

# MIT Open Access Articles

Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

**Citation:** Lan, Tian; Kong, Liang and Wen, Xiao-Gang. "Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries." Physical Review B 95, 235140 (June 2017): 1 -37 © 2017 American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevB.95.235140

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/110259

**Version:** Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

**Terms of Use:** Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.





## Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries

Tian Lan, 1,2 Liang Kong, 3,4 and Xiao-Gang Wen 1,5 <sup>1</sup>Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada <sup>2</sup>Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada <sup>3</sup>Department of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire 03824, USA <sup>4</sup>Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA <sup>5</sup>Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 13 February 2017; published 22 June 2017)

In 2+1-dimensional space-time, gapped quantum states are always gapped quantum liquids (GQL) which include both topologically ordered states (with long range entanglement) and symmetry protected topological (SPT) states (with short range entanglement). In this paper, we propose a classification of 2+1D GQLs for both bosonic and fermionic systems: 2+1D bosonic/fermionic GQLs with finite on-site symmetry are classified by nondegenerate unitary braided fusion categories over a symmetric fusion category (SFC) E, abbreviated as  $UMTC_{/\mathcal{E}}$ , together with their modular extensions and total chiral central charges. In our classification, SFC  $\mathcal{E}$ describes the symmetry, which is Rep(G) for bosonic symmetry G, or  $sRep(G^f)$  for fermionic symmetry  $G^f$ . As a special case of the above result, we find that the modular extensions of Rep(G) classify the 2+1D bosonic SPT states of symmetry G, while the c = 0 modular extensions of sRep $(G^f)$  classify the 2+1D fermionic SPT states of symmetry  $G^f$ . Many fermionic SPT states are studied based on the constructions from free-fermion models. But free-fermion constructions cannot produce all fermionic SPT states. Our classification does not have such a drawback. We show that, for interacting 2+1D fermionic systems, there are exactly 16 superconducting phases with no symmetry and no fractional excitations (up to  $E_8$  bosonic quantum Hall states). Also, there are exactly 8  $Z_2 \times Z_2^f$ -SPT phases, 2  $Z_8^f$ -SPT phases, and so on. Besides, we show that two topological orders with identical bulk excitations and central charge always differ by the stacking of the SPT states of the same symmetry.

#### DOI: 10.1103/PhysRevB.95.235140

#### I. INTRODUCTION

Topological order [1-3] is a new kind of order beyond the symmetry breaking orders [4] in gapped quantum systems. Topological orders are patterns of long-range entanglement [5] in gapped quantum liquids (GQL) [6]. Based on the unitary modular tensor category (UMTC) theory for non-Abelian statistics [7–9], in Refs. [10,11], it is proposed that 2+1D bosonic topological orders are classified by  $\{UMTC\} \times$  $\{iTO_B\}$ , where  $\{UMTC\}$  is the set of UMTCs and  $\{iTO_B\}$  is the set of invertible topological orders (iTO) [10,12] for 2+1D boson systems. In fact,  $\{iTO_B\} = \mathbb{Z}$ , which is generated by the E<sub>8</sub> bosonic quantum Hall (QH) state, and a table of UMTCs was obtained in Refs. [11,13]. Thus we have a table (and a classification) of 2+1D bosonic topological orders.

In a recent work [14], we show that 2+1D fermionic topological orders are classified by  $\{\mathrm{UMTC}_{/\mathrm{sRep}(Z_2^f)}\} \times \{\mathrm{iTO}_F\},$ where  $\{UMTC_{/sRep(Z_2^f)}\}$  is the set of nondegenerate unitary braided fusion categories (UBFC) over the symmetric fusion category (SFC) sRep( $\mathbb{Z}_2^f$ ) (see definition II B). We also require  $UMTC_{/sRep(Z_2^f)}$ s to have modular extensions. {iTO<sub>F</sub>} is the set of invertible topological orders for 2+1D fermion systems. In fact,  $\{iTO_F\} = \mathbb{Z}$ , which is generated by the p + ipsuperconductor. In Ref. [14], we computed the table for  $UMTC_{/sRep(Z_2^f)}$ s, and obtained a table (and a classification) of 2+1D fermionic topological orders.

In Ref. [14], we also point out the importance of modular extensions. If a  $UMTC_{/sRep(Z_2^f)}$  does not have a modular extension, it means that the fermion-number-parity symmetry is not on-site (i.e., anomalous [15]). On the other hand, if a  $\mathrm{UMTC}_{/\mathrm{sRep}(Z_2^f)}$  does have modular extensions, then the  $\mathrm{UMTC}_{/\mathrm{sRep}(Z_2^f)}$  is realizable by a lattice model of fermions. In this case, a given  $\mathrm{UMTC}_{/\mathrm{sRep}(Z_2^f)}$  may have several modular extensions. We found that different modular extensions of  $\mathrm{UMTC}_{/\mathrm{sRep}(Z_2^f)}$  contain information of  $\mathrm{iTO}_F\mathrm{s}$ .

Our result on fermionic topological orders can be easily generalized to describe bosonic/fermionic topological orders with symmetry. This will be the main topic of this paper. (Some of the results are announced in Ref. [14]. In this paper, we will consider symmetric GQL phases for 2+1D bosonic/fermionic systems. The notion of GOL was defined in Ref. [6]. The symmetry group of GQL is G (for bosonic systems) or  $G^f$ (for fermionic systems). If a symmetric GQL has long-range entanglement (as defined in Refs. [5,6]), it corresponds to a symmetry enriched topological (SET) order [5]. If a symmetric GQL has short-range entanglement, it corresponds to a symmetry protected trivial (SPT) order [which is also known as symmetry protected topological (SPT) order] [16–20].

In this paper, we are going to show that, 2+1D symmetric GQLs are classified by  $UMTC_{/\mathcal{E}}$  plus their modular extensions and chiral central charge. In other words, GQLs are labeled by three UBFCs  $\mathcal{E} \subset \mathcal{C} \subset \mathcal{M}$  plus the central charge c (see Figs. 1 and 2). Roughly speaking, a UBFC can be viewed as a set of quasiparticle types, plus the data on quasiparticle fusion and braiding.

(1)  $\mathcal{E}$  is a special kind of UBFC called SFC where all the quasiparticles have trivial mutual statistics between each other. Such a SFC  $\mathcal{E}$  describes the local excitations (i.e., the excitations that can be created by local operators). The types of those local excitations are described the representations of the

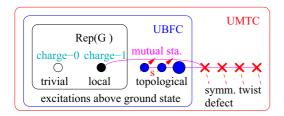


FIG. 1. Bosonic topological orders with symmetry G are classified by three unitary categories: SFC  $\mathcal{E} = \operatorname{Rep}(G) \subset \operatorname{UBFC} \mathcal{C} \subset \operatorname{UMTC} \mathcal{M}$ , which describe quasiparticle excitations and symmetry-twist defects. The particles connected by lines have nontrivial mutual statistics between them.

symmetry group. Thus  $\mathcal{E}$  is given by  $\mathcal{E} = \text{Rep}(G)$  for bosonic cases, or  $\mathcal{E} = \text{sRep}(G^f)$  for fermionic cases.

- (2) The UBFC  $\mathcal C$  contains both local excitations and topological excitations (i.e., the excitations that cannot be created by local operators), and thus  $\mathcal E \subset \mathcal C$ . Those topological excitations can carry fractional statistics and fractional angular momentum s, which will be called *topological spin*. The topological excitations may also have symmetry fractionalization (such as fractional symmetry quantum numbers). We also require  $\mathcal E$  to include all the excitations that have trivial mutual statistics with every excitation in  $\mathcal C$  (which can be viewed as an operational definition of the so called *local excitation*), which leads to a mathematical notion of *UBFC over SFC*  $\mathcal E$  (denoted as UMTC/ $\mathcal E$ ).
- (3) The UBFC  $\mathcal{M}$  contains both quasiparticle excitations and symmetry-twist defects [21–23], and thus  $\mathcal{C} \subset \mathcal{M}$ . We require that every particle in  $\mathcal{M}$  (except the trivial one) has a nontrivial mutual statistics with at least one particle in  $\mathcal{M}$ . A UBFC satisfying such a condition is called UMTC, and we call the extension from  $\mathcal{C}$  to  $\mathcal{M}$  a modular extension. (To be more precise, a modular extension of C, M, is a UMTC with a fully faithful embedding  $\mathcal{C} \to \mathcal{M}$ . In particular, even if the UMTC  $\mathcal{M}$  is fixed, different embeddings correspond to different modular extensions.) The existence of modular extensions for C is an anomaly-free condition for C: the quasiparticles described by C can be realized by a well defined local lattice model with on-site-symmetry in the same dimension [15]. The chiral central charge c for the edge states describes the invertible topological orders, which have trivial bulk excitations.

We like to remark that symmetry charges by carried topological excitations are in general not well defined. In other words, a topological excitation may not carry a representation

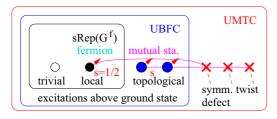


FIG. 2. Fermionic topological orders with symmetry  $G^f$  are classified by three unitary categories: SFC  $\mathcal{E} = \mathrm{sRep}(G^f) \subset \mathrm{UBFC}\,\mathcal{C} \subset \mathrm{UMTC}\,\mathcal{M}$ .

of the symmetry group. This phenomenon is called symmetry fractionalization. In general, a topological excitation may not even carry a projective representation of the symmetry group (which corresponds to fractionalized symmetry quantum numbers). In other words, a topological excitations can carry something more exotic than projective representations of the symmetry group. For example, in a gauge theory with gauge group K and symmetry group G, a topological excitation (a gauge charge) may carry a representation of group H which satisfies H/K = G. So symmetry fractionalization can be more general than fractionalized quantum numbers and projective representations of the symmetry group.

One example of the classified bosonic SET (see Table VI) is given by the  $Z_2^{\text{gauge}}$  spin liquid [24,25] with excitations 1, e, m, f, where 1 is the trivial excitation, e the  $Z_2^{\text{gauge}}$  charge, m the  $Z_2^{\text{gauge}}$  vortex, and f the bound state of e and m. The excitation 1, e, m are bosons and f is a fermion. There is also a  $\mathbb{Z}_2^{\text{sym}}$ symmetry which exchanges e and m [26–28]. The excitations in such a SET state are labeled by  $1_+$ ,  $1_-$ ,  $f_+$ ,  $f_-$ ,  $e \oplus m$ , which form the UBFC  $\mathcal{C}$ . They have topological spins  $s_i =$  $0,0,\frac{1}{2},\frac{1}{2},0$  and quantum dimensions  $d_i = 1,1,1,1,2$ .  $1_+$  and  $1_-$  are the local excitations with  $Z_2^{\text{sym}}$  charge 0 and 1. The two excitations  $1_+$  and  $1_-$  form the SFC  $\mathcal{E} = \text{Rep}(Z_2^{\text{sym}})$ .  $f_+$  and  $f_-$  are topological fermionic excitations with  $Z_2^{\text{sym}}$  charges 0 and 1.  $e \oplus m$  is a doublet excitation that corresponds to degenerate e and m (just like the spin-1/2 doublet that corresponds to degenerate spin-up and spin-down). This is why  $e \oplus m$  has a quantum dimension 2. The modular extension is obtained by adding the  $Z_2^{\text{sym}}$ -symmetry twist defect, as well as its bound states with excitations  $f_+$ ,  $f_-$ ,  $e \oplus m$ . Figure 1 happens to describe such a SET.

As a second example, Fig. 2 describes the topological order  $\mathcal{F}_{(A_1,6)}$  in Table I of Ref. [14], which has a  $G^f = Z_2^f$  symmetry. The state has two types of local excitations with  $Z_2^f$ -charge 0 (a boson) and 1 (a fermion) that form the SFC  $\mathcal{E} = \mathrm{sRep}(Z_2^f)$ . They have topological spin  $s_i = 0, \frac{1}{2}$ . The state also has two types of topological excitations with topological spin  $s_i = \frac{1}{4}, -\frac{1}{4}$  and quantum dimension  $d_i = 1 + \sqrt{2}, 1 + \sqrt{2}$ . The local and topological excitations form the UBFC  $\mathcal{C}$ . The modular extension is obtained by adding the  $Z_2^f$ -symmetry twist defect, as well as its bound state with the excitations in  $\mathcal{C}$ , which gives rise to three types of symmetry twist defects.

There is another more precise and mathematical way to phrase our result: we find that the structure  $\mathcal{E} \hookrightarrow \mathcal{C} \hookrightarrow \mathcal{M}$  (plus the chiral central charge c) classifies the 2+1D GQLs with symmetry  $\mathcal{E}$ , where  $\hookrightarrow$  represents the embeddings and  $\mathcal{E}_{\mathcal{M}}^{cen} = \mathcal{C}$  (see definition IIB).

As a special case of the above result, we find that bosonic 2+1D SPT phase with symmetry G are classified by the modular extensions of Rep(G), while fermionic 2+1D SPT phase with symmetry  $G^f$  are classified by the modular extensions of  $Rep(G^f)$  that have central charge c=0.

We like to mention that Ref. [29] has classified bosonic GQLs with symmetry G, using G-crossed UMTCs. This paper uses a different approach so that we can classify both bosonic and fermionic GQLs with symmetry. For bosonic systems, the two approaches produces identical classification. We also like to mention that there is a mathematical companion Ref. [30] of

this paper, where one can find detailed proof and explanations for related mathematical results.

The paper is organized as the following. In Sec. II, we review the notion of topological order and introduce category theory as a theory of quasiparticle excitations in a GQL. We will introduce a categorical way to view the symmetry. In Sec. III, we discuss invertible GQLs and their classification based on modular extensions. In Secs. IV and V, we generalize the above results and propose a classification of all GQLs. Section VI investigates the stacking operation from physical and mathematical points of view. Section VII describes how to numerically calculate the modular extensions and Sec. VIII discusses some simple examples. For people with physics background, one way to read this paper is to start with Secs. II and V, and then go to Sec. VIII for the examples. Table I summarizes some important mathematical concepts and their physical correspondences.

# II. GAPPED QUANTUM LIQUIDS, TOPOLOGICAL ORDER, AND SYMMETRY

#### A. The finite on-site symmetry and symmetric fusion category

In this paper, we consider physical systems with an on-site symmetry described by a finite group G. For fermionic systems, we further require that G contains a central  $Z_2$  fermion-number-parity subgroup. More precisely, fermionic symmetry group is a pair (G, f), where G is a finite group,  $f \neq 1$  is an element of G satisfying  $f^2 = 1$ ,  $fg = gf, \forall g \in G$ . We denote the pair (G, f) as  $G^f$ .

There is another way to view the on-site symmetries, which is nicer because bosonic and fermionic symmetries can be formulated in the same manner. Consider a bosonic/fermionic product state  $|\psi\rangle$  that does not break the symmetry G:  $U_g|\psi\rangle=|\psi\rangle, g\in G$ . Then the new way to view the symmetry is to use the properties of the excitations above the product state to encode the information of the symmetry G.

The product state contain only local excitations that can be created by acting local operators O on the ground state  $O|\psi\rangle$ . For any group action  $U_g$ ,  $U_gO|\psi\rangle = U_gOU_g^\dagger U_g|\psi\rangle = U_gOU_g^\dagger |\psi\rangle$  is an excited state with the same energy as  $O|\psi\rangle$ . Since we assume the symmetry to be on-site,  $U_gOU_g^\dagger$  is also a local operator. Therefore  $U_gOU_g^\dagger |\psi\rangle$  and  $O|\psi\rangle$  correspond to the degenerate local excitations. We see that local excitations "locally" carry group representations. In other words, different types of local excitations are labeled by irreducible representations of the symmetry group.

By looking at how the local excitations (more precisely, their group representations) fuse and braid with each other, we arrive at the mathematical structure called symmetric fusion categories (SFC). By definition a SFC is a braided fusion category where all the objects (the excitations) have trivial mutual statistics (i.e., centralize each other, see next section). A SFC is automatically a unitary braided fusion category.

In fact, there are only two kinds of SFCs: one is representation category of G: Rep(G), with the usual braiding (all representations are bosonic); the other is sRep( $G^f$ ) where an irreducible representation is bosonic if f is represented trivially (+1), and fermionic if f is represented nontrivially (-1).

It turns out that SFC (or the fusion and braiding properties of the local excitations) fully characterize the symmetry group (which is known as Tannaka duality [31]). Therefore a finite on-site symmetry is equivalently given by a SFC  $\mathcal{E}$ . Also, by checking the braiding in  $\mathcal{E}$  we know whether it is bosonic or fermionic. This is the new way, the categorical way, to view the symmetry. Such a categorical view of bosonic/fermionic symmetry allows us to obtain a classification of symmetric topological/SPT orders.

# B. Categorical description of topological excitations with symmetry

In symmetric GQLs with topological order (i.e., with long range entanglement), there can be particlelike excitations with local energy density, but they cannot be created by local operators. They are known as (nontrivial) topological excitations. Topological excitations do not necessarily carry group representations. Nevertheless, we can still study how they fuse and braid with each other; so we have a unitary braided fusion category (UBFC) to describe the particlelike excitations. To proceed, we need the following key definition on "centralizers".

Definition 1. The objects X,Y in a UBFC  $\mathcal{C}$  are said to centralize (mutually local to) each other if

$$c_{Y,X} \circ c_{X,Y} = \mathrm{id}_{X \otimes Y}, \tag{1}$$

where  $c_{X,Y}: X \otimes Y \cong Y \otimes X$  is the braiding in C.

Physically, we say that X and Y have trivial mutual statistics.

Definition 2. Given a subcategory  $\mathcal{D} \subset \mathcal{C}$ , its *centralizer*  $\mathcal{D}_{\mathcal{C}}^{\text{cen}}$  in  $\mathcal{C}$  is the full subcategory of objects in  $\mathcal{C}$  that centralize all the objects in  $\mathcal{D}$ .

We may roughly view a category as a "set" of particlelike excitations. So the centralizer  $\mathcal{D}^{cen}_{\mathcal{C}}$  is the "subset" of particles in  $\mathcal{C}$  that have trivial mutual statistics with all the particles in  $\mathcal{D}$ .

*Definition 3.* A UBFC  $\mathcal{E}$  is a *symmetric* fusion category if  $\mathcal{C}_{\mathcal{C}}^{\text{cen}} = \mathcal{E}$ . A UBFC  $\mathcal{C}$  with a fully faithful embedding  $\mathcal{E} \hookrightarrow \mathcal{C}_{\mathcal{C}}^{\text{cen}}$  is called a UBFC over  $\mathcal{E}$ . Moreover,  $\mathcal{C}$  is called a nondegenerate UBFC over  $\mathcal{E}$ , or UMTC $_{/\mathcal{E}}$ , if  $\mathcal{C}_{\mathcal{C}}^{\text{cen}} = \mathcal{E}$ .

Definition 4. Two UBFCs over  $\mathcal{E}$ ,  $\mathcal{C}$ , and  $\mathcal{C}'$  are equivalent if there is a unitary braided equivalence  $F:\mathcal{C}\to\mathcal{C}'$  such that it preserves the embeddings, i.e., the following diagram commute:

$$\begin{array}{ccc}
\mathcal{E} & \longrightarrow \mathcal{C} \\
\parallel & \downarrow_F \\
\mathcal{E} & \longrightarrow \mathcal{C}'
\end{array}$$
(2)

We denote the category of unitary braided autoequivalences of C by Aut(C) and its underlining group by Aut(C).

We recover the usual definition of UMTC when  $\mathcal{E}$  is trivial, i.e., the category of Hilbert spaces, denoted by Vec = Rep({1}). In this case, the subscript is omitted.

Physically, a UBFC C is the collection of all bulk topological excitations plus their fusion and braiding data. Requiring C to be a UMTC $_{/E}$  means (1) the set of local excitations, E (which is the set of all the irreducible representations of the symmetry group), is included in C as a subcategory; (2)

TABLE I. Some mathematical concepts and their physical correspondences, as well as the meaning of some notations.

| Mathematical term                                                                      | Physical correspondence                                                                                                                                                |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UBFC (unitary braided fusion category) $\mathcal{C}$                                   | Set of excitations that can braid and fuse                                                                                                                             |
| SFC (symmetric fusion category) $\mathcal{E}$ , which is a special kind of UBFC        | Set of local excitations carrying representations of symmetry group                                                                                                    |
| UMTC (unitary modular tensor category) $\mathcal{M}$ , which is a special kind of UBFC | Set of excitations such that every nontrivial excitation has a nontrivial mutual statistics with at least one excitation                                               |
| $\mathrm{UMTC}_{/\mathcal{E}}$ (UBFC over $\mathcal{E}$ ) a special kind of UBFC       | Set of excitations that contain a subset SFC $\mathcal{E}$ , where $\mathcal{E}$ is formed by the excitations that have trivial mutual statistics with all excitations |
| Modular extension                                                                      | Adding symmetry-twist defects (i.e., gauging the symmetry)                                                                                                             |
| Chiral central charge c                                                                | The number of right-moving edge modes minus the number of left-moving edge modes ( $c$ can be fractional)                                                              |
| Topological spin $s_i$                                                                 | Fractional part of 2D angular momentum of the quasiparticle i                                                                                                          |
| Quantum dimension $d_i$                                                                | The effective dimension of the Hilbert space for the internal                                                                                                          |
|                                                                                        | degrees of freedom of the quasiparticle $i$ ( $d_i$ can be noninteger)                                                                                                 |
| N                                                                                      | Number of particle types (also called rank of category)                                                                                                                |
| D                                                                                      | $\sqrt{\sum_i d_i^2}$ (total quantum dim.)                                                                                                                             |
| $\Theta$                                                                               | $D^{-1} \sum_{i} e^{2\pi i s_i} d_i^2 =  \Theta  e^{2\pi i c/8}$                                                                                                       |
| $N_c^{ \Theta }$                                                                       | A short label of topological orders                                                                                                                                    |
| $N_c^{ \Theta } \ N_c^B$                                                               | When $ \Theta  = 1$ , rewrite $N_c^{ \Theta }$ as $N_c^B$                                                                                                              |
| $\zeta_n^m$                                                                            | $\sin \frac{\pi(m+1)}{n+2}/\sin \frac{\pi}{n+2}$                                                                                                                       |
| $(A_n,k)$                                                                              | Topological order of $SU(n + 1)$ level-k Chern-Simons theory                                                                                                           |
| $(B_n,k)$                                                                              | Topological order of $SO(2n + 1)$ level-k Chern-Simons theory                                                                                                          |
| $(C_n,k)$                                                                              | Topological order of $Sp(2n)$ level- $k$ Chern-Simons theory                                                                                                           |
| $(D_n,k)$                                                                              | Topological order of $SO(2n)$ level-k Chern-Simons theory                                                                                                              |
|                                                                                        | Stacking of two states                                                                                                                                                 |
| $\otimes$                                                                              | Fusion of two particles                                                                                                                                                |

 $\mathcal{C}$  is anomaly-free, i.e., all the topological excitations (the ones not in  $\mathcal{E}$ ) can be detected by mutual braiding [10]. In other words, every topological excitation must have nontrivial mutual statistics with some excitations. Those excitations that cannot be detected by mutual braiding (i.e.,  $\mathcal{C}_{\mathcal{C}}^{\text{cen}}$ ) are exactly the local excitations in  $\mathcal{E}$ . Moreover, we want the symmetry to be on-site (gaugeable), which requires the existence of modular extensions (see definition 6). Such an understanding leads to the following conjecture.

Conjecture 1. Bulk topological excitations of topological orders with symmetry  $\mathcal{E}$  are classified by  $UMTC_{/\mathcal{E}}$ 's that have modular extensions.

We like to remark that  $UMTC_{/\mathcal{E}}$ 's fail to classify topological orders. This is because two different topologically ordered phases may have bulk topological excitations with the same non-Abelian statistics (i.e., described by the same  $UMTC_{/\mathcal{E}}$ ). However,  $UMTC_{/\mathcal{E}}$ 's, with modular extensions, do classify topological orders up to invertible ones. See next section for details. The relation between anomaly and modular extension will also be discussed later.

#### III. INVERTIBLE GQLS AND MODULAR EXTENSION

### A. Invertible GQLs

There exist nontrivial topological ordered states that have only trivial topological excitations in the bulk (but nontrivial edge states). They are "invertible" under the stacking operation [10,12] (see Sec. VI for details). More generally, we define the following.

*Definition 5.* A GQL is invertible if its bulk topological excitations are all trivial (i.e., can all be created by local operators).

Consider some invertible GQLs with the same symmetry  $\mathcal{E}$ . The bulk excitations of those invertible GQLs are the same which are described by the same SFC  $\mathcal{E}$ . Now the question is, how to distinguish those invertible GQLs?

First, we believe that invertible bosonic topological orders with no symmetry are generated by the  $E_8$  QH state (with central charge c=8) via time-reversal and stacking, and form a  $\mathbb Z$  group. Stacking with an  $E_8$  QH state only changes the central charge by 8, and does not change the bulk excitations or the symmetry. So the only data we need to know to determine the invertible bosonic topological order with no symmetry is the central charge c. The story is parallel for invertible fermionic topological orders with no symmetry, which are believed to be generated by the  $p+\mathrm{i}\,p$  superconductor state with central charge c=1/2.

Second, invertible bosonic GQLs with symmetry are generated by bosonic SPT states and invertible bosonic topological orders (i.e.,  $E_8$  states) via stacking. We know that the bosonic SPT states with symmetry G are classified by the 3-cocycles in  $H^3[G,U(1)]$ . Therefore bosonic invertible GQLs with symmetry G are classified by  $H^3[G,U(1)] \times \mathbb{Z}$  (where  $\mathbb{Z}$  corresponds to layers of  $E_8$  states).

However, this result and this point of view is not natural to generalize to fermionic cases or noninvertible GQLs. Thus we introduce an equivalent point of view, which can cover boson, fermion, and noninvertible GQLs in the same fashion.

#### B. Modular extension

First, we introduce the notion of modular extension of a UMTC<sub>1</sub>c<sub>2</sub>.

Definition 6. Given a UMTC<sub>/E</sub> C, its modular extension is a UMTC  $\mathcal{M}$ , together with a fully faithful embedding  $\iota_{\mathcal{M}}: \mathcal{C} \hookrightarrow \mathcal{M}$ , such that  $\mathcal{E}^{\text{cen}}_{\mathcal{M}} = \mathcal{C}$ , equivalently  $\dim(\mathcal{M}) = \dim(\mathcal{C})\dim(\mathcal{E})$ .

Two modular extensions  $\mathcal{M}$  and  $\mathcal{M}'$  are equivalent if there is an equivalence between the UMTCs  $F: \mathcal{M} \to \mathcal{M}'$  that preserves the embeddings, i.e., the following diagram commute:

$$\begin{array}{ccc}
C & \longrightarrow \mathcal{M} \\
\parallel & \downarrow_F \\
C & \longrightarrow \mathcal{M}'
\end{array}$$
(3)

We denote the set of equivalent classes of modular extensions of  $\mathcal{C}$  by  $\mathcal{M}_{ext}(\mathcal{C})$ .

Remark 1. Since the total quantum dimension of modular extensions of a given  $\mathcal{C}$  is fixed, there are only finitely many different modular extensions, due to Ref. [32]. In principle, we can always perform a finite search to exhaust all the modular extensions.

Remember that  $\mathcal{C}$  describes the particlelike excitations in our topological state. Some of those excitations are local that have trivial mutual statistics with all other excitations. Those local excitation form  $\mathcal{E} \subset \mathcal{C}$ . The modular extension  $\mathcal{M}$  of  $\mathcal{C}$  is obtained as adding particles that have nontrivial mutual statistics with the local excitations in  $\mathcal{E}$ , so that every particle in  $\mathcal{M}$  will always have nontrivial mutual statistics with some particles in  $\mathcal{M}$ . Since the particles in  $\mathcal{E}$  carry "charges" (i.e., the irreducible representations of G), the added particles correspond to "flux" (i.e., the symmetry twists of G). So the modular extension correspond to gauging [21] the on-site symmetry G. Since we can use the gauged symmetry to detect SPT orders [23], we like to propose the following conjecture.

Conjecture 2. Invertible bosonic GQLs with symmetry  $\mathcal{E} = \text{Rep}(G)$  are classified by  $(\mathcal{M},c)$  where  $\mathcal{M}$  is a modular extension of  $\mathcal{E}$  and  $c = 0 \mod 8$ .

#### C. Classify 2+1D bosonic SPT states

Invertible bosonic GQLs described by  $(\mathcal{M},c)$  include both bosonic SPT states and bosonic topological orders. Among those,  $(\mathcal{M},c=0)$  classify bosonic SPT states. In other words:

Corollary 1. 2+1D bosonic SPT states with symmetry G are classified by the modular extensions of Rep(G) (which always have c=0).

In Ref. [18–20], it was shown that 2+1D bosonic SPT states are classified by  $H^3[G,U(1)]$ . Such a result agrees with our conjecture, due to the following theorem, which follows immediately from results in Ref. [33].

Theorem 1. The modular extensions of Rep(G) 1-to-1 correspond to 3-cocycles in  $H^3[G,U(1)]$ . The central charge of these modular extensions are  $c=0 \mod 8$ .

Remark 2. In Sec. VID, we give more detailed explanation of the 1-to-1 correspondence in theorem 2. Moreover, we will prove a stronger result in theorem 11. It turns out that the set  $\mathcal{M}_{\text{ext}}(\text{Rep}(G))$  of modular extensions of Rep(G) is naturally equipped with a physical stacking operation such that

 $\mathcal{M}_{\text{ext}}(\text{Rep}(G))$  forms an Abelian group, which is isomorphic to the group  $H^3[G, U(1)]$ .

Remark 3. c/8 determines the number of layers of the  $E_8$  QH states, which is the topological order part of invertible bosonic symmetric GQLs. In other words

{invertible bosonic symmetric GQLs}

= {bosonic SPT states} 
$$\times$$
 {layers of  $E_8$  states}. (4)

#### D. Classify 2+1D fermionic SPT states

The above approach also apply to fermionic case. Note that, the invertible fermionic GQLs with symmetry  $G^f$  have bulk excitations described by SFC  $\mathcal{E} = \mathrm{sRep}(G^f)$ . So we would like to conjecture that

Conjecture 3. Invertible fermionic GQLs with symmetry  $G^f$  are classified by  $(\mathcal{M},c)$ , where  $\mathcal{M}$  is a modular extension of  $\mathcal{E} = \operatorname{sRep}(G^f)$ , and c is the central charge determining the layers of v = 8 IQH states.

*Remark 4.* Note that the central charge  $c \mod 8$  is determined by  $\mathcal{M}$ , while  $(c - \mod(c, 8))/8$  determines the number of layers of the v = 8 IQH states.

Remark 5. Invertible fermionic symmetric GQLs include both fermion SPT states and fermionic topological orders.  $(\mathcal{M},c)$  with c=0 classify fermionic SPT states.

In other words:

Corollary 3. 2+1D fermionic SPT states with symmetry G are classified by the c = 0 modular extensions of  $sRep(G^f)$ .

Remark 6. Unlike the bosonic case, in general

{invertible fermionic symmetric GQLs}

 $\neq$  {fermionic SPT states}×{layers of p + ip states}. (5)

For example (see Table XV),

{invertible  $Z_4^f$  fermionic symmetric GQLs}

= {fermionic  $Z_4^f$ -SPT states}

 $\times$  {layers of  $\nu = 1$  integer quantum Hall states}. (6)

However, we have

{invertible fermionic symmetric GQLs}

= {invertible fermionic symmetric GQLs with  $c \in [0,8)$ }

$$\times$$
 {layers of  $E_8$  states}. (7)

Or when  $G^f = G_b \times Z_2^f$ 

{invertible fermionic symmetric GQLs}

= {fermionic SPT states}  $\times$  {layers of p + ip states}, (8)

where the fermions in the p + ip states are  $G_b$ -invariant.

When there is no symmetry, the invertible fermionic GQLs become the invertible fermionic topological order, which have bulk excitations described by  $\mathcal{E} = \mathrm{sRep}(Z_2^f)$ .  $\mathrm{sRep}(Z_2^f)$  has 16 modular extensions, with central charges  $c = n/2, n = 0, 1, 2, \ldots, 15$ . There is only one modular extension with c = 0, which correspond to a trivial product state. Thus there is no nontrivial fermionic SPT state when there is no symmetry, as expected.

The modular extensions with c = n/2 correspond to invertible fermionic topological order formed by n layers of p + ip

states. Since the modular extensions can only determine c mod 8, in order for the above picture to be consistent, we need to show the following.

Theorem 4. The stacking of 16 layers c = 1/2 p + ip states is equivalent to a v = 8 IQH state, which is in turn equivalent to a  $E_8$  bosonic QH state stacked with a trivial fermionic product state.

*Proof.* First, two layers of p+ip states is equal to one layer of  $\nu=1$  IQH state. Thus 16 layers c=1/2 p+ip states is equivalent to a  $\nu=8$  IQH state. To show that  $\nu=8$ , IQH state is equivalent to  $E_8$  bosonic QH states stacked with a trivial fermionic product state, we note that the  $\nu=8$  IQH state is described by K matrix  $K_{\nu=8}=I_{8\times 8}$ , which is an 8-by-8 identity matrix. While the  $E_8$  bosonic QH state stacked with a trivial fermionic product state is described by K matrix  $K_{E_8\boxtimes \mathcal{F}_0}=K_{E_8}\oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ , where  $K_{E_8}$  is the matrix that describe the  $E_8$  root lattice. We also know that two odd K matrices  $K_1$  and  $K_2$  describe the same fermionic topological order if after direct summing with proper number of  $K_1$ 0  $K_2$ 1.

$$K'_{1} = K_{1} \oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus \cdots,$$

$$K'_{2} = K_{2} \oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \oplus \cdots,$$
(9)

 $K'_1$  and  $K'_2$  become equivalent, i.e.,

$$K_1' = UK_2'U^T, \quad U \in SL(N, \mathbb{Z}). \tag{10}$$

Notice that  $K_{\nu=8} \oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  and  $K_{E_8 \boxtimes \mathcal{F}_0}$  have the same determinant -1 and the same signature. Using the result that odd matrices with  $\pm 1$  determinants are equivalent if they have the same signature, we find that  $K_{\nu=8} \oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  and  $K_{E_8 \boxtimes \mathcal{F}_0}$  are equivalent. Therefore  $\nu=8$  IQH state is equivalent to  $E_8$  bosonic QH state stacked with a trivial fermionic product state.

# IV. A FULL CLASSIFICATION OF 2+1D GQLS WITH SYMMETRY

We have seen that all invertible GQLs with symmetry G (or  $G^f$ ) have the same kind of bulk excitations, described by Rep(G) [or  $sRep(G^f)$ ]. To classify distinct invertible GQLs that share the same kind of bulk excitations, we need to compute the modular extensions of Rep(G) [or  $sRep(G^f)$ ]. This result can be generalized to noninvertible topological orders.

In general, the bulk excitations of a 2+1D bosonic/fermionic SET are described by a  $UMTC_{/\mathcal{E}}$   $\mathcal{C}$ . However, there can be many distinct SET orders that have the same kind of bulk excitations described by the same  $\mathcal{C}$ . To classify distinct invertible SET orders that shared the same kind of bulk excitations  $\mathcal{C}$ , we need to compute the modular extensions of  $\mathcal{C}$ . This leads to the following.

Conjecture 4. 2+1D GQLs with symmetry  $\mathcal{E}$  (i.e., the 2+1D SET orders) are classified by  $(\mathcal{C}, \mathcal{M}, c)$ , where  $\mathcal{C}$  is a UMTC $_{/\mathcal{E}}$ 

describing the bulk topological excitations,  $\mathcal{M}$  is a modular extension of  $\mathcal{C}$  describing the edge state up to  $E_8$  states, and c is the central charge determining the layers of  $E_8$  states.

Let  $\mathcal{M}$  be a modular extension of a UMTC $_{/\mathcal{E}}$   $\mathcal{C}$ . We note that all the simple objects (particles) in  $\mathcal{C}$  are contained in  $\mathcal{M}$  as simple objects. Assume that the particle labels of  $\mathcal{M}$  are  $\{i,j,\ldots,x,y,\ldots\}$ , where  $i,j,\ldots$  correspond to the particles in  $\mathcal{C}$  and  $x,y,\ldots$  the additional particles (not in  $\mathcal{C}$ ). Physically, the additional particles  $x,y,\ldots$  correspond to the symmetry twists of the on-site symmetry [22]. The modular extension  $\mathcal{M}$  describes the fusion and the braiding of original particles  $i,j,\ldots$  with the symmetry twists. In other words, the modular extension  $\mathcal{M}$  is the resulting topological order after we gauge the on-site symmetry [21].

Now, it is clear that the existence of modular extension is closely related to the on-site symmetry (i.e., anomaly-free symmetry) which is gaugable (i.e., allows symmetry twists). For non-on-site symmetry (i.e., anomalous symmetry [15]), the modular extension does not exist since the symmetry is not gaugable (i.e., does not allow symmetry twists). We also have

Conjecture 5. 2+1D GQLs with anomalous symmetry [15]  $\mathcal{E}$  are classified by UMTC<sub>/ $\mathcal{E}$ </sub>'s that have no modular extensions.

It is also important to clarify the equivalence relation between the triples  $(\mathcal{C},\mathcal{M},c)$ . Two triples  $(\mathcal{C},\mathcal{M},c)$  and  $(\mathcal{C}',\mathcal{M}',c')$  are equivalent if: (1) c=c'; (2) there exists braided equivalences  $F_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}'$  and  $F_{\mathcal{M}}:\mathcal{M}\to\mathcal{M}'$  such that all the embeddings are preserved, i.e., the following diagram commutes:

$$\begin{array}{ccc}
\mathcal{E} & \longrightarrow \mathcal{C} & \longrightarrow \mathcal{M} \\
\parallel & & \downarrow_{F_{\mathcal{C}}} & \downarrow_{F_{\mathcal{M}}} \\
\mathcal{E} & \longrightarrow \mathcal{C}' & \longrightarrow \mathcal{M}'
\end{array} \tag{11}$$

The equivalence classes will be in one-to-one correspondence with GQLs (i.e., SET orders and SPT orders).

