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In 2+1-dimensional space-time, gapped quantum states are always gapped quantum liquids (GQL) which
include both topologically ordered states (with long range entanglement) and symmetry protected topological
(SPT) states (with short range entanglement). In this paper, we propose a classification of 2+1D GQLs for
both bosonic and fermionic systems: 2+1D bosonic/fermionic GQLs with finite on-site symmetry are classified
by nondegenerate unitary braided fusion categories over a symmetric fusion category (SFC) E , abbreviated as
UMTC/E , together with their modular extensions and total chiral central charges. In our classification, SFC E
describes the symmetry, which is Rep(G) for bosonic symmetry G, or sRep(Gf ) for fermionic symmetry Gf . As
a special case of the above result, we find that the modular extensions of Rep(G) classify the 2+1D bosonic SPT
states of symmetry G, while the c = 0 modular extensions of sRep(Gf ) classify the 2+1D fermionic SPT states
of symmetry Gf . Many fermionic SPT states are studied based on the constructions from free-fermion models.
But free-fermion constructions cannot produce all fermionic SPT states. Our classification does not have such a
drawback. We show that, for interacting 2+1D fermionic systems, there are exactly 16 superconducting phases
with no symmetry and no fractional excitations (up to E8 bosonic quantum Hall states). Also, there are exactly 8
Z2 × Z

f

2 -SPT phases, 2 Z
f

8 -SPT phases, and so on. Besides, we show that two topological orders with identical
bulk excitations and central charge always differ by the stacking of the SPT states of the same symmetry.

DOI: 10.1103/PhysRevB.95.235140

I. INTRODUCTION

Topological order [1–3] is a new kind of order beyond the
symmetry breaking orders [4] in gapped quantum systems.
Topological orders are patterns of long-range entanglement
[5] in gapped quantum liquids (GQL) [6]. Based on the
unitary modular tensor category (UMTC) theory for non-
Abelian statistics [7–9], in Refs. [10,11], it is proposed that
2+1D bosonic topological orders are classified by {UMTC} ×
{iTOB}, where {UMTC} is the set of UMTCs and {iTOB} is
the set of invertible topological orders (iTO) [10,12] for 2+1D
boson systems. In fact, {iTOB} = Z, which is generated by the
E8 bosonic quantum Hall (QH) state, and a table of UMTCs
was obtained in Refs. [11,13]. Thus we have a table (and a
classification) of 2+1D bosonic topological orders.

In a recent work [14], we show that 2+1D fermionic topo-
logical orders are classified by {UMTC

/sRep(Zf

2 )} × {iTOF },
where {UMTC

/sRep(Zf

2 )} is the set of nondegenerate unitary
braided fusion categories (UBFC) over the symmetric fusion
category (SFC) sRep(Zf

2 ) (see definition II B). We also require
UMTC

/sRep(Zf

2 )s to have modular extensions. {iTOF } is the set
of invertible topological orders for 2+1D fermion systems.
In fact, {iTOF } = Z, which is generated by the p + ip
superconductor. In Ref. [14], we computed the table for
UMTC

/sRep(Zf

2 )s, and obtained a table (and a classification)
of 2+1D fermionic topological orders.

In Ref. [14], we also point out the importance of modular
extensions. If a UMTC

/sRep(Zf

2 ) does not have a modular
extension, it means that the fermion-number-parity symmetry
is not on-site (i.e., anomalous [15]). On the other hand, if

a UMTC
/sRep(Zf

2 ) does have modular extensions, then the
UMTC

/sRep(Zf

2 ) is realizable by a lattice model of fermions. In
this case, a given UMTC

/sRep(Zf

2 ) may have several modular
extensions. We found that different modular extensions of
UMTC

/sRep(Zf

2 ) contain information of iTOF s.
Our result on fermionic topological orders can be easily

generalized to describe bosonic/fermionic topological orders
with symmetry. This will be the main topic of this paper. (Some
of the results are announced in Ref. [14]. In this paper, we will
consider symmetric GQL phases for 2+1D bosonic/fermionic
systems. The notion of GQL was defined in Ref. [6]. The
symmetry group of GQL is G (for bosonic systems) or Gf

(for fermionic systems). If a symmetric GQL has long-range
entanglement (as defined in Refs. [5,6]), it corresponds to a
symmetry enriched topological (SET) order [5]. If a symmetric
GQL has short-range entanglement, it corresponds to a
symmetry protected trivial (SPT) order [which is also known
as symmetry protected topological (SPT) order] [16–20].

In this paper, we are going to show that, 2+1D symmetric
GQLs are classified by UMTC/E plus their modular extensions
and chiral central charge. In other words, GQLs are labeled
by three UBFCs E ⊂ C ⊂ M plus the central charge c (see
Figs. 1 and 2). Roughly speaking, a UBFC can be viewed as a
set of quasiparticle types, plus the data on quasiparticle fusion
and braiding.

(1) E is a special kind of UBFC called SFC where all
the quasiparticles have trivial mutual statistics between each
other. Such a SFC E describes the local excitations (i.e., the
excitations that can be created by local operators). The types of
those local excitations are described the representations of the
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FIG. 1. Bosonic topological orders with symmetry G are clas-
sified by three unitary categories: SFC E = Rep(G) ⊂ UBFC C ⊂
UMTC M, which describe quasiparticle excitations and symmetry-
twist defects. The particles connected by lines have nontrivial mutual
statistics between them.

symmetry group. Thus E is given by E = Rep(G) for bosonic
cases, or E = sRep(Gf ) for fermionic cases.

(2) The UBFC C contains both local excitations and
topological excitations (i.e., the excitations that cannot be
created by local operators), and thus E ⊂ C. Those topological
excitations can carry fractional statistics and fractional angular
momentum s, which will be called topological spin. The topo-
logical excitations may also have symmetry fractionalization
(such as fractional symmetry quantum numbers). We also
require E to include all the excitations that have trivial mutual
statistics with every excitation in C (which can be viewed as an
operational definition of the so called local excitation), which
leads to a mathematical notion of UBFC over SFC E (denoted
as UMTC/E ).

(3) The UBFC M contains both quasiparticle excitations
and symmetry-twist defects [21–23], and thus C ⊂ M. We
require that every particle in M (except the trivial one) has
a nontrivial mutual statistics with at least one particle in M.
A UBFC satisfying such a condition is called UMTC, and
we call the extension from C to M a modular extension. (To
be more precise, a modular extension of C, M, is a UMTC
with a fully faithful embedding C → M. In particular, even
if the UMTC M is fixed, different embeddings correspond
to different modular extensions.) The existence of modular
extensions for C is an anomaly-free condition for C: the
quasiparticles described by C can be realized by a well
defined local lattice model with on-site-symmetry in the same
dimension [15]. The chiral central charge c for the edge states
describes the invertible topological orders, which have trivial
bulk excitations.

We like to remark that symmetry charges by carried
topological excitations are in general not well defined. In other
words, a topological excitation may not carry a representation

mutual sta.

s=1/2 s
trivial
excitations above ground state

symm. twist
defect

UBFC
UMTC

local

sRep(G  )f

topological
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FIG. 2. Fermionic topological orders with symmetry Gf are clas-
sified by three unitary categories: SFC E = sRep(Gf ) ⊂ UBFC C ⊂
UMTC M.

of the symmetry group. This phenomenon is called symmetry
fractionalization. In general, a topological excitation may not
even carry a projective representation of the symmetry group
(which corresponds to fractionalized symmetry quantum
numbers). In other words, a topological excitations can carry
something more exotic than projective representations of the
symmetry group. For example, in a gauge theory with gauge
group K and symmetry group G, a topological excitation
(a gauge charge) may carry a representation of group H

which satisfies H/K = G. So symmetry fractionalization can
be more general than fractionalized quantum numbers and
projective representations of the symmetry group.

One example of the classified bosonic SET (see Table VI)
is given by the Z

gauge
2 spin liquid [24,25] with excitations

1,e,m,f , where 1 is the trivial excitation, e the Z
gauge
2 charge,

m the Z
gauge
2 vortex, and f the bound state of e and m. The exci-

tation 1,e,m are bosons and f is a fermion. There is also a Z
sym
2

symmetry which exchanges e and m [26–28]. The excitations
in such a SET state are labeled by 1+, 1−, f+, f−, e ⊕ m,
which form the UBFC C. They have topological spins si =
0,0, 1

2 , 1
2 ,0 and quantum dimensions di = 1,1,1,1,2. 1+ and

1− are the local excitations with Z
sym
2 charge 0 and 1. The two

excitations 1+ and 1− form the SFCE = Rep(Zsym
2 ). f+ and f−

are topological fermionic excitations with Z
sym
2 charges 0 and

1. e ⊕ m is a doublet excitation that corresponds to degenerate
e and m (just like the spin-1/2 doublet that corresponds to
degenerate spin-up and spin-down). This is why e ⊕ m has a
quantum dimension 2. The modular extension is obtained by
adding the Z

sym
2 -symmetry twist defect, as well as its bound

states with excitations f+, f−, e ⊕ m. Figure 1 happens to
describe such a SET.

As a second example, Fig. 2 describes the topological order
F(A1,6) in Table I of Ref. [14], which has a Gf = Z

f

2 symmetry.
The state has two types of local excitations with Z

f

2 -charge 0
(a boson) and 1 (a fermion) that form the SFC E = sRep(Zf

2 ).
They have topological spin si = 0, 1

2 . The state also has
two types of topological excitations with topological spin
si = 1

4 ,− 1
4 and quantum dimension di = 1 + √

2,1 + √
2.

The local and topological excitations form the UBFC C. The
modular extension is obtained by adding the Z

f

2 -symmetry
twist defect, as well as its bound state with the excitations
in C, which gives rise to three types of symmetry twist
defects.

There is another more precise and mathematical way to
phrase our result: we find that the structure E ↪→ C ↪→ M
(plus the chiral central charge c) classifies the 2+1D GQLs
with symmetry E , where ↪→ represents the embeddings and
Ecen
M = C (see definition II B).

As a special case of the above result, we find that bosonic
2+1D SPT phase with symmetry G are classified by the
modular extensions of Rep(G), while fermionic 2+1D SPT
phase with symmetry Gf are classified by the modular
extensions of sRep(Gf ) that have central charge c = 0.

We like to mention that Ref. [29] has classified bosonic
GQLs with symmetry G, using G-crossed UMTCs. This paper
uses a different approach so that we can classify both bosonic
and fermionic GQLs with symmetry. For bosonic systems, the
two approaches produces identical classification. We also like
to mention that there is a mathematical companion Ref. [30] of
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this paper, where one can find detailed proof and explanations
for related mathematical results.

The paper is organized as the following. In Sec. II, we
review the notion of topological order and introduce category
theory as a theory of quasiparticle excitations in a GQL. We
will introduce a categorical way to view the symmetry. In
Sec. III, we discuss invertible GQLs and their classification
based on modular extensions. In Secs. IV and V, we generalize
the above results and propose a classification of all GQLs.
Section VI investigates the stacking operation from physical
and mathematical points of view. Section VII describes how to
numerically calculate the modular extensions and Sec. VIII
discusses some simple examples. For people with physics
background, one way to read this paper is to start with Secs. II
and V, and then go to Sec. VIII for the examples. Table I
summarizes some important mathematical concepts and their
physical correspondences.

II. GAPPED QUANTUM LIQUIDS, TOPOLOGICAL
ORDER, AND SYMMETRY

A. The finite on-site symmetry and symmetric fusion category

In this paper, we consider physical systems with an on-site
symmetry described by a finite group G. For fermionic
systems, we further require that G contains a central Z2

fermion-number-parity subgroup. More precisely, fermionic
symmetry group is a pair (G,f ), where G is a finite group,
f �= 1 is an element of G satisfying f 2 = 1,fg = gf,∀g ∈ G.
We denote the pair (G,f ) as Gf .

There is another way to view the on-site symmetries, which
is nicer because bosonic and fermionic symmetries can be
formulated in the same manner. Consider a bosonic/fermionic
product state |ψ〉 that does not break the symmetry G:
Ug|ψ〉 = |ψ〉, g ∈ G. Then the new way to view the symmetry
is to use the properties of the excitations above the product state
to encode the information of the symmetry G.

The product state contain only local excitations that can
be created by acting local operators O on the ground state
O|ψ〉. For any group action Ug , UgO|ψ〉 = UgOU

†
gUg|ψ〉 =

UgOU
†
g |ψ〉 is an excited state with the same energy as

O|ψ〉. Since we assume the symmetry to be on-site, UgOU
†
g

is also a local operator. Therefore UgOU
†
g |ψ〉 and O|ψ〉

correspond to the degenerate local excitations. We see that
local excitations “locally” carry group representations. In
other words, different types of local excitations are labeled
by irreducible representations of the symmetry group.

By looking at how the local excitations (more precisely,
their group representations) fuse and braid with each other, we
arrive at the mathematical structure called symmetric fusion
categories (SFC). By definition a SFC is a braided fusion
category where all the objects (the excitations) have trivial
mutual statistics (i.e., centralize each other, see next section).
A SFC is automatically a unitary braided fusion category.

In fact, there are only two kinds of SFCs: one is repre-
sentation category of G: Rep(G), with the usual braiding (all
representations are bosonic); the other is sRep(Gf ) where an
irreducible representation is bosonic if f is represented triv-
ially (+1), and fermionic if f is represented nontrivially (−1).

It turns out that SFC (or the fusion and braiding properties
of the local excitations) fully characterize the symmetry group
(which is known as Tannaka duality [31]). Therefore a finite
on-site symmetry is equivalently given by a SFC E . Also, by
checking the braiding in E we know whether it is bosonic or
fermionic. This is the new way, the categorical way, to view
the symmetry. Such a categorical view of bosonic/fermionic
symmetry allows us to obtain a classification of symmetric
topological/SPT orders.

B. Categorical description of topological
excitations with symmetry

In symmetric GQLs with topological order (i.e., with long
range entanglement), there can be particlelike excitations
with local energy density, but they cannot be created by
local operators. They are known as (nontrivial) topological
excitations. Topological excitations do not necessarily carry
group representations. Nevertheless, we can still study how
they fuse and braid with each other; so we have a unitary
braided fusion category (UBFC) to describe the particlelike
excitations. To proceed, we need the following key definition
on “centralizers”.

Definition 1. The objects X,Y in a UBFC C are said to
centralize (mutually local to) each other if

cY,X ◦ cX,Y = idX⊗Y , (1)

where cX,Y : X ⊗ Y ∼= Y ⊗ X is the braiding in C.
Physically, we say that X and Y have trivial mutual

statistics.
Definition 2. Given a subcategory D ⊂ C, its centralizer

Dcen
C in C is the full subcategory of objects in C that centralize

all the objects in D.
We may roughly view a category as a “set” of particlelike

excitations. So the centralizer Dcen
C is the “subset” of particles

in C that have trivial mutual statistics with all the particles
in D.

Definition 3. A UBFC E is a symmetric fusion category if
Ccen
C = E . A UBFCC with a fully faithful embeddingE ↪→ Ccen

C
is called a UBFC over E . Moreover, C is called a nondegenerate
UBFC over E , or UMTC/E , if Ccen

C = E .
Definition 4. Two UBFCs over E , C, and C ′ are equivalent

if there is a unitary braided equivalence F : C → C ′ such
that it preserves the embeddings, i.e., the following diagram
commute:

(2)

We denote the category of unitary braided autoequivalences of
C by Aut(C) and its underlining group by Aut(C).

We recover the usual definition of UMTC when E is
trivial, i.e., the category of Hilbert spaces, denoted by Vec =
Rep({1}). In this case, the subscript is omitted.

Physically, a UBFC C is the collection of all bulk topolog-
ical excitations plus their fusion and braiding data. Requiring
C to be a UMTC/E means (1) the set of local excitations,
E (which is the set of all the irreducible representations of
the symmetry group), is included in C as a subcategory; (2)
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TABLE I. Some mathematical concepts and their physical correspondences, as well as the meaning of some notations.

Mathematical term Physical correspondence

UBFC (unitary braided fusion category) C Set of excitations that can braid and fuse
SFC (symmetric fusion category) E , which is a special kind of

UBFC
Set of local excitations carrying representations of symmetry

group
UMTC (unitary modular tensor category) M, which is a

special kind of UBFC
Set of excitations such that every nontrivial excitation has a

nontrivial mutual statistics with at least one excitation
UMTC/E (UBFC over E) a special kind of UBFC Set of excitations that contain a subset SFC E , where E is

formed by the excitations that have trivial mutual statistics
with all excitations

Modular extension Adding symmetry-twist defects (i.e., gauging the symmetry)
Chiral central charge c The number of right-moving edge modes minus the number of

left-moving edge modes (c can be fractional)
Topological spin si Fractional part of 2D angular momentum of the quasiparticle i

Quantum dimension di The effective dimension of the Hilbert space for the internal
degrees of freedom of the quasiparticle i (di can be noninteger)

N Number of particle types (also called rank of category)

D

√∑
i d

2
i (total quantum dim.)

� D−1
∑

i e2π isi d2
i = |�|e2π ic/8

N |�|
c A short label of topological orders

NB
c When |�| = 1, rewrite N |�|

c as NB
c

ζm
n sin π (m+1)

n+2 /sin π

n+2
(An,k) Topological order of SU(n + 1) level-k Chern-Simons theory
(Bn,k) Topological order of SO(2n + 1) level-k Chern-Simons theory
(Cn,k) Topological order of Sp(2n) level-k Chern-Simons theory
(Dn,k) Topological order of SO(2n) level-k Chern-Simons theory
� Stacking of two states
⊗ Fusion of two particles

C is anomaly-free, i.e., all the topological excitations (the
ones not in E) can be detected by mutual braiding [10]. In
other words, every topological excitation must have nontrivial
mutual statistics with some excitations. Those excitations that
cannot be detected by mutual braiding (i.e., Ccen

C ) are exactly
the local excitations in E . Moreover, we want the symmetry to
be on-site (gaugeable), which requires the existence of modular
extensions (see definition 6). Such an understanding leads to
the following conjecture.

Conjecture 1. Bulk topological excitations of topological
orders with symmetry E are classified by UMTC/E ’s that have
modular extensions.

We like to remark that UMTC/E ’s fail to classify topological
orders. This is because two different topologically ordered
phases may have bulk topological excitations with the same
non-Abelian statistics (i.e., described by the same UMTC/E ).
However, UMTC/E ’s, with modular extensions, do classify
topological orders up to invertible ones. See next section for
details. The relation between anomaly and modular extension
will also be discussed later.

III. INVERTIBLE GQLS AND MODULAR EXTENSION

A. Invertible GQLs

There exist nontrivial topological ordered states that have
only trivial topological excitations in the bulk (but nontrivial
edge states). They are “invertible” under the stacking operation
[10,12] (see Sec. VI for details). More generally, we define the
following.

Definition 5. A GQL is invertible if its bulk topological
excitations are all trivial (i.e., can all be created by local
operators).

Consider some invertible GQLs with the same symmetry
E . The bulk excitations of those invertible GQLs are the same
which are described by the same SFC E . Now the question is,
how to distinguish those invertible GQLs?

First, we believe that invertible bosonic topological orders
with no symmetry are generated by the E8 QH state (with
central charge c = 8) via time-reversal and stacking, and form
a Z group. Stacking with an E8 QH state only changes the
central charge by 8, and does not change the bulk excitations or
the symmetry. So the only data we need to know to determine
the invertible bosonic topological order with no symmetry
is the central charge c. The story is parallel for invertible
fermionic topological orders with no symmetry, which are
believed to be generated by the p + ip superconductor state
with central charge c = 1/2.

Second, invertible bosonic GQLs with symmetry are gener-
ated by bosonic SPT states and invertible bosonic topological
orders (i.e., E8 states) via stacking. We know that the bosonic
SPT states with symmetry G are classified by the 3-cocycles
in H 3[G,U(1)]. Therefore bosonic invertible GQLs with
symmetry G are classified by H 3[G,U(1)] × Z (where Z
corresponds to layers of E8 states).

However, this result and this point of view is not natural to
generalize to fermionic cases or noninvertible GQLs. Thus we
introduce an equivalent point of view, which can cover boson,
fermion, and noninvertible GQLs in the same fashion.

235140-4
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B. Modular extension

First, we introduce the notion of modular extension of a
UMTC/E .

Definition 6. Given a UMTC/E C, its modular extension
is a UMTC M, together with a fully faithful embedding
ιM : C ↪→ M, such that Ecen

M = C, equivalently dim(M) =
dim(C)dim(E).

Two modular extensions M and M′ are equivalent if
there is an equivalence between the UMTCs F : M → M′
that preserves the embeddings, i.e., the following diagram
commute:

(3)

We denote the set of equivalent classes of modular extensions
of C by Mext(C).

Remark 1. Since the total quantum dimension of modular
extensions of a given C is fixed, there are only finitely many
different modular extensions, due to Ref. [32]. In principle, we
can always perform a finite search to exhaust all the modular
extensions.

Remember that C describes the particlelike excitations in
our topological state. Some of those excitations are local
that have trivial mutual statistics with all other excitations.
Those local excitation form E ⊂ C. The modular extension
M of C is obtained as adding particles that have nontrivial
mutual statistics with the local excitations in E , so that every
particle inMwill always have nontrivial mutual statistics with
some particles in M. Since the particles in E carry “charges”
(i.e., the irreducible representations of G), the added particles
correspond to “flux” (i.e., the symmetry twists of G). So
the modular extension correspond to gauging [21] the on-site
symmetry G. Since we can use the gauged symmetry to detect
SPT orders [23], we like to propose the following conjecture.

Conjecture 2. Invertible bosonic GQLs with symmetry
E = Rep(G) are classified by (M,c) where M is a modular
extension of E and c = 0 mod 8.

C. Classify 2+1D bosonic SPT states

Invertible bosonic GQLs described by (M,c) include both
bosonic SPT states and bosonic topological orders. Among
those, (M,c = 0) classify bosonic SPT states. In other words:

Corollary 1. 2+1D bosonic SPT states with symmetry G

are classified by the modular extensions of Rep(G) (which
always have c = 0).

In Ref. [18–20], it was shown that 2+1D bosonic SPT
states are classified by H 3[G,U(1)]. Such a result agrees with
our conjecture, due to the following theorem, which follows
immediately from results in Ref. [33].

Theorem 1. The modular extensions of Rep(G) 1-to-1
correspond to 3-cocycles in H 3[G,U(1)]. The central charge
of these modular extensions are c = 0 mod 8.

Remark 2. In Sec. VI D, we give more detailed explanation
of the 1-to-1 correspondence in theorem 2. Moreover, we
will prove a stronger result in theorem 11. It turns out that
the set Mext(Rep(G)) of modular extensions of Rep(G) is
naturally equipped with a physical stacking operation such that

Mext(Rep(G)) forms an Abelian group, which is isomorphic
to the group H 3[G,U(1)].

