 7Z,], will carry gapless (1+1)D excitations
along the symmetry-twist defect line described by the bound-
ary of the (kporp)th Z,(ll) SPT state, the (kj)th Z,(lz) SPT state,
and the (kjay — kyay)th Z(V x Z(2 SPT state, provided that
the Z{" x Z{» symmetry is not broken. This result generalized
the one in [55].
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E. Twisted (3+1)D Z,-2-cocycle model
and emergence of fermions

1. Model construction

In this section, we will study Z,-2-cocycle theory on
(3+1)D space-time lattice. The local degrees of freedom
of the model correspond to 2-cochains b%" € C*(M},; Z.,)
(i.e., the local degrees of freedom are described by Z,
on each 2-simplex). The partition function is given by, for
k=0,1,...,n —1[60],

ik bZny2
oS

(b5}, dbZn =0

Zk;bZZn (Mlttt) =

(i.e., the configuration with db%" % 0 has infinite energy).
Note that the source (or “charge”) of the 2-cocycle field b is
a Z, string. When k = 0, it describes a Z,-2-cocycle theory.
When k # 0, it describes a twisted Z,-2-cocycle theory.

When k = 0, the partition function is given by the number
of 2-cocycles |Z*(My} ; Z,)|, which is |[H*(M},; Z,)| times
the number of 1-cochains whose derivatives are nonzero.
The number of 1-cochains whose derivatives are nonzero is
the number of 1-cochains [|C! (Mlatt’ Z,)| = n™¢] divided by
|H' (M km, Z,)| and by the number of 0-cochains whose deriva-
tives are nonzero. The number of 0-cochains whose derivatives
aIe nonzero is the number of 0-cochains HCO(MEan; Z,)| =
n™v] divided by |H 0(M]_m, Zy)|. Thus, the partition function
is

Zorz, (Mlin) = |Z2(Mltm; Zﬂ) |

2 . | (Méilt;Z)|
|H( latt> )||H1( latt;Z_)|
|H0( My Zn )|
(M Z)]
— NN, (Migs Z,) || H( 1an§Z)’_
|Hl 1au;Z)|

(75)

The volume-independent topological partition function is
given by

|H*(M*% Z)|| HO(M* Z,)|

71oP 4
M
M= |HY(M*; Z,,)]

O bZZ (76)

When k # 0, the volume-independent topological partition
function is given by

0 4.
lop (M4)_ |H (M ,Zn)| Z

AR &)l ek s 071
Az, |H{(M*; Z,)| ’

bZneHX(M*;Z,)
(77)

2 Zn
where 3z, sz, €7 T replaces |[HA(M*: Z,)].

2. Topological partition functions

Now, let us compute topological invariants (see Table III).
On M* = T*, the cohomology ring H*(T*;Z,) is generated
by a;, I =1,2,3,4, where a; € H'(T*;Z,) = 4Z,,. Using
the cohomology ring equation (F5) in Appendix F, we can
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parametrize b%" as

bZ” = ,3[]0](1], ﬂ]_] = —ﬂJ] € ZLy. (78)
Thus,
t [ zl 2 - 2. 2. .
kOiF:zZ (T4) — E Z el * o (Br2Pra—PrsPaatPraba) (79)
Biri€ZLy

Using Zﬂ],ﬁzezn eKT2P — (2k,n)n, we find that
Zipg (TH = (2k,n)’. (80)

On M* = §? x T?, the cohomology ring H*(T? x S2;7Z,)

is generated by a;, I = 1,2 and b, where a; € H'(T? x

S%,7,) = 72* and b € HX(T? x $%;Z,) = Z%2. Using the

cohomology ring equation (F7) in Appendix F, we can
parametrize b*" as

bPr = praiay + Bab. 1.2 € L. @1

Thus,

1
z'op 2 —
Zipg, (ST X T = — >

Bi.B2€Z,

eRTBB — Dk ). (82)

On M* = §' x L3(p), we need to use the cohomology ring
H*[S' x L3(p); Z,] as described in Egs. (66), (67), and (68).
For (n,p) =1, z,f;jzz [S! x L3(p)] = 1. For (n,p) # 1, we

can parametrlze bZ” as
b2 = Braa; + ab, Br1,P2 € Lin.p)- (83)

Using aa1b = ——a;c and (aa))* = b* = 0, we find that

>

Z., 18" x L (p)] = w2 = 2k, p).

ﬁl o=
(84)

On M*= F* we need to use the cohomology ring
H*(F*;Z,) as described in Appendix F 5. We can parametrize
b as

bZr = Biby + Boby,  B1.B2 € Ly, (85)

where by, b, are generators of HX(F*%Z,). Using b% = —b% =
v and b1 b, = 0, we find that

1
,EOEZZ (F4)_ 2 Z ok B—B))
ﬁlqﬂz=0
(2k,n)  if ﬁkn” = even;
- 0 if 2k — odd (86)
’ QRkn)? — '

The above results are summarized in Table I11.

3. Pointlike and stringlike topological excitations

When k # 0, the twisted (3+1)D Z,-2-cocycle theory
realizes a topological order that is not described by Z,-gauge
theory nor by the group-cocycle-twisted Dijkgraaf-Witten
theory since the group-cohomology H*(Z,,R/Z) = 0. Here,
we will show that

PHYSICAL REVIEW B 95, 205142 (2017)

the (3+1)D twisted Z.,-2-cocycle theory realizes a (3+1)D
Z o ny-gauge theory. The Z i ny-gauge theory is a EF Zp -
gauge theoryif2kn/(2k,n)? = odd, anditis a UT Z . ,y-gauge
theory if 2kn/ (2k,n)? = even.

The reduction from Z,, to Z y »y by the twist can be seen from
the GSD of the model. The GSD on S! x S? counts the number
of types of pointlike topological excitations, and the number of
types of stringlike topological excitations. From Eq. (82), we
see that twisted Z,-2-cocycle model gives rise to a topological
order with (2k,n) types of pointlike topological excitations
and (2k,n) types of stringlike topological excitations.

It is interesting to see that the twisted model describes
an invertible topological order when (2k,n) = 1. Since all
(3+1)D invertible topological orders are trivial topological
orders, thus

the twisted Z,-2-cocycle model describes a trivial product
state when (2k,n) = 1.

Naively, the twisted Z,-2-cocycle model should have n types
of pointlike topological excitations and n types of stringlike
topological excitations. But actually, there are only (2k,n)
types of pointlike topological excitations and (2k,n) types
of stringlike topological excitations. Other excitations are
confined.

To understand the unconfined topological excitations in
level-kZ,-2-cocycle model, we note that we can view bZn
as the field strength 2-form of a U(1) gauge theory

2b = ¥, (87)

where the 2w factor comes from the dlfferent quantization
Z, _ :
convention . b%" = integer and [ Mﬁw = 27 x integer.
In this case, the pointlike topological excitations correspond
to the monoples in the U(1) gauge theory. Such a U(1) gauge

theory is described by the partition function

Zeuay(M*) = / Dlale v it 17+ (88)

where © = %, and --- represents additional interactions.

Without the additional interactions, the particle like excitation
in the U(1) gauge theory are labeled by two integers (g,m)
where m = M is the magnetic charge The U(1) charge
of (g,m) is given by Q, ., =g¢q + m The statistics of
particle (¢,m) is determined by ¢! = ( Y™, where e =1
corresponds to boson and e’ = —1 corresponds to fermion.
Let us express the statistics in terms of physical quantities
(0, M): ¢ = (—)M2-%M We see that when ® =0 or
® = 2m, both Q and M are integers, but the statistics of
particles with charge (Q,M) are different for ® =0 and
® = 2. Thus, changing ® by 27 will lead to a different U(1)
gauge theory. Changing ® by 47 will give us the same U(1)
gauge theory. This is consistent with the mod n periodicity
of k.

For ® = T we note that the (g,m) = (—2k,n) particle
has a vanishing U(1) charge and is a boson. We can use the
additional interactions to condense such a dyon [86]. Such
a condensation will make the U(1) gauge theory to be our
Z,-2-cocycle theory. This is because a change of |, M2 b2

closed
by n is a trivial change, which means a change of [ we Jby

closed
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2mrn should also be a trivial change in the U(1) gauge theory.
This is achieved by condensing n units of magnetic charge that
is carried by (g,m) = (—2k,n) particle.

Since the condensing particles have a nonzero mag-
netic charge, in the condensed phase, all the particles with
nonzero U(1) charge, O, ., # 0, are confined. Thus, the
unconfined pointlike topological excitations are given by
(g.m) =1( g,fﬁ T ) With 1 = 0,1, ... (2k,n) — 1. We see

that the GSD on S' x S? corresponds to the number of types
of pointlike topological excitations. We also note that when
2kn/(2k,n)2 = odd (such as k = 1, n = 2), some pointlike
topological excitations are fermions. When 2kn/(2k,n)? =
even, all pointlike topological excitations are bosons.

In the condensed phase, the electric flux lines are quantized
as [,, dS-E= % xm, m € Z. They are the stringlike

closed

topological excitations. Moving a pointlike excitation labeled
by [ around a stringlike excitation labeled by m give rise a

phase ¢’ ) . So, the strings labeled by m and m + (2k,n) are
indistinguishable. This suggests that we have (2k,n) type of
stringlike excitations.

We find that the pointlike and stringlike topological
excitations in the level-k Z,-2-cocycle model are very sim-
ilar to those in Zyy ,y-gauge theory, except that the odd
Z k. charges are fermions when 2kn/(2k,n)? = odd. The
emergence of fermions is supported by the vanishing of
volume-independent partition function on a nonspin manifold

4= (8! x SIS x SHCPHTP [see Eq. (86)], which
happens exactly at 2kn /(2k,n)? = odd.

It was first pointed out in the string-net theory [36] that a
(3+1)D gauge theory can be twisted which makes some gauge
charge described by “odd” representations to be fermionic.

J

Zipz, (MY pCWLaSMWS) oc el ki

- 2msp Z
_ e anlz fM4(b )261 " fM\st bW]’Z

Zn)Z z” sz spbW,_

{almy.op
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But, when we use cocycles in H*(G,R/Z) to twist a G-gauge
theory [33], the pointlike topological excitations are always
boson [87]. Thus, the level-k Z,-2-cocycle model is a different
realization of the twist discussed in the (3+1)D string-net
theory.

4. Including excitations in the path integral

We know that the pointlike excitations are described by
the world lines M\,lVL in space-time. A world line M\%VL
can be viewed as a Z,-valued 1-cycle, which is dual to a
3-coboundary C\;ZV”L. In the twisted Z,-2-cocycle model, such
a pointlike excitation is described by the 2-cochain field
bZ+ that satisfies db% = ﬁC‘fZV’I’_, where p is the charge of
the pointlike excitation. The world sheet can be viewed as
Z,-valued 2-cycles M3, in the space-time lattice. Therefore,
in the presence of pointlike topological excitations described
by C\fZV”L and stringlike topological excitations described by
M, the partition function becomes

4 5~y 2
Ziwz, (Miaes POWL.s Myys)

ik [ 4 (bPn )Y tis2E bZ
e Jus ®F1) is? sz

= Z (89)
b7 ) dbn =pC
where s is the charge of the stringlike excitation.
We first solve db% = ﬁCVZV"L mod 7 as
b2 & pbgy + by + da®, (90)

where b\%,”L is a fixed 2-cochain field that satisfies db\%,”L = C\,ZV”L

and b? " e H*(M*;Z,). We can rewrite the partition function
as

Z ok L[4 2p(by " +daln )by

€H>(M*:Zy)

x Zn | 1 7 k2T w cn
Z 1k2 Jys bEm @b +bEm) Z etkaszM4aZ Gt 1)

bEr e HAM*Z,) {aim)

Let D%VS be the extension of M\%vs’ i.e., 8D$VS = M‘ZVS.

Z Z Z
Then, we can rewrite by, dbyi = Cor . In
f M f D “YWL f D5 ~WL

fact, |, Dl
between DWS and MWL, which in turn is the linking number
between M\sz and M\l,‘,L: Lnk(M\,ZVS,M\,IVL).
Using the Poincaré duality we can also rewrite |, i a%C \%,i
as [ aZ» . Then,
WL

WL = Int(DWS,M\,lVL) is the intersection number

ST o )

Z
[/n}

2 : szp jM4aZ”CZ” _

la"}

{a
only when [2kp], =0, i.e., when p is quantized as p =
P 2k o P € Zok,ny- If P is not quantized as the above, the
correspondmg pointlike excitation is confined.

1

(

Thus, the above partition function for unconfined excita-
tions can be rewritten as

Zipz, <M ch”p M%vs)

I 27 2 1 : 2 2nk 2
ISP B L“k(MstMWL)e' k)2 fM4(b L)

X e

<)

bm e HA(M*:Z,)

Zn 2pn_pZn y 3 Zn
o L b0 (WL 93)

The above expression tells us the braiding statistics of
pointlike excitations and stringlike excitations. Let us assume

H*(M*,Z,) = 0. In this case fM4 b%r b%: is an integer, and

2 2nk imp? 2 [y bEnpln
is also an integer. Thus, ¢’ @kn? M PWLWL o always
Pk

2

2 2nk 7p? 2 [oa bt bt
Bray = even and " @n can be —1

2 zinﬁy = odd. This factor determines the statistics of

1 when p
when p
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the pointlike excitations since b‘%’i is determined by the particle
world line My, . Comparing with the results obtained in the
last section, we find that when the factor & et bii b
can be —1 (depending one the braiding of the world line M.\, ),
then the correspondmg particle is a fermion. This means that
when p? 2k )z = odd, the charge p particle is a fermion.

iSp 57— an Lnk(MWS MW

The factor e v) determines the mutual statis-
tics (i.e., the Aharonov-Bohm phase) between pointlike and
stringlike excitations. We see that it is the usual mutual
statistics of Z n)-gauge theory. We also see that there is
no nontrivial braiding statistics between stringlike excitations.
This confirms our result in the last section that

the Z.,-2-cocyle model produces a low-energy effective Z dkn)-
gauge theory. It is a UT Z o ,y-gauge theory zf 2 = even,

and a EF Z  ,y-gauge theory if ;\"r’: = odd.

Zn ; 2pn Zu Zn
The term Zb()Z"EHZ(M“;Z”) 2 [ by (G bwi +b5™) tells us

when the partition function will vanish in the presence of

emergent fermions, i.e., when (2?(":;) = odd. Let us assume

there is no world line and 23(":)’ =odd. In thls case, the above
2: fM4 (b

factor becomes ), z, . We note that
0

eHXM*Z,) ¢

<zi”:)2 = odd implies that k and 7 are both odd integers. Since
n is even and ’51 is odd, we have Z,, = Z,» ® Z,. Therefore,
Z

by," can be expressed as
by =25y + Sbi. 94)

We obtain

oo ek 5"

bZm e HA(M*:Z,)

- ¥

Z
by " € HAM* Ly 2)

<

bE2 e HAM*Z,)

— 2 : ei2k

z
by /2 €H2(M*Z,)2)

. Z,
oK E [y 46"
Ty /
SN MO e

. Z
o a0y

Z
27 /22
i Jua 0 ") § :

b2 e HAM*Z,)
95)

i Z3y2 .
The factor Zbozze Bz € Jus®™) can be rewritten as

3 o S B0 3

bE2eHAM*Z,) bE2eHAM*Z,)

ein’ fM4 WzboZz (96)

since M* is orientable. Now, we see that

Zy2z, (M*) = 0 whenw, # 0 (i.e., when the orientable M* is
not spin), if there is an emergence of fermions.
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F. (341)D twisted Z,aZ,b model
1. Model construction

In this section, we are going to construct a local bosonic
model on space-time lattice M. Our model is a mixture

of Z,-1-cocycle model and Z,-2-cocycle model. The local
degrees of freedom of our model are Z, indices a%" on the

links and b, 7% on the triangles. We view aZ” as a 1-cochain in

C'(M}}: Zy) and buk as a 2-cochain in C2( My Zy).

Using the Bockstein homomorphism for Z,, B,:
H™(M%,Z,) — H"*'(M?;Z,), the partition function of our
model is defined as

4
Zi kybBa-bvZ, (M)
[ 4 kibZnBaZn +kyb%n bZn
“ Matt .

2. 2

Zn Zn
la;") i)
daZn=0  dapZn=0

o7

The volume-independent topological partition function is
given by
o o Jus 1b%n Bua®n kb ™ b%n

|HY(M*; Zy)

top 4 _
Zklkz;bBu—be”(M ) - Z

aZn eH (M4 Zn)
bZn eH2(M*:Zn)

(98)

2. Topological partition functions

On M*=T* or M* = $? x T2, B,a% = 0. Thus, the
partition function is a product of the partition function of the
Z,a model in Sec. III B and the partition function of the Z,b
model in Sec. III E. We find that (see Table III)

thc(:ingBa—be”(T4) = n*(2k2.n)’,
Zh osaswz, (S0 X T?) = n(2ky.n). (99)
On M*=S8'"xL3p), for (n,p)=1, we
find  that [, 6% Bua?r = [, bP P =0,  since
H?[S" x L3(p);Z,] = 0. So, Z,:’iz bBa b7, [S' x L3(p)] = 1.
For (n,p) # 1, we can parametrize a Zy, bZ“ as

o

= o1a; + aqa,
bZr = Biaya + Bab, Bi1.B € L, p)-
Using B,a = ”p b B,a; =0, ajab = p)cal, and b2 =
(a1a)*> = 0 [see Egs. (66), (67), and (68)], we find that
10| 1 3
Zkliz;bBa—be,l [S" x L7(p)]
B Z é‘A ,127, (k1 Gy o Pr+2ka B1 o)
o1 €Z 502, B1,P2€Zn, p)
Z 8()1,p) (k] ﬁa2 + 2k2ﬂ2)

n
U‘ZaﬁZEZ(n,h) ( ’p)

o] € Z,,, oy € Z(n,p)v
(100)

n(n,p)

= (n,P)<2sz<1 ,(n,P)>. (101

P
{n,p)

On M* = F*, we note that the Bockstein homomorphism
B, maps all 1- cocycles to 0. Thus, the partition function is a
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product of the partition function of the Z,a model in Sec. III B
and the partition function of the Z,b model in Sec. IIT E:

= even,

102
= odd. (102)

top . n{2k,,n) 1f 2
ZklkZ;bBa—be,,(F ) = 0 if 2kan__ 2kon
Qhaon)?