Note that the group of the automorphisms of a UMTC $_{/\mathcal{E}}$   $\mathcal{C}$ , denoted by Aut( $\mathcal{C}$ ) (recall definition 4), naturally acts on the modular extensions  $\mathcal{M}_{\text{ext}}(\mathcal{C})$  by changing the embeddings, i.e.,  $F \in \text{Aut}(\mathcal{C})$  acts as follows:

$$(\mathcal{C}\hookrightarrow\mathcal{M})\mapsto(\mathcal{C}\stackrel{F}{\rightarrow}\mathcal{C}\hookrightarrow\mathcal{M}).$$

For a fixed  $\mathcal{C}$ , the above equivalence relation amounts to say that GQLs with bulk excitations described by a fixed  $\mathcal{C}$  are in one-to-one correspondence with the quotient  $\mathcal{M}_{\text{ext}}(\mathcal{C})/\text{Aut}(\mathcal{C})$  plus a central charge c. When  $\mathcal{C}=\mathcal{E}$ , the GQLs with bulk excitations described by  $\mathcal{E}$  and central charge c=0 are SPT phases. In this case, the group  $\text{Aut}(\mathcal{E})$ , where  $\mathcal{E}$  is viewed as the trivial  $\text{UMTC}_{/\mathcal{E}}$ , is trivial. Thus SPT phases are classified by the modular extensions of  $\mathcal{E}$  with c=0.

# V. ANOTHER DESCRIPTION OF 2+1D GQLS WITH SYMMETRY

Although the above result has a nice mathematical structure, it is hard to implement numerically to produce a table of GQLs. To fix this problem, we propose a different description of 2+1D GQLs. The second description is motivated by a conjecture that the fusion and the spins of the particles,  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I)$ , completely characterize a UMTC. We conjecture that

<sup>&</sup>lt;sup>1</sup>An odd matrix is a symmetric integer matrix with at least one of its diagonal elements being odd.

Conjecture 6. The data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i; \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ , up to some equivalence relations, give a one-to-one classification of 2+1D GQLs with symmetry G (for boson) or  $G^f$  (for fermion), with a restriction that the symmetry group can be fully characterized by the fusion ring of its irreducible representations. The data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i; \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  satisfy the conditions described in Appendix C (see Ref. [11] for UMTCs).

Here,  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i; \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  is closely related to  $(\mathcal{E}; \mathcal{C}; \mathcal{M}; c)$  discussed above. The data  $(\tilde{N}_c^{ab}, \tilde{s}_a)$  describe the symmetry (i.e., the SFC  $\mathcal{E}$ ):  $a=1,\ldots,\tilde{N}$  label the irreducible representations and  $\tilde{N}_c^{ab}$  are the fusion coefficients of irreducible representations.  $\tilde{s}_a=0$  or 1/2 depending on if the fermion-number-parity transformation f is represented trivially or nontrivially in the representation a. The data  $(N_k^{ij}, s_i)$  describe fusion and the spins of the bulk particles  $i=1,\ldots,N$  in the GQL. The data  $(N_k^{ij}, s_i)$  contain  $(\tilde{N}_c^{ab}, \tilde{s}_a)$  as a subset, where a is identified with the first  $\tilde{N}$  particles of the GQL. The data  $(N_k^{IJ}, S_I)$  describe fusion and the spins of a UMTC, and it includes  $(N_k^{ij}, s_i)$  as a subset, where i is identified with the first N particles of the UMTC. Also among all the particles in UMTC, only the first N (i.e.  $I=1,\ldots,N$ ) have trivial mutual statistics with first  $\tilde{N}$  particles (i.e.  $I=1,\ldots,\tilde{N}$ ). Last, c is the chiral central charge of the edge state.

If the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  fully characterized the UMTC $_{/\mathcal{E}}$ , then conjecture 6 would be equivalent to conjecture 4. However, for nonmodular tensor category,  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  fails to to fully characterize a UMTC $_{/\mathcal{E}}$ . In other words, there are different UMTC $_{/\mathcal{E}}$ 's that have the same data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ . We need to include the extra data, such as the F tensor and the R tensor, to fully characterize the UMTC $_{/\mathcal{E}}$ .

In Appendix A, we list the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  that satisfy the conditions in Appendix C (without the modular extension condition) in many tables. These tables include all the UMTC/ $\varepsilon$ 's (up to certain total quantum dimensions), but the tables are not perfect: (1) some entries in the tables may be fake and do not correspond to any UMTC/ $\varepsilon$  (for the conditions are only necessary) and (2) some entries in the tables may correspond to more then one UMTC/ $\varepsilon$  [since  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  does not fully characterize a UMTC/ $\varepsilon$ ].

We then continue to compute  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ , the modular extensions of  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ . We find that the modular extensions can fix the imperfectness mentioned above. First, we find that the fake entries do not have modular extensions, and are ruled out. Second, as we will show in Sec. VI, all UMTC/ $\varepsilon$ 's have the same numbers of modular extensions (if they exist); therefore, the entry that corresponds to more UMTC/ $\varepsilon$ 's has more modular extensions. The modular extensions can tell us which entries correspond to multiple UMTC/ $\varepsilon$ 's. This leads to the conjecture that the full data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_i^{lj}, s_i; \mathcal{N}_K^{lJ}, \mathcal{S}_I; c)$  give rise to an one-to-one classification of 2+1D GQLs, and allows us to calculate the tables of 2+1D GQLs, which include 2+1D SET states and 2+1D SPT states. Those are given in Sec. VIII

As for the equivalence relation, we only need to consider  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ , since the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  are included in  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ . Two such data  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  and  $(\tilde{\mathcal{N}}_K^{IJ}, \bar{\mathcal{S}}_I; \bar{c})$  are called equivalent if  $c = \bar{c}$ , and  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I)$  and  $(\mathcal{N}_K^{IJ}, \bar{\mathcal{S}}_I)$  are

related by two permutations of indices in the range  $N_{\mathcal{M}} \ge I > N$  and in the range  $N \ge I > \tilde{N}$ , where  $N_{\mathcal{M}}$  is the range of I. Such an equivalence relation corresponds to the one in Eq. (11) and will be called the TO-equivalence relation. We use the TO-equivalence relation to count the number of GQL phases (i.e., the number of SET orders and SPT orders).

We can also define another equivalence relation, called ME-equivalence relation: we say  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  and  $(\bar{\mathcal{N}}_K^{IJ}, \bar{\mathcal{S}}_I; \bar{c})$  to be ME-equivalent if  $c = \bar{c}$  and they only differ by a permutation of indices in range I > N. The ME-equivalence relation is closely related to the one defined in Eqs. (3). We use the ME-equivalence relation to count the number of modular extensions of a *fixed* C.

Last, let us explain the restriction on the symmetry group. In conjecture 6, we try to use the fusion  $\tilde{N}_c^{ab}$  of the irreducible representations to characterize the symmetry group. However, it is known that certain different groups may have identical fusion ring for their irreducible representations. So we need to restrict the symmetry group to be the group that can be fully characterized by its fusion ring. Those groups include simple groups and Abelian groups [34]. If we do not impose such a restriction, then conjecture 6 gives rise to GQLs with a given symmetry fusion ring, instead of a given symmetry group.

#### VI. THE STACKING OPERATION OF GQLS

#### A. Stacking operation

Consider two GQLs  $\mathcal{C}_1$  and  $\mathcal{C}_2$ . If we stack them together (without introducing interactions between them), we obtain another GQL, which is denoted by  $\mathcal{C}_1 \boxtimes \mathcal{C}_2$ . The stacking operation  $\boxtimes$  makes the set of GQLs into a monoid.  $\boxtimes$  does not makes the set of GQLs into a group, because in general, a GQL  $\mathcal{C}$  may not have an inverse under  $\boxtimes$ , i.e., there is no GQL  $\mathcal{D}$  such that  $\mathcal{C} \boxtimes \mathcal{D}$  becomes a trivial product state. This is because when a GQL have nontrivial topological excitations, stacking it with another GQL can never cancel out those topological excitations

When we are considering GQLs with symmetry  $\mathcal{E}$ , the simple stacking  $\boxtimes$  will "double" the symmetry, leads to a GQL with symmetry  $\mathcal{E} \boxtimes \mathcal{E}$  [Rep( $G \times G$ ) or sRep( $G^f \times G^f$ )]. In general we allow local interactions between the two layers to break some symmetry such that the resulting system only has the original symmetry  $\mathcal{E}$  [in terms of the symmetry group, keep only the subgroup  $G \hookrightarrow G \times G$  with the diagonal embedding  $g \mapsto (g,g)$ ]. This leads to the stacking between GQLs with symmetry  $\mathcal{E}$ , denoted by  $\boxtimes_{\mathcal{E}}$ . Similarly,  $\boxtimes_{\mathcal{E}}$  makes GQLs with symmetry  $\mathcal{E}$  a monoid, but in general not all GQLs are invertible.

However, if the bulk excitations of  $\mathcal C$  are all local (i.e., all described by SFC  $\mathcal E$ ), then  $\mathcal C$  will have an inverse under the stacking operation  $\boxtimes_{\mathcal E}$ , and this is why we call such GQL invertible. Those invertible GQLs include invertible topological orders and SPT states.

#### B. The group structure of bosonic SPT states

We have proposed that 2+1D SPT states are classified by c=0 modular extensions of the SFC  $\mathcal E$  that describes the symmetry. Since SPT states are invertible, they form a group under the stacking operation  $\boxtimes_{\mathcal E}$ . This implies that the modular

extensions of the SFC should also form a group under the stacking operation. So checking if the modular extensions of the SFC have a group structure is a way to find support for our conjecture.

However, in this section, we will first discuss such stacking operation and group structure from a physical point of view. We will only consider bosonic SPT states.

It has been proposed that the bosonic SPT states are described by group cohomology  $\mathcal{H}^{d+1}[G,U(1)]$  [18–20]. However, it has not been shown that those bosonic SPT states form a group under stacking operation. Here we will fill this gap. An ideal bosonic SPT state of symmetry G in d+1D is described the following path integral:

$$Z = \sum_{\{g_i\}} \prod_{\{i,j,\ldots\}} \nu_{d+1}(g_i, g_j, \ldots),$$
 (12)

where  $v_{d+1}(g_i, g_j, ...)$  is a function  $G^{d+1} \to U(1)$ , which is a cocycle  $v_{d+1} \in \mathcal{H}^{d+1}[G, U(1)]$ . Here, the space-time is a complex whose vertices are labeled by i, j, ..., and  $\prod_{\{i, j, ...\}}$  is the product over all the simplices of the space-time complex. Also  $\sum_{\{g_i\}}$  is a sum over all  $g_i$  on each vertex.

Now consider the stacking of two SPT states described by cocycle  $v'_{d+1}$  and  $v''_{d+1}$ :

$$Z = \sum_{\{g'_i, g''_i\}} \prod_{\{i, j, \dots\}} \nu'_{d+1}(g'_i, g'_j, \dots) \nu''_{d+1}(g''_i, g''_j, \dots).$$
 (13)

Such a stacked state has a symmetry  $G \times G$  and is a  $G \times G$  SPT state.

Now let us add a term to break the  $G \times G$  symmetry to G symmetry and consider

$$Z = \sum_{\{g'_i, g''_i\}} \prod_{\{i, j, \dots\}} \nu'_{d+1}(g'_i, g'_j, \dots) \nu''_{d+1}(g''_i, g''_j, \dots)$$

$$\times \prod_i e^{-U|g'_i - g''_i|^2}, \tag{14}$$

where |g'-g''| is an invariant distance between group elements. As we change U=0 to  $U=+\infty$ , the stacked system changes into the system for an ideal SPT state described by the cocycle  $v_{d+1}(g_i,g_j,\ldots)=v'_{d+1}(g_i,g_j,\ldots)v''_{d+1}(g_i,g_j,\ldots)$ . If such a deformation does not cause any phase transition, then we can show that the stacking of a  $v'_{d+1}$ -SPT state with a  $v''_{d+1}$ -SPT state give rise to a  $v_{d+1}=v'_{d+1}v''_{d+1}$ -SPT state. Thus the key to show the stacking operation to give rise to the group structure for the SPT states, is to show the theory Eq. (14) has no phase transition as we change U=0 to  $U=+\infty$ .

To show there is no phase transition, we put the system on a closed space-time with no boundary, say  $S^{d+1}$ . In this case,  $\prod_{\{i,j,\ldots\}} \nu'_{d+1}(g'_i,g'_j,\ldots) \nu''_{d+1}(g''_i,g''_j,\ldots) = 1$ , since  $\nu'_{d+1}$  and  $\nu''_{d+1}$  are cocycles. Thus the path integral (14) is reduced to

$$Z = \sum_{\{g_i', g_i''\}} \prod_i e^{-U|g_i' - g_i''|^2} = \left(|G| \sum_g e^{-U|1 - g|^2}\right)^{N_v}, \quad (15)$$

where  $N_v$  is the number of vertices and |G| the order of the symmetry group. We see that the free energy density

$$f = -\lim_{N_v \to \infty} \ln Z/N_v \tag{16}$$

is a smooth function of U for  $U \in [0, \infty)$ . There is indeed no phase transition.

The above result is highly non trivial from a categorical point of view. Consider two 2+1D bosonic SPT states described by two modular extensions  $\mathcal{M}'$  and  $\mathcal{M}''$  of Rep(G). The natural tensor product  $\mathcal{M}' \boxtimes \mathcal{M}''$  is not a modular extension of Rep(G), but a modular extension of Rep(G)  $\boxtimes$  Rep(G) = Rep( $G \times G$ ). So,  $\mathcal{M}' \boxtimes \mathcal{M}''$  describes a  $G \times G$ -SPT state. According to the above discussion, we need to break the  $G \times G$  symmetry down to the G symmetry to obtain the G-SPT state. Such a symmetry breaking process correspond to the so-called "anyon condensation" in category theory. We will discuss such anyon condensation later. The stacking operation  $\boxtimes_{\mathcal{E}}$ , with such a symmetry breaking process included, is the correct stacking operation that maintains the symmetry G. In Ref. [30], we also discussed more general symmetry breaking processes, from G to any subgroup H.

### C. Mathematical construction of the stacking operation

We have conjectured that a 2+1D topological order with symmetry  $\mathcal{E}$  is classified by  $(\mathcal{C},\mathcal{M}_{\mathcal{C}},c)$ , where  $\mathcal{C}$  is a UMTC $_{/\mathcal{E}}$ ,  $\mathcal{M}_{\mathcal{C}}$  is a modular extension of  $\mathcal{C}$ , and c is the central charge. If we have another topological order of the same symmetry  $\mathcal{E}$  described by  $(\mathcal{C}',\mathcal{M}_{\mathcal{C}'},c')$ , stacking  $(\mathcal{C},\mathcal{M}_{\mathcal{C}},c)$  and  $(\mathcal{C}',\mathcal{M}_{\mathcal{C}'},c')$  should give a third topological order described by similar data  $(\mathcal{C}'',\mathcal{M}_{\mathcal{C}''},c'')$ :

$$(\mathcal{C}, \mathcal{M}_{\mathcal{C}}, c) \boxtimes_{\mathcal{E}} (\mathcal{C}', \mathcal{M}_{\mathcal{C}'}, c') = (\mathcal{C}'', \mathcal{M}_{\mathcal{C}''}, c''). \tag{17}$$

In this section, we will show that such a stacking operation can be defined mathematically. This is an evidence supporting our conjecture 4. We like to point out that a special case of the above result for C = C' = C'' = E = Rep(G) was discussed in Sec. VIB.

To define  $\boxtimes_{\mathcal{E}}$  mathematically, first, we like to introduce

Definition 7. A condensable algebra in a UBFC C is a triple  $(A, m, \eta)$ ,  $A \in C$ ,  $m : A \otimes A \to A$ ,  $\eta : 1 \to A$  satisfying (1) associative:  $m(\mathrm{id}_A \otimes m) = m(m \otimes \mathrm{id}_A)$ ; (2) unit:  $m(\eta \otimes \mathrm{id}_A) = m(\mathrm{id}_A \otimes \eta) = \mathrm{id}_A$ ; (3) isometric:  $mm^{\dagger} = \mathrm{id}_A$ ; (4) connected: Hom $(1, A) = \mathbb{C}$ ; and (5) commutative:  $mc_{A,A} = m$ .

Note that in the unitary case,  $(A,m,\eta)$  is automatically a special symmetric Frobenius algebra [35]. Physically, such a condensable algebra A is a composite self-bosonic anyon satisfies additional conditions such that one can condense A to obtain another topological phase.

Definition 8. A (left) module over a condensable algebra  $(A, m, \eta)$  in  $\mathcal{C}$  is a pair  $(X, \rho)$ ,  $X \in \mathcal{C}$ ,  $\rho : A \otimes X \to X$  satisfying

$$\rho(\mathrm{id}_A \otimes \rho) = \rho(m \otimes \mathrm{id}_M),$$
  

$$\rho(\eta \otimes \mathrm{id}_M) = \mathrm{id}_M.$$
(18)

It is further a *local* module if

$$\rho c_{M,A} c_{A,M} = \rho.$$

We denote the category of left A-modules by  $\mathcal{C}_A$ . A left module  $(X,\rho)$  is turned into a right module via the braiding,  $(X,\rho c_{X,A})$  or  $(X,\rho c_{A,X}^{-1})$ , and thus an A-A-bimodule. The relative tensor functor  $\otimes_A$  of bimodules then turns  $\mathcal{C}_A$  into a fusion category. (This is known as  $\alpha$ -induction in subfactor context.) In general, there can be two monoidal structures

on  $C_A$ , since there are two ways to turn a left module into a bimodule (usually we pick one for definiteness when considering  $C_A$  as a fusion category). The two monoidal structures coincide for the fusion subcategory  $C_A^0$  of local A-modules. Moreover,  $C_A^0$  inherited the braiding from C and is also a UBFC. The local modules are nothing but the anyons in the topological phases after condensing A.

Lemma 1. (DMNO [36])

$$\dim(\mathcal{C}_A) = \frac{\dim(\mathcal{C})}{\dim(A)}.$$

If C is a UMTC, then so is  $C_A^0$ , and

$$\dim(\mathcal{C}_A^0) = \frac{\dim(\mathcal{C})}{\dim(A)^2}.$$

A noncommutative algebra A is also of interest. We have the left center  $A_l$  of A, the maximal subalgebra such that  $mc_{A_l,A} = m$ , and the right center  $A_r$ , the maximal subalgebra such that  $mc_{A,A_r} = m$ .  $A_l$  and  $A_r$  are commutative subalgebras, thus condensable.

Theorem 5. (FFRS [37]) There is a canonical equivalence between the categories of local modules over the left and right centers,  $C_{A_I}^0 = C_{A_r}^0$ .

Definition 9. The Drinfeld center Z(A) of a monoidal category A is a monoidal category with objects as pairs  $(X \in A, b_{X,-})$ , where  $b_{X,-}: X \otimes - \to - \otimes X$  are half-braidings that satisfy similar conditions as braidings. Morphisms and the tensor product are naturally defined.

 $Z(\mathcal{A})$  is a braided monoidal category. There is a forgetful tensor functor  $for_{\mathcal{A}}: Z(\mathcal{A}) \to \mathcal{A}, (X,b_{X,-}) \mapsto X$  that forgets the half-braidings.

Theorem 6. (Müger [38]) Z(A) is a UMTC if A is a unitary fusion category and  $\dim(Z(A)) = \dim(A)^2$ .

Definition 10. Let  $\mathcal{C}$  be a braided fusion category and  $\mathcal{A}$  a fusion category, a tensor functor  $F:\mathcal{C}\to\mathcal{A}$  is called a central functor if it factorizes through  $Z(\mathcal{A})$ , i.e., there exists a braided tensor functor  $F':\mathcal{C}\to Z(\mathcal{A})$  such that  $F=F'for_{\mathcal{A}}$ .

Lemma 2. (DMNO [36]) Let  $F: \mathcal{C} \to \mathcal{A}$  be a central functor, and  $R: \mathcal{A} \to \mathcal{C}$  the right adjoint functor of F. Then the object  $A = R(1) \in \mathcal{C}$  has a canonical structure of condensable algebra.  $\mathcal{C}_A$  is monoidally equivalent to the image of F, i.e., the smallest fusion subcategory of  $\mathcal{A}$  containing  $F(\mathcal{C})$ .

*Example 1.* If  $\mathcal{C}$  is a UBFC, it is naturally embedded into  $Z(\mathcal{C})$ , so is  $\overline{\mathcal{C}}$ . Therefore there is a braided monoidal functor  $\mathcal{C} \boxtimes \overline{\mathcal{C}} \to Z(\mathcal{C})$ . Compose this functor with the forgetful functor  $for_{\mathcal{C}}: Z(\mathcal{C}) \to \mathcal{C}$  we get a central functor

$$C \boxtimes \overline{C} \to C$$
,  $X \boxtimes Y \mapsto X \otimes Y$ .

Let R be its right adjoint functor, we obtain a condensable algebra  $L_{\mathcal{C}} := R(1) \cong \bigoplus_i (i \boxtimes \overline{i}) \in \mathcal{C} \boxtimes \overline{\mathcal{C}}$  ( $\overline{i}$  denotes the dual object, or antiparticle of i) and  $\mathcal{C} = (\mathcal{C} \boxtimes \overline{\mathcal{C}})_{L_{\mathcal{C}}}$ ,  $\dim(L_{\mathcal{C}}) = \dim(\mathcal{C})$ . In particular, for a symmetric category  $\mathcal{E}$ ,  $L_{\mathcal{E}}$  is a condensable algebra in  $\mathcal{E} \boxtimes \mathcal{E}$ , and  $\mathcal{E} = (\mathcal{E} \boxtimes \mathcal{E})_{L_{\mathcal{E}}} = (\mathcal{E} \boxtimes \mathcal{E})_{L_{\mathcal{E}}}$  for  $\mathcal{E}$  is symmetric, all  $L_{\mathcal{E}}$ -modules are local. Condensing  $L_{\mathcal{E}}$  is nothing but breaking the symmetry from  $\mathcal{E} \boxtimes \mathcal{E}$  to  $\mathcal{E}$ .

Now, we are ready to define the stacking operation for  $UMTC_{/\mathcal{E}}$ 's as well as their modular extensions.

*Definition 11.* Let C,D be  $UMTC_{/E}$ 's, and  $M_C,M_D$  their modular extensions. The stacking is defined by

$$\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D} := (\mathcal{C} \boxtimes \mathcal{D})_{L_{\mathcal{E}}}^{0},$$

$$\mathcal{M}_{\mathcal{C}} \boxtimes_{\mathcal{E}} \mathcal{M}_{\mathcal{D}} := (\mathcal{M}_{\mathcal{C}} \boxtimes \mathcal{M}_{\mathcal{D}})_{L_{\mathcal{E}}}^{0}.$$

Note that in Ref. [39], the tensor product  $\boxtimes_{\mathcal{E}}$  for UMTC<sub>/ $\mathcal{E}$ </sub>'s is defined as  $(\mathcal{C} \boxtimes \mathcal{D})_{L_{\mathcal{E}}}$ . For UMTC<sub>/ $\mathcal{E}$ </sub>'s the two definitions coincide  $(\mathcal{C} \boxtimes \mathcal{D})_{L_{\mathcal{E}}}^0 = (\mathcal{C} \boxtimes \mathcal{D})_{L_{\mathcal{E}}}$ , for  $L_{\mathcal{E}}$  lies in the centralizer of  $\mathcal{C} \boxtimes \mathcal{D}$  which is  $\mathcal{E} \boxtimes \mathcal{E}$ . But for the modular extensions we have to take the unusual definition above.

*Theorem 7.*  $\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}$  is a UMTC<sub>/ $\mathcal{E}$ </sub>, and  $\mathcal{M}_{\mathcal{C}} \boxtimes_{\mathcal{E}} \mathcal{M}_{\mathcal{D}}$  is a modular extension of  $\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}$ .

*Proof.* The embeddings  $\mathcal{E} = (\mathcal{E} \boxtimes \mathcal{E})_{L_{\mathcal{E}}}^{0} \hookrightarrow (\mathcal{C} \boxtimes \mathcal{D})_{L_{\mathcal{E}}}^{0} = \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D} \hookrightarrow (\mathcal{M}_{\mathcal{C}} \boxtimes \mathcal{M}_{\mathcal{D}})_{L_{\mathcal{E}}}^{0} = \mathcal{M}_{\mathcal{C}} \boxtimes_{\mathcal{E}} \mathcal{M}_{\mathcal{D}}$  are obvious. So  $\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}$  is a UBFC over  $\mathcal{E}$ . Also

$$\dim(\mathcal{C}\boxtimes_{\mathcal{E}}\mathcal{D}) = \frac{\dim(\mathcal{C}\boxtimes\mathcal{D})}{\dim(L_{\mathcal{E}})} = \frac{\dim(\mathcal{C})\dim(\mathcal{D})}{\dim(\mathcal{E})},$$

and  $\mathcal{M}_{\mathcal{C}} \boxtimes_{\mathcal{E}} \mathcal{M}_{\mathcal{D}}$  is a UMTC.

$$\dim(\mathcal{M}_{\mathcal{C}}\boxtimes_{\mathcal{E}}\mathcal{M}_{\mathcal{D}}) = \frac{\dim(\mathcal{M}_{\mathcal{C}}\boxtimes\mathcal{M}_{\mathcal{D}})}{\dim(L_{\mathcal{E}})^2} = \dim(\mathcal{C})\dim(\mathcal{D}).$$

Thus  $\mathcal{M}_{\mathcal{C}} \boxtimes_{\mathcal{E}} \mathcal{M}_{\mathcal{D}}$  is a modular extension of  $\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{D}$ .

Take  $\mathcal{D} = \mathcal{E}$ . Note that  $\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{E} = \mathcal{C}$ . Therefore, for any modular extension  $\mathcal{M}_{\mathcal{E}}$  of  $\mathcal{E}$ ,  $\mathcal{M}_{\mathcal{C}} \boxtimes_{\mathcal{E}} \mathcal{M}_{\mathcal{E}}$  is still a modular extension of  $\mathcal{C}$ . In the following, we want to show the inverse, that one can extract the "difference", a modular extension of  $\mathcal{E}$ , between two modular extensions of  $\mathcal{C}$ .

*Lemma 3.* We have  $(\mathcal{C} \boxtimes \overline{\mathcal{C}})_{L_{\mathcal{C}}}^{0} = \mathcal{C}_{\mathcal{C}}^{\text{cen}}$ .

*Proof.*  $(\mathcal{C} \boxtimes \overline{\mathcal{C}})_{L_{\mathcal{C}}}$  is equivalent to  $\mathcal{C}$  (as a fusion category). Moreover, for  $X \in \mathcal{C}$ , the equivalence gives the free module  $L_{\mathcal{C}} \otimes (X \boxtimes 1) \cong L_{\mathcal{C}} \otimes (1 \boxtimes X)$ .  $L_{\mathcal{C}} \otimes (X \boxtimes 1)$  is a local  $L_{\mathcal{C}}$ -module if and only if  $X \boxtimes 1$  centralize  $L_{\mathcal{C}}$ . This is the same as  $X \in \mathcal{C}^{\text{cen}}_{\mathcal{C}}$ . Therefore we have  $(\mathcal{C} \boxtimes \overline{\mathcal{C}})^0_{L_{\mathcal{C}}} = \mathcal{C}^{\text{cen}}_{\mathcal{C}}$ .

Theorem 8. let  $\mathcal{M}$  and  $\mathcal{M}'$  be two modular extensions of the UMTC<sub>/E</sub>  $\mathcal{C}$ . There exists a unique  $\mathcal{K} \in \mathcal{M}_{ext}(\mathcal{E})$  such that  $\mathcal{K} \boxtimes_{\mathcal{E}} \mathcal{M} = \mathcal{M}'$ . Such  $\mathcal{K}$  is given by

$$\mathcal{K}=(\mathcal{M}'\boxtimes\overline{\mathcal{M}})^0_{L_{\mathcal{C}}}.$$

*Proof.*  $\mathcal{K}$  is a modular extension of  $\mathcal{E}$ . This follows Lemma 3 that  $\mathcal{E} = \mathcal{C}^{\text{cen}}_{\mathcal{C}} = (\mathcal{C} \boxtimes \overline{\mathcal{C}})^0_{L_{\mathcal{C}}}$  is a full subcategory of  $\mathcal{K}$ .  $\mathcal{K}$  is a UMTC by construction, and  $\dim(\mathcal{K}) = \frac{\dim(\mathcal{M})\dim(\mathcal{M}')}{\dim(\mathcal{L}_{\mathcal{C}})^2} = \dim(\mathcal{E})^2$ .

To show that  $\mathcal{K} = (\mathcal{M}' \boxtimes \overline{\mathcal{M}})_{L_{\mathcal{C}}}$  satisfies  $\mathcal{M}' = \mathcal{K} \boxtimes_{\mathcal{E}} \mathcal{M}$ , note that  $\mathcal{M}' = \mathcal{M}' \boxtimes \text{Vec} = \mathcal{M}' \boxtimes (\overline{\mathcal{M}} \boxtimes \mathcal{M})^0_{L_{\overline{\mathcal{M}}}}$ . It suffices that

$$\begin{split} (\mathcal{M}'\boxtimes\overline{\mathcal{M}}\boxtimes\mathcal{M})^0_{1\boxtimes L_{\overline{\mathcal{M}}}} &= [(\mathcal{M}'\boxtimes\overline{\mathcal{M}})^0_{L_{\mathcal{E}}}\boxtimes\mathcal{M}]^0_{L_{\mathcal{E}}}\\ &= (\mathcal{M}'\boxtimes\overline{\mathcal{M}}\boxtimes\mathcal{M})^0_{(L_{\mathcal{E}}\boxtimes 1)\otimes (1\boxtimes L_{\mathcal{E}})}. \end{split}$$

This follows that  $1 \boxtimes L_{\overline{\mathcal{M}}}$  and  $(L_{\mathcal{C}} \boxtimes 1) \otimes (1 \boxtimes L_{\mathcal{E}})$  are left and right centers of the algebra  $(L_{\mathcal{C}} \boxtimes 1) \otimes (1 \boxtimes L_{\overline{\mathcal{M}}})$ .

If 
$$\mathcal{M}' = \mathcal{K} \boxtimes_{\mathcal{E}} \mathcal{M} = (\mathcal{K} \boxtimes \mathcal{M})_{L_{\mathcal{E}}}^{0}$$
, then

$$\mathcal{K} = (\mathcal{K} \boxtimes \mathcal{M} \boxtimes \overline{\mathcal{M}})^0_{1 \boxtimes L_{\mathcal{M}}} = (\mathcal{K} \boxtimes \mathcal{M} \boxtimes \overline{\mathcal{M}})^0_{(L_{\mathcal{E}} \boxtimes 1) \otimes (1 \boxtimes L_{\mathcal{E}})}$$
$$= [(\mathcal{K} \boxtimes_{\mathcal{E}} \mathcal{M}) \boxtimes \overline{\mathcal{M}}]^0_{L_{\mathcal{E}}} = (\mathcal{M}' \boxtimes \overline{\mathcal{M}})^0_{L_{\mathcal{E}}}.$$

It is similar here that  $1 \boxtimes L_{\mathcal{M}}$  and  $(L_{\mathcal{E}} \boxtimes 1) \otimes (1 \boxtimes L_{\mathcal{C}})$  are the left and right centers of the algebra  $(L_{\mathcal{E}} \boxtimes 1) \otimes (1 \boxtimes L_{\mathcal{M}})$ . This proves the uniqueness of  $\mathcal{K}$ .

Let us list several consequences of theorem 8.

*Theorem 9.*  $\mathcal{M}_{ext}(\mathcal{E})$  forms a finite Abelian group.

*Proof.* Firstly, there exists at least one modular extension of a symmetric fusion category  $\mathcal{E}$ , the Drinfeld center  $Z(\mathcal{E})$ . So the set  $\mathcal{M}_{ext}(\mathcal{E})$  is not empty. The multiplication is given by the stacking  $\boxtimes_{\mathcal{E}}$ . It is easy to verify that the stacking  $\boxtimes_{\mathcal{E}}$  for modular extensions is associative and commutative. To show that they form a group we only need to find out the identity and inverse. In this case  $\mathcal{K} = (\mathcal{M}' \boxtimes_{\mathcal{M}})^0_{L_{\mathcal{E}}} = \mathcal{M}' \boxtimes_{\mathcal{E}} \overline{\mathcal{M}}$ , theorem 8 becomes  $\mathcal{M}' \boxtimes_{\mathcal{E}} \overline{\mathcal{M}} \boxtimes_{\mathcal{E}} \mathcal{M} = \mathcal{M}'$ , for any modular extensions  $\mathcal{M}, \mathcal{M}'$  of  $\mathcal{E}$ . Thus  $\overline{\mathcal{M}'} \boxtimes_{\mathcal{E}} \mathcal{M}' = \overline{\mathcal{M}'} \boxtimes_{\mathcal{E}} \mathcal{M}' \boxtimes_{\mathcal{E}} \overline{\mathcal{M}}$  extensions  $\mathcal{M}, \mathcal{M}'$  of  $\mathcal{E}$ . Thus  $\overline{\mathcal{M}'} \boxtimes_{\mathcal{E}} \mathcal{M}'$ , is the same category for any extension  $\mathcal{M}$ , which turns out to be  $Z(\mathcal{E})$ . It is exactly the identity element. It is then obvious that the inverse of  $\mathcal{M}$  is  $\overline{\mathcal{M}}$ . The finiteness follows from Ref. [32].

*Example 2.* For bosonic case, we find that  $\mathcal{M}_{\text{ext}}(\text{Rep}(G)) = H^3(G, U(1))$ , which is discussed in more detail in the next section. For fermionic case, a general group cohomological classification is still lacking. We know some simple ones such as  $\mathcal{M}_{\text{ext}}(\text{sRep}(\mathbb{Z}_2^f)) = \mathbb{Z}_{16}$ , which agrees with Kitaev's 16-fold way [9].

Theorem 10. For a UMTC<sub>/E</sub> C, if the modular extensions exist,  $\mathcal{M}_{ext}(C)$  form a  $\mathcal{M}_{ext}(E)$ -torsor. In particular,  $|\mathcal{M}_{ext}(C)| = |\mathcal{M}_{ext}(E)|$ .

*Proof.* The action is given by the stacking  $\boxtimes_{\mathcal{E}}$ . For any two extensions  $\mathcal{M}, \mathcal{M}'$ , there is a unique extension  $\mathcal{K}$  of  $\mathcal{E}$ , such that  $\mathcal{M} \boxtimes_{\mathcal{E}} \mathcal{K} = \mathcal{M}'$ . To see  $Z(\mathcal{E})$  acts trivially, note that  $\mathcal{M}' \boxtimes_{\mathcal{E}} Z(\mathcal{E}) = \mathcal{M} \boxtimes_{\mathcal{E}} \mathcal{K} \boxtimes_{\mathcal{E}} Z(\mathcal{E}) = \mathcal{M} \boxtimes_{\mathcal{E}} \mathcal{K} = \mathcal{M}'$  holds for any  $\mathcal{M}'$ . Due to uniqueness we also know that only  $\mathcal{Z}_{\mathcal{E}}$  acts trivially. Thus the action is free and transitive.

This means that for any modular extension of  $\mathcal{C}$ , stacking with a nontrivial modular extensions of  $\mathcal{E}$ , one always obtains a different modular extension of  $\mathcal{C}$ ; on the other hand, starting with a particular modular extension of  $\mathcal{C}$ , all the other modular extensions can be generated by staking modular extensions of  $\mathcal{E}$  (in other words, there is only on orbit). However, in general, there is no preferred choice of the starting modular extension, unless  $\mathcal{C}$  is the form  $\mathcal{C}_0 \boxtimes \mathcal{E}$  where  $\mathcal{C}_0$  is a UMTC.

#### **D.** Modular extensions of Rep(G)

We set  $\mathcal{E} = \operatorname{Rep}(G)$  throughout this subsection. Let  $(\mathcal{M}, \iota_{\mathcal{M}})$  be a modular extension of  $\operatorname{Rep}(G)$ .  $\iota_{\mathcal{M}}$  is the embedding  $\iota_{\mathcal{M}} : \mathcal{E} \hookrightarrow \mathcal{M}$  that we need to consider explicitly in this subsection. The algebra  $A = \operatorname{Fun}(G)$  is a condensable algebra in  $\operatorname{Rep}(G)$  and also a condensable algebra in  $\mathcal{M}$ . Moreover, A is a Lagrangian algebra in  $\mathcal{M}$  because  $(\dim A)^2 = |G|^2 = (\dim \operatorname{Rep}(G))^2 = \dim \mathcal{M}$ . Therefore  $\mathcal{M} \simeq Z(\mathcal{M}_A)$ , where  $\mathcal{M}_A$  is the category of right A-modules in  $\mathcal{M}$ . In other words,  $\mathcal{M}$  describes the bulk excitations in a 2+1D topological phase with a gapped boundary (see Fig. 3). Moreover, the fusion category  $\mathcal{M}_A$  is pointed and equipped with a canonical fully faithful G grading [33], which means that

$$\mathcal{M}_A = \bigoplus_{g \in G} (\mathcal{M}_A)_g, \quad (\mathcal{M}_A)_g \simeq \operatorname{Vec}, \quad \forall g \in G,$$
  
and  $\otimes : (\mathcal{M}_A)_g \boxtimes (\mathcal{M}_A)_h \xrightarrow{\simeq} (\mathcal{M}_A)_{gh}.$ 

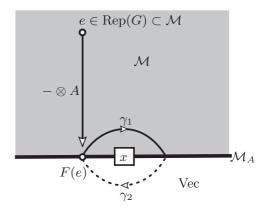


FIG. 3. Consider a physical situation in which the excitations in the 2+1D bulk are given by a modular extension  $\mathcal{M}$  of  $\operatorname{Rep}(G)$ , and those on the gapped boundary by the UFC  $\mathcal{M}_A$ . Consider a simple particle  $e \in \operatorname{Rep}(G)$  in the bulk moving toward the boundary. The bulk-to-boundary map is given by the central functor  $-\otimes A: \mathcal{M} \to \mathcal{M}_A$ , which restricted to  $\operatorname{Rep}(G)$  is nothing but the forgetful functor  $F: \operatorname{Rep}(G) \to \operatorname{Vec}$ . Let x be a simple excitation in  $\mathcal{M}_A$  sitting next to F(e). We move F(e) along the semicircle  $\gamma_1$  (defined by the half-braiding), then move along the semicircle  $\gamma_2$  (defined by the symmetric braiding in the trivial phase  $\operatorname{Vec}$ ).