Remark 3. c/8 determines the number of layers of the E8

QH states, which is the topological order part of invertible
bosonic symmetric GQLs. In other words

{invertible bosonic symmetric GQLs}
= {bosonic SPT states} × {layers of E8 states}. (4)

D. Classify 2+1D fermionic SPT states

The above approach also apply to fermionic case. Note that,
the invertible fermionic GQLs with symmetry Gf have bulk
excitations described by SFC E = sRep(Gf ). So we would
like to conjecture that

Conjecture 3. Invertible fermionic GQLs with symmetry
Gf are classified by (M,c), where M is a modular extension
of E = sRep(Gf ), and c is the central charge determining the
layers of ν = 8 IQH states.

Remark 4. Note that the central charge c mod 8 is
determined by M, while (c − mod(c,8))/8 determines the
number of layers of the ν = 8 IQH states.

Remark 5. Invertible fermionic symmetric GQLs include
both fermion SPT states and fermionic topological orders.
(M,c) with c = 0 classify fermionic SPT states.

In other words:
Corollary 3. 2+1D fermionic SPT states with symmetry G

are classified by the c = 0 modular extensions of sRep(Gf ).
Remark 6. Unlike the bosonic case, in general

{invertible fermionic symmetric GQLs}
�= {fermionic SPT states}×{layers of p + ip states}. (5)

For example (see Table XV),

{invertible Z
f

4 fermionic symmetric GQLs}
= {fermionic Z

f

4 -SPT states}
× {layers of ν = 1 integer quantum Hall states}. (6)

However, we have

{invertible fermionic symmetric GQLs}
= {invertible fermionic symmetric GQLs with c ∈ [0,8)}

× {layers of E8 states}. (7)

Or when Gf = Gb × Z
f

2

{invertible fermionic symmetric GQLs}
= {fermionic SPT states}×{layers of p + ip states}, (8)

where the fermions in the p + ip states are Gb-invariant.
When there is no symmetry, the invertible fermionic GQLs

become the invertible fermionic topological order, which have
bulk excitations described by E = sRep(Zf

2 ). sRep(Zf

2 ) has
16 modular extensions, with central charges c = n/2,n =
0,1,2, . . . ,15. There is only one modular extension with c = 0,
which correspond to a trivial product state. Thus there is no
nontrivial fermionic SPT state when there is no symmetry, as
expected.

The modular extensions with c = n/2 correspond to invert-
ible fermionic topological order formed by n layers of p + ip
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states. Since the modular extensions can only determine c mod
8, in order for the above picture to be consistent, we need to
show the following.

Theorem 4. The stacking of 16 layers c = 1/2 p + ip states
is equivalent to a ν = 8 IQH state, which is in turn equivalent to
a E8 bosonic QH state stacked with a trivial fermionic product
state.

Proof. First, two layers of p + ip states is equal to one
layer of ν = 1 IQH state. Thus 16 layers c = 1/2 p + ip
states is equivalent to a ν = 8 IQH state. To show that ν = 8,
IQH state is equivalent to E8 bosonic QH states stacked
with a trivial fermionic product state, we note that the ν = 8
IQH state is described by K matrix Kν=8 = I8×8, which is
an 8-by-8 identity matrix. While the E8 bosonic QH state
stacked with a trivial fermionic product state is described by
K matrix KE8�F0 = KE8 ⊕ (1 0

0 −1

)
, where KE8 is the matrix

that describe the E8 root lattice. We also know that two odd1 K

matrices K1 and K2 describe the same fermionic topological
order if after direct summing with proper number of

(1 0
0 −1

)
’s:

K ′
1 = K1 ⊕

(
1 0
0 −1

)
⊕ · · · ,

K ′
2 = K2 ⊕

(
1 0
0 −1

)
⊕ · · · , (9)

K ′
1 and K ′

2 become equivalent, i.e.,

K ′
1 = UK ′

2U
T , U ∈ SL(N,Z). (10)

Notice that Kν=8 ⊕ (1 0
0 −1

)
and KE8�F0 have the same

determinant −1 and the same signature. Using the result that
odd matrices with ±1 determinants are equivalent if they have
the same signature, we find that Kν=8 ⊕ (1 0

0 −1

)
and KE8�F0

are equivalent. Therefore ν = 8 IQH state is equivalent to
E8 bosonic QH state stacked with a trivial fermionic product
state. �

IV. A FULL CLASSIFICATION OF 2+1D GQLS
WITH SYMMETRY

We have seen that all invertible GQLs with symmetry G

(or Gf ) have the same kind of bulk excitations, described by
Rep(G) [or sRep(Gf )]. To classify distinct invertible GQLs
that share the same kind of bulk excitations, we need to
compute the modular extensions of Rep(G) [or sRep(Gf )].
This result can be generalized to noninvertible topological
orders.

In general, the bulk excitations of a 2+1D
bosonic/fermionic SET are described by a UMTC/E C.
However, there can be many distinct SET orders that have the
same kind of bulk excitations described by the same C. To
classify distinct invertible SET orders that shared the same
kind of bulk excitations C, we need to compute the modular
extensions of C. This leads to the following.

Conjecture 4. 2+1D GQLs with symmetryE (i.e., the 2+1D
SET orders) are classified by (C,M,c), where C is a UMTC/E

1An odd matrix is a symmetric integer matrix with at least one of
its diagonal elements being odd.

describing the bulk topological excitations, M is a modular
extension of C describing the edge state up to E8 states, and c

is the central charge determining the layers of E8 states.
Let M be a modular extension of a UMTC/E C. We note

that all the simple objects (particles) in C are contained in M
as simple objects. Assume that the particle labels of M are
{i,j, . . . ,x,y, . . . }, where i,j, . . . correspond to the particles
in C and x,y, . . . the additional particles (not in C). Physically,
the additional particles x,y, . . . correspond to the symmetry
twists of the on-site symmetry [22]. The modular extension
M describes the fusion and the braiding of original particles
i,j, . . . with the symmetry twists. In other words, the modular
extension M is the resulting topological order after we gauge
the on-site symmetry [21].

Now, it is clear that the existence of modular extension
is closely related to the on-site symmetry (i.e., anomaly-free
symmetry) which is gaugable (i.e., allows symmetry twists).
For non-on-site symmetry (i.e., anomalous symmetry [15]),
the modular extension does not exist since the symmetry is not
gaugable (i.e., does not allow symmetry twists). We also have

Conjecture 5. 2+1D GQLs with anomalous symmetry [15]
E are classified by UMTC/E ’s that have no modular extensions.

It is also important to clarify the equivalence relation
between the triples (C,M,c). Two triples (C,M,c) and
(C ′,M′,c′) are equivalent if: (1) c = c′; (2) there exists braided
equivalences FC : C → C ′ and FM : M → M′ such that all
the embeddings are preserved, i.e., the following diagram
commutes:

(11)

The equivalence classes will be in one-to-one correspondence
with GQLs (i.e., SET orders and SPT orders).

Note that the group of the automorphisms of a UMTC/E C,
denoted by Aut(C) (recall definition 4), naturally acts on the
modular extensionsMext(C) by changing the embeddings, i.e.,
F ∈ Aut(C) acts as follows:

(C ↪→ M) �→ (C F−→ C ↪→ M).

For a fixed C, the above equivalence relation amounts to say
that GQLs with bulk excitations described by a fixed C are in
one-to-one correspondence with the quotient Mext(C)/Aut(C)
plus a central charge c. When C = E , the GQLs with bulk
excitations described by E and central charge c = 0 are SPT
phases. In this case, the group Aut(E), where E is viewed as
the trivial UMTC/E , is trivial. Thus SPT phases are classified
by the modular extensions of E with c = 0.

V. ANOTHER DESCRIPTION OF 2+1D GQLS
WITH SYMMETRY

Although the above result has a nice mathematical structure,
it is hard to implement numerically to produce a table of GQLs.
To fix this problem, we propose a different description of 2+1D
GQLs. The second description is motivated by a conjecture that
the fusion and the spins of the particles, (N IJ

K ,SI ), completely
characterize a UMTC. We conjecture that
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Conjecture 6. The data (Ñab
c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c), up to

some equivalence relations, give a one-to-one classification
of 2+1D GQLs with symmetry G (for boson) or Gf (for
fermion), with a restriction that the symmetry group can
be fully characterized by the fusion ring of its irreducible
representations. The data (Ñab

c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c) satisfy

the conditions described in Appendix C (see Ref. [11] for
UMTCs).

Here, (Ñab
c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c) is closely related to

(E ; C;M; c) discussed above. The data (Ñab
c ,s̃a) describe

the symmetry (i.e., the SFC E): a = 1, . . . ,Ñ label the
irreducible representations and Ñab

c are the fusion coefficients
of irreducible representations. s̃a = 0 or 1/2 depending on
if the fermion-number-parity transformation f is represented
trivially or nontrivially in the representation a. The data
(Nij

k ,si) describe fusion and the spins of the bulk particles
i = 1, . . . ,N in the GQL. The data (Nij

k ,si) contain (Ñab
c ,s̃a)

as a subset, where a is identified with the first Ñ particles of
the GQL. The data (N IJ

K ,SI ) describe fusion and the spins
of a UMTC, and it includes (Nij

k ,si) as a subset, where i is
identified with the first N particles of the UMTC. Also among
all the particles in UMTC, only the first N (i.e. I = 1, . . . ,N )
have trivial mutual statistics with first Ñ particles (i.e. I =
1, . . . ,Ñ ). Last, c is the chiral central charge of the edge state.

If the data (Ñab
c ,s̃a; Nij

k ,si) fully characterized the UMTC/E ,
then conjecture 6 would be equivalent to conjecture 4. How-
ever, for nonmodular tensor category, (Ñab

c ,s̃a; Nij

k ,si) fails
to to fully characterize a UMTC/E . In other words, there are
different UMTC/E ’s that have the same data (Ñab

c ,s̃a; Nij

k ,si).
We need to include the extra data, such as the F tensor and the
R tensor, to fully characterize the UMTC/E .

In Appendix A, we list the data (Ñab
c ,s̃a; Nij

k ,si) that
satisfy the conditions in Appendix C (without the modular
extension condition) in many tables. These tables include all
the UMTC/E ’s (up to certain total quantum dimensions), but
the tables are not perfect: (1) some entries in the tables may be
fake and do not correspond to any UMTC/E (for the conditions
are only necessary) and (2) some entries in the tables may
correspond to more then one UMTC/E [since (Ñab

c ,s̃a; Nij

k ,si)
does not fully characterize a UMTC/E ].

We then continue to compute (N IJ
K ,SI ; c), the modular

extensions of (Ñab
c ,s̃a; Nij

k ,si). We find that the modular ex-
tensions can fix the imperfectness mentioned above. First, we
find that the fake entries do not have modular extensions, and
are ruled out. Second, as we will show in Sec. VI, all UMTC/E ’s
have the same numbers of modular extensions (if they exist);
therefore, the entry that corresponds to more UMTC/E ’s has
more modular extensions. The modular extensions can tell us
which entries correspond to multiple UMTC/E ’s. This leads
to the conjecture that the full data (Ñab

c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c)

give rise to an one-to-one classification of 2+1D GQLs, and
allows us to calculate the tables of 2+1D GQLs, which include
2+1D SET states and 2+1D SPT states. Those are given in
Sec. VIII.

As for the equivalence relation, we only need to consider
(N IJ

K ,SI ; c), since the data (Ñab
c ,s̃a; Nij

k ,si) are included in
(N IJ

K ,SI ; c). Two such data (N IJ
K ,SI ; c) and (N̄ IJ

K ,S̄I ; c̄) are
called equivalent if c = c̄, and (N IJ

K ,SI ) and (N̄ IJ
K ,S̄I ) are

related by two permutations of indices in the range NM �
I > N and in the range N � I > Ñ , where NM is the range
of I . Such an equivalence relation corresponds to the one in
Eq. (11) and will be called the TO-equivalence relation. We
use the TO-equivalence relation to count the number of GQL
phases (i.e., the number of SET orders and SPT orders).

We can also define another equivalence relation, called
ME-equivalence relation: we say (N IJ

K ,SI ; c) and (N̄ IJ
K ,S̄I ; c̄)

to be ME-equivalent if c = c̄ and they only differ by a
permutation of indices in range I > N . The ME-equivalence
relation is closely related to the one defined in Eqs. (3). We use
the ME-equivalence relation to count the number of modular
extensions of a fixed C.

Last, let us explain the restriction on the symmetry group.
In conjecture 6, we try to use the fusion Ñab

c of the irreducible
representations to characterize the symmetry group. However,
it is known that certain different groups may have identical
fusion ring for their irreducible representations. So we need to
restrict the symmetry group to be the group that can be fully
characterized by its fusion ring. Those groups include simple
groups and Abelian groups [34]. If we do not impose such a
restriction, then conjecture 6 gives rise to GQLs with a given
symmetry fusion ring, instead of a given symmetry group.

VI. THE STACKING OPERATION OF GQLS

A. Stacking operation

Consider two GQLs C1 and C2. If we stack them together
(without introducing interactions between them), we obtain
another GQL, which is denoted by C1 � C2. The stacking
operation � makes the set of GQLs into a monoid. � does not
makes the set of GQLs into a group, because in general, a GQL
C may not have an inverse under �, i.e., there is no GQL D
such that C � D becomes a trivial product state. This is because
when a GQL have nontrivial topological excitations, stacking
it with another GQL can never cancel out those topological
excitations.

When we are considering GQLs with symmetry E , the
simple stacking � will “double” the symmetry, leads to a GQL
with symmetry E � E [Rep(G × G) or sRep(Gf × Gf )]. In
general we allow local interactions between the two layers to
break some symmetry such that the resulting system only has
the original symmetry E [in terms of the symmetry group, keep
only the subgroup G ↪→ G × G with the diagonal embedding
g �→ (g,g)]. This leads to the stacking between GQLs with
symmetry E , denoted by �E . Similarly, �E makes GQLs
with symmetry E a monoid, but in general not all GQLs are
invertible.

However, if the bulk excitations of C are all local (i.e.,
all described by SFC E), then C will have an inverse under
the stacking operation �E , and this is why we call such
GQL invertible. Those invertible GQLs include invertible
topological orders and SPT states.

B. The group structure of bosonic SPT states

We have proposed that 2+1D SPT states are classified by
c = 0 modular extensions of the SFC E that describes the
symmetry. Since SPT states are invertible, they form a group
under the stacking operation �E . This implies that the modular
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extensions of the SFC should also form a group under the
stacking operation. So checking if the modular extensions of
the SFC have a group structure is a way to find support for our
conjecture.

However, in this section, we will first discuss such stacking
operation and group structure from a physical point of view.
We will only consider bosonic SPT states.

It has been proposed that the bosonic SPT states are
described by group cohomology Hd+1[G,U(1)] [18–20].
However, it has not been shown that those bosonic SPT states
form a group under stacking operation. Here we will fill this
gap. An ideal bosonic SPT state of symmetry G in d + 1D is
described the following path integral:

Z =
∑
{gi }

∏
{i,j,...}

νd+1(gi,gj , . . .), (12)

where νd+1(gi,gj , . . .) is a function Gd+1 → U(1), which is
a cocycle νd+1 ∈ Hd+1[G,U(1)]. Here, the space-time is a
complex whose vertices are labeled by i,j, . . ., and

∏
{i,j,...} is

the product over all the simplices of the space-time complex.
Also

∑
{gi } is a sum over all gi on each vertex.

Now consider the stacking of two SPT states described by
cocycle ν ′

d+1 and ν ′′
d+1:

Z =
∑

{g′
i ,g

′′
i }

∏
{i,j,...}

ν ′
d+1(g′

i ,g
′
j , . . .)ν

′′
d+1(g′′

i ,g
′′
j , . . .). (13)

Such a stacked state has a symmetry G × G and is a G × G

SPT state.
Now let us add a term to break the G × G symmetry to G

symmetry and consider

Z =
∑

{g′
i ,g

′′
i }

∏
{i,j,...}

ν ′
d+1(g′

i ,g
′
j , . . .)ν

′′
d+1(g′′

i ,g
′′
j , . . .)

×
∏

i

e−U |g′
i−g′′

i |2 , (14)

where |g′ − g′′| is an invariant distance between group ele-
ments. As we change U = 0 to U = +∞, the stacked system
changes into the system for an ideal SPT state described by the
cocycle νd+1(gi,gj , . . .) = ν ′

d+1(gi,gj , . . .)ν ′′
d+1(gi,gj , . . .). If

such a deformation does not cause any phase transition, then
we can show that the stacking of a ν ′

d+1-SPT state with a
ν ′′

d+1-SPT state give rise to a νd+1 = ν ′
d+1ν

′′
d+1-SPT state. Thus

the key to show the stacking operation to give rise to the group
structure for the SPT states, is to show the theory Eq. (14) has
no phase transition as we change U = 0 to U = +∞.

To show there is no phase transition, we put the system
on a closed space-time with no boundary, say Sd+1. In this
case,

∏
{i,j,...} ν ′

d+1(g′
i ,g

′
j , . . .)ν

′′
d+1(g′′

i ,g
′′
j , . . .) = 1, since ν ′

d+1

and ν ′′
d+1 are cocycles. Thus the path integral (14) is reduced

to

Z =
∑

{g′
i ,g

′′
i }

∏
i

e−U |g′
i−g′′

i |2 =
(

|G|
∑

g

e−U |1−g|2
)Nv

, (15)

where Nv is the number of vertices and |G| the order of the
symmetry group. We see that the free energy density

f = − lim
Nv→∞

ln Z/Nv (16)

is a smooth function of U for U ∈ [0,∞). There is indeed no
phase transition.

The above result is highly non trivial from a categorical
point of view. Consider two 2+1D bosonic SPT states
described by two modular extensions M′ and M′′ of Rep(G).
The natural tensor product M′ � M′′ is not a modular
extension of Rep(G), but a modular extension of Rep(G) �
Rep(G) = Rep(G × G). So, M′ � M′′ describes a G × G-
SPT state. According to the above discussion, we need to break
the G × G symmetry down to the G symmetry to obtain the
G-SPT state. Such a symmetry breaking process correspond to
the so-called “anyon condensation” in category theory. We will
discuss such anyon condensation later. The stacking operation
�E , with such a symmetry breaking process included, is the
correct stacking operation that maintains the symmetry G. In
Ref. [30], we also discussed more general symmetry breaking
processes, from G to any subgroup H .

C. Mathematical construction of the stacking operation

We have conjectured that a 2+1D topological order with
symmetry E is classified by (C,MC,c), where C is a UMTC/E ,
MC is a modular extension of C, and c is the central charge.
If we have another topological order of the same symmetry E
described by (C ′,MC′ ,c′), stacking (C,MC,c) and (C ′,MC′ ,c′)
should give a third topological order described by similar data
(C ′′,MC′′ ,c′′):

(C,MC,c) �E (C ′,MC′ ,c′) = (C ′′,MC′′ ,c′′). (17)

In this section, we will show that such a stacking operation
can be defined mathematically. This is an evidence supporting
our conjecture 4. We like to point out that a special case of the
above result for C = C ′ = C ′′ = E = Rep(G) was discussed in
Sec. VI B.

To define �E mathematically, first, we like to introduce
Definition 7. A condensable algebra in a UBFC C is a

triple (A,m,η), A ∈ C, m : A ⊗ A → A, η : 1 → A satisfying
(1) associative: m(idA ⊗ m) = m(m ⊗ idA); (2) unit: m(η ⊗
idA) = m(idA ⊗ η) = idA; (3) isometric: mm† = idA; (4) con-
nected: Hom(1,A) = C; and (5) commutative: mcA,A = m.

Note that in the unitary case, (A,m,η) is automatically a
special symmetric Frobenius algebra [35]. Physically, such
a condensable algebra A is a composite self-bosonic anyon
satisfies additional conditions such that one can condense A to
obtain another topological phase.

Definition 8. A (left) module over a condensable algebra
(A,m,η) in C is a pair (X,ρ), X ∈ C, ρ : A ⊗ X → X

satisfying

ρ(idA ⊗ ρ) = ρ(m ⊗ idM ),

ρ(η ⊗ idM ) = idM. (18)

It is further a local module if

ρcM,AcA,M = ρ.

We denote the category of left A-modules by CA. A left
module (X,ρ) is turned into a right module via the braiding,
(X,ρcX,A) or (X,ρc−1

A,X), and thus an A-A–bimodule. The
relative tensor functor ⊗A of bimodules then turns CA into
a fusion category. (This is known as α-induction in subfactor
context.) In general, there can be two monoidal structures
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on CA, since there are two ways to turn a left module
into a bimodule (usually we pick one for definiteness when
considering CA as a fusion category). The two monoidal
structures coincide for the fusion subcategory C0

A of local
A-modules. Moreover, C0

A inherited the braiding from C and is
also a UBFC. The local modules are nothing but the anyons in
the topological phases after condensing A.

Lemma 1. (DMNO [36])

dim(CA) = dim(C)

dim(A)
.

If C is a UMTC, then so is C0
A, and

dim
(
C0

A

) = dim(C)

dim(A)2
.

A noncommutative algebra A is also of interest. We have the
left center Al of A, the maximal subalgebra such that mcAl,A =
m, and the right center Ar , the maximal subalgebra such that
mcA,Ar

= m. Al and Ar are commutative subalgebras, thus
condensable.

Theorem 5. (FFRS [37]) There is a canonical equivalence
between the categories of local modules over the left and right
centers, C0

Al
= C0

Ar
.

Definition 9. The Drinfeld center Z(A) of a monoidal
category A is a monoidal category with objects as pairs (X ∈
A,bX,−), where bX,− : X ⊗ − → − ⊗ X are half-braidings
that satisfy similar conditions as braidings. Morphisms and
the tensor product are naturally defined.

Z(A) is a braided monoidal category. There is a forgetful
tensor functor f orA : Z(A) → A, (X,bX,−) �→ X that forgets
the half-braidings.

Theorem 6. (Müger [38]) Z(A) is a UMTC if A is a unitary
fusion category and dim(Z(A)) = dim(A)2.

Definition 10. Let C be a braided fusion category and A a
fusion category, a tensor functor F : C → A is called a central
functor if it factorizes through Z(A), i.e., there exists a braided
tensor functor F ′ : C → Z(A) such that F = F ′f orA.

Lemma 2. (DMNO [36]) Let F : C → A be a central
functor, and R : A → C the right adjoint functor of F . Then the
object A = R(1) ∈ C has a canonical structure of condensable
algebra. CA is monoidally equivalent to the image of F , i.e.,
the smallest fusion subcategory of A containing F (C).