3. Pointlike and stringlike topological excitations

Here, we are going to study more physical properties of
the Z,aZ,b model. The GSD of our model on space M? is
given by GSDy, k,b8a-60z, (M) = Z% 50z, (ST x M?). If
we choose M> = S! x §2, we find that

GSDytipa-oz, (S' x §%) =n(2ky.n).  (103)
The GSD on S' x S? implies that there are n(2k,,n) types
of pointlike and stringlike excitations regardless the value of
k1. This result is unexpected since one may guess the number
of types of pointlike and stringlike excitations are n”. The
reduction is due to confinement as will be explained below.

Again, we will view b% as the field strength 2-form of a
U(1) gauge theory

2P = (104)

We will also view B,a% as the field strength 2-form of another
U(1) gauge theory
2nBat = f'. (105)

So, the twisted (3+1)D bBa-bbZ, model can be viewed as
U(1) x U'(1) gauge theory with some proper condensations.
The U(1) x U'(1) gauge theory has a form

C) PG
Zy (M) = f Dla)Dla'le' w2 Jut 11155 s 117 (106

with © = k; 2 and ©, = kX,
Let us consider a more general U*(1) model

zan arle' ez Jut Filas St
1

where A;; is a symmetric rational matrix. On the boundary,
the action amplitude becomes

(107)

é = foys Arsardag+---

(108)

We see that 2 flux of a, carries a; charge Q; = Ayy.
Before the condensation, the pointlike excitations are

labeled by (q,m,q’,m’). The magnetic charges for the two

U(1) gauge fields are M = m and M’ = m’. Using the above

result with
0 ki
_ n
A= ko 2|’
n n

we see that the electric charges for the two U(1) gauge fields
are Q =q + k‘m and Q' =¢q' + k‘m + 220’ The statistics
of the (¢,m,q’,m’) excitation is e'? = (— )‘””*‘1 m

Next, we condense (¢,m,q’,m’) = (—k;,0,—2k,,n) excita-
tions that have Q = Q' = 0. Since (M,M’) = (0,n) for such

(109)
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excitations, it breaks the second U’(1) to Z, (in the dual
picture). We also condense (q,m,q’,m’) = (n,0,0,0) particles
with (Q,0',M,M’) = (n,0,0,0). It breaks the first U(1) to
Z,. The unconfined particles must have M = Q' =0, i.e.,
q' = m = 0. Thus, the unconfined particles are generated by
(g,m,q’,m") = (1,0,0 O) w1th (Q,M,Q',M") = (1,0,0,0) and
(qmqm)—(oo 2k2n) (anTn)) with (QMQ/M/)Z
(5 (2k2.n> ,0,0, 2k = ) We see that the pointlike excitations are
labeled by (p p) [a bound state of p type (q m q m/) =
(1,0,0,0) and p’ type (¢,m,q’,m") = (0,0,— <2k2 n) T n)) ex
citations]. Two particles that differ by a condensing particle are
regarded as equivalent. Thus, (p, p’) labels have the following
equivalent relation:

(p+n.p)~(p.p)~(p—ki,p + (2ka,n)). (110

So, there are n(2k2,n) distinct types of pointlike excitations.
The type (g,m q ,m") = (1,0,0, 0) excitation is a boson.
The type (q,m,q’,m’) = (0,0,— 7) excitation has
2kon

a statistics (—)¢ 2kz?" .

We note that the pointlike excitations are labeled by the
integer points (p,p’) in a two-dimensional unit cell with
basis vectors (n,0) and (—k,(2k;,n)). We put the two basis

vectors together to form a matrix (_'}ﬂ <2k(2) ”>). The fusion
of the pointlike excitations is described by an Abelian group

2k2 n) 2k2 I’L

G(f;{1 (2,{2’”)) characterized by the matrix. In general, the
fusion rule of the pointlike excitations is not given by
Z,, X Z(Zkz,n)'

The stringlike excitations are generated by the 2m/n
magnetic flux line of the first U(1) and the 1 /n-unit electric flux
line of the second U’(1). So, the generic stringlike excitations
are labeled by (s,s”). Two strings that can join are regarded as
equivalent [31]. Note we can attach a (¢,m,q’,m’) excitation
to change string (s,s”) to an equivalent one, which generates
the following equivalence relation:

(s,8) ~ (s +nm,s' +nq" + kym + 2k,m’). (111)
The above can be rewritten as
(s +n,s" + ki)~ (s,5) ~ (5,5 + (2kp,n)). (112)

We see that there are n(2k,,n) distinct types of stringlike
excitations.
The fusion of the stringlike excitations is described by an

Abelian group G(; sz l,n>)' It turns out that the fusion of the

pointlike excitations and the fusion of the stringlike excitations
are described by the same Abelian group

n 0 n ki
G(—k1 (2k2,n))=G<O (2k2,n))'

In general, two integer matrices M| and M, describe the same
Abelian group if M, = WM U where U,W are invertible

~ M. Let (V)

(113)

integer matrices. In this case, we say M

be the Smith normal form of (,:'l <2k(:!n>), ie.,

n 0 m 0
W(k1 (2k2,n)>U = (O mz)' (114)
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This implies that

n k1 T _ [M 0
UT(O (2k2,n))W = <0 m2>'
We see that

n ki _(n 0 [ n 0
0  (2ky,n) ki (2kp,n) —ky  (2kp,n) )’

(116)

(115)

Via direct numerical calculation, we find that

n kl _
G(o (2k2,n)> = 2oy X Lk 2

The mutual braiding phase between a type-(p, p’) pointike
excitation and a type-(s,s’) stringlike excitation is given by

/)
6 =2 (E __Ps
n (2ky,n)

(117)

p'ski ) (118)

n(2ky,n)

Since both pointlike excitations and stringlike excitations have
a fusion described by Z wnaey X Ziy k, 26,), We Will call the

Tn,k1.2ky)

corresponding theory a Z nwas X Zy k2, fusion theory.
Tn,k1.2ky)

When %" — odd, some pointlike excitations are fermions.

(2k2,m)*

4. Including excitations in the path integral
In the Z,aZ,b model, there are two kinds of pointlike
excitations described by the world lines My,; and Ny, , which
are Z-valued 1-cycles. Let 3-coboundary CZ, be the Poincaré
dual of levu Then, the pointlike excitation that corresponds
to M\l,‘,L is described the 2-cochain field b that satisfies

db? £ p,CE (119)

where p; is the charge of the pointlike excitation.

The Z,aZ,b model also contains two kinds of stringlike
excitations described by the world sheets M3, and Ng in
space-time. The world sheet N, can be viewed as a Z-valued

J

4 ~ Z 1 2 Z
Zklkz;bBa-ben(M ,plCwiaPZNwL,Slesasszs)

=) X

{a%n ’g[Zn} abZn eH (M4 Z)
bOZ” eH2(M*Zn)
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2-cycle, which is dual to a Z-valued 2-coboundary BZ. Such
a stringlike excitation is described the 1-cochain field aZ that
satisfies

da® = 5, BL,, (120)

where s, is the charge of the stringlike excitation. Therefore,
in the presence of pointlike topological excitations described
by CZ, ., Ny, and stringlike topological excitations described
by M35, BZ,, the partition function becomes

4 ~ L 1 2 Z
Zk]kg;bBG-ben(M 7p1CWi5P2NWL7SlMWS5s2BWS)

_ Z Z ol 2 s kab® Bua®n ko (b

daZnlsy g7 apZnlp cly

o n P2y @ g D (121)
where p, is the charge of the pointlike excitation and s
the charge of the stringlike excitation. However, the above
partition function is not well defined. It is well defined only
when bZ» and a%» are cocycles. When b%" and a%" are not
cocycles, the partition function is not invariant under the shift

b¥r — b%r + nb* andlor a® — a®r 4 na’. Z
So, to remove such ambiguity, we write b“» and a”" as

b = pibygy + by +da”,
a%r = syakg + alr + dgh. (122)
Here, b‘%L is a fixed Z-valued 2-cochain field that satisfies

dvt, =ck | (123)

and bOZ” e H*(M*,Z,). Also, a\%s is a fixed Z-valued 1-
cochain field that satisfies

dak, = BL,, (124)

and aOZ" e H'M*; 7). aOZ", g%, b?“, a%n are 7, valued. The
partition function on orientable M* is defined by summing
over those Z,-valued fields:

: = n ~ . = n ny 2% Z Zn =17 Zin
glzTﬂfM“ kz(plh\%l‘-ﬁ-hoz +da‘n )zet%fM./; kl(plhv%L-&-hOZ )B,,(sga%s+aoz )el P2 fN\lVL(SZflws"’ao )+s1 fM\ZVS(PthL"’ho )]‘

(125)
We note that
o5 S oG V4GP _ i [ b PO i [ ka0 i s 2y da
= ei ZTT fM4 kZﬁ%(b%L)zeizTJ: fM4 kZ(bOZ)Ze_i ZTT fM4 2k2ﬁ1C‘%L&Z"
— o T s B OF R i 2 [y ka b7 T Sy HePa (126)
Also,
ol Z [ kl(ﬁlb\%L+bOZ" )By1(520\%g+a()2") — ei % s k115265 B ei% Jus klfzboZ’l Bs e[% Jus kb C\%/L%Zn e 2 fua klboZ" Buay™
— 5w k,ﬁ]s2b\%LB\%sei% Iz kisaby " K F ki prag” o Z fys kb Bual " (127)
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We can rewrite the partition function as

k
Zi ks ;bBa-bbZ, (M ,P1CWL PzNWL,S1Mw5,SzBWS) el Jus o

<2

eH (M*Zn)
eH2(M%Zn)

Zn
Zn

X e

Using the Poincaré duality, we can rewrite [}, bZn B as |, N bEn

(bWL)_

- 21 Z, g Z,
’TIPZ([N\‘VL%”H] jM\QVSbO"I § :

PHYSICAL REVIEW B 95, 205142 (2017)

- 2: Z =17
e 2 [M4 ky plstWLBWS 7”[172 '[N\INL $20ysts1 '[M\Z’VS plbWL]

- 27 Z, .21 ~ 7
2 ZN2 ;2 Z Zn 2 kisaby " 155 ki pray™
ol Z s ke ®F P i [y kit Bl G10E gy hiseba™ JE g, ki

iz 2ky pyaZn
L ([M\‘,\,L 2p1a (128)

~ 7 Z
(@5 ")

Let Djq be the extension of N, i.e., d Dy = Ngs-

Then, we can rewrite || N bwL =/ D dbw"L =/ D CWL In fact, f Dl CWL = Int(Dyyg, My, ) is the intersection number between
Dws and MWL which is the linking number between Nws and M\%VL. Lnk(N&,S,M\%VL).

on -
PZ [ 2k pratn
Also, > {af"}

e WL # 0 only when [2k,p;], = 0, or when p, is quantized as p; =

P1 (2]:2[’”) , P1 € Z(Zk,n)- If ﬁl is

not quantized as the above, the corresponding pointlike excitation is confined.
Thus, the above partition function for unconfined like excitations can be rewritten as

z
np1 Cyp,
L ke :bBa- M4 WL
kika:bBa be,,( 2kyon)

2nky p? Zn pZn . 2msipy . 2msy prky

)

kys Zn : 21pik
Zn 2 122 by iRl
= klb(J B,ag P fNWS 0" o nakyn) /M\]VL

xeln

The factors

Z"sz’ npZn . 2ms
275 py 2
el ) 2 Jus bt bt el By KMy, My ),

i 275y p1ky 2
e’ kg LKV,

\]’\/L)ei 2m”2p2 Lk(Niys, Nyr)

(130)

in the above expression determine the braiding statistics of
pointlike and stringlike excitations. We see that there is
no nontrivial braiding for stringlike excitations. But, there
are nontrivial mutual statistics (i.e., the Aharonov-Bohm
phase) between pointlike and stringlike excitations. Also, when

% = odd, the theory contains fermions.

IV. COMPARISON BETWEEN THE (3+1)D Z,-2-COCYCLE
MODEL AND (3+1)D Z,-1-COCYCLE MODEL

There is a well-known duality between the (34+1)D Z,,-1-
cocycle theory (with emergent Z,-gauge theory) and the above
(3+1)D Z,-2-cocycle theory with k = 0. In the following,
we will compare the two theories in detail. We find that
the two theories are equivalent, if they are viewed as pure
topological theory without any symmetry. So, both (3+1)D
Z,-1-cocycle theory and (3+1)D Z,-2-cocycle theory realize
the same topological order described by UT Z,-gauge theory.
However, if we view the two theories as topological theory
with time-reversal symmetry or parity symmetry, then the two
theories are not equivalent. In other words, the two models
realize the same topological orders, but different symmetry-
enriched topological orders (with time-reversal symmetry or
parity symmetry).

1 2 Zy
,PzNWL,Sles,SzBWS)

2 Josa bl WLel ] Lnk(MWg MWL) i eIy Lnk(NWg MWL) ,anznz Lnk(N2,g, Niy)

Zn 2w Zn g Zn
a, i py fy1 ay" s f,2 by
0 gl p fNWL 0 ‘/MWS o

S el

eHl (M4 Zn)
by Zn e g2 (M4 Z)

Zn

(129)

A. Duality

To see the above-mentioned duality, let us describe the
lattice Hamiltonian of the two theories. We consider a 3D

cubic lattice whose sites are labeled by i. To obtain a Z,-

Ly _
l-cocycle theory, we put a Z, degrees of freedom a;;" =

Z,
0,1, n—l——a]l

Z
U;; =¢'"%" and V;; is an operator that raises a

V,j|al.j =m) = |aij” = m + 1). Noting that the Zn-l-cocycle
theory is a theory of closed Z, loops at low energy, we find
that the lattice Hamiltonian for the Z,-1-cocycle theory will
be

on each nearest-neighbor link @ij).Let

" by one:

Hz,. = — Z(Ql + 0D =" Biju+ By,

(ijkl)
[T v

J nextto i

Biji = Vi; VixVu Vi,

Qi = (131)

where ), sum over all sites and }_;;, sum over all

squares (i jkl). The —(Q; + Qf) terms enforce the closed-loop

condition and the —(B;j; + B, ; ;) terms are the loop hopping
and/or loop creation/annihilation terms.

To obtain a Z,-2-cocycle theory, we put a Z, degrees
of freedom bg,';l =01,....n—1= —bl%i on each square
(ijkl). But, this is equivalent to put a Z, degrees of freedom

a =0,1,...,n —1 = —a” on each link (1J) of the dual

lattice. The dual lattice of a cubic lattice is also a cubic lattice.
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The Z ,-2-cocycle theory is a theory of closed Z, membranes at
low energy. Thus, the lattice Hamiltonian for the Z,-2-cocycle
theory with k = 0 is

Hopz, = — Y Q1+ 0D~ Y (Biske+ Blx).
1

(1JKL)
1_[ Vis,

J next to /

Bk =UpUygUg Uy

0
(132)

The —(By k1 + B; sk 1) terms enforce the closed-membrane
condition and the —(Q; + Qj) are the membrane hopping
and/or membrane creation/annihilation terms. The two Hamil-
tonians Hz,, and Ho,:z, are equivalent under a local unitary
transformation that exchanges U and V. This implies that the
two theories are really equivalent.

B. Topological invariants for orientable space-time

To compare the two theories at Lagrangian level, we note
that the volume-independent topological partition function for
(B+1)D Z,-1-cocycle theory is given by

|H'(M*;Z,)|
Zy MY = ——— 133

2 M) = (o072, (139
while the volume-independent topological partition function
for (3+1)D Z,-2-cocycle theory (with k; = k, = 0) is given
by

|HO M Z)| | H> (M Z,)|

10] 4
Zawsenz, M) = TG 7 (39
So, their ratio is given by
t
Zogmemz, MY _ | HMS ZOPIHAMSE L)) oo

Z3P (M*) |H (M*; Z,)I?

In Appendix C, we will show that for orientable close space-
time M*,

top 4

ZoopBa-bbz, M)

o w0,
Zya

(136)

where x(M*) is the Euler number. The volume-independent
topological partition functions of the two models are different,
which may lead one to conclude that the Z,-1-cocycle model
and the Z,-2-cocycle model realize different topological
orders. However, in [31], it was conjectured that two (3+1)D
topological partition functions Z;OP(M 4) and Z;OP(M 4) de-
scribe the same L-type topological orders iff their ratio has
a form

ZYMY o, ot
— = AT (137)
Z5P(M4)

where P;(M*) is the Pontryagin number of M*. Therefore,
the above result implies that the Z,-1-cocycle model and the
Z,-2-cocycle model realize the same topological order.
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C. Ground-state degeneracy for nonorientable spaces

Now, we turn to study the ground-state degeneracy of the
two models. To calculate the GSD on closed space manifold
M3, we compute the volume-independent partition function
on M? x S! space-time:

GSD(M?) = Z"°°(M? x §"). (138)

We see that the ground-state degeneracy of the two models
is the same on orientable spaces M?> since their partition
functions are the same on orientable space-times M3 x S'.

However, for nonorientable space M 3 the GSDs of the two
models can be different. For example, let us assume the space
to be M? = S' x KB, where KB is the Klein bottle. We note
that

Hy(KB:;Z) =0, H;(KB;Z)=27 ®Z,, HyKB;Z)=7

(139)
and
Hy(S' x KB; Z) = Hy(KB; Z) ® H(KB; Z) = Z & Z»;
H(S' xKB:Z)=H(KB:Z)®Z =Z O 7, & Z. (140)

Then, using the universal coefficient theorem (A8), we find
that

HX(S' x KB Z,) = Z, ® L3

H'(S' x KB;Z) = Z9 7, ). (141)
Thus,
GSDy2z, (S' x KB) = n(n,2)?,
GSDz o(S' x KB) = n*(n,2). (142)

When n > 2, the GSDs of the two theories are different. Since
the difference only appears in nonorientable manifolds,

the Z,-2-cocycle model and the Z,,-1-cocyle model realize two
different time-reversal symmetry-enriched topological orders.

This is consistent with the fact that the two theories realize
the same topological order if we ignore the time-reversal
symmetry.