Let us recall the construction of this G grading. The physical meaning of acquiring a G grading on  $\mathcal{M}_A$  after condensing the algebra  $A = \operatorname{Fun}(G)$  in  $\mathcal{M}$  is depicted in Fig. 3. The process in Fig. 3 defines the isomorphism  $F(e) \otimes_A x \xrightarrow{z_{e,x}} x \otimes_A F(e) = F(e) \otimes_A x$ , which further gives a monoidal automorphism  $\phi(x) \in \operatorname{Aut}(F) = G$  of the fiber functor  $F : \operatorname{Rep}(G) \to \operatorname{Vec}$ .

Since  $\phi$  is an isomorphism, the associator of the monoidal category  $\mathcal{M}_A$  determines a unique  $\omega_{(\mathcal{M},\iota_{\mathcal{M}})} \in H^3(G,\mathbb{U}(1))$  such that  $\mathcal{M}_A \simeq \mathrm{Vec}_G^\omega$  as G-graded fusion categories.

Theorem 11. The map  $(\mathcal{M}, \iota_{\mathcal{M}}) \mapsto \omega_{(\mathcal{M}, \iota_{\mathcal{M}})}$  defines a group isomorphism  $\mathcal{M}_{\text{ext}}(\text{Rep}(G)) \cong H^3(G, \text{U}(1))$ . In particular, we have

$$\big(Z\big(\mathrm{Vec}_G^{\omega_1}\big),\iota_{\omega_1}\big)\boxtimes_{\mathcal{E}} \big(Z\big(\mathrm{Vec}_G^{\omega_2}\big),\iota_{\omega_2}\big)\simeq \big(Z\big(\mathrm{Vec}_G^{\omega_1+\omega_2}\big),\iota_{\omega_1+\omega_2}\big).$$

For the proof and more related details, see also Ref. [30].

#### E. Relation to numerical calculations

In Sec. V, we proposed another way to characterise GQLs, using the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i; \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ , which is more friendly in numerical calculations. We would like to investigate how to calculate the stacking operation in terms of these data.

Assuming that  $\mathcal{C}$  and  $\mathcal{C}'$  can be characterized by data  $(N_k^{ij}, s_i)$  and  $(N_k^{nij}, s_i')$ . Let  $(N_k^{\mathcal{D}, ij}, s_i^{\mathcal{D}})$  be the data that characterize the stacked  $\mathrm{UMTC}_{/\mathcal{E}} \ \mathcal{D} = \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{C}'$ .

To calculate  $(N_k^{\mathcal{D},ij}, s_i^{\mathcal{D}})$ , let us first construct

$$N_{kk'}^{ii',jj'} = N_k^{ij} N_{k'}^{ii'j'}, \quad s_{ii'} = s_i + s_{i'}.$$
 (19)

Note that, the above data describe a  $\mathrm{UMTC}_{/\mathcal{E}\boxtimes\mathcal{E}}\,\mathcal{D}'=\mathcal{C}\boxtimes\mathcal{C}'$  (i.e., with centralizer  $\mathcal{E}\boxtimes\mathcal{E}$ ), which is not what we want. We need reduce centralizer from  $\mathcal{E}\boxtimes\mathcal{E}$  to  $\mathcal{E}$ . This is the  $G\times G$  to G process and  $\mathcal{C}\text{-}\mathcal{C}'$  coupling, or condensing the  $L_{\mathcal{E}}$  algebra, as discussed above

To do the  $\mathcal{E} \boxtimes \mathcal{E}$  to  $\mathcal{E}$  reduction (i.e., to obtain the real stacking operation  $\boxtimes_{\mathcal{E}}$ ), we can introduce an equivalence relation. Noting that the excitations in  $\mathcal{D}' = \mathcal{C} \boxtimes \mathcal{C}'$  are labeled by  $ii' = i \boxtimes i'$ , the equivalence relation is

$$ii' \sim jj'$$
, if  $ii' \otimes L_{\mathcal{E}} = jj' \otimes L_{\mathcal{E}}$ , (20)

where  $L_{\mathcal{E}} = \bigoplus_a a\bar{a}, a \in \mathcal{E}$ . In the simple case of Abelian groups, where all the a's are Abelian particles, the equivalence relation reduces to

$$(a \otimes i)i' \sim i(a \otimes i'), \quad \forall \ i \in \mathcal{C}, \quad i' \in \mathcal{C}', \quad a \in \mathcal{E}.$$
 (21)

Mathematically, this amounts to considering only the free local  $L_{\mathcal{E}}$ -modules. The equivalent classes [ii'] are then some composite anyons in  $\mathcal{D} = \mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{C}'$ 

$$[ii'] = k \oplus l \oplus \cdots$$
, for some  $k, l, \dots \in \mathcal{D}$ . (22)

In other words, they form a fusion sub ring of  $\mathcal{D}$ . Moreover, the spin of ii' is the same as the direct summands

$$s_{ii'} = s_k^{\mathcal{D}} = s_l^{\mathcal{D}} = \cdots . \tag{23}$$

Since it is limited to a subset of data of  $UMTC_{/\mathcal{E}}$ 's, we can only give these necessary conditions. However, as we already give a large list of GQLs in terms of these data, they are usually enough to pick the resulting  $\mathcal{C} \boxtimes_{\mathcal{E}} \mathcal{C}'$  from the list.

# VII. HOW TO CALCULATE THE MODULAR EXTENSION OF A UMTC $_{/\mathcal{E}}$

#### A. A naive calculation

How do we calculate the modular extension  $\mathcal{M}$  of UMTC<sub>/E</sub>  $\mathcal{C}$  from the data of  $\mathcal{C}$ ? Actually, we do not know how to do that. So here, we will follow a closely related conjecture V, and calculate instead  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I, c)$  (that fully characterize  $\mathcal{M}$ ) from the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  (that partially characterize  $\mathcal{C}$ ). In this section, we will describe such a calculation.

We note that all the simple objects (particles) in  $\mathcal{C}$  are contained in  $\mathcal{M}$  as simple objects, and  $\mathcal{M}$  may contain some extra simple objects. Assume that the particle labels of  $\mathcal{M}$  are  $\{I,J,\ldots\}=\{i,j,\ldots,x,y,\ldots\}$ , where we use  $i,j,\ldots$  to label the particles in  $\mathcal{C}$  and  $x,y,\ldots$  to label the additional particles (not in  $\mathcal{C}$ ). Also let us use  $a,b,\ldots$  to label the simple objects in the centralizer of  $\mathcal{C}$ :  $\mathcal{E}=\mathcal{C}^{\text{cen}}_{\mathcal{C}}$ . Let  $\mathcal{N}^{IJ}_K$ ,  $\mathcal{S}_I$  be the fusion coefficients and the spins for  $\mathcal{M}$ , and  $N^{ij}_k$ ,  $s_i$  be the fusion coefficients and the spins for  $\mathcal{C}$ . The idea is to find as many conditions on  $(\mathcal{N}^{IJ}_K,\mathcal{S}_I)$  as possible, and use those conditions to solve for  $(\mathcal{N}^{IJ}_K,\mathcal{S}_I)$ . Since the data  $(\mathcal{N}^{IJ}_K,\mathcal{S}_I)$  describe the UMTC  $\mathcal{M}$ , they should satisfy all the conditions discussed in Ref. [11]. On the other hand, as a modular extension of  $\mathcal{C}$ ,  $(\mathcal{N}^{IJ}_K,\mathcal{S}_I)$  also satisfy some additional conditions. Here, we will discuss those additional conditions.

First, the modular extension  ${\mathcal M}$  has a fixed total quantum dimension:

$$\dim(\mathcal{M}) = \dim(\mathcal{E})\dim(\mathcal{C}). \tag{24}$$

In other words,

$$\sum_{I \in \mathcal{M}} d_I^2 = \sum_{a \in \mathcal{E}} d_a^2 \sum_{i \in \mathcal{C}} d_i^2. \tag{25}$$

Physically, the modular extension  $\mathcal{M}$  is obtained by "gauging" the symmetry  $\mathcal{E}$  in  $\mathcal{C}$  (i.e., adding the symmetry twists of  $\mathcal{E}$ ). So the additional particles  $x, y, \ldots$  correspond to the symmetry twists. Fusing an original particle  $i \in \mathcal{C}$  to a symmetry twist  $x \notin \mathcal{C}$  still give us a symmetry twist. Thus

$$\mathcal{N}_i^{ix} = \mathcal{N}_i^{xi} = \mathcal{N}_i^{ij} = 0. \tag{26}$$

Therefore  $\mathcal{N}_i$  for  $i \in \mathcal{C}$  is block diagonal:

$$\mathcal{N}_i = N_i \oplus \hat{N}_i, \tag{27}$$

where  $(N_i)_{jk} = \mathcal{N}_k^{ij} = N_k^{ij}$  and  $(\hat{N}_i)_{xy} = \mathcal{N}_x^{iy}$ .

If we pick a charge conjugation for the additional particles  $x \mapsto \bar{x}$ , the conditions for fusion rules reduce to

$$\mathcal{N}_{y}^{ix} = \mathcal{N}_{y}^{xi} = \mathcal{N}_{i}^{\bar{x}y} = \mathcal{N}_{\bar{x}}^{i\bar{y}},$$

$$\sum_{k \in \mathcal{C}} \mathcal{N}_{k}^{ij} \mathcal{N}_{y}^{kx} = \sum_{z \notin \mathcal{C}} \mathcal{N}_{x}^{iz} \mathcal{N}_{z}^{jy}.$$
(28)

With a choice of charge conjugation, it is enough to construct (or search for) the matrices  $\hat{N}_i$  and  $\mathcal{N}_z^{xy}$  to determine all the extended fusion rules  $\mathcal{N}_K^{IJ}$ .

Besides the general condition (28), there are also some simple constraints on  $\hat{N}_i$  that may speed up the numerical search. Firstly, observe that (28) is the same as

$$\hat{N}_i \hat{N}_j = \sum_{k \in \mathcal{C}} N_k^{ij} \hat{N}_k, \tag{29}$$

where  $i, j, k \in \mathcal{F}$ . This means that  $\hat{N}_i$  satisfy the same fusion algebra as  $N_i$ , and  $N_k^{ij} = \mathcal{N}_k^{ij}$  is the structure constant; therefore the eigenvalues of  $\hat{N}_i$  must be a subset of the eigenvalues of  $N_i$ .

Secondly, since  $\sum_{y\notin\mathcal{C}}\mathcal{N}_y^{ix}d_y=d_id_x$ , by Perron-Frobenius theorem, we know that  $d_i$  is the largest eigenvalue of  $\hat{N}_i$ , with eigenvector  $v,v_x=d_x$ .  $(d_i$  is also the largest absolute values of the eigenvalues of  $\hat{N}_i$ .) Note that  $\hat{N}_{\bar{i}}\hat{N}_i=\hat{N}_i\hat{N}_{\bar{i}}$ ,  $\hat{N}_{\bar{i}}=\hat{N}_i^{\dagger}$ . Thus  $d_i^2$  is the largest eigenvalue of the positive semidefinite Hermitian matrix  $\hat{N}_i^{\dagger}\hat{N}_i$ . For any unit vector v, we have  $v^{\dagger}\hat{N}_i^{\dagger}\hat{N}_i v \leqslant d_i^2$ , in particular,

$$\left(\hat{N}_i^{\dagger} \hat{N}_i\right)_{xx} = \sum_{y} \left(\mathcal{N}_y^{ix}\right)^2 \leqslant d_i^2. \tag{30}$$

The above result is very helpful to reduce the scope of numerical search.

Once we find the fusion rules,  $\mathcal{N}_K^{IJ}$ , we can then use the rational conditions and other conditions to determine the spins  $\mathcal{S}_I$  (for details, see Ref. [11]). The set of data  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I)$  that satisfy all the conditions give us the set of modular extensions.

The above proposed calculation for modular extensions is quite expensive. If the quantum dimensions of the particles in  $\mathcal{C}$  are all equal to 1:  $d_i = 1$ , then there is another much cheaper way to calculate the fusion coefficient  $\mathcal{N}_K^{IJ}$  of the modular extension  $\mathcal{M}$ . Such an approach is explained in Appendix B. We will also use such an approach in our calculation.

Last, we would like to mention that two sets of data  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I)$  and  $(\bar{\mathcal{N}}_K^{IJ}, \bar{\mathcal{S}}_I)$  describe the same modular extension of  $\mathcal{C}$ , if they only differ by a permutation of indices  $x \in \mathcal{M}$  but  $x \notin \mathcal{C}$ . So some times, two sets of data  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I)$  and  $(\bar{\mathcal{N}}_K^{IJ}, \bar{\mathcal{S}}_I)$  can describe different modular extensions, even through they

describe the same UMTC. [Two sets of data  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I)$  and  $(\bar{\mathcal{N}}_K^{IJ}, \bar{\mathcal{S}}_I)$  describe the same UMTC, if they are only different by a permutation of indices  $I \in \mathcal{M}$ .]

Why we use such a permutation in the calculation of modular extensions? This is because when we considering modular extensions, the particle  $x \in \mathcal{M}$  but  $x \notin \mathcal{C}$  correspond to symmetry twists. They are extrinsic excitations that do not appear in the finite energy spectrum of the Hamiltonian. While the particle  $i \in \mathcal{C}$  are intrinsic excitations that do appear in the finite energy spectrum of the Hamiltonian. So  $x \notin \mathcal{C}$  and  $i \in \mathcal{C}$  are physically distinct and we do not allow permutations that mix them. Also we should not permute the particles  $a \in \mathcal{E}$ , because they correspond to symmetries. We should not mix, for example, the  $Z_2$  symmetry of exchange layers and the  $Z_2$  symmetry of 180° spin rotation.

#### B. The limitations of the naive calculation

Since a UMTC<sub>/E</sub> C is not modular, the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  may not fully characterize C. To fully characterize C, we need to use additional data, such as the F tensor and the R tensor [9,11].

In this paper, we will not use those additional data. As a result, the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  may correspond to several different UMTC/ $\varepsilon$  C's. In other words,  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  is a one-to-many labeling of UMTC/ $\varepsilon$ 's.

So in our naive calculation, when we calculate the modular extensions of  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ , we may actually calculate the modular extension of several different  $\mathcal{C}$ 's that are described by the same data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ . However, for UMTC $_{\mathcal{E}}$ 's that can be fully characterized by the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ , our calculation produce the modular extensions of a single  $\mathcal{C}$ . For example, the naive calculation can obtain the correct modular extensions of  $\mathcal{C} = \text{Rep}(G)$  and  $\mathcal{C} = \text{sRep}(G^f)$ , when G and  $G^f$  are Abelian groups, or simple finite groups [34].

If the  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  happen to describe two different UMTC/ $\varepsilon$ 's, we find that our naive calculation will produce the modular extensions for both of UMTC/ $\varepsilon$ 's (see Sec. VIII D). So by computing the modular extensions of  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ , we can tell if  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  corresponds to none, one, two, etc UMTC/ $\varepsilon$ 's. This leads to conjecture V that  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i, \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  can fully and one-to-one classify GQLs in 2+1D.

### VIII. EXAMPLES OF 2+1D SET ORDERS AND SPT ORDERS

In this section, we will discuss simple examples of  $UMTC_{/\mathcal{E}}$   $\mathcal{C}$ 's, and their modular extensions  $\mathcal{M}$ . The triple  $(\mathcal{C},\mathcal{M},c)$  describe a topologically ordered or SPT phase. A single  $UMTC_{/\mathcal{E}}$   $\mathcal{C}$  only describes the set of bulk topological excitations, which correspond to topologically ordered states up to invertible ones.

However, in this section we will not discuss examples of  $\mathrm{UMTC}_{/\mathcal{E}}$   $\mathcal{C}$ . What we really do is to discuss examples of the solutions  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  (which are not really  $\mathrm{UMTC}_{/\mathcal{E}}$ 's, but closely related). We will also discuss the extensions  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  of  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ .  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  will correspond to  $\mathrm{UMTC}_{/\mathcal{E}}\mathcal{C}$  if it has modular extensions

TABLE II. The bottom two rows correspond to the two modular extensions of Rep( $Z_2$ ) (denoted by  $N_c^{|\Theta|}=2_0^{\xi_2^1}$ ). Thus we have two different trivial topological orders with  $Z_2$  symmetry in 2+1D (i.e., two  $Z_2$  SPT states). We use  $N_c^{|\Theta|}$  to label UMTC/ $\mathcal{E}$ 's, where  $\Theta=D^{-1}\sum_i e^{2\pi i s_i} d_i^2=|\Theta|e^{2\pi i c/8}$  and  $D^2=\sum_i d_i^2$ .

| $N_c^{ \Theta }$                  | $D^2$ | $d_1,d_2,\ldots$ | $s_1, s_2, \ldots$            | comment       |
|-----------------------------------|-------|------------------|-------------------------------|---------------|
| $2_0^{\zeta_2^1} \ 4_0^B \ 4_0^B$ | 2     | 1,1              | 0,0                           | $Rep(Z_2)$    |
| $4_0^B$                           | 4     | 1,1,1,1          | $0,0,0,\frac{1}{2}$           | $Z_2$ gauge   |
| $4_0^B$                           | 4     | 1,1,1,1          | $0,0,\frac{1}{4},\frac{3}{4}$ | double semion |

 $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ . This allows us to classify GQLs in terms of the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i, \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ .

#### A. Z<sub>2</sub> bosonic SPT states

Tables XXII, XXIII, and XXIV list the solutions  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  when  $(\tilde{N}_c^{ab}, \tilde{s}_a)$  describes a SFC Rep( $Z_2$ ). The table contains all UMTC<sub>/Rep( $Z_2$ )'s but may contain extra fake entries. Physically, they describe possible sets of bulk excitations for  $Z_2$ -SET orders of bosonic systems. The sets of bulk excitations are listed by their quantum dimensions  $d_i$  and spins  $s_i$ .</sub>

For example, let us consider the entry  $N_c^{|\Theta|} = 2_0^{S_c^1}$  in Table XXII. Such an entry has a central charge c = 0. Also N = 2, hence the  $Z_2$ -SET state has two types of bulk excitations both with  $d_i = 1$  and  $s_i = 0$ . Both types of excitations are local excitations; one is the trivial type and the other carries a  $Z_2$  charge.

The first question that we like to ask is that "is such an entry a fake entry, or it corresponds to some  $Z_2$ -symmetric GQL's?" If it corresponds to some  $Z_2$ -symmetric GQL's, how many distinct  $Z_2$ -symmetric GQL phases that it corresponds to? In other word, how many distinct  $Z_2$ -symmetric GQL phases are there, that share the same set of bulk topological excitations described by the entry  $2_0^{\zeta_2^1}$ ?

Both questions can be answered by computing the modular extensions of  $2_0^{\zeta_2^1}$  [which is also denoted as Rep( $Z_2$ )]. We find that the modular extensions exist, and thus Rep( $Z_2$ ) does correspond to some  $Z_2$ -symmetric GQL's. In fact, one of the  $Z_2$ -symmetric GQL's is the trivial product state with  $Z_2$  symmetry. Other  $Z_2$ -symmetric GQL's are  $Z_2$  SPT states.

After a numerical calculation, we find that there are only two different modular extensions of  $\operatorname{Rep}(Z_2)$  (see Table II). Thus there are two distinct  $Z_2$ -symmetric GQL phases whose bulk excitations are described by the  $\operatorname{Rep}(Z_2)$ . The first one corresponds to the trivial product states whose modular extension is the  $Z_2$  gauge theory which has four types of particles with  $(d_i,s_i)=(1,0),(1,0),(1,0),(1,\frac{1}{2})$ . (Gauging the  $Z_2$  symmetry of the trivial product state gives rise to a  $Z_2$  gauge theory.) The second one corresponds to the only nontrivial  $Z_2$  bosonic SPT state in 2+1D, whose modular extension is the double-semion theory which has four types of particles with  $(d_i,s_i)=(1,0),(1,0),(1,\frac{1}{4}),(1,-\frac{1}{4})$ . (Gauging the  $Z_2$  symmetry of the  $Z_2$ -SPT state gives rise to a double-semion theory [21].) So the  $Z_2$ -SPT phases are classified by  $\mathbb{Z}_2$ , reproducing the group cohomology result [18–20]. In

TABLE III. The two modular extensions of  $N_c^{|\Theta|} = 3_2^{\xi_2^1} \cdot 3_2^{\xi_2^1}$  has a centralizer Rep( $Z_2$ ). Thus we have two topological orders with  $Z_2$ symmetry in 2+1D, which has only one type of spin-1/3 topological

| $N_c^{ \Theta }$  | $D^2$ | $d_1,d_2,\ldots$                     | $s_1, s_2, \ldots$                        | comment                                              |
|-------------------|-------|--------------------------------------|-------------------------------------------|------------------------------------------------------|
| $3_2^{\zeta_2^1}$ | 6     | 1,1,2                                | $0,0,\frac{1}{3}$                         | $K = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ |
| $5_{2}^{B}$       | 12    | $1,1,2,\zeta_4^1,\zeta_4^1=\sqrt{3}$ | $0,0,\frac{1}{3},\frac{1}{8},\frac{5}{8}$ | $(A_1,4)$                                            |
| $5_{2}^{B}$       | 12    | $1,1,2,\zeta_4^1,\zeta_4^1$          | $0,0,\frac{1}{3},\frac{3}{8},\frac{7}{8}$ |                                                      |

general, the modular extensions of Rep(G) correspond to the bosonic SPT states in 2+1D with symmetry G.

#### B. $Z_2$ -SET orders for bosonic systems

The entry  $N_c^{|\Theta|} = 3_2^{\zeta_2^1}$  in Table XXII corresponds to more nontrivial UMTC<sub>/Rep(Z<sub>2</sub>)</sub>. It describes the bulk excitations of  $Z_2$ -SET orders, which has only one type of nontrivial topological excitation (with quantum dimension d=2 and spin s = 1/3, see Table IV). The other two types of excitations are local excitations with  $Z_2$ -charge 0 and 1. We find that  $3_2^{\zeta_2}$ has modular extensions and hence is not a fake entry.

To see how many SET orders that have such set of bulk excitations, we need to compute how many modular extensions are there for  $3_2^{\zeta_2^1}$ . We find that  $3_2^{\zeta_2^1}$  has two modular extensions (see Table III). Thus there are two  $Z_2$ -SET orders with the above mentioned bulk excitations. It is not an accident that the number of  $Z_2$ -SET orders with the same set of bulk excitations is the same as the number of  $Z_2$  SPT states. This is because the different  $Z_2$ -SET orders with a fixed set of bulk excitations are generated by stacking with  $Z_2$  SPT states.

We would like to point out that for any G-SET state, if we break the symmetry, the G-SET state will reduce to a topologically ordered state described by a UMTC. In fact, the different G-SET states described by the same  $UMTC_{/\mathcal{E}}$ (i.e., with the same set of bulk excitations) will reduce to the same topologically ordered state (i.e., the same UMTC). In Appendix D, we discussed such a symmetry breaking process and how to compute UMTC from UMTC $_{/\mathcal{E}}$ . We found that the two  $Z_2$ -SET orders from  $3_2^{\xi_2^1}$  reduce to an Abelian topological order described by a K-matrix  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ . This is indicated by SB: $K = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$  in the comment column of Table XXII. In other place, we use SB: $N_c^B$  or SB: $N_c^F({}_b^a)$  to indicate the reduced topological order after the symmetry breaking (for

TABLE IV. The fusion rule of the  $N_c^{|\Theta|} = 3_2^{\zeta_2^1} Z_2$ -SET order. The particle 1 carries the  $Z_2$ -charge 0, and the particle s carries the  $Z_2$ charge 1. From the table, we see that  $\sigma \otimes \sigma = \mathbf{1} \oplus s \oplus \sigma$ .

| $s_i$             | 0 | 0 | $\frac{1}{3}$              |
|-------------------|---|---|----------------------------|
| $d_i$             | 1 | 1 | $\tilde{2}$                |
| $3_2^{\zeta_2^1}$ | 1 | S | $\sigma$                   |
| 1                 | 1 | S | $\sigma$                   |
| S                 | S | 1 | σ                          |
| σ                 | σ | σ | $1 \oplus s \oplus \sigma$ |

TABLE V. The fusion rules of the two  $N_c^{|\Theta|} = 4_1^{\zeta_2^2} Z_2$  symmetry enriched topological orders with identical  $d_i$  and  $s_i$ . We see that one has a  $Z_2 \times Z_2$  fusion rule and the other has a  $Z_4$  fusion rule.

| $S_i$             | 0  | 0  | 1  | 1  | $S_i$             | 0 | 0 | 1 | 1 |
|-------------------|----|----|----|----|-------------------|---|---|---|---|
| $d_i$             | 1  | 1  | 1  | 1  | $d_i$             | 1 | 1 | 1 | 1 |
| $4_1^{\zeta_2^1}$ | 00 | 01 | 10 | 11 | $4_1^{\zeta_2^1}$ | 0 | 2 | 1 | 3 |
| 00                | 00 | 01 | 10 | 11 | 0                 | 0 | 2 | 1 | 3 |
| 01                | 01 | 00 | 11 | 10 | 2                 | 2 | 0 | 3 | 1 |
| 10                | 10 | 11 | 00 | 01 | 1                 | 1 | 3 | 2 | 0 |
| 11                | 11 | 10 | 01 | 00 | 3                 | 3 | 1 | 0 | 2 |

bosonic or fermionic cases). (The topological orders described by  $N_c^B$  or  $N_c^F({a \atop b})$  are given by the tables in Ref. [11] or

As we have mentioned, there are two  $Z_2$ -SET orders with the same bulk excitations. But how to realize those  $Z_2$ -SET orders? We find that one of the  $Z_2$ -SET orders is the double layer FQH state with K matrix  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$  (same as the reduced topological order after symmetry breaking), where the  $Z_2$  symmetry is the layer-exchange symmetry. The quasiparticles are labeled by the *l* vectors  $l = \binom{l_1}{l_2}$ . The two nontrivial quasiparticles are given by

$$l = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \tag{31}$$

whose spins are all equal to  $\frac{1}{3}$ . Since the layer-exchange  $Z_2$  symmetry exchanges  $l_1$  and  $l_2$ , we see that the two excitations  $\binom{1}{0}$ ,  $\binom{0}{1}$  always have the same energy. Despite the  $Z_2$  symmetry has no two-dimentional irreducible representations, the above spin-1/3 topological excitations has an exact twofold degeneracy due to the  $Z_2$ layer-exchange symmetry. This effect is an interplay between the long-range entanglement and the symmetry: degeneracy in excitations may not always arise from high dimensional irreducible representations of the symmetry.

Such two degenerate excitations are viewed as one type of topological excitations with quantum dimension d=2 (for the twofold degeneracy) and spin  $s = \frac{1}{3}$  (see Table XXII). The  $Z_2$  symmetry twist in such a double-layer state carry a non-Abelian statistics with quantum dimension  $d = \sqrt{3}$ . In fact, there are two such  $Z_2$  symmetry twists whose spin differ by 1/2. The other  $Z_2$ -SET order can be viewed as the above

TABLE VI. The four modular extensions of  $N_c^{|\Theta|} = 5_0^{\zeta_2^1}$  with  $Z_2 \times Z_2$  fusion.  $S_0^{\zeta_2^1}$  has a centralizer Rep( $Z_2$ ). The first and the second pairs turn out to be equivalent. The fusion rules are listed in Table VIII.

| $N_c^{ \Theta }$  | $D^2$ | $d_1,d_2,\ldots$                  | $s_1, s_2, \ldots$                                                                    | comment                              |
|-------------------|-------|-----------------------------------|---------------------------------------------------------------------------------------|--------------------------------------|
| $5_0^{\zeta_2^1}$ | 8     | $1 \times 4,2$                    | $0,0,\frac{1}{2},\frac{1}{2},0$                                                       |                                      |
| $9_{0}^{B}$       | 16    | $1\times 4, 2, \zeta_2^1\times 4$ | $0,0,\frac{1}{2},\frac{1}{2},0,\frac{15}{16},\frac{1}{16},\frac{7}{16},\frac{9}{16}$  | $3^{B}_{-1/2} \boxtimes 3^{B}_{1/2}$ |
| $9_{0}^{B}$       | 16    | $1\times 4, 2, \zeta_2^1\times 4$ | $0,0,\frac{1}{2},\frac{1}{2},0,\frac{3}{16},\frac{13}{16},\frac{11}{16},\frac{5}{16}$ | $3_{3/2}^{B}\boxtimes 3_{-3/2}^{B}$  |
| $9_{0}^{B}$       |       |                                   | $0,0,\frac{1}{2},\frac{1}{2},0,\frac{1}{16},\frac{15}{16},\frac{9}{16},\frac{7}{16}$  | $3_{1/2}^{B}\boxtimes 3_{-1/2}^{B}$  |
| $9_{0}^{B}$       | 16    | $1\times 4,2,\zeta_2^1\times 4$   | $0,0,\frac{1}{2},\frac{1}{2},0,\frac{13}{16},\frac{3}{16},\frac{5}{16},\frac{11}{16}$ | $3^B_{-3/2}\boxtimes 3^B_{3/2}$      |

TABLE VII. The four modular extensions of  $N_c^{|\Theta|} = S_1^{\zeta_2^1}$  with  $Z_2 \times Z_2$  fusion.  $S_1^{\zeta_2^1}$  has a centralizer Rep( $Z_2$ ). The fusion rules are listed in Tables IX and X.

| $N_c^{ \Theta }$  | $D^2$ | $d_1,d_2,\ldots$                    | $s_1, s_2, \dots$                                                                               | comment                              |
|-------------------|-------|-------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|
| $5_1^{\zeta_2^1}$ | 8     | 1 × 4,2                             | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8}$                                                       | _                                    |
| $9_{1}^{B}$       | 16    | $1 \times 4, 2, \zeta_2^1 \times 4$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{16},\frac{1}{16},\frac{9}{16},\frac{9}{16}$   | $3_{1/2}^B \boxtimes 3_{1/2}^B$      |
| $9_{1}^{B}$       |       |                                     | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{13}{16},\frac{13}{16},\frac{5}{16},\frac{5}{16}$ | $3^{B}_{-3/2} \boxtimes 3^{B}_{5/2}$ |
| $9_{1}^{B}$       |       |                                     | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{15}{16},\frac{3}{16},\frac{7}{16},\frac{11}{16}$ | $3_{-1/2}^{B}\boxtimes 3_{3/2}^{B}$  |
| $9_{1}^{B}$       |       |                                     | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{3}{16},\frac{15}{16},\frac{11}{16},\frac{7}{16}$ | $3_{3/2}^{B}\boxtimes 3_{-1/2}^{B}$  |

double layer FQH state  $K = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$  stacked with a  $Z_2$  SPT state.

#### C. Two other $Z_2$ -SET orders for bosonic systems

The fourth and fifth entries in Table XXII describe the bulk excitations of two other  $Z_2$ -SET orders. Those bulk excitations have identical  $s_i$  and  $d_i$ , but they have different fusion rules  $N_k^{ij}$  (see Table V).

Both entries have two modular extensions, and correspond to two SET orders. Among the two SET orders for the  $Z_2 \times Z_2$  fusion rule, one of them is obtained by stacking a  $Z_2$  neutral  $\nu=1/2$  Laughlin state with a trivial  $Z_2$  product state. The other is obtained by stacking a  $Z_2$  neutral  $\nu=1/2$  Laughlin state with a nontrivial  $Z_2$  SPT state.

The entry with  $Z_4$  fusion rule also correspond to two SET orders. They are obtained by stacking a  $Z_2$  charged  $\nu=1/2$  Laughlin state with a trivial or a nontrivial  $Z_2$  SPT state. Here, charged means that the particles forming the  $\nu=1/2$  Laughlin state carry  $Z_2$ -charge 1. In this case, the anyon in the  $\nu=1/2$ 

Laughlin state carries a fractional  $Z_2$ -charge 1/2. So the fusion of two such anyons give us a  $Z_2$ -charge 1 excitation instead of a trivial neutral excitation. This leads to the  $Z_4$  fusion rule.

#### D. The rank N = 5 $Z_2$ -SET orders for bosonic systems

The first and the second entries in Table XXIII describe two N = 5UMTC $/_{Rep(Z_2)}$ 's. They describe two different sets of bulk excitations for  $Z_2$ -SET orders. Those bulk excitations have identical  $s_i$  and  $d_i$ , but they have different fusion rules  $N_k^{ij}$ : the 4 d=1 particles have a  $Z_2 \times Z_2$  fusion rule for the first entry, and they have a  $Z_4$  fusion rule for the second entry (as indicated by F: $Z_2 \times Z_2$  or F: $Z_4$  in the comment column of Table XXIII).

#### 1. The first entry in Table XXIII

Let us compute the modular extensions of the first entry (i.e.,  $5_0^{\zeta_2^1}$  with  $Z_2 \times Z_2$  fusion). Since the total quantum dimension of the modular extensions is  $D^2 = 16$ , the modular extensions must have rank N = 13 or less (since quantum dimension  $d \ge 1$ ).

Now we would like to show N=13 is not possible. If a modular extension has N=13, then it must have 12 particles (labeled by  $a=1,\ldots,12$ ) with quantum dimension  $d_a=1$ , and one particle (labeled by x) with quantum dimension  $d_x=2$ , so that  $12\times 1^2+2^2=D^2=16$ . In this case, we must have the fusion rule

$$a \otimes x = x$$
,  $x \otimes x = 1 \oplus 2 \oplus 3 \oplus 4$ , (32)

where  $x \otimes x$  is determined by the fusion rule of the  $\text{UMTC}_{/\text{Rep}(Z_2)}$ . The above determines the fusion matrix  $N_x$  defined as  $(N_x)_{ij} \equiv N_j^{xi}$ . The largest eigenvalue of  $N_x$  should be 2, the quantum dimension of x. Indeed, we find that the

TABLE VIII. The first and the third entries in Table VI have different fusion rules, despite they have the same  $(d_i, s_i)$ .

| $S_i$   | 0 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 0                           | 1/6                 | 716            | 9 16                | 15<br>16     |
|---------|---|---|---------------|---------------|-----------------------------|---------------------|----------------|---------------------|--------------|
| $d_i$   | 1 | 1 | 1             | 1             | 2                           | $\zeta_2^1$         | $\zeta_2^1$    | $\zeta_2^1$         | $\zeta_2^1$  |
| $9_0^B$ | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8                   | 9            |
| 1       | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8                   | 9            |
| 2       | 2 | 1 | 4             | 3             | 5                           | 8                   | 9              | 6                   | 7            |
| 3       | 3 | 4 | 1             | 2             | 5                           | 8                   | 7              | 6                   | 9            |
| 4       | 4 | 3 | 2             | 1             | 5                           | 6                   | 9              | 8                   | 7            |
| 5       | 5 | 5 | 5             | 5             | $1\oplus 2\oplus 3\oplus 4$ | $7\oplus9$          | $6 \oplus 8$   | ${f 7}\oplus {f 9}$ | $6 \oplus 8$ |
| 6       | 6 | 8 | 8             | 6             | $7\oplus 9$                 | $1 \oplus 4$        | 5              | $2\oplus3$          | 5            |
| 7       | 7 | 9 | 7             | 9             | $6 \oplus 8$                | 5                   | $1\oplus3$     | 5                   | $2 \oplus 4$ |
| 8       | 8 | 6 | 6             | 8             | $7\oplus9$                  | $2\oplus3$          | 5              | $1 \oplus 4$        | 5            |
| 9       | 9 | 7 | 9             | 7             | $6 \oplus 8$                | 5                   | $2 \oplus 4$   | 5                   | $1\oplus3$   |
| $S_i$   | 0 | 0 | 1/2           | 1/2           | 0                           | 1/6                 | $\frac{7}{16}$ | 9 16                | 15<br>16     |
| $d_i$   | 1 | 1 | 1             | 1             | 2                           | $\zeta_2^1$         | $\zeta_2^1$    | $\zeta_2^1$         | $\zeta_2^1$  |
| $9_0^B$ | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8                   | 9            |
| 1       | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8                   | 9            |
| 2       | 2 | 1 | 4             | 3             | 5                           | 8                   | 9              | 6                   | 7            |
| 3       | 3 | 4 | 1             | 2             | 5                           | 6                   | 9              | 8                   | 7            |
| 4       | 4 | 3 | 2             | 1             | 5                           | 8                   | 7              | 6                   | 9            |
| 5       | 5 | 5 | 5             | 5             | $1\oplus 2\oplus 3\oplus 4$ | ${f 7}\oplus {f 9}$ | $6 \oplus 8$   | $7\oplus9$          | $6 \oplus 8$ |
| 6       | 6 | 8 | 6             | 8             | $7\oplus9$                  | $1 \oplus 3$        | 5              | $2 \oplus 4$        | 5            |
| 7       | 7 | 9 | 9             | 7             | $6 \oplus 8$                | 5                   | $1 \oplus 4$   | 5                   | $2\oplus3$   |
| 8       | 8 | 6 | 8             | 6             | $7\oplus9$                  | $2 \oplus 4$        | 5              | $1\oplus3$          | 5            |
| 9       | 9 | 7 | 7             | 9             | $6 \oplus 8$                | 5                   | $2\oplus3$     | 5                   | $1\oplus4$   |

TABLE IX. The third and the fourth entries in Table VII have different fusion rules, despite they have the same  $(d_i, s_i)$ .

| $S_i$   | 0 | 0 | 1/2           | 1/2           | 1/8                         | 3<br>16             | 7<br>16        | 11<br>16     | 15<br>16     |
|---------|---|---|---------------|---------------|-----------------------------|---------------------|----------------|--------------|--------------|
| $d_i$   | 1 | 1 | 1             | 1             | 2                           | $\zeta_2^1$         | $\zeta_2^1$    | $\zeta_2^1$  | $\zeta_2^1$  |
| $9_1^B$ | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8            | 9            |
| 1       | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8            | 9            |
| 2       | 2 | 1 | 4             | 3             | 5                           | 8                   | 9              | 6            | 7            |
| 3       | 3 | 4 | 1             | 2             | 5                           | 8                   | 7              | 6            | 9            |
| 4       | 4 | 3 | 2             | 1             | 5                           | 6                   | 9              | 8            | 7            |
| 5       | 5 | 5 | 5             | 5             | $1\oplus 2\oplus 3\oplus 4$ | ${f 7}\oplus {f 9}$ | $6 \oplus 8$   | $7\oplus9$   | $6 \oplus 8$ |
| 6       | 6 | 8 | 8             | 6             | <b>7</b> ⊕ <b>9</b>         | $1 \oplus 4$        | 5              | $2\oplus3$   | 5            |
| 7       | 7 | 9 | 7             | 9             | $6 \oplus 8$                | 5                   | $1\oplus3$     | 5            | $2 \oplus 4$ |
| 8       | 8 | 6 | 6             | 8             | $7\oplus9$                  | $2\oplus3$          | 5              | $1 \oplus 4$ | 5            |
| 9       | 9 | 7 | 9             | 7             | $6 \oplus 8$                | 5                   | $2 \oplus 4$   | 5            | $1\oplus3$   |
| $S_i$   | 0 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 1/8                         | 3<br>16             | $\frac{7}{16}$ | 11<br>16     | 15<br>16     |
| $d_i$   | 1 | 1 | 1             | 1             | 2                           | $\zeta_2^1$         | $\zeta_2^1$    | $\zeta_2^1$  | $\zeta_2^1$  |
| $9_1^B$ | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8            | 9            |
| 1       | 1 | 2 | 3             | 4             | 5                           | 6                   | 7              | 8            | 9            |
| 2       | 2 | 1 | 4             | 3             | 5                           | 8                   | 9              | 6            | 7            |
| 3       | 3 | 4 | 1             | 2             | 5                           | 6                   | 9              | 8            | 7            |
| 4       | 4 | 3 | 2             | 1             | 5                           | 8                   | 7              | 6            | 9            |
| 5       | 5 | 5 | 5             | 5             | $1\oplus 2\oplus 3\oplus 4$ | ${f 7}\oplus {f 9}$ | $6 \oplus 8$   | $7\oplus9$   | $6 \oplus 8$ |
| 6       | 6 | 8 | 6             | 8             | $7\oplus9$                  | $1 \oplus 3$        | 5              | $2 \oplus 4$ | 5            |
| 7       | 7 | 9 | 9             | 7             | $6 \oplus 8$                | 5                   | $1\oplus4$     | 5            | $2\oplus3$   |
| 8       | 8 | 6 | 8             | 6             | $7\oplus9$                  | $2 \oplus 4$        | 5              | $1\oplus3$   | 5            |
| 9       | 9 | 7 | 7             | 9             | <b>6</b> ⊕ <b>8</b>         | 5                   | $2\oplus3$     | 5            | $1\oplus4$   |

largest eigenvalue of  $N_x$  is 2. But we also require that  $N_x$  can be diagonalized by a unitary matrix (which happens to be the *S*-matrix).  $N_x$  fails such a test. So N cannot be 13.