Example 1. If C is a UBFC, it is naturally embedded into
Z(C), so isC. Therefore there is a braided monoidal functorC �
C → Z(C). Compose this functor with the forgetful functor
f orC : Z(C) → C we get a central functor

C � C → C,

X � Y �→ X ⊗ Y.

Let R be its right adjoint functor, we obtain a condensable
algebra LC := R(1) ∼= ⊕i(i � ī) ∈ C � C (ī denotes the dual
object, or antiparticle of i) and C = (C � C)LC , dim(LC) =
dim(C). In particular, for a symmetric category E , LE is a
condensable algebra in E � E , and E = (E � E)LE = (E �
E)0

LE
for E is symmetric, all LE -modules are local. Condensing

LE is nothing but breaking the symmetry from E � E to E .
Now, we are ready to define the stacking operation for

UMTC/E ’s as well as their modular extensions.

Definition 11. Let C,D be UMTC/E ’s, and MC,MD their
modular extensions. The stacking is defined by

C �E D := (C � D)0
LE

,

MC �E MD := (MC � MD)0
LE

.

Note that in Ref. [39], the tensor product �E for UMTC/E ’s
is defined as (C � D)LE . For UMTC/E ’s the two definitions
coincide (C � D)0

LE
= (C � D)LE , for LE lies in the centralizer

of C � D which is E � E . But for the modular extensions we
have to take the unusual definition above.

Theorem 7. C �E D is a UMTC/E , and MC �E MD is a
modular extension of C �E D.

Proof. The embeddings E = (E � E)0
LE

↪→ (C � D)0
LE

=
C �E D ↪→ (MC � MD)0

LE
= MC �E MD are obvious. So

C �E D is a UBFC over E . Also

dim(C �E D) = dim(C � D)

dim(LE )
= dim(C)dim(D)

dim(E)
,

and MC �E MD is a UMTC,

dim(MC �E MD) = dim(MC � MD)

dim(LE )2
= dim(C)dim(D).

Thus MC �E MD is a modular extension of C �E D. �
Take D = E . Note that C �E E = C. Therefore, for any

modular extension ME of E , MC �E ME is still a modular
extension of C. In the following, we want to show the inverse,
that one can extract the “difference”, a modular extension of
E , between two modular extensions of C.

Lemma 3. We have (C � C)0
LC

= Ccen
C .

Proof. (C � C)LC is equivalent to C (as a fusion cate-
gory). Moreover, for X ∈ C, the equivalence gives the free
module LC ⊗ (X � 1) ∼= LC ⊗ (1 � X). LC ⊗ (X � 1) is a
local LC-module if and only if X � 1 centralize LC . This
is the same as X ∈ Ccen

C . Therefore we have (C � C)0
LC

=
Ccen
C . �

Theorem 8. let M and M′ be two modular extensions of
the UMTC/E C. There exists a unique K ∈ Mext(E) such that
K �E M = M′. Such K is given by

K = (M′ � M)0
LC

.

Proof. K is a modular extension of E . This follows Lemma
3 that E = Ccen

C = (C � C)0
LC

is a full subcategory of K. K
is a UMTC by construction, and dim(K) = dim(M)dim(M′)

dim(LC )2 =
dim(E)2.

To show that K = (M′ � M)LC satisfies M′ = K �E M,
note that M′ = M′ � Vec = M′ � (M � M)0

LM
. It suffices

that

(M′ � M � M)0
1�LM

= [(M′ � M)0
LC

� M]0
LE

= (M′ � M � M)0
(LC�1)⊗(1�LE ).

This follows that 1 � LM and (LC � 1) ⊗ (1 � LE ) are left
and right centers of the algebra (LC � 1) ⊗ (1 � LM).

If M′ = K �E M = (K � M)0
LE

, then

K = (K � M � M)0
1�LM

= (K � M � M)0
(LE�1)⊗(1�LC )

= [(K �E M) � M]0
LC

= (M′ � M)0
LC

.
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It is similar here that 1 � LM and (LE � 1) ⊗ (1 � LC) are
the left and right centers of the algebra (LE � 1) ⊗ (1 � LM).
This proves the uniqueness of K. �

Let us list several consequences of theorem 8.
Theorem 9. Mext(E) forms a finite Abelian group.
Proof. Firstly, there exists at least one modular extension of

a symmetric fusion category E , the Drinfeld center Z(E). So
the set Mext(E) is not empty. The multiplication is given by
the stacking �E . It is easy to verify that the stacking �E for
modular extensions is associative and commutative. To show
that they form a group we only need to find out the identity
and inverse. In this case K = (M′ � M)0

LE
= M′ �E M,

theorem 8 becomes M′ �E M �E M = M′, for any modular
extensions M,M′ of E . Thus M′ �E M′ = M′ �E M′ �E
M �E M = M �E M, i.e., M �E M, is the same category
for any extension M, which turns out to be Z(E). It is exactly
the identity element. It is then obvious that the inverse of M
is M. The finiteness follows from Ref. [32]. �

Example 2. For bosonic case, we find that Mext(Rep(G)) =
H 3(G,U(1)), which is discussed in more detail in the next
section. For fermionic case, a general group cohomological
classification is still lacking. We know some simple ones such
asMext(sRep(Zf

2 )) = Z16, which agrees with Kitaev’s 16-fold
way [9].

Theorem 10. For a UMTC/E C, if the modular exten-
sions exist, Mext(C) form a Mext(E)-torsor. In particular,
|Mext(C)| = |Mext(E)|.

Proof. The action is given by the stacking �E . For any two
extensionsM,M′, there is a unique extensionK ofE , such that
M �E K = M′. To see Z(E) acts trivially, note that M′ �E
Z(E) = M �E K �E Z(E) = M �E K = M′ holds for any
M′. Due to uniqueness we also know that onlyZE acts trivially.
Thus the action is free and transitive. �

This means that for any modular extension of C, stacking
with a nontrivial modular extensions of E , one always obtains
a different modular extension of C; on the other hand, starting
with a particular modular extension of C, all the other modular
extensions can be generated by staking modular extensions of
E (in other words, there is only on orbit). However, in general,
there is no preferred choice of the starting modular extension,
unless C is the form C0 � E where C0 is a UMTC.

D. Modular extensions of Rep(G)

We set E = Rep(G) throughout this subsection. Let
(M,ιM) be a modular extension of Rep(G). ιM is the
embedding ιM : E ↪→ M that we need to consider explicitly
in this subsection. The algebra A = Fun(G) is a condens-
able algebra in Rep(G) and also a condensable algebra in
M. Moreover, A is a Lagrangian algebra in M because
(dimA)2 = |G|2 = (dimRep(G))2 = dimM. Therefore M �
Z(MA), where MA is the category of right A-modules in M.
In other words, M describes the bulk excitations in a 2+1D
topological phase with a gapped boundary (see Fig. 3). More-
over, the fusion category MA is pointed and equipped with a
canonical fully faithful G grading [33], which means that

MA = ⊕g∈G(MA)g, (MA)g � Vec, ∀g ∈ G,

and ⊗ : (MA)g � (MA)h
�−→ (MA)gh.

e ∈ Rep(G) ⊂ M

−⊗ A

x

γ2

γ1

M

MA

Vec
F (e)

FIG. 3. Consider a physical situation in which the excitations in
the 2 + 1D bulk are given by a modular extension M of Rep(G),
and those on the gapped boundary by the UFC MA. Consider a
simple particle e ∈ Rep(G) in the bulk moving toward the boundary.
The bulk-to-boundary map is given by the central functor − ⊗ A :
M → MA, which restricted to Rep(G) is nothing but the forgetful
functor F : Rep(G) → Vec. Let x be a simple excitation in MA

sitting next to F (e). We move F (e) along the semicircle γ1 (defined
by the half-braiding), then move along the semicircle γ2 (defined by
the symmetric braiding in the trivial phase Vec).

Let us recall the construction of this G grading. The physical
meaning of acquiring a G grading onMA after condensing the
algebra A = Fun(G) in M is depicted in Fig. 3. The process in

Fig. 3 defines the isomorphism F (e) ⊗A x
ze,x−→ x ⊗A F (e) =

F (e) ⊗A x, which further gives a monoidal automorphism
φ(x) ∈ Aut(F ) = G of the fiber functor F : Rep(G) → Vec.

Since φ is an isomorphism, the associator of the monoidal
category MA determines a unique ω(M,ιM) ∈ H 3(G,U(1))
such that MA � Vecω

G as G-graded fusion categories.
Theorem 11. The map (M,ιM) �→ ω(M,ιM) defines a group

isomorphism Mext(Rep(G)) � H 3(G,U(1)). In particular, we
have(
Z

(
Vecω1

G

)
,ιω1

)
�E

(
Z

(
Vecω2

G

)
,ιω2

) � (
Z

(
Vecω1+ω2

G

)
,ιω1+ω2

)
.

For the proof and more related details, see also Ref. [30].

E. Relation to numerical calculations

In Sec. V, we proposed another way to characterise GQLs,
using the data (Ñab

c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c), which is more

friendly in numerical calculations. We would like to investigate
how to calculate the stacking operation in terms of these data.

Assuming thatC andC ′ can be characterized by data (Nij

k ,si)
and (N ′ij

k ,s ′
i). Let (ND,ij

k ,sDi ) be the data that characterize the
stacked UMTC/E D = C �E C ′.

To calculate (ND,ij

k ,sDi ), let us first construct

N
ii ′,jj ′
kk′ = N

ij

k N
′i ′j ′
k′ , sii ′ = si + s ′

i ′ . (19)

Note that, the above data describe a UMTC/E�E D′ = C � C ′
(i.e., with centralizer E � E), which is not what we want. We
need reduce centralizer from E � E to E . This is the G × G to
G process and C-C ′ coupling, or condensing the LE algebra,
as discussed above

235140-10



CLASSIFICATION OF (2+1)-DIMENSIONAL TOPOLOGICAL . . . PHYSICAL REVIEW B 95, 235140 (2017)

To do the E � E to E reduction (i.e., to obtain the real
stacking operation �E ), we can introduce an equivalence
relation. Noting that the excitations in D′ = C � C ′ are labeled
by ii ′ = i � i ′, the equivalence relation is

ii ′ ∼ jj ′, if ii ′ ⊗ LE = jj ′ ⊗ LE , (20)

where LE = ⊕aaā,a ∈ E . In the simple case of Abelian
groups, where all the a’s are Abelian particles, the equivalence
relation reduces to

(a ⊗ i)i ′ ∼ i(a ⊗ i ′), ∀ i ∈ C, i ′ ∈ C ′, a ∈ E . (21)

Mathematically, this amounts to considering only the free
local LE -modules. The equivalent classes [ii ′] are then some
composite anyons in D = C �E C ′

[ii ′] = k ⊕ l ⊕ · · · , for some k,l, · · · ∈ D. (22)

In other words, they form a fusion sub ring of D. Moreover,
the spin of ii ′ is the same as the direct summands

sii ′ = sDk = sDl = · · · . (23)

Since it is limited to a subset of data of UMTC/E ’s, we can
only give these necessary conditions. However, as we already
give a large list of GQLs in terms of these data, they are usually
enough to pick the resulting C �E C ′ from the list.

VII. HOW TO CALCULATE THE MODULAR EXTENSION
OF A UMTC/E

A. A naive calculation

How do we calculate the modular extension M of
UMTC/E C from the data of C? Actually, we do not know how
to do that. So here, we will follow a closely related conjecture
V, and calculate instead (N IJ

K ,SI ,c) (that fully characterize
M) from the data (Ñab

c ,s̃a; Nij

k ,si) (that partially characterize
C). In this section, we will describe such a calculation.

We note that all the simple objects (particles) in C are
contained in M as simple objects, and M may contain some
extra simple objects. Assume that the particle labels of M are
{I,J, . . .} = {i,j, . . . ,x,y, . . . }, where we use i,j, . . . to label
the particles in C and x,y, . . . to label the additional particles
(not in C). Also let us use a,b, . . . to label the simple objects
in the centralizer of C: E = Ccen

C . Let N IJ
K , SI be the fusion

coefficients and the spins for M, and N
ij

k , si be the fusion
coefficients and the spins for C. The idea is to find as many
conditions on (N IJ

K ,SI ) as possible, and use those conditions
to solve for (N IJ

K ,SI ). Since the data (N IJ
K ,SI ) describe the

UMTC M, they should satisfy all the conditions discussed in
Ref. [11]. On the other hand, as a modular extension of C,
(N IJ

K ,SI ) also satisfy some additional conditions. Here, we
will discuss those additional conditions.

First, the modular extension M has a fixed total quantum
dimension:

dim(M) = dim(E)dim(C). (24)

In other words, ∑
I∈M

d2
I =

∑
a∈E

d2
a

∑
i∈C

d2
i . (25)

Physically, the modular extension M is obtained by
“gauging” the symmetry E in C (i.e., adding the symmetry
twists of E). So the additional particles x,y, . . . correspond
to the symmetry twists. Fusing an original particle i ∈ C to a
symmetry twist x /∈ C still give us a symmetry twist. Thus

N ix
j = N xi

j = N ij
x = 0. (26)

Therefore Ni for i ∈ C is block diagonal:

Ni = Ni ⊕ N̂i, (27)

where (Ni)jk = N ij

k = N
ij

k and (N̂i)xy = N iy
x .

If we pick a charge conjugation for the additional particles
x �→ x̄, the conditions for fusion rules reduce to

N ix
y = N xi

y = N x̄y

i = N iȳ
x̄ ,∑

k∈C
N

ij

k N kx
y =

∑
z/∈C

N iz
x N jy

z . (28)

With a choice of charge conjugation, it is enough to construct
(or search for) the matrices N̂i and N xy

z to determine all the
extended fusion rules N IJ

K .
Besides the general condition (28), there are also some

simple constraints on N̂i that may speed up the numerical
search. Firstly, observe that (28) is the same as

N̂iN̂j =
∑
k∈C

N
ij

k N̂k, (29)

where i,j,k ∈ F . This means that N̂i satisfy the same fusion
algebra as Ni , and N

ij

k = N ij

k is the structure constant;
therefore the eigenvalues of N̂i must be a subset of the
eigenvalues of Ni .

Secondly, since
∑

y /∈C N ix
y dy = didx , by Perron-Frobenius

theorem, we know that di is the largest eigenvalue of N̂i , with
eigenvector v,vx = dx . (di is also the largest absolute values
of the eigenvalues of N̂i .) Note that N̂īN̂i = N̂iN̂ī , N̂ī = N̂

†
i .

Thus d2
i is the largest eigenvalue of the positive semidefinite

Hermitian matrix N̂
†
i N̂i . For any unit vector v, we have

v†N̂ †
i N̂iv � d2

i , in particular,(
N̂

†
i N̂i

)
xx

=
∑

y

(
N ix

y

)2 � d2
i . (30)

The above result is very helpful to reduce the scope of
numerical search.

Once we find the fusion rules, N IJ
K , we can then use the

rational conditions and other conditions to determine the spins
SI (for details, see Ref. [11]). The set of data (N IJ

K ,SI ) that
satisfy all the conditions give us the set of modular extensions.

The above proposed calculation for modular extensions is
quite expensive. If the quantum dimensions of the particles in
C are all equal to 1: di = 1, then there is another much cheaper
way to calculate the fusion coefficient N IJ

K of the modular
extension M. Such an approach is explained in Appendix B.
We will also use such an approach in our calculation.

Last, we would like to mention that two sets of data
(N IJ

K ,SI ) and (N̄ IJ
K ,S̄I ) describe the same modular extension

of C, if they only differ by a permutation of indices x ∈ M but
x /∈ C. So some times, two sets of data (N IJ

K ,SI ) and (N̄ IJ
K ,S̄I )

can describe different modular extensions, even through they
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describe the same UMTC. [Two sets of data (N IJ
K ,SI ) and

(N̄ IJ
K ,S̄I ) describe the same UMTC, if they are only different

by a permutation of indices I ∈ M.]
Why we use such a permutation in the calculation of

modular extensions? This is because when we considering
modular extensions, the particle x ∈ M but x /∈ C correspond
to symmetry twists. They are extrinsic excitations that do not
appear in the finite energy spectrum of the Hamiltonian. While
the particle i ∈ C are intrinsic excitations that do appear in the
finite energy spectrum of the Hamiltonian. So x /∈ C and i ∈ C
are physically distinct and we do not allow permutations that
mix them. Also we should not permute the particles a ∈ E ,
because they correspond to symmetries. We should not mix,
for example, the Z2 symmetry of exchange layers and the Z2

symmetry of 180◦ spin rotation.

B. The limitations of the naive calculation

Since a UMTC/E C is not modular, the data (Ñab
c ,s̃a; Nij

k ,si)
may not fully characterize C. To fully characterize C, we need
to use additional data, such as the F tensor and the R tensor
[9,11].

In this paper, we will not use those additional data. As
a result, the data (Ñab

c ,s̃a; Nij

k ,si) may correspond to several
different UMTC/E C’s. In other words, (Ñab

c ,s̃a; Nij

k ,si) is a
one-to-many labeling of UMTC/E ’s.

So in our naive calculation, when we calculate the modular
extensions of (Ñab

c ,s̃a; Nij

k ,si), we may actually calculate the
modular extension of several different C’s that are described by
the same data (Ñab

c ,s̃a; Nij

k ,si). However, for UMTC/E ’s that
can be fully characterized by the data (Ñab

c ,s̃a; Nij

k ,si), our
calculation produce the modular extensions of a single C. For
example, the naive calculation can obtain the correct modular
extensions of C = Rep(G) and C = sRep(Gf ), when G and
Gf are Abelian groups, or simple finite groups [34].

If the (Ñab
c ,s̃a; Nij

k ,si) happen to describe two different
UMTC/E ’s, we find that our naive calculation will pro-
duce the modular extensions for both of UMTC/E ’s (see
Sec. VIII D). So by computing the modular extensions of
(Ñab

c ,s̃a; Nij

k ,si), we can tell if (Ñab
c ,s̃a; Nij

k ,si) corresponds
to none, one, two, etc UMTC/E ’s. This leads to conjecture
V that (Ñab

c ,s̃a; Nij

k ,si,N IJ
K ,SI ; c) can fully and one-to-one

classify GQLs in 2+1D.

VIII. EXAMPLES OF 2+1D SET ORDERS
AND SPT ORDERS

In this section, we will discuss simple examples of
UMTC/E C’s, and their modular extensions M. The triple
(C,M,c) describe a topologically ordered or SPT phase. A
single UMTC/E C only describes the set of bulk topological
excitations, which correspond to topologically ordered states
up to invertible ones.

However, in this section we will not discuss examples of
UMTC/E C. What we really do is to discuss examples of the
solutions (Ñab

c ,s̃a; Nij

k ,si) (which are not really UMTC/E ’s,
but closely related). We will also discuss the modular
extensions (N IJ

K ,SI ; c) of (Ñab
c ,s̃a; Nij

k ,si). (Ñab
c ,s̃a; Nij

k ,si)
will correspond to UMTC/EC if it has modular extensions

TABLE II. The bottom two rows correspond to the two modular

extensions of Rep(Z2) (denoted by N |�|
c = 2

ζ 1
2

0 ). Thus we have two
different trivial topological orders with Z2 symmetry in 2+1D (i.e.,
two Z2 SPT states). We use N |�|

c to label UMTC/E ’s, where � =
D−1

∑
i e2π isi d2

i = |�|e2π ic/8 and D2 = ∑
i d

2
i .

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

2
ζ 1

2
0 2 1,1 0,0 Rep(Z2)

4B
0 4 1,1,1,1 0,0,0, 1

2 Z2 gauge
4B

0 4 1,1,1,1 0,0, 1
4 , 3

4 double semion

(N IJ
K ,SI ; c). This allows us to classify GQLs in terms of the

data (Ñab
c ,s̃a; Nij

k ,si,N IJ
K ,SI ; c).

A. Z2 bosonic SPT states

Tables XXII, XXIII, and XXIV list the solutions
(Ñab

c ,s̃a; Nij

k ,si) when (Ñab
c ,s̃a) describes a SFC Rep(Z2).

The table contains all UMTC/Rep(Z2)’s but may contain extra
fake entries. Physically, they describe possible sets of bulk
excitations for Z2-SET orders of bosonic systems. The sets of
bulk excitations are listed by their quantum dimensions di and
spins si .

For example, let us consider the entry N
|�|
c = 2

ζ 1
2

0 in
Table XXII. Such an entry has a central charge c = 0.
Also N = 2, hence the Z2-SET state has two types of
bulk excitations both with di = 1 and si = 0. Both types of
excitations are local excitations; one is the trivial type and the
other carries a Z2 charge.

The first question that we like to ask is that “is such an entry
a fake entry, or it corresponds to some Z2-symmetric GQL’s?”
If it corresponds to some Z2-symmetric GQL’s, how many
distinct Z2-symmetric GQL phases that it corresponds to? In
other word, how many distinct Z2-symmetric GQL phases are
there, that share the same set of bulk topological excitations

described by the entry 2
ζ 1

2
0 ?

Both questions can be answered by computing the modular

extensions of 2
ζ 1

2
0 [which is also denoted as Rep(Z2)]. We

find that the modular extensions exist, and thus Rep(Z2) does
correspond to some Z2-symmetric GQL’s. In fact, one of
the Z2-symmetric GQL’s is the trivial product state with Z2

symmetry. Other Z2-symmetric GQL’s are Z2 SPT states.
After a numerical calculation, we find that there are only

two different modular extensions of Rep(Z2) (see Table II).
Thus there are two distinct Z2-symmetric GQL phases whose
bulk excitations are described by the Rep(Z2). The first
one corresponds to the trivial product states whose modular
extension is the Z2 gauge theory which has four types of
particles with (di,si) = (1,0),(1,0),(1,0),(1, 1

2 ). (Gauging the
Z2 symmetry of the trivial product state gives rise to a
Z2 gauge theory.) The second one corresponds to the only
nontrivial Z2 bosonic SPT state in 2+1D, whose modular
extension is the double-semion theory which has four types
of particles with (di,si) = (1,0),(1,0),(1, 1

4 ),(1,− 1
4 ). (Gauging

the Z2 symmetry of the Z2-SPT state gives rise to a double-
semion theory [21].) So the Z2-SPT phases are classified by
Z2, reproducing the group cohomology result [18–20]. In
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TABLE III. The two modular extensions of N |�|
c = 3

ζ 1
2

2 . 3
ζ 1

2
2 has

a centralizer Rep(Z2). Thus we have two topological orders with Z2

symmetry in 2+1D, which has only one type of spin-1/3 topological
excitations.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

3
ζ 1

2
2 6 1,1,2 0,0, 1

3 K =
(

2 −1
−1 2

)
5B

2 12 1,1,2,ζ 1
4 ,ζ 1

4 = √
3 0,0, 1

3 , 1
8 , 5

8 (A1,4)
5B

2 12 1,1,2,ζ 1
4 ,ζ 1

4 0,0, 1
3 , 3

8 , 7
8

general, the modular extensions of Rep(G) correspond to the
bosonic SPT states in 2+1D with symmetry G.