Both topological orders have pointlike excitations labeled
by i € Z, and stringlike excitations labeled by s € Z,. But,
they transform differently under time reversal. For the Z,-
1-cocyle theory (i,s) — (i,—s) under time reversal. For the
Z.,-2-cocycle theory (i,s) — (—i,s) under time reversal. Both
the Z,-1-cocycle theory and the Z,-2-cocycle theory are
described by the same Hamiltonian (131). But, the time-
reversal symmetry is realized differently. In the Z,-1-cocyle

Z . . .
theory, we assume |a; j”), the eigenstates of Uj;;, are invariant

under time reversal. Thus, (U;;,V;;) — (U,-Tj,Vi ;) under time
reversal. In the Z,-2-cocycle theory, we assume that the

eigenstates of V;; are invariant under time reversal. Thus,
Wij,Vij) — (Uij,Vl.;) under time reversal.

V. NON-ABELIAN COCYCLE MODELS

So far, we have constructed many local bosonic models:
the cocycle models. But, in those constructions, the local
degrees of freedom are always described by an Abelian group,
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(b)

FIG. 5. Two branched simplices with opposite orientations. (a)
A branched simplex with positive orientation and (b) a branched
simplex with negative orientation.

such as Z,. In this section, we will use group cocycles in
group cohomology theory (see Appendix G) to generalize
the cocycle models so that the local degrees of freedom are
described by a non-Abelian group G. To use group cocycles
to construct the cocycle models, we need to map the group
cocycles in group cohomology theory to topological cocycles
in topological cohomology theory. To obtain such a map, we
need to first introduce the branching structure in space-time
lattice.

A. Branching structure of space-time lattice

In order to define a generic lattice theory on the space-time
complex M]‘Zm using group cocycles, it is important to give the
vertices of each simplex a local order. A nice local scheme to
order the vertices is given by a branching structure [11,48,88].
A branching structure is a choice of orientation of each link
in the d-dimensional complex so that there is no oriented loop
on any triangle (see Fig. 5).

The branching structure induces a local order of the vertices
on each simplex. The first vertex of a simplex is the vertex
with no incoming links, and the second vertex is the vertex
with only one incoming link, etc. So, the simplex in Fig. 5(a)
has the following vertex ordering: 0,1,2,3.

The branching structure also gives the simplex (and its
subsimplices) a canonical orientation. Figure 5 illustrates two
3-simplices with opposite canonical orientations compared
with the three-dimensional space in which they are embedded.
The blue arrows indicate that canonical orientations of the
2-simplices. The black arrows indicate that canonical orienta-
tions of the 1-simplices.

B. Group-vertex models that realize G-SPT orders

References [10,11,48] have constructed exactly soluble
local bosonic models using homogeneous group cocycles (see
Appendix G) of group G to realize G-SPT orders. Those
models are actually cocycle models on space-time lattice. In
this section, we will review those results using the cocycle
notation introduced above.

The local degrees of freedom of our model are now group
elements living on the vertices of the orientable space-time
lattice M{fm: gi € G. Let v,(go, -..,8,) be a homogeneous
group n-cocycle: v,(go, . ..,g,) € H*(G,R/Z). From v,, we
can construct a topological n-cocycle ¥, on Ml‘fm:

ﬁn(io»ilv .. sin) =V (giosgilv ‘e 7gin)1 (143)
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where (ig,iy, . . . ,i,) is an n-simplex with the canonical orien-
tation and the vertex ordering iy < iy --- < i,,. Below, we will
drop the ~ and denote ,(ig,i1, ... ,in) S V,(8iy»&iys - - - »8iy)-

Using such mapping, we can construct a group-vertex
d

model on orientable space-time M :

d 27 [, va({gi)
ZV{/ (Mlatt) = Zé’ Pl .
{8i}

(144)

Since vy({fgi}) = va({gi}), f € G, the group-vertex model
has a global onsite G symmetry. Since /27 /udvalle) = |
on any closed orientable manifold M?. We find that the
constructed model is gapped. We also see that

Z,, (M) = 1GI™. (145)
So, the volume-independent partition function Z,?(M?) = 1,
for all closed orientable manifolds M9, which implies that
the model does not have any topological order regardless
the choice of the group cocycle vy. fo:,p(Md) =1 also
implies that the group-vortex model does not break the G
symmetry [as one can see from the ground-state degeneracy
on closed orientable space manifold M{. ! : GSDP(ME ) =

space* space
top ¢l d—1y _
ZiP(ST x ME L) =11.

But, fojp(Md) = 1 also means that volume-independent
partition function fails to detect SPT orders. In fact, we do
not even know whether the lattice models with different v,;’s
belong to different SPT phases, if we just look at Zf:p(M 4y,

To detect SPT order via the partition function [49,50,54,55],
we need to add the symmetry twist [53] in space-time. A
symmetry twist is described by a;; € G on each link (i.e.,
1-simplex), that satisfy

Ji?

aj; =a a;ja;rQi; = 1. (146)
Such a a;; configuration defines a so-called “flat G connection”
on space-time M. In the presence of symmetry twist, the

partition function becomes

i27 [\0 vidgidaij})
ZVd(M]Ztt’aij) = Zez ”flexu v,({gi}{aij ’ (147)
{si}
where
vigitdah) = vi(8ip&irs - &1 igiy @i - - - )
= Vg (gioaaioi]gil Qigiy Aiyiy 8ins -+ ) (148)

Clearly, the partition function Zvd(Mﬁn,a,- ) is invariant under
the gauge transformation

g — fig, aij —> fiaijffl;
Vs({ﬁgi},{ﬁaijffl}) =vi({g}.{ai};

Zy, (Mlgzlm’ai.i) =2y, (Mﬁtt’ﬁaijfj_l)‘ (149)

So, the partition function Z,, (Ml’im,a[ ;) only depends on the
gauge-equivalent class of the flat connection a;;.

The volume-independent partition functions Z,." (M{,.a;;)
are the so-called SPT invariants that suppose to fully character-
ize the SPT order [49-51,54,55]. Using a gauge transformation
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to change g; — 1, we find the SPT invariant to be given by
i2m [0 vidgi=1}.4ai;})
Z;(;p(Mﬁnvaij) =e l{gm d
_ eiZJT fo;’m wzl({alj})’ (150)
where w; is the inhomogeneous group cocycle that corre-
sponds to the homogeneous group cocycle v, [see Eq. (G9)].
The above expression allows us to compute the SPT invariant.
In the following, we will list some of the SPT invariants for
some simple SPT states:
(1) The Z, SPT states in (24+1)D are classified by
H*(Z,;R/Z) = Z,. For a Z, SPT state labeled by k € Z,,
its SPT invariant is

ZIP (M3 aPry = 5 S @ B (151)

(2) The Z, x Z, SPT states in (3+1)D are classified by
HYZ, x Z,;R/Z) = Z%*. For a Z, x Z, SPT state labeled
by i(ki,k2) € Z2, its SPT invariant is

to] ~ j 2 ZngZnp gZn GZn gZn Zn
Zklpkz(M4vaZ”’aZ’1) — ¢ Sy4 kia%na®n B,a%n +-kya%n a®n B,a )

(152)

C. Group-vertex models that realize Z] SPT orders

To construct a local bosonic model that realizes the time-
reversal ZZT SPT order, we consider a Z,-group-vertex model:
gi € Z, = {0,1}. The Z,-group-vertex model on orientable

space-time lem is given by
Z,, (Mlcalm) = Z eih fMﬁ‘" Ud({gj})v (153)
{gi}
where the homogeneous Z,-group cocycle v,({g;}) €

HUZ»,(R/Z)z,) satisfies
va({gi + 1}) = —vg({g;}) mod 1.

The extra “—” sign implies that the Z, group has a nontrivial
action on R/Z which is indicated by the subscript Z, in
(R/Z)gz,. For example, in (14-1)D,

(154)

12(80.81,82) = 381 — gol2[g2 — g1l (155)

Since the Z, action corresponds to the time-reversal
(or orientation reversal) transformation, to obtain partition
function with the symmetry twist, we need to put the system
on nonorientable space-time and to introduce a Z,-valued
1-cocycle a;; to describe orientation reversal:

; ¢ i
2, (M) = Y2 b AN 156y
{gi}
where
vi(gitdai) = Vf(gio,gil, e 8igs Qigiy s Diyiy s - - )
= Vd(gioaaioil + i Qigiy + Giyir + &iss - )
(157)

Here, a;; is the Z, flat connection that describes the
orientation of the manifold (see Fig. 6). In other words,
if the orientation does not change around a loop C, then
Z(ij)ec ajj = fca = 0; if the orientation changes around
a loop C, then ;. caij =¢.a=1 (see Fig. 6). The
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FIG. 6. Two triangulations of R P? where the opposite points on
the boundary are identified. One triangulation has 3 vertices and the
other has 16 vertices. The open dots represent g; = 0 and the filled
dots represent g; = 1 at the vertices. g; is multivalued since it takes
different values on the same vertex, such as vertex 1 and vertex 2. The
black links represent a;; = (dg);; = & — &; = (W1);j = 0 and the
red links represent a;; = (dg);; = & — &; = (W1);j = 1 mod 2. The
unshaded triangles represent (dgd g)ijx = (w%),«jk = Bydg = Byw, =
0 and the shaded triangle represents (dgdg);jx = (wf),- ik =Bdg =
Byw; = 1. {By definition, (dgdg)iyx = [(§; — &;)(§; — &)]» and
Bow))ijk = [W]z where i, j,k are ordered as i < j <
k.} We see that [ o Wi = [ dgdg = 1.

above definition implies that a;; is a Z,-valued 1-cocycle
a € CY(M?7Z,).In fact, a = w;.

We can use a multivalued Z,-gauge transformation to make
a;j = 0, which changes the single-valued g; to multivalued g;.
If the orientation changes around a loop C, § will have to
take different values on the same vertex somewhere on C (see
Fig. 6). We see that to realize ZZT SPT order, the local bosonic
degrees of freedom must couple to space-time orientation. In
other words, (—)# is a pseudoscalar, which changes sign under
time-reversal and parity transformations. In this paper, we will
also refer g as a pseudoscalar field. Thus, if we view g; as a
Z,-valued O-cochain, we have (see Fig. 6)

a=w; =4dg. (158)

In terms of such multivalued g;, the partition function can be
written as

i2m va({&ih)
Z,, (M) = 3 &P 8D, (159)
{&i}
The ZI SPT invariant is given by the corresponding
inhomogeneous cocycle w,:
d i2m [0 vidgi=1}.{ai;)
ZLZP(MM[[) = e Mlan d 7

_ 65277 IMI(.im wd({aij})‘

(160)
We can express wq({a;;}) in terms of a;; (see Fig. 6):
%ad if d = even,
wallah) = :o if d = odd. (en
Thus, the ZI SPT invariant is given by
ZP(M?) = & Jui v, (162)
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From Wf = Sql(w”f*l) = - l)w‘ll, we see that w‘f = O0mod
2 automatically, when d = odd. So, the above expression for
the ZJ SPT invariant is valid for both d = even and odd.

Last, we like to mention that, using multivalued g;, we can
also express the nontrivial homogeneous cocycle v;({g;}) as
(see Fig. 6)

1 ~ .
i(dg)d if d = even,

V, ~,' =
&) =1, if d = odd,

(163)

since a = dg. This allows us to rewrite Eq. (159) as (see Fig. 6)

Z, (Mlim) = Z em fMlin @@y’
(&}

(164)

for even d.

D. Group-link model and emergent Dijkgraaf-Witten
gauge theory

Now, let us construct local bosonic models: group-link
models, whose topological orders are described by Dijkgraaf-
Witten gauge theory. The local degrees of freedom of the
group-link model are group elements living on the links of
the space-time lattice M{!: a;; € G that satisfies a;; = =Gy L
Then, using the inhomogeneous group cocycle wy({a;;}), We
can construct a group-link model [33,83,85,89]

d i27 [0 wa(GaiiD=U X0 laijajrai—11
Z6.w (M ) = E e latt 4
»0d latt s

tajj}
ajjajkaki=1

(165)

where Z(i k) Sums over all 3-simplices, and U — +oc0.

Note that the above model is a local bosonic model, not the
Dijkgraaf-Witten gauge theory. The Dijkgraaf-Witten gauge
theory is defined by

d 27 [0 wa({aiiD—U Y ;0 laijajcai—1]
2G04, DW (Mlatt) = E € M “o )

lla;j )]
ajjajpagi=1

(166)

where the summation Z[{a”}] is over the gauge-equivalent
class [{a;;}] of the configurations {a;;}. In contrast, the
summation Z{a,-,} in the group-link model is over all the
configurations {a;;} (without the gauge reduction). However,
the volume-independent partition function of the two models
is the same:

Zg)}owd,DW (Mlaalm) = Z[((})Pwd (Mlazlm)' (167)

So, the two models have the same emergent topological order.

As an example, let us compute the topological invariant
for (24-1)D lens space L3(p), using the explicit CW complex
decomposition in Fig. 7:

|2 Z o2 P ws(g. 8" bk 'gh) (168)

g, /xeG
gP=

For G = Z,, w3 € H*(Z,,R/7)

top
Z3 (L3 (p)] = G

= Z, is labeled by k € Z,,:

k
w3(g1,82,83) = ﬁgl(g2 + &3 —[g2+ gln). (169)
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FIG. 7. The lens space L3(p) is obtained by identifying the
bottom and the top disks after a 2w /p rotation, e.g., link (01) and
link (0'2) are identified, link (02) and link (0'3) are identified, link
(12) and link (23) are identified, etc.

We find that
Zy AL (D)) = Zh gz, 1L (D)) (170)

In fact, the topological term in the Z, Dijkgraaf-Witten theory
and the topological term in the Z,,-1-cocycle model are directly
related,

a’n B, a%n ,
M3

7 2
27[/ ws({a?r)) = k25 (171)
M3 n

as one can see from Eq. (169) and the explicit expression of

aZnB,a%n

(@%B,a® (ijkD) = af}" (Bya® (jkD):

. l z z z
(Bya™ (kD) = ~(aji’ +a" = ajf")

1
= ;(ajzk” + ag" — [ajan + ag”]n).

(172)

Therefore, the Z,-1-cocycle model realizes the Z, Dijkgraaf-
Witten theory.

E. Symmetric topological orders described by gauge theories

We can also construct local bosonic models (called mixed
group-vertex group-link models) that will produce topological
orders described by a Ggayge-gauge theory that also have a
symmetry Ggymm. In the mixed model, the local degrees of
freedom of are group elements g; € Ggymm living on the links
group elements a;; € Ggayge living on the links of the space-
time lattice M{.,. Then, using the homogeneous group cocycle
v,({gi}) € H"(Gsymm,R/Z), and the inhomogeneous group
cocycle wq—,({aij}) € Hd’”(Ggauge,R/Z), we can construct
the mixed model

Zv,lwd,n (Md ) _ Z eizﬂ fMﬁ“ Vn({gi})wd—n({alj})'

latt
{gi.aij}aijajrari=1

(173)
We can also construct a more general mixed model using in-
homogeneous group cocycle w; € H (Gsymm X Ggauge,R/Z):

’

d 27 [\ oal{(g; " 8j.ai))]
Zvnwd—n (Mlatt) = Z e Miate S

{gi.aij}aijajrari=1

(174)

where (g;,a;;) is the group element of Gsymm X G gauge-
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We can construct an even more general mixed model using
inhomogeneous group cocycle w,; € H4(Gpsg,R /7) [85]:

’

d i27 [0 wal{(e; ' gj.ai))]
Zoy;Grso (Mlatt) = Z e Mia [

PSG_PSG  PSG__
(giaijha;; a a7 =1

(175)

where Gpsg is a group that contains Ggauee as a nor-
mal subgroup such that GpsG/ G guge = Gsymm, and ainSG =
(g 1g j»a;ij) is the group element of Gpsg [69]. In other words,
Gpsg is an extension of Ggymm by Ggauge, Which is also

described by the following short exact sequence:

1 - Gguge = Gpsg — Gsymm — 1. (176)

In this case, as discussed in [69], a gauge charge does not
transform as a representation of G gauge, but rather transforms as
arepresentation of Gpgg. Under the symmetry transformation,
the gauge charge transforms according to Gpsg (which s called
the projective symmetry group). In fact, Gpsg describes the
so-called “symmetry fractionalization”.

If there is a symmetry twist described by a;;"" € Gsymm
on the links, then the partition function will be

d _symm
de;GPsG (Mlatt’aij )
. 1 s
_ Z el27‘[ fo!m wql{(g; ﬁl:}mmgj-aij)}].

{gi,aij}aijajrari=1

(177)

The above construction also applies to the situation where
Gymm contains time-reversal symmetry. In that case, aisjymm
will contain contributions from the change of the orientations
of the manifold, and w; € H¥(Gpsg,(R/Z)r) where time
reversal T € Gpgg will have a sign-changing action on R/Z.

If we include Z,-2-cochain field bZs | we can construct
new general local boson models with emergent symmetric
topological order, such as [45]

d symm
Lz ®4-2;GpsG (M a )

latt>*ij
—1 _sym

. m
lZ”fMd hZ"wd—Z[{(g[ a;; g_nai_/)}]
e latt
(879 .b%]:’ }dbZn =0

ajjajpag;=1

. (178)

where we have assumed that nwy_, = 0. This model has an
emergent (Z, X Ggauge)-gauge theory with Ggymy symmetry.
When, Ggaee =1, the Z, charge may carry a projective
representation of Ggymm. When Gyyum = 1, the Z, charge
may carry a projective representation of Gguge. In general,
the Z, charge may carry projective representation of Gpsg
(i.e., with mixed fractionalized symmetry Ggmm charge and
gauge Ggayge Charge).