N also cannot be 12. If N=12, then the modular extension will have ten particles (labeled by  $a=1,\ldots,10$ ) with quantum dimension  $d_a=1$ , one particle (labeled by x) with quantum

dimension  $d_x = 2$ , and one particle (labeled by y) with quantum dimension  $d_y = \sqrt{2}$ . The fusion of ten  $d_a = 1$  particles is described by an Abelian group  $Z_{10}$  or  $Z_2 \times Z_5$ . None of them contain  $Z_2 \times Z_2$  as subgroup. Thus N = 12 is incompatible with the  $Z_2 \times Z_2$  fusion of the first four  $d_a = 1$  particles.

TABLE X. The fusion rules of the first and the second entries in Table VII.

| $s_i$       | 0 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{8}$               | $\frac{1}{16}$ | $\frac{1}{16}$ | $\frac{9}{16}$      | $\frac{9}{16}$ |
|-------------|---|---|---------------|---------------|-----------------------------|----------------|----------------|---------------------|----------------|
| $d_i$       | 1 | 1 | 1             | 1             | 2                           | $\zeta_2^1$    | $\zeta_2^1$    | $\zeta_2^1$         | $\zeta_2^1$    |
| $9_1^B$     | 1 | 2 | 3             | 4             | 5                           | 6              | 7<br>7         | 8                   | 9              |
| 1           | 1 | 2 | 3             | 4             | 5                           | 6              | 7              | 8                   | 9              |
| 2           | 2 | 1 | 4             | 3             | 5                           | 8              | 9              | 6                   | 7              |
| 3           | 3 | 4 | 1             | 2             | 5                           | 8              | 7              | 6                   | 9              |
| 4           | 4 | 3 | 2             | 1             | 5                           | 6              | 9              | 8                   | 7              |
| 5           | 5 | 5 | 5             | 5             | $1\oplus 2\oplus 3\oplus 4$ | $7 \oplus 9$   | $6 \oplus 8$   | $7 \oplus 9$        | $6 \oplus 8$   |
| 6           | 6 | 8 | 8             | 6             | $7 \oplus 9$                | $1\oplus4$     | 5              | $2\oplus3$          | 5              |
| 7           | 7 | 9 | 7             | 9             | $6 \oplus 8$                | 5              | $1\oplus3$     | 5                   | $2 \oplus 4$   |
| 8           | 8 | 6 | 6             | 8             | $7\oplus9$                  | $2\oplus3$     | 5              | $1 \oplus 4$        | 5              |
| 9           | 9 | 7 | 9             | 7             | $6 \oplus 8$                | 5              | $2 \oplus 4$   | 5                   | $1\oplus3$     |
| $S_i$       | 0 | 0 | 1/2           | 1/2           | 1/8                         | 5<br>16        | 5<br>16        | 13<br>16            | 13<br>16       |
| $d_i$       | 1 | 1 | 1             | 1             | 2                           | $\zeta_2^1$    | $\zeta_2^1$    | $\zeta_2^1$         | $\zeta_2^1$    |
| $9_{1}^{B}$ | 1 | 2 | 3             | 4             | 5                           | 6              | 7              | 8                   | 9              |
| 1           | 1 | 2 | 3             | 4             | 5                           | 6              | 7              | 8                   | 9              |
| 2           | 2 | 1 | 4             | 3             | 5                           | 8              | 9              | 6                   | 7              |
| 3           | 3 | 4 | 1             | 2             | 5                           | 8              | 7              | 6                   | 9              |
| 4           | 4 | 3 | 2             | 1             | 5                           | 6              | 9              | 8                   | 7              |
| 5           | 5 | 5 | 5             | 5             | $1\oplus2\oplus3\oplus4$    | $7 \oplus 9$   | $6 \oplus 8$   | ${f 7}\oplus {f 9}$ | $6 \oplus 8$   |
| 6           | 6 | 8 | 8             | 6             | $7\oplus9$                  | $1 \oplus 4$   | 5              | $2\oplus3$          | 5              |
| 7           | 7 | 9 | 7             | 9             | $6 \oplus 8$                | 5              | $1\oplus3$     | 5                   | $2 \oplus 4$   |
| 8           | 8 | 6 | 6             | 8             | $7\oplus9$                  | $2\oplus3$     | 5              | $1\oplus4$          | 5              |
| 9           | 9 | 7 | 9             | 7             | $6 \oplus 8$                | 5              | $2 \oplus 4$   | 5                   | $1\oplus3$     |

We searched the modular extensions with N up to 11. We find four N = 9 modular extensions (see Table VI), and thus the first entry corresponds to valid  $Z_2$ -SET states.

In fact, one of the  $Z_2$ -SET states is the  $Z_2$  gauge theory with a  $Z_2$  global symmetry, where the  $Z_2$  symmetry action exchange the  $Z_2$ -charge e and the  $Z_2$ -vortex m. The degenerate e and m give rise to the (d,s)=(2,0) particle (the fifth particle in the table). The bound state of e and m is a fermion f. It may carry the  $Z_2$ -charge 0 or 1, which correspond to the third and the fourth particle with (d,s)=(1,1/2) in the table.

However, from the discussion in the last few sections, we know that a UMTC/ $_{Rep(Z_2)}$  always has two modular extensions, corresponding to the two bosonic  $Z_2$ -SPT states in 2+1D. This seems contradictory with the above result that the  $Z_2$ -SET state,  $5_0^{\zeta_2^1}$  with  $Z_2 \times Z_2$  fusion, has four different modular extensions.

In fact, there is no contradiction. Here, we only use  $(N_k^{ij}, s_i)$  to label different entries. However, a UMTC<sub>/E</sub> is fully characterized by  $(N_k^{ij}, s_i)$  plus the F and the R tensors. To see this point, we note that the Ising-like UMTC  $N_c^B = 3_{m/2}^B$ ,  $m = 1, 3, \ldots, 15$  (with central charge c = m/2) has three particles: 1, f with  $(d_f, s_f) = (1, 1/2)$ , and  $\sigma$  with  $(d_\sigma, s_\sigma) = (\sqrt{2}, m/16)$ . Its R tensor is given by [9]

$$R_1^{ff} = -1, \quad R_{\sigma}^{\sigma f} = R_{\sigma}^{f \sigma} = -i^m,$$

$$R_1^{\sigma \sigma} = (-1)^{\frac{m^2 - 1}{8}} e^{-i\frac{\pi}{8}m}, \quad R_f^{\sigma \sigma} = (-1)^{\frac{m^2 - 1}{8}} e^{i\frac{3\pi}{8}m},$$
(33)

and some components of the F tensor are given by

$$F_{f:1}^{f\sigma\sigma;\sigma} = F_{f:1}^{\sigma\sigma f;\sigma} = 1. \tag{34}$$

The values of  $R_{\sigma}^{\sigma f}$  and  $R_{\sigma}^{f\sigma}$  are not gauge invariant. However, if we fix the values of the F tensor to be the ones given above, this will fix the gauge, and we can treat  $R_{\sigma}^{\sigma f}$  and  $R_{\sigma}^{f\sigma}$  as if they are gauge invariant quantities.

If we stack  $N_c^B = 3_{m/2}^B$  and  $N_c^B = 3_{m'/2}^B$  together, the induced UMTC  $3_{m/2}^B \boxtimes 3_{m'/2}^B$  contains particles  $\mathbf{1} = (1,1), \mathbf{2} = (f,f'), \mathbf{3} = (f,1), \mathbf{4} = (1,f'), \mathbf{5} = (\sigma,\sigma')$ . Those five particles are closed under the fusion, and correspond to the five particles in UMTC/Rep( $\mathbb{Z}_2$ ) $5_{m+m'}^{\xi_2^1}$ . We note that some components of the R tensor of  $3_{m/2}^B \boxtimes 3_{m'/2}^B$  are given by

$$R_{(\sigma,\sigma')}^{(f,1),(\sigma,\sigma')} = R_{(\sigma,\sigma')}^{(\sigma,\sigma'),(f,1)} = -i^{m},$$

$$R_{(\sigma,\sigma')}^{(1,f'),(\sigma,\sigma')} = R_{(\sigma,\sigma')}^{(\sigma,\sigma'),(1,f')} = -i^{m'}.$$
(35)

Taking (m,m') = (-1,1) and (1,-1), it is clear the  $3^B_{-1/2} \boxtimes 3^B_{1/2}$  and  $3^B_{1/2} \boxtimes 3^B_{-1/2}$  give rise to two different R tensors that

TABLE XI. The three modular extensions of  $Rep(Z_3)$ .

| $\overline{N_c^{ \Theta }}$ | $D^2$ | $d_1,d_2,\ldots$ | $s_1, s_2, \dots$                                                               | comment              |
|-----------------------------|-------|------------------|---------------------------------------------------------------------------------|----------------------|
| $3_0^{\zeta_4^1}$           | 3     | 1,1,1            | 0,0,0                                                                           | $Rep(Z_3)$           |
| $9_{0}^{B}$                 | 9     | $1 \times 9$     | $0,0,0,0,0,\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}$                     | Z <sub>3</sub> gauge |
| $9_{0}^{B}$                 | 9     | $1 \times 9$     | $0,0,0,\frac{1}{9},\frac{1}{9},\frac{4}{9},\frac{4}{9},\frac{7}{9},\frac{7}{9}$ |                      |
| $9_0^B$                     | 9     | $1 \times 9$     | $0,0,0,\frac{2}{9},\frac{2}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{8}{9}$ |                      |

TABLE XII. The six modular extensions of  $Rep(S_3)$ .

| $N_c^{ \Theta }$ | $D^2$ | $d_1,d_2,\ldots$ | $s_1, s_2, \dots$                                                   | comment     |
|------------------|-------|------------------|---------------------------------------------------------------------|-------------|
| $3_0^{\sqrt{6}}$ | 6     | 1,1,2            | 0,0,0                                                               | $Rep(S_3)$  |
| $8_0^B$          | 36    | 1,1,2,2,2,2,3,3  | $0,0,0,0,\frac{1}{3},\frac{2}{3},0,\frac{1}{2}$                     | $S_3$ gauge |
| $8_{0}^{B}$      | 36    | 1,1,2,2,2,2,3,3  | $0,0,0,0,\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{3}{4}$           |             |
| $8_{0}^{B}$      | 36    | 1,1,2,2,2,2,3,3  | $0,0,0,\frac{1}{9},\frac{4}{9},\frac{7}{9},0,\frac{1}{2}$           | $(B_4, 2)$  |
| $8_{0}^{B}$      | 36    | 1,1,2,2,2,2,3,3  | $0,0,0,\frac{1}{9},\frac{4}{9},\frac{7}{9},\frac{1}{4},\frac{3}{4}$ |             |
| $8_0^B$          | 36    | 1,1,2,2,2,2,3,3  | $0,0,0,\frac{2}{9},\frac{5}{9},\frac{8}{9},0,\frac{1}{2}$           | $(B_4, -2)$ |
| $8_0^B$          | 36    | 1,1,2,2,2,2,3,3  | $0,0,0,\frac{2}{9},\frac{5}{9},\frac{8}{9},\frac{1}{4},\frac{3}{4}$ |             |

have identical  $(N_k^{ij}, s_i)$ . So the first entry in Table XXIII (i.e.  $S_0^{\zeta_2^1}$  with  $Z_2 \times Z_2$  fusion) split into two different entries if we include the R tensors. Each give rise to two modular extensions, and this is why we got four modular extensions. In Table VI, the first two modular extensions have the same  $(N_k^{ij}, s_i)$ , F and R tensors when restricted to the first five particles. The second pair of modular extensions also have the same  $(N_k^{ij}, s_i)$ , F and R tensors when restricted to the first five particles, but their R tensor is different from that of the first pair. However, note that under the exchange of the two fermions, the R tensor of the first pair becomes that of the second pair.

We like to stress that Table VI is obtained using the ME-equivalence relation, i.e., the different entries are different under the ME-equivalence relation (see Sec. V). We see that for each fixed UMTC<sub>/Rep(Z<sub>2</sub>)</sub> (i.e., for each fixed set of  $(N_k^{ij}, s_i)$ , F and R tensors), there are two modular extensions, which agrees with our general result for modular extensions. However, if we ignore F and R tensors, then for each fixed set of  $(N_k^{ij}, s_i)$ , we get four modular extensions. This is because  $(N_k^{ij}, s_i)$  is only a partial description of a UMTC<sub>/Rep(Z<sub>2</sub>)</sub>, and as discussed above, in this case there are two ways to assign F and R

TABLE XIII. The 16 modular extensions of sRep( $\mathbb{Z}_2^f$ ).

| $N_c^{ \Theta }$        | $D^2$ | $d_1,d_2,\ldots$            | $s_1, s_2, \ldots$                         | comment             |
|-------------------------|-------|-----------------------------|--------------------------------------------|---------------------|
| ${2_{0}^{0}}$           | 2     | 1,1                         | $0, \frac{1}{2}$                           | $sRep(Z_2^f)$       |
| $2_0^0$ $4_0^B$ $4_1^B$ | 4     | 1,1,1,1                     | $0,\frac{1}{2},0,0$                        | $Z_2$ gauge         |
| $4_1^B$                 | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}$ | $F:Z_4$             |
| $4_{2}^{B}$             | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ | $F: Z_2 \times Z_2$ |
| $4_{3}^{B}$             | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}$ | $F: Z_4$            |
| $4_4^B$                 | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ | $F: Z_2 \times Z_2$ |
| $4^{B}_{-3}$            | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{5}{8}, \frac{5}{8}$ | $F:Z_4$             |
| $4^{B}_{-2}$            | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}$ | $F: Z_2 \times Z_2$ |
| $4_{-1}^{B}$            | 4     | 1,1,1,1                     | $0, \frac{1}{2}, \frac{7}{8}, \frac{7}{8}$ | $F: Z_4$            |
| $3_{1/2}^{B}$           | 4     | $1,1,\zeta_2^{\ 1}$         | $0, \frac{1}{2}, \frac{1}{16}$             | p + ip SC           |
| $3_{3/2}^{B}$           | 4     | $1,1,\zeta_2^{\ 1}$         | $0, \frac{1}{2}, \frac{3}{16}$             |                     |
| $3_{5/2}^{B}$           | 4     | $1,1,\zeta_2^{1}$           | $0, \frac{1}{2}, \frac{5}{16}$             |                     |
| $3_{7/2}^{B}$           | 4     | $1,1,\zeta_{2}^{-1}$        | $0, \frac{1}{2}, \frac{7}{16}$             |                     |
| $3^{B}_{-7/2}$          | 4     | $1,1,\zeta_2^{-1}$          | $0, \frac{1}{2}, \frac{9}{16}$             |                     |
| $3^{B}_{-5/2}$          | 4     | $1,1,\zeta_2^{\frac{1}{2}}$ | $0, \frac{1}{2}, \frac{10}{16}$            |                     |
| $3^{B}_{-3/2}$          | 4     | $1,1,\zeta_2^{\frac{1}{1}}$ | $0, \frac{1}{2}, \frac{13}{16}$            |                     |
| $3^{B}_{-1/2}$          | 4     | $1,1,\zeta_2^{1}$           | $0, \frac{1}{2}, \frac{15}{16}$            |                     |

| $N_c^{ \Theta }$                                                 | $D^2$ | $d_1,d_2,\ldots$ | $s_1, s_2, \dots$                                                                                                                                                                                                                                                                                                                                | comment                 |
|------------------------------------------------------------------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $5_0^{\sqrt{5}}$                                                 | 5     | 1 × 5            | 0,0,0,0,0                                                                                                                                                                                                                                                                                                                                        |                         |
| $25_{0}^{B}$                                                     | 25    | $1 \times 25$    | $0,0,0,0,0,0,0,0,0,\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{2}{5},\frac{2}{5},\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}$                                                                                                                              | $5_0^B \boxtimes 5_0^B$ |
| $25_0^B$                                                         | 25    | $1 \times 25$    | $0, 0, 0, 0, 0, \frac{1}{25}, \frac{1}{25}, \frac{4}{25}, \frac{4}{25}, \frac{6}{25}, \frac{6}{25}, \frac{9}{25}, \frac{9}{25}, \frac{9}{25}, \frac{11}{25}, \frac{11}{25}, \frac{14}{25}, \frac{14}{25}, \frac{14}{25}, \frac{16}{25}, \frac{16}{25}, \frac{19}{25}, \frac{19}{25}, \frac{21}{25}, \frac{21}{25}, \frac{24}{25}, \frac{24}{25}$ |                         |
| $25_0^B$                                                         | 25    | $1 \times 25$    | $0,0,0,0,0,\frac{1}{25},\frac{1}{25},\frac{4}{25},\frac{4}{25},\frac{6}{25},\frac{6}{25},\frac{9}{25},\frac{9}{25},\frac{11}{25},\frac{11}{25},\frac{14}{25},\frac{14}{25},\frac{16}{25},\frac{10}{25},\frac{10}{25},\frac{10}{25},\frac{21}{25},\frac{24}{25},\frac{24}{25}$                                                                    |                         |
| $25_0^B$                                                         | 25    | $1 \times 25$    | $0,0,0,0,0,0,\frac{2}{25},\frac{2}{25},\frac{3}{25},\frac{3}{25},\frac{7}{25},\frac{7}{25},\frac{8}{25},\frac{8}{25},\frac{12}{25},\frac{12}{25},\frac{12}{25},\frac{13}{25},\frac{13}{25},\frac{17}{25},\frac{18}{25},\frac{18}{25},\frac{18}{25},\frac{22}{25},\frac{23}{25},\frac{23}{25}$                                                    |                         |
| $25_{0}^{B}$ $25_{0}^{B}$ $25_{0}^{B}$ $25_{0}^{B}$ $25_{0}^{B}$ | 25    | $1 \times 25$    | $0,0,0,0,0,\frac{2}{25},\frac{2}{25},\frac{3}{25},\frac{3}{25},\frac{7}{25},\frac{7}{25},\frac{8}{25},\frac{8}{25},\frac{12}{25},\frac{12}{25},\frac{13}{25},\frac{13}{25},\frac{17}{25},\frac{17}{25},\frac{18}{25},\frac{18}{25},\frac{18}{25},\frac{22}{25},\frac{23}{25},\frac{23}{25}$                                                      |                         |

TABLE XIV. The five modular extensions of Rep( $Z_5$ ).

tensors to them. This is why each fixed  $(N_k^{ij}, s_i)$  has four modular extensions, while each fixed  $(N_k^{ij}, s_i, F, R)$  has only two modular extensions.

On the other hand, under the TO-equivalence relation (see Sec. V), the two ways to assign and R tensors are actually equivalent (related by exchanging the two fermions), and the first entry in Table XXIII corresponds to only one UMTC/Rep( $\mathbb{Z}_2$ ). Thus the first entry is equivalent to the third entry, and the second entry is equivalent to the fourth entry in Table VI. So the four entries of Table VI in fact represent only two distinct  $\mathbb{Z}_2$ -SET orders.

One of the two  $Z_2$ -SET orders have been studied extensively. It corresponds to  $Z_2$  gauge theory with a  $\mathbb{Z}_2$  global symmetry that exchanges the  $Z_2$ -gauge-charge e and the  $Z_2$ -gauge-vortex m [26,27].

#### 2. The second entry in Table XXIII

Next, we compute the modular extensions of the second entry in Table XXIII (i.e.,  $5_0^{\zeta_2^1}$  with  $Z_4$  fusion). Again, we can use the same argument to show that modular extensions of rank 12 and above do not exist. We searched the modular extensions with N up to 11, and find that there is no modular extensions. So the second entry is not realizable and does not correspond to any valid bosonic  $Z_2$ -SET in 2+1D. This is indicated by NR in the comment column of Table XXIII.

Naively, the (none existing) state from the second entry is very similar to that from the first entry. It is also a  $Z_2$  gauge theory with a  $Z_2$  global symmetry that exchange e and m. However, for the second entry, the f particles (the third and the fourth particles) are assigned fraction  $Z_2$ -charge of  $\pm 1/2$ . This leads to the  $Z_4$  fusion rule. Our result implies that such an assignment is not realizable (or is illegal). It turns out that

all the  $5_c^{\zeta_2^1}$ 's with  $Z_4$  fusion do not have modular extensions. They are not realizable, and do not correspond to any 2+1D bosonic  $Z_2$ -SET orders.

#### 3. The third entry in Table XXIII

Third, let us compute the modular extensions of the third entry in Table XXIII (i.e.,  $S_1^{\zeta_2^1}$  with  $Z_2 \times Z_2$  fusion). We find that the entry has four modular extensions. In fact, the entry corresponds to two different UMTC<sub>/Rep(Z2)</sub>s, each with two modular extensions, as implied by the two  $Z_2$ -SPT states. The two UMTC<sub>/Rep(Z2)</sub>s have identical  $(N_k^{ij}, s_i, c)$ , but different F and R tensors. Sometimes two different UMTC<sub>/E</sub>'s (with different F and the R tensors) can have the same  $(N_k^{ij}, s_i)$ 's. The third, seventh, etc., entries of Table XXIII provide such examples. We like to stress that this is different from the first entry in Table XXIII which corresponds to one UMTC<sub>/Rep(Z2)</sub>.

To see those different F and R tensors, we note that one of the two  $5_1^{\xi_2^1}$  with  $Z_2 \times Z_2$  fusion has modular extensions given by  $3_{1/2}^B \boxtimes 3_{1/2}^B$  and  $3_{-3/2}^B \boxtimes 3_{5/2}^B$ . We find the R tensor for this first  $5_1^{\xi_2^1}$  with  $Z_2 \times Z_2$  fusion is given by

$$R_{(\sigma,\sigma')}^{(f,1),(\sigma,\sigma')} = R_{(\sigma,\sigma')}^{(\sigma,\sigma'),(f,1)} = -i,$$

$$R_{(\sigma,\sigma')}^{(1,f'),(\sigma,\sigma')} = R_{(\sigma,\sigma')}^{(\sigma,\sigma'),(1,f')} = -i.$$
(36)

The second  $5_1^{\xi_2^1}$  with  $Z_2 \times Z_2$  fusion has modular extensions given by  $3_{-1/2}^B \boxtimes 3_{3/2}^B$  and  $3_{3/2}^B \boxtimes 3_{-1/2}^B$ . We find the R tensor for the second  $5_1^{\xi_2^1}$  with  $Z_2 \times Z_2$  fusion is given by

$$R_{(\sigma,\sigma')}^{(f,1),(\sigma,\sigma')} = R_{(\sigma,\sigma')}^{(\sigma,\sigma'),(f,1)} = i,$$

$$R_{(\sigma,\sigma')}^{(1,f'),(\sigma,\sigma')} = R_{(\sigma,\sigma')}^{(\sigma,\sigma'),(1,f')} = i.$$
(37)

TABLE XV. All the eight modular extensions of sRep( $\mathbb{Z}_4^f$ ).

| $\overline{N_c^{ \Theta }}$ | $D^2$ | $d_1,d_2,\ldots$                | $s_1, s_2, \dots$                                                                                                                                                                                                                                  | comment                      |
|-----------------------------|-------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| ${4_0^0}$                   | 4     | 1,1,1,1                         | $0,0,\frac{1}{2},\frac{1}{2}$                                                                                                                                                                                                                      | $sRep(Z_4^f)$                |
| $16_0^B$                    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1   | $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4}$                                                                                                                                |                              |
| $16_{1}^{B}$                | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{32}, \frac{1}{32}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{9}{32}, \frac{9}{32}, \frac{17}{32}, \frac{17}{32}, \frac{25}{32}, \frac{25}{32}$                                           |                              |
| $16_{2}^{B}$                | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1   | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{5},\frac{5}{16},\frac{5}{16},\frac{9}{16},\frac{9}{16},\frac{13}{16},\frac{13}{16}$                                                | $8_1^B \boxtimes 2_1^B$      |
| $16_{3}^{B}$                | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{32}, \frac{3}{32}, \frac{11}{32}, \frac{11}{32}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{19}{32}, \frac{19}{32}, \frac{27}{32}, \frac{27}{32}$                                         |                              |
| $16_4^B$                    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{8}, \frac{5}{8}, \frac{7}{8}, \frac{7}{8}$                                                       | $4_3^B \boxtimes 4_1^B$      |
| $16^{B}_{-3}$               | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1   | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{32}, \frac{5}{32}, \frac{13}{32}, \frac{13}{32}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{21}{32}, \frac{21}{32}, \frac{29}{32}, \frac{29}{32}$                                         |                              |
| $16^{B}_{-2}$               | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{11}{16}, \frac{11}{16}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{15}{16}, \frac{15}{16}$                             | $8^B_{-1}\boxtimes 2^B_{-1}$ |
| $16^{B}_{-1}$               | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1   | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{32}, \frac{7}{32}, \frac{15}{32}, \frac{15}{32}, \frac{23}{32}, \frac{23}{32}, \frac{23}{32}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{32}, \frac{31}{32}$ |                              |

TABLE XVI. The two c=0 modular extensions of  $\mathrm{sRep}(Z_8^f)$  imply that the  $Z_8^f$  fermionic SPT phases are described by  $\mathbb{Z}_2$ . All other modular extensions only appear for integer c and are all Abelian (two modular extensions for each integer c).

| $N_c^{ \Theta }$ | $D^2$ | $d_1,d_2,\ldots$ | $s_1, s_2, \dots$                                                                                                                                                                                                                                                                                                                                                                            | comment |
|------------------|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $8_0^{0}$        | 8     | $1 \times 8$     | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}$                                                                                                                                                                                                                                                                                                                             |         |
| $64_0^B$         | 64    | $1 \times 64$    | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                                                                     |         |
|                  |       |                  | $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{3}{8}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}$                                                                                  |         |
| $64_0^B$         | 64    | $1 \times 64$    | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                                                                     |         |
|                  |       |                  | $\frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{9}{16}, \frac{9}{16}, \frac{9}{16}, \frac{9}{16}, \frac{11}{16}, \frac{11}{16}, \frac{11}{16}, \frac{1}{16}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{13}{16}, \frac{13}{16}, \frac{13}{16}, \frac{15}{16}, \frac{15}{16}, \frac{15}{16}, \frac{15}{16}$ |         |

We see that the two  $5_1^{\zeta_2^1}$ 's with  $Z_2 \times Z_2$  fusion are really different UMTC<sub>/Rep( $Z_2$ )</sub>. Each  $5_1^{\zeta_2^1}$  has two modular extensions, and that is why we have four entries in Table VII.

Again, Table VII is obtained using the ME-equivalence relation, and is not a table of GQLs. Under the TO-equivalence relation, the third entry is equivalent to the fourth entry of Table VII. So the four entries in Table VII actually describe

TABLE XVII. All the 32 modular extensions of sRep $(Z_2 \times Z_2^f)$  with N = 9.

| $N_c^{ \Theta }$        | $D^2$ | $d_1,d_2,\ldots$                                              | $s_1, s_2, \ldots$                                                                                                                                                                                                                                                                             | comment                              |
|-------------------------|-------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $4_0^0$                 | 4     | 1,1,1,1                                                       | $0,0,\frac{1}{2},\frac{1}{2}$                                                                                                                                                                                                                                                                  | $sRep(Z_2 \times Z_2^f)$             |
| $9_0^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{7}{16}, \frac{9}{16}, \frac{15}{16}, 0$                                                                                                                                                                                                   | $3^B_{-1/2}\boxtimes 3^B_{1/2}$      |
| $9_0^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{7}{16},\frac{9}{16},\frac{15}{16},0$                                                                                                                                                                                                           | $3^B_{-1/2}\boxtimes 3^B_{1/2}$      |
| $9_0^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{5}{16}, \frac{11}{16}, \frac{13}{16}, 0$                                                                                                                                                                                                  | $3^B_{-3/2}\boxtimes 3^B_{3/2}$      |
| $9_0^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{5}{16},\frac{11}{16},\frac{13}{16},0$                                                                                                                                                                                                          | $3^{B}_{-3/2} \boxtimes 3^{B}_{3/2}$ |
| $9_1^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{9}{16},\frac{9}{16},\frac{1}{8}$                                                                                                                                                                                                  | $3_{1/2}^B\boxtimes 3_{1/2}^B$       |
| $9_1^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{7}{16}, \frac{11}{16}, \frac{15}{16}, \frac{1}{8}$                                                                                                                                                                                        | $3^{B}_{-1/2}\boxtimes 3^{B}_{3/2}$  |
| $9_1^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{7}{16}, \frac{11}{16}, \frac{15}{16}, \frac{1}{8}$                                                                                                                                                                                        | $3^B_{-1/2}\boxtimes 3^B_{3/2}$      |
| $9_1^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{5}{16}, \frac{13}{16}, \frac{13}{16}, \frac{1}{8}$                                                                                                                                                                                        | $3^{B}_{-3/2}\boxtimes 3^{B}_{5/2}$  |
| $9_{2}^{B}$ $9_{2}^{B}$ | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{3}{16},\frac{9}{16},\frac{11}{16},\frac{1}{4}$                                                                                                                                                                                                 | $3_{3/2}^B \boxtimes 3_{1/2}^B$      |
| $9_{2}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{3}{16}, \frac{9}{16}, \frac{11}{16}, \frac{1}{4}$                                                                                                                                                                                         | $3_{3/2}^B \boxtimes 3_{1/2}^B$      |
| $9_{2}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{7}{16}, \frac{13}{16}, \frac{15}{16}, \frac{1}{4}$                                                                                                                                                                                        | $3^{B}_{-1/2} \boxtimes 3^{B}_{5/2}$ |
| $9_{2}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{3}{16},\frac{9}{16},\frac{11}{16},\frac{1}{4}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{7}{16},\frac{13}{16},\frac{15}{16},\frac{1}{4}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{7}{16},\frac{13}{16},\frac{15}{16},\frac{1}{4}$ | $3^{B}_{-1/2} \boxtimes 3^{B}_{5/2}$ |
| $9_{3}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{5}{16},\frac{9}{16},\frac{13}{16},\frac{3}{8}$                                                                                                                                                                                                 | $3_{5/2}^B \boxtimes 3_{1/2}^B$      |
| $9_{3}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{5}{16}, \frac{9}{16}, \frac{13}{16}, \frac{3}{8}$                                                                                                                                                                                         | $3_{5/2}^{B}\boxtimes 3_{1/2}^{B}$   |
| $9_3^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}, \frac{11}{16}, \frac{11}{16}, \frac{3}{8}$                                                                                                                                                                                        | $3_{3/2}^{B}\boxtimes 3_{3/2}^{B}$   |
| $9_{3}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{15}{16}, \frac{15}{16}, \frac{3}{8}$                                                                                                                                                                          | $3^{B}_{-1/2} \boxtimes 3^{B}_{7/2}$ |
| $9_{4}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{7}{16}, \frac{9}{16}, \frac{15}{16}, \frac{1}{2}$                                                                                                                                                                                         | $3_{7/2}^{B}\boxtimes 3_{1/2}^{B}$   |
| $9_4^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{7}{16},\frac{9}{16},\frac{15}{16},\frac{1}{2}$                                                                                                                                                                                                 | $3_{7/2}^B \boxtimes 3_{1/2}^B$      |
| $9_4^B$                 | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{5}{16},\frac{11}{16},\frac{13}{16},\frac{1}{2}$                                                                                                                                                                                                | $3_{5/2}^{B}\boxtimes 3_{3/2}^{B}$   |
| $9_{4}^{B}$             | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{5}{16}, \frac{11}{16}, \frac{13}{16}, \frac{1}{2}$                                                                                                                                                                                        | $3_{5/2}^{B}\boxtimes 3_{3/2}^{B}$   |
| $9^{B}_{-3}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{9}{16},\frac{9}{16},\frac{5}{8} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{7}{16},\frac{11}{16},\frac{15}{16},\frac{5}{8}$                                                                                                 | $3^{B}_{-7/2}\boxtimes 3^{B}_{1/2}$  |
| $9^{B}_{-3}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{7}{16}, \frac{11}{16}, \frac{15}{16}, \frac{5}{8}$                                                                                                                                                                                        | $3_{7/2}^B\boxtimes 3_{3/2}^B$       |
| $9^{B}_{-3}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{7}{16},\frac{11}{16},\frac{15}{16},\frac{5}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{5}{16},\frac{13}{16},\frac{13}{16},\frac{5}{8}$                                                                                                | $3_{7/2}^{B}\boxtimes 3_{3/2}^{B}$   |
| $9^{B}_{-3}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{5}{16}, \frac{13}{16}, \frac{13}{16}, \frac{5}{8}$                                                                                                                                                                                        | $3_{5/2}^{B}\boxtimes 3_{5/2}^{B}$   |
| $9^{B}_{-2}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{3}{16},\frac{9}{16},\frac{11}{16},\frac{3}{4}$                                                                                                                                                                                                 | $3^{B}_{-5/2} \boxtimes 3^{B}_{1/2}$ |
| $9^{B}_{-2}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{3}{16}, \frac{9}{16}, \frac{11}{16}, \frac{3}{4}$                                                                                                                                                                                         | $3^B_{-5/2}\boxtimes 3^B_{1/2}$      |
| $9^{B}_{-2}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{7}{16}, \frac{13}{16}, \frac{15}{16}, \frac{3}{4}$                                                                                                                                                                                        | $3_{7/2}^{B}\boxtimes 3_{5/2}^{B}$   |
| $9^{B}_{-2}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{7}{16},\frac{13}{16},\frac{15}{16},\frac{3}{4}$                                                                                                                                                                                                | $3_{7/2}^{B}\boxtimes 3_{5/2}^{B}$   |
| $9^{B}_{-1}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{5}{16}, \frac{9}{16}, \frac{13}{16}, \frac{7}{8}$                                                                                                                                                                                         | $3^{B}_{-3/2} \boxtimes 3^{B}_{1/2}$ |
| $9^{B}_{-1}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{5}{16},\frac{9}{16},\frac{13}{16},\frac{7}{8}$                                                                                                                                                                                                 | $3^{B}_{-3/2} \boxtimes 3^{B}_{1/2}$ |
| $9^{B}_{-1}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}, \frac{11}{16}, \frac{11}{16}, \frac{7}{8}$                                                                                                                                                                                        | $3^{B}_{-5/2} \boxtimes 3^{B}_{3/2}$ |
| $9^{B}_{-1}$            | 16    | $1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1,2$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{15}{16}, \frac{15}{16}, \frac{7}{8}$                                                                                                                                                                          | $3_{7/2}^{B}\boxtimes 3_{7/2}^{B}$   |

TABLE XVIII. The first 32 modular extensions of sRep $(Z_2 \times Z_2^f)$  with N = 12.

| $N_c^{ \Theta }$                                                                                                               | $D^2$ | $d_1,d_2,\ldots$                                                        | $s_1, s_2, \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | comment                                                           |
|--------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| $ \begin{array}{c}     4_0^0 \\     12_{1/2}^B \\     12_{1/2}^B \end{array} $                                                 | 4     | 1,1,1,1                                                                 | $0,0,\frac{1}{2},\frac{1}{2}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{9}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{9}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{16},\frac{1}{16},\frac{7}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{16},\frac{1}{16},\frac{7}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{1}{16},\frac{5}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{1}{16},\frac{5}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{1}{16},\frac{5}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{3}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{1}{16},\frac{3}{16},\frac{3}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{1}{16},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{9}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{5}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{3}{16},\frac{3}{16},\frac{5}{16},\frac{5}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{16},\frac{5}{16},\frac{5}{16},\frac{5}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{16},\frac{5}{16},\frac{5}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{5}{16},\frac{5}{16},\frac{5}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{5}{16},\frac{5}{16},\frac{5}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac$ | $sRep(Z_2 \times Z_2^f)$                                          |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4_0^B \boxtimes 3_{1/2}^B$                                       |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4_0^B \boxtimes 3_{1/2}^B$                                       |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{1}{16},\frac{1}{16},\frac{7}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4^{B}_{-3}\boxtimes 3^{B}_{7/2}$                                 |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{1}{16}, \frac{1}{16}, \frac{7}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4^B_{-3}\boxtimes 3^B_{7/2}$                                     |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1, 1, 1, 1, 1, 1, 1, 1, 1, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{16}, \frac{1}{16}, \frac{5}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $6^B_{-1/2}\boxtimes 2^B_1$                                       |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{1}{16},\frac{5}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6^B_{-1/2}\boxtimes 2^B_1$                                       |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{16}, \frac{1}{16}, \frac{3}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4^{B}_{-1} \boxtimes 3^{B}_{3/2}$                                |
| $12^{B}_{1/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{16},\frac{1}{16},\frac{3}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4^B_{-1}\boxtimes 3^B_{3/2}$                                     |
| $12^{\frac{1}{2}}_{3/2}$                                                                                                       | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{3}{16},\frac{3}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4_0^B \boxtimes 3_{3/2}^B$                                       |
| $12^{B}_{3/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_0^B \boxtimes 3_{3/2}^B$                                       |
| $12^{B}_{3/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{1}{16},\frac{3}{16},\frac{3}{16},\frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4_1^B \boxtimes 3_{1/2}^B$                                       |
| $12^{B}_{3/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{1}{16}, \frac{3}{16}, \frac{3}{16}, \frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4_1^B \boxtimes 3_{1/2}^B$                                       |
| $12^{B}_{3/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{16}, \frac{3}{16}, \frac{7}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $6_{1/2}^{B}\boxtimes 2_{1}^{B}$ $6_{1/2}^{B}\boxtimes 2_{1}^{B}$ |
| $12^{B}_{3/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{7}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6_{1/2}^B\boxtimes 2_1^B$                                        |
| $12^{B}_{3/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \frac{7}{8}, \frac{7}{8}, \frac{3}{16}, \frac{3}{16}, \frac{5}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4^{B}_{-1} \boxtimes 3^{B}_{5/2}$                                |
| $12^{B}_{3/2} \\ 12^{B}_{3/2} \\ 12^{B}_{3/2} \\ 12^{B}_{3/2} \\ 12^{B}_{3/2} \\ 12^{B}_{3/2} \\ 12^{B}_{3/2} \\ 12^{B}_{3/2}$ | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \frac{7}{8}, \frac{7}{8}, \frac{3}{16}, \frac{3}{16}, \frac{5}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4^{B}_{-1}\boxtimes 3^{B}_{5/2}$                                 |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{5}{16}, \frac{5}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_0^B \boxtimes 3_{5/2}^B$                                       |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{5}{16}, \frac{5}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_0^B \boxtimes 3_{5/2}^B$                                       |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{3}{16},\frac{5}{16},\frac{5}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4_1^B \boxtimes 3_{3/2}^B$                                       |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{3}{16},\frac{5}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4_1^B \boxtimes 3_{3/2}^B$                                       |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{5}{16},\frac{5}{16},\frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $6_{3/2}^B \boxtimes 2_1^B$                                       |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{5}{16},\frac{5}{16},\frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $6_{3/2}^{B}\boxtimes 2_{1}^{B}$                                  |
| $12^{B}_{5/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{7}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4^{B}_{-1}\boxtimes 3^{B}_{7/2}$                                 |
| $12_{5/2}^{B}$ $12_{5/2}^{B}$ $12_{5/2}^{B}$ $12_{5/2}^{B}$ $12_{5/2}^{B}$ $12_{5/2}^{B}$ $12_{5/2}^{B}$ $12_{7/2}^{B}$        | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{7}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4^{B}_{-1}\boxtimes 3^{B}_{7/2}$                                 |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_0^B \boxtimes 3_{7/2}^B$                                       |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{16}, \frac{7}{16}, \frac{7}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_0^B \boxtimes 3_{7/2}^B$                                       |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{7}{16},\frac{7}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4_1^B \boxtimes 3_{5/2}^B$                                       |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^{1},\zeta_2^{1},\zeta_2^{1},\zeta_2^{1}$       | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{7}{16},\frac{7}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{7}{16},\frac{7}{16},\frac{7}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4_1^B \boxtimes 3_{5/2}^B$                                       |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^{1},\zeta_2^{1},\zeta_2^{1},\zeta_2^{1}$       | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{16}, \frac{7}{16}, \frac{7}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6_{5/2}^B\boxtimes 2_1^B$                                        |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^{1},\zeta_2^{1},\zeta_2^{1},\zeta_2^{1}$       | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{16}, \frac{7}{16}, \frac{7}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6_{5/2}^B \boxtimes 2_1^B$                                       |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^{1},\zeta_2^{1},\zeta_2^{1},\zeta_2^{1}$       | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{7}{16},\frac{7}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{3}{16},\frac{7}{16},\frac{7}{16},\frac{11}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{7}{16},\frac{7}{16},\frac{9}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{7}{16},\frac{7}{16},\frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4_3^B \boxtimes 3_{1/2}^B$                                       |
| $12^{B}_{7/2}$                                                                                                                 | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4_3^B \boxtimes 3_{1/2}^B$                                       |

three different  $Z_2$ -SET orders. This has a very interesting consequence. The  $Z_2$ -SET state described by the third (or fourth) entry in Table VII, after stacked with a  $Z_2$ -SPT state, still remains in the same phase. This is an example of the following general statement made previously. The GQLs with bulk excitations described by  $\mathcal C$  are in one-to-one correspondence with the quotient  $\mathcal M_{\rm ext}(\mathcal C)/{\rm Aut}(\mathcal C)$  plus a central charge c. In such an example  ${\rm Aut}(\mathcal C)$  is nontrivial.