B. Z2-SET orders for bosonic systems

The entry N
|�|
c = 3

ζ 1
2

2 in Table XXII corresponds to more
nontrivial UMTC/Rep(Z2). It describes the bulk excitations
of Z2-SET orders, which has only one type of nontrivial
topological excitation (with quantum dimension d = 2 and
spin s = 1/3, see Table IV). The other two types of excitations

are local excitations with Z2-charge 0 and 1. We find that 3
ζ 1

2
2

has modular extensions and hence is not a fake entry.
To see how many SET orders that have such set of bulk

excitations, we need to compute how many modular extensions

are there for 3
ζ 1

2
2 . We find that 3

ζ 1
2

2 has two modular extensions
(see Table III). Thus there are two Z2-SET orders with the
above mentioned bulk excitations. It is not an accident that the
number of Z2-SET orders with the same set of bulk excitations
is the same as the number of Z2 SPT states. This is because
the different Z2-SET orders with a fixed set of bulk excitations
are generated by stacking with Z2 SPT states.

We would like to point out that for any G-SET state, if
we break the symmetry, the G-SET state will reduce to a
topologically ordered state described by a UMTC. In fact,
the different G-SET states described by the same UMTC/E
(i.e., with the same set of bulk excitations) will reduce to the
same topologically ordered state (i.e., the same UMTC). In
Appendix D, we discussed such a symmetry breaking process
and how to compute UMTC from UMTC/E . We found that the

two Z2-SET orders from 3
ζ 1

2
2 reduce to an Abelian topological

order described by a K-matrix
( 2 −1
−1 2

)
. This is indicated

by SB:K = ( 2 −1
−1 2

)
in the comment column of Table XXII.

In other place, we use SB:NB
c or SB:NF

c ( a

b
) to indicate the

reduced topological order after the symmetry breaking (for

TABLE IV. The fusion rule of the N |�|
c = 3

ζ 1
2

2 Z2-SET order. The
particle 1 carries the Z2-charge 0, and the particle s carries the Z2-
charge 1. From the table, we see that σ ⊗ σ = 1 ⊕ s ⊕ σ .

si 0 0 1
3

di 1 1 2

3
ζ 1

2
2 1 s σ

1 1 s σ

s s 1 σ

σ σ σ 1 ⊕ s ⊕ σ

TABLE V. The fusion rules of the two N |�|
c = 4

ζ 1
2

1 Z2 symmetry
enriched topological orders with identical di and si . We see that one
has a Z2 × Z2 fusion rule and the other has a Z4 fusion rule.

si 0 0 1
4

1
4 si 0 0 1

4
1
4

di 1 1 1 1 di 1 1 1 1

4
ζ 1

2
1 00 01 10 11 4

ζ 1
2

1 0 2 1 3
00 00 01 10 11 0 0 2 1 3
01 01 00 11 10 2 2 0 3 1
10 10 11 00 01 1 1 3 2 0
11 11 10 01 00 3 3 1 0 2

bosonic or fermionic cases). (The topological orders described
by NB

c or NF
c ( a

b
) are given by the tables in Ref. [11] or

Ref. [14].)
As we have mentioned, there are two Z2-SET orders

with the same bulk excitations. But how to realize those
Z2-SET orders? We find that one of the Z2-SET orders is
the double layer FQH state with K matrix ( 2 −1

−1 2 ) (same
as the reduced topological order after symmetry breaking),
where the Z2 symmetry is the layer-exchange symmetry. The
quasiparticles are labeled by the l vectors l = (l1l2). The two
nontrivial quasiparticles are given by

l =
(

1
0

)
,

(
0
1

)
, (31)

whose spins are all equal to 1
3 .

Since the layer-exchange Z2 symmetry exchanges l1 and
l2, we see that the two excitations (1

0), (0
1) always have the

same energy. Despite the Z2 symmetry has no two-dimentional
irreducible representations, the above spin-1/3 topological
excitations has an exact twofold degeneracy due to the Z2

layer-exchange symmetry. This effect is an interplay between
the long-range entanglement and the symmetry: degeneracy
in excitations may not always arise from high dimensional
irreducible representations of the symmetry.

Such two degenerate excitations are viewed as one type
of topological excitations with quantum dimension d = 2 (for
the twofold degeneracy) and spin s = 1

3 (see Table XXII).
The Z2 symmetry twist in such a double-layer state carry a
non-Abelian statistics with quantum dimension d = √

3. In
fact, there are two such Z2 symmetry twists whose spin differ
by 1/2. The other Z2-SET order can be viewed as the above

TABLE VI. The four modular extensions of N |�|
c = 5

ζ 1
2

0 with

Z2 × Z2 fusion. 5
ζ 1

2
0 has a centralizer Rep(Z2). The first and the

second pairs turn out to be equivalent. The fusion rules are listed
in Table VIII.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

5
ζ 1

2
0 8 1 × 4,2 0,0, 1

2 , 1
2 ,0

9B
0 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 ,0, 15
16 , 1

16 , 7
16 , 9

16 3B
−1/2 � 3B

1/2

9B
0 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 ,0, 3
16 , 13

16 , 11
16 , 5

16 3B
3/2 � 3B

−3/2

9B
0 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 ,0, 1
16 , 15

16 , 9
16 , 7

16 3B
1/2 � 3B

−1/2

9B
0 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 ,0, 13
16 , 3

16 , 5
16 , 11

16 3B
−3/2 � 3B

3/2
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TABLE VII. The four modular extensions of N |�|
c = 5

ζ 1
2

1 with

Z2 × Z2 fusion. 5
ζ 1

2
1 has a centralizer Rep(Z2). The fusion rules are

listed in Tables IX and X.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

5
ζ 1

2
1 8 1 × 4,2 0,0, 1

2 , 1
2 , 1

8

9B
1 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 , 1
8 , 1

16 , 1
16 , 9

16 , 9
16 3B

1/2 � 3B
1/2

9B
1 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 , 1
8 , 13

16 , 13
16 , 5

16 , 5
16 3B

−3/2 � 3B
5/2

9B
1 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 , 1
8 , 15

16 , 3
16 , 7

16 , 11
16 3B

−1/2 � 3B
3/2

9B
1 16 1 × 4,2,ζ 1

2 × 4 0,0, 1
2 , 1

2 , 1
8 , 3

16 , 15
16 , 11

16 , 7
16 3B

3/2 � 3B
−1/2

double layer FQH state K = ( 2 −1
−1 2

)
stacked with a Z2 SPT

state.

C. Two other Z2-SET orders for bosonic systems

The fourth and fifth entries in Table XXII describe the bulk
excitations of two other Z2-SET orders. Those bulk excitations
have identical si and di , but they have different fusion rules
N

ij

k (see Table V).
Both entries have two modular extensions, and correspond

to two SET orders. Among the two SET orders for the Z2 × Z2

fusion rule, one of them is obtained by stacking a Z2 neutral
ν = 1/2 Laughlin state with a trivial Z2 product state. The
other is obtained by stacking a Z2 neutral ν = 1/2 Laughlin
state with a nontrivial Z2 SPT state.

The entry with Z4 fusion rule also correspond to two SET
orders. They are obtained by stacking a Z2 charged ν = 1/2
Laughlin state with a trivial or a nontrivial Z2 SPT state. Here,
charged means that the particles forming the ν = 1/2 Laughlin
state carry Z2-charge 1. In this case, the anyon in the ν = 1/2

Laughlin state carries a fractional Z2-charge 1/2. So the fusion
of two such anyons give us a Z2-charge 1 excitation instead of
a trivial neutral excitation. This leads to the Z4 fusion rule.

D. The rank N = 5 Z2-SET orders for bosonic systems

The first and the second entries in Table XXIII describe
two N = 5UMTC/Rep(Z2)’s. They describe two different sets
of bulk excitations for Z2-SET orders. Those bulk excitations
have identical si and di , but they have different fusion rules
N

ij

k : the 4 d = 1 particles have a Z2 × Z2 fusion rule for the
first entry, and they have a Z4 fusion rule for the second entry
(as indicated by F:Z2 × Z2 or F:Z4 in the comment column of
Table XXIII).

1. The first entry in Table XXIII

Let us compute the modular extensions of the first entry (i.e.,

5
ζ 1

2
0 with Z2 × Z2 fusion). Since the total quantum dimension

of the modular extensions is D2 = 16, the modular extensions
must have rank N = 13 or less (since quantum dimension
d � 1).

Now we would like to show N = 13 is not possible. If a
modular extension has N = 13, then it must have 12 particles
(labeled by a = 1, . . . ,12) with quantum dimension da = 1,
and one particle (labeled by x) with quantum dimension dx =
2, so that 12 × 12 + 22 = D2 = 16. In this case, we must have
the fusion rule

a ⊗ x = x, x ⊗ x = 1 ⊕ 2 ⊕ 3 ⊕ 4, (32)

where x ⊗ x is determined by the fusion rule of the
UMTC/Rep(Z2). The above determines the fusion matrix Nx

defined as (Nx)ij ≡ Nxi
j . The largest eigenvalue of Nx should

be 2, the quantum dimension of x. Indeed, we find that the

TABLE VIII. The first and the third entries in Table VI have different fusion rules, despite they have the same (di,si).

si 0 0 1
2

1
2 0 1

16
7
16

9
16

15
16

di 1 1 1 1 2 ζ 1
2 ζ 1

2 ζ 1
2 ζ 1

2

9B
0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 1 4 3 5 8 9 6 7
3 3 4 1 2 5 8 7 6 9
4 4 3 2 1 5 6 9 8 7
5 5 5 5 5 1 ⊕ 2 ⊕ 3 ⊕ 4 7 ⊕ 9 6 ⊕ 8 7 ⊕ 9 6 ⊕ 8
6 6 8 8 6 7 ⊕ 9 1 ⊕ 4 5 2 ⊕ 3 5
7 7 9 7 9 6 ⊕ 8 5 1 ⊕ 3 5 2 ⊕ 4
8 8 6 6 8 7 ⊕ 9 2 ⊕ 3 5 1 ⊕ 4 5
9 9 7 9 7 6 ⊕ 8 5 2 ⊕ 4 5 1 ⊕ 3

si 0 0 1
2

1
2 0 1

16
7
16

9
16

15
16

di 1 1 1 1 2 ζ 1
2 ζ 1

2 ζ 1
2 ζ 1

2

9B
0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 1 4 3 5 8 9 6 7
3 3 4 1 2 5 6 9 8 7
4 4 3 2 1 5 8 7 6 9
5 5 5 5 5 1 ⊕ 2 ⊕ 3 ⊕ 4 7 ⊕ 9 6 ⊕ 8 7 ⊕ 9 6 ⊕ 8
6 6 8 6 8 7 ⊕ 9 1 ⊕ 3 5 2 ⊕ 4 5
7 7 9 9 7 6 ⊕ 8 5 1 ⊕ 4 5 2 ⊕ 3
8 8 6 8 6 7 ⊕ 9 2 ⊕ 4 5 1 ⊕ 3 5
9 9 7 7 9 6 ⊕ 8 5 2 ⊕ 3 5 1 ⊕ 4
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TABLE IX. The third and the fourth entries in Table VII have different fusion rules, despite they have the same (di,si).

si 0 0 1
2

1
2

1
8

3
16

7
16

11
16

15
16

di 1 1 1 1 2 ζ 1
2 ζ 1

2 ζ 1
2 ζ 1

2

9B
1 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 1 4 3 5 8 9 6 7
3 3 4 1 2 5 8 7 6 9
4 4 3 2 1 5 6 9 8 7
5 5 5 5 5 1 ⊕ 2 ⊕ 3 ⊕ 4 7 ⊕ 9 6 ⊕ 8 7 ⊕ 9 6 ⊕ 8
6 6 8 8 6 7 ⊕ 9 1 ⊕ 4 5 2 ⊕ 3 5
7 7 9 7 9 6 ⊕ 8 5 1 ⊕ 3 5 2 ⊕ 4
8 8 6 6 8 7 ⊕ 9 2 ⊕ 3 5 1 ⊕ 4 5
9 9 7 9 7 6 ⊕ 8 5 2 ⊕ 4 5 1 ⊕ 3

si 0 0 1
2

1
2

1
8

3
16

7
16

11
16

15
16

di 1 1 1 1 2 ζ 1
2 ζ 1

2 ζ 1
2 ζ 1

2

9B
1 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 1 4 3 5 8 9 6 7
3 3 4 1 2 5 6 9 8 7
4 4 3 2 1 5 8 7 6 9
5 5 5 5 5 1 ⊕ 2 ⊕ 3 ⊕ 4 7 ⊕ 9 6 ⊕ 8 7 ⊕ 9 6 ⊕ 8
6 6 8 6 8 7 ⊕ 9 1 ⊕ 3 5 2 ⊕ 4 5
7 7 9 9 7 6 ⊕ 8 5 1 ⊕ 4 5 2 ⊕ 3
8 8 6 8 6 7 ⊕ 9 2 ⊕ 4 5 1 ⊕ 3 5
9 9 7 7 9 6 ⊕ 8 5 2 ⊕ 3 5 1 ⊕ 4

largest eigenvalue of Nx is 2. But we also require that Nx can
be diagonalized by a unitary matrix (which happens to be the
S-matrix). Nx fails such a test. So N cannot be 13.

N also cannot be 12. If N = 12, then the modular extension
will have ten particles (labeled by a = 1, . . . ,10) with quantum
dimension da = 1, one particle (labeled by x) with quantum

dimension dx = 2, and one particle (labeled by y) with
quantum dimension dy = √

2. The fusion of ten da = 1
particles is described by an Abelian group Z10 or Z2 × Z5.
None of them contain Z2 × Z2 as subgroup. Thus N = 12 is
incompatible with the Z2 × Z2 fusion of the first four da = 1
particles.

TABLE X. The fusion rules of the first and the second entries in Table VII.

si 0 0 1
2

1
2

1
8

1
16

1
16

9
16

9
16

di 1 1 1 1 2 ζ 1
2 ζ 1

2 ζ 1
2 ζ 1

2

9B
1 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 1 4 3 5 8 9 6 7
3 3 4 1 2 5 8 7 6 9
4 4 3 2 1 5 6 9 8 7
5 5 5 5 5 1 ⊕ 2 ⊕ 3 ⊕ 4 7 ⊕ 9 6 ⊕ 8 7 ⊕ 9 6 ⊕ 8
6 6 8 8 6 7 ⊕ 9 1 ⊕ 4 5 2 ⊕ 3 5
7 7 9 7 9 6 ⊕ 8 5 1 ⊕ 3 5 2 ⊕ 4
8 8 6 6 8 7 ⊕ 9 2 ⊕ 3 5 1 ⊕ 4 5
9 9 7 9 7 6 ⊕ 8 5 2 ⊕ 4 5 1 ⊕ 3

si 0 0 1
2

1
2

1
8

5
16

5
16

13
16

13
16

di 1 1 1 1 2 ζ 1
2 ζ 1

2 ζ 1
2 ζ 1

2

9B
1 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 1 4 3 5 8 9 6 7
3 3 4 1 2 5 8 7 6 9
4 4 3 2 1 5 6 9 8 7
5 5 5 5 5 1 ⊕ 2 ⊕ 3 ⊕ 4 7 ⊕ 9 6 ⊕ 8 7 ⊕ 9 6 ⊕ 8
6 6 8 8 6 7 ⊕ 9 1 ⊕ 4 5 2 ⊕ 3 5
7 7 9 7 9 6 ⊕ 8 5 1 ⊕ 3 5 2 ⊕ 4
8 8 6 6 8 7 ⊕ 9 2 ⊕ 3 5 1 ⊕ 4 5
9 9 7 9 7 6 ⊕ 8 5 2 ⊕ 4 5 1 ⊕ 3
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We searched the modular extensions with N up to 11. We
find four N = 9 modular extensions (see Table VI), and thus
the first entry corresponds to valid Z2-SET states.

In fact, one of the Z2-SET states is the Z2 gauge theory with
a Z2 global symmetry, where the Z2 symmetry action exchange
the Z2-charge e and the Z2-vortex m. The degenerate e and m

give rise to the (d,s) = (2,0) particle (the fifth particle in the
table). The bound state of e and m is a fermion f . It may carry
the Z2-charge 0 or 1, which correspond to the third and the
fourth particle with (d,s) = (1,1/2) in the table.

However, from the discussion in the last few sections, we
know that a UMTC/Rep(Z2) always has two modular extensions,
corresponding to the two bosonic Z2-SPT states in 2+1D. This
seems contradictory with the above result that the Z2-SET

state, 5
ζ 1

2
0 with Z2 × Z2 fusion, has four different modular

extensions.
In fact, there is no contradiction. Here, we only use

(Nij

k ,si) to label different entries. However, a UMTC/E is fully
characterized by (Nij

k ,si) plus the F and the R tensors. To
see this point, we note that the Ising-like UMTC NB

c = 3B
m/2,

m = 1,3, . . . ,15 (with central charge c = m/2) has three
particles: 1, f with (df ,sf ) = (1,1/2), and σ with (dσ ,sσ ) =
(
√

2,m/16). Its R tensor is given by [9]

R
ff

1 = −1, Rσf
σ = Rf σ

σ = −im, (33)

Rσσ
1 = (−1)

m2−1
8 e−i π

8 m, Rσσ
f = (−1)

m2−1
8 ei 3π

8 m,

and some components of the F tensor are given by

F
f σσ ;σ
f ;1 = F

σσf ;σ
f ;1 = 1. (34)

The values of R
σf
σ and R

f σ
σ are not gauge invariant. However,

if we fix the values of the F tensor to be the ones given above,
this will fix the gauge, and we can treat R

σf
σ and R

f σ
σ as if they

are gauge invariant quantities.
If we stack NB

c = 3B
m/2 and NB

c = 3B
m′/2 together, the

induced UMTC 3B
m/2 � 3B

m′/2 contains particles 1 = (1,1), 2 =
(f,f ′), 3 = (f,1), 4 = (1,f ′), 5 = (σ,σ ′). Those five particles
are closed under the fusion, and correspond to the five particles

in UMTC/Rep(Z2)5
ζ 1

2
m+m′ . We note that some components of the

R tensor of 3B
m/2 � 3B

m′/2 are given by

R
(f,1),(σ,σ ′)
(σ,σ ′) = R

(σ,σ ′),(f,1)
(σ,σ ′) = −im,

R
(1,f ′),(σ,σ ′)
(σ,σ ′) = R

(σ,σ ′),(1,f ′)
(σ,σ ′) = −im

′
. (35)

Taking (m,m′) = (−1,1) and (1,−1), it is clear the 3B
−1/2 �

3B
1/2 and 3B

1/2 � 3B
−1/2 give rise to two different R tensors that

TABLE XI. The three modular extensions of Rep(Z3).

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

3
ζ 1

4
0 3 1,1,1 0,0,0 Rep(Z3)

9B
0 9 1 × 9 0,0,0,0,0, 1

3 , 1
3 , 2

3 , 2
3 Z3 gauge

9B
0 9 1 × 9 0,0,0, 1

9 , 1
9 , 4

9 , 4
9 , 7

9 , 7
9

9B
0 9 1 × 9 0,0,0, 2

9 , 2
9 , 5

9 , 5
9 , 8

9 , 8
9

TABLE XII. The six modular extensions of Rep(S3).

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

3
√

6
0 6 1,1,2 0,0,0 Rep(S3)

8B
0 36 1,1,2,2,2,2,3,3 0,0,0,0, 1

3 , 2
3 ,0, 1

2 S3 gauge
8B

0 36 1,1,2,2,2,2,3,3 0,0,0,0, 1
3 , 2

3 , 1
4 , 3

4

8B
0 36 1,1,2,2,2,2,3,3 0,0,0, 1

9 , 4
9 , 7

9 ,0, 1
2 (B4,2)

8B
0 36 1,1,2,2,2,2,3,3 0,0,0, 1

9 , 4
9 , 7

9 , 1
4 , 3

4

8B
0 36 1,1,2,2,2,2,3,3 0,0,0, 2

9 , 5
9 , 8

9 ,0, 1
2 (B4,−2)

8B
0 36 1,1,2,2,2,2,3,3 0,0,0, 2

9 , 5
9 , 8

9 , 1
4 , 3

4

have identical (Nij

k ,si). So the first entry in Table XXIII (i.e. 5
ζ 1

2
0

with Z2 × Z2 fusion) split into two different entries if we in-
clude the R tensors. Each give rise to two modular extensions,
and this is why we got four modular extensions. In Table VI,
the first two modular extensions have the same (Nij

k ,si), F and
R tensors when restricted to the first five particles. The second
pair of modular extensions also have the same (Nij

k ,si), F and
R tensors when restricted to the first five particles, but their
R tensor is different from that of the first pair. However, note
that under the exchange of the two fermions, the R tensor of
the first pair becomes that of the second pair.

We like to stress that Table VI is obtained using the
ME-equivalence relation, i.e., the different entries are different
under the ME-equivalence relation (see Sec. V). We see that for
each fixed UMTC/Rep(Z2) (i.e., for each fixed set of (Nij

k ,si), F
and R tensors), there are two modular extensions, which agrees
with our general result for modular extensions. However, if
we ignore F and R tensors, then for each fixed set of (Nij

k ,si),
we get four modular extensions. This is because (Nij

k ,si) is
only a partial description of a UMTC/Rep(Z2), and as discussed
above, in this case there are two ways to assign F and R

TABLE XIII. The 16 modular extensions of sRep(Zf

2 ).