VI. TIME-REVERSAL SYMMETRIC
TOPOLOGICAL ORDERS

In this section, we are going to construct exactly soluble
local bosonic models that have time-reversal symmetry and
emergent time-reversal symmetric topological orders. The
time-reversal symmetry 7 is described by the symmetry group
ZI, whichmeans 72 = 1. We will first construct (241)D mod-
els and then (34+1)D models. All the (3+1)D models realize
time-reversal symmetric Z,-gauge theories at low energies.
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A. (241)D time-reversal symmetric Z,-1-cocycle models
1. Model construction

We start with the Z,-1-cocycle models which produce time-
reversal symmetry-enriched Z, topological orders and double-
semion topological orders in (2+1)D. The partition function
has a form

i aZ m)-
S e (gg9)

{a?).da%2=0

ZZar (Mlzn) =

The possible topological terms W(a%,w,,) are mixture

of 1-cocycle a?> and Stiefel-Whitney classes w,,. Here,
. . i W(a?2,w,
W(a?,w,,) has its value in Z,. Thus, emf”’?uu @) _ +1

and there is time-reversal symmetry in our model. Also, since

i W@a%2,w,) .
W(aZ2,wy) € CHMR s o), €™ i M@0

is well defined
even for nonorientable manifold M2 where Hy(M? ;7Z) =0

non?

but Hy(M3..:Z,) = Z,. We also note that for nonorientable

manifold, M2 itself is a chain with boundary (i.e., M2 is

not a cycle). Therefore, f 3 db # 0, for a 2-cochain b.

non

The possible topological terms are given by the combina-
tions of the following six 3-cocycles:

3

Wi, W1Wa, w3,
a®), wi(a?2)?, wla?>. (180)

From Appendix D 3, we find many relations between Stiefel-
Whitney and the Z,-1-cocycle:

2
W] =Wz, Wiwy =w3 =0,

wia??)? = 8q'[(a?*)*] = 2(a®?)® = 0. (181)

So, the most general time-reversal symmetric Z,-1-cocycle
model that couples to Stiefel-Whitney classes is given by
3 in [,3 kiaZ2Ba%2+kywia%2
Zk]sztZzaT (Mlatt) = Z e i 1 ’

{a;?}.da%2=0
(182)

where ki ,k, € Z,, and we have used (a£2)? = a%2Bya”.

We like to remark that the Stiefel-Whitney class w; in
the above path integral can be induced by a local degrees
of freedom, a pseudoscalar g; introduced in Sec. V C. Using
w; =dg; —dg;, where g; is Z, single-valued 0-cochain, we
can rewrite the above path integral as (the g; dependence
disappears)

Zi iyt ZoaT (Mlztt)

- ¥

(81.a]?).da%2=0

i '[Ml%m klaZZ BgaZZ JrszzdgaZZ

(183)

which is a pure local bosonic model.

The above four local bosonic models with different values
of ky,k, give rise to four different time-reversal symmetry-
enriched topological orders. If we break the time-reversal
symmetry, the above local bosonic model will only give rise
to two different topological orders labeled by k;: the Z;
topological order (i.e., the Z,-gauge theory) for k; = 0 and
the double-semion topological order for k; = 1.
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2. Topological partition functions

Next, we will compute the volume-independent partition
function, which is given by

1
to 3
Zitzaar M) =5 )

aZ2e H\ (M3, Z,)

eiTl’ fM3 k]aZZBzaZZ-szW%aZZ .

(184)
On M3 = S! x X, st kia%2Bya% + kZW%aZZ = 0. Thus,

2y z,ar (' X Bg) = 2%, (185)

On M3 =§' x 2,7, we note that the cohomology ring
H*(S! x %3°"; Z3) has a basis

(186)

.....

with ag,a; € H'(S! x E;"";Zz) and b € HX(S' x Z;“’“;Zz),
which have the following cup product:

al =b, aj=a;b=0. (187)
The Stiefel-Whitney classes are given by
8
wi=) a, w=wj=[ghb, (188)
i=1
and the Bockstein homomorphism is given by
Bya; = (a;)" = b, Byag =0. (189)
Expanding
8
a% =7 aua, (190)
n=0
we find that
1 . ¢
¢ 1 non i (ko L aitkaga
Zk(l)iz;lZZaT (S x Eg ) = 5 Z 'k Xicy eithagao)
a,=0,1
8
- X s 2
a;=0,1 i=1
= (1 — ky)lkag + 11528 + k12871,
(191)

The results are summarized in Table 1.

We like to remark that Z, x ZZT SPT states are classi-
fied by H3[Zy x ZI';(R/Z)r] = Z$*. For a Z, x ZI SPT
state labeled by (k,ky) € Z$?, its SPT invariant is given
by Z9OP(M3,al2) = i Jus kia™2Bra® howia™ -y here gZ2 de-
scribes the Z, symmetry twist on M>. Such SPT invariant
happens to be the phase factor in Eq. (184), and the summation
in Eq. (184) happens to be the summation of all possible
Z, symmetry twists. This implies that the topological orders
produced by the (241)D Z,-1-cocycle model can be regarded
as the Z,-gauged Z, x ZJ SPT states.

3. Properties of excitations

When k; =0, the (24+1)D Z,-1-cocycle model has an
emergent Z, topological order described by a low-energy
Z,-gauge theory. It has four types of pointlike excitations: 1, e,
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m, & = em, where ¢ is a fermion and others are bosons. When
ki = 1, the cocycle model has an emergent double-semion
topological order. It has four types of pointlike excitations: 1,
e, m, €, where e is a semion with spin %, and ¢ a semion with
spin —%. 1 and e are bosons, and they carry Z, charge 0 and
1, respectively.

To obtain more properties of the excitations in those
T -symmetric topological orders, let us consider dimension
reduction. In general, when we reduce a stable phase C? in
d dimension to lower dimension d’ via a compactification
M? — M? x N9 the resulting lower-dimensional phase
on M? may correspond to several stable phases C;’/ with
accidental degenerate energy [90]. We denote such dimension

reduction as
d d'
c'=@pct.
i

and refer Cfl/’s as different sectors. The different sectors arise
from different field configurations on N9, We like to ask the
following: What are effective theories for those d’-dimensional
systems in each sector?

To apply the above general picture to our case, let us assume
the space-time to be M> = M? x S' and S' is a small circle.
We can view the (2+1)D Z,-1-cocycle models as a (1+1)D
local bosonic system. Then, what is the effective theory for
such (14+1)D systems?

To answer the above question, we can write a2 as a
aAij + a?f , where a;Z/fz are low-energy degrees of freedom only

(192)

Z2=

live on M? (i.e., constant in the S! direction), and aSZf are

high-energy degrees of freedom only live on S! (i.e., constant
in the M? directions). The different field configurations on S'

are labeled by o = f Sl aSZ,2 € Z». So, the different sectors are

also labeled by o = 0,1. The partition function on M? x §!
becomes

ZiskyiZoar (M? x S1)

- ¥

{a;?}.da%2=0

- ¥

VA Z
{a,iz},daM% =0

ol Sz st kia®2Bra®2+ky Bydga™2

. . Z ~
elT[O{ jMz k[BzaMg +kaBrdg )

(193)

We see that in the sector o = 0, the resulting (1+1)D
ZZT SPT order is trivial. In contrast, in the sector o =1,
the resulting (1+1)D ZT SPT order is nontrivial. Usually, in

(14-1)D, the gauge field aﬂzjz fluctuates strongly. Here, we want
to treat the (14-1)D system as reduced from the (2+1)D system
as shown in Fig. 8. In this case, we can assume the gauge field
aﬁé to fluctuate weakly, and treat a,fzjz as a background probe
field. Therefore, we can view the (141)D system as a system
with Z, x ZI symmetry. Then, from the (1+1)D effective
theory (193) which can be viewed as an SPT invariant [55],
we see that in the sector o = 1 is described by a Z, x ZT
SPT state labeled by (k;,k), which agrees with the group
cohomology result H*(Zy x ZI \R/Z;) = Z?z.

If (ki,k;) = (0,1), the (1+1)D SPT state is a pure ZZT SPT
state as indicated by the term /™ /u2 225242 Such SPT state has
Kramers doublet at the chain end. In fact, the chain end has
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FIG. 8. In a dimension reduction from 2D space to 1D space
(a cylinder), a hole in the 2D space becomes an end of the 1D space.
The Z, vortex with f.a”2 = 1 in 2D space becomes the [,.a”2 =1
sector in the 1D space.

to sector with Z, charge 0 and with Z, charge 1. Both sectors
are Kramers doublets. We may view the (1+1)D system with
a chain end as a (2+1)D system with a hole as described
in Fig. 8. Thus, the @ = 1 sector, corresponding to a 7 flux
in (24+1)D. We see that a & flux carries a Kramers doublet
regardless if it carries addition Z, charge or not. Similarly, the
a = 0 sector gives rise to trivial (1+1)D SPT state, and thus
a i flux carries a time-reversal singlet regardless if it carries
additional Z, charge or not. To summarize,

the (2+1)D Z,-1-cocycle model labeled by (ky,k,) = (0,1)
has four types of pointlike excitations 1, e, m, ¢ = em. The
excitations m, € carry w flux, while the excitations e, € carry
a Z, gauge 1. The excitations m, € are Kramers doublets and
the excitation ¢ is a fermion (see Table I).

The time-reversal singlet has a quantum dimension
d =1 and the Kramers doublet has a quantum dimension
d = 2. (Quantum dimension is the dimension of the Hilbert
space for the internal degrees of freedom carried by a particle.)
Thus, the four types of particles have the following quantum
dimensions (dy,d.,d,,,dy) = (1,1,2_,2_), where the subscript
— indicates the Kramers doublet. A particle can also carry spin
s, which is defined mod 1. A boson has spin 0 mod 1 and a
fermion has spin % mod 1. Thus, the four types of particles have
the following spins (sy,8¢,8m,5r) = (0,0,0, %) (see Table I).

If (k1,k2) = (1,0), the cocycle model has four excitations:
1, e, m, €. 1 and e transform as time-reversal singlet. m and ¢
transform into each other and form a time-reversal doublet.
Since m and ¢ are always degenerate with time-reversal
symmetry, we view them as a single type of excitation with
quantum dimension 2. Thus,

the (2+1)D Z,-1-cocycle model labeled by (ky,k;) = (1,0) has

three types of pointlike excitations with quantum dimensions

(d) = (1,1,2) and spins (s;) = (0,0,[F.3]).

Under the dimension reduction, the (141)D state in o = 1
sectoris a Z, X ZZT SPT state described by the SPT invariant

¢ I Baay 3 . The chainend forsucha Z, x ZI SPTisadoublet
with fraction Z, charge :l:%. Under the time reversal, the —i—%
and —% Z, charge states get exchanged and T2 = 1. Thus, the
7 flux in (241)D ground state will carry a doublet of j:%Zz
charges. There are two types of O-flux excitations with O and
1 Z, charges. Those two types of excitations are time-reversal
singlets. Thus, we denote that quantum dimensions for those
excitations as (d;) = (1,1,2,), where subscript + indicates
T? =1 (see Table I).

If (ki,kp) = (1,1), under the dimension reduction, the
(I+1)Dstateina = 1 sectorisa Z, X ZZT SPT state described
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by the SPT invariant ¢'™ /n> B 20,3 +5:48 The chain end for
such Z, x Z1 SPT states may contain four degenerate states
formed by a doublet with fraction Z, charge :t% and a Kramers
doublet. The time-reversal transformation is described by

0o 0 0 -1
10 0 1 0 R ) 2 _
T = 0 -1 0 0 K=0 ®ic“’K, T* = -1,
1 0 0 O

(194)

where K is the antiunitary transformation, and 23 are the
Pauli matrices. The Z, symmetry is generated by

i 0 0 0
0 i 0 0 )

o= 6 oo | =ictee’ 0 =—1. (195
0 0 0 —i

However, the four states can be split by a time-reversal and
Z,-symmetric perturbation

1 0 0 O
_ 0 -1 0 o0} 3 3
SH = A 0 0 -1 0 =Aoc’Qa’. (196)
0 0 0o 1

Thus, the chain end in general has a doublet with fractional
Z, charge :I:% which is also a T? = —1 Kramers doublet at
the same time. As a result, the = flux in (241)D ground state
carries a Kramers doublet with fractional Z, charge :I:%. We
stress that there is no time-reversal symmetric perturbation that
can give rise to 7> = 1 doublet. To summarize,

the (2+1)D Z,-1-cocycle model labeled by (ky,k>) = (1,1)
has three types of pointlike excitations with quantum dimen-
sions (dy.d..dy) = (1,1,2_) and spins (s1.5..5,) = (0,0,[1.3]),

i3
where subscript “—” indicates T*> = —1 (see Table 1).

B. (2+1)D time-reversal symmetric Z] group
cohomology models

1. Model construction

Using the group cocycles, we can construct more local
bosonic models that can produce time-reversal symmetric
(2+1)D (twisted) Z,-gauge theories at low energy [see (177)].
In this section, we will discuss those models.

We put Z, degrees of freedom on both vertices and links:

8i € Z, and aiZ.2 € Z,. Note that g; is a pseudoscalar as
discussed in Sec. V C (see Fig. 6). Using

1l > Zy —> Zsy— Zy — 1, (197)
we can construct a Z4-1-cocycle field
alt =247 +(dg);. (198)

Notice that H3(Z4,(R/Z)Z4) = 0. Thus, there is no group
cocycle term in the action amplitude. We obtain the following
time-reversal symmetric model:

Z; (M) = Z 1.

Z
la; 2 gihdaZd =0

(199)

aZ4 =242 yag
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The condition da’+ = 0 becomes (when we view the cochains
as Z valued)

da® = 2da® +d(dg) = 0

— da® + Bydg = 0. (200)
We can rewrite the above partition function as
Z; (M) = Z 1. (201)

{72 &i).da%2 2B, dg

We see that such a model is different from the model (183) with
k12 = 0. The condition da?: = Byd £ encodes the nontrivial
group extension (197).

Due to the relation B,dg = Bow; = Wi, Zzr(MP) #0
only when w% = 0 as Z,-valued cohomology class. Thus, we
introduce

0 if ¢ # db mod m,

on(€) = {1 if ¢ = db mod m. (202)

So Zzz(M3) contains a factor §,(5,w,). Furthermore, on

space-time M3 with Bow, = 0, we have da?? 2 0. In this
case, we can combine the Z;-1-cocycle model and the Z4T
group cohomology model together:

3
Ziokks 1 Zra1 (M™)
(8.0 2} da%2 ko Byd

= X

Ty 7y
(8i.a;;%.a,%)

oy ki@®2y +hoa”2 Bydg

ol Jus k@2 +a%2da”2 +koa?2 Byd g+hoa”2 Bzdg'

(203)

When ky = 0, the above model reduces to the Z,-1-cocycle

model (183). When ky =1 and k; =k, =0, the above

becomes the Z! group cohomology model. The volume-

independent partition function is given by

top 3
Zk()klkz;tZZaT(M )

_ Sa(koBywy) Z

|HO(M?; Z,)|

ein ng kl(a22)3+k2w%az2 ]

aZ2e H\(M3;Z,)

(204)

In the above, we have assumed that when koB,w; is a
coboundary, we will choose such a coboundary to be zero. We
note that Z |, (M?) is simply given by Z® = (M?)
(see Sec. VI A 2) with an extra 8,(koB.w) term.

J

ZigkikriZoar(M?) = Z

. Z 2 ~ Z
(8i,a;? ). da%2=koBrd g+ By,

= 2

L Zy .7,
{gisa;j ,aij_}

- ¥

~ Zy 7
{807,

e aszazzem Ju3 kl(azﬁ)3eirr g3 @22 (koBad 3+ B2y +aZ2 (ko Bad g+ BL2)
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When ky = 0, the above model becomes the one studied in
Sec. VI A, and the topological order that it produces can be
viewed as a gauged Z x Z1 SPT state.

2. Properties of excitations

When ky = 1, the nontrivial group extension makes the
time-reversal transformation 7' to have a property that T? is
a Z,-gauge transformation. So, T? = —1 for a nontrivial Z,
charge. In other words, the e particle with Z, charge 1 carries
a Kramers doublet. ¢ is also a boson, since if we break the
time-reversal symmetry, the above model gives rise to the Z,
or double-semion topological orders, where, in both cases, the
Z, charge is a boson. We also note that when kg = 1, k, = 0,1
gives rise to the same model.

When (kg,k1,k2) = (1,0,%), the dimension reduction
M? — M? x S' does not produce nontrivial Z, x ZI SPT
state in (14+1)D, thus, the Z, vortex m in (24+1)D is a
time-reversal singlet and is a boson. The bound state of a
Z, charge and a Z, vortex is a fermion that carries a Kramers
doublet. The results are summarized in Table 1.

When (ko,k1,k2) = (1,1,0), the dimension reduction M> —
M? x S! produces a nontrivial Z, x ZZT SPT state in (1+1)D,
thus, the Z, vortex m. In fact, the Z, vortex m is a T? = 1
time-reversal doublet that carries Z,-gauge charge :t% [the
same as discussed in Sec. VI A 3 for the (ko,k1,k2) = (0,1,0)
case]. The Z,-gauge-charge :I:% doublet is formed by a semion
with spin s = }1 and a conjugate semion with spin s = %. The
bound state of a Z, charge and a Z, vortex is ¢ which also
forms a time-reversal doublet. But, ¢ is a T2 = —1 Kramers
doublet that carries Z,-gauge charge :I:%. To summarize,

the (2+1)D Z group-cocycle model labeled by (ko,ki,k2) =

(1,1,0) has four types of pointlike excitations with quan-

tum dimensions (d,,d,,d,.d.;) = (1,2_,2,,2_) and spins

(S1,8e,8m.5:) = (0,0,[%,%],,[%,%]) (see Table 1).

For (ko,k1,k2) = (1,1,1), the results are the same as those
for (ko,ki,kz) = (1,1,0), except that the properties of m
and ¢ are exchanged. This is why (kg,k;,k2) = (1,1,0) and
(ko,k1,k2) = (1,1,1) correspond to the same time-reversal
SET order.

3. Including excitations in the path integral

Now, let us include the excitations in the partition function
(203). Let M! be the Z,-valued 1-cycle that corresponds to
the world line of the Z, charge e: M} € Z,(M*;Z,). Let M},
be the Z,-valued 1-cycle that corresponds to the world line of
the Z, vortex m: M,ll € Z(M*;Z5). The Poincaré dual of Me1
is a Z,-valued 2-cocycle BZ> and the Poincaré dual of M),
is a Z,-valued 2-cocycle BZ>: BZ> ¢ 7Z*(M*;7,) and BZ> ¢
Z>(M*; Z,). The partition function with excitations is given by

. ~ 7 Z
el S kl(azz)3+kzaZZBzdgem fMJ a™

el S ﬁZZ(daZ2+koBzd§+B%2)eiﬂ Ju3 kl(aZZ)3+k2aZZBzd§’ei” fM,! a”2

(205)
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Let us change the variables to

Z, 2 7 Z
a™? 2+ ay?,

:am
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a% 2 a% 4+ ale, (206)

where a?z,&ozz e CY(M?*;Z,), and a,%z, anZ are fixed Z,-valued 1-cochains satisfying

Z, 2
da,’ =

B,%z + koBowq, danz é BeZ2 + ko Bowy.