It is worth noting here that for the second  $5_1^{\xi_1^1}$ , two modular extensions  $3_{-1/2}^B \boxtimes 3_{3/2}^B$  and  $3_{3/2}^B \boxtimes 3_{-1/2}^B$  are actually equivalent UMTCs. This is an example that different embedings leads to different modular extensions. For  $3_{-1/2}^B \boxtimes 3_{3/2}^B$ , the first fermion in  $5_1^{\xi_2^1}$  is embedded into  $3_{-1/2}^B$  and the second fermion is embedded into  $3_{3/2}^B$ , while for  $3_{3/2}^B \boxtimes 3_{-1/2}^B$ , the first fermion is embedded into  $3_{3/2}^B$  and the second fermion is embedded into  $3_{-1/2}^B$ . The equivalence between  $3_{-1/2}^B \boxtimes 3_{3/2}^B$ 

and  $3_{3/2}^B \boxtimes 3_{-1/2}^B$  that exchanges both fermions and symmetry twists fails to relate the two embeddings, as they differ by a nontrivial automorphism of  $5_1^{\zeta_2^1}$  that exchanges only the two fermions. This is an example that the Aut( $\mathcal{C}$ ) action permutes the modular extensions, as discussed in Sec. IV.

#### E. $Z_3$ , $Z_5$ , and $S_3$ SPT orders for bosonic systems

We also find that  $Rep(Z_3)$  has three modular extensions (see Table XI),  $Rep(Z_5)$  has five modular extensions (see Table XIV), and  $Rep(S_3)$  has six modular extensions (see Table XII). They correspond to the three  $Z_3$ -SPT, the five  $Z_5$ -SPT, and the six  $S_3$ -SPT states respectively. These results agree with those from group cohomology theory [19].

We note that for  $Rep(Z_2)$ ,  $Rep(Z_3)$ , and  $Rep(S_3)$ , their modular extensions all correspond to distinct UMTCs. However, for  $Rep(Z_5)$ , its five modular extensions only correspond to

TABLE XIX. The second 32 modular extensions of sRep( $Z_2 \times Z_2^f$ ) with N = 12.

| $N_c^{ \Theta }$ | $D^2$ | $d_1,d_2,\ldots$                                                        | $s_1, s_2, \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | comment                            |
|------------------|-------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| $4_0^0$          | 4     | 1,1,1,1                                                                 | $0,0,\frac{1}{2},\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $sRep(Z_2 \times Z_2^f)$           |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $\begin{array}{c} 0,0,\frac{1}{2},\frac{1}{2} \\ 0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{9}{16},\frac{9}{16},\frac{9}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{9}{16},\frac{9}{16},\frac{9}{16},\frac{9}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{7}{16},\frac{9}{16},\frac{9}{16},\frac{9}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{7}{16},\frac{9}{16},\frac{9}{16},\frac{15}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{5}{16},\frac{9}{16},\frac{9}{16},\frac{15}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{5}{16},\frac{9}{16},\frac{9}{16},\frac{13}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{5}{16},\frac{9}{16},\frac{9}{16},\frac{13}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{5}{16},\frac{9}{16},\frac{9}{16},\frac{13}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{3}{16},\frac{9}{16},\frac{9}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{3}{16},\frac{9}{16},\frac{9}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{11}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{11}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{1}{16},\frac{9}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{1}{16},\frac{9}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{7}{16},\frac{11}{16},\frac{11}{16},\frac{15}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{7}{16},\frac{11}{16},\frac{11}{16},\frac{15}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{11}{16},\frac{11}{16},\frac{13}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{5}{16},\frac{11}{16},\frac{11}{16} \\ 0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}$ | $4_4^B \boxtimes 3_{1/2}^B$        |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{9}{16},\frac{9}{16},\frac{9}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4_4^B \boxtimes 3_{1/2}^B$        |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{7}{16},\frac{9}{16},\frac{9}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4_1^B \boxtimes 3_{7/2}^B$        |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{7}{16}, \frac{9}{16}, \frac{9}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4_1^B \boxtimes 3_{7/2}^B$        |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{5}{16}, \frac{9}{16}, \frac{9}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $6_{7/2}^{B}\boxtimes 2_{1}^{B}$   |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{5}{16}, \frac{9}{16}, \frac{9}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $6_{7/2}^B\boxtimes 2_1^B$         |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{3}{16},\frac{9}{16},\frac{9}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4_3^B \boxtimes 3_{3/2}^B$        |
| $12^{B}_{-7/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{3}{16},\frac{9}{16},\frac{9}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4_3^B \boxtimes 3_{3/2}^B$        |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{11}{16},\frac{11}{16},\frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4_4^B \boxtimes 3_{3/2}^B$        |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{11}{16}, \frac{11}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4_4^B \boxtimes 3_{3/2}^B$        |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{1}{16}, \frac{9}{16}, \frac{11}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4^{B}_{-3} \boxtimes 3^{B}_{1/2}$ |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{1}{16}, \frac{9}{16}, \frac{11}{16}, \frac{11}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4^{B}_{-3} \boxtimes 3^{B}_{1/2}$ |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{7}{16}, \frac{11}{16}, \frac{11}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $6^B_{-7/2}\boxtimes 2^B_1$        |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,1,\xi_2^1,\xi_2^1,\xi_2^1,\xi_2^1$                     | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{7}{16}, \frac{11}{16}, \frac{11}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $6^B_{-7/2}\boxtimes 2^B_1$        |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \frac{7}{8}, \frac{7}{8}, \frac{5}{16}, \frac{11}{16}, \frac{11}{16}, \frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4_3^B \boxtimes 3_{5/2}^B$        |
| $12^{B}_{-5/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{2}{8},\frac{2}{8},\frac{2}{8},\frac{1}{8},\frac{1}{8},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{5}{16},\frac{11}{16},\frac{11}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{13}{16},\frac{13}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{13}{16},\frac{13}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{16},\frac{11}{16},\frac{13}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{16},\frac{11}{16},\frac{13}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{9}{16},\frac{13}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{9}{16},\frac{13}{16},\frac{13}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{16},\frac{13}{16},\frac{13}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{16},\frac{13}{16},\frac{13}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{16},\frac{13}{16},\frac{13}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{15}{16},\frac{15}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4_3^B \boxtimes 3_{5/2}^B$        |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{13}{16},\frac{13}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4_4^B \boxtimes 3_{5/2}^B$        |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{13}{16},\frac{13}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4_4^B \boxtimes 3_{5/2}^B$        |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{16},\frac{11}{16},\frac{13}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4^B_{-3}\boxtimes 3^B_{3/2}$      |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{3}{16},\frac{11}{16},\frac{13}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4^{B}_{-3} \boxtimes 3^{B}_{3/2}$ |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{9}{16},\frac{13}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $6_{-5/2}^{B}\boxtimes 2_{1}^{B}$  |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{1}{16},\frac{9}{16},\frac{13}{16},\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $6^B_{-5/2}\boxtimes 2^B_1$        |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{16}, \frac{13}{16}, \frac{13}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4_3^B \boxtimes 3_{7/2}^B$        |
| $12^{B}_{-3/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{16},\frac{13}{16},\frac{13}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4_3^B \boxtimes 3_{7/2}^B$        |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{16}, \frac{15}{16}, \frac{15}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4_4^B \boxtimes 3_{7/2}^B$        |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{15}{16},\frac{15}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4_4^B \boxtimes 3_{7/2}^B$        |
| $12^{B}_{-1/2}$  | 16    | $1, 1, 1, 1, 1, 1, 1, 1, 1, \zeta_2^1, \zeta_2^1, \zeta_2^1, \zeta_2^1$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{16}, \frac{13}{16}, \frac{15}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4^{B}_{-3}\boxtimes 3^{B}_{5/2}$  |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$             | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{16}, \frac{13}{16}, \frac{15}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4^{B}_{-3}\boxtimes 3^{B}_{5/2}$  |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$             | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{16}, \frac{11}{16}, \frac{15}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $6^B_{-3/2}\boxtimes 2^B_1$        |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$             | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{16}, \frac{11}{16}, \frac{15}{16}, \frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $6^B_{-3/2}\boxtimes 2^B_1$        |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$             | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{1}{16},\frac{1}{16},\frac{1}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{13}{16},\frac{15}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{16},\frac{13}{16},\frac{15}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{11}{16},\frac{15}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{16},\frac{11}{16},\frac{15}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{9}{16},\frac{15}{16},\frac{15}{16}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{9}{16},\frac{15}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4^{B}_{-1} \boxtimes 3^{B}_{1/2}$ |
| $12^{B}_{-1/2}$  | 16    | $1,1,1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1,\zeta_2^1$               | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{1}{16},\frac{10}{16},\frac{15}{16},\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4^B_{-1}\boxtimes 3^B_{1/2}$      |

three distinct UMTCs. Rep( $Z_5$ ) has five modular extensions because Rep( $Z_5$ ) can be embedded into the same UMTC in different ways. The different embeddings correspond to different modular extensions.

#### F. Invertible fermionic topological orders

We find that  $sRep(Z_2^f)$  has 16 modular extensions (see Table XIII) which correspond to invertible fermionic topological orders in 2+1D. One might thought that the invertible fermionic topological orders are classified by  $\mathbb{Z}_{16}$ . However, in fact, the invertible fermionic topological orders are classified by  $\mathbb{Z}$ , obtained by stacking the c=1/2 p+ip states. The discrepancy is due to the fact that the modular extensions cannot see the  $c=8E_8$  states. The 16 modular extensions exactly correspond to the invertible fermionic topological orders modulo the  $E_8$  states.

We also find that the modular extensions with c = even have a  $Z_2 \times Z_2$  fusion rule, while the modular extensions with c = odd have a  $Z_4$  fusion rule (indicated by F:  $Z_2 \times Z_2$  or F:  $Z_4$  in the comment column of Table).

The  $Z_2^f$ -SPT states for fermions is given by the modular extensions with zero central charge. We see that there is only one modular extension with central charge c=0. Thus there is no nontrivial 2+1D fermionic SPT states with  $Z_2^f$  symmetry. In general, the modular extensions of  $\mathrm{sRep}(G^f)$  with zero central charge correspond to the fermionic SPT states in 2+1D with symmetry  $G^f$ .

To calculate the  $Z_2 \times Z_2^f$  SPT orders for fermionic systems, we first compute the modular extensions for  $\mathrm{sRep}(Z_2 \times Z_2^f)$ . We note that  $\mathrm{sRep}(Z_2 \times Z_2^f) = \mathrm{sRep}(Z_2^f \times \tilde{Z}_2^f)$ . Thus the modular extensions for  $\mathrm{sRep}(Z_2 \times Z_2^f)$  is the modular extensions of  $\mathrm{sRep}(Z_2^f \times \tilde{Z}_2^f)$ . Some of the modular extensions

|           |                                                | _f                      |
|-----------|------------------------------------------------|-------------------------|
| TABLE XX. | All the 32 modular extensions of sRep( $Z_2$ ) | $(Z_2^r)$ with $N=16$ . |

| $N_c^{ \Theta }$ | $D^2$ | $d_1, d_2, \dots$                        | $s_1, s_2, \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | comment                   |
|------------------|-------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| $4_0^0$          | 4     | 1,1,1,1                                  | $0,0,\frac{1}{2},\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $sRep(Z_2 \times Z_2^f)$  |
| $16_0^B$         | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4_0^B oxtimes 4_0^B$     |
| $16_0^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4^B_{-1}\boxtimes 4^B_1$ |
| $16_0^B$         | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4^B_{-1}\boxtimes 4^B_1$ |
| $16_0^B$         | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8^B_{-1}\boxtimes 2^B_1$ |
| $16_1^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4_1^B \boxtimes 4_0^B$   |
| $16_1^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1            | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}, \frac{1}{2}, \frac{5}{8}, \frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4_1^B \boxtimes 4_0^B$   |
| $16_1^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1            | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8}, \frac{3}{8}, \frac{3}{4}, \frac{3}{4}, \frac{7}{8}, \frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8_0^B \boxtimes 2_1^B$   |
| $16_1^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1            | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8}, \frac{3}{8}, \frac{3}{4}, \frac{3}{4}, \frac{7}{8}, \frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8_0^B \boxtimes 2_1^B$   |
| $16_{2}^{B}$     | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8_1^B \boxtimes 2_1^B$   |
| $16_{2}^{B}$     | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8_1^B \boxtimes 2_1^B$   |
| $16_{2}^{B}$     | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{4},\frac{4}{4},\frac{1}{8},\frac{1}{8}\\0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4}\\0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4_1^B\boxtimes 4_1^B$    |
| $16_{2}^{B}$     | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4^B_{-1}\boxtimes 4^B_3$ |
| $16_{3}^{B}$     | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4_3^B \boxtimes 4_0^B$   |
| $16_{3}^{B}$     | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4_3^B \boxtimes 4_0^B$   |
| $16_{3}^{B}$     | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $8_2^B\boxtimes 2_1^B$    |
| $16_{3}^{B}$     | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{3}{8},\frac{3}{4},\frac{3}{4}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8_2^B \boxtimes 2_1^B$   |
| $16_{4}^{B}$     | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4_4^B oxtimes 4_0^B$     |
| $16_4^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4_3^B \boxtimes 4_1^B$   |
| $16_4^B$         | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{2},\frac{5}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{2},\frac{5}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}\\0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{2},\frac{5}{8},\frac{5}{8},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4_3^B \boxtimes 4_1^B$   |
| $16_4^B$         | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $8_3^B\boxtimes 2_1^B$    |
| $16^{B}_{-3}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4^B_{-3}\boxtimes 4^B_0$ |
| $16^{B}_{-3}$    | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4^B_{-3}\boxtimes 4^B_0$ |
| $16^{B}_{-3}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{3}{4},\frac{3}{4},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $8_4^B \boxtimes 2_1^B$   |
| $16^{B}_{-3}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8}, \frac{3}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{5}{8}, \frac{3}{4}, \frac{3}{4}, \frac{7}{8}, \frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8_4^B \boxtimes 2_1^B$   |
| $16^{B}_{-2}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{3}{4},\frac{3}{4},\frac{7}{8},\frac{7}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{8},\frac{3}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{7}{8},\frac{7}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $8^B_{-3}\boxtimes 2^B_1$ |
| $16^{B}_{-2}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1            | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $8^B_{-3}\boxtimes 2^B_1$ |
| $16^{B}_{-2}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4^B_{-3}\boxtimes 4^B_1$ |
| $16^{B}_{-2}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{5}{8},\frac{3}{8},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4_3^B \boxtimes 4_3^B$   |
| $16^{B}_{-1}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1            | $0,0,\frac{7}{2},\frac{7}{2},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{4}{4},\frac{4}{4},\frac{4}{4},\frac{4}{4},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4^B_{-1}\boxtimes 4^B_0$ |
| $16^{B}_{-1}$    | 16    | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{7}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8}$ $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2},\frac{1}{2},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8},\frac{7}{8}$ $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}$ | $4^B_{-1}\boxtimes 4^B_0$ |
| $16^{B}_{-1}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0, 0, \overline{2}, \overline{2}, \overline{8}, \overline{8}, \overline{4}, \overline{4}, \overline{8}, \overline{8}, \overline{4}, \overline{4}, \overline{8}, \overline{8}, \overline{8}, \overline{8}, \overline{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $8^B_{-2}\boxtimes 2^B_1$ |
| $16^{B}_{-1}$    | 16    | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1          | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{4}, \frac{5}{8}, \frac{5}{8}, \frac{3}{4}, \frac{3}{4}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}, \frac{7}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8^B_{-2}\boxtimes 2^B_1$ |

of  $\operatorname{sRep}(Z_2^f \times \tilde{Z}_2^f)$  are given by the modular extensions of  $\operatorname{sRep}(Z_2^f)$  stacked (under  $\boxtimes$ ) with the modular extensions of  $\operatorname{sRep}(\tilde{Z}_2^f)$ . Some of the modular extensions of  $\operatorname{sRep}(Z_2 \times Z_2^f)$  are given by the modular extensions for  $\operatorname{Rep}(Z_2)$  stacked (under  $\boxtimes$ ) with the modular extensions of  $\operatorname{sRep}(Z_2^f)$ .

The above mathematical statements correspond to the following physical picture. Some fermionic GQLs with  $Z_2 \times Z_2^f$  symmetry can be viewed as bosonic GQLs with  $Z_2$  symmetry stacked with fermionic GQLs with  $Z_2^f$  symmetry. Also some fermionic GQLs with  $Z_2^f \times \tilde{Z}_2^f$  symmetry can be viewed as fermionic GQLs with  $Z_2^f$  symmetry stacked with fermionic GQLs with  $\tilde{Z}_2^f$  symmetry.

Using Eq. (12), we find that the modular extensions for  $Z_2 \times Z_2^f$  symmetry must have ranks 7, 9, 10, 12, and 16. By direct search for those ranks, we find that the modular extensions of  $sRep(Z_2 \times Z_2^f)$  are given by Tables XVII,

**XVIII**, **XIX**, and **XX**. The N=9 modular extensions of  $sRep(Z_2 \times Z_2^f)$  in Table **XVII** are given by the stacking of the N=3 modular extensions of  $sRep(Z_2^f)$  and the N=3 modular extensions of  $sRep(\tilde{Z}_2^f)$ . The N=16 modular extensions of  $sRep(Z_2 \times Z_2^f)$  in Table **XX** are given by the stacking of the N=4 modular extensions of  $sRep(Z_2^f)$  and the N=4 modular extensions of  $sRep(\tilde{Z}_2^f)$ . There are also  $64 \ N=12$  modular extensions of  $sRep(Z_2 \times Z_2^f)$  given by the stacking of the N=4 (N=3) modular extensions of  $sRep(Z_2^f)$  and the N=3 (N=4) modular extensions of  $sRep(\tilde{Z}_2^f)$ .

Many of the modular extensions have nontrivial topological orders since the central charge c is nonzero. There are eight modular extensions for each central charge  $c = 0,1/2,1,3/2,\ldots,15/2$ , and in total  $8\times 16 = 128$  modular extensions. Those eight with c = 0 correspond to the  $Z_2\times Z_2^f$ 

TABLE XXI. All the modular extensions of  $sRep(Z_6^f) = sRep(Z_3 \times Z_2^f)$ .

| $N_c^{ \Theta }$                | $D^2$    | $d_1,d_2,\ldots$                                                    | $s_1, s_2, \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $6_0^0$                         | 6        | 1,1,1,1,1,1                                                         | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2} \text{ sRep}(Z_6^f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $36_0^B$                        | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $36_0^B$                        | 36       | 1 × 36                                                              | $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,0,0,0,0,0,0,0,0,0,0,0,0,\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{2},\frac{1}{2},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{6},\frac{5}{6}$ $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,0,0,0,0,0,0,0,0,0,0,0,\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{2},\frac{1}{2},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{6},\frac{5}{6}$ $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,0,0,0,0,0,\frac{1}{18},\frac{1}{18},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{2}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{5}{9},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{8}{8},\frac{8}{8},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{8}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $36_0^B$                        | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, 0, 0, 0, 0, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{5}{18}, \frac{5}{18}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{4}{9}, \frac{11}{18}, \frac{11}{18}, \frac{7}{9}, \frac{7}{9}, \frac{7}{9}, \frac{7}{9}, \frac{7}{9}, \frac{7}{9}, \frac{7}{18}, \frac{17}{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $36_1^B$                        | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{8}, \frac{1}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $36_1^B$                        | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{72}, \frac{1}{72}, \frac{1}{72}, \frac{1}{72}, \frac{1}{18}, \frac{1}{18}, \frac{1}{8}, \frac{2}{9}, \frac{25}{72}, \frac{25}{72}, \frac{25}{72}, \frac{25}{72}, \frac{25}{72}, \frac{7}{18}, \frac{7}{18}, \frac{5}{9}, \frac{5}{9}, \frac{49}{72}, \frac{49}{72}, \frac{49}{72}, \frac{49}{72}, \frac{49}{18}, \frac{13}{18}, \frac{8}{18}, \frac{8}{9}, \frac{8}{9}, \frac{13}{18}, \frac{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $36_1^B$                        | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{9}, \frac{1}{9}, \frac{1}{8}, \frac{1}{72}, \frac{17}{72}, \frac{17}{72}, \frac{17}{72}, \frac{17}{18}, \frac{5}{18}, \frac{4}{9}, \frac{4}{9}, \frac{41}{72}, \frac{41}{72}, \frac{41}{72}, \frac{41}{18}, \frac{11}{18}, \frac{7}{9}, \frac{7}{9}, \frac{65}{72}, \frac{65}{72}, \frac{65}{72}, \frac{65}{72}, \frac{65}{72}, \frac{65}{72}, \frac{65}{72}, \frac{17}{18}, \frac{17}{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $36_{2}^{B}$                    | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{4}, \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $36_{2}^{B}$                    | 36       | $1 \times 36$                                                       | $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{36},\frac{1}{36},\frac{1}{36},\frac{1}{36},\frac{1}{36},\frac{1}{9},\frac{1}{9},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $36_{2}^{B}$                    | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{18}, \frac{1}{18}, \frac{5}{36}, \frac{5}{36}, \frac{5}{36}, \frac{5}{36}, \frac{5}{36}, \frac{2}{9}, \frac{2}{9}, \frac{1}{4}, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $36_{3}^{B}$                    | 36       | $1 \times 36$                                                       | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{24}, \frac{1}{24}, \frac{1}{24}, \frac{1}{24}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}, \frac{1}{2}, \frac{17}{24}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $36_{3}^{B}$                    | 36       | $1 \times 36$                                                       | $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,0,\frac{1}{24},\frac{1}{24},\frac{1}{24},\frac{1}{24},\frac{1}{24},\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{3}{3},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{2},\frac{1}{2},\frac{1}{2},\frac{1}{24},\frac{1}{24},\frac{1}{24},\frac{1}{24},\frac{1}{6},\frac{6}{6}$ $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{18},\frac{1}{18},\frac{2}{9},\frac{2}{9},\frac{19}{72},\frac{19}{72},\frac{19}{72},\frac{19}{72},\frac{8}{8},\frac{8}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{18},\frac{7}{18},\frac{7}{18},\frac{5}{9},\frac{5}{72},\frac{43}{72},\frac{43}{72},\frac{43}{72},\frac{13}{18},\frac{13}{18},\frac{8}{9},\frac{8}{9},\frac{67}{9},\frac{67}{72},\frac{67}{72},\frac{67}{72}$ $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{9},\frac{1}{17},\frac{11}{72},\frac{11}{72},\frac{11}{72},\frac{11}{15},\frac{1}{5},\frac{5}{18},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{9},\frac{4}{9},\frac{43}{9},\frac{35}{72},\frac{35}{72},\frac{35}{72},\frac{13}{18},\frac{11}{18},\frac{9}{9},\frac{9}{9},\frac{9}{9},\frac{77}{92},\frac{79}{72},\frac{99}{72},\frac{99}{72},\frac{99}{72},\frac{99}{72},\frac{17}{18},\frac{11}{18}$ $0,\frac{1}{2},0,\frac{1}{3},0,\frac{1}{3},0,0,\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $36_{3}^{B}$                    | 36       | 1 × 36                                                              | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{9}, \frac{11}{72}, \frac{11}{72}, \frac{11}{72}, \frac{11}{72}, \frac{11}{72}, \frac{13}{72}, \frac{11}{72}, \frac{11}{72$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $36_4^B$                        | 36       | 1 × 36                                                              | $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{18},\frac{1}{18},\frac{2}{19},\frac{2}{172},\frac{1}{172},\frac{1}{172},\frac{1}{172},\frac{1}{18},\frac{1}{18},\frac{3}{18},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{3}{8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $36_4^B$                        | 36       | 1 × 36                                                              | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{18}, \frac{1}{18}, \frac{1}{18}, \frac{1}{18}, \frac{1}{18}, \frac{1}{18}, \frac{2}{18}, \frac{2}{9}, \frac{7}{9}, \frac{7}{18}, \frac{7}{18}, \frac{7}{18}, \frac{7}{18}, \frac{7}{18}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{2}, \frac{5}{9}, \frac{13}{9}, \frac{13}{18}, \frac{13}{18}, \frac{13}{18}, \frac{13}{18}, \frac{13}{18}, \frac{8}{18}, \frac{9}{18}, \frac{9}{9}, \frac{9}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $36_4^B$                        | 36       | 1 × 36                                                              | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{9}, \frac{1}{9}, \frac{1}{18}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $36^{B}_{-3}$                   | 36       | 1 × 36                                                              | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{24}, \frac{1}{24}, \frac{1}{24}, \frac{1}{24}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $36^{B}_{-3}$                   | 36       | 1 × 36                                                              | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $36^{B}_{-3}$                   | 36       | 1 × 36                                                              | $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{7}{72},\frac{7}{72},\frac{7}{72},\frac{7}{72},\frac{7}{72},\frac{7}{9},\frac{1}{9},\frac{1}{18},\frac{7}{18},\frac{7}{72},\frac{7}{72},\frac{7}{72},\frac{7}{72},\frac{7}{72},\frac{1}{9},\frac{1}{9},\frac{1}{18},\frac{1}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{8}{8},\frac{7}{8},\frac{7}{72},\frac{7}{72},\frac{9}{72},\frac{9}{9},\frac{1}{18},\frac{1}{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $36^{B}_{-2}$ $36^{B}_{-2}$     | 36       | $1 \times 36$ $1 \times 36$                                         | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{2}, \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $36_{-2}^{B}$                   | 36<br>36 | $1 \times 36$ $1 \times 36$                                         | $0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{18}, \frac{2}{9}, \frac{2}{9}, \frac{11}{36}, \frac{11}{36}, \frac{11}{36}, \frac{11}{36}, \frac{11}{36}, \frac{17}{18}, \frac{7}{18}, \frac{5}{9}, \frac{23}{9}, \frac{23}{36}, \frac{23}{36}, \frac{23}{36}, \frac{13}{18}, \frac{13}{18}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{9}, \frac{3}{9}, \frac{8}{36}, \frac{35}{36}, 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $36_{-1}^{B}$                   | 36       | 1 × 36<br>1 × 36                                                    | $0, \overline{2}, 0, \overline{2}, 0, \overline{2}, \overline{9}, \overline{9}, \overline{36}, \overline{36}, \overline{36}, \overline{36}, \overline{18}, \overline{18}, \overline{9}, \overline{9}, \overline{36}, \overline{36}, \overline{36}, \overline{36}, \overline{18}, \overline{18}$                                                                                                               |
| $36_{-1}^{B}$                   | 36       | $1 \times 36$ $1 \times 36$                                         | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $36_{-1}^{B}$                   | 36       | $1 \times 36$ $1 \times 36$                                         | $0, \overline{2}, 0, \overline{2}, 0, \overline{2}, \overline{18}, \overline{18}, \overline{72}, \overline{72}, \overline{72}, \overline{72}, \overline{72}, \overline{72}, \overline{9}, \overline{9}, \overline{18}, \overline{18}, \overline{72}, 7$                                                                                                                         |
| $27^{B}_{1/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0 \stackrel{1}{\cdot} 0 \stackrel{1}{\cdot} 0 \stackrel{1}{\cdot} 0 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 2 \stackrel{2}{\cdot} 5 \stackrel{5}{\cdot} 1 \stackrel{1}{\cdot} 1 $ |
| $27_{1/2}^{1/2}$ $27_{1/2}^{B}$ | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $27_{1/2}^{B}$ $27_{1/2}^{B}$   | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0 \stackrel{1}{\cdot} 0 \stackrel{1}{\cdot} 0 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 5 \stackrel{5}{\cdot} 4 \stackrel{4}{\cdot} 11 \stackrel{11}{\cdot} 1 \stackrel{7}{\cdot} 7 \stackrel{17}{\cdot} 17 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{1}{\cdot} 1 \stackrel{25}{\cdot} 25 \stackrel{73}{\cdot} 73 \stackrel{73}{\cdot} 121 \stackrel{121}{\cdot} 121$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $27_{3/2}^{B}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | 0, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $27^{B}_{3/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0 \stackrel{1}{=} 0 \stackrel{1}{=} 0 \stackrel{1}{=} 1 \stackrel{1}{=} 2 \stackrel{2}{=} \frac{7}{7} \stackrel{7}{=} \frac{5}{5} \stackrel{5}{=} \frac{13}{13} \stackrel{13}{=} \frac{8}{5} \stackrel{8}{=} \frac{11}{11} \stackrel{11}{=} \frac{3}{3} \stackrel{3}{=} \frac{3}{3} \stackrel{59}{=} \frac{59}{5} \stackrel{107}{=} \frac{107}{107}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $27^{B}_{3/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}, \frac{2}{6}, \frac{3}{6}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16}, \frac{2}{48}, \frac{24}{48}, \frac{41}{48}, \frac{41}{48}$ $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{18}, \frac{1}{18}, \frac{2}{9}, \frac{2}{9}, \frac{7}{18}, \frac{7}{18}, \frac{5}{9}, \frac{5}{9}, \frac{13}{18}, \frac{13}{18}, \frac{8}{9}, \frac{8}{9}, \frac{11}{144}, \frac{11}{144}, \frac{1}{144}, \frac{3}{16}, \frac{3}{16}, \frac{3}{16}, \frac{59}{144}, \frac{59}{144}, \frac{107}{144}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $27^{B}_{5/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{5}, 0, \frac{1}{5}, 0, \frac{1}{5}, 0, 0, \frac{1}{5}, \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $27^{B}_{5/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0.\frac{1}{5}, 0.\frac{1}{5}, 0.\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{7}{5}, \frac{5}{5}, \frac{5}{5}, \frac{13}{5}, \frac{13}{5}, \frac{18}{5}, \frac{8}{5}, \frac{8}{5}, \frac{29}{5}, \frac{29}{5}, \frac{5}{5}, \frac{5}{5}, \frac{77}{5}, \frac{77}{77}, \frac{77}{125}, \frac{125}{125}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $27^{B}_{5/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{9}, \frac{1}{9}, \frac{1}{5}, \frac{1}{18}, \frac{4}{18}, \frac{4}{18}, \frac{11}{18}, \frac{17}{18}, \frac{7}{7}, \frac{7}{18}, \frac{17}{18}, \frac{17}{184}, \frac{13}{144}, \frac{5}{16}, \frac{5}{16}, \frac{61}{164}, \frac{144}{144}, \frac{144}{144}, \frac{144}{144}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $27^{B}_{7/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0, 0, \frac{1}{5}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{5}, \frac{5}{5}, \frac{5}{5}, \frac{5}{5}, \frac{5}{6}, \frac{7}{6}, \frac{7}{7}, \frac{7}{7}, \frac{7}{7}, \frac{7}{7}, \frac{7}{37}, \frac{37}{37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $27^{B}_{7/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0.\frac{1}{5}, 0.\frac{1}{5}, 0.\frac{1}{5}, \frac{1}{5}, \frac{2}{5}, \frac{2}{5}, \frac{7}{5}, \frac{5}{5}, \frac{5}{5}, \frac{13}{5}, \frac{13}{5}, \frac{8}{5}, \frac{8}{5}, \frac{47}{5}, \frac{47}{5}, \frac{7}{5}, \frac{7}{5}, \frac{7}{5}, \frac{95}{5}, \frac{95}{5}, \frac{143}{54}, \frac{143}{54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $27^{B}_{7/2}$                  | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0.\frac{1}{2}, 0.\frac{1}{2}, 0.\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{5}{3}, \frac{5}{3}, \frac{4}{3}, \frac{4}{10}, \frac{11}{10}, \frac{17}{10}, \frac{7}{30}, \frac{7}{30}, \frac{7}{30}, \frac{7}{30}, \frac{79}{30}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $27^{B}_{-7/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{6}, \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $27^{B}_{-7/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0.\frac{1}{2}, 0.\frac{1}{2}, 0.\frac{1}{2}, \frac{1}{18}, \frac{1}{18}, \frac{2}{18}, \frac{2}{18}, \frac{7}{18}, \frac{5}{18}, \frac{5}{18}, \frac{13}{18}, \frac{13}{18}, \frac{8}{18}, \frac{8}{17}, \frac{17}{17}, \frac{65}{65}, \frac{65}{65}, \frac{9}{65}, \frac{9}{65}, \frac{9}{113}, \frac{113}{113}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $27^{B}_{-7/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{2}, \frac{5}{2}, \frac{4}{2}, \frac{4}{11}, \frac{11}{12}, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, \frac{7}{2}, \frac{11}{2}, \frac{14}{2}, \frac{144}{2}, \frac{144}{44}, \frac{144}{144}, \frac{144}{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $27^{B}_{-5/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $27^{B}_{-5/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{18}, \frac{1}{18}, \frac{2}{18}, \frac{2}{18}, \frac{2}{18}, \frac{7}{18}, \frac{5}{18}, \frac{5}{18}, \frac{13}{18}, \frac{13}{18}, \frac{8}{18}, \frac{8}{35}, \frac{35}{35}, \frac{35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $27^{B}_{-5/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0.\frac{1}{2}, 0.\frac{1}{2}, 0.\frac{1}{3}, \frac{1}{3}, \frac{1}{5}, \frac{5}{5}, \frac{5}{4}, \frac{4}{11}, \frac{11}{12}, \frac{7}{12}, \frac{7}{12}, \frac{17}{12}, \frac{17}{12}, \frac{19}{12}, \frac{19}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $27^{B}_{-3/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0, \frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0, 0, \frac{1}{5}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{5}, \frac{2}{5}, \frac{7}{7}, \frac{7}{7}, \frac{23}{7}, \frac{23}{7}, \frac{23}{7}, \frac{13}{7}, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $27^{-3/2}_{-3/2}$              | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0.\frac{1}{2}, 0.\frac{1}{2}, 0.\frac{1}{2}, \frac{1}{12}, \frac{2}{12}, \frac{2}{12}, \frac{7}{12}, \frac{5}{12}, \frac{5}{12}, \frac{13}{12}, \frac{13}{12}, \frac{8}{12}, \frac{8}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{13}{12}, \frac{13}{12}, \frac{8}{12}, \frac{8}{12}, \frac{5}{12}, \frac{5}{12}, \frac{5}{12}, \frac{13}{12}, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $27^{B}_{-3/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{5}{3}, \frac{5}{3}, \frac{4}{3}, \frac{4}{10}, \frac{11}{10}, \frac{11}{10}, \frac{11}{10}, \frac{17}{10}, \frac{7}{10}, \frac{17}{10}, \frac{7}{10}, \frac{37}{10}, \frac{37}{10},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $27^{B}_{-1/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$                                   | $0, \frac{1}{3}, 0, \frac{1}{3}, 0, \frac{1}{3}, 0, 0, \frac{1}{5}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{5}, \frac{2}{5}, \frac{13}{13}, \frac{13}{13}, \frac{29}{13}, \frac{29}{15}, \frac{15}{15}, \frac{15}{15}, \frac{15}{15}, \frac{15}{15}, \frac{15}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $27^{B}_{-1/2}$                 | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{9},\frac{1}{9},\frac{1}{58},\frac{1}{18},\frac{4}{9},\frac{4}{9},\frac{11}{18},\frac{11}{18},\frac{7}{9},\frac{7}{9},\frac{17}{18},\frac{17}{18},\frac{13}{144},\frac{13}{144},\frac{5}{16},\frac{5}{16},\frac{5}{16},\frac{5}{16},\frac{61}{144},\frac{61}{144},\frac{109}{144},\frac{109}{144}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,0,\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{3},\frac{1}{2},\frac{1}{2},\frac{2}{2},\frac{2}{3},\frac{5}{6},\frac{5}{6},\frac{5}{48},\frac{8}{48},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{7}{48},\frac{37}{48},\frac{37}{48}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{18},\frac{1}{18},\frac{2}{9},\frac{2}{9},\frac{7}{18},\frac{7}{18},\frac{5}{9},\frac{5}{9},\frac{13}{18},\frac{13}{18},\frac{8}{9},\frac{9}{9},\frac{144}{144},\frac{17}{144},\frac{7}{16},\frac{7}{16},\frac{7}{16},\frac{9}{144},\frac{9}{144},\frac{144}{144},\frac{144}{144}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{9},\frac{1}{9},\frac{5}{18},\frac{5}{18},\frac{4}{9},\frac{4}{18},\frac{11}{18},\frac{1}{9},\frac{9}{9},\frac{7}{18},\frac{17}{18},\frac{11}{144},\frac{11}{16},\frac{1}{16},\frac{6}{16},\frac{4}{144},\frac{44}{144},\frac{144}{144}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{18},\frac{1}{18},\frac{2}{9},\frac{2}{9},\frac{7}{18},\frac{7}{18},\frac{5}{9},\frac{5}{9},\frac{13}{18},\frac{13}{18},\frac{8}{9},\frac{9}{9},\frac{17}{144},\frac{11}{144},\frac{17}{16},\frac{6}{16},\frac{14}{144},\frac{144}{144},\frac{144}{144}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{18},\frac{1}{18},\frac{2}{9},\frac{2}{9},\frac{7}{18},\frac{7}{18},\frac{5}{9},\frac{5}{9},\frac{13}{18},\frac{13}{18},\frac{8}{9},\frac{9}{9},\frac{17}{144},\frac{11}{144},\frac{19}{144},\frac{19}{144},\frac{19}{144},\frac{19}{144},\frac{19}{144}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},\frac{1}{18},\frac{11}{18},\frac{2}{9},\frac{2}{9},\frac{7}{18},\frac{7}{18},\frac{5}{19},\frac{5}{9},\frac{5}{18},\frac{13}{18},\frac{8}{9},\frac{9}{9},\frac{17}{144},\frac{11}{144},\frac{14}{144},\frac{14}{144},\frac{14}{144},\frac{14}{144},\frac{14}{144},\frac{14}{144},\frac{11}{144},\frac{11}{16},\frac{11}{16},\frac{11}{16},\frac{11}{16}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{3},\frac{1}{2},\frac{1}{2},\frac{2}{2},\frac{2}{3},\frac{5}{6},\frac{5}{6},\frac{14}{48},\frac{11}{44},\frac{17}{144},\frac{17}{144},\frac{17}{144},\frac{17}{144},\frac{11}{164},\frac{11}{16},\frac{11}{16},\frac{11}{16}\\ 0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{2},0,\frac{1}{6},\frac{1}{6},\frac{1}{18},\frac{1}{18},\frac{7}{9},\frac{7}{9},\frac{17}{18},\frac{17}{18},\frac{17}{18},\frac{17}{14},\frac{17}{14},\frac{17}{14},\frac{17}{14},\frac{17}{14},\frac{17}{14},\frac{11}{16},\frac{11}{16},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $27^{-1/2}_{-1/2}$              | 36       | $1 \times 18, \zeta_2^1 \times 9$ $1 \times 18, \zeta_2^1 \times 9$ | $0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

fermionic SPT states. Those are all the  $Z_2 \times Z_2^f$  fermionic SPT states [40,41].