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

20
0 2 1,1 0, 1

2 sRep(Zf

2 )
4B

0 4 1,1,1,1 0, 1
2 ,0,0 Z2 gauge

4B
1 4 1,1,1,1 0, 1

2 , 1
8 , 1

8 F:Z4

4B
2 4 1,1,1,1 0, 1

2 , 1
4 , 1

4 F:Z2 × Z2

4B
3 4 1,1,1,1 0, 1

2 , 3
8 , 3

8 F:Z4

4B
4 4 1,1,1,1 0, 1

2 , 1
2 , 1

2 F:Z2 × Z2

4B
−3 4 1,1,1,1 0, 1

2 , 5
8 , 5

8 F:Z4

4B
−2 4 1,1,1,1 0, 1

2 , 3
4 , 3

4 F:Z2 × Z2

4B
−1 4 1,1,1,1 0, 1

2 , 7
8 , 7

8 F:Z4

3B
1/2 4 1,1,ζ 1

2 0, 1
2 , 1

16 p + ip SC

3B
3/2 4 1,1,ζ 1

2 0, 1
2 , 3

16

3B
5/2 4 1,1,ζ 1

2 0, 1
2 , 5

16

3B
7/2 4 1,1,ζ 1

2 0, 1
2 , 7

16

3B
−7/2 4 1,1,ζ 1

2 0, 1
2 , 9

16

3B
−5/2 4 1,1,ζ 1

2 0, 1
2 , 11

16

3B
−3/2 4 1,1,ζ 1

2 0, 1
2 , 13

16

3B
−1/2 4 1,1,ζ 1

2 0, 1
2 , 15

16
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TABLE XIV. The five modular extensions of Rep(Z5).

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

5
√

5
0 5 1 × 5 0,0,0,0,0

25B
0 25 1 × 25 0,0,0,0,0,0,0,0,0, 1

5 , 1
5 , 1

5 , 1
5 , 2

5 , 2
5 , 2

5 , 2
5 , 3

5 , 3
5 , 3

5 , 3
5 , 4

5 , 4
5 , 4

5 , 4
5 5B

0 � 5B
0

25B
0 25 1 × 25 0,0,0,0,0, 1

25 , 1
25 , 4

25 , 4
25 , 6

25 , 6
25 , 9

25 , 9
25 , 11

25 , 11
25 , 14

25 , 14
25 , 16

25 , 16
25 , 19

25 , 19
25 , 21

25 , 21
25 , 24

25 , 24
25

25B
0 25 1 × 25 0,0,0,0,0, 1

25 , 1
25 , 4

25 , 4
25 , 6

25 , 6
25 , 9

25 , 9
25 , 11

25 , 11
25 , 14

25 , 14
25 , 16

25 , 16
25 , 19

25 , 19
25 , 21

25 , 21
25 , 24

25 , 24
25

25B
0 25 1 × 25 0,0,0,0,0, 2

25 , 2
25 , 3

25 , 3
25 , 7

25 , 7
25 , 8

25 , 8
25 , 12

25 , 12
25 , 13

25 , 13
25 , 17

25 , 17
25 , 18

25 , 18
25 , 22

25 , 22
25 , 23

25 , 23
25

25B
0 25 1 × 25 0,0,0,0,0, 2

25 , 2
25 , 3

25 , 3
25 , 7

25 , 7
25 , 8

25 , 8
25 , 12

25 , 12
25 , 13

25 , 13
25 , 17

25 , 17
25 , 18

25 , 18
25 , 22

25 , 22
25 , 23

25 , 23
25

tensors to them. This is why each fixed (Nij

k ,si) has four
modular extensions, while each fixed (Nij

k ,si,F,R) has only
two modular extensions.

On the other hand, under the TO-equivalence relation
(see Sec. V), the two ways to assign and R tensors are
actually equivalent (related by exchanging the two fermions),
and the first entry in Table XXIII corresponds to only one
UMTC/Rep(Z2). Thus the first entry is equivalent to the third
entry, and the second entry is equivalent to the fourth entry in
Table VI. So the four entries of Table VI in fact represent only
two distinct Z2-SET orders.

One of the two Z2-SET orders have been studied exten-
sively. It corresponds to Z2 gauge theory with a Z2 global
symmetry that exchanges the Z2-gauge-charge e and the
Z2-gauge-vortex m [26,27].

2. The second entry in Table XXIII

Next, we compute the modular extensions of the second

entry in Table XXIII (i.e., 5
ζ 1

2
0 with Z4 fusion). Again, we can

use the same argument to show that modular extensions of rank
12 and above do not exist. We searched the modular extensions
with N up to 11, and find that there is no modular extensions.
So the second entry is not realizable and does not correspond
to any valid bosonic Z2-SET in 2+1D. This is indicated by
NR in the comment column of Table XXIII.

Naively, the (none existing) state from the second entry is
very similar to that from the first entry. It is also a Z2 gauge
theory with a Z2 global symmetry that exchange e and m.
However, for the second entry, the f particles (the third and
the fourth particles) are assigned fraction Z2-charge of ±1/2.
This leads to the Z4 fusion rule. Our result implies that such
an assignment is not realizable (or is illegal). It turns out that

all the 5
ζ 1

2
c ’s with Z4 fusion do not have modular extensions.

They are not realizable, and do not correspond to any 2+1D
bosonic Z2-SET orders.

3. The third entry in Table XXIII

Third, let us compute the modular extensions of the third

entry in Table XXIII (i.e., 5
ζ 1

2
1 with Z2 × Z2 fusion). We find

that the entry has four modular extensions. In fact, the entry
corresponds to two different UMTC/Rep(Z2)s, each with two
modular extensions, as implied by the two Z2-SPT states.
The two UMTC/Rep(Z2)s have identical (Nij

k ,si,c), but different
F and R tensors. Sometimes two different UMTC/E ’s (with
different F and the R tensors) can have the same (Nij

k ,si)’s.
The third, seventh, etc., entries of Table XXIII provide such
examples. We like to stress that this is different from the first
entry in Table XXIII which corresponds to one UMTC/Rep(Z2).

To see those different F and R tensors, we note that one of

the two 5
ζ 1

2
1 with Z2 × Z2 fusion has modular extensions given

by 3B
1/2 � 3B

1/2 and 3B
−3/2 � 3B

5/2. We find the R tensor for this

first 5
ζ 1

2
1 with Z2 × Z2 fusion is given by

R
(f,1),(σ,σ ′)
(σ,σ ′) = R

(σ,σ ′),(f,1)
(σ,σ ′) = −i,

R
(1,f ′),(σ,σ ′)
(σ,σ ′) = R

(σ,σ ′),(1,f ′)
(σ,σ ′) = −i. (36)

The second 5
ζ 1

2
1 with Z2 × Z2 fusion has modular extensions

given by 3B
−1/2 � 3B

3/2 and 3B
3/2 � 3B

−1/2. We find the R tensor

for the second 5
ζ 1

2
1 with Z2 × Z2 fusion is given by

R
(f,1),(σ,σ ′)
(σ,σ ′) = R

(σ,σ ′),(f,1)
(σ,σ ′) = i,

R
(1,f ′),(σ,σ ′)
(σ,σ ′) = R

(σ,σ ′),(1,f ′)
(σ,σ ′) = i. (37)

TABLE XV. All the eight modular extensions of sRep(Zf

4 ).

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0 4 1,1,1,1 0,0, 1

2 , 1
2 sRep(Zf

4 )
16B

0 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1
2 , 1

2 ,0,0,0,0,0,0, 1
4 , 1

4 , 1
2 , 1

2 , 3
4 , 3

4

16B
1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

32 , 1
32 , 1

8 , 1
8 , 1

8 , 1
8 , 9

32 , 9
32 , 17

32 , 17
32 , 25

32 , 25
32

16B
2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

16 , 1
16 , 1

4 , 1
4 , 1

4 , 1
4 , 5

16 , 5
16 , 9

16 , 9
16 , 13

16 , 13
16 8B

1 � 2B
1

16B
3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 3

32 , 3
32 , 11

32 , 11
32 , 3

8 , 3
8 , 3

8 , 3
8 , 19

32 , 19
32 , 27

32 , 27
32

16B
4 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 3

8 , 3
8 , 1

2 , 1
2 , 1

2 , 1
2 , 5

8 , 5
8 , 7

8 , 7
8 4B

3 � 4B
1

16B
−3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 5

32 , 5
32 , 13

32 , 13
32 , 5

8 , 5
8 , 5

8 , 5
8 , 21

32 , 21
32 , 29

32 , 29
32

16B
−2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 3

16 , 3
16 , 7

16 , 7
16 , 11

16 , 11
16 , 3

4 , 3
4 , 3

4 , 3
4 , 15

16 , 15
16 8B

−1 � 2B
−1

16B
−1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 7

32 , 7
32 , 15

32 , 15
32 , 23

32 , 23
32 , 7

8 , 7
8 , 7

8 , 7
8 , 31

32 , 31
32
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TABLE XVI. The two c = 0 modular extensions of sRep(Zf

8 ) imply that the Z
f

8 fermionic SPT phases are described by Z2. All other
modular extensions only appear for integer c and are all Abelian (two modular extensions for each integer c).

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

80
0 8 1 × 8 0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2

64B
0 64 1 × 64 0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1

8 , 1
8 , 1

8 , 1
8 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 3

8 , 3
8 , 3

8 , 3
8 ,

1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 5
8 , 5

8 , 5
8 , 5

8 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 7
8 , 7

8 , 7
8 , 7

8

64B
0 64 1 × 64 0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0,0,0,0,0,0,0,0,0,0,0, 1

16 , 1
16 , 1

16 , 1
16 , 3

16 , 3
16 , 3

16 , 3
16 , 1

4 , 1
4 , 1

4 , 1
4 , 5

16 , 5
16 , 5

16 , 5
16 ,

7
16 , 7

16 , 7
16 , 7

16 , 1
2 , 1

2 , 1
2 , 1

2 , 9
16 , 9

16 , 9
16 , 9

16 , 11
16 , 11

16 , 11
16 , 11

16 , 3
4 , 3

4 , 3
4 , 3

4 , 13
16 , 13

16 , 13
16 , 13

16 , 15
16 , 15

16 , 15
16 , 15

16

We see that the two 5
ζ 1

2
1 ’s with Z2 × Z2 fusion are really

different UMTC/Rep(Z2). Each 5
ζ 1

2
1 has two modular extensions,

and that is why we have four entries in Table VII.

Again, Table VII is obtained using the ME-equivalence
relation, and is not a table of GQLs. Under the TO-equivalence
relation, the third entry is equivalent to the fourth entry of
Table VII. So the four entries in Table VII actually describe

TABLE XVII. All the 32 modular extensions of sRep(Z2 × Z
f

2 ) with N = 9.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0 4 1,1,1,1 0,0, 1

2 , 1
2 sRep(Z2 × Z

f

2 )

9B
0 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 7
16 , 9

16 , 15
16 ,0 3B

−1/2 � 3B
1/2

9B
0 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 7
16 , 9

16 , 15
16 ,0 3B

−1/2 � 3B
1/2

9B
0 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 5
16 , 11

16 , 13
16 ,0 3B

−3/2 � 3B
3/2

9B
0 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 5
16 , 11

16 , 13
16 ,0 3B

−3/2 � 3B
3/2

9B
1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 1
16 , 9

16 , 9
16 , 1

8 3B
1/2 � 3B

1/2

9B
1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 7
16 , 11

16 , 15
16 , 1

8 3B
−1/2 � 3B

3/2

9B
1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 7
16 , 11

16 , 15
16 , 1

8 3B
−1/2 � 3B

3/2

9B
1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 5

16 , 5
16 , 13

16 , 13
16 , 1

8 3B
−3/2 � 3B

5/2

9B
2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 3
16 , 9

16 , 11
16 , 1

4 3B
3/2 � 3B

1/2

9B
2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 3
16 , 9

16 , 11
16 , 1

4 3B
3/2 � 3B

1/2

9B
2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 5

16 , 7
16 , 13

16 , 15
16 , 1

4 3B
−1/2 � 3B

5/2

9B
2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 5

16 , 7
16 , 13

16 , 15
16 , 1

4 3B
−1/2 � 3B

5/2

9B
3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 5
16 , 9

16 , 13
16 , 3

8 3B
5/2 � 3B

1/2

9B
3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 5
16 , 9

16 , 13
16 , 3

8 3B
5/2 � 3B

1/2

9B
3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 3
16 , 11

16 , 11
16 , 3

8 3B
3/2 � 3B

3/2

9B
3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 7

16 , 7
16 , 15

16 , 15
16 , 3

8 3B
−1/2 � 3B

7/2

9B
4 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 7
16 , 9

16 , 15
16 , 1

2 3B
7/2 � 3B

1/2

9B
4 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 7
16 , 9

16 , 15
16 , 1

2 3B
7/2 � 3B

1/2

9B
4 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 5
16 , 11

16 , 13
16 , 1

2 3B
5/2 � 3B

3/2

9B
4 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 5
16 , 11

16 , 13
16 , 1

2 3B
5/2 � 3B

3/2

9B
−3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 1
16 , 9

16 , 9
16 , 5

8 3B
−7/2 � 3B

1/2

9B
−3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 7
16 , 11

16 , 15
16 , 5

8 3B
7/2 � 3B

3/2

9B
−3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 7
16 , 11

16 , 15
16 , 5

8 3B
7/2 � 3B

3/2

9B
−3 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 5

16 , 5
16 , 13

16 , 13
16 , 5

8 3B
5/2 � 3B

5/2

9B
−2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 3
16 , 9

16 , 11
16 , 3

4 3B
−5/2 � 3B

1/2

9B
−2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 3
16 , 9

16 , 11
16 , 3

4 3B
−5/2 � 3B

1/2

9B
−2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 5

16 , 7
16 , 13

16 , 15
16 , 3

4 3B
7/2 � 3B

5/2

9B
−2 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 5

16 , 7
16 , 13

16 , 15
16 , 3

4 3B
7/2 � 3B

5/2

9B
−1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 5
16 , 9

16 , 13
16 , 7

8 3B
−3/2 � 3B

1/2

9B
−1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 1

16 , 5
16 , 9

16 , 13
16 , 7

8 3B
−3/2 � 3B

1/2

9B
−1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 3

16 , 3
16 , 11

16 , 11
16 , 7

8 3B
−5/2 � 3B

3/2

9B
−1 16 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,2 0,0, 1

2 , 1
2 , 7

16 , 7
16 , 15

16 , 15
16 , 7

8 3B
7/2 � 3B

7/2
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TABLE XVIII. The first 32 modular extensions of sRep(Z2 × Z
f

2 ) with N = 12.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0 4 1,1,1,1 0,0, 1

2 , 1
2 sRep(Z2 × Z

f

2 )
12B

1/2 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
16 , 1

16 , 1
16 , 9

16 4B
0 � 3B

1/2

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 1

16 , 1
16 , 1

16 , 9
16 4B

0 � 3B
1/2

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 1

16 , 1
16 , 7

16 , 15
16 4B

−3 � 3B
7/2

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 1

16 , 1
16 , 7

16 , 15
16 4B

−3 � 3B
7/2

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 1

16 , 1
16 , 5

16 , 13
16 6B

−1/2 � 2B
1

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 1

16 , 1
16 , 5

16 , 13
16 6B

−1/2 � 2B
1

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 1

16 , 1
16 , 3

16 , 11
16 4B

−1 � 3B
3/2

12B
1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 1

16 , 1
16 , 3

16 , 11
16 4B

−1 � 3B
3/2

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 3

16 , 3
16 , 3

16 , 11
16 4B

0 � 3B
3/2

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 3

16 , 3
16 , 3

16 , 11
16 4B

0 � 3B
3/2

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 1

16 , 3
16 , 3

16 , 9
16 4B

1 � 3B
1/2

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 1

16 , 3
16 , 3

16 , 9
16 4B

1 � 3B
1/2

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 3

16 , 3
16 , 7

16 , 15
16 6B

1/2 � 2B
1

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 3

16 , 3
16 , 7

16 , 15
16 6B

1/2 � 2B
1

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 3

16 , 3
16 , 5

16 , 13
16 4B

−1 � 3B
5/2

12B
3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 3

16 , 3
16 , 5

16 , 13
16 4B

−1 � 3B
5/2

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 5

16 , 5
16 , 5

16 , 13
16 4B

0 � 3B
5/2

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 5

16 , 5
16 , 5

16 , 13
16 4B

0 � 3B
5/2

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 3

16 , 5
16 , 5

16 , 11
16 4B

1 � 3B
3/2

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 3

16 , 5
16 , 5

16 , 11
16 4B

1 � 3B
3/2

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 1

16 , 5
16 , 5

16 , 9
16 6B

3/2 � 2B
1

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 1

16 , 5
16 , 5

16 , 9
16 6B

3/2 � 2B
1

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 5

16 , 5
16 , 7

16 , 15
16 4B

−1 � 3B
7/2

12B
5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 5

16 , 5
16 , 7

16 , 15
16 4B

−1 � 3B
7/2

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 7

16 , 7
16 , 7

16 , 15
16 4B

0 � 3B
7/2

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 7

16 , 7
16 , 7

16 , 15
16 4B

0 � 3B
7/2

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 5

16 , 7
16 , 7

16 , 13
16 4B

1 � 3B
5/2

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 5

16 , 7
16 , 7

16 , 13
16 4B

1 � 3B
5/2

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 3

16 , 7
16 , 7

16 , 11
16 6B

5/2 � 2B
1

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 3

16 , 7
16 , 7

16 , 11
16 6B

5/2 � 2B
1

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 1

16 , 7
16 , 7

16 , 9
16 4B

3 � 3B
1/2

12B
7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 1

16 , 7
16 , 7

16 , 9
16 4B

3 � 3B
1/2

three different Z2-SET orders. This has a very interesting
consequence. The Z2-SET state described by the third (or
fourth) entry in Table VII, after stacked with a Z2-SPT
state, still remains in the same phase. This is an example
of the following general statement made previously. The
GQLs with bulk excitations described by C are in one-to-one
correspondence with the quotient Mext(C)/Aut(C) plus a
central charge c. In such an example Aut(C) is nontrivial.

It is worth noting here that for the second 5
ζ 1

2
1 , two modular

extensions 3B
−1/2 � 3B

3/2 and 3B
3/2 � 3B

−1/2 are actually equiv-
alent UMTCs. This is an example that different embedings
leads to different modular extensions. For 3B

−1/2 � 3B
3/2, the

first fermion in 5
ζ 1

2
1 is embedded into 3B

−1/2 and the second
fermion is embedded into 3B

3/2, while for 3B
3/2 � 3B

−1/2, the
first fermion is embedded into 3B

3/2 and the second fermion is
embedded into 3B

−1/2. The equivalence between 3B
−1/2 � 3B

3/2

and 3B
3/2 � 3B

−1/2 that exchanges both fermions and symmetry
twists fails to relate the two embeddings, as they differ by a

nontrivial automorphism of 5
ζ 1

2
1 that exchanges only the two

fermions. This is an example that the Aut(C) action permutes
the modular extensions, as discussed in Sec. IV.

E. Z3, Z5, and S3 SPT orders for bosonic systems

We also find that Rep(Z3) has three modular extensions
(see Table XI), Rep(Z5) has five modular extensions (see
Table XIV), and Rep(S3) has six modular extensions (see
Table XII). They correspond to the three Z3-SPT, the five
Z5-SPT, and the six S3-SPT states respectively. These results
agree with those from group cohomology theory [19].

We note that for Rep(Z2), Rep(Z3), and Rep(S3), their mod-
ular extensions all correspond to distinct UMTCs. However,
for Rep(Z5), its five modular extensions only correspond to
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TABLE XIX. The second 32 modular extensions of sRep(Z2 × Z
f

2 ) with N = 12.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0 4 1,1,1,1 0,0, 1

2 , 1
2 sRep(Z2 × Z

f

2 )
12B

−7/2 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
16 , 9

16 , 9
16 , 9

16 4B
4 � 3B

1/2

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 1

16 , 9
16 , 9

16 , 9
16 4B

4 � 3B
1/2

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 7

16 , 9
16 , 9

16 , 15
16 4B

1 � 3B
7/2

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 7

16 , 9
16 , 9

16 , 15
16 4B

1 � 3B
7/2

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 5

16 , 9
16 , 9

16 , 13
16 6B

7/2 � 2B
1

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 5

16 , 9
16 , 9

16 , 13
16 6B

7/2 � 2B
1

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 3

16 , 9
16 , 9

16 , 11
16 4B

3 � 3B
3/2

12B
−7/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 3

16 , 9
16 , 9

16 , 11
16 4B

3 � 3B
3/2

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 3

16 , 11
16 , 11

16 , 11
16 4B

4 � 3B
3/2

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 3

16 , 11
16 , 11

16 , 11
16 4B

4 � 3B
3/2

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 1

16 , 9
16 , 11

16 , 11
16 4B

−3 � 3B
1/2

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 1

16 , 9
16 , 11

16 , 11
16 4B

−3 � 3B
1/2

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 7

16 , 11
16 , 11

16 , 15
16 6B

−7/2 � 2B
1

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 7

16 , 11
16 , 11

16 , 15
16 6B

−7/2 � 2B
1

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 5

16 , 11
16 , 11

16 , 13
16 4B

3 � 3B
5/2

12B
−5/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 5

16 , 11
16 , 11

16 , 13
16 4B

3 � 3B
5/2

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 5

16 , 13
16 , 13

16 , 13
16 4B

4 � 3B
5/2

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 5

16 , 13
16 , 13

16 , 13
16 4B

4 � 3B
5/2

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 3

16 , 11
16 , 13

16 , 13
16 4B

−3 � 3B
3/2

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 3

16 , 11
16 , 13

16 , 13
16 4B

−3 � 3B
3/2

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 1

16 , 9
16 , 13

16 , 13
16 6B

−5/2 � 2B
1

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 1

16 , 9
16 , 13

16 , 13
16 6B

−5/2 � 2B
1

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 7

16 , 13
16 , 13

16 , 15
16 4B

3 � 3B
7/2

12B
−3/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 7

16 , 13
16 , 13

16 , 15
16 4B

3 � 3B
7/2

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 7

16 , 15
16 , 15

16 , 15
16 4B

4 � 3B
7/2

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 ,0,0, 1

2 , 1
2 , 7

16 , 15
16 , 15

16 , 15
16 4B

4 � 3B
7/2

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 5

16 , 13
16 , 15

16 , 15
16 4B

−3 � 3B
5/2

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 5

8 , 5
8 , 5

16 , 13
16 , 15

16 , 15
16 4B

−3 � 3B
5/2

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 3

16 , 11
16 , 15

16 , 15
16 6B

−3/2 � 2B
1

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 , 3

16 , 11
16 , 15

16 , 15
16 6B

−3/2 � 2B
1

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 1

16 , 9
16 , 15

16 , 15
16 4B

−1 � 3B
1/2

12B
−1/2 16 1,1,1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 7

8 , 7
8 , 1

16 , 9
16 , 15

16 , 15
16 4B

−1 � 3B
1/2

three distinct UMTCs. Rep(Z5) has five modular extensions
because Rep(Z5) can be embedded into the same UMTC
in different ways. The different embeddings correspond to
different modular extensions.