(207)

(Here, we have assumed that B%z + koB,w and BeZZ + ko Bow, are coboundaries.) Now, we can rewrite the partition function as

Z

. Zy , Zy Ty, Zy . Zy | Zy . Z, ~ 0 Zy L 7
Zkoklkz;tZZaT(M3) — Z eme3 a, *day*+ay *dag ezﬂst ki (am? +ag )eme3 a2 (koBadg+Br2)vay? (ko Brdg+BL?)

L 7y .2,
8,4y ~,dy

g.da’*=0

Since aOZ > becomes a cocycle, we can further simplify the

: Zy, Zay3
factor e Jus ki@n®+ay*) using Eq. (21):
el Ju3 kl(a,%z-&-aoZZf

— i S KllanY +(ay Y +aw® g +am® (a5 * ]

(209)
The partition function now becomes

3
Zkoklkz;lZQaT (M )

. 2 .2,
— i Suram®Be?

Z P koaZ? Brdg+kra? Byd 3
g.dal?=0

. Z Z Z Z Zy, Z
% ' o killan Y4y Y +Han® P ay * +an® @y )]

(210)

The above partition function can be expressed in terms of

linking numbers. Consider fM3 B(_,Za,%2 = fM‘ a%% If M; is

a boundary M} = dD?, then we can relate the above to the
intersection number and the linking number:

Zy __ Z, __ Z 2
/1;/11 A’ = /Dz day” = [Dz By + kowi

= Int(D?,M,, + koM,) = Lnk(M, ,M,, + koM,,),
211)

where M| is the Z,-valued 1-cycle which is the Poincaré dual
of Byw,. Here, Int(D?, M ) is the intersection number between
D? and M), and Lnk(M!, M) the linking number between
M} and M. The linking number satisfies

Lnk(M, M, ) = Lok(M,,.M.). (212)

Using the linking number, we can rewrite the partition function
as

ZigpikoiZoar (M)
o & s k,(a%2)3einLnk(k2M¢,+ML!,M,‘ﬂ)
y Z 7 Sy Kol Badgtaan Badg
g.dal?=0

. VA Z VA Z Z
« o' a3 Kil(ag * Y +(an” Pag ? +aw” (ag* ]

213)

. Z,, 2, . Zy, Zyy . z _ z oz
_ § : ol Jup e Pdan® Him [y kitan® +ay?) Hin i3 ac? (koBad g+ B yan” (kaBadg+Be?)

Z

(208)

(

We like to stress that the above path integral has a time-reversal
symmetry: it is invariant under a combined transformation
& — & + 1]o, aOZJ?j — a(%fj, and complex conjugation.

The physical properties of excitations can be obtained from
the above effective theory. Let us first assume k; = 0, and
rewrite the partition function as

ZiokikniZoar (M)
o 8y (MY + koM1) 8y (M} + ky M) e/ mlnkbe My Me My

. . Z ~ Z ~
x Z e Sy koae szdg+kzasz2dg’ (214)

g.dal?=0

where we have restored the two § functions. For simplicity, we
will also assume w? = 0, and choose aZ> to be the Poincaré
dual of D? and aZ> to be the Poincaré dual of D2 . Here, D2
and D2 are the disks bonded by the world lines M} and M.
The dynamical part of the partition function can be written as

. Z ~ VA ~
§ :e’” Jy3 koae > Badg+hoan® Bodg
8

— Z ei?‘[ ng k()BzdgeiT[ szzn ko Bod g
8

x ei:‘[ fD(Z koByw ein ngl ko Byw )

From the above, we see that, when ky = 1, there is ZZT SPT

state described by the SPT invariant ¢'™ /22 ®"' on D2. In this
case, the boundary of Dez, i.e., the e particle described by

the world line M! = 9 D2, will carry a Kramers doublet. This
agrees with the result in Sec. VI B 2. Similarly, when &k, = 1,

thereis Z1 SPT state described by the SPT invariant e'” I, B
on D2, and the m particle will carry a Kramers doublet.

The term ¢! ™20k .M,) te]]s s that the e and m have a mutual
7 statistics between them. The absence of self-linking terms
iOLnk(M; M) ang ¢i0Lnk(M,.M,) implies that the ¢ and m are
bosons. We also see that the emergence of Kramers-doublet
bosons cause the partition function to vanish on the space-
time with w} # 0. From the form of §,(M}, + koM})8:(M} +
kM), we see that space-time with wi # 0 will generate a m
particle (or more precisely, a noncontractible world line of the
m) if the bosonic e particle is a Kramers doublet. Similarly,
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space-time with w% # 0 will generate a e particle if the bosonic
m particle is a Kramers doublet. In other words,

if there is an emergent bosonic Kramers doublet, then a space-
time with w3 # 0 will create a world line of a particle that has
a mutual 7 statistics with the bosonic Kramers doublet. The
world line is equal to the Poincaré dual of w?.

Those results are summarized by the top three rows in
Table 1.

Next, we consider the case of k; = 1. The partition function
now reads as

3
Ziokks(Zrar(M?)
_ . Zy\z . 1 1 !
x 82(My11 + kOlev)eln Sz ki(am®) el”Lnk(kZMw""Mme)
in [3 koal 2 Badg+hranm? Byd3
X E o' Jus koae " B2 20m ~ B2
g.dal?=0

) z Zy Zy . Z, Z
ol Ju3(ag ) Han® Py tan® @y ? )

X (215)

Note that we only have one é function in this case. The above
result for the e particle is not changed: the e is still a boson,
which carries Kramers doublet if ky = 1 and time-reversal
singlet if ko = 0.

But, the result for the m particle is changed. The effective
theory on D? now becomes

; 51 (22
Z e fn%, koBadg+(ay *) ) (216)

g,
If we treat the emergent Z,-gauge symmetry as a Z, symmetry,

then the above can be viewed as a Z, x ZI SPT state

on D2. The SPT state is characterized by SPT invariant

. Zy\2
/T g kB @™ hare 0% s the symmetry twist of Z,. As

discussed in Sec. VI A 3, when k, = 0, the m particle will carry
:i:% Z,-gauge charge, which forms a 72 = 1 time-reversal
doublet (labeled by 2,). When k, = 1, the m particle will
carry :I:% Z,-gauge charge, which forms a T2 = —1 Kramers
doublet (labeled by 2_). The above applies for both ky = 0,1
cases.

For the bond state of e and m, the ¢ particle, the Z, x ZZT
SPT state on the corresponding Dg is described by

Z o7 Ioz, (ko+ho)Bad g-+ki (ay )2 . 217)

gay”
We see that the ¢ is always a :I:% Z,-gauge-charge doublet.
Itis a T2 = —1 Kramers doublet (2_) if (kg + k») = 1 and a
T? = 1 time-reversal doublet (2,) if (ko + k) = 0.
The statistics of the m particle is no longer bosonic due the
. Z
self-braiding term /™ Jus #1@*)" (which can be viewed as the

triple self-intersection of D2 ). We note that e!™ /i ki) =
=+1 respects the time-reversal symmetry. But, one expects m to
be a semion described by the self-linking term e’ 2 Lok(M,,.My)
In fact, the above self-linking term breaks the time-reversal
symmetry, and does not describe the statistics of m which in our
case is a particle with respect to the time-reversal symmetry.
In other words, due to the time-reversal symmetry, m is not a
semion.
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In fact, m is a T2 = —1 Kramers doublet or a 7% =1
time-reversal doublet formed by a semion (with spin s = i)
and a conjugate semion (with spin s = %). The statistics of
such a time-reversal symmetric doublet is not described by
the self-linking term ¢’ zL%Mn-M,) or the self-linking term
e~i3LkM,. M) - Our calculation suggests that the statistics
of the time-reversal symmetric doublet is described by

. Z
e/ Jus ki@ the triple self-intersection of D? . Those results
are summarized by the bottom three rows in Table 1.

C. (3+1)D time-reversal symmetric model
1. Model construction

In this section, we are going to study a class of (3+1)D
time-reversal symmetric local bosonic models, that can
produce the simplest time-reversal symmetric topological
orders. The (3+1)D time-reversal symmetric local bosonic
models contain Z,-multivalued 0-cochain field g;, Z,-valued

1-cochain field a2, and Z,-valued 2-cochain field b2 Tts

! . tij o ijk*
path integral is given by
4
Ziikskskaksks (M)
_ Z P [yys b*2da”2 ol Sy k3 +ka)b%2 Bod g ks (b%2)?
~Z Z Z
{& z’aifz’bijkz}

i [y ki@ 2) ko th)a®2(dg)? gim fiya ks(d@)* +he(w2)”
(218)

X e

The O-cocycle field g; is a pseudoscalar as introduced in
Sec. VC. It satisfies dg; = wy +dg, where g; is a Z
single-valued O-cochain field. Thus, B,dg; = B,w;. The
above path integral defines the system for both closed and
open space-time manifold M*. But, in the following, we will
assume M* to be closed. The index k; = 0,1. So, there are
26 = 64 different models.

We note that the above path integral has the time-reversal
symmetry Z2T , 1l.e., invariant under the combined
transformation of g; — [g; + 1], and complex conjugation.
(Under the transformation §; — &/ = [g; + 1], dg = —dg!.)
This is a designed property. However, the path integral also
has an extra Z) symmetry: g — [g; + 1] (without the
complex conjugation).

Let us also include the excitations in the path integral. We
know that the pointlike excitations are described by the world
lines in space-time. A world line My, can be viewed as a
Z,-valued 1-cycle, which is Poincaré dual to a Z,-valued 3-
cochain Cvai- The stringlike excitations are described by the
world sheet in space-time, which can be viewed as Z,-valued
2-cycles M3, in the space-time lattice, whose Poincaré dual
is a Z,-valued 2-cocycle B\%ZS.

Just like the Z,-gauge theory, we can include those
excitations in path integral (218), by adding the Z,-charge

fM‘

coupling term ¢ and the Z,-flux coupling term

im [,p b%2 . , .
e ws . Due to the Poincaré duality,

i Zy Z
i a”2 i 2,7
e fM\I’VL = e’”fM‘* Cyra™

i Z . Zy, 7,
eme‘stb = e”’fm Bygb 2

(219)
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Thus, in the presence of pointlike topological excitations

described by C\;Zvi and stringlike topological excitations de-
scribed by B\ZNS, the partition function (218) becomes

4
Ziskokskaksks (M)

- ¥

g.a%2,b%2

ol Jyya bZ2(da?2 +hyb?2 +(k;+k4)Bodg+BWS)

. ~ Z . ~
i [y ki@2) H ko k)dEY+Cyi1a”2 i [yga ks(d@)*+hkew)

(220)

X e

2. Partition function

To understand the physical properties of those 64 models,
we like to compute the corresponding partition functions
on closed space-time M*. However, unlike other models
constructed in this paper, the above models are not exactly
soluble. They are exactly soluble only in the cases k; = 0 or
k4 = 0. So, we will calculate the partition functions for those
two cases.

When k4 = 0, the action is linear in bZ2, and we can
integrate out b2 first, which leads to a constraint

da® 2 ksB,dg + BL = ksBd gy + BE:, (221)

J

Zistoksoske(M*) = 85 (ks Bad § + B3)

% o it k1@ 2 o Hk@RP+CGE lag 2 it s ks(d@) +hew
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where g is a fixed Z,-multivalued 0-cochain such that

~ ~ 2
g—8 =g (222)

is a Z,-single-valued 0-cochain g. We see that the partition

function is zero when k3B,d g, + BVZ\,ZS is not a coboundary.
Thus, the partition function contains a factor §,(k3B,dgo +

B\%fs)~ We may solve the da?: 2 k3Bad g+ BVZ\ES constraint
via the following ansatz:

L 2 ol + al, (223)
where aVZVZS is a Z,-valued 1-cochain that satisfies
daws = k362dg + BWS’

(224)

and al? is a Z,-valued 1-cocycle field a?* € Z'(M*;Z,). The
partition function now becomes

. z _ Zy Z
e Sy ki(ag? ) +(ko+k1)(dZ) +Cyt lays

2

2.da?*20

(225)

Since aOZ * is a cocycle, we can replace dg by d g in the last line above, and use many relations between aOZ * and Stiefel-Whitney
classes, such as (see Appendix D 4 where w; is replaced by d g)

(dgo)* (al?)” =

@dgoyal, waal?) 2 wial, (a?)' = dgo(al?)’, [af

2.d

) 4 dgo) +wa](a)’ o,  (226)

to simplify the last line. Note that those relations are valid only when aOZ ?is a cocycle and when M* is closed. Therefore, we can

rewrite the above partition function on closed M* as

ZishoksOksks (M) = 83 (k3B2d go + BVZVZS) Z

g.dal?20

. Z ~ Z Z . - Z Z . ~
iyt b (@) Utk @R + O lagd i fypa ki watha(dZo) +Cotlag > it [y ks(@d@)*+ksw3

(k332dg0 + BWS)SZ[k1W3 + kz(dg()) + CZZ ] i foy4 ks(dgo)*+kew3 Z e Sk (dw§)4+[(k2+k1)(d§)3+C\%E]aV%§

We note that x?2

(227)

2 B;x for any Z,-valued 1-cocycle x, and dg = dgy + dg. Thus,

~ . Z
ijzz(szrkn)(dg)*awé — 7 Syps (ka+h)d g Bod Goan?

=e

=e

. 3 Zy . _ oz
i fyya kot )(dGo) a3 el JyyaGeat+k1)gBadgo(k3BadGo+By,2)

. ~ ~ 7 . . Z
i fyya(ka+k)dgoBad Goa? el Sy (ko )dgBad goay3

(228)

Therefore, the volume-independent partition function is given by

|HO(M*; Z,)|| H*(M*; Z,)|

top 4 _
Zk|k2k30k5k6(M ) |H (M4 ZZ)|

- Z - Z Z
oI St ks(dZo) +hewiHh (ayd) +Hka+Hh)(d80)’ +Crf Jawg

x 8 (ksBadgo + Bi)5a[kiws + ka(d o) + Ct 182k + k1) Bad Zo (ks Bad §o + Byys) |-
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We note that g is multivalued only on d M* (which is a nonzero
even cycle when M 4 is not orientable). So, B,d g is nonzero
only near the “boundary” 9 M* (see Fig. 6). Therefore, 8,[(k; +
k)Bodgo(ksBrd gy + szvé)] is a boundary term.

When k; = 0, the action is linear in a2, In this case, we
can integrate out a?> first, which leads to a constraint

db® = ky(dg)® + CL: . (229)

So, the partition function is zero when k»(dg,)> + C‘,Zvi is not
a coboundary. Thus, the partition function contains a factor

Salka(do)® + CZ2 1. We may solve the db% = ky(dg)® +

PHYSICAL REVIEW B 95, 205142 (2017)

C\;Zvi constraint via the following ansatz:

b2 2 pL: 4 ple, (230)
where bgsz is a Z,-valued 2-cochain that satisfies
by = ka(dg) + Cr, (231)

and bgz is a Z,-valued 2-cocycle field bgz € Z*X(M*;Z,). The
partition function now becomes

J

_ . e Zy, 2 L7,
ZOk2k3k4k5k6(M4) — 62 [k2(dg0)3 + C\jzvi] § elﬂ fM4 byt [kabyi +(k3+k4)Bodg+Bys |
g.db 220

. . Z Z ~ Z . -
% el Sy by 2 lhaby > +(k3+ka)Bod g+ By3 | ol Sy ks(d@o)*+kew3

(232)

Since b? * is a cocycle, we can replace d g by d g in the last line above, and use many relations between bOZ * and Stiefel-Whitney
classes, such as (see Appendix D 5)

dgoBob?> =0, (b%2)? + [(dgo)* + walb™> =0, (233)

to simplify the last line. Therefore, we can rewrite the above partition function on closed M* as
Zotktakn (MY =5, [kz(dgo)3 I CvazL] Z I b{zvg[k4bf,f+(k3+k4)62dg+3£§]ein [0 b2 [k4W2+k382dgo+BvZ,§]ein [y ks(do) +hsw?
2K3K4K5K6
752

2.dby 220

_ _ . - 5 . Z Z - pZ
=6 [kg(dg0)3 + Cv%i]SZ (k4W2 + k3Bod @y + Bv%zs)ezrr Syt ks(dgo)* ke w3 Z o Jus bwf[k4bwf+(k3+k4)52dg+gwsl]'
g

(234)
The above partition function can be simplified further. Let E\%i be a fixed 2-cocycle that satisfies
bl = kx(dgo)* + C.. (235)
and let
ple 2 pl: 4 bl (236)
In this case, blZz satisfies
db?* £ kol(dg)’ — (d80)’] = kaldgBadg — dgoBrdgol = kad(sB2d o), (237)
where we have used d§ = dg, + dg and x> 2 Byx for any Z,-valued 1-cocycle x. So, b\%VZL is given by
bl: Z kygBydgo + b . (238)

Now, we can rewrite the partition function (232) in the following form (using the relations obtained in Appendix D 5):

_ _ . " ) 7y | rZy L7,
ZOk2k3k4k5k6(M4) — 52 [kz(d§0)3 + C\%}i]az (k4W2 + k362dg0 + BVZVZS)em Sy ks(dZo) +k6w2617[ Jisa byt [kabyf +(ks+ka)Bad go+By3 1

. _ _ .z
x Z e St kngzdgo[kAngdgo+(k3+k4)l32dgo+BW§]. (239)

g
Using the fact [see Eq. (21)] gB2dgog £ g’ B,d gy = gBrd gy, we can simplify

. _ _ I/ . ~ _ .7
Z eme4 kagBadgolksgBadgo+(ks+ks)Badgo+Byg | — Z emfw kagBadgolksBodGo+(ks+ks)Bodgo+By3 | =6 [szzdg()(]QBzdgo + B\%’ZS)]

8 8
(240)
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Thus, the volume-independent partition function is given by

|HO(M*; Z,)||H*(M*; Z,)| .
|H(M*; Z5)|

top 4 _
Z0kgiskaksie (M) =

PHYSICAL REVIEW B 95, 205142 (2017)

. _ Zy T .z
i fyg4 ks(d o) +hkeW3+by? [kaby? +(ks+ks)Badgo+Bys |

x &y[ka(do)* + Ci 182 (kawa + ksBadgo + Bygi) b2 [kaBad 3o (ksBad 3o + Bigs) -

3. Physical properties of ground states

Using the above partition functions, we can obtain many
physical properties of ground states by setting B\,ZVZS = C\%ZL =
0. For simplicity, we will also assume that w; = 0 on M*, so
that we can choose a2 = b%: = 0.