### G. $Z_{2n}^f$ SPT orders for fermionic systems

We also find the modular extensions for  $sRep(Z_4^f)$ ,  $sRep(Z_6^f)$ , and  $sRep(Z_8^f)$  (see Tables XV, XXI, and XVI). Again, many of them has nontrivial topological orders since the central charge c is nonzero.

For  $Z_4^f$  group, only one of them have c=0. So there is no nontrivial  $Z_4^f$  fermionic SPT states. For  $Z_6^f$  group, only three of them have c=0. So, the  $Z_6^f$  fermionic SPT states are described by  $\mathbb{Z}_3$ . For  $Z_8^f$  group, only two of them have c=0. So, the  $Z_8^f$  fermionic SPT states are described by  $\mathbb{Z}_2$ . Those results are consistent with the results in Refs. [42]. However, the calculation present here is more complete.

#### IX. SUMMARY

GQLs contain both topologically ordered states and SPT states. In this paper, we present a theory that classify GQLs in 2+1D for bosonic/fermionic systems with symmetry.

We propose that the possible non-Abelian statistics (or sets of bulk quasiparticles excitations) in 2+1D GQLs are classified by  $UMTC_{/\mathcal{E}}$ , where  $\mathcal{E} = Rep(G)$  or  $sRep(G^f)$  describing the symmetry in bosonic or fermionic systems. However,  $UMTC_{/\mathcal{E}}$ 's fail to classify GQLs, since different GQL phases can have identical non-Abelian statistics, which correspond to identical  $UMTC_{/\mathcal{E}}$ .

To fix this problem, we introduce the notion of modular extensions for a UMTC $_{/\mathcal{E}}$ . We propose to use the triple  $(\mathcal{C},\mathcal{M},c)$  to classify 2+1D GQLs with symmetry G (for boson) or  $G^f$  (for fermion). Here,  $\mathcal{C}$  is a UMTC $_{/\mathcal{E}}$  with  $\mathcal{E}=\operatorname{Rep}(G)$  or  $\operatorname{Rep}(G^f)$ ,  $\mathcal{M}$  is a modular extension of  $\mathcal{C}$  and c is the chiral central charge of the edge state. We show that the modular extensions of a UMTC $_{/\mathcal{E}}$  has a one-to-one correspondence with the modular extensions of  $\mathcal{E}$ . So the number of the modular extensions is solely determined by the symmetry  $\mathcal{E}$ . Also, the c=0 modular extensions of a  $\mathcal{E}$  ( $\mathcal{E}=\operatorname{Rep}(G)$  or  $\operatorname{SRep}(G^f)$ ) classify the 2+1D SPT states for bosons or fermions with symmetry G or  $G^f$ .

Although the above result has a nice mathematical structure, it is hard to implement numerically to produce a table of GQLs. To fix this problem, we propose a different description of 2+1D GQLs. We propose to use the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i; \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ , up to some permutations of the indices, to describe 2+1D GQLs with symmetry G (for boson) or  $G^f$  (for fermion), with a restriction that the symmetry group G can be fully characterized by the fusion ring of its irreducible representations (for example, for simple groups or Abelian groups). Here, the data  $(\tilde{N}_c^{ab}, \tilde{s}_a)$  describe the symmetry and the data  $(N_k^{ij}, s_i)$  describe fusion and the spins of the bulk particles in the GQL. The modular extensions are obtained by "gauging" the symmetry G or  $G^f$ . The data  $(\mathcal{N}_k^{IJ}, \mathcal{S}_I)$  describe fusion and the spins of the bulk particles in the "gauged" theory. Last, c is the chiral central charge of the edge state.

In this paper (see Appendix C) and in Ref. [11], we list the necessary and the sufficient conditions on the data

 $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i; \mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$ , which allow us to obtain a list of GQLs. However, in this paper, we did not give the list of GQLs directly. We first give a list of  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ , which is an imperfect list of UMTC/ $\mathcal{E}$ 's. We then compute the modular extensions  $(\mathcal{N}_K^{IJ}, \mathcal{S}_I; c)$  for each entry  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ , which allows us to obtain a perfect list of GQLs (for certain symmetry groups). As a special case, we calculated the bosonic/fermionic SPT states for some groups in 2+1D.

In Ref. [30], we will give a more mathematical description of our theory. Certainly we hope to generalize the above framework to higher dimensions. We also hope to develop more efficient numerical codes to obtain bigger tables of GQLs.

#### ACKNOWLEDGMENTS

We like to thank Pavel Etingof, Dmitri Nikshych, Chenjie Wang, and Zhenghan Wang for many helpful discussions. This research is supported by NSF Grant No. DMR-1506475, and NSFC 11274192. It is also supported by the John Templeton Foundation No. 39901. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research. L.K. is supported by the Center of Mathematical Sciences and Applications at Harvard University.

# APPENDIX A: TABLES FOR THE SOLUTIONS OF $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$ : IMPERFECT TABLES FOR UMTC $_{/\mathcal{E}}$

In this Appendix, we list  $\mathrm{UMTC}_{/\mathcal{E}}$ 's for various symmetry  $\mathcal{E}$ , which can also be viewed as the list of 2+1D SET orders (up to invertible ones) with symmetry  $\mathcal{E}$ . Those lists are created using a naive calculation, by checking the necessary conditions on the data  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  (for details, see Appendix C). So those lists should contain all  $\mathrm{UMTC}_{/\mathcal{E}}$ 's (i.e., all SET orders). However, since the conditions are only known to be necessary, the lists may contain fake entries that do not correspond to any  $\mathrm{UMTC}_{/\mathcal{E}}$  (or any SET order). In other words, some entries in the lists have no modular extensions and those entries do not correspond any real 2+1D SET order.

The entries with known decomposition  $N_c^B \boxtimes \text{Rep}(G)$  or  $N_c^B \boxtimes \text{sRep}(G^f)$ , or with given K matrix in the comment column all correspond to existing 2+1D SET orders. (The topological orders described by  $N_c^B$  are given by the tables in Ref. [11].) Other entries may or may not correspond to existing 2+1D SET orders, which need to be determined by checking the existence of modular extensions.

Even for the entries that have modular extensions, some times they may correspond to more than one UMTC<sub>/ $\mathcal{E}$ </sub>'s. This is because  $(\tilde{N}_c^{ab}, \tilde{s}_a; N_k^{ij}, s_i)$  cannot distinguish all different UMTC<sub>/ $\mathcal{E}$ </sub>'s.

### 1. $Z_2$ -SET orders

Tables XXII, XXIII, and XXIV list the  $Z_2$ -SET orders (up to invertible ones) for 2+1D bosonic systems. For bosonic systems the central charge is determined up to eight by the bulk excitations. The  $3_2^{\zeta_2^1}$  states and the two  $4_1^{\zeta_2^1}$  states in Table XXII are discussed in the main text.

TABLE XXII.  $Z_2$ -SET orders (or UMTC<sub>/Rep(Z\_2)</sub>) for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=3,4 and  $D^2\leqslant 100$ . All the topologically orders in this list are anomaly free (i.e., have modular extensions), and are realizable by 2+1D bosonic systems. We use  $N_c^{|\Theta|}$  to label UMTC<sub>/E</sub>'s, where  $\Theta=D^{-1}\sum_i e^{2\pi i s_i} d_i^2=|\Theta|e^{2\pi i c/8}$  and  $D^2=\sum_i d_i^2$ .

| $N_c^{ \Theta }$                                                                                                                                                                                                    | $D^2$  | $d_1,d_2,\ldots$          | $s_1, s_2, \ldots$            | comment                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|
| $2_0^{\zeta_2^{1}} \\ 3_2^{\zeta_2^{1}}$                                                                                                                                                                            | 2      | 1,1                       | 0,0                           | $\mathcal{E} = \operatorname{Rep}(Z_2)$                                                                 |
| $3_2^{\zeta_2^1}$                                                                                                                                                                                                   | 6      | 1,1,2                     | $0,0,\frac{1}{3}$             | $SB:K = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$                                                 |
| $3_{-2}^{\zeta_2^1}$                                                                                                                                                                                                | 6      | 1,1,2                     | $0,0,\frac{2}{3}$             | $SB:K = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$                                                 |
| $4_1^{\zeta_2^1}$ $4_1^{\zeta_2^1}$                                                                                                                                                                                 | 4      | 1,1,1,1                   | $0,0,\frac{1}{4},\frac{1}{4}$ | $2_1^B \boxtimes \operatorname{Rep}(Z_2)$                                                               |
| $4_1^{\zeta_2^1}$                                                                                                                                                                                                   | 4      | 1,1,1,1                   | $0,0,\frac{1}{4},\frac{1}{4}$ | $2_1^B \boxtimes^t \operatorname{Rep}(Z_2)$                                                             |
| $4_{-1}^{\zeta_2^1}$                                                                                                                                                                                                | 4      | 1,1,1,1                   | $0,0,\frac{3}{4},\frac{3}{4}$ | $2^B_{-1} \boxtimes \operatorname{Rep}(Z_2)$                                                            |
| $4_{-1}^{\zeta_2^1}$                                                                                                                                                                                                | 4      | 1,1,1,1                   | $0,0,\frac{3}{4},\frac{3}{4}$ | $2^{B}_{-1} \boxtimes^{t} \operatorname{Rep}(Z_2)$                                                      |
| $\begin{array}{c} \zeta_{1} \\ \zeta_{2}^{51} \\ \zeta_{1}^{51} \\ \zeta_{1}^{51} \\ \zeta_{14/5}^{51} \\ \zeta_{14/5}^{51} \\ \zeta_{14/5}^{51} \\ \zeta_{2}^{51} \\ \zeta_{2}^{51} \\ \zeta_{0}^{51} \end{array}$ | 7.2360 | $1,1,\zeta_3^1,\zeta_3^1$ | $0,0,\frac{2}{5},\frac{2}{5}$ | $2^B_{14/5} \boxtimes \operatorname{Rep}(Z_2)$                                                          |
| $4_{-14/5}^{\zeta_2^1}$                                                                                                                                                                                             | 7.2360 | $1,1,\zeta_3^1,\zeta_3^1$ | $0,0,\frac{3}{5},\frac{3}{5}$ | $2^B_{-14/5} \boxtimes \operatorname{Rep}(Z_2)$                                                         |
| $4_0^{\zeta_2^1}$                                                                                                                                                                                                   | 10     | 1,1,2,2                   | $0,0,\frac{1}{5},\frac{4}{5}$ | $SB: K = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$                                                |
| $4_4^{\zeta_2^1}$                                                                                                                                                                                                   | 10     | 1,1,2,2                   | $0,0,\frac{2}{5},\frac{3}{5}$ | $SB:K = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$ |

TABLE XXIII.  $Z_2$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=5 and  $D^2 \leqslant 100$ .

| $N_c^{ \Theta }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $D^2$  | $d_1,d_2,\ldots$                    | $s_1, s_2, \ldots$                        | comment                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} 2_{0}^{\zeta_{1}^{2}} \\ 5_{0}^{\zeta_{2}^{1}} \\ 5_{0}^{\zeta_{2}^{1}} \\ 5_{0}^{\zeta_{1}^{1}} \\ 5_{1}^{\zeta_{2}^{1}} \\ 5_{1}^{\zeta_{2}^{1}} \\ 5_{2}^{\zeta_{2}^{1}} \\ 5_{2}^{\zeta_{2}^{1}} \\ 5_{3}^{\zeta_{2}^{1}} \\ 5_{3}^{\zeta_{3}^{1}} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      | 1,1                                 | 0,0                                       | $\mathcal{E} = \operatorname{Rep}(Z_2)$                                                                   |
| $5_0^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},0$           | SB:4 <sup>B</sup> <sub>0</sub> F: $Z_2 \times Z_2$                                                        |
| $5_0^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},0$           | $SB:4_0^B F:Z_4 NR$                                                                                       |
| $5_1^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8}$ | SB:4 <sup>B</sup> <sub>1</sub> F: $Z_2 \times Z_2$                                                        |
| $5_1^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8}$ | $SB:4_1^B F:Z_4 NR$                                                                                       |
| $5_2^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4}$ | SB: $4_2^B$ F: $Z_2 \times Z_2$                                                                           |
| $5_2^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4}$ | $SB:4_2^B F:Z_4 NR$                                                                                       |
| $5_3^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8}$ | SB:4 $_3^B$ F: $Z_2 \times Z_2$                                                                           |
| $5_3^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8}$ | SB: $4_3^B$ F: $Z_4$ NR                                                                                   |
| $5_4^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2}$ | $SB:4_4^B \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$ |
| $5_4^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2}$ | $SB:4_4^B F:Z_4 NR$                                                                                       |
| $5_{-3}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{8}$ | SB: $4^B_{-3}$ F: $Z_2 \times Z_2$                                                                        |
| $5_{-3}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{8}$ | $SB:4^{B}_{-3} F: Z_4 NR$                                                                                 |
| $5_{-2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{4}$ | SB: $4^B_{-2}$ F: $Z_2 \times Z_2$                                                                        |
| $5_{-2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{3}{4}$ | $SB:4^{B}_{-2} F: Z_4 NR$                                                                                 |
| $5_{-1}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{7}{8}$ | SB:4 <sup>B</sup> <sub>-1</sub> F: $Z_2 \times Z_2$                                                       |
| $5_{-1}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8      | 1,1,1,1,2                           | $0,0,\frac{1}{2},\frac{1}{2},\frac{7}{8}$ | $SB:4_{-1}^B F:Z_4 NR$                                                                                    |
| $5_2^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14     | 1,1,2,2,2                           | $0,0,\frac{1}{7},\frac{2}{7},\frac{4}{7}$ | SB:7 <sup>B</sup> <sub>2</sub>                                                                            |
| $5_{-2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14     | 1,1,2,2,2                           | $0,0,\frac{3}{7},\frac{5}{7},\frac{6}{7}$ | $SB:7^B_{-2}$                                                                                             |
| $\begin{array}{l} 5^{\zeta_{2}^{1}} \\ 5^{\zeta_{3}^{1}} \\ 5^{\zeta_{-3}^{1}} \\ 5^{\zeta_{-1}^{1}} \\ 5^{\zeta_{-2}^{1}} \\ 5^{\zeta_{-2}^{1}} \\ 5^{\zeta_{-2}^{1}} \\ 5^{\zeta_{2}^{1}} \\ 5^$ | 26.180 | $1,1,\zeta_8^2,\zeta_8^2,\zeta_8^4$ | $0,0,\frac{1}{5},\frac{1}{5},\frac{3}{5}$ | $SB:4^{B}_{12/5}$                                                                                         |
| $5_{-12/5}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.180 | $1,1,\zeta_8^2,\zeta_8^2,\zeta_8^4$ | $0,0,\frac{4}{5},\frac{4}{5},\frac{2}{5}$ | $SB:4^{B}_{-12/5}$                                                                                        |

TABLE XXIV.  $Z_2$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=6  $D^2 \leqslant 50$ .

| $N_c^{ \Theta }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $D^2$  | $d_1,d_2,\ldots$                              | $s_1, s_2, \ldots$                                             | comment                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|
| $\begin{array}{c} -\frac{1}{20^{2}} \\ -\frac{1}{2$ | 2      | 1,1                                           | 0,0                                                            | $\mathcal{E} = \operatorname{Rep}(Z_2)$           |
| $6_2^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | 1,1,1,1,1,1                                   | $0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}$          | $3_2^B \boxtimes \operatorname{Rep}(Z_2)$         |
| $6_{-2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6      | 1,1,1,1,1,1                                   | $0,0,\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3}$          | $3^B_{-2} \boxtimes \operatorname{Rep}(Z_2)$      |
| $6_{1/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16}$        | $3_{1/2}^{B} \boxtimes \operatorname{Rep}(Z_2)$   |
| $6_{1/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16}$        | $SB:3_{1/2}^{B}$                                  |
| $6_{3/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}$   | $3_{3/2}^{B}\boxtimes \operatorname{Rep}(Z_{2})$  |
| $6_{3/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{3}{16}, \frac{3}{16}$   | $SB:3^{B}_{3/2}$                                  |
| $6_{5/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{5}{16}, \frac{5}{16}$   | $3_{5/2}^{B} \boxtimes \operatorname{Rep}(Z_{2})$ |
| $6^{\zeta_2^1}_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{5}{16}$        | $SB:3^{B}_{5/2}$                                  |
| $6_{7/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{7}{16}, \frac{7}{16}$   | $3_{7/2}^{B} \boxtimes \operatorname{Rep}(Z_2)$   |
| $6_{7/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16}$        | $SB:3_{7/2}^{B}$                                  |
| $6^{\zeta_2^1}_{-7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0,0,\frac{1}{2},\frac{1}{2},\frac{9}{16},\frac{9}{16}$        | $3^B_{-7/2} \boxtimes \operatorname{Rep}(Z_2)$    |
| $6^{\zeta_2^1}_{-7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0,0,\frac{1}{2},\frac{1}{2},\frac{9}{16},\frac{9}{16}$        | $SB:3^{B}_{-7/2}$                                 |
| $6^{\zeta_2^1}_{-5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{11}{16}, \frac{11}{16}$ | $3^B_{-5/2} \boxtimes \operatorname{Rep}(Z_2)$    |
| $6^{\zeta_2^1}_{-5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{11}{16}, \frac{11}{16}$ | $SB:3^{B}_{-5/2}$                                 |
| $6^{\zeta_2^1}_{-3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{13}{16}, \frac{13}{16}$ | $3^B_{-3/2} \boxtimes \operatorname{Rep}(Z_2)$    |
| $6^{\zeta_2^1}_{-3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{13}{16}, \frac{13}{16}$ | $SB:3^{B}_{-3/2}$                                 |
| $6_{-1/2}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{15}{16}, \frac{15}{16}$ | $3^B_{-1/2} \boxtimes \operatorname{Rep}(Z_2)$    |
| $6^{\zeta_2^1}_{-1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8      | $1,1,1,1,\zeta_2^1,\zeta_2^1$                 | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{15}{16}, \frac{15}{16}$ | $SB:3^{B}_{-1/2}$                                 |
| $6_1^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12     | 1,1,1,1,2,2                                   | $0,0,\frac{3}{4},\frac{3}{4},\frac{1}{12},\frac{1}{3}$         | $SB:6_1^B$                                        |
| $6_3^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12     | 1,1,1,1,2,2                                   | $0,0,\frac{1}{4},\frac{1}{4},\frac{1}{3},\frac{7}{12}$         | $SB:6_3^B$                                        |
| $6^{\zeta_2^1}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12     | 1,1,1,1,2,2                                   | $0,0,\frac{3}{4},\frac{3}{4},\frac{5}{12},\frac{2}{3}$         | $SB:6^B_{-3}$                                     |
| $6_{-1}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12     | 1,1,1,1,2,2                                   | $0,0,\frac{1}{4},\frac{1}{4},\frac{2}{3},\frac{11}{12}$        | $SB:6^B_{-1}$                                     |
| $6_0^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18     | 1,1,2,2,2,2                                   | $0,0,0,0,\frac{1}{3},\frac{2}{3}$                              | $SB:9_0^B$                                        |
| $6_0^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18     | 1,1,2,2,2,2                                   | $0,0,0,\frac{1}{9},\frac{4}{9},\frac{7}{9}$                    | $SB:9_0^B$                                        |
| $6_0^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18     | 1,1,2,2,2,2                                   | $0,0,0,\frac{2}{9},\frac{5}{9},\frac{8}{9}$                    | $SB:9_0^B$                                        |
| $6_4^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18     | 1,1,2,2,2,2                                   | $0,0,\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}$          | $SB:9_4^B$                                        |
| $6_{8/7}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.591 | $1,1,\zeta_5^1,\zeta_5^1,\zeta_5^2,\zeta_5^2$ | $0,0,\frac{6}{7},\frac{6}{7},\frac{2}{7},\frac{2}{7}$          | $3_{8/7}^{B}\boxtimes \operatorname{Rep}(Z_{2})$  |
| $6^{\zeta_2^1}_{-8/7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.591 | $1,1,\zeta_5^1,\zeta_5^1,\zeta_5^2,\zeta_5^2$ | $0,0,\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7}$          | $3^B_{-8/7} \boxtimes \operatorname{Rep}(Z_2)$    |
| $6_{4/5}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.708 | $1,1,\zeta_3^1,\zeta_3^1,2,\zeta_8^4$         | $0,0,\frac{2}{5},\frac{2}{5},\frac{2}{3},\frac{1}{15}$         | $2^{B}_{14/5} \boxtimes 3^{\zeta_{2}^{1}}_{-2}$   |
| $6_{16/5}^{\zeta_2^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.708 | $1,1,\zeta_3^1,\zeta_3^1,2,\zeta_8^4$         | $0,0,\frac{3}{5},\frac{3}{5},\frac{2}{3},\frac{4}{15}$         | $2^{B}_{-14/5} \boxtimes 3^{\zeta_{2}^{1}}_{-2}$  |
| $\begin{array}{c} 6_{4}^{\zeta_{2}^{1}} \\ 6_{4}^{\zeta_{2}^{1}} \\ 6_{8/7}^{\zeta_{2}^{1}} \\ 6_{-8/7}^{\zeta_{2}^{1}} \\ 6_{4/5}^{\zeta_{2}^{1}} \\ 6_{4/5}^{\zeta_{2}^{1}} \\ 6_{16/5}^{\zeta_{2}^{1}} \\ 6_{-16/5}^{\zeta_{2}^{1}} \\ 6_{-4/5}^{\zeta_{2}^{1}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.708 | $1,1,\zeta_3^1,\zeta_3^1,2,\zeta_8^4$         | $0,0,\frac{2}{5},\frac{2}{5},\frac{1}{3},\frac{11}{15}$        | $2^{B}_{14/5} \boxtimes 3^{\zeta^{1}_{2}}_{2}$    |
| $6^{\zeta_2^1}_{-4/5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.708 | $1,1,\zeta_3^1,\zeta_3^1,2,\zeta_8^4$         | $0,0,\frac{3}{5},\frac{3}{5},\frac{1}{3},\frac{14}{15}$        | $2^B_{-14/5} oxtimes 3^{\zeta^1_2}_2$             |

All the  $Z_2$ -SET orders in Table XXII are realizable. Some of the them are realized as  $N_c^B \boxtimes \operatorname{Rep}(Z_2)$ , as indicated in the comment column. Here,  $N_c^B$  describes a neutral bosonic topological order (which was denoted as  $N_c^B$  in Ref. [11]) with rank N and central charge c, which does not transform under the  $Z_2$  symmetry. For example,  $Z_1^B$  is the v = 1/2 bosonic Laughlin state, and  $Z_{14/5}^B$  is the bosonic Fibonacci state [11].

 $\operatorname{Rep}(Z_2)$  describes a product state with  $Z_2$  symmetry of  $Z_2$  charged bosons.  $N_c^B \boxtimes \operatorname{Rep}(Z_2)$  is simply the stacking of the neutral bosonic topological order  $N_c^B$  with the  $Z_2$  symmetric product state.

We also introduced  $N_c^B \boxtimes^t \operatorname{Rep}(Z_2)$  which describe a state similar to  $N_c^B \boxtimes \operatorname{Rep}(Z_2)$ , except here the bosons that form the topological order  $N_c^B$  also carries a  $Z_2$  charge. The  $3_2^{\zeta_2^1}$ 

TABLE XXV.  $Z_3$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=4,5,6  $D^2 \le 100$ , N=7  $D^2 \le 60$ , N=8  $D^2 \le 40$ , and N=9  $D^2 \le 28$ .

| $N_c^{ \Theta }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $D^2$  | $d_1,d_2,\ldots$                                                            | $s_1, s_2, \ldots$                                                                          | comment                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $3_0^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      | 1,1,1                                                                       | 0,0,0                                                                                       | $\mathcal{E} = \operatorname{Rep}(Z_3)$                                                                 |
| $4_4^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12     | 1,1,1,3                                                                     | $0,0,0,\tfrac{1}{2}$                                                                        | $SB:K = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$ |
| $6_1^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6      | 1,1,1,1,1,1                                                                 | $0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4}$                                                 | $2_1^B \boxtimes \operatorname{Rep}(Z_3)$                                                               |
| $6^{\zeta_4^1}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6      | 1,1,1,1,1,1                                                                 | $0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                 | $2^{B}_{-1} \boxtimes \operatorname{Rep}(Z_3)$                                                          |
| $6_{14/5}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.854 | $1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1$                                  | $0,0,0,\frac{2}{5},\frac{2}{5},\frac{2}{5}$                                                 | $2^B_{14/5} \boxtimes \operatorname{Rep}(Z_3)$                                                          |
| $6^{\zeta_4^1}_{-14/5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.854 | $1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1$                                       | $0,0,0,\frac{3}{5},\frac{3}{5},\frac{3}{5}$                                                 | $2^B_{-14/5} \boxtimes \operatorname{Rep}(Z_3)$                                                         |
| $8_3^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24     | 1,1,1,1,1,1,3,3                                                             | $0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{1}{4},\frac{1}{2}$                         | $2^B_{-1}oxtimes 4^{\zeta^1_4}_4$                                                                       |
| $8_{-3}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24     | 1,1,1,1,1,1,3,3                                                             | $0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{3}{4}$                         | $2^B_1\boxtimes 4^{\zeta^1_4}_4$                                                                        |
| $8_{6/5}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.416 | $1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1, 3, \frac{3+\sqrt{45}}{2}$        | $0,0,0,\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{1}{2},\frac{1}{10}$                        | $2^B_{-14/5}oxtimes 4^{\zeta^1_4}_4$                                                                    |
| $8^{\zeta_4^1}_{-6/5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.416 | $1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1, 3, \frac{3+\sqrt{45}}{2}$        | $0,0,0,\frac{2}{5},\frac{2}{5},\frac{2}{5},\frac{1}{2},\frac{9}{10}$                        | $2^B_{14/5}oxtimes 4^{\zeta_4^1}_4$                                                                     |
| $9_2^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9      | 1,1,1,1,1,1,1,1,1                                                           | $0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}$             | $SB:3_2^B F:Z_9$                                                                                        |
| $9_2^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9      | 1,1,1,1,1,1,1,1,1                                                           | $0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}$             | $3_2^B \boxtimes \operatorname{Rep}(Z_3) \operatorname{F}: Z_3 \times Z_3$                              |
| $9_{-2}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9      | 1,1,1,1,1,1,1,1,1                                                           | $0,0,0,\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3}$             | $SB:3_{-2}^{B} F:Z_{9}$                                                                                 |
| $9_{-2}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9      | 1,1,1,1,1,1,1,1,1                                                           | $0,0,0,\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3}$ | $3^{B}_{-2} \boxtimes \operatorname{Rep}(Z_3) \operatorname{F}: Z_3 \times Z_3$                         |
| $9_{1/2}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{16}$          | $3_{1/2}^{B} \boxtimes \operatorname{Rep}(Z_3)$                                                         |
| $9_{3/2}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{3}{16},\frac{3}{16}$          | $3_{3/2}^B \boxtimes \operatorname{Rep}(Z_3)$                                                           |
| $9_{5/2}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{5}{16},\frac{5}{16}$          | $3_{5/2}^{B} \boxtimes \operatorname{Rep}(Z_3)$                                                         |
| $9_{7/2}^{\zeta_4^1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16},\frac{7}{16}$          | $3_{7/2}^{B} \boxtimes \operatorname{Rep}(Z_3)$                                                         |
| $9^{\zeta_4^1}_{-7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\tfrac{1}{2},\tfrac{1}{2},\tfrac{1}{2},\tfrac{9}{16},\tfrac{9}{16},\tfrac{9}{16}$    | $3^B_{-7/2} \boxtimes \operatorname{Rep}(Z_3)$                                                          |
| $9^{\zeta_4^1}_{-5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{11}{16},\frac{11}{16},\frac{11}{16}$       | $3^B_{-5/2} \boxtimes \operatorname{Rep}(Z_3)$                                                          |
| $9^{\zeta_4^1}_{-3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{13}{16},\frac{13}{16},\frac{13}{16}$       | $3^B_{-3/2} \boxtimes \operatorname{Rep}(Z_3)$                                                          |
| $9^{\zeta_4^1}_{-1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12     | $1,1,1,1,1,1,\zeta_2^1,\zeta_2^1,\zeta_2^1$                                 | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{15}{16},\frac{15}{16},\frac{15}{16}$       | $3^B_{-1/2} \boxtimes \operatorname{Rep}(Z_3)$                                                          |
| $\begin{array}{c} 6_{-1}^{\zeta_{1}^{l}} \\ 6_{-1}^{\zeta_{1}^{l}} \\ 6_{14/5}^{\zeta_{1}^{l}} \\ 8_{3}^{\zeta_{1}^{l}} \\ 8_{3}^{\zeta_{1}^{l}} \\ 8_{3}^{\zeta_{1}^{l}} \\ 8_{6/5}^{\zeta_{1}^{l}} \\ 9_{2}^{\zeta_{1}^{l}} \\ 9_{2}^{\zeta_{1}^{l}} \\ 9_{-2}^{\zeta_{1}^{l}} \\ 9_{-2}^{\zeta_{1}^{l}} \\ 9_{-1/2}^{\zeta_{1}^{l}} \\ 9_{5/2}^{\zeta_{1}^{l}} \\ 9_{-5/2}^{\zeta_{1}^{l}} \\ 9_{-5/2}^{\zeta_{1}^{l}} \\ 9_{-3/2}^{\zeta_{1}^{l}} \\ 9_{-3/2}^{\zeta_{1}^{l}} \\ 9_{-1/2}^{\zeta_{1}^{l}} \\ $ | 27.887 | $1, 1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2, \zeta_5^2$ | $0,0,0,\frac{6}{7},\frac{6}{7},\frac{6}{7},\frac{2}{7},\frac{2}{7},\frac{2}{7}$             | $3_{8/7}^{B} \boxtimes \operatorname{Rep}(Z_3)$                                                         |
| $9^{\zeta_4^1}_{-8/7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.887 | $1, 1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2, \zeta_5^2$ | $0,0,0,\frac{1}{7},\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{5}{7}$             | $3^{B}_{-8/7} \boxtimes \operatorname{Rep}(Z_3)$                                                        |

state can be realized by double-layer FQH state with *K*-matrix  $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ , which is discussed in the main text.

Since we did not use the condition of the existence of modular extensions when we calculate the tables, some the entries in the tables may not by realizable by any 2+1D bosonic systems. We use NR in the comment column to indicate such entries (see Table XXIII).

### 2. $Z_3$ -SET orders

Table XXV lists the  $Z_3$ -SET orders (up to invertible ones) for 2+1D bosonic systems.

The  $Z_3$ -SET state  $4_4^{\zeta_4^1}$  in the table becomes the  $K=\begin{pmatrix}2&1&1&1&1\\1&2&0&0&0\\1&0&2&0\\1&0&0&2\end{pmatrix}$  4-layer FQH state after we break the  $Z_3$ -symmetry. We can add the  $Z_3$ -symmetry back to obtain the  $Z_3$ -SET state. The  $Z_3$ -symmetry is the cyclic

permutation of the second, the third, and the fourth layers.

Without the symmetry, the  $K = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$  state has

four types of particles, a trivial boson and three nontrivial fermions. With the symmetry, the three fermions become degenerate and is combined into the d=3 particle (the fourth particle) for the  $4_4^{\zeta_4^1}$  state. The first three particles for the  $4_4^{\zeta_4^1}$  state all come from the trivial boson. They carry different  $Z_3$  charges: 0,1,2, in the presence of the symmetry.

#### 3. $S_3$ -SET orders

Tables XXVII and XXVIII list the  $S_3$ -SET orders (up to invertible ones) for 2+1D bosonic systems. Table XXVII has three  $5_4^{\sqrt{6}}$  entries that have identical  $(d_i, s_i)$ . However, the three entries have different fusion rules (see Table XXVI). If we break the symmetry, the three entries all reduce to the

TABLE XXVI. The fusion rules for the three  $5_4^{\sqrt{6}}$  entries in Table XXVII. The three entries have identical  $(d_i, s_i)$  but different fusions rules. 1, a, b are the three irreducible representations of  $S_3$  with dimension 1, 1, 2.

| $S_i$            | 0        | 0        | 0                     | $\frac{1}{2}$                          | $\frac{1}{2}$                          |
|------------------|----------|----------|-----------------------|----------------------------------------|----------------------------------------|
| $d_i$            | 1        | 1        | 2                     | $\frac{\bar{2}}{3}$                    | 3                                      |
| $5_4^{\sqrt{6}}$ | 1        | a        | b                     | $\sigma$                               | τ                                      |
| 1                | 1        | a        | b                     | $\sigma$                               | τ                                      |
| a                | a        | 1        | b                     | τ                                      | σ                                      |
| b                | b        | b        | $1 \oplus a \oplus b$ | $\sigma \oplus \tau$                   | $\sigma \oplus 	au$                    |
| $\sigma$         | $\sigma$ | τ        | $\sigma \oplus \tau$  | $1 \oplus b \oplus 2\sigma$            | $a \oplus b \oplus 2\tau$              |
| τ                | τ        | σ        | $\sigma \oplus 	au$   | $a \oplus b \oplus 2\tau$              | $1 \oplus b \oplus 2\sigma$            |
| $s_i$            | 0        | 0        | 0                     | $\frac{1}{2}$                          | $\frac{1}{2}$                          |
| $d_i$            | 1        | 1        | 2                     | 3                                      | 3                                      |
| $5_4^{\sqrt{6}}$ | 1        | a        | b                     | $\sigma$                               | τ                                      |
| 1                | 1        | a        | b                     | $\sigma$                               | τ                                      |
| a                | a        | 1        | b                     | τ                                      | σ                                      |
| b                | b        | b        | $1 \oplus a \oplus b$ | $\sigma \oplus \tau$                   | $\sigma \oplus 	au$                    |
| $\sigma$         | $\sigma$ | τ        | $\sigma \oplus \tau$  | $1 \oplus b \oplus \sigma \oplus \tau$ | $a \oplus b \oplus \sigma \oplus \tau$ |
| τ                | τ        | $\sigma$ | $\sigma \oplus \tau$  | $a \oplus b \oplus \sigma \oplus \tau$ | $1 \oplus b \oplus \sigma \oplus \tau$ |
| $S_i$            | 0        | 0        | 0                     | $\frac{1}{2}$                          | $\frac{1}{2}$                          |
| $d_i$            | 1        | 1        | 2                     | 3                                      | 3                                      |
| $5_4^{\sqrt{6}}$ | 1        | a        | b                     | $\sigma$                               | τ                                      |
| 1                | 1        | a        | b                     | $\sigma$                               | τ                                      |
| a                | a        | 1        | b                     | τ                                      | σ                                      |
| b                | b        | b        | $1 \oplus a \oplus b$ | $\sigma \oplus \tau$                   | $\sigma\oplus 	au$                     |
| $\sigma$         | $\sigma$ | τ        | $\sigma \oplus \tau$  | $a \oplus b \oplus \sigma \oplus \tau$ | $1 \oplus b \oplus \sigma \oplus \tau$ |
| τ                | τ        | $\sigma$ | $\sigma \oplus \tau$  | $1 \oplus b \oplus \sigma \oplus \tau$ | $a \oplus b \oplus \sigma \oplus \tau$ |

 $K = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$  four-layer state. So we expect the  $S_3$  symmetry is the permutation symmetry of the second, the third, and the fourth layers.