F. Invertible fermionic topological orders

We find that sRep(Zf

2 ) has 16 modular extensions (see
Table XIII) which correspond to invertible fermionic topo-
logical orders in 2+1D. One might thought that the invertible
fermionic topological orders are classified byZ16. However, in
fact, the invertible fermionic topological orders are classified
by Z, obtained by stacking the c = 1/2 p + ip states. The
discrepancy is due to the fact that the modular extensions
cannot see the c = 8E8 states. The 16 modular extensions
exactly correspond to the invertible fermionic topological
orders modulo the E8 states.

We also find that the modular extensions with c = even
have a Z2 × Z2 fusion rule, while the modular extensions with
c = odd have a Z4 fusion rule (indicated by F:Z2 × Z2 or F:Z4

in the comment column of Table).
The Z

f

2 -SPT states for fermions is given by the modular
extensions with zero central charge. We see that there is only
one modular extension with central charge c = 0. Thus there is
no nontrivial 2+1D fermionic SPT states with Z

f

2 symmetry.
In general, the modular extensions of sRep(Gf ) with zero
central charge correspond to the fermionic SPT states in 2+1D
with symmetry Gf .

To calculate the Z2 × Z
f

2 SPT orders for fermionic systems,
we first compute the modular extensions for sRep(Z2 × Z

f

2 ).
We note that sRep(Z2 × Z

f

2 ) = sRep(Zf

2 × Z̃
f

2 ). Thus the
modular extensions for sRep(Z2 × Z

f

2 ) is the modular ex-
tensions of sRep(Zf

2 × Z̃
f

2 ). Some of the modular extensions
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TABLE XX. All the 32 modular extensions of sRep(Z2 × Z
f

2 ) with N = 16.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0 4 1,1,1,1 0,0, 1

2 , 1
2 sRep(Z2 × Z

f

2 )
16B

0 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1
2 , 1

2 ,0,0,0,0,0,0,0,0, 1
2 , 1

2 , 1
2 , 1

2 4B
0 � 4B

0

16B
0 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0,0,0, 1

8 , 1
8 , 3

8 , 3
8 , 5

8 , 5
8 , 7

8 , 7
8 4B

−1 � 4B
1

16B
0 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0,0,0, 1

8 , 1
8 , 3

8 , 3
8 , 5

8 , 5
8 , 7

8 , 7
8 4B

−1 � 4B
1

16B
0 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0,0,0, 1

4 , 1
4 , 1

4 , 1
4 , 3

4 , 3
4 , 3

4 , 3
4 8B

−1 � 2B
1

16B
1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

2 , 1
2 , 5

8 , 5
8 4B

1 � 4B
0

16B
1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

2 , 1
2 , 5

8 , 5
8 4B

1 � 4B
0

16B
1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

8 , 1
8 , 1

4 , 1
4 , 3

8 , 3
8 , 3

4 , 3
4 , 7

8 , 7
8 8B

0 � 2B
1

16B
1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

8 , 1
8 , 1

4 , 1
4 , 3

8 , 3
8 , 3

4 , 3
4 , 7

8 , 7
8 8B

0 � 2B
1

16B
2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

2 , 1
2 , 3

4 , 3
4 8B

1 � 2B
1

16B
2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

2 , 1
2 , 3

4 , 3
4 8B

1 � 2B
1

16B
2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

8 , 1
8 , 1

4 , 1
4 , 1

4 , 1
4 , 5

8 , 5
8 , 5

8 , 5
8 4B

1 � 4B
1

16B
2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , 1
4 , 3

8 , 3
8 , 3

8 , 3
8 , 7

8 , 7
8 , 7

8 , 7
8 4B

−1 � 4B
3

16B
3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 1

2 , 1
2 , 7

8 , 7
8 4B

3 � 4B
0

16B
3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 1

2 , 1
2 , 7

8 , 7
8 4B

3 � 4B
0

16B
3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

4 , 1
4 , 3

8 , 3
8 , 3

8 , 3
8 , 5

8 , 5
8 , 3

4 , 3
4 8B

2 � 2B
1

16B
3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

4 , 1
4 , 3

8 , 3
8 , 3

8 , 3
8 , 5

8 , 5
8 , 3

4 , 3
4 8B

2 � 2B
1

16B
4 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0,0,0, 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 4B

4 � 4B
0

16B
4 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 3

8 , 3
8 , 1

2 , 1
2 , 1

2 , 1
2 , 5

8 , 5
8 , 7

8 , 7
8 4B

3 � 4B
1

16B
4 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 3

8 , 3
8 , 1

2 , 1
2 , 1

2 , 1
2 , 5

8 , 5
8 , 7

8 , 7
8 4B

3 � 4B
1

16B
4 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , 1
4 , 1

2 , 1
2 , 1

2 , 1
2 , 3

4 , 3
4 , 3

4 , 3
4 8B

3 � 2B
1

16B
−3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

8 , 1
8 , 1

2 , 1
2 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 4B

−3 � 4B
0

16B
−3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

8 , 1
8 , 1

2 , 1
2 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 4B

−3 � 4B
0

16B
−3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

8 , 3
8 , 5

8 , 5
8 , 5

8 , 5
8 , 3

4 , 3
4 , 7

8 , 7
8 8B

4 � 2B
1

16B
−3 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

8 , 3
8 , 5

8 , 5
8 , 5

8 , 5
8 , 3

4 , 3
4 , 7

8 , 7
8 8B

4 � 2B
1

16B
−2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

4 , 1
4 , 1

2 , 1
2 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 8B

−3 � 2B
1

16B
−2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 1

4 , 1
4 , 1

2 , 1
2 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 8B

−3 � 2B
1

16B
−2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

8 , 1
8 , 5

8 , 5
8 , 5

8 , 5
8 , 3

4 , 3
4 , 3

4 , 3
4 4B

−3 � 4B
1

16B
−2 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 3

8 , 3
8 , 3

8 , 3
8 , 3

4 , 3
4 , 3

4 , 3
4 , 7

8 , 7
8 , 7

8 , 7
8 4B

3 � 4B
3

16B
−1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 3

8 , 3
8 , 1

2 , 1
2 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 4B

−1 � 4B
0

16B
−1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 ,0,0, 3

8 , 3
8 , 1

2 , 1
2 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 4B

−1 � 4B
0

16B
−1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

4 , 1
4 , 5

8 , 5
8 , 3

4 , 3
4 , 7

8 , 7
8 , 7

8 , 7
8 8B

−2 � 2B
1

16B
−1 16 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

4 , 1
4 , 5

8 , 5
8 , 3

4 , 3
4 , 7

8 , 7
8 , 7

8 , 7
8 8B

−2 � 2B
1

of sRep(Zf

2 × Z̃
f

2 ) are given by the modular extensions of
sRep(Zf

2 ) stacked (under �) with the modular extensions of
sRep(Z̃f

2 ). Some of the modular extensions of sRep(Z2 × Z
f

2 )
are given by the modular extensions for Rep(Z2) stacked
(under �) with the modular extensions of sRep(Zf

2 ).
The above mathematical statements correspond to the fol-

lowing physical picture. Some fermionic GQLs with Z2 × Z
f

2
symmetry can be viewed as bosonic GQLs with Z2 symmetry
stacked with fermionic GQLs with Z

f

2 symmetry. Also some
fermionic GQLs with Z

f

2 × Z̃
f

2 symmetry can be viewed as
fermionic GQLs with Z

f

2 symmetry stacked with fermionic
GQLs with Z̃

f

2 symmetry.
Using Eq. (12), we find that the modular extensions for

Z2 × Z
f

2 symmetry must have ranks 7, 9, 10, 12, and 16.
By direct search for those ranks, we find that the modular
extensions of sRep(Z2 × Z

f

2 ) are given by Tables XVII,

XVIII, XIX, and XX. The N = 9 modular extensions of
sRep(Z2 × Z

f

2 ) in Table XVII are given by the stacking of
the N = 3 modular extensions of sRep(Zf

2 ) and the N =
3 modular extensions of sRep(Z̃f

2 ). The N = 16 modular
extensions of sRep(Z2 × Z

f

2 ) in Table XX are given by the
stacking of the N = 4 modular extensions of sRep(Zf

2 ) and
the N = 4 modular extensions of sRep(Z̃f

2 ). There are also
64 N = 12 modular extensions of sRep(Z2 × Z

f

2 ) given by
the stacking of the N = 4 (N = 3) modular extensions of
sRep(Zf

2 ) and the N = 3 (N = 4) modular extensions of
sRep(Z̃f

2 ).
Many of the modular extensions have nontrivial topo-

logical orders since the central charge c is nonzero. There
are eight modular extensions for each central charge c =
0,1/2,1,3/2, . . . ,15/2, and in total 8 × 16 = 128 modular
extensions. Those eight with c = 0 correspond to the Z2 × Z

f

2
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TABLE XXI. All the modular extensions of sRep(Zf

6 ) = sRep(Z3 × Z
f

2 ).

N |�|
c D2 d1,d2, . . . s1,s2, . . .

60
0 6 1,1,1,1,1,1 0, 1

2 ,0, 1
2 ,0, 1

2 sRep(Zf

6 )

36B
0 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0,0,0,0,0,0,0,0,0,0,0, 1
6 , 1

6 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
2 , 1

2 , 2
3 , 2

3 , 2
3 , 2

3 , 2
3 , 2

3 , 5
6 , 5

6

36B
0 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0,0,0,0,0, 1
18 , 1

18 , 2
9 , 2

9 , 2
9 , 2

9 , 2
9 , 2

9 , 7
18 , 7

18 , 5
9 , 5

9 , 5
9 , 5

9 , 5
9 , 5

9 , 13
18 , 13

18 , 8
9 , 8

9 , 8
9 , 8

9 , 8
9 , 8

9

36B
0 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0,0,0,0,0, 1
9 , 1

9 , 1
9 , 1

9 , 1
9 , 1

9 , 5
18 , 5

18 , 4
9 , 4

9 , 4
9 , 4

9 , 4
9 , 4

9 , 11
18 , 11

18 , 7
9 , 7

9 , 7
9 , 7

9 , 7
9 , 7

9 , 17
18 , 17

18

36B
1 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 1
6 , 1

6 , 1
3 , 1

3 , 11
24 , 11

24 , 11
24 , 11

24 , 1
2 , 1

2 , 2
3 , 2

3 , 19
24 , 19

24 , 19
24 , 19

24 , 5
6 , 5

6

36B
1 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
72 , 1

72 , 1
72 , 1

72 , 1
18 , 1

18 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 2
9 , 2

9 , 25
72 , 25

72 , 25
72 , 25

72 , 7
18 , 7

18 , 5
9 , 5

9 , 49
72 , 49

72 , 49
72 , 49

72 , 13
18 , 13

18 , 8
9 , 8

9

36B
1 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
9 , 1

9 , 1
8 , 1

8 , 1
8 , 1

8 , 1
8 , 1

8 , 17
72 , 17

72 , 17
72 , 17

72 , 5
18 , 5

18 , 4
9 , 4

9 , 41
72 , 41

72 , 41
72 , 41

72 , 11
18 , 11

18 , 7
9 , 7

9 , 65
72 , 65

72 , 65
72 , 65

72 , 17
18 , 17

18

36B
2 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
6 , 1

6 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 1
3 , 1

3 , 1
2 , 1

2 , 7
12 , 7

12 , 7
12 , 7

12 , 2
3 , 2

3 , 5
6 , 5

6 , 11
12 , 11

12 , 11
12 , 11

12

36B
2 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
36 , 1

36 , 1
36 , 1

36 , 1
9 , 1

9 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 5
18 , 5

18 , 13
36 , 13

36 , 13
36 , 13

36 , 4
9 , 4

9 , 11
18 , 11

18 , 25
36 , 25

36 , 25
36 , 25

36 , 7
9 , 7

9 , 17
18 , 17

18

36B
2 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
18 , 1

18 , 5
36 , 5

36 , 5
36 , 5

36 , 2
9 , 2

9 , 1
4 , 1

4 , 1
4 , 1

4 , 1
4 , 1

4 , 7
18 , 7

18 , 17
36 , 17

36 , 17
36 , 17

36 , 5
9 , 5

9 , 13
18 , 13

18 , 29
36 , 29

36 , 29
36 , 29

36 , 8
9 , 8

9

36B
3 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
24 , 1

24 , 1
24 , 1

24 , 1
6 , 1

6 , 1
3 , 1

3 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 1
2 , 1

2 , 2
3 , 2

3 , 17
24 , 17

24 , 17
24 , 17

24 , 5
6 , 5

6

36B
3 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
18 , 1

18 , 2
9 , 2

9 , 19
72 , 19

72 , 19
72 , 19

72 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 7
18 , 7

18 , 5
9 , 5

9 , 43
72 , 43

72 , 43
72 , 43

72 , 13
18 , 13

18 , 8
9 , 8

9 , 67
72 , 67

72 , 67
72 , 67

72

36B
3 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
9 , 1

9 , 11
72 , 11

72 , 11
72 , 11

72 , 5
18 , 5

18 , 3
8 , 3

8 , 3
8 , 3

8 , 3
8 , 3

8 , 4
9 , 4

9 , 35
72 , 35

72 , 35
72 , 35

72 , 11
18 , 11

18 , 7
9 , 7

9 , 59
72 , 59

72 , 59
72 , 59

72 , 17
18 , 17

18

36B
4 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
3 , 1

3 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 2
3 , 2

3 , 5
6 , 5

6 , 5
6 , 5

6 , 5
6 , 5

6

36B
4 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
18 , 1

18 , 1
18 , 1

18 , 1
18 , 1

18 , 2
9 , 2

9 , 7
18 , 7

18 , 7
18 , 7

18 , 7
18 , 7

18 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 5
9 , 5

9 , 13
18 , 13

18 , 13
18 , 13

18 , 13
18 , 13

18 , 8
9 , 8

9

36B
4 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
9 , 1

9 , 5
18 , 5

18 , 5
18 , 5

18 , 5
18 , 5

18 , 4
9 , 4

9 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 11
18 , 11

18 , 11
18 , 11

18 , 11
18 , 11

18 , 7
9 , 7

9 , 17
18 , 17

18 , 17
18 , 17

18 , 17
18 , 17

18

36B
−3 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
6 , 1

6 , 7
24 , 7

24 , 7
24 , 7

24 , 1
3 , 1

3 , 1
2 , 1

2 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 2
3 , 2

3 , 5
6 , 5

6 , 23
24 , 23

24 , 23
24 , 23

24

36B
−3 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
18 , 1

18 , 13
72 , 13

72 , 13
72 , 13

72 , 2
9 , 2

9 , 7
18 , 7

18 , 37
72 , 37

72 , 37
72 , 37

72 , 5
9 , 5

9 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 13
18 , 13

18 , 61
72 , 61

72 , 61
72 , 61

72 , 8
9 , 8

9

36B
−3 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 5
72 , 5

72 , 5
72 , 5

72 , 1
9 , 1

9 , 5
18 , 5

18 , 29
72 , 29

72 , 29
72 , 29

72 , 4
9 , 4

9 , 11
18 , 11

18 , 5
8 , 5

8 , 5
8 , 5

8 , 5
8 , 5

8 , 53
72 , 53

72 , 53
72 , 53

72 , 7
9 , 7

9 , 17
18 , 17

18

36B
−2 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
12 , 1

12 , 1
12 , 1

12 , 1
6 , 1

6 , 1
3 , 1

3 , 5
12 , 5

12 , 5
12 , 5

12 , 1
2 , 1

2 , 2
3 , 2

3 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 5
6 , 5

6

36B
−2 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
18 , 1

18 , 2
9 , 2

9 , 11
36 , 11

36 , 11
36 , 11

36 , 7
18 , 7

18 , 5
9 , 5

9 , 23
36 , 23

36 , 23
36 , 23

36 , 13
18 , 13

18 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 8
9 , 8

9 , 35
36 , 35

36 , 35
36 , 35

36

36B
−2 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
9 , 1

9 , 7
36 , 7

36 , 7
36 , 7

36 , 5
18 , 5

18 , 4
9 , 4

9 , 19
36 , 19

36 , 19
36 , 19

36 , 11
18 , 11

18 , 3
4 , 3

4 , 3
4 , 3

4 , 3
4 , 3

4 , 7
9 , 7

9 , 31
36 , 31

36 , 31
36 , 31

36 , 17
18 , 17

18

36B
−1 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 ,0,0, 1
6 , 1

6 , 5
24 , 5

24 , 5
24 , 5

24 , 1
3 , 1

3 , 1
2 , 1

2 , 13
24 , 13

24 , 13
24 , 13

24 , 2
3 , 2

3 , 5
6 , 5

6 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8

36B
−1 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
18 , 1

18 , 7
72 , 7

72 , 7
72 , 7

72 , 2
9 , 2

9 , 7
18 , 7

18 , 31
72 , 31

72 , 31
72 , 31

72 , 5
9 , 5

9 , 13
18 , 13

18 , 55
72 , 55

72 , 55
72 , 55

72 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8 , 8
9 , 8

9

36B
−1 36 1 × 36 0, 1

2 ,0, 1
2 ,0, 1

2 , 1
9 , 1

9 , 5
18 , 5

18 , 23
72 , 23

72 , 23
72 , 23

72 , 4
9 , 4

9 , 11
18 , 11

18 , 47
72 , 47

72 , 47
72 , 47

72 , 7
9 , 7

9 , 7
8 , 7

8 , 7
8 , 7

8 , 7
8 , 7

8 , 17
18 , 17

18 , 71
72 , 71

72 , 71
72 , 71

72

27B
1/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 1

16 , 1
16 , 1

16 , 1
16 , 1

16 , 19
48 , 19

48 , 35
48 , 35

48

27B
1/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 1

16 , 1
16 , 1

16 , 41
144 , 41

144 , 89
144 , 89

144 , 137
144 , 137

144

27B
1/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 1

16 , 1
16 , 1

16 , 25
144 , 25

144 , 73
144 , 73

144 , 121
144 , 121

144

27B
3/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 3

16 , 3
16 , 3

16 , 3
16 , 3

16 , 25
48 , 25

48 , 41
48 , 41

48

27B
3/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 11

144 , 11
144 , 3

16 , 3
16 , 3

16 , 59
144 , 59

144 , 107
144 , 107

144

27B
3/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 3

16 , 3
16 , 3

16 , 43
144 , 43

144 , 91
144 , 91

144 , 139
144 , 139

144

27B
5/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 5

16 , 5
16 , 5

16 , 5
16 , 5

16 , 31
48 , 31

48 , 47
48 , 47

48

27B
5/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 29

144 , 29
144 , 5

16 , 5
16 , 5

16 , 77
144 , 77

144 , 125
144 , 125

144

27B
5/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 13

144 , 13
144 , 5

16 , 5
16 , 5

16 , 61
144 , 61

144 , 109
144 , 109

144

27B
7/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 5

48 , 5
48 , 7

16 , 7
16 , 7

16 , 7
16 , 7

16 , 37
48 , 37

48

27B
7/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 47

144 , 47
144 , 7

16 , 7
16 , 7

16 , 95
144 , 95

144 , 143
144 , 143

144

27B
7/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 31

144 , 31
144 , 7

16 , 7
16 , 7

16 , 79
144 , 79

144 , 127
144 , 127

144

27B
−7/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 11

48 , 11
48 , 9

16 , 9
16 , 9

16 , 9
16 , 9

16 , 43
48 , 43

48

27B
−7/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 17

144 , 17
144 , 65

144 , 65
144 , 9

16 , 9
16 , 9

16 , 113
144 , 113

144

27B
−7/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 1

144 , 1
144 , 49

144 , 49
144 , 9

16 , 9
16 , 9

16 , 97
144 , 97

144

27B
−5/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 1

48 , 1
48 , 17

48 , 17
48 , 11

16 , 11
16 , 11

16 , 11
16 , 11

16

27B
−5/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 35

144 , 35
144 , 83

144 , 83
144 , 11

16 , 11
16 , 11

16 , 131
144 , 131

144

27B
−5/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 19

144 , 19
144 , 67

144 , 67
144 , 11

16 , 11
16 , 11

16 , 115
144 , 115

144

27B
−3/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 7

48 , 7
48 , 23

48 , 23
48 , 13

16 , 13
16 , 13

16 , 13
16 , 13

16

27B
−3/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 5

144 , 5
144 , 53

144 , 53
144 , 101

144 , 101
144 , 13

16 , 13
16 , 13

16

27B
−3/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 37

144 , 37
144 , 85

144 , 85
144 , 13

16 , 13
16 , 13

16 , 133
144 , 133

144

27B
−1/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 ,0,0, 1

6 , 1
6 , 1

3 , 1
3 , 1

2 , 1
2 , 2

3 , 2
3 , 5

6 , 5
6 , 13

48 , 13
48 , 29

48 , 29
48 , 15

16 , 15
16 , 15

16 , 15
16 , 15

16

27B
−1/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

18 , 1
18 , 2

9 , 2
9 , 7

18 , 7
18 , 5

9 , 5
9 , 13

18 , 13
18 , 8

9 , 8
9 , 23

144 , 23
144 , 71

144 , 71
144 , 119

144 , 119
144 , 15

16 , 15
16 , 15

16

27B
−1/2 36 1 × 18,ζ 1

2 × 9 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

9 , 1
9 , 5

18 , 5
18 , 4

9 , 4
9 , 11

18 , 11
18 , 7

9 , 7
9 , 17

18 , 17
18 , 7

144 , 7
144 , 55

144 , 55
144 , 103

144 , 103
144 , 15

16 , 15
16 , 15

16
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fermionic SPT states. Those are all the Z2 × Z
f

2 fermionic SPT
states [40,41].

G. Z f
2n SPT orders for fermionic systems

We also find the modular extensions for sRep(Zf

4 ),
sRep(Zf

6 ), and sRep(Zf

8 ) (see Tables XV, XXI, and XVI).
Again, many of them has nontrivial topological orders since
the central charge c is nonzero.

For Z
f

4 group, only one of them have c = 0. So there is
no nontrivial Z

f

4 fermionic SPT states. For Z
f

6 group, only
three of them have c = 0. So, the Z

f

6 fermionic SPT states are
described by Z3. For Z

f

8 group, only two of them have c = 0.
So, the Z

f

8 fermionic SPT states are described by Z2. Those
results are consistent with the results in Refs. [42]. However,
the calculation present here is more complete.

IX. SUMMARY

GQLs contain both topologically ordered states and SPT
states. In this paper, we present a theory that classify GQLs in
2+1D for bosonic/fermionic systems with symmetry.

We propose that the possible non-Abelian statistics (or
sets of bulk quasiparticles excitations) in 2+1D GQLs are
classified by UMTC/E , where E = Rep(G) or sRep(Gf )
describing the symmetry in bosonic or fermionic systems.
However, UMTC/E ’s fail to classify GQLs, since different
GQL phases can have identical non-Abelian statistics, which
correspond to identical UMTC/E .