First, we see that the partition functions for different k;’s
do not depend the shape or the metrics of space-time manifold
M*.So, the ground states of the 48 models with k1 k4 = Oare all
gapped. The partition functions also do not depend on the trian-
gulation of the space-time. So, the ground states are all gapped
liquids [16,17]. If we choose space-time to be M* = S! x §3
where w; = wp, = w3 = 0, we find the volume-independent
partition functions tobe Z;} , . (S' x §%) = 1. This means
that the ground-state degeneracies on S* for the 48 models
(with k1k4 = 0) are all equal to 1, and there is no spontaneous
symmetry breaking of Z1 or Z.

The volume-independent partition functions are not equal
to 1 for other closed space-times with vanishing Euler number
and Pontryagin number. For example, on M* = T? x S>
where w; = wp, = w3 =0, thc(l)zquk./;kgkﬁ(Tz x §2) = 2. Thus,
those 48 models all realize nontrivial (3+1)D topological
orders in their ground states. The twofold ground-state de-
generacy on space S' x S tells us that the topological orders
are simple since they all have only one nontrivial pointlike
topological excitation and one nontrivial stringlike topological
excitation. In fact, the emergent topological orders are Z,
topological orders described by UT or EF Z,-gauge theories
with a% as the Z,-gauge field. Because the ground states also
have symmetries, we may view those topological orders as Z7
SET orders or as Z, x Z1 SET orders.

We remark that the action amplitude e/ /us ks(@@)'+kews —
'™ Ju ksWi+ksW3 ig the SPT invariant for the ZT SPT states. So,
different ks, ke correspond to stacking with different ZI SPT
states.

4. Properties of pointlike excitations

First, if we break the time-reversal symmetry (i.e., only
put the system on orientable space-time with w; = 0), then
our models with k; = 0 reduce to the Z,-2-cocycle model
(74) with n = 2 and k = k4. So, when k; = 0, the pointlike
topological excitation in our model is a fermion if k4 = 1, and
aboson if k4 = 0 (see Table II where a fermion is indicated by
spin s, = % and a boson by spin s, = 0).

When k4 = 0 (and without time-reversal symmetry), our
model reduces to the UT Z,-gauge theory [note that (aOZZ)4 =
(aOZZ)3W1, and (aOZZ)4 =0 when w; = 0]. So, the pointlike
topological excitation in our model is a boson if k4 = 0, even
when k; #£ 0.

In the presence of time-reversal symmetry Z1 with 7% = 1,
the pointlike topological excitation may carry fractionalized

(

time-reversal symmetry with 72 = —1, i.e., it may carry
Kramers doublet. In fact, in this section, we will consider
both time-reversal symmetry and the extra Z) symmetry
8i — [& + 1], of our models. So, the total symmetry group
is Z5 x ZI. In this case, the multivaluedness of g; is not only
due to the orientation twist around a loop, it is also due to the
Z), symmetry twist around a loop. Thus,

dg =wi +a”?, (241)
where a'Z> is the 1-cocycle that describes the Z) symmetry
twist in space-time [53-56].

To see the time-reversal and Z’, symmetry properties of the
pointlike topological excitation, we first consider the k4 = 0
case and start with the path integral (225). We like to stress
that in our calculation to obtain Eq. (225), we did not use
the relation dg = w; which is not valid in the presence of Z}
symmetry twist, which is necessary to consider Z, symmetry.
The only term that involves the world line of the pointlike

. . . in |, sz(uzz 7z, .
topological excitation is '™ /Ju* “witdws + q**), which can be
expanded as

. Zy, Zy | 7 ; Zy 2 ; Zy
o Jue Catlaws+ay?) — Pl fM\lVL awstao T _ Pl fD%VL days

. 2
_ em fD%VL k3Brdg+Bys ’

(242)

where D\Z,VL is the two-dimensional submanifold whose bound-

. Zy
ary is the world line 3D3,; = My, . The term ¢ il 0

indicates that the pointlike excitation carries a unit of Z,-gauge
charge.
i f, B22

The term e = eimLok(My1 Mis) is determined by

the linking number Lnk(My,; , M%) between the world line
My, of the pointlike excitation and the world sheet M of
the stringlike excitation. It describes the  phase change as a

pointlike excitation goes around the stringlike excitation.

im 2 k382(1§
The term e ! P

invariant

gives rise to a Z, x ZI SPT

. ~ . d 17
etr[ fD%VL k3Brdg = e”er\zNL k3(Bowy+Bya'#2)

, (243)
which describes a (14+1)D Z, x ZI SPT state on D3, when
k3 = 1. Due to the term B,w; in the SPT invariant, the
boundary of the (1+1)D ZZT SPT state carries a Kramers
doublet. Thus,

the world line, i.e., the pointlike excitation, carries a Kramers
doublet if ks = 1 and carries a time-reversal singlet if k3 = 0

(see Table II where a Kramers doublet is indicated by
quantum dimension d, = 2_ and a time-reversal singlet by
quantum dimension d, = 1). Due to the term Bya'%>, the
Kramers doublet on the pointlike excitation is formed by
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Z)}-charge :t% states. So,

the Kramers doublet also carries fractional Z), charge :I:%.

We next consider the k; = 0 case and start with the path
integral (232). Again, in our calculation to obtain Eq. (232), we
did not use the relation dg = w,. The only term that involves
the world line of the pointlike topological excitation is

. Z Z ~ Z
ol Jut byt lkabyi +(ks+ks)Bod g+ By ]

(244)
Let us consider a particular world line which is a boundary:
M\%VL = HD%VL, and write b\%,zL as
b = B+ 0 (245)
where
dblr = cZ (246)

comes from the world line and 5\%& from the background
Stiefel-Whitney class and other world lines. We obtain

. Zy,, 2 L oZ
! [t bwi kabyi +(ks+ka)Badg+By3 ]

. -7 ~Z ~ VA
— elT[ -[M4 bwi[k4bwi+(k3+k4)32dg+Bwsz]

. 1Zs ., T -/
« &' Jus by kabyy® +(ks+ka)Brdg+By3 |

(247)

which can be viewed as the effective action amplitude on the
word line.
Compared with our previous result, we see that

. 177y 2 . . L.
the term & Ju* “®WC should describe the Fermi statistics of
the pointlike excitation when k, = 1.
Using the fact that Poincaré dual of b{%ﬁ is D, , we can express

i [y ka2 5 - - 2
e'™ Jut Owi)™ in terms of self-intersection number of Dy, :

. iz .
el Syt kaby P el”Int(D\zNL’D%VL)

(248)
We see that
the Fermi statistics in (3+1)D is described by the self-

intersection number of the disk whose boundary is the world
line of the fermion.

i [, Lo gl .
The term '™ /u* “wi ®ws describes the m phase change as a
pointlike excitation goes around the stringlike excitation.
Now, let us concentrate on

. . 17, - 7 5
el Sypa (ks +ka)by? Bodg — em fD%\,L(k-‘Jrk‘*)Bzdg’ (249)

where we have used the fact that Poincaré dual of b{%ﬁ is Dy, .
As discussed before, due to such a term will make

the pointlike excitation carries a Kramers doublet formed by
fractional Z), charge :l:%, if k3 +ky 21 and carry a time-

reversal singlet with integer Z), charge, if ks + k4 20.

5. Properties of stringlike excitations

To obtain physical properties of string excitations, let us
consider a dimension reduction M* = M3 x S! (for details,
see Sec. VI A 3).

Let us first consider the case for k4 = 0 and start from
Eq. (225). We can choose a\%ﬁs to make fsl a\%fs = 0. The

two sectors after the reduction are labeled by o = |, gl a? =

PHYSICAL REVIEW B 95, 205142 (2017)

fs aOZz. The effective theory on M? after the dimension
reduction is given by

4 < Z, im L2422
Zikokakakske (M) = 82 (ksBawy + By}) E e/ Jus Buiavs
3.da’?*20

. Zy Z ~
in [i3 Byt ay > +olky+k)(dg)?
X e )

where aoZz now lives on M? and B\,szL is the Poincaré dual of
the world line in M?3.
For simplicity, let us choose the world line to make

B\%ZL = 0. The effective theory on M3 now becomes (only
the dynamical part)

4 ' Ko+ ()}
Ziykokskaksks (M) = Z i Jus etk @®)’

g.da??20

(250)

If we view the above effective theory as a (2+1)D theory with
time-reversal Z! symmetry that acts on g;, then the above
effective theory describe trivial Z] SPT states since the SPT
invariant

ein(/)M3 alky+ki )(dg)? — einfMg a(ky+ki)w3 -1

(251)

becomes trivial in (24+1)D (see Appendix D 3). The (14+1)D
boundary of the (2+1)D theory in the « = 1 sector corresponds
to the Z, vortex line. So, the above result implies that the Z,
vortex line of our model just behaves like the Z, vortex line of
UT Z,-gauge theory regardless the values of k;.

Our model actually has a Z} x ZJ symmetry. So, the
(24+1)D effective theory can be viewed as a model with Z/
symmetry. In this case, the model describes a nontrivial Z,
SPT state, when a(k; + k1) # 0. To see this, we note that the
Z} actslike §; — [g; + 112. So, to obtain the Z} SPT invariant,
we need to gauge the Z) symmetry (see Sec. V B) by replacing
dg by a'?:

i fs etk _ pim fyp alkotk@P2)t (252)
The above SPT invariant allows us to show our (2+1)D
effective theory leads to a nontrivial Z, SPT state, which was
first studied in [10]. Since the (1+4-1)D boundary of the (2+1)D
theory in the o = 1 sector corresponds to the Z, vortex line,
so the above result implies that

the Z, vortex line of our model carries nontrivial edge
excitations of Z, SPT state described by SPT invariant
PN ICENCE

The above results about the Z, vortex line can be obtained
by directly calculating the effective theory on the Z, vortex
line. We start from the theory with excitations (225). Let the
world sheet of the string (i.e., the Z, vortex line) M\%vs be
the boundary of D\3VS. For simplicity, let us assume that w, =
w; = 0 and a’®> =0 (i.e., no Z!, symmetry twist) on M*. In
this case, aZ can be chosen to be the Poincaré dual of Dy.

The effective theory on the string comes from the factor
e sl th)a3 @D iy Eq. (225), which leads to the following
effective theory:

i 3 (ko g’
7 — Z ¢ rrwas(k_+k1)(dg) . (253)
i
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If we identify (—)% as o of spin—%, then the above action
amplitude describes a (24+1)D spin-% model with Z, x Z1
symmetry acting on g;’s:

Zy: l_[aix, VZE Kl_[oix,
i i

where K is the complex conjugation. The effective theory
actually describes a nontrivial Z, x ZJ SPT state on Dy. So,
the effective theory on the world sheet M is the effective
boundary theory of the Z, x Z1 SPT state. In other worlds, the
string will carry nontrivial boundary excitations of the (2+1)D
Z!, x ZI SPT state. The nontrivialness of the excitations on the
string is protected by the anomalous symmetry on the boundary
[65]. This can be viewed as the symmetry fractionalization (or
quantum number fractionalization) on strings. We have seen
that on pointlike excitation, the 7% = 1 ZI time-reversal sym-
metry can be fractionalized into 7> = — 1 Kramers doublet. In
contrast, on strings, the symmetry fractionalization is realized
as the anomalous (i.e., nononsite) symmetry that constrains
the effective theory for degrees of freedom on the strings.

So, the key to calculate the symmetry fractionalization is
to calculate the nononsite (i.e., anomalous) symmetry on the
strings. Let us do the calculation for the case k, + k| =1,
which leads to the following effective theory:

. 53
7 — Zemf[’?»zs(dg) .
i

(254)

(255)

which describes a Z} x ZI SPT state. The group cocycle that
describes the Z, x ZI SPT phase is in fact the topological

term f%(dg)%
13(80,81,82,83) = —(80 — &1)(&1 — &2)(&2 — &3).  (256)

The Z, x ZI symmetry on the string is twisted by the group
cocycle and becomes nononsite:

/. x Limv3(1,0,87,81+41)
Zy: 1_[0, e ,
1

(257)
zl o K[ ]ofemt0smam,
1
where
V0818 = (LNEI@=8) = (_)¥ ()R
_o? l+of+05— o,zaj. 258)

2

The effective Hamiltonian on the string respects the
anomalous Z) x Z1 symmetry, which may take a form

Hy =) Jiojoj, + ) Ki(oj 070}, —of). (259
1 1

The ground state of such Hamiltonian is gapless or spon-

taneously breaks the Z), symmetry. So, when ki +k, =

1 and k4 =0, the strings carry nontrivial excitations de-

scribed by the above Hamiltonian with an anomalous Z} x
1 z LA S 4

ZI symmetry: U' =[], o5 [1, Ufw and Ur =

l4+o;+0;, ,—0;0}
X Z 1 I+1 I7I1+1
K[, 07 1,07 2 .
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Next, let us consider the case for k; = 0 and start from
Eq. (234). The only term that involves the world sheet is

. f bzz Bzz . .
e'™ Jut Pwilws | which can be rewritten as

Z) nZ)

) . Zy o Z,
e Jys4 bwi Bws — el”fM\zvs by, — em‘/D%VS dby;

o 3 T
_ el”jbevs ky(dg)Y+Cyi '

(260)
Repeating the above calculation, we see that
when k=1 and k=0, the strings carry
nontrivial ~ excitations with an anomalous Zj x ZI
symmetry: U =T[1,0;11,0} 71“;””2‘ /e and

_1+oi+0f,  —of0?
— X 2 I I+1 17141
UT—KHIOIHIUI 2 .

We like to remark that, potentially, the strings may carry an
anomalous Z, x Z, x Z1 symmetry, where Z, is associated
with a%2. From the above calculation, we see that the

anomalous symmetry only comes from the Z) symmetry.
There is no anomalous symmetry from Z,.
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APPENDIX A: KOUNNETH FORMULA

The Kiinneth formula is a very helpful formula that allows
us to calculate the cohomology of chain complex X x X’
in terms of the cohomology of chain complex X and chain
complex X’. The Kiinneth formula is expressed in terms of the
tensor product operation ® g and the torsion product operation
Tor{e that act on R modules M,M’,M". Here, R is aring and a
R module is like a vector space over R (i.e., we can “multiply”
a “vector” in Ml by an element of R, and two “vectors” in Ml
can add.) The tensor product operation ®» has the following
properties:
M®z M ~M' ®z M,
(M’ & M") @ M = (M’ @ M) & (M” @k M),
M@r M &M") =M@z M) & M er M");
ZQzM>=MQgz Z =M,
Zy@zM =Mz Z, =M/nM,

Zm 2%/ Zn = Z(m,n)- (Al)

The torsion product operation Torf has the following proper-
ties:

Tork (M, M) ~ Tork(M', M),
Tork (M’ @ M”, M) = Tory(M’',M) @ Tor(M",M),
Tor (M, M’ @ M") = Tory(M,M’) @ Tor(M,M"),
Tory (Z,M) = Tory(M,Z) = 0, A
Tor%(Zn,M) = {m € M|nm = 0},
Tory (Zm,Zn) = 7 (m.ny»
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where (m,n) is the greatest common divisor of m and n. These
expressions allow us to compute the tensor product ® g and the
torsion product Tor,. We will use abbreviated Tor to denote
TorIZ.

The Kiinneth formula itself is given by (see [91], p. 247)

HYX x X' M @z M)
~ [@f_ H (X, M) ®g H (X', M)]

@ [@{) Tork (H (X, M), HI™H (X' M')].  (A3)

Here, R is a principal ideal domain and M,M’ are R
modules such that Tor}g(M,M/) = 0. We also require either
(1) Hy(X;7Z) and Hy(X'; Z) are finitely generated, or (2) M’
and Hy(X'; Z) are finitely generated.

For more details on principal ideal domain and R module,
see the corresponding Wiki articles. Note that Z and R are
principal ideal domains, while R/Z is not. Also, R and R/Z
are not finitely generate R modules if R = Z. The Kiinneth
formula also works for topological cohomology where X and
X’ are treated as topological spaces.

For homology, there is a similar Kiinneth formula

Hy(X x X'; )
~ [@{_oHe(X: Z) ® Hy_i(X'; 1))

@ [@ Sy Tor(Hi(X; Z), Hyx1 (X5 2))]. (Ad)

As the first application of Kiinneth formula, we like to use it to
calculate H*(X',M) from H*(X’; Z), by choosing R = M =
Z.. In this case, the condition Tor}e M,M') = TorlZ M,Z)=0
is always satisfied. Ml can be R/Z, Z, Z,,, etc. So, we have

HY(X x X',M)
~ [®f_ H"(X.M) @z H'™*(X'; 7))

@ (@ Tor(H (X, M), H* " (X1 Z))].  (A5)

The above is also valid for topological cohomology.
We can further choose X to be the space of one point in
Eq. (AS), and use

M ifd =0,

A6
0 ifd >0, (A0)

HY(X,M)) = {

to reduce Eq. (AS) to

HY (X, M)~ HYX;7Z) ®z M @ Tor(H**(X; Z),M),
(A7)

where X’ is renamed as X. The above is a form of the universal
coefficient theorem which can be used to calculate H*(X,M)
from H*(X;Z) and the module M. The universal coefficient
theorem works for topological cohomology where X is a
topological space. In fact, we also have a similar universal
coefficient theorem for homology

Hy(X.M) ~ Hy(X;Z) @z M @ Tor(H;_(X; Z),M).
(A8)

Using the universal coefficient theorem, we can rewrite
Eq. (AS) as

HYX x X' M) ~ @f_ H'[X,H"™"(X',M)].  (A9)
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The above is also valid for topological cohomology. We note
that

H°(X,M) = M. (A10)

There is also a universal coefficient theorem between
homology and cohomolgy

HY(X,M) ~ Hom(H,(X;7Z),M) & Ext(Hy_(X; Z),M).
(A11)

Here, Ext operation on modules is given by
Ext, (M’ @ M”,M) = Exth(M',M) @ ExthL(M", M),
Ext,(M,M’ @ M") = Exth(M,M’) @ ExtL(M,M"),
Exty,(Z,M) = 0,
Exty(Z,,M) = M/nM,
Exty(Z,,7) = Z.,,

Exty(Zm,Zn) = Lim.ny- (A12)

The Hom operation on modules is given by
Hompz (M’ @ M"”, M) = Homg(M’',M) & Homz(M",M),
Homz(M,M’ @ M") = Homz(M,M") @ Homz(M,M"),
Homgy (Z,M) = M,
Homgz(Z,,M) = {m € M|nm = 0},
Homgz(Z,,7) = 0,

Homz(Zy,Z,) = Z(m,n)- (A13)

We will use abbreviated Ext and Hom to denote Ext}, and
Homy.