The second  $5_4^{\sqrt{6}}$  entry can be realized by the  $K=\begin{pmatrix}2&1&1&1&1\\1&2&0&0\\1&0&2&0\\1&0&0&2\end{pmatrix}$  four-layer state. The two d=3 fermions are the direct sum of the three degenerate fermions in

TABLE XXVII.  $S_3$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N = 4,5,6  $D^2 \le 100$ , N = 7  $D^2 \le 60$ , and N = 8  $D^2 \le 40$ . (In fact, we fail to find any bosonic  $S_3$ -SET orders with N = 4,7,8.)

| $N_c^{ \Theta }$                                                                                                                                                                                                                                                                                                                                     | $D^2$  | $d_1,d_2,\ldots$                      | $s_1, s_2, \ldots$                          | comment                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $3_0^{\sqrt{6}}$ $5_4^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                    | 6      | 1,1,2                                 | 0,0,0                                       | $\mathcal{E} = \operatorname{Rep}(S_3)$                                                                   |
| $5_4^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 24     | 1,1,2,3,3                             | $0,0,0,\frac{1}{2},\frac{1}{2}$             | $SB:4_4^B$                                                                                                |
| $5_4^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 24     | 1,1,2,3,3                             | $0,0,0,\frac{1}{2},\frac{1}{2}$             | $SB:4_4^B \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$ |
| $5_4^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 24     | 1,1,2,3,3                             | $0,0,0,\frac{1}{2},\frac{1}{2}$             | $SB:4_4^B$                                                                                                |
| $6_1^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 12     | 1,1,2,1,1,2                           | $0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4}$ | $2_1^B \boxtimes \operatorname{Rep}(S_3)$                                                                 |
| $6_1^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 12     | 1,1,2,1,1,2                           | $0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4}$ | $SB:2_1^B$                                                                                                |
| $6_{-1}^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                  | 12     | 1,1,2,1,1,2                           | $0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4}$ | $2^{B}_{-1} \boxtimes \operatorname{Rep}(S_3)$                                                            |
| $6_{-1}^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                  | 12     | 1,1,2,1,1,2                           | $0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4}$ | $SB:2^B_{-1}$                                                                                             |
| $6_2^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 18     | 1,1,2,2,2,2                           | $0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3}$ | $SB:3_2^B$                                                                                                |
| $6_2^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                     | 18     | 1,1,2,2,2,2                           | $0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3}$ | $SB:3_2^B$                                                                                                |
| $6_{-2}^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                  | 18     | 1,1,2,2,2,2                           | $0,0,0,\frac{2}{3},\frac{2}{3},\frac{2}{3}$ | $SB:3^B_{-2}$                                                                                             |
| $6_{-2}^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                  | 18     | 1,1,2,2,2,2                           | $0,0,0,\frac{2}{3},\frac{2}{3},\frac{2}{3}$ | $SB:3^B_{-2}$                                                                                             |
| $6_{14/5}^{\sqrt{6}}$                                                                                                                                                                                                                                                                                                                                | 21.708 | $1,1,2,\zeta_3^1,\zeta_3^1,\zeta_8^4$ | $0,0,0,\frac{2}{5},\frac{2}{5},\frac{2}{5}$ | $2^{B}_{14/5} \boxtimes \operatorname{Rep}(S_3)$                                                          |
| $\begin{array}{c} 6\sqrt{6} \\ 6\sqrt{6} \\ 6\sqrt{6} \\ 6\sqrt{6} \\ 6\sqrt{1} \\ 6\sqrt{6} \\ 6\sqrt{6} \\ 6\sqrt{6} \\ 6\sqrt{6} \\ 6\sqrt{2} \\ 6\sqrt{6} \\ 14/5 \\ 6\sqrt{6} \\ 6\sqrt{14/5} \\ \end{array}$ | 21.708 | $1,1,2,\zeta_3^1,\zeta_3^1,\zeta_8^4$ | $0,0,0,\frac{3}{5},\frac{3}{5},\frac{3}{5}$ | $2^{B}_{-14/5} \boxtimes \operatorname{Rep}(S_3)$                                                         |

TABLE XXVIII.  $S_3$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=9  $D^2 \leqslant 30$ .

| $N_c^{ \Theta }$                                                                                        | $D^2$  | $d_1,d_2,\ldots$                                                        | $s_1, s_2, \ldots$                                                                          | comment                                          |
|---------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------|
| $3_0^{\sqrt{6}}$                                                                                        | 6      | 1,1,2                                                                   | 0,0,0                                                                                       | $\mathcal{E} = \operatorname{Rep}(S_3)$          |
| $9_2^{\sqrt{6}}$                                                                                        | 18     | 1,1,2,1,1,1,1,2,2                                                       | $0,0,0,\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3}$ | $3_2^B \boxtimes \operatorname{Rep}(S_3)$        |
| $9^{\sqrt{6}}_{-2}$ $9^{\sqrt{6}}_{0}$                                                                  | 18     | 1,1,2,1,1,1,1,2,2                                                       | $0,0,0,\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3},\frac{2}{3}$ | $3_{-2}^{B} \boxtimes \operatorname{Rep}(S_3)$   |
| $9_0^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},0,0,0,\frac{1}{2}$                                           | $SB:4_0^B$                                       |
| $9_0^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},0,0,0,\frac{1}{2}$                                           | $SB:4_0^B$                                       |
| $9_1^{\sqrt{6}}$ $9_1^{\sqrt{6}}$                                                                       | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{2}$             | $SB:4_1^B$                                       |
| $9_1^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{1}{8},\frac{1}{8},\frac{1}{2}$             | $SB:4_1^B$                                       |
| $9_2^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2}$             | $SB:4_2^B$                                       |
| $9_2^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{2}$             | $SB:4_2^B$                                       |
| $9_3^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2}$             | $SB:4_3^B$                                       |
| $9_3^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{3}{8},\frac{3}{8},\frac{1}{2}$             | $SB:4_3^B$                                       |
| $9_{3}^{\sqrt{6}}$ $9_{3}^{\sqrt{6}}$ $9_{4}^{\sqrt{6}}$                                                | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}$ | $SB:4_4^B$                                       |
| $9_4^{\sqrt{6}}$                                                                                        | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}$ | $SB:4_4^B$                                       |
| $9_{-3}^{\sqrt{6}}$                                                                                     | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8}$             | $SB:4^{B}_{-3}$                                  |
| $9_{-3}^{\sqrt{6}}$                                                                                     | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{5}{8},\frac{5}{8},\frac{5}{8}$             | $SB:4^{B}_{-3}$                                  |
| $9^{\sqrt{6}}_{-3}$ $9^{\sqrt{6}}_{-2}$ $9^{\sqrt{6}}_{-2}$ $9^{\sqrt{6}}_{-1}$                         | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},\frac{3}{4}$             | $SB:4^B_{-2}$                                    |
| $9_{-2}^{\sqrt{6}}$                                                                                     | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},\frac{3}{4}$             | $SB:4^B_{-2}$                                    |
|                                                                                                         | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{7}{8},\frac{7}{8},\frac{7}{8}$             | $SB:4^B_{-1}$                                    |
| $9_{-1}^{\sqrt{6}}$                                                                                     | 24     | 1,1,2,1,1,2,2,2,2                                                       | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{7}{8},\frac{7}{8},\frac{7}{8}$             | $SB:4^B_{-1}$                                    |
| $9^{\sqrt{6}}_{5/2}$                                                                                    | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{5}{16},\frac{1}{2},\frac{5}{16}$          | $3_{5/2}^{B} \boxtimes \operatorname{Rep}(S_3)$  |
| $9_{5/2}^{\sqrt{6}}$                                                                                    | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{5}{16},\frac{5}{16},\frac{1}{2},\frac{5}{16}$          | $SB:3_{5/2}^{B}$                                 |
| $9_{1/2}^{\sqrt{6}}$                                                                                    | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{2},\frac{1}{16}$          | $3_{1/2}^{B} \boxtimes \operatorname{Rep}(S_3)$  |
| $9^{\sqrt{6}}_{-1}$ $9^{\sqrt{6}}_{5/2}$ $9^{\sqrt{6}}_{5/2}$ $9^{\sqrt{6}}_{1/2}$ $9^{\sqrt{6}}_{1/2}$ | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{16},\frac{1}{16},\frac{1}{2},\frac{1}{16}$          | $SB:3_{1/2}^{B}$                                 |
| $9_{3/2}^{\sqrt{6}}$                                                                                    | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{3}{16},\frac{1}{2},\frac{3}{16}$          | $3_{3/2}^{B} \boxtimes \operatorname{Rep}(S_3)$  |
| $9_{3/2}^{\sqrt{6}}$ $9_{7/2}^{\sqrt{6}}$                                                               | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{3}{16},\frac{3}{16},\frac{1}{2},\frac{3}{16}$          | $SB:3_{3/2}^{B}$                                 |
| $9^{\sqrt{6}}_{7/2}$                                                                                    | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16},\frac{1}{2},\frac{7}{16}$          | $3_{7/2}^{B} \boxtimes \operatorname{Rep}(S_3)$  |
| $9^{\sqrt{6}}_{7/2}$                                                                                    | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{7}{16},\frac{7}{16},\frac{1}{2},\frac{7}{16}$          | $SB:3_{7/2}^{B}$                                 |
| $9^{\sqrt{6}}_{-7/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{9}{16},\frac{9}{16},\frac{1}{2},\frac{9}{16}$          | $3^{B}_{-7/2} \boxtimes \operatorname{Rep}(S_3)$ |
| $9^{\sqrt{6}}_{-7/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{9}{16},\frac{9}{16},\frac{1}{2},\frac{9}{16}$          | $SB:3_{-7/2}^{B}$                                |
| $9^{\sqrt{6}}_{-5/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{11}{16},\frac{11}{16},\frac{1}{2},\frac{11}{16}$       | $3^{B}_{-5/2} \boxtimes \operatorname{Rep}(S_3)$ |
| $9^{\sqrt{6}}_{-5/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{11}{16},\frac{1}{16},\frac{1}{2},\frac{11}{16}$        | $SB:3^{B}_{-5/2}$                                |
| $9^{\sqrt{6}}_{-3/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{13}{16},\frac{13}{16},\frac{1}{2},\frac{13}{16}$       | $3^B_{-3/2} \boxtimes \operatorname{Rep}(S_3)$   |
| $9^{\sqrt{6}}_{-3/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{13}{16},\frac{13}{16},\frac{1}{2},\frac{13}{16}$       | $SB:3^{B}_{-3/2}$                                |
| $9^{\sqrt{6}}_{-1/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_1^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{15}{16},\frac{15}{16},\frac{1}{2},\frac{15}{16}$       | $3^B_{-1/2} \boxtimes \operatorname{Rep}(S_3)$   |
| $9^{\sqrt{6}}_{-1/2}$                                                                                   | 24     | $1,1,2,1,1,\zeta_2^1,\zeta_2^1,2,\sqrt{8}$                              | $0,0,0,\frac{1}{2},\frac{1}{2},\frac{15}{16},\frac{15}{16},\frac{1}{16},\frac{15}{16}$      | $SB:3^{B}_{-1/2}$                                |
| $9_0^{\sqrt{6}}$                                                                                        | 30     | 1,1,2,2,2,2,2,2,2                                                       | $0,0,0,\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{4}{5},\frac{4}{5},\frac{4}{5}$             | $SB:5_0^B$                                       |
| $9_4^{\sqrt{6}}$                                                                                        | 30     | 1,1,2,2,2,2,2,2                                                         | $0,0,0,\frac{2}{5},\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$                         | $SB:5_4^B$                                       |
| $9_{8/7}^{\sqrt{6}}$                                                                                    | 55.775 | $1,1,2,\zeta_5^1,\zeta_5^1,\zeta_5^2,\zeta_5^2,2\zeta_5^1,\zeta_{12}^6$ | $0,0,0,\frac{6}{7},\frac{6}{7},\frac{2}{7},\frac{2}{7},\frac{6}{7},\frac{2}{7}$             | $3_{8/7}^B \boxtimes \operatorname{Rep}(S_3)$    |
| $9^{\sqrt{6}}_{-8/7}$                                                                                   | 55.775 | $1,1,2,\zeta_5^1,\zeta_5^1,\zeta_5^2,\zeta_5^2,2\zeta_5^1,\zeta_{12}^6$ | $0,0,0,\frac{1}{7},\frac{1}{7},\frac{5}{7},\frac{5}{7},\frac{1}{7},\frac{5}{7}$             | $3_{-8/7}^{B} \boxtimes \operatorname{Rep}(S_3)$ |

TABLE XXIX.  $Z_2 \times Z_2$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N = 5  $D^2 \le 100$  and N = 6  $D^2 \le 200$ .

| $N_c^{ \Theta }$                                                                                      | $D^2$  | $d_1,d_2,\ldots$                  | $s_1, s_2, \ldots$                  | comment                                            |
|-------------------------------------------------------------------------------------------------------|--------|-----------------------------------|-------------------------------------|----------------------------------------------------|
| 402 512 5-1 514/5                                                                                     | 4      | 1,1,1,1                           | 0,0,0,0                             | $\mathcal{E} = \operatorname{Rep}(Z_2 \times Z_2)$ |
| $5_1^2$                                                                                               | 8      | 1,1,1,1,2                         | $0,0,0,0,\frac{1}{4}$               | $SB:2_1^B$                                         |
| $5^2_{-1}$                                                                                            | 8      | 1,1,1,1,2                         | $0,0,0,0,\frac{3}{4}$               | $SB:2^B_{-1}$                                      |
| $5^2_{14/5}$                                                                                          | 14.472 | $1,1,1,1,\zeta_8^4$               | $0,0,0,0,\frac{2}{5}$               | $SB:2_{14/5}^{B}$                                  |
| $5^2_{-14/5}$                                                                                         | 14.472 | $1,1,1,1,\zeta_8^4$               | $0,0,0,0,\frac{3}{5}$               | $SB:2^{B}_{-14/5}$                                 |
| $6_2^2$                                                                                               | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{1}{3},\frac{1}{3}$   | $SB:3_2^B$                                         |
| $6_2^2$                                                                                               | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{1}{3},\frac{1}{3}$   | $SB:3_2^B$                                         |
| $6_2^2$                                                                                               | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{1}{3},\frac{1}{3}$   | $SB:3_2^B$                                         |
| $5^{2}_{-14/5}$ $6^{2}_{2}$ $6^{2}_{2}$ $6^{2}_{2}$ $6^{2}_{2}$ $6^{2}_{2}$ $6^{2}_{-2}$ $6^{2}_{-2}$ | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{1}{3},\frac{1}{3}$   | $SB:3_2^B$                                         |
| $6^2_{-2}$                                                                                            | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{2}{3},\frac{2}{3}$   | $SB:3^{B}_{-2}$                                    |
| $6^2_{-2}$                                                                                            | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{2}{3},\frac{2}{3}$   | $SB:3_{-2}^{B}$                                    |
| $6^{2}_{-2}$                                                                                          | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{2}{3},\frac{2}{3}$   | $SB:3_{-2}^{B}$                                    |
| $6^2_{-2}$                                                                                            | 12     | 1,1,1,1,2,2                       | $0,0,0,0,\frac{2}{3},\frac{2}{3}$   | $SB:3_{-2}^{B}$                                    |
| $6_{1/2}^2$                                                                                           | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{1}{16}$  | $SB:3_{1/2}^{B}$                                   |
| $6^2_{3/2}$                                                                                           | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{3}{16}$  | $SB:3_{3/2}^{B}$                                   |
| $6^2_{5/2}$                                                                                           | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{5}{16}$  | $SB:3_{5/2}^{B}$                                   |
| $6^{2}_{7/2}$                                                                                         | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{7}{16}$  | $SB:3_{7/2}^{B}$                                   |
| $6^{2}_{-7/2}$                                                                                        | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{9}{16}$  | $SB:3^{B}_{-7/2}$                                  |
| $6^2_{-5/2}$                                                                                          | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{11}{16}$ | $SB:3_{-5/2}^{B}$                                  |
| $6^2_{-3/2}$                                                                                          | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{13}{16}$ | $SB:3^{B}_{-3/2}$                                  |
| $6^2_{-1/2}$                                                                                          | 16     | $1,1,1,1,2,\sqrt{8}$              | $0,0,0,0,\frac{1}{2},\frac{15}{16}$ | $SB:3_{-1/2}^{B}$                                  |
| $6^{2}_{4}$                                                                                           | 36     | 1,1,1,1,4,4                       | $0,0,0,0,\frac{1}{3},\frac{2}{3}$   | $SB:9_4^{B'}$                                      |
| $6_{8/7}^2$                                                                                           | 37.183 | $1,1,1,1,2\zeta_5^1,\zeta_{12}^6$ | $0,0,0,0,\frac{6}{7},\frac{2}{7}$   | $SB:3_{8/7}^{B}$                                   |
| $6^2_{-8/7}$                                                                                          | 37.183 | $1,1,1,1,2\zeta_5^1,\zeta_{12}^6$ | $0,0,0,0,\frac{1}{7},\frac{5}{7}$   | $SB:3^{B}_{-8/7}$                                  |

the  $K = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$  state. They carry the following  $S_3$  representations:

$$\sigma \to \mathbf{1} \oplus b, \quad \tau \to a \oplus b.$$
 (A1)

It is strange that two different irreducible representations are degenerate in energy. However, this can happen for topological excitations in the presence of symmetry.

Such an assignment of the  $S_3$  representations (or  $S_3$  "charges") is consistent with the fusion rule (see the second table in Table XXVI). For example,

$$\sigma \otimes \sigma \to \mathbf{1} \oplus 2b \oplus b \otimes b = \mathbf{1} \oplus 2b \oplus (\mathbf{1} \oplus a \oplus b)$$
$$\to \mathbf{1} \oplus b \oplus \sigma \oplus \tau. \tag{A2}$$

This is why we say that the second  $5_4^{\sqrt{6}}$  entry can be realized by the  $K = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$  state.

However, the  $S_3$ -charge assignment Eq. (A1) does not work for the first and the third  $5_4^{\sqrt{6}}$  entries (i.e., inconsistent with fusion rules in the first and the third tables in Table XXVI). In fact, none of the  $S_3$ -charge assignment works. This mean that the d=3 fermions in the first and the third  $5_4^{\sqrt{6}}$  entries must carry fractionalized  $S_3$  charges or fractionalized  $S_3$  representations. It is not clear if such fractionalized  $S_3$  charges

are realizable or not, since we cannot calculate the modular extensions for those entries (due to the limitation of computer power).

### 4. $Z_2 \times Z_2$ -SET orders

Tables XXIX, XXX, and XXXI list the  $Z_2 \times Z_2$ -SET orders (up to invertible ones) for 2+1D bosonic systems.

Table XXXII lists the fusion rules for some  $Z_2 \times Z_2$ -SET orders. We see that the  $5_1^2$  state is a  $\nu=1/2$  bosonic Laughlin state with  $Z_2 \times Z_2$  symmetry, where the only topological excitation carries the projective representation of  $Z_2 \times Z_2$ . We also see that the  $5_{14/2}^2$  state is a bosonic Fibonacci state with  $Z_2 \times Z_2$  symmetry, where the only non-Abelian topological excitation carries the projective representation of  $Z_2 \times Z_2$ .

### 5. $Z_2 \times Z_2^f$ -SET and $Z_4^f$ -SET orders

Table XXXIII lists the  $Z_2 \times Z_2^f$ -SET orders (up to invertible ones) for 2+1D fermionic systems. Table XXXIV lists the  $Z_4^f$ -SET orders (up to invertible ones) for 2+1D fermionic systems. For fermionic systems, the central charge is determined up to  $c_{\min}$  by the bulk excitations, where  $c_{\min}$  is the smallest positive central charge of the modular extensions of sRep( $G^f$ ), for example,  $c_{\min} = 1/2$  for  $Z_2^f, Z_2 \times Z_2^f, Z_6^f$ ,  $c_{\min} = 1$  for  $Z_4^f, Z_8^f$ .

TABLE XXX.  $Z_2 \times Z_2$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=7  $D^2 \leqslant 120$ .

| $N_c^{ \Theta }$                                                                                                                                                                                                  | $D^2$  | $d_1,d_2,\ldots$                                                                                              | $s_1, s_2, \ldots$                                                                             | comment                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $4_0^2$                                                                                                                                                                                                           | 4      | 1,1,1,1                                                                                                       | 0,0,0,0                                                                                        | $\mathcal{E} = \operatorname{Rep}(Z_2 \times Z_2)$ |
| $7_0^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,0,0,\frac{1}{2}$                                                                      | $SB:4_0^B$                                         |
| $7_0^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,0,\frac{1}{4},\frac{3}{4}$                                                            | $SB:4_0^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
| $7_1^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{8},\frac{1}{8},\frac{1}{2}$                                                  | $SB:4_1^B$                                         |
|                                                                                                                                                                                                                   | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{2}$                                                  | $SB:4_2^B$                                         |
| $7_3^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7\frac{2}{2}$ $7\frac{2}{3}$ | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7_3^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7_3^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7_3^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7_3^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7\frac{2}{3}$                                                                                                                                                                                                    | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{3}{8},\frac{3}{8},\frac{1}{2}$                                                  | $SB:4_3^B$                                         |
| $7_4^2$                                                                                                                                                                                                           | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{1}{2},\frac{1}{2}$                                                  | $SB:4_4^B$                                         |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^{B}_{-3}$                                    |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^{B}_{-3}$                                    |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^B_{-3}$                                      |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^{B}_{-3}$                                    |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^B_{-3}$                                      |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^{B}_{-3}$                                    |
| $7^2_{-3}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{5}{8},\frac{5}{8}$                                                  | $SB:4^B_{-3}$                                      |
| $7^2_{-2}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{3}{4},\frac{3}{4}$                                                  | $SB:4^B_{-2}$                                      |
| $7^2_{-1}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7^{2}_{-1}$                                                                                                                                                                                                      | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7^{2}_{-1}$                                                                                                                                                                                                      | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7^{2}_{-1}$                                                                                                                                                                                                      | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7^2_{-1}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7^{2}_{-1}$                                                                                                                                                                                                      | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7^2_{-1}$                                                                                                                                                                                                        | 16     | 1,1,1,1,2,2,2                                                                                                 | $0,0,0,0,\frac{1}{2},\frac{7}{8},\frac{7}{8}$                                                  | $SB:4^B_{-1}$                                      |
| $7_{9/5}^2$                                                                                                                                                                                                       | 28.944 | $1,1,1,1,2,\zeta_8^4,\zeta_8^4$                                                                               | $0,0,0,0,\frac{3}{4},\frac{3}{20},\frac{2}{5}$                                                 | $SB:4_{9/5}^{B}$                                   |
| $7^2_{19/5}$                                                                                                                                                                                                      | 28.944 | $1,1,1,1,2,\zeta_8^4,\zeta_8^4$                                                                               | $0,0,0,0,\frac{1}{4},\frac{2}{5},\frac{13}{20}$                                                | $SB:4_{19/5}^{B}$                                  |
| $7^2_{-19/5}$                                                                                                                                                                                                     | 28.944 | $1,1,1,1,2,\zeta_8^4,\zeta_8^4$                                                                               | $0,0,0,0,\frac{3}{4},\frac{7}{20},\frac{3}{5}$                                                 | $SB:4^{B}_{-19/5}$                                 |
| $7^{2}_{-9/5}$                                                                                                                                                                                                    | 28.944 | $1,1,1,1,2,\zeta_8^4,\zeta_8^4$                                                                               | $0,0,0,0,\frac{1}{4},\frac{3}{5},\frac{17}{20}$                                                | $SB:4^{B}_{-9/5}$                                  |
| $7_{-9/5}^{2}$                                                                                                                                                                                                    | 52.360 | $1,1,1,1,\zeta_8^4,\zeta_8^4,3+\sqrt{5}$                                                                      | $0,0,0,0,\frac{2}{5},\frac{3}{5},0$                                                            | SB: $4_0^B$                                        |
| $7_{12/5}^{2}$                                                                                                                                                                                                    | 52.360 | $1,1,1,1,\zeta_8,\zeta_8,\zeta_8+\sqrt{5}$<br>$1,1,1,1,\zeta_8^4,\zeta_8^4,3+\sqrt{5}$                        | $0,0,0,0,\frac{3}{5},\frac{3}{5},0$<br>$0,0,0,0,\frac{3}{5},\frac{3}{5},\frac{1}{5}$           | $SB:4_{12/5}^{B}$                                  |
| $7_{-12/5}^{2}$ $7_{-12/5}^{2}$                                                                                                                                                                                   | 52.360 | $1,1,1,1,\zeta_8,\zeta_8,3+\sqrt{5}$<br>$1,1,1,1,\zeta_8,\zeta_8,3+\sqrt{5}$                                  | $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{4}{5}$                                                  | $SB:4^{B}_{-12/5}$                                 |
|                                                                                                                                                                                                                   | 76.937 | $1,1,1,1,2\zeta_{7}^{1},2\zeta_{7}^{2},\zeta_{16}^{8}$ $1,1,1,1,2\zeta_{7}^{1},2\zeta_{7}^{2},\zeta_{16}^{8}$ | $0,0,0,0,\frac{1}{5},\frac{2}{5},\frac{2}{5}$<br>$0,0,0,0,\frac{1}{3},\frac{2}{9},\frac{2}{3}$ | $SB:4_{-12/5}$<br>$SB:4_{10/3}^{B}$                |
| $7^2_{10/3}$                                                                                                                                                                                                      |        |                                                                                                               | 3 / 3                                                                                          | ,                                                  |
| $7^2_{-10/3}$                                                                                                                                                                                                     | 76.937 | $1,1,1,1,2\zeta_7^1,2\zeta_7^2,\zeta_{16}^8$                                                                  | $0,0,0,0,\frac{2}{3},\frac{7}{9},\frac{1}{3}$                                                  | SB:4 <sup>B</sup> <sub>-10/3</sub>                 |

TABLE XXXI.  $Z_2 \times Z_2$ -SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders with N=8  $D^2 \le 60$ .

| $N_c^{ \Theta }$                                                                                                             | $D^2$  | $d_1,d_2,\ldots$                                                | $s_1, s_2, \ldots$                                                                                                                                                                                                                                                                                                                                          | comment                                                      |
|------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| ${4_0^2}$                                                                                                                    | 4      | 1,1,1,1                                                         | 0,0,0,0                                                                                                                                                                                                                                                                                                                                                     | $\mathcal{E} = \operatorname{Rep}(Z_2 \times Z_2)$           |
| $egin{array}{c} 8_1^2 \\ 8_1^2 \\ 8_1^2 \\ 8_1^2 \\ 8_{-1}^2 \end{array}$                                                    | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}$                                                                                                                                                                                                                                                                                                   | $2_1^B \boxtimes \operatorname{Rep}(Z_2 \times Z_2)$         |
| 82                                                                                                                           | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}$                                                                                                                                                                                                                                                                                                   | $SB:2_1^B$                                                   |
| $8_1^2$                                                                                                                      | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}$                                                                                                                                                                                                                                                                                                   | $SB:2_1^B$                                                   |
| $8_1^2$                                                                                                                      | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}$                                                                                                                                                                                                                                                                                                   | $SB:2_1^B$                                                   |
| $8^2_{-1}$                                                                                                                   | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                   | $2^{B}_{-1} \boxtimes \operatorname{Rep}(Z_2 \times Z_2)$    |
| $8^2_{-1}$                                                                                                                   | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$ $0,0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                             | $\mathrm{SB}{:}2^B_{-1}$                                     |
| $8^2_{-1}$                                                                                                                   | 8      | 1,1,1,1,1,1,1                                                   |                                                                                                                                                                                                                                                                                                                                                             | $SB:2^B_{-1}$                                                |
| $8^2_{-1}$                                                                                                                   | 8      | 1,1,1,1,1,1,1                                                   | $0,0,0,0,\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4}$                                                                                                                                                                                                                                                                                                   | $SB:2^B_{-1}$                                                |
| 8 <sup>2</sup> <sub>-1</sub><br>8 <sup>2</sup> <sub>-1</sub><br>8 <sup>2</sup> <sub>-1</sub><br>8 <sup>2</sup> <sub>-1</sub> | 14.472 | $1,1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1,\zeta_3^1$               | $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{2}{5},\frac{2}{5}$                                                                                                                                                                                                                                                                                                   | $2^B_{14/5} \boxtimes \operatorname{Rep}(Z_2 \times Z_2)$    |
| $8^{2}_{-14/5}$                                                                                                              | 14.472 | $1,1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1,\zeta_3^1$               | $0,0,0,0,\frac{3}{5},\frac{3}{5},\frac{3}{5},\frac{3}{5}$                                                                                                                                                                                                                                                                                                   | $2^{B}_{-14/5} \boxtimes \operatorname{Rep}(Z_2 \times Z_2)$ |
| $8_0^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{1}{5},\frac{1}{5},\frac{4}{5},\frac{4}{5}$                                                                                                                                                                                                                                                                                                   | $SB:5_0^B$                                                   |
| $8_0^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{1}{5},\frac{1}{5},\frac{4}{5},\frac{4}{5}$                                                                                                                                                                                                                                                                                                   | $SB:5_0^B$                                                   |
| $8_0^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0.0.0.0, \frac{1}{2}, \frac{1}{2}, \frac{4}{2}, \frac{4}{2}$                                                                                                                                                                                                                                                                                               | $SB:5_0^B$                                                   |
| $8_0^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{1}{5},\frac{1}{5},\frac{4}{5},\frac{4}{5}$ $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$ $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$ $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$ $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$ $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$ | $SB:5_0^B$                                                   |
| $8_4^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$                                                                                                                                                                                                                                                                                                   | $SB:5_4^B$                                                   |
| $8_4^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$                                                                                                                                                                                                                                                                                                   | $SB:5_4^B$                                                   |
| $8_4^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$                                                                                                                                                                                                                                                                                                   | $SB:5_4^B$                                                   |
| $8_4^2$                                                                                                                      | 20     | 1,1,1,1,2,2,2,2                                                 | $0,0,0,0,\frac{2}{5},\frac{2}{5},\frac{3}{5},\frac{3}{5}$                                                                                                                                                                                                                                                                                                   | $SB:5_4^B$                                                   |
| $8^{2}_{2}$                                                                                                                  | 48     | $1,1,1,1,2,\sqrt{12},\sqrt{12},4$                               | $0,0,0,0,0,\frac{1}{8},\frac{5}{8},\frac{1}{3}$                                                                                                                                                                                                                                                                                                             | $SB:5_2^B$                                                   |
| 82                                                                                                                           | 48     | $1,1,1,1,2,\sqrt{12},\sqrt{12},4$                               | $0,0,0,0,0,\frac{3}{8},\frac{7}{8},\frac{1}{3}$                                                                                                                                                                                                                                                                                                             | $SB:5_2^B$                                                   |
| $8_0^2$ $8_0^2$ $8_0^2$ $8_0^2$ $8_0^2$ $8_4^2$ $8_4^2$ $8_4^2$ $8_2^2$ $8_2^2$ $8_{-2}^2$                                   | 48     | $1,1,1,1,2,\sqrt{12},\sqrt{12},4$                               | $0,0,0,0,0,\frac{1}{8},\frac{5}{8},\frac{2}{3}$                                                                                                                                                                                                                                                                                                             | $SB:5_{-2}^{B}$                                              |
| $8^2_{-2}$                                                                                                                   | 48     | $1,1,1,1,2,\sqrt{12},\sqrt{12},4$                               | $0,0,0,0,0,\frac{3}{8},\frac{7}{8},\frac{2}{3}$                                                                                                                                                                                                                                                                                                             | $SB:5_{-2}^B$                                                |
| 82/16/11                                                                                                                     | 138.58 | $1,1,1,1,2\zeta_9^1,2\zeta_9^2,2\zeta_9^3,\zeta_{20}^{10}$      | $0,0,0,0,\frac{9}{11},\frac{2}{11},\frac{1}{11},\frac{6}{11}$                                                                                                                                                                                                                                                                                               | $SB:5_{16/11}^{B}$                                           |
| $8^2_{-16/11}$                                                                                                               | 138.58 | $1,1,1,1,2\zeta_9^1,2\zeta_9^2,2\zeta_9^3,\zeta_{20}^{10}$      | $0,0,0,0,\frac{2}{11},\frac{9}{11},\frac{10}{11},\frac{5}{11}$                                                                                                                                                                                                                                                                                              | $SB:5^{B}_{-16/11}$                                          |
| 82                                                                                                                           | 141.36 | $1,1,1,1,\zeta_{12}^6,\zeta_{12}^6,2\zeta_{12}^2,2\zeta_{12}^4$ | $0,0,0,0,\frac{6}{7},\frac{6}{7},\frac{1}{7},\frac{3}{7}$                                                                                                                                                                                                                                                                                                   | $SB:5^{B}_{18/7}$                                            |
| $8^{2}_{18/7}$ $8^{2}_{-18/7}$                                                                                               | 141.36 | $1,1,1,1,\zeta_{12}^6,\zeta_{12}^6,2\zeta_{12}^2,2\zeta_{12}^4$ | $0,0,0,0,\frac{1}{7},\frac{1}{7},\frac{6}{7},\frac{4}{7}$                                                                                                                                                                                                                                                                                                   | $SB:5^{B}_{-18/7}$                                           |

# APPENDIX B: FUSION RING FOR THE MODULAR EXTENSIONS OF $\operatorname{Rep}(G)$ OR $\operatorname{sRep}(G^f)$ WHEN G OR $G^f$ IS ABELIAN GROUP

When the symmetry group G is Abelian, the different irreducible representations, under the fusion, form the same group G. Thus different irreducible representations can be labeled by the group elements: (q),  $q \in G$ . The different symmetry twists are also labeled by the group elements: [g],  $g \in G$ . More general symmetry twists may carry some charge. We denote such charge carrying symmetry twists by

[g,q] where  $q \in G$ . In fact we can identify (q) as [1,q]. Those irreducible representations and charged symmetry twists are particles in the modular extensions of Rep(G) or  $Rep(G^f)$ .