To fix this problem, we introduce the notion of modular
extensions for a UMTC/E . We propose to use the triple
(C,M,c) to classify 2+1D GQLs with symmetry G (for boson)
or Gf (for fermion). Here, C is a UMTC/E with E = Rep(G) or
sRep(Gf ), M is a modular extension of C and c is the chiral
central charge of the edge state. We show that the modular
extensions of a UMTC/E has a one-to-one correspondence with
the modular extensions of E . So the number of the modular
extensions is solely determined by the symmetry E . Also, the
c = 0 modular extensions of a E (E = Rep(G) or sRep(Gf ))
classify the 2+1D SPT states for bosons or fermions with
symmetry G or Gf .

Although the above result has a nice mathematical structure,
it is hard to implement numerically to produce a table of GQLs.
To fix this problem, we propose a different description of 2+1D
GQLs. We propose to use the data (Ñab

c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c),

up to some permutations of the indices, to describe 2+1D
GQLs with symmetry G (for boson) or Gf (for fermion), with
a restriction that the symmetry group G can be fully charac-
terized by the fusion ring of its irreducible representations (for
example, for simple groups or Abelian groups). Here, the data
(Ñab

c ,s̃a) describe the symmetry and the data (Nij

k ,si) describe
fusion and the spins of the bulk particles in the GQL. The
modular extensions are obtained by “gauging” the symmetry
G or Gf . The data (N IJ

K ,SI ) describe fusion and the spins of
the bulk particles in the “gauged” theory. Last, c is the chiral
central charge of the edge state.

In this paper (see Appendix C) and in Ref. [11], we
list the necessary and the sufficient conditions on the data

(Ñab
c ,s̃a; Nij

k ,si ;N IJ
K ,SI ; c), which allow us to obtain a list

of GQLs. However, in this paper, we did not give the list of
GQLs directly. We first give a list of (Ñab

c ,s̃a; Nij

k ,si), which is
an imperfect list of UMTC/E ’s. We then compute the modular
extensions (N IJ

K ,SI ; c) for each entry (Ñab
c ,s̃a; Nij

k ,si), which
allows us to obtain a perfect list of GQLs (for certain symmetry
groups). As a special case, we calculated the bosonic/fermionic
SPT states for some groups in 2+1D.

In Ref. [30], we will give a more mathematical description
of our theory. Certainly we hope to generalize the above frame-
work to higher dimensions. We also hope to develop more
efficient numerical codes to obtain bigger tables of GQLs.
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APPENDIX A: TABLES FOR THE SOLUTIONS
OF (Ñ ab

c ,s̃a; N i j
k ,si ): IMPERFECT TABLES FOR UMTC/E

In this Appendix, we list UMTC/E ’s for various symmetry
E , which can also be viewed as the list of 2+1D SET orders
(up to invertible ones) with symmetry E . Those lists are created
using a naive calculation, by checking the necessary conditions
on the data (Ñab

c ,s̃a; Nij

k ,si) (for details, see Appendix C). So
those lists should contain all UMTC/E ’s (i.e., all SET orders).
However, since the conditions are only known to be necessary,
the lists may contain fake entries that do not correspond to any
UMTC/E (or any SET order). In other words, some entries in
the lists have no modular extensions and those entries do not
correspond any real 2+1D SET order.

The entries with known decomposition NB
c � Rep(G) or

NB
c � sRep(Gf ), or with given K matrix in the comment

column all correspond to existing 2+1D SET orders. (The
topological orders described by NB

c are given by the tables in
Ref. [11].) Other entries may or may not correspond to existing
2+1D SET orders, which need to be determined by checking
the existence of modular extensions.

Even for the entries that have modular extensions, some
times they may correspond to more than one UMTC/E ’s. This
is because (Ñab

c ,s̃a; Nij

k ,si) cannot distinguish all different
UMTC/E ’s.

1. Z2-SET orders

Tables XXII, XXIII, and XXIV list the Z2-SET orders (up
to invertible ones) for 2+1D bosonic systems. For bosonic
systems the central charge is determined up to eight by the bulk

excitations. The 3
ζ 1

2
2 states and the two 4

ζ 1
2

1 states in Table XXII
are discussed in the main text.
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TABLE XXII. Z2-SET orders (or UMTC/Rep(Z2)) for bosonic systems labeled in terms of sets of topological excitations. The list contains
all topological orders with N = 3,4 and D2 � 100. All the topologically orders in this list are anomaly free (i.e., have modular extensions),
and are realizable by 2+1D bosonic systems. We use N |�|

c to label UMTC/E ’s, where � = D−1
∑

i e2π isi d2
i = |�|e2π ic/8 and D2 = ∑

i d
2
i .

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

2
ζ 1

2
0 2 1,1 0,0 E = Rep(Z2)

3
ζ 1

2
2 6 1,1,2 0,0, 1

3 SB:K =
(

2 −1
−1 2

)
3

ζ 1
2

−2 6 1,1,2 0,0, 2
3 SB:K =

(−2 1
1 −2

)
4

ζ 1
2

1 4 1,1,1,1 0,0, 1
4 , 1

4 2B
1 � Rep(Z2)

4
ζ 1

2
1 4 1,1,1,1 0,0, 1

4 , 1
4 2B

1 �t Rep(Z2)

4
ζ 1

2
−1 4 1,1,1,1 0,0, 3

4 , 3
4 2B

−1 � Rep(Z2)

4
ζ 1

2
−1 4 1,1,1,1 0,0, 3

4 , 3
4 2B

−1 �t Rep(Z2)

4
ζ 1

2
14/5 7.2360 1,1,ζ 1

3 ,ζ 1
3 0,0, 2

5 , 2
5 2B

14/5 � Rep(Z2)

4
ζ 1

2
−14/5 7.2360 1,1,ζ 1

3 ,ζ 1
3 0,0, 3

5 , 3
5 2B

−14/5 � Rep(Z2)

4
ζ 1

2
0 10 1,1,2,2 0,0, 1

5 , 4
5 SB:K =

(
2 −3

−3 2

)

4
ζ 1

2
4 10 1,1,2,2 0,0, 2

5 , 3
5 SB:K =

⎛
⎝2 1 0 0

1 2 0 1
0 0 2 1
0 1 1 2

⎞
⎠

TABLE XXIII. Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 5 and D2 � 100.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

2
ζ 1

2
0 2 1,1 0,0 E = Rep(Z2)

5
ζ 1

2
0 8 1,1,1,1,2 0,0, 1

2 , 1
2 ,0 SB:4B

0 F:Z2 × Z2

5
ζ 1

2
0 8 1,1,1,1,2 0,0, 1

2 , 1
2 ,0 SB:4B

0 F:Z4 NR

5
ζ 1

2
1 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 1

8 SB:4B
1 F:Z2 × Z2

5
ζ 1

2
1 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 1

8 SB:4B
1 F:Z4 NR

5
ζ 1

2
2 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 1

4 SB:4B
2 F:Z2 × Z2

5
ζ 1

2
2 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 1

4 SB:4B
2 F:Z4 NR

5
ζ 1

2
3 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 3

8 SB:4B
3 F:Z2 × Z2

5
ζ 1

2
3 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 3

8 SB:4B
3 F:Z4 NR

5
ζ 1

2
4 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 1

2 SB:4B
4

⎛
⎝2 1 1 1

1 2 0 0
1 0 2 0
1 0 0 2

⎞
⎠

5
ζ 1

2
4 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 1

2 SB:4B
4 F:Z4 NR

5
ζ 1

2
−3 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 5

8 SB:4B
−3 F:Z2 × Z2

5
ζ 1

2
−3 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 5

8 SB:4B
−3 F:Z4 NR

5
ζ 1

2
−2 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 3

4 SB:4B
−2 F:Z2 × Z2

5
ζ 1

2
−2 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 3

4 SB:4B
−2 F:Z4 NR

5
ζ 1

2
−1 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 7

8 SB:4B
−1 F:Z2 × Z2

5
ζ 1

2
−1 8 1,1,1,1,2 0,0, 1

2 , 1
2 , 7

8 SB:4B
−1 F:Z4 NR

5
ζ 1

2
2 14 1,1,2,2,2 0,0, 1

7 , 2
7 , 4

7 SB:7B
2

5
ζ 1

2
−2 14 1,1,2,2,2 0,0, 3

7 , 5
7 , 6

7 SB:7B
−2

5
ζ 1

2
12/5 26.180 1,1,ζ 2

8 ,ζ 2
8 ,ζ 4

8 0,0, 1
5 , 1

5 , 3
5 SB:4B

12/5

5
ζ 1

2
−12/5 26.180 1,1,ζ 2

8 ,ζ 2
8 ,ζ 4

8 0,0, 4
5 , 4

5 , 2
5 SB:4B

−12/5
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TABLE XXIV. Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 6 D2 � 50.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

2
ζ 1

2
0 2 1,1 0,0 E = Rep(Z2)

6
ζ 1

2
2 6 1,1,1,1,1,1 0,0, 1

3 , 1
3 , 1

3 , 1
3 3B

2 � Rep(Z2)

6
ζ 1

2
−2 6 1,1,1,1,1,1 0,0, 2

3 , 2
3 , 2

3 , 2
3 3B

−2 � Rep(Z2)

6
ζ 1

2
1/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

16 , 1
16 3B

1/2 � Rep(Z2)

6
ζ 1

2
1/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 1

16 , 1
16 SB:3B

1/2

6
ζ 1

2
3/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

16 , 3
16 3B

3/2 � Rep(Z2)

6
ζ 1

2
3/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 3

16 , 3
16 SB:3B

3/2

6
ζ 1

2
5/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 5

16 , 5
16 3B

5/2 � Rep(Z2)

6
ζ 1

2
5/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 5

16 , 5
16 SB:3B

5/2

6
ζ 1

2
7/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 7

16 , 7
16 3B

7/2 � Rep(Z2)

6
ζ 1

2
7/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 7

16 , 7
16 SB:3B

7/2

6
ζ 1

2
−7/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 9

16 , 9
16 3B

−7/2 � Rep(Z2)

6
ζ 1

2
−7/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 9

16 , 9
16 SB:3B

−7/2

6
ζ 1

2
−5/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 11

16 , 11
16 3B

−5/2 � Rep(Z2)

6
ζ 1

2
−5/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 11

16 , 11
16 SB:3B

−5/2

6
ζ 1

2
−3/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 13

16 , 13
16 3B

−3/2 � Rep(Z2)

6
ζ 1

2
−3/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 13

16 , 13
16 SB:3B

−3/2

6
ζ 1

2
−1/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 15

16 , 15
16 3B

−1/2 � Rep(Z2)

6
ζ 1

2
−1/2 8 1,1,1,1,ζ 1

2 ,ζ 1
2 0,0, 1

2 , 1
2 , 15

16 , 15
16 SB:3B

−1/2

6
ζ 1

2
1 12 1,1,1,1,2,2 0,0, 3

4 , 3
4 , 1

12 , 1
3 SB:6B

1

6
ζ 1

2
3 12 1,1,1,1,2,2 0,0, 1

4 , 1
4 , 1

3 , 7
12 SB:6B

3

6
ζ 1

2
−3 12 1,1,1,1,2,2 0,0, 3

4 , 3
4 , 5

12 , 2
3 SB:6B

−3

6
ζ 1

2
−1 12 1,1,1,1,2,2 0,0, 1

4 , 1
4 , 2

3 , 11
12 SB:6B

−1

6
ζ 1

2
0 18 1,1,2,2,2,2 0,0,0,0, 1

3 , 2
3 SB:9B

0

6
ζ 1

2
0 18 1,1,2,2,2,2 0,0,0, 1

9 , 4
9 , 7

9 SB:9B
0

6
ζ 1

2
0 18 1,1,2,2,2,2 0,0,0, 2

9 , 5
9 , 8

9 SB:9B
0

6
ζ 1

2
4 18 1,1,2,2,2,2 0,0, 1

3 , 1
3 , 2

3 , 2
3 SB:9B

4

6
ζ 1

2
8/7 18.591 1,1,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 0,0, 6

7 , 6
7 , 2

7 , 2
7 3B

8/7 � Rep(Z2)

6
ζ 1

2
−8/7 18.591 1,1,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 0,0, 1

7 , 1
7 , 5

7 , 5
7 3B

−8/7 � Rep(Z2)

6
ζ 1

2
4/5 21.708 1,1,ζ 1

3 ,ζ 1
3 ,2,ζ 4

8 0,0, 2
5 , 2

5 , 2
3 , 1

15 2B
14/5 � 3

ζ 1
2

−2

6
ζ 1

2
16/5 21.708 1,1,ζ 1

3 ,ζ 1
3 ,2,ζ 4

8 0,0, 3
5 , 3

5 , 2
3 , 4

15 2B
−14/5 � 3

ζ 1
2

−2

6
ζ 1

2
−16/5 21.708 1,1,ζ 1

3 ,ζ 1
3 ,2,ζ 4

8 0,0, 2
5 , 2

5 , 1
3 , 11

15 2B
14/5 � 3

ζ 1
2

2

6
ζ 1

2
−4/5 21.708 1,1,ζ 1

3 ,ζ 1
3 ,2,ζ 4

8 0,0, 3
5 , 3

5 , 1
3 , 14

15 2B
−14/5 � 3

ζ 1
2

2

All the Z2-SET orders in Table XXII are realizable. Some
of the them are realized as NB

c � Rep(Z2), as indicated in
the comment column. Here, NB

c describes a neutral bosonic
topological order (which was denoted as NB

c in Ref. [11]) with
rank N and central charge c, which does not transform under
the Z2 symmetry. For example, 2B

1 is the ν = 1/2 bosonic
Laughlin state, and 2B

14/5 is the bosonic Fibonacci state [11].

Rep(Z2) describes a product state with Z2 symmetry of Z2

charged bosons. NB
c � Rep(Z2) is simply the stacking of the

neutral bosonic topological order NB
c with the Z2 symmetric

product state.
We also introduced NB

c �t Rep(Z2) which describe a state
similar to NB

c � Rep(Z2), except here the bosons that form

the topological order NB
c also carries a Z2 charge. The 3

ζ 1
2

2
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TABLE XXV. Z3-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological orders
with N = 4,5,6 D2 � 100, N = 7 D2 � 60, N = 8 D2 � 40, and N = 9 D2 � 28.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

3
ζ 1

4
0 3 1,1,1 0,0,0 E = Rep(Z3)

4
ζ 1

4
4 12 1,1,1,3 0,0,0, 1

2 SB:K =
⎛
⎝2 1 1 1

1 2 0 0
1 0 2 0
1 0 0 2

⎞
⎠

6
ζ 1

4
1 6 1,1,1,1,1,1 0,0,0, 1

4 , 1
4 , 1

4 2B
1 � Rep(Z3)

6
ζ 1

4
−1 6 1,1,1,1,1,1 0,0,0, 3

4 , 3
4 , 3

4 2B
−1 � Rep(Z3)

6
ζ 1

4
14/5 10.854 1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 0,0,0, 2
5 , 2

5 , 2
5 2B

14/5 � Rep(Z3)

6
ζ 1

4
−14/5 10.854 1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 0,0,0, 3
5 , 3

5 , 3
5 2B

−14/5 � Rep(Z3)

8
ζ 1

4
3 24 1,1,1,1,1,1,3,3 0,0,0, 3

4 , 3
4 , 3

4 , 1
4 , 1

2 2B
−1 � 4

ζ 1
4

4

8
ζ 1

4
−3 24 1,1,1,1,1,1,3,3 0,0,0, 1

4 , 1
4 , 1

4 , 1
2 , 3

4 2B
1 � 4

ζ 1
4

4

8
ζ 1

4
6/5 43.416 1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,3, 3+√
45

2 0,0,0, 3
5 , 3

5 , 3
5 , 1

2 , 1
10 2B

−14/5 � 4
ζ 1

4
4

8
ζ 1

4
−6/5 43.416 1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,3, 3+√
45

2 0,0,0, 2
5 , 2

5 , 2
5 , 1

2 , 9
10 2B

14/5 � 4
ζ 1

4
4

9
ζ 1

4
2 9 1,1,1,1,1,1,1,1,1 0,0,0, 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3 SB:3B

2 F:Z9

9
ζ 1

4
2 9 1,1,1,1,1,1,1,1,1 0,0,0, 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3 3B

2 � Rep(Z3) F:Z3 × Z3

9
ζ 1

4
−2 9 1,1,1,1,1,1,1,1,1 0,0,0, 2

3 , 2
3 , 2

3 , 2
3 , 2

3 , 2
3 SB:3B

−2 F:Z9

9
ζ 1

4
−2 9 1,1,1,1,1,1,1,1,1 0,0,0, 2

3 , 2
3 , 2

3 , 2
3 , 2

3 , 2
3 3B

−2 � Rep(Z3) F:Z3 × Z3

9
ζ 1

4
1/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 1

16 , 1
16 , 1

16 3B
1/2 � Rep(Z3)

9
ζ 1

4
3/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 3

16 , 3
16 , 3

16 3B
3/2 � Rep(Z3)

9
ζ 1

4
5/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 5

16 , 5
16 , 5

16 3B
5/2 � Rep(Z3)

9
ζ 1

4
7/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 7

16 , 7
16 , 7

16 3B
7/2 � Rep(Z3)

9
ζ 1

4
−7/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 9

16 , 9
16 , 9

16 3B
−7/2 � Rep(Z3)

9
ζ 1

4
−5/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 11

16 , 11
16 , 11

16 3B
−5/2 � Rep(Z3)

9
ζ 1

4
−3/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 13

16 , 13
16 , 13

16 3B
−3/2 � Rep(Z3)

9
ζ 1

4
−1/2 12 1,1,1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0,0,0, 1
2 , 1

2 , 1
2 , 15

16 , 15
16 , 15

16 3B
−1/2 � Rep(Z3)

9
ζ 1

4
8/7 27.887 1,1,1,ζ 1

5 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 2
5 0,0,0, 6

7 , 6
7 , 6

7 , 2
7 , 2

7 , 2
7 3B

8/7 � Rep(Z3)

9
ζ 1

4
−8/7 27.887 1,1,1,ζ 1

5 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 2
5 0,0,0, 1

7 , 1
7 , 1

7 , 5
7 , 5

7 , 5
7 3B

−8/7 � Rep(Z3)

state can be realized by double-layer FQH state with K-matrix
( 2 −1
−1 2 ), which is discussed in the main text.

Since we did not use the condition of the existence of
modular extensions when we calculate the tables, some the
entries in the tables may not by realizable by any 2+1D bosonic
systems. We use NR in the comment column to indicate such
entries (see Table XXIII).

2. Z3-SET orders

Table XXV lists the Z3-SET orders (up to invertible ones)
for 2+1D bosonic systems.

The Z3-SET state 4
ζ 1

4
4 in the table becomes the K =(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

)
4-layer FQH state after we break the Z3-

symmetry. We can add the Z3-symmetry back to ob-
tain the Z3-SET state. The Z3-symmetry is the cyclic

permutation of the second, the third, and the fourth
layers.

Without the symmetry, the K =
(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

)
state has

four types of particles, a trivial boson and three nontrivial
fermions. With the symmetry, the three fermions become
degenerate and is combined into the d = 3 particle (the fourth

particle) for the 4
ζ 1

4
4 state. The first three particles for the 4

ζ 1
4

4
state all come from the trivial boson. They carry different Z3

charges: 0,1,2, in the presence of the symmetry.

3. S3-SET orders

Tables XXVII and XXVIII list the S3-SET orders (up to
invertible ones) for 2+1D bosonic systems. Table XXVII has

three 5
√

6
4 entries that have identical (di,si). However, the

three entries have different fusion rules (see Table XXVI).
If we break the symmetry, the three entries all reduce to the
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TABLE XXVI. The fusion rules for the three 5
√

6
4 entries in Table XXVII. The three entries have identical (di,si) but different fusions rules.

1, a, b are the three irreducible representations of S3 with dimension 1, 1, 2.

si 0 0 0 1
2

1
2

di 1 1 2 3 3

5
√

6
4 1 a b σ τ

1 1 a b σ τ

a a 1 b τ σ

b b b 1 ⊕ a ⊕ b σ ⊕ τ σ ⊕ τ

σ σ τ σ ⊕ τ 1 ⊕ b ⊕ 2σ a ⊕ b ⊕ 2τ

τ τ σ σ ⊕ τ a ⊕ b ⊕ 2τ 1 ⊕ b ⊕ 2σ

si 0 0 0 1
2

1
2

di 1 1 2 3 3

5
√

6
4 1 a b σ τ

1 1 a b σ τ

a a 1 b τ σ

b b b 1 ⊕ a ⊕ b σ ⊕ τ σ ⊕ τ

σ σ τ σ ⊕ τ 1 ⊕ b ⊕ σ ⊕ τ a ⊕ b ⊕ σ ⊕ τ

τ τ σ σ ⊕ τ a ⊕ b ⊕ σ ⊕ τ 1 ⊕ b ⊕ σ ⊕ τ

si 0 0 0 1
2

1
2

di 1 1 2 3 3

5
√

6
4 1 a b σ τ

1 1 a b σ τ

a a 1 b τ σ

b b b 1 ⊕ a ⊕ b σ ⊕ τ σ ⊕ τ

σ σ τ σ ⊕ τ a ⊕ b ⊕ σ ⊕ τ 1 ⊕ b ⊕ σ ⊕ τ

τ τ σ σ ⊕ τ 1 ⊕ b ⊕ σ ⊕ τ a ⊕ b ⊕ σ ⊕ τ

K =
(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

)
four-layer state. So we expect the S3

symmetry is the permutation symmetry of the second, the
third, and the fourth layers.

The second 5
√

6
4 entry can be realized by the K =(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

)
four-layer state. The two d = 3 fermions

are the direct sum of the three degenerate fermions in

TABLE XXVII. S3-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 4,5,6 D2 � 100, N = 7 D2 � 60, and N = 8 D2 � 40. (In fact, we fail to find any bosonic S3-SET orders with N = 4,7,8.)