APPENDIX B: POINCARE DUALITY

Poincaré duality relates H¥(M? R) and H,_(M?R).
We note that for a closed connected d-dimensional space
M4, Hy(M?%,Z) =7, Hy(M?,Z) = Z if M? is orientable,
and H;(M?%,Z)=0 if M? is nonorientable. Similarly,
H'M?;7) =17, H'(M;Z) = Z if M? is orientable, and
HY(M?;Z) = Z, if M? is nonorientable.

Poincaré duality: If M is a closed R-orientable
n-dimensional manifold with fundamental class [M] €
H"(M,R) (here R is a ring), then the map D : HY(M;R) —
H,_«(M; R) defined by D(¢) = [M] N« is an isomorphism
for all k.

The cup product pairing between H*(M? R) and
HY*(M? R)is nonsingular for closed R-orientable manifolds
when R is a field, or when R = Z and torsion in H*(M; Z) is
factored out. This implies that the free part of H*(M?;Z) and
HY*(M?; 7) has the same dimension.

. [HOM*Z) 2 HAMA Z )|
APPENDIX C: THE FACTOR -0 0uitlo -0

|HOM*Z,) 2| HA(M*Z,)|

M Z)E we first use

To calculate the factor
Eq. (A11) to show

H'(M*Z,)
= Hom(H,(M*; Z); Z.,) ® Ext(Hy(M*; Z),Z,) (Cl)
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= Hom(fH,(M*; Z); Z,) ® Hom(tH,(M*; Z); Z,,)
= 2" @ Hom(tH|(M*; 2); Z,), (C2)
and
H*(M*;Z,)
= Hom(Hy(M*; Z); Z.,) & Ext(Hi(M*; Z.), Z,,)
= Hom(fH,(M*; Z); Z,,) ® Hom(tH,(M*; Z); Z,,)
@® Ext(tH|(M*;Z),Z,),
= 7% @ Hom(tH,(M*; Z); Z,,) & Hom(tH,(M*; Z), Z,,),
(C3)

where “f” and “t” indicate the free and torsion parts of a
discrete Abelian group and b, is the dimension of fH,,(M*; Z)
(i.e., the nth Betti number). Using HY(M*;Z,) = Z.&%, we
find that
|HO(M*; Z,) 1’| H*(M*; Z,,)|
|H (M*; Z,)1?
— p2bo+b2=2b, |Hom(tHy(M*; Z); Z,)|
|Hom(tH(M*; Z); Z,)|’

(C4)

We note that, according to Eq. (A11)

H*(M‘;7) = Hom(H,(M?; 72),Z) & Ext(H,(M%; 2),7).
(C5)
Since Hom(Z,,,Z) = 0, Ext(Z,,Z) = Z,, and Ext(Z,Z) = 0,

we see that tH>(M?; Z) = tH,(M%; Z). We get
|HO (M Z,) | H*(M*; L)
|HY(M*; Z,)|?

— p2bo+ba=2b, |H0m(tH2(M4§ YA/

[Hom(tH2(M*;, Z); Z,)|”

(C6)

For four-dimensional closed orientable manifolds b; = bs,
by = by, and x(M*) = Z:zo(—)"bn is the Euler number of
M*. Using Poincaré duality H>(M*; Z) = H,(M*;Z), we can
show that

|HM* Z,)P | HX(M* Z,)|
|H' (M*; Z,)? a

px MY (C7)

When n =2 we have a Poincaré duality H*(M9;Z,) =
H*(M4; Z,) for any closed manifold M? regardless if M?¢
is orientable or not (since M is always Z; orientable). Thus,

|HO(M*; Zo) P | HX(M*; o))
|HY(M*; Z5)|?
_HOM L) || HA(M?; L) || HH(M*; )|
B |H(M*; Z2)| | H*(M*; Z,)|

According to Eq. (A11),

(C8)

HY(M?; Z5) = Hom(H(M?; Z),Z,) ®Ext(Hy_(M?; Z),Z,)
= 7" @ Hom(tH(M?; 7),7.,)
@® Hom(tH;_1(M%; Z),Z,). (C9)
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This allows us to show

|HO(M*; Zo) P | HA (MY, Z,))|

— QxMh)
|H'(M*; Z)|?

(C10)

where we have used the fact that tH,(M*;Z) = 0 for both
orientable and nonorientable closed manifolds. On the other

0 pg4. 212 (4 L.
hand, the factor i (M‘ I;Zlgl)vlﬂ‘; ()?24 Zo)l i in general not of the

form p*™" for nonorientable manifolds when n > 2.

APPENDIX D: RELATIONS BETWEEN COCYCLES AND
STIEFEL-WHITNEY CLASSES ON A CLOSED MANIFOLD

The cocycles and the Stiefel-Whitney classes on a closed
manifold satisfy many relations. In this appendix, we will show
how to generate those relations.

1. Introduction to Stiefel-Whitney classes

The Stiefel-Whitney classes w; € H i(M?;Z,) are defined
for an O(n) vector bundle on a d-dimensional space with
n — oo. If the O(o0) vector bundle on d-dimensional space
M¢< happens to be the tangent bundle of M? direct summed
with a trivial oo-dimensional vector bundle, then the corre-
sponding Stiefel-Whitney classes are referred as the Stiefel-
Whitney classes of the manifold M¢.

The Stiefel-Whitney classes of manifold behave well under
the connected sum of manifolds. Let w(M) be the total Stiefel-
Whitney class of a manifold M. If we know w(M) and w(N),
then we can obtain w(M#N):

W(M#N) = w(M) + w(N) — 1. (D1)
Under the product of manifolds, we have
w(M x N) = w(M)W(N). D2)

The Stiefel-Whitney numbers are nonoriented cobordism
invariant. All the Stiefel-Whitney numbers of a smooth
compact manifold vanish iff the manifold is the boundary of
some smooth compact manifold. Here, the manifold can be
nonorientable.

The Stiefel-Whitney numbers and Pontryagin numbers are
oriented cobordism invariant. All the Stiefel-Whitney numbers
and Pontryagin numbers of a smooth compact orientable
manifold vanish iff the manifold is the boundary of some
smooth compact orientable manifold.

2. Relations between Stiefel-Whitney classes
of the tangent bundle

For generic O(co) vector bundle, the Stiefel-Whitney
classes are all independent. However, the Stiefel-Whitney
classes for a manifold (i.e., for the tangent bundle) are not
independent and satisfy many relations.

To obtain those relations, we note that, for any O (co) vector
bundle, the total Stiefel-Whitney class w = 1 + w; + wy +

- is related to the total Wu class u =1+ u; +up +---
through the total Steenrod square [92]:

w=Squ), Sq=1+Sq'+S¢*+---.  (D3)
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Therefore, w, = >, Sq' (u,—;). The Steenrod squares have
the following properties:

Sq(x))=0, i>j, Sq'(x)=xx;, S¢"=1, (D4
for any x; € H/(M?;Z,). Thus

U, =Wy, + Z Sq' (tn—;).-

i=1,2i<n

(D5)

This allows us to compute u,, iteratively, using Wu formula

Sq(wj)=0,i>j, SqWw)=ww,

,. L (—i— 14k o
Sq'(w;) = w;w; + ; mwwkwﬂrk, 1 <],
Sq'(wj) = wiw; + (j — w41, (D6)

and the Steenrod relation
Sq"(xy) =) _Sq (x)Sq" ' (y). (D7)
i=0
We find
uo=1, uy=wy, uy=w +wy,
Uz = wWiwa, Us= WA]t + W% + Wiw3 + Wy,

3 2 2
Us = WiWy + W W5 + WiW3 + W Wy,
w22 3 2 2
Ug = WiW;5 + WiW3 + W WoW3 + W3 + WiWyg + WoWwy,
2 2
U7 = WiWaW3 + WiW3 + W WrWy,
R 4 2.2 2 2
Ug = Wi + wy + Wiwsz + wWiwowy + Wiwiwy + wy

+ W?W5 + wWiws + W%WG + WoWwg + W1W7 + Wg.
(D8)

If the O(oc0) vector bundle on d-dimensional space M?¢
happens to be the tangent bundle of M, then the corresponding
Wau class and the Steenrod square satisfy

Sq* 7/ (x;) = uq_jx; forany x; € H (M4;Z,).  (D9)

We can generate many relations for cocycles and Stiefel-
Whitney classes on a manifold using the above result:

(1) If we choose x; to be a combination of Stiefel-Whitney
classes, the above will generate many relations between
Stiefel-Whitney classes.

(2) If we choose x; to be a combination of Stiefel-Whitney
classes and cocycles, the above will generate many relations
between Stiefel-Whitney classes and cocycles.

(3) Since Sq'(x;) =0 if i > j, therefore, u;x,4—; = 0 for
any xy_; € HY\(M%;Z,)ifi > d — i. Since Z, is a field and
according to the Poincaré duality, this implies that u; = O for
2i >d.

4) Sq"...Sq™(u;) =0 if 2i > d. This also gives us
relations among Stiefel-Whitney classes.

3. Relations between Stiefel-Whitney classes and a Z,-valued
1-cocycle in three dimensions

On a three-dimensional manifold, we can find many
relations between Stiefel-Whitney classes: (1) up = W% +
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w,=0. 2) uz=wiwo=0. (3 Sql(uz) = 0. Using
Sq'(w;) = wiw; + (i + 1)w; 1, we find that Sq'(w? + w) =
Sql(wl)wl + Wlsql(wl) + Sql(wz) = w;wy + w3 = 0. This
gives us three relations

w2 =w,y, wiws = w3 = 0. (D10)

Let a?> be a Z,-valued 1-cocycle. We can also find a relation

between the Stiefel-Whitney classes and aZ:
wi(a®)? = Sq'[(a®)*] = 2(a®2)* = 0. (D11)

There are six possible 3-cocycles that can be constructed
from the Stiefel-Whitney classes and the 1-cocycle a?2:

w1)?,

Z, )3
)

WiW3, w3,

(a wi(@?)?, wla?>. (D12)

From the above relations, we see that only two of them are
nonzero:

@™y, wia®. (D13)
4. Relations between Stiefel-Whitney classes and a Z,-valued
1-cocycle in four dimensions

The relations between the Stiefel-Whitney classes for
four-dimensional manifold can be listed: (1) uz = wiw, =
0. 2 us=w{+wi+wiws+ws=0. (3) Sq'(u3) =
0, which implies Sq'(w;w») = Sq'(w))ws + w;Sq!(ws) =
waz + waz + wyws = wyws = 0, which can be summa-
rized as

wiwy =0, wiwz =0, Wi+ w3+ wy =0. (D14)

We also have many relations between the Stiefel-Whitney
classes and a%: (1) Sq'l(@®)’] = (@®)* = w(a®2)’.
(2) Sq'(wWla%2) = wi(a?)* = wia?>. (3) Sq'(waa??) =
(Wiwa + w3)aZ2 + wy(a?2)? = wywaa??,  which implies
that  wia?> = wy(@®)?. (4 S[@?)] = (@®)* =
(Wi + wa)(a?). (5) Sq*(wia??) = wi(a®)* =
(W2 + wy)wia? = wia?2, which is the same as (2). To
summarize,

wi@l)? = wia%, (a??)* = wi(a??)?,
waa?y? = wia®,  (a®)* + wi@®?)? + waa®)? = 0.

(D15)

There are nine 4-cocycles that can be constructed from
Stiefel-Whitney classes and a 1-cocycle a?2:

@), wi@?)’, wi@™)?,
wz(aZ2)2, W?aZZ, W3aZ2,
Wi, w3, Wy, (D16)
Only four of them are independent:
w?, w%, W3aZZ, w?aZZ. (D17)

5. Relations between Stiefel-Whitney classes and a Z,-valued
2-cocycle in four dimensions

There are two relations between the Stiefel-Whitney
classes and a Zj-valued 2-cocycle b2 (1) Sq](wleZ) =
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W%bZz + wi Boblr = w%bZz, which implies wB,b%> = 0.
(2) S (b%2) = (b%2)* = (W? + wy)b%. There are seven 4-
cocycles that can be constructed from Stiefel-Whitney classes
and a Z,-valued 2-cocycle b2

"2, w Bob?%2, wib?e, wab?2,
wi, w3, Wa. (D18)
So, the following four 4-cocycles are independent:
wh w3, wab%2, wible, (D19)

APPENDIX E: SPIN AND PIN STRUCTURES

Stiefel-Whitney classes can determine when a manifold
can have a spin structure. The spin structure is defined only
for orientable manifolds. The tangent bundle for an orientable
manifold M is a SO(d) bundle. The group SO(d) has a central
extension to the group Spin(d). Note that 7 [SO(d)] = Z,. The
group Spin(d) is the double covering of the group SO(d). A
spin structure on M¢ is a Spin(d) bundle, such that under the
group reduction Spin(d) — SO(d), the Spin(d) bundle reduces
to the SO(d) bundle. Some manifolds cannot have such a lifting
from SO(d) tangent bundle to the Spin(d) spinor bundle. The
manifolds that have such a lifting are called spin manifolds.
A manifold is a spin manifold iff its first and second Stiefel-
Whitney class vanishes w; = wp = 0.

For a nonorientable manifold N, the tangent bundle is a
O(d) bundle. The nonconnected group O(d) has two nontrivial
central extensions (double covers) by Z, with different group
structures, denoted by Pin*(d) and Pin~(d). So the O(d)
tangent bundle has two types of lifting to a Pin™ bundle
and a Pin~ bundle, which are called Pin* structure and
Pin~ structure, respectively. The manifolds with such liftings
are called PinT manifolds or Pin~ manifolds. We see that
the concept of Pin® structure applies to both orientable and
nonorientable manifolds. A manifold is a Pint manifold iff
ws = 0. A manifold is a Pin™ manifold iff w, + wf =0.Ifa
manifold N¢ does admit Pin™ or Pin™ structures, then the set
of isomorphism classes of Pin™ structures (or Pin™ structures)
can be labeled by elements in H I(N?;7Z5). For example,
R P# admits two Pin™ structures and no Pin™ structures since
w2(RP4) = 0 and wa(RP*) + wi(R P4) # 0.

From Eq. (D1), we see that M#N is pin* iff both M and N
are pin*. Similarly, M#N is pin~ iff both M and N are pin~.

APPENDIX F: COHOMOLOGY RINGS

In this Appendix, we list some cohomology rings
H*(M*;Z,) that are used in the main text of the paper. First,
let us list a few theorems:

The cohomology ring of product space (see [93], p. 216):

Let X and Y be arbitrary spaces. Assume H k(Y; R)is afree
and finitely generated R module for all k. Then,

H*(X;R)®r H*"(Y;R) —» H*(X x Y; R) (F1)

is an isomorphism of graded rings. (A free R module is a
module that has a basis or, equivalently, one that is isomorphic
to a direct sum of copies of the ring R.)
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The cohomology of connected sum:

HY(M#NY M) = H* (MY M) & H*(NY M), 0 < k < d.
(F2)

The cup product of connected sum:
HY(M#NY M)x H (MU#NY M) = H (MO#NY M),
O<klk+1l<d:
(a,a)Ub,b)=(aUb,a Ub), (F3)

where a € H*(M? M), b e H'(M?* M), a € H*(N?,M),
and b’ € H'(N?,M). The above also works for k + [ = d we
identify

(@vpye, Buya) ~ (o + BIupagya, (F4)

where vya, ya, and vyagya are the generators in H4(M¢, M),
HY(N?,M), and HY(M#N? M).

1. H«(T*,Z,)
For M* = §' x S! x S! x S§' = T4, we have
Zylay,az,a3,a4]

(at.a3,a3,a3) ~

H*(T*,Z,) = (F5)

where a; € H'(T*,Z,) generate the ring. The Bockstein
homomorphism all vanishes:

Bnai =0, i=1,2,34. (F6)

2. H¥(T? x $*,Z,)
For M* = T? x §? (where T? = §' x S'), we have
Zylay,a,b]
(@)
where a; € H'(T? x §,Z,)and b € HX(T? x S*,7,) gener-
ate the ring. We also have

Bna,- = Bnb = 0,

H*(T? x §*,Z,) = (F7)

i=1.2. (F8)

3. H*(L*(p); Z.)

L?(p) space is a two-dimensional sphere with p holes
removed and with the boundary of the p holes identified [see
Fig. 9(a)]. It has a CW-complex decomposition as shown in
Fig. 9(b). Since 0§ = pL, 0L = 0, we can compute explicitly
that

Ho(L*(p).,Z) = Z, H\(L*(p).Z) = Z,,

Hy(L*(p),Z) =0, (F9)

H(L*(p),Z) =7, H'(L*(p),Z)=0,
HX(L*(p),Z) = Z,, (F10)

and
Ho(L*(p),Z,) = Z, H\(L*(p),Zy) = L py = {L},

Hy(L*(p),Z) = Zin.p) = {(n—>S} (F11)

n,p
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3
L L
L L
1V (b)

FIG. 9. (a) L*(p) (with p = 4) space. (b) L?(p) can be described
by a CW complex with a O-cell V, a 1-cell L, and a 2-cell S. The filled
dots are identified. The links (12), (23), (34), and (41) are identified..
The boundary of the 2-cell S is p copies of the 1-cell L: 95 = pL
and L is a cycle 9L = 0. (c) L*(p) can be described by a singular
complex with two vertices (0) and V, p + 1 links (01), ...,(0p) and
L, p triangles (012),...,(0,p — 1,p). The sum of the p triangles
gives us S, the whole L2(p) space.

HYL*(p),Z,) = Z, H'(L*(p),Z,) = Zn.py = {a},
HX(L*(p),Zy) = L, py = 1D}, (F12)

where we have listed the generators of H, (L% p),Z,) and
H*(L*(p),Zy).