Since the group is Abelian, the symmetry twists do not break the symmetry. Thus we have the following fusion rule:

$$[1,q] \otimes [g,q'] = [g,qq'].$$
 (B1)

This means that [g,q'] and [g,qq'] differ by charge q. We also have

$$[g,q] \otimes [g',q'] = [gg',qq'].$$
 (B2)

TABLE XXXII. The fusion rules for some  $Z_2 \times Z_2$ -SET orders.

| $s_i$       | 0      | 0      | 0      | 0      | $\frac{1}{4}$                  | $s_i$        | 0      | 0      | 0      | 0      | $\frac{2}{5}$                               |
|-------------|--------|--------|--------|--------|--------------------------------|--------------|--------|--------|--------|--------|---------------------------------------------|
| $d_i$       | 1      | 1      | 1      | 1      | 2                              | $d_i$        | 1      | 1      | 1      | 1      | $2\zeta_3^1$                                |
| $5^{2}_{1}$ | 1      | a      | b      | c      | $\phi$                         | $5^2_{14/5}$ | 1      | a      | b      | c      | $\eta$                                      |
| 1           | 1      | a      | b      | c      | $\phi$                         | 1            | 1      | a      | b      | c      | $\eta$                                      |
| a           | a      | 1      | c      | b      | $\phi$                         | a            | a      | 1      | c      | b      | $\eta$                                      |
| b           | b      | c      | 1      | a      | $\phi$                         | b            | b      | c      | 1      | a      | $\eta$                                      |
| c           | c      | b      | a      | 1      | $\phi$                         | c            | c      | b      | a      | 1      | $\eta$                                      |
| $\phi$      | $\phi$ | $\phi$ | $\phi$ | $\phi$ | $1 \oplus a \oplus b \oplus c$ | $\eta$       | $\eta$ | $\eta$ | $\eta$ | $\eta$ | $1 \oplus a \oplus b \oplus c \oplus 2\eta$ |

TABLE XXXIII.  $Z_2 \times Z_2^f$ -SET orders (up to invertible ones) for fermionic systems. The list contains all topological orders with N=6  $D^2 \leqslant 300$ , N=8  $D^2 \leqslant 60$ , and N=10  $D^2 \leqslant 20$ .

| $N_c^{ \Theta }$                                                               | $D^2$  | $d_1,d_2,\ldots$                                  | $s_1, s_2, \ldots$                                                                     | comment                                                                          |
|--------------------------------------------------------------------------------|--------|---------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $4_0^0(_0^2)$                                                                  | 4      | 1,1,1,1                                           | $0,0,\frac{1}{2},\frac{1}{2}$                                                          | $\mathcal{E} = \mathrm{sRep}(Z_2 \times Z_2^f)$                                  |
| $6_0^0$                                                                        | 12     | 1,1,1,1,2,2                                       | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{6},\frac{2}{3}$                                  | $SB:K = \begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix}$                        |
| $6_0^0$                                                                        | 12     | 1,1,1,1,2,2                                       | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{5}{6}$                                  | $SB:K = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$                            |
| $8_0^0(_0^0)$                                                                  | 8      | 1,1,1,1,1,1,1                                     | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4}$          | $2_1^B \boxtimes \operatorname{sRep}(Z_2 \times Z_2^f)$                          |
| $8_0^0(_0^0)$                                                                  | 8      | 1,1,1,1,1,1,1                                     | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4}$          | $SB:4_0^F(_0^0)$                                                                 |
| $8^0_{-14/5}({\zeta_8^4 \over 3/20})$                                          | 14.472 | $1,1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1,\zeta_3^1$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{10}, \frac{1}{10}, \frac{3}{5}, \frac{3}{5}$ | $2^{B}_{-14/5} \boxtimes \operatorname{sRep}(Z_2 \times Z_2^f)$                  |
| $8^0_{14/5}({\zeta_8^4 \over -3/20})$                                          | 14.472 | $1,1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1,\zeta_3^1$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{2}{5}, \frac{2}{5}, \frac{9}{10}, \frac{9}{10}$ | $2^{B}_{14/5} \boxtimes \operatorname{sRep}(Z_2 \times Z_2^f)$                   |
| $8_0^0({}_0^2)$                                                                | 20     | 1,1,1,1,2,2,2,2                                   | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{10}, \frac{2}{5}, \frac{3}{5}, \frac{9}{10}$ | SB: $10_0^F \left( \begin{smallmatrix} \zeta_2^1 \\ 0 \end{smallmatrix} \right)$ |
| $8_0^0(\frac{2}{1/2})$                                                         | 20     | 1,1,1,1,2,2,2,2                                   | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{5}, \frac{3}{10}, \frac{7}{10}, \frac{4}{5}$ | SB: $10_0^F(\frac{\zeta_2^1}{1/2})$                                              |
| $8_{1/4}^0({\begin{smallmatrix} \zeta_2^1\zeta_6^3 \\ 1/2 \end{smallmatrix}})$ | 27.313 | $1,1,1,1,\zeta_6^2,\zeta_6^2,\zeta_6^2,\zeta_6^2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4}$          | $SB:4_{1/4}^F(\frac{\zeta_6^3}{1/2})$                                            |
| $8_{1/4}^0({\begin{smallmatrix} \zeta_2^1\zeta_6^3\\1/2\end{smallmatrix}})$    | 27.313 | $1,1,1,1,\zeta_6^2,\zeta_6^2,\zeta_6^2,\zeta_6^2$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4}$          | $SB:4_{1/4}^F(\frac{\zeta_6^3}{1/2})$                                            |
| $10_0^0({}_0^4)$                                                               | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},0,\frac{1}{2}$                | $SB:8_0^F(\sqrt[5]{8})$                                                          |
| $10_0^0({}_0^4)$                                                               | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},0,\frac{1}{2}$                | $SB:8_0^F(\begin{smallmatrix}\sqrt{8}\\0\end{smallmatrix})$                      |
| $10_0^0(\frac{\sqrt{8}}{1/8})$                                                 | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{5}{8}$      | $SB:8_0^F(\frac{2}{1/8})$                                                        |
| $10_0^0(\frac{\sqrt{8}}{1/8})$                                                 | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{5}{8}$      | $SB:8_0^F(\frac{2}{1/8})$                                                        |
| $10_0^0(_0^0)$                                                                 | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{3}{4}$      | $SB:8_0^F \binom{0}{0}$                                                          |
| $10_0^0(_0^0)$                                                                 | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{3}{4}$      | $SB:8_0^F(\stackrel{\circ}{0})$                                                  |
| $10_0^0(\frac{\sqrt{8}}{-1/8})$                                                | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{7}{8}$      | $SB:8_0^F({2 \choose -1/8})$                                                     |
| $10_0^0(\frac{\sqrt{8}}{-1/8})$                                                | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{7}{8}$      | $SB:8_0^F({2\atop -1/8})$                                                        |

TABLE XXXIV.  $Z_4^f$ -SET orders for fermionic systems. The list contains all topological orders with N=6  $D^2\leqslant 100$ , N=8  $D^2\leqslant 60$ , and N=10  $D^2\leqslant 20$ .

| $N_c^{ \Theta }$                | $D^2$  | $d_1,d_2,\ldots$                                  | $s_1, s_2, \ldots$                                                                         | comment                                                     |
|---------------------------------|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| $4_0^0$                         | 4      | 1,1,1,1                                           | $0,0,\frac{1}{2},\frac{1}{2}$                                                              | $\mathcal{E} = \mathrm{sRep}(Z_4^f)$                        |
| $6_0^0$                         | 12     | 1,1,1,1,2,2                                       | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{6},\frac{2}{3}$                                      | $K = -\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$         |
| $6_0^0$                         | 12     | 1,1,1,1,2,2                                       | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{3},\frac{5}{6}$                                      | $K = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$          |
| $8_0^0$                         | 8      | 1,1,1,1,1,1,1                                     | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}$       | $2^{B}_{-1} \boxtimes \operatorname{sRep}(Z_4^f)$           |
| $8_0^0$                         | 8      | 1,1,1,1,1,1,1                                     | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{3}{4},\frac{3}{4}$              | $2_1^B \boxtimes \operatorname{sRep}(Z_4^f)$                |
| $8^0_{-14/5}$                   | 14.472 | $1,1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1,\zeta_3^1$ | $0,0,\frac{1}{2},\frac{1}{2},\frac{1}{10},\frac{1}{10},\frac{3}{5},\frac{3}{5}$            | $2^B_{-14/5} \boxtimes \operatorname{sRep}(Z_4^f)$          |
| 8014/5                          | 14.472 | $1,1,1,1,\zeta_3^1,\zeta_3^1,\zeta_3^1,\zeta_3^1$ | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{2}{5}, \frac{2}{5}, \frac{9}{10}, \frac{9}{10}$     | $2^{B}_{14/5} \boxtimes \operatorname{sRep}(Z_4^f)$         |
| $8_0^0$                         | 20     | 1,1,1,1,2,2,2,2                                   | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{10}, \frac{2}{5}, \frac{3}{5}, \frac{9}{10}$     | SB: $10_0^F(\frac{\zeta_2^1}{0})$                           |
| $8_0^0$                         | 20     | 1,1,1,1,2,2,2,2                                   | $0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{5}, \frac{3}{10}, \frac{7}{10}, \frac{4}{5}$     | SB: $10_0^F (\frac{\zeta_2^1}{1/2})$                        |
| $10_0^0({}_0^4)$                | 16     | 1,1,1,1,1,1,1,2,2                                 | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}$           | $SB:8_0^F(\sqrt{8})$                                        |
| $10_0^0({}_0^4)$                | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},0,\frac{1}{2}$                    | $SB:8_0^F(\begin{smallmatrix}\sqrt{8}\\0\end{smallmatrix})$ |
| $10_0^0(\frac{\sqrt{8}}{1/8})$  | 16     | 1,1,1,1,1,1,1,2,2                                 | $0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{8}, \frac{5}{8}$ | $SB:8_0^F(\frac{2}{1/8})$                                   |
| $10_0^0(\frac{\sqrt{8}}{1/8})$  | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{8},\frac{5}{8}$          | $SB:8_0^F(\frac{2}{1/8})$                                   |
| $10_0^0(_0^0)$                  | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{3}{4}$          | $SB:8_0^F(\stackrel{0}{0})$                                 |
| $10_0^0({\stackrel{\circ}{0}})$ | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{1}{4},\frac{3}{4}$          | $SB:8_0^F({\stackrel{\circ}{0}})$                           |
| $10_0^0(\frac{\sqrt{8}}{-1/8})$ | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{7}{8}$          | $SB:8_0^F(\frac{2}{-1/8})$                                  |
| $10_0^0(\frac{\sqrt{8}}{-1/8})$ | 16     | 1,1,1,1,1,1,1,2,2                                 | $0,0,\frac{1}{2},\frac{1}{2},0,0,\frac{1}{2},\frac{1}{2},\frac{3}{8},\frac{7}{8}$          | $SB:8_0^F(\frac{2}{-1/8})$                                  |

However, the above fusion rule is too restrictive. Although [g,q'] and [g,qq'] differ by charge q, we do not know the net charge of [g,q'] when  $g \neq 1$ . Thus the more general fusion rule that still preserves charge conservation is

$$[g,q] \otimes [g',q'] = [gg',\omega_2(g,g')qq'], \quad \omega_2(g,g') \in G.$$
 (B3)  
From

$$([g_1,q_1] \otimes [g_2,q_2]) \otimes [g_3,q_3]$$

$$= [g_1g_2g_3,\omega(g_1,g_2)\omega(g_1g_2,g_3)q_1q_2q_3]$$

$$= [g_1,q_1] \otimes ([g_2,q_2] \otimes [g_3,q_3])$$

$$= [g_1g_2g_3,\omega(g_1,g_2g_3)\omega(g_2,g_3)q_1q_2q_3], \quad (B4)$$

we see that

$$\omega(g_1, g_2)\omega(g_1g_2, g_3) = \omega(g_1, g_2g_3)\omega(g_2, g_3). \tag{B5}$$

i.e.,  $\omega(g_1, g_2)$  is a group 2-cocycle in  $\mathcal{H}^2(G, G)$ .

In the above, we have assumed that the modular extension is Abelian (i.e., all the particles in the modular extension have a quantum dimension 1). We see that the fusion rules of Abelian modular extensions are labeled by 2-cocycles in  $\mathcal{H}^2(G,G)$ .

However, sometimes the modular extension can be non-Abelian, such as the modular extension of  $\operatorname{sRep}(Z_2^f)$  and  $\operatorname{Rep}(Z_2 \times Z_2 \times Z_2)$ . To allow such a possibility, we allow [g,q] to be a many-to-one label of the particle, and define a subgroup  $H_g \subset G$ :

$$H_g = \{h | [g,q] = [g,hq], h \in G\}.$$
 (B6)

The mapping  $g \to H_g$  is an important data to describe the fusion.  $H_g$  represents the charge ambiguity of the symmetry twist [g,q]. To get a one-to-one label, we can use

$$[g, qH_g]. (B7)$$

Note that, when g is an identity: g = 1,  $H_g$  is trivial:  $H_1 = 1$ . The fusion of [1,q'] and  $[g,qH_g]$  is still given by

$$[1,q'] \otimes [g,qH_g] = [g,q'qH_g].$$
 (B8)

We also have  $H_g = H_{g^{-1}}$  and

$$[g, qH_g] \otimes [g^{-1}, q'H_g] = \bigoplus_{h \in qq'H_g} [1, h].$$
 (B9)

We see that the quantum dimension of  $[g, qH_g]$  is  $d = \sqrt{|H_g|}$ . The fusion rule should satisfy

$$[1,q] \otimes ([g_1,q_1H_{g_1}] \otimes [g_2,q_2H_{g_2}])$$

$$= ([1,q] \otimes [g_1,q_1H_{g_1}]) \otimes [g_2,q_2H_{g_2}]$$

$$= [g_1,q_1H_{g_1}] \otimes ([1,q] \otimes [g_2,q_2H_{g_2}]). \tag{B10}$$

We find that the following ansatz satisfy the above condition:

$$[g_{1},q_{1}H_{g_{1}}] \otimes [g_{2},q_{2}H_{g_{2}}] = \frac{m^{g_{1}g_{2}}}{|(H_{g_{1}} \vee H_{g_{2}}) \cap H_{g_{1}g_{2}}|}$$

$$\bigoplus_{q \in \omega(g_{1},g_{2})q_{1}q_{2}H_{g_{1}} \vee H_{g_{2}}} [g_{1}g_{2},qH_{g_{1}g_{2}}], \quad (B11)$$

where  $m^{g_1g_2} \in \mathbb{Z}$  and  $H_{g_1} \vee H_{g_2}$  is the subgroup generated by  $H_{g_1}$  and  $H_{g_2}$ . The above implies that

$$\sqrt{|H_{g_1}|}\sqrt{|H_{g_2}|} = m^{g_1g_2} \frac{|H_{g_1} \vee H_{g_2}|}{|(H_{g_1} \vee H_{g_2}) \cap H_{g_1g_2}|} \sqrt{|H_{g_1g_2}|}.$$
(B12)

We see that different fusion rules are labeled by  $\omega(g_1,g_2)$  and  $H_g$ .

It is much easier to find all the  $H_g$ 's that satisfy Eq. (B12) and all the  $\omega(g_1, g_2)$  that satisfy Eq. (B5). From those solutions, we can directly construct the fusion rule from Eq. (B11).

#### APPENDIX C: CONDITIONS TO OBTAIN UMTC<sub> $/\varepsilon$ </sub>'s

In our simplified theory, a UMTC $_{/\mathcal{E}}$  is described by an integer tensor  $N_k^{ij}$  and a mod-1 rational vector  $s_i$ , where i, j, k run from 1 to N and N is called the rank of the UMTC $_{/\mathcal{E}}$ . We may simply denote a UMTC $_{/\mathcal{E}}$  [the collection of data  $(N_k^{ij}, s_i)$ ] by  $\mathcal{C}$ , a particle i in  $\mathcal{C}$  by  $i \in \mathcal{C}$ . Sometimes it is more convenient to use abstract labels rather than 1 to N; we may also abuse  $\mathcal{C}$  as the set of labels (particles).

Not all  $(N_k^{ij}, s_i)$  describe a valid UMTC $_{/\mathcal{E}}$   $\mathcal{C}$  with modular extensions. In order to describe a valid  $\mathcal{C}$ ,  $(N_k^{ij}, s_i)$  must satisfy the following conditions [8,13,43–45].

(1) Fusion ring.  $N_k^{ij}$  for the  $\mathrm{UMTC}_{/\mathcal{E}}$   $\mathcal{C}$  are non-negative integers that satisfy

$$N_k^{ij} = N_k^{ji}, \quad N_j^{1i} = \delta_{ij}, \quad \sum_{k=1}^N N_1^{ik} N_1^{kj} = \delta_{ij},$$

$$\sum_m N_m^{ij} N_l^{mk} = \sum_n N_l^{in} N_n^{jk} \quad \text{or } \sum_m N_m^{ij} N_m = N_i N_j, \quad (C1)$$

where the matrix  $N_i$  is given by  $(N_i)_{kj} = N_k^{ij}$ , and the indices i, j, k run from 1 to N. In fact  $N_1^{ij}$  defines a charge conjugation  $i \to \bar{i}$ :

$$N_1^{ij} = \delta_{\bar{i}j}. \tag{C2}$$

 $N_k^{ij}$  satisfying the above conditions define a fusion ring which is viewed as the set (of simple objects)

$$\{1, 2, \dots, N\}.$$
 (C3)

(2) Charge conjugation condition:

$$N_k^{ij} = N_{\bar{i}}^{j\bar{k}} = N_{\bar{j}}^{\bar{k}i}$$
  
=  $N_{\bar{j}}^{\bar{i}k} = N_i^{k\bar{j}} = N_{\bar{k}}^{\bar{j}\bar{i}}$ . (C4)

(3) Rational condition.  $N_k^{ij}$  and  $s_i$  for C satisfy [8,46–48]

$$\sum_{r} V_{ijkl}^{r} s_r = 0 \bmod 1, \tag{C5}$$

where

$$V_{ijkl}^{r} = N_{r}^{ij} N_{\bar{r}}^{kl} + N_{r}^{il} N_{\bar{r}}^{jk} + N_{r}^{ik} N_{\bar{r}}^{jl} - (\delta_{ir} + \delta_{jr} + \delta_{kr} + \delta_{lr}) \sum_{m} N_{m}^{ij} N_{\bar{m}}^{kl}.$$
 (C6)

(4) Verlinde fusion characters. Let the topological S matrix be (see Eq. (223) in Ref. [9])

$$S_{ij} = \frac{1}{D} \sum_{k} N_k^{ij} e^{2\pi i (s_i + s_j - s_k)} d_k,$$
 (C7)

where  $d_i$  (called quantum dimension) is the largest eigenvalue of the matrix  $N_i$  and  $D = \sqrt{\sum_i d_i^2}$  (called the total quantum

dimension). Then [49]

$$\frac{S_{il}S_{jl}}{S_{1l}} = \sum_{k} N_k^{ij} S_{kl}.$$
 (C8)

(5) Weak modularity. Let the topological T matrix be

$$T_{ij} = \delta_{ij} e^{2\pi i s_i}. (C9)$$

Then (see Eq. (232) in Ref. [9])

$$S^{\dagger}TS = \Theta T^{\dagger}S^{\dagger}T^{\dagger}.$$

$$\Theta = D^{-1} \sum_{i} e^{2\pi i s_i} d_i^2 = |\Theta| e^{2\pi i c/8}.$$
 (C10)

The parameter  $c \mod 8$  is defined via  $\Theta$ , if  $|\Theta| \neq 0$ .

(6) Charge conjugation symmetry:

$$S_{ij} = S_{i\bar{i}}^*, \quad s_i = s_{\bar{i}}, \text{ or } S = S^{\dagger}C, \quad T = TC,$$
 (C11)

where the charge conjugation matrix C is given by  $C_{ij} = N_1^{ij} = \delta_{i\bar{i}}$ .

(7) The centralizer describes the symmetry. Let the centralizer of C,  $C_C^{\text{cen}}$ , be the subset of the particle labels:

$$C_{\mathcal{C}}^{\text{cen}} = \left\{ i | S_{ij} = \frac{d_i d_j}{D}, \, \forall j \in \mathcal{C} \right\}. \tag{C12}$$

Then,  $C_{\mathcal{C}}^{\text{cen}} = \mathcal{E}$ .

(8) The second Frobenius-Schur indicator. Let

$$\nu_k = D^{-2} \sum_{ij} N_k^{ij} d_i d_j \cos(4\pi (s_i - s_j)),$$
 (C13)

then  $v_k \in \mathbb{Z}$  if  $k = \bar{k}$  [50].

- (9) Symmetry breaking. There is a symmetry breaking induced map  $\mathcal{C} \to \mathcal{C}_0$ , where  $\mathcal{C}_0$  is a UMTC if  $\mathcal{E} = \operatorname{Rep}(G)$  or a UMTC<sub>/sRep(Z<sub>2</sub>)</sub> if  $\mathcal{E} = \operatorname{sRep}(G^f)$ . See Appendix D for details.
- (10) Modular extension. The  $UMTC_{/\mathcal{E}}$   $\mathcal{C}$  has modular extensions

The above conditions are necessary and sufficient (due to condition 10) for  $(N_k^{ij}, s_i)$  to describe a UMTC<sub>/E</sub>  $\mathcal{C}$  with modular extensions.

However, when we calculate the tables in Appeandix A, we do not use condition 10. So the used conditions are only necessary. As a result, the tables may contain fake entries that have no modular extensions.

To numerically solve the above conditions to obtain the classification tables, we first search for  $N_k^{ij}$ 's that satisfy condition 1 and 2. Then for each  $N_k^{ij}$ , we calculate  $s_i$ 's that satisfy condition 3 via the Smith normal form of integer matrix  $V_{ijkl}^r$ , where ijkl is viewed as a single index. Last, from the obtained  $N_k^{ij}$ ,  $s_i$ 's, we select those that satisfy all the conditions.

#### APPENDIX D: SYMMETRY BREAKING

A UMTC $_{/\mathcal{E}}$   $\mathcal{C}$  describes a SET with symmetry  $\mathcal{E}$  (up to invertible GQLs). If we break the symmetry  $\mathcal{E}$ , then the UMTC $_{/\mathcal{E}}$  will become a UMTC  $\mathcal{C}_0$  if  $\mathcal{E} = \operatorname{Rep} G$  or become a UMTC $_{/\mathbb{Z}_2^f}$   $\mathcal{C}_0$  if  $\mathcal{E} = \operatorname{sRep} G^f$ . So there is a natural mapping from UMTC $_{/\mathcal{E}}$ 's to UMTCs or UMTC $_{/\mathbb{Z}_2^f}$ :  $\mathcal{C} \to \mathcal{C}_0$ .

Requiring the exitance of such map can give us some additional conditions on  $(N_k^{ij}, s_i)$  of C.

To understand such a map, we note that C can be viewed as a subcategory of  $C_0$ , in the sense that the simple objects in C can be viewed as the simple or composite objects in  $C_0$ :

$$i \to \bigoplus_I M^{iI} I, \quad i \in \mathcal{C}, \quad I \in \mathcal{C}_0.$$
 (D1)

Physically, if we just pretend the symmetry is not there, then every particle in  $\mathcal{C}$  can also be viewed as a particle in  $\mathcal{C}_0$ . However, a particle in  $\mathcal{C}$  may be the direct sum of several degenerate particles in  $\mathcal{C}_0$ , where the degeneracy is due to the symmetry, as described by Eq. (D1).

In the following, we will obtain some conditions on  $M^{iI}$ , which will help us to calculate it. Let us label the particles in  $\mathcal{C}$  as  $\{i\} = \{1, a, b, \ldots, x, y, \ldots\}$ . Here,  $a, b, \ldots$  label the *bosonic* part of  $\mathcal{E}$ , and  $x, y, \ldots$  label the fermionic part of  $\mathcal{E}$  (if any) and the rest of nontrival topological excitations. We have also used I to label the particles in  $\mathcal{C}_0$ . Clearly, the bosonic part of  $\mathcal{E}$  are local excitations and are direct sums of  $\mathbf{1} \in \mathcal{C}_0$ :

$$a \to d_a \mathbf{1}$$
, or  $M^{aI} = d_a \delta_{1I}$ . (D2)

(Here, **1** is the trivial particle in  $C_0$ .) By computing  $i \otimes j$  in two different ways, we find that  $M^{iI}$  must also satisfy

$$\sum_{IJ} M^{iI} M^{jJ} N_K^{IJ} = \sum_k N_k^{ij} M^{kK}.$$
 (D3)

Taking K = 1, we obtain

$$\sum_{I} M^{iI} M^{j\bar{I}} = \sum_{a} N_a^{ij} d_a. \tag{D4}$$

Assuming the charge conjugation symmetry:  $M^{il} = M^{\bar{i}\bar{l}}$ , we can rewrite the above as

$$\sum_{I} M^{iI} M^{jI} = \sum_{a} N_a^{i\bar{j}} d_a, \tag{D5}$$

which implies that

$$\sum_{I} (M^{iI})^2 = \sum_{a} N_a^{i\bar{i}} d_a.$$
 (D6)

To obtain more properties of  $M^{iI}$  and to solve the above conditions on  $M^{iI}$ , let us consider the fusion with a particles:

$$a \otimes x = \bigoplus_{y} N_{y}^{ax} y. \tag{D7}$$

We define x to be equivalent to y if there exists a such that  $N_y^{ax} \neq 0$ . Let [x] be the equivalent class of x. Clearly [1] = [a].

First, we like to pointed out that if i and j are equivalent, then i and j are formed by the same combination of I's, up to an overall factor, such as

$$i \to I_1 \oplus 2I_2, \quad j \to 3I_1 \oplus 6I_2.$$
 (D8)

This is because a particles in C is mapped to the direct sum of identity in  $C_0$ . Since i and j is related by fusing a or identity in  $C_0$ , then i and j must be formed by the same combination of I's

Second, if i and j are not equivalent, then the I's that enter i do not overlap with the I's that enter j. This is a consequence of Eq. (D5). The right-hand side of Eq. (D5) will vanish if i and j are not equivalent.

Third, the I's that appear in i must have the same quantum dimensions and spins. This is because those I's must be degenerate. This can only happen if they have the same quantum dimensions and spins.

Fourth, the I's that appears in i must each enter with an equal weight, such as

$$i \to 2I_1 \oplus 2I_2.$$
 (D9)

Again, this is because those I's must be degenerate. This can only happen if they can be mapped into each other by symmetry transformations. Since the symmetry transformations only permute I's, each I enters with an equal weight.

Combine the above results, we see that  $M^{iI}$  has the following block structure. We can divide the index I into groups [I], such that there is one-to-one correspondence between [i] and [I]:  $[i] \leftrightarrow [I]_{[i]}$ , and

$$M^{iI} = 0$$
 if  $i \in [i]$ ,  $I \notin [I]_{[i]}$ ,  
 $M^{iI} = m_i > 0$  if  $i \in [i]$ ,  $I \in [I]_{[i]}$ . (D10)

Therefore we have

$$m_i^2 n_{[i]} = \sum_a N_a^{i\bar{i}} d_a,$$
 (D11)

where  $n_{[i]}$  is the size of the set  $[I]_{[i]}$ . Since

$$i = \bigoplus_{I \in [I]_{[i]}} m_i I, \tag{D12}$$

we have

$$m_i m_j n_{[i]} = \sum_a N_a^{i\bar{j}} d_a, \quad i, j \in [i].$$
 (D13)

In other words, the matrix  $\tilde{N}$  with elements  $\tilde{N}_{ij} = \sum_a N_a^{ij} d_a$  is block diagonal. Each block is formed by particles in an equivalent class [i], and is given by the above expression. We see that, for  $i,j \in [i]$ ,  $\sum_a N_a^{i\bar{j}} d_a$  must be a symmetric matrix with a single nonzero eigenvalue  $n_{[i]} \sum_{j \in [i]} m_j^2$  and eigenvector  $(m_i)$ .

We also find that

$$d_i = m_i n_{[i]} d_I, \tag{D14}$$

or

$$d_I = \frac{m_i d_i}{\sum_a N_a^{i\bar{i}} d_a} \quad \forall \quad I \in [I]_{[i]}. \tag{D15}$$

Using the fact  $s_i = s_j = s_I$ ,  $\forall i, j \in [i]$ ,  $I \in [I]_{[i]}$ , we can obtain  $(d_I, s_I)$  of  $C_0$  from  $(N_k^{ij}, s_i)$  of C. The resulting  $(d_I, s_I)$  must be the quantum dimensions and the spins of a UMTC. This gives us some extra conditions on  $(N_k^{ij}, s_i)$ .

# APPENDIX E: PHYSICAL AND MATHEMATICAL MEANING OF UMTC $_{/\mathcal{E}}$ AND ITS MODULAR EXTENSIONS

In the main text of the paper, we have explained why  $UMTC_{/\mathcal{E}}$  describes the bulk particlelike excitations. We also explained the motivation of modular extension via "gauging" the symmetry. In this section, we will discuss a deeper meaning of  $UMTC_{/\mathcal{E}}$  and its modular extensions.

We know that  $UMTC_{/\mathcal{E}}$  is a very abstract way to describe the non-Abelian statistics of the excitations. It is not clear

at all that why the excitations described by  $UMTC_{/\mathcal{E}}$  can be realized by a local lattice model with on-site symmetry. In physics, we mainly concern about local lattice models and their properties. It appears that there is a big gap between the  $UMTC_{/\mathcal{E}}$  studied in this paper and local lattice models that physicists want to study. In fact, the two are closely related. Here, we will try to explain such a connection between lattice models and  $UMTC_{/\mathcal{E}}$  (with their modular extensions).

We know that the fusion-braiding properties of particles within a two-dimensional open disk can be described by a unitary braided fusion category. From this point of view, a unitary braided fusion category is a *local* theory that only encode the local properties of the fusion and braiding (i.e., on an open disk). We want to promote fusion-braiding properties to be integrable to any two-dimensional manifolds because we want those fusion-braiding properties to be realizable by some local lattice models, which can always be defined on any two-dimensional manifolds. Therefore the integrability of fusion-braiding properties to any two-dimensional manifolds is necessary for the fusion-braiding properties to be realized by some local lattice models.

Now we assume that "all two-dimensional manifolds" are the most powerful probes. This means that the integrability of the local fusion-braiding properties to global invariants (on all two-dimensional manifolds), satisfying natural physically required properties, is also sufficient for those properties to be realizable by some local lattice models.

The process of integrating the local fusion-braiding properties of particles (described by a UBFC  $\mathcal{C}$ ) to give global invariants is defined by the so-called factorization homology [51,52]. In order to be free of framing anomaly, we need a spherical structure, which is guaranteed by the unitarity of a UBFC [9]. For general UBFCs, although the global invariants are well-defined by factorization homology [52], they do not have nice properties that allow us to give them a natural physical meaning. A stronger *integrability condition* needs to be imposed in order for the global invariants to have natural physical meanings.

For example, if  $\mathcal{C}$  is assumed to be nondegenerate (i.e., UMTC), it was shown in Ref. [53] that factorization homology of a UMTC  $\mathcal{C}$  over a closed two-dimensional manifold is given by the category of finite dimensional Hilbert spaces. If one inserts a finite number of particlelike excitations  $x_1, \dots, x_r$  on the closed surface, one simply obtain the Hilbert space  $\hom_{\mathcal{C}}(1, x_1 \otimes \dots \otimes x_r)$ , which is also the space of degenerate ground states. This result remains to be true for all closed two-dimensional manifolds with topological gapped defects and with two cells decorated by different phases [53]. This includes the cases that the topological order is defined on any surfaces with boundaries. Therefore the nondegeneracy is certainly a sufficient integrability condition, which is too strong for the purpose of this work.

In this paper, we consider something more complicated—the fusion-braiding properties of particles with symmetry. By "with symmetry", we mean to include local excitations that carry representations of the symmetry group. Mathematically, this means that the unitary braided fusion category  $\mathcal C$  contain a SFC  $\mathcal E$  as its Müger center, i.e., a UMTC $_{/\mathcal E}$ . We know that either  $\mathcal E=\operatorname{Rep}(G)$  or  $\mathcal E=\operatorname{sRep}(G^f)$ , where G or  $G^f$  is the symmetry group. In this case, we must find a proper

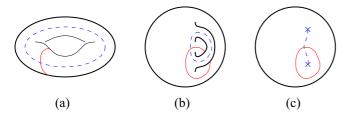


FIG. 4. (a) A torus with a flat G connection (described by a symmetry twist along the dashed loop). The thin solid loop is a braiding path. (b) A handle is deformed into a very thin one. (c) A very thin handle can be viewed as two defects, and each defect corresponds to the added particle in the modular extension.

integrability condition that is weaker than the nondegeneracy of UBFC.

In order for the factorization homology of C on a surface, a unitary category denoted by  $\mathcal{C}_{\Sigma}$ , to have a physical meaning, we suspect that we should be able to interpret its object as finite dimensional Hilbert spaces in a natural way. This suggests that the category  $\mathcal{C}_{\Sigma}$  should equipped with a natural functor to the category of finite dimensional Hilbert spaces, which is a factorization homology  $\mathcal{M}_{\Sigma}$  of a UMTC  $\mathcal{M}$  [53]. So we expect that we should be able to embed C into a UMTC  $\mathcal{M}$  such that the embedding naturally descends to a functor  $\mathcal{C}_{\Sigma} \to \mathcal{M}_{\Sigma}$  on factorization homologies. An arbitrary UMTC such as the Drinfeld center  $Z(\mathcal{C})$  of  $\mathcal{C}$  can not do the job because there is no canonical way to identify C in M (with a fixed symmetry  $\mathcal{E}$ ) so that it is unlikely that it can be compatible with the integration process. So we expect that the condition  $\mathcal{E}_{\mathcal{M}}^{\text{cen}} = \mathcal{C}$  is a natural integrability condition that replace the nondegeneracy condition in this case. This flow of thinking leads us to the concept of the modular extension of C. It also suggests that the nonexistence of the modular extension of a given  $\mathcal{C}$  means that  $\mathcal{C}$  is somewhat inconsistent globally or not integrable to all two-dimensional manifolds with natural physical meanings.

This can also be viewed from a different point of view. If we require each particle to be nontrivial in some sense, then we must only consider the nondegenerate unitary braided fusion category over SFC  $\mathcal{E}$ . In this case, for particles not in  $\mathcal{E}$ , we know they are nontrivial because their nontrivial double braiding (or nontrivial mutual statistics) with some particles. But we still have trouble to know why the particles in  $\mathcal{E}$  are

nontrivial? From their fusion and braiding properties, they just behave like the identity or a composite of identities.

To fix this problem, we put our particles on any two-dimensional manifolds. In this case, we can find a way to understand the nontrivialness of the particle in  $\mathcal{E}$ . This require us to twist the symmetry G or  $G^f$  on the two-dimensional manifold. In other words, we equip the two-dimensional manifold with a flat G connection. Since the particles in  $\mathcal{E}$  all carry irreducible representations of G, as we move the particles along a noncontractile loop, the flat G connection will induce a G transformation on the particle (or more precisely, on the hom space of the particles). This allows us to probe the particles in  $\mathcal{E}$  and detect their nontrivialness.

Therefore, as we put particles on a two-dimensional manifold, it is important to allow any flat G connection on the manifold. Now we ask, in this case, can a nondegenerate unitary braided fusion category  $\mathcal C$  over a SFC  $\mathcal E$  describes the fusion-braiding properties of particles that are consistent on any two-dimensional manifolds with any flat G connections?

In this paper, we propose that the answer is no. We also propose that the answer is yes if the  $\mathcal{C}$  over  $\mathcal{E}$  has modular extensions, which are the categorical ways of gauging the symmetry  $\mathcal{E}$ . So, nondegenerate unitary braided fusion categories over SFC can describe the consistent local fusion and braiding on an open disk. Only the ones with modular extensions can describe the consistent fusion and braiding on any manifolds (with any flat G connections).

The intuition for the above conjecture is explained in the Fig. 4. Figure 4(a) describes a braiding of particles on a torus with flat G connection. As we deform a handle into a very thin one, we may view the above braiding on torus as a braiding around the added particles in the modular extension. So the consistent fusion and braiding on any manifolds with any flat G connection must be closely related to the consistent fusion and braiding on a sphere with the added particles in the modular extension. So, the mathematical meaning of the modular extension is to make the fusion and braiding to be consistent on any manifolds with any flat G connection.

For a given  $\mathcal{C}$  over  $\mathcal{E}$ , there can be several modular extensions  $\mathcal{M}$ . We believe that those different modular extensions describe the different structures at the boundary. This picture leads to the physical conjecture that the triple  $(\mathcal{C}, \mathcal{M}, c)$  classify the 2+1D topological/SPT orders with symmetry  $\mathcal{E}$ .

<sup>[1]</sup> X.-G. Wen, Phys. Rev. B 40, 7387 (1989).

<sup>[2]</sup> X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).

<sup>[3]</sup> X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).

<sup>[4]</sup> L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).

<sup>[5]</sup> X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B **82**, 155138 (2010).

<sup>[6]</sup> B. Zeng and X.-G. Wen, Phys. Rev. B 91, 125121 (2015).

<sup>[7]</sup> G. Moore and N. Seiberg, Commun. Math. Phys. **123**, 177 (1989).

<sup>[8]</sup> B. Bakalov and A. Kirillov, Jr., *Lectures on Tensor Categories and Modular Functors*, University Lecture Series, Vol. 21 (American Mathematical Society, Providence, 2001).

<sup>[9]</sup> A. Kitaev, Ann. Phys. 321, 2 (2006).

<sup>[10]</sup> L. Kong and X.-G. Wen, arXiv:1405.5858.

<sup>[11]</sup> X.-G. Wen, Natl. Sci. Rev. 3, 68 (2016).

<sup>[12]</sup> D. S. Freed, arXiv:1406.7278.

<sup>[13]</sup> E. Rowell, R. Stong, and Z. Wang, Commun. Math. Phys. 292, 343 (2009).

<sup>[14]</sup> T. Lan, L. Kong, and X.-G. Wen, Phys. Rev. B 94, 155113 (2016).

<sup>[15]</sup> X.-G. Wen, Phys. Rev. D 88, 045013 (2013).

<sup>[16]</sup> Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).

<sup>[17]</sup> F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev. B 85, 075125 (2012).

<sup>[18]</sup> X. Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84, 235141 (2011).

- [19] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87, 155114 (2013).
- [20] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338, 1604 (2012).
- [21] M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).
- [22] X.-G. Wen, Phys. Rev. B 89, 035147 (2014).
- [23] L.-Y. Hung and X.-G. Wen, Phys. Rev. B 89, 075121 (2014).
- [24] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
- [25] X.-G. Wen, Phys. Rev. B 44, 2664 (1991).
- [26] X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).
- [27] S.-P. Kou, M. Levin, and X.-G. Wen, Phys. Rev. B 78, 155134 (2008).
- [28] C. Heinrich, F. Burnell, L. Fidkowski, and M. Levin, Phys. Rev. B 94, 235136 (2016).
- [29] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, arXiv:1410.4540.
- [30] T. Lan, L. Kong, and X.-G. Wen, Commun. Math. Phys. 351, 709 (2017).
- [31] T. Tannaka, Tohoku Math. J. 45, 1 (1938).
- [32] P. Bruillard, S.-H. Ng, E. C. Rowell, and Z. Wang, J. Amer. Math. Soc. 29, 857 (2016).
- [33] V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, arXiv:0704.0195.
- [34] Q. Yuan, http://mathoverflow.net/questions/229568.
- [35] R. Longo and J. E. Roberts, A Theory of Dimension, K-Theory **11**, 103 (1997) [arXiv:funct-an/9604008].

- [36] A. Davydov, M. Müger, D. Nikshych, and V. Ostrik, J. Reine Angew. Math. 677, 135 (2013).
- [37] J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Adv. Math. 199, 192 (2006).
- [38] M. Müger, J. Pure Appl. Alg. 180, 159 (2003).
- [39] A. Davydov, D. Nikshych, and V. Ostrik, Selecta Math. 19, 237 (2011).
- [40] Z.-C. Gu and M. Levin, Phys. Rev. B 89, 201113(R) (2014).
- [41] A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, J. High Energy Phys. **2015**, 52 (2015).
- [42] C. Wang, Phys. Rev. B 94, 085130 (2016).
- [43] E. Witten, Commun. Math. Phys. 121, 351 (1989).
- [44] D. Gepner and A. Kapustin, Phys. Lett. B 349, 71 (1995).
- [45] Z. Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics (2010).
- [46] C. Vafa, Phys. Lett. B 206, 421 (1988).
- [47] G. Andersen and G. Moore, Commun. Math. Phys. 117, 441 (1988).
- [48] P. Etingof, Math. Res. Lett. 9, 651 (2002).
- [49] E. Verlinde, Nucl. Phys. B 300, 360 (1988).
- [50] P. Bruillard, New York J. Math. 22, 775 (2016).
- [51] J. Lurie, Higher Algebra, a book available a http://www.math.harvard.edu/~lurie/.
- [52] D. Ben-Zvi, A. Brochier, and D. Jordan, arXiv:1501.04652.
- [53] Y. Ai, L. Kong, and H. Zheng, arXiv:1607.08422.