Using the CW complex of L?(p), we can compute the Bock-
stein homomorphism for Z,, coefficient. Leta € Z'(L%(p); Z)
to be a generator of H'(L*(p);Z,), and b € C*(L*(p); Z) to
be a generator of H>(L?(p); Z):

(F13)

Weseethat p = (pa,L) = (a@,pL) = (a,0S) = (da,S). Thus,
da =0 mod p, confirming that & is a cocycle in
Hl(L3(p,q);Z,,), but & is not a cocycle in Hl(L3(p,q);Z).
From the above calculation, we also see that dd = pE
or %d& = b. Therefore, %W’,’md& = ﬁ[} or Ld( ) =

Bn(<p"7>€z) = #]}, We note that (p’fn)& is an integer-valued

cochain that satisfies d —2~a = 0 mod n. Thus, a = —2~a is
(p.n) (p.n)

a cocycle and a generator in H'(L3(p,q); Z,). Also, b = b is
a cocycle and a generator in H*(L3(p.q); Z,). The Bockstein
homomorphism can be written as

b. (F14)

We can calculate the cohomology ring H*(L?(p); Z,) by
decomposing L?(p) into a singular complex characterized by
the vertices 0,1,2, ..., p [see Fig. 9(c)]. Note that 1,2, ...,p
corresponds to the same vertex. First a,b [the generators of
H'(L*(p); Z,) and H*(L*(p); Zy)] are given by

(a.(mm + 1)) = ——,
(p,n)
(a,Omyy = L=
(p,n)
(5,(012)) = (b,(00'2)) = 1, (b,others) = 0,
m=1,...,p. (F15)
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We see that
@L) = ——, <b, . S> =" (FI6
(p,n) (p,n) (p,n)
where S is a 2-cycle d 'S = %L = 0 mod n.
Now, we can calculate the cup product
(@, (0,m,m + 1)) = (a,(0,m))(a,(m,m + 1))
-1
:U " (F17)
(p,n) (p.n)
or
P
<a27 n S> -y (m—Dn n? - n’p(p —31)
{(p.n) —= (pm) (p.n) 2(p.n)
2 ifp, > 1, 5= = odd
nly; Wp2 > 3m s
- {O otherwise, (F18)

where p, is the number of prime factor 2 in p. The above
implies that

2 0
2on p(p 1)b
2(p,n)?

(n.p)
_ |
0

The ring H*(Lz(p); Z,)is determined by Egs. (F12) and (F19).

" — odd,

s DM

if pp > 1
b2 (F19)
otherwise.

4. H*[L*(p,q) x S',Z,]

We know that §3 can be described by two complex numbers
71,22 satisfying |z1]? + |z2/> = 1. Let p and g be coprime
integers. We can see that the action (z1,z2) — (ei 2771 1,ei27;*>qz2)
is a free action on S°. Quotienting out such a free action,
the resulting space is the lens space L3(p,q). We see
that L*(2,1) = RP3. L3(p,q1) and L3(p,q>) are homotopi-
cally equivalent if and only if g,g, = #m? mod p for an
integer m.

L3(p.q) is described by the CW complex in Fig. 10 for
(p,q) = (4,1), which has a O-cell V (the four vertices 1,2,3,4
are identified and correspond to V), a 1-cell L [the four links

FIG. 10. The S° is parametrized by (x,x2,X3) = %{;‘jm

which is the whole R?. The open dots are the points (z1,22) =
(0,e2™™/Py, m =0, ...,p — 1. The shaded disk is BZ. The north and
the south hemispheres are BZ,. The volume between B and B} is the
lens space L*(p,q)|(p.q)=4,1y- The lens space L*(p,q) is described by
a CW complex with a O-cell V, a 1-cell L, a2-cell S, and a 3-cell T'.
The filled dots are identified under the quotient map and correspond
to the O-cell V. The shaded disk S is the 2-cell. The boundary of the
2-cell Sis p copies of the 1-cell L: S = pL and Lisacycle 9L = 0.
The 3-cell T is the half-ball above the shaded disk.
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| CZ
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T
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FIG. 11. The Klein bottle: the top and bottom boundaries are
identified with a twist and the left and right boundaries are identified
without twist. H,(K; Z») is generated by C, and C, cycles.

(12),(23),(34),(41) are identified and correspond to L], a 2-cell
S [which is the union of (012),(023),(034),(041)], and a 3-cell
T [which is the union of (0012),(0023),(00'34),(00'41)]. To
describe the lens space, let us first consider p points (z1,22) =
0,e!?™™m/Py ' m =0, ...,p — 1 (which become one point after
the quotient). The 2-cell B2 is formed by the points (z1,22) =
cos 0(0,e/?"M/P) + 5in6(z1,0), |z1| = 1 (where B2 and B2,

are identified by the quotient map). The volume between Bm
and Berl is the lens space L3(p,q) which is also the 3-cell T.

The O-cellis given by (z1,22) = (¢!7™/?,0),m =0,...,p — 1
(which becomes one point after the quotient).
Since 0§ = pL,dL = dT = 0, we see that
Ho(L(p.9).Z) = Z, H(L*(p.q).2) =1
(F20)

Hy(L*(p.q),Z) =0, Hiy(L’(p,q).2) =7

and, by Poincaré duality,
HYL*(p,9),Z) =7, H'L*(p,q).Z)=0
HXLXp,q),Z) = Z,, HL(p.q),Z)=17. (F21)

Then, using the universal coefficient theorem (All) and
Eq. (A8), we find that

Ho(L*(p,q).Zy) = Ly  Hi(L*(p.q),Z0) = Ly pys

\ , (F22)
HZ(L (P,CI),Zn) = Z(n,p)s HS(L (P,C])aZn) =7
HYL*(p,q).Z,) = Z, H'L*(p,9).Z2) = Ly py
HYL*(p.q),Z) = Lin.py,  H*(L*(p,q).Zy) = L. (F23)

Hi(L3(p, q),Z,) is generated by L and HZ(L3(p,q),Zn) is
generated by 1 S

The cohomology rings H*(L*(p,q); Z ) are given by (see
[93], p. 251)

H*(L*(p.q): Z,)
= {mo + mia + myb + m3ab|a2 = g((p,Z) — l)b},

H*(L*(p,q); Z) = {mo + mab + msc}. (F24)

We also have B,a = b.

In the following, we will only consider L*(p,1) = L3(p).
We like to calculate the cohomology ring H*(L3(p); Z,) by
decomposing the lens space L3(p) into a simplicial complex
characterized by the vertices 0,0/, 1,2, .. ., p (see Fig. 10). Note
that 0 and O’ correspond to the same vertex and 1,2,...,p
correspond to the same vertex. Also note that, for example,
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the 2-simplices (012) and (0'23) are identified. First, a,b [the
generators of HY(L3(p); Z,) and H*(L3(p); Z,)] are given by

(@.(00)) = {a,(m,m + 1)) = ——,
(p.n)
(m—1n
(a,(0m)) = ———,
(p.n)
(b,(012)) = (b,(00'2)) =1, (b,others) =0,
m=1,...,p. (F25)
We see that
@.L) = ——. <b, ! S> =1 (R0
(p,n) (p.n) (p.n)
where -8 is a 2-cycle d 'S = ”p 7L = 0mod n.
Now we can calculate the cup product
(@®,(0,m,m + 1)) = (a,(0,m)){a,(m,m + 1))
-1
_ u n (F27)
(p,n) (p.n)
or
<a27 n S> _ i (m—1Dn n? _ n’p(p —31)
{p,n) = (pn) (p.n) 2(p.n)
2 if p, > 1, 5»- = odd,
A {2 r2> 1 om (F28)
0  otherwise,

where p, is the number of prime factor 2 in p. The above
implies that

2 _ m
2(p,n)?
@ b if py > 1, 55 = odd, (F29)
- 0 otherwise.

We also note that

(ab.T) = —(a,(0'0)){b,(012)) = ——, (F30)
{p.n)
which implies that
n
ab = c. (F31)
(p.n)
Thus, the cohomology ring H*(L3(p); Z,) is given by
H*(L)(p); Zy) = (¢ +aa + Bb + ycl,
wppif 1, & = odd
with a> =1 2 it pa> 1, 55 = odd, (F32)
0 otherwise,
n
ab = c,
{p.n)

where ¢,y € Z,and«,B € Z, ). We also have B,a = <ppn>b.
Notice that

ZLinlar]
()
is afree Z,, module. This allows us to compute the cohomology

ring H*(S' x L3(p); Z,).

H*(S';Z,) = (F33)
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5. H*(F%4Z,)

In order for the volume-independent partition function
Z'“P(M*) on an orientable space-time M* to be a topological
invariant, we require the Euler number and the Pontryagin
number of M* to vanish: x(M*) = P;(M*) = 0. We also like
M* to be complicated enough so that its second Stiefel-
Whitney class w, is nonzero. How to construct such an
four-dimensional manifold?

First, let us introduce intersection form Q y+: H>(M*; Z) x
H*(M*;Z) — Z defined by

Ou+(a,b) = (aUb,[M*]) = / ab. (F34)
M4
The intersection form has the following properties:
(1) Under connected sum,
Omssns = Qus © One. (F35)

(2) Poincaré duality implies that the intersection form Q ;s
is unimodular.

(3) If M* is spin, then Qu:(a,a) = even for all a €
H*(M*;Z). If M* is orientable and Qs is even, then M*
is spin.

(4) The signature of Qs is one third of the Pontryagin
number: o(M*) = %Pl (M™).

(5) A smooth compact spin 4-manifold has a signature
which is a multiple of 16.

(6) A 4-manifold bounds a 5-manifold if and only if it has
zero signature.

We know that Qgp: is 1 x 1 matrix:

while QcTPZ = (—1). Thus, Qc

Qcpr = (1),

1 0 .
PPt = (o _y)- This means

(DPZ#C_P2 is not spin and has a zero Pontryagin number.
The Euler number x (M) has the following properties:
() x($H=1+ (—)dd-

2) x®RPY) = HHE

(3) X(CP?) = x(CP") =3.

@) x(M x N) = x(M)x(N).

(5) x(MU#NY) = x (M) + x(N) — x(59).
Using the above result, we find that

F*=(S! x S#(S! x SWCPHTP.  (F36)
has
I 0 4 4
0r=(y _i) xFH=pPEH=0.  #3)
We see that F* is not spin.
The cohomology classes for F* are
H'(F4Z,) =LY, HX(F4Z,) = L,
H3(F%Z,) =122, HYF%Z,) = Z,. (F38)

Leta,,a, be the generators of H'(F*;Z,), by, b, the generators
of HX(F*,Z,), c1,c; be the generators of H3(F* Z,), and v
be the generator of H*(F*; Z,):

H*(F*;Z,) = {a1,a2,b1,ba,c1,¢2,0}. (F39)
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We find that the nonzero cup products are given by

b% = —b% = a|c;y = axcy = 0. (F40)

All other cup products vanish.

6. H*(RP?;Z,)

Next, let us list some cohomology rings with Z, coefficient
for nonorientable spaces. The cohomology ring H*(R P%; Z,)
is given by
Zslal
(ad+])
with a € H' (R P?;Z,). RP¢ is nonorientable if d = even.
The total Stiefel-Whitney class for R P4 is given by

H*RPY7Z,) = (F41)

w= (1 +a)*! (F42)

(see https://amathew.wordpress.com/2010/12/17/the-stiefel-
whitney-classes-of-projective-space/). We see that for R P*,
wi = a and w, = 0. Thus, RP*is a pin™ manifold, but not a
pin~ manifold.

7. H*(F*

non?’

Zy)

We note that RP* has an intersection form Qgps = (1)
(with Z, field), c(RP*) = 1 mod 2, and x(RP*) = 1. So,

Fi =RP*%CP#(S' x 5°) (F43)
has o(F )= 0mod 2 and x(F2 )=0.
The cohomology classes for F are
H'(Fy:Z,) = 2%°, H*(Fyi Z2) = 257,
H(Fy s Zs) = 2%%, HY(Fhi 22) = Zo. (F44)

Let aRP‘t,aSIXS3 be the generators of HI(F;‘OH;Z,,),
(QRP4)2,bCP2 of HZ(F:OH; Zn), (aRP4)3,cSI x §3 of

H3(F% :7,), and v the generator of H*(F? :7,):

non?’ non?

4, RP*\m=123 _S'x$* ,CP? S'xS?
H*(Fnonvzl‘l) = {(a )m sa * 7b ,C x 7U}'

(F45)
We find that the nonzero cup products are given by
(aRP4)4 _ (bCP2)2 — g5 xS SISy

(a]RP4)2’ (aRP4)3_ (F46)

All other cup products vanish. The first Stiefel-Whitney class
for F}  is givenby w; = aR?* Since RP*, CP2,and §' x S
are all pin*t manifolds, their connected sum F is also a
pint manifold. Thus, the second Stiefel-Whitney class for
FX_is wy = 0. Since wy + w2 = (aRP")? £0, F* s not a
pin~ manifold.

8. H*(K;Z,)
The Klein bottle K has the following cohomology class:

H*(K;7) = Z, = {b}.
(F47)

HY(K;Z,) = Z2* = {a1,a2},
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FIG. 12. A nonorientable surface X, with genus g = 4. All
the corners are identified and the edges with the same label L; are
glued together along its direction. The Poincaré dual of the cycle C,
isa; € HI(Z;}"“;ZQ): (ai,red link) = 1 and (a,,black link) = 0. We
note that " = R P? and £;°* = Klein bottle.

H'(K;Z,) is generated by a; and a, which are the Poincaré
dual of C; and C; (see Fig. 11):

a1 =C!, a=Cj (F48)

We see that aja, = b since C; and C, intersect once; a% =0
since C, does not self-intersect (i.e., C, and its displacement
does not intersect); al2 = b since C; self-intersects once (i.c.,
C) and its displacement intersect once). Therefore, H*(K; Z,)
is determined by

al =aja; =b, a3 =0. (F49)
9. H*(E;,“’“;Zz)
The cohomology ring for nonorientable surface X, (see
Fig. 12), H*(Z;"“; Z,), is given by (see [93], p. 208)

Zs|a;]

3 2 2
a; —aj,a;a;ax,a;a;liz;)

= {¢ +aia; + BblL.i B € Lo, af = 8;;b},
(F50)

with a; € H'(ZI Zy) = Z5%, i=12,..
HZ(E;“’“; Zz) = Zz.

To understand the above result, we note that the cycles
Ci,i=1,...,g, generate Hl(Zg"“;Zz) (see Fig. 12 where
only C is drawn). The Poincaré dual of C;, a; = C;, generates
H'\(Z fg“’“; 7). We note that the self-intersection number for C;

is 1. Thus, ai2 = b. C; and C; do not intersect if i # j. Thus,
a;a; = 0.

To calculate the Stiefel-Whitney class w;, we note that the
orientation reverses as we go along the loop C;. This implies
that 5§C,- w; = 1 mod 2. Since 5§C,- a; is the intersection number
between C; and Poincaré dual of a; which is C;, we see
that fci aj = §;;. Therefore, w; = ) ¢_, a;. In two dimensions
wy = w3 =Y % a?=[ghb. Thus, %3 is a pin* manifold
if g = even, and it is not a pin™ manifold if g = odd. Z}*" is
always a pin~ manifold.

We also note that the CW complex of X;°" in Fig. 12 has
V =2 vertices, L = 3g links, and T = 2g triangles. Thus,
the Buler number x(%,°") =V — L+ T =2 —g. The top
Stiefel-Whitney class is equal to the Euler class mod 2,
regardless of the Z orientability of the manifold. In other
words, every manifold is Z, orientable. So, the Euler class

.,g and b€
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(with Z, coefficients) coincides with the top Stiefel-Whitney
class. This is another way to obtain w, = [g]»b.

APPENDIX G: GROUP COHOMOLOGY THEORY

1. Homogeneous group cocycle

In this Appendix, we will briefly introduce group coho-
mology. The group cohomology class H%(G,M) is a Z model
constructed from a group G and a Z module M (i.e., a vector
space over Z). Each element of G also induces a mapping
M — M, which is denoted as

g-m=m', geG,mm M. (GD)
The map g- is a group homomorphism:
g-m +my)=g-m+g-ms. (G2)

The module M with such a G-group homomorphism is called
a G module.

A homogeneous d-cochain is a function vy : G*! — M,
that satisfies

va(go, ... ,84) = & - va(g8o, - --,884), &8 €G. (G3)

We denote the set of d-cochains as CY(G,M). Clearly,
C4(G,M) is an Abelian group.

Let us define a mapping d (group homomorphism) from
C4(G,M) to C*1(G,M):

d+1
(AdVa)(os - --8a+1) = Y (—)val8o: .81 - 8at1):
i=0
(G4
where g, ...,&i, ...,84+11Sthe sequence go, ..., &, - - - ,8d+1

with g; removed. One can check that d> = 0. The homoge-
neous d-cocycles are then the homogeneous d-cochains that
also satisfy the cocycle condition

dvg = 0. (GS)

We denote the set of d-cocycles as Z9(G,M). Clearly,
Z4(G,M) is an Abelian subgroup of C?(G,M).

Let us denote BYG,M) as the image of the map
d: C*(G,M) — C4G,M) and B°(G,M) = {0}. The ele-
ments in B4(G,M) are called d-coboundaries. Since d? = 0,
B4(G,M) is a subgroup of Z¢(G,M):

BYG,M) = {dvg_i|vs—1 € C"N(G, M)} C Z4(G,M).
(G6)

The group cohomology class H?(G,M) is then defined as
HY(G,M) = 24(G,M)/B(G,M). (G7)

We note that the d operator and the cochains C¢(G, M) (for all
values of d) form a so-called cochain complex

A GV S e GV S (G8)

which is denoted as C(G,M). So, we may also write the group
cohomology H?(G,M) as the standard cohomology of the
cochain complex H[C(G,M)].
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2. Inhomogeneous group cocycle

The above definition of group cohomology class can be
rewritten in terms of inhomogeneous group cochains/cocycles.
An inhomogeneous group d-cochain is a function wy : G¢ —
M. All wy(gy,...,g4) form C4(G,M). The inhomogeneous
group cochains and the homogeneous group cochains are
related as
ad—1,4), (G9)

v4(80,815 - - - »84) = wqlaor, ..

with
go=1, g1 =goao1, & = g1a12, ... &i = &i-14d—1.d-

(G10)
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Now, the d map has a form on wy:

(dwg)(aor, - .

S04 d+1) = ao1 - (a2, . .. ,dq,.d+1)

d
+ Z(—)’wd(am, c s i1y 1y - - -5 Ad d g 1)

i=1

+ (=) walao, . . (G11)

-dd—1,4)-
This allows us to define the inhomogeneous group d-cocycles
which satisfy dw; =0 and the inhomogeneous group d-
coboundaries which have a form wy; = dugs—1. Geometrically,
we may view g; as living on the vertex i, while a;; as living
on the link connecting the two vertices i to j.
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