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

3
√

6
0 6 1,1,2 0,0,0 E = Rep(S3)

5
√

6
4 24 1,1,2,3,3 0,0,0, 1

2 , 1
2 SB:4B

4

5
√

6
4 24 1,1,2,3,3 0,0,0, 1

2 , 1
2 SB:4B

4

⎛
⎝2 1 1 1

1 2 0 0
1 0 2 0
1 0 0 2

⎞
⎠

5
√

6
4 24 1,1,2,3,3 0,0,0, 1

2 , 1
2 SB:4B

4

6
√

6
1 12 1,1,2,1,1,2 0,0,0, 1

4 , 1
4 , 1

4 2B
1 � Rep(S3)

6
√

6
1 12 1,1,2,1,1,2 0,0,0, 1

4 , 1
4 , 1

4 SB:2B
1

6
√

6
−1 12 1,1,2,1,1,2 0,0,0, 3

4 , 3
4 , 3

4 2B
−1 � Rep(S3)

6
√

6
−1 12 1,1,2,1,1,2 0,0,0, 3

4 , 3
4 , 3

4 SB:2B
−1

6
√

6
2 18 1,1,2,2,2,2 0,0,0, 1

3 , 1
3 , 1

3 SB:3B
2

6
√

6
2 18 1,1,2,2,2,2 0,0,0, 1

3 , 1
3 , 1

3 SB:3B
2

6
√

6
−2 18 1,1,2,2,2,2 0,0,0, 2

3 , 2
3 , 2

3 SB:3B
−2

6
√

6
−2 18 1,1,2,2,2,2 0,0,0, 2

3 , 2
3 , 2

3 SB:3B
−2

6
√

6
14/5 21.708 1,1,2,ζ 1

3 ,ζ 1
3 ,ζ 4

8 0,0,0, 2
5 , 2

5 , 2
5 2B

14/5 � Rep(S3)

6
√

6
−14/5 21.708 1,1,2,ζ 1

3 ,ζ 1
3 ,ζ 4

8 0,0,0, 3
5 , 3

5 , 3
5 2B

−14/5 � Rep(S3)
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TABLE XXVIII. S3-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 9 D2 � 30.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

3
√

6
0 6 1,1,2 0,0,0 E = Rep(S3)

9
√

6
2 18 1,1,2,1,1,1,1,2,2 0,0,0, 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 1
3 3B

2 � Rep(S3)

9
√

6
−2 18 1,1,2,1,1,1,1,2,2 0,0,0, 2

3 , 2
3 , 2

3 , 2
3 , 2

3 , 2
3 3B

−2 � Rep(S3)

9
√

6
0 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 ,0,0,0, 1

2 SB:4B
0

9
√

6
0 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 ,0,0,0, 1

2 SB:4B
0

9
√

6
1 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

8 , 1
2 SB:4B

1

9
√

6
1 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

8 , 1
8 , 1

8 , 1
2 SB:4B

1

9
√

6
2 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , 1
2 SB:4B

2

9
√

6
2 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , 1
2 SB:4B

2

9
√

6
3 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 3

8 , 3
8 , 3

8 , 1
2 SB:4B

3

9
√

6
3 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 3

8 , 3
8 , 3

8 , 1
2 SB:4B

3

9
√

6
4 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 SB:4B

4

9
√

6
4 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 SB:4B

4

9
√

6
−3 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 5
8 , 5

8 , 5
8 SB:4B

−3

9
√

6
−3 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 5
8 , 5

8 , 5
8 SB:4B

−3

9
√

6
−2 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 SB:4B

−2

9
√

6
−2 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 3
4 , 3

4 , 3
4 SB:4B

−2

9
√

6
−1 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 7
8 , 7

8 , 7
8 SB:4B

−1

9
√

6
−1 24 1,1,2,1,1,2,2,2,2 0,0,0, 1

2 , 1
2 , 1

2 , 7
8 , 7

8 , 7
8 SB:4B

−1

9
√

6
5/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 5

16 , 5
16 , 1

2 , 5
16 3B

5/2 � Rep(S3)

9
√

6
5/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 5

16 , 5
16 , 1

2 , 5
16 SB:3B

5/2

9
√

6
1/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 1

16 , 1
16 , 1

2 , 1
16 3B

1/2 � Rep(S3)

9
√

6
1/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 1

16 , 1
16 , 1

2 , 1
16 SB:3B

1/2

9
√

6
3/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 3

16 , 3
16 , 1

2 , 3
16 3B

3/2 � Rep(S3)

9
√

6
3/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 3

16 , 3
16 , 1

2 , 3
16 SB:3B

3/2

9
√

6
7/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 7

16 , 7
16 , 1

2 , 7
16 3B

7/2 � Rep(S3)

9
√

6
7/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 7

16 , 7
16 , 1

2 , 7
16 SB:3B

7/2

9
√

6
−7/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 9

16 , 9
16 , 1

2 , 9
16 3B

−7/2 � Rep(S3)

9
√

6
−7/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 9

16 , 9
16 , 1

2 , 9
16 SB:3B

−7/2

9
√

6
−5/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 11

16 , 11
16 , 1

2 , 11
16 3B

−5/2 � Rep(S3)

9
√

6
−5/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 11

16 , 11
16 , 1

2 , 11
16 SB:3B

−5/2

9
√

6
−3/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 13

16 , 13
16 , 1

2 , 13
16 3B

−3/2 � Rep(S3)

9
√

6
−3/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 13

16 , 13
16 , 1

2 , 13
16 SB:3B

−3/2

9
√

6
−1/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 15

16 , 15
16 , 1

2 , 15
16 3B

−1/2 � Rep(S3)

9
√

6
−1/2 24 1,1,2,1,1,ζ 1

2 ,ζ 1
2 ,2,

√
8 0,0,0, 1

2 , 1
2 , 15

16 , 15
16 , 1

2 , 15
16 SB:3B

−1/2

9
√

6
0 30 1,1,2,2,2,2,2,2,2 0,0,0, 1

5 , 1
5 , 1

5 , 4
5 , 4

5 , 4
5 SB:5B

0

9
√

6
4 30 1,1,2,2,2,2,2,2,2 0,0,0, 2

5 , 2
5 , 2

5 , 3
5 , 3

5 , 3
5 SB:5B

4

9
√

6
8/7 55.775 1,1,2,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 ,2ζ 1

5 ,ζ 6
12 0,0,0, 6

7 , 6
7 , 2

7 , 2
7 , 6

7 , 2
7 3B

8/7 � Rep(S3)

9
√

6
−8/7 55.775 1,1,2,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 ,2ζ 1

5 ,ζ 6
12 0,0,0, 1

7 , 1
7 , 5

7 , 5
7 , 1

7 , 5
7 3B

−8/7 � Rep(S3)
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TABLE XXIX. Z2 × Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 5 D2 � 100 and N = 6 D2 � 200.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

42
0 4 1,1,1,1 0,0,0,0 E = Rep(Z2 × Z2)

52
1 8 1,1,1,1,2 0,0,0,0, 1

4 SB:2B
1

52
−1 8 1,1,1,1,2 0,0,0,0, 3

4 SB:2B
−1

52
14/5 14.472 1,1,1,1,ζ 4

8 0,0,0,0, 2
5 SB:2B

14/5

52
−14/5 14.472 1,1,1,1,ζ 4

8 0,0,0,0, 3
5 SB:2B

−14/5

62
2 12 1,1,1,1,2,2 0,0,0,0, 1

3 , 1
3 SB:3B

2

62
2 12 1,1,1,1,2,2 0,0,0,0, 1

3 , 1
3 SB:3B

2

62
2 12 1,1,1,1,2,2 0,0,0,0, 1

3 , 1
3 SB:3B

2

62
2 12 1,1,1,1,2,2 0,0,0,0, 1

3 , 1
3 SB:3B

2

62
−2 12 1,1,1,1,2,2 0,0,0,0, 2

3 , 2
3 SB:3B

−2

62
−2 12 1,1,1,1,2,2 0,0,0,0, 2

3 , 2
3 SB:3B

−2

62
−2 12 1,1,1,1,2,2 0,0,0,0, 2

3 , 2
3 SB:3B

−2

62
−2 12 1,1,1,1,2,2 0,0,0,0, 2

3 , 2
3 SB:3B

−2

62
1/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 1
16 SB:3B

1/2

62
3/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 3
16 SB:3B

3/2

62
5/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 5
16 SB:3B

5/2

62
7/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 7
16 SB:3B

7/2

62
−7/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 9
16 SB:3B

−7/2

62
−5/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 11
16 SB:3B

−5/2

62
−3/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 13
16 SB:3B

−3/2

62
−1/2 16 1,1,1,1,2,

√
8 0,0,0,0, 1

2 , 15
16 SB:3B

−1/2

62
4 36 1,1,1,1,4,4 0,0,0,0, 1

3 , 2
3 SB:9B

4

62
8/7 37.183 1,1,1,1,2ζ 1

5 ,ζ 6
12 0,0,0,0, 6

7 , 2
7 SB:3B

8/7

62
−8/7 37.183 1,1,1,1,2ζ 1

5 ,ζ 6
12 0,0,0,0, 1

7 , 5
7 SB:3B

−8/7

the K =
(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

)
state. They carry the following S3

representations:

σ → 1 ⊕ b, τ → a ⊕ b. (A1)

It is strange that two different irreducible representations are
degenerate in energy. However, this can happen for topological
excitations in the presence of symmetry.

Such an assignment of the S3 representations (or S3

“charges”) is consistent with the fusion rule (see the second
table in Table XXVI). For example,

σ ⊗ σ → 1 ⊕ 2b ⊕ b ⊗ b = 1 ⊕ 2b ⊕ (1 ⊕ a ⊕ b)

→ 1 ⊕ b ⊕ σ ⊕ τ. (A2)

This is why we say that the second 5
√

6
4 entry can be realized

by the K =
(

2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

)
state.

However, the S3-charge assignment Eq. (A1) does not work

for the first and the third 5
√

6
4 entries (i.e., inconsistent with

fusion rules in the first and the third tables in Table XXVI).
In fact, none of the S3-charge assignment works. This mean

that the d = 3 fermions in the first and the third 5
√

6
4 entries

must carry fractionalized S3 charges or fractionalized S3

representations. It is not clear if such fractionalized S3 charges

are realizable or not, since we cannot calculate the modular
extensions for those entries (due to the limitation of computer
power).

4. Z2 × Z2-SET orders

Tables XXIX, XXX, and XXXI list the Z2 × Z2-SET orders
(up to invertible ones) for 2+1D bosonic systems.

Table XXXII lists the fusion rules for some Z2 × Z2-SET
orders. We see that the 52

1 state is a ν = 1/2 bosonic Laughlin
state with Z2 × Z2 symmetry, where the only topological
excitation carries the projective representation of Z2 × Z2. We
also see that the 52

14/2 state is a bosonic Fibonacci state with
Z2 × Z2 symmetry, where the only non-Abelian topological
excitation carries the projective representation of Z2 × Z2.

5. Z2 × Z f
2 -SET and Z f

4 -SET orders

Table XXXIII lists the Z2 × Z
f

2 -SET orders (up to in-
vertible ones) for 2+1D fermionic systems. Table XXXIV
lists the Z

f

4 -SET orders (up to invertible ones) for 2+1D
fermionic systems. For fermionic systems, the central charge
is determined up to cmin by the bulk excitations, where cmin is
the smallest positive central charge of the modular extensions
of sRep(Gf ), for example, cmin = 1/2 for Z

f

2 ,Z2 × Z
f

2 ,Z
f

6 ,
cmin = 1 for Z

f

4 ,Z
f

8 .
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TABLE XXX. Z2 × Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 7 D2 � 120.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

42
0 4 1,1,1,1 0,0,0,0 E = Rep(Z2 × Z2)

72
0 16 1,1,1,1,2,2,2 0,0,0,0,0,0, 1

2 SB:4B
0

72
0 16 1,1,1,1,2,2,2 0,0,0,0,0, 1

4 , 3
4 SB:4B

0

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
1 16 1,1,1,1,2,2,2 0,0,0,0, 1

8 , 1
8 , 1

2 SB:4B
1

72
2 16 1,1,1,1,2,2,2 0,0,0,0, 1

4 , 1
4 , 1

2 SB:4B
2

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
3 16 1,1,1,1,2,2,2 0,0,0,0, 3

8 , 3
8 , 1

2 SB:4B
3

72
4 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 1
2 , 1

2 SB:4B
4

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−3 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 5
8 , 5

8 SB:4B
−3

72
−2 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 3
4 , 3

4 SB:4B
−2

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
−1 16 1,1,1,1,2,2,2 0,0,0,0, 1

2 , 7
8 , 7

8 SB:4B
−1

72
9/5 28.944 1,1,1,1,2,ζ 4

8 ,ζ 4
8 0,0,0,0, 3

4 , 3
20 , 2

5 SB:4B
9/5

72
19/5 28.944 1,1,1,1,2,ζ 4

8 ,ζ 4
8 0,0,0,0, 1

4 , 2
5 , 13

20 SB:4B
19/5

72
−19/5 28.944 1,1,1,1,2,ζ 4

8 ,ζ 4
8 0,0,0,0, 3

4 , 7
20 , 3

5 SB:4B
−19/5

72
−9/5 28.944 1,1,1,1,2,ζ 4

8 ,ζ 4
8 0,0,0,0, 1

4 , 3
5 , 17

20 SB:4B
−9/5

72
0 52.360 1,1,1,1,ζ 4

8 ,ζ 4
8 ,3 + √

5 0,0,0,0, 2
5 , 3

5 ,0 SB:4B
0

72
12/5 52.360 1,1,1,1,ζ 4

8 ,ζ 4
8 ,3 + √

5 0,0,0,0, 3
5 , 3

5 , 1
5 SB:4B

12/5

72
−12/5 52.360 1,1,1,1,ζ 4

8 ,ζ 4
8 ,3 + √

5 0,0,0,0, 2
5 , 2

5 , 4
5 SB:4B

−12/5

72
10/3 76.937 1,1,1,1,2ζ 1

7 ,2ζ 2
7 ,ζ 8

16 0,0,0,0, 1
3 , 2

9 , 2
3 SB:4B

10/3

72
−10/3 76.937 1,1,1,1,2ζ 1

7 ,2ζ 2
7 ,ζ 8

16 0,0,0,0, 2
3 , 7

9 , 1
3 SB:4B

−10/3
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TABLE XXXI. Z2 × Z2-SET orders for bosonic systems labeled in terms of sets of topological excitations. The list contains all topological
orders with N = 8 D2 � 60.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

42
0 4 1,1,1,1 0,0,0,0 E = Rep(Z2 × Z2)

82
1 8 1,1,1,1,1,1,1,1 0,0,0,0, 1

4 , 1
4 , 1

4 , 1
4 2B

1 � Rep(Z2 × Z2)
82

1 8 1,1,1,1,1,1,1,1 0,0,0,0, 1
4 , 1

4 , 1
4 , 1

4 SB:2B
1

82
1 8 1,1,1,1,1,1,1,1 0,0,0,0, 1

4 , 1
4 , 1

4 , 1
4 SB:2B

1

82
1 8 1,1,1,1,1,1,1,1 0,0,0,0, 1

4 , 1
4 , 1

4 , 1
4 SB:2B

1

82
−1 8 1,1,1,1,1,1,1,1 0,0,0,0, 3

4 , 3
4 , 3

4 , 3
4 2B

−1 � Rep(Z2 × Z2)
82

−1 8 1,1,1,1,1,1,1,1 0,0,0,0, 3
4 , 3

4 , 3
4 , 3

4 SB:2B
−1

82
−1 8 1,1,1,1,1,1,1,1 0,0,0,0, 3

4 , 3
4 , 3

4 , 3
4 SB:2B

−1

82
−1 8 1,1,1,1,1,1,1,1 0,0,0,0, 3

4 , 3
4 , 3

4 , 3
4 SB:2B

−1

82
14/5 14.472 1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0,0,0,0, 2

5 , 2
5 , 2

5 , 2
5 2B

14/5 � Rep(Z2 × Z2)

82
−14/5 14.472 1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0,0,0,0, 3

5 , 3
5 , 3

5 , 3
5 2B

−14/5 � Rep(Z2 × Z2)

82
0 20 1,1,1,1,2,2,2,2 0,0,0,0, 1

5 , 1
5 , 4

5 , 4
5 SB:5B

0

82
0 20 1,1,1,1,2,2,2,2 0,0,0,0, 1

5 , 1
5 , 4

5 , 4
5 SB:5B

0

82
0 20 1,1,1,1,2,2,2,2 0,0,0,0, 1

5 , 1
5 , 4

5 , 4
5 SB:5B

0

82
0 20 1,1,1,1,2,2,2,2 0,0,0,0, 1

5 , 1
5 , 4

5 , 4
5 SB:5B

0

82
4 20 1,1,1,1,2,2,2,2 0,0,0,0, 2

5 , 2
5 , 3

5 , 3
5 SB:5B

4

82
4 20 1,1,1,1,2,2,2,2 0,0,0,0, 2

5 , 2
5 , 3

5 , 3
5 SB:5B

4

82
4 20 1,1,1,1,2,2,2,2 0,0,0,0, 2

5 , 2
5 , 3

5 , 3
5 SB:5B

4

82
4 20 1,1,1,1,2,2,2,2 0,0,0,0, 2

5 , 2
5 , 3

5 , 3
5 SB:5B

4

82
2 48 1,1,1,1,2,

√
12,

√
12,4 0,0,0,0,0, 1

8 , 5
8 , 1

3 SB:5B
2

82
2 48 1,1,1,1,2,

√
12,

√
12,4 0,0,0,0,0, 3

8 , 7
8 , 1

3 SB:5B
2

82
−2 48 1,1,1,1,2,

√
12,

√
12,4 0,0,0,0,0, 1

8 , 5
8 , 2

3 SB:5B
−2

82
−2 48 1,1,1,1,2,

√
12,

√
12,4 0,0,0,0,0, 3

8 , 7
8 , 2

3 SB:5B
−2

82
16/11 138.58 1,1,1,1,2ζ 1

9 ,2ζ 2
9 ,2ζ 3

9 ,ζ 10
20 0,0,0,0, 9

11 , 2
11 , 1

11 , 6
11 SB:5B

16/11

82
−16/11 138.58 1,1,1,1,2ζ 1

9 ,2ζ 2
9 ,2ζ 3

9 ,ζ 10
20 0,0,0,0, 2

11 , 9
11 , 10

11 , 5
11 SB:5B

−16/11

82
18/7 141.36 1,1,1,1,ζ 6

12,ζ
6
12,2ζ 2

12,2ζ 4
12 0,0,0,0, 6

7 , 6
7 , 1

7 , 3
7 SB:5B

18/7

82
−18/7 141.36 1,1,1,1,ζ 6

12,ζ
6
12,2ζ 2

12,2ζ 4
12 0,0,0,0, 1

7 , 1
7 , 6

7 , 4
7 SB:5B

−18/7

APPENDIX B: FUSION RING FOR THE MODULAR
EXTENSIONS OF Rep(G) OR sRep(G f ) WHEN G OR G f

IS ABELIAN GROUP

When the symmetry group G is Abelian, the different
irreducible representations, under the fusion, form the same
group G. Thus different irreducible representations can be
labeled by the group elements: (q), q ∈ G. The different
symmetry twists are also labeled by the group elements:
[g], g ∈ G. More general symmetry twists may carry some
charge. We denote such charge carrying symmetry twists by

[g,q] where q ∈ G. In fact we can identify (q) as [1,q]. Those
irreducible representations and charged symmetry twists are
particles in the modular extensions of Rep(G) or sRep(Gf ).

Since the group is Abelian, the symmetry twists do not
break the symmetry. Thus we have the following fusion rule:

[1,q] ⊗ [g,q ′] = [g,qq ′]. (B1)

This means that [g,q ′] and [g,qq ′] differ by charge q. We also
have

[g,q] ⊗ [g′,q ′] = [gg′,qq ′]. (B2)

TABLE XXXII. The fusion rules for some Z2 × Z2-SET orders.

si 0 0 0 0 1
4 si 0 0 0 0 2

5

di 1 1 1 1 2 di 1 1 1 1 2ζ 1
3

52
1 1 a b c φ 52

14/5 1 a b c η

1 1 a b c φ 1 1 a b c η

a a 1 c b φ a a 1 c b η

b b c 1 a φ b b c 1 a η

c c b a 1 φ c c b a 1 η

φ φ φ φ φ 1 ⊕ a ⊕ b ⊕ c η η η η η 1 ⊕ a ⊕ b ⊕ c ⊕ 2η
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TABLE XXXIII. Z2 × Z
f

2 -SET orders (up to invertible ones) for fermionic systems. The list contains all topological orders with N =
6 D2 � 300, N = 8 D2 � 60, and N = 10 D2 � 20.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0( 2

0 ) 4 1,1,1,1 0,0, 1
2 , 1

2 E = sRep(Z2 × Z
f

2 )

60
0 12 1,1,1,1,2,2 0,0, 1

2 , 1
2 , 1

6 , 2
3 SB:K = (−1 −2

−2 −1

)
60

0 12 1,1,1,1,2,2 0,0, 1
2 , 1

2 , 1
3 , 5

6 SB:K =
(

1 2
2 1

)
80

0( 0
0 ) 8 1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 2B

1 � sRep(Z2 × Z
f

2 )

80
0( 0

0 ) 8 1,1,1,1,1,1,1,1 0,0, 1
2 , 1

2 , 1
4 , 1

4 , 3
4 , 3

4 SB:4F
0 ( 0

0 )

80
−14/5( ζ 4

8
3/20

) 14.472 1,1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 0,0, 1
2 , 1

2 , 1
10 , 1

10 , 3
5 , 3

5 2B
−14/5 � sRep(Z2 × Z

f

2 )

80
14/5( ζ 4

8
−3/20

) 14.472 1,1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 0,0, 1
2 , 1

2 , 2
5 , 2

5 , 9
10 , 9

10 2B
14/5 � sRep(Z2 × Z

f

2 )

80
0( 2

0 ) 20 1,1,1,1,2,2,2,2 0,0, 1
2 , 1

2 , 1
10 , 2

5 , 3
5 , 9

10 SB:10F
0 ( ζ 1

2
0 )

80
0( 2

1/2 ) 20 1,1,1,1,2,2,2,2 0,0, 1
2 , 1

2 , 1
5 , 3

10 , 7
10 , 4

5 SB:10F
0 ( ζ 1

2
1/2 )

80
1/4( ζ 1

2 ζ 3
6

1/2
) 27.313 1,1,1,1,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 SB:4F

1/4( ζ 3
6

1/2
)

80
1/4( ζ 1

2 ζ 3
6

1/2
) 27.313 1,1,1,1,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 SB:4F

1/4( ζ 3
6

1/2
)

100
0( 4

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 ,0, 1
2 SB:8F

0 (
√

8
0 )

100
0( 4

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 ,0, 1
2 SB:8F

0 (
√

8
0 )

100
0(

√
8

1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
8 , 5

8 SB:8F
0 ( 2

1/8 )

100
0(

√
8

1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
8 , 5

8 SB:8F
0 ( 2

1/8 )

100
0( 0

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
4 , 3

4 SB:8F
0 ( 0

0 )

100
0( 0

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
4 , 3

4 SB:8F
0 ( 0

0 )

100
0(

√
8

−1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 3
8 , 7

8 SB:8F
0 ( 2

−1/8 )

100
0(

√
8

−1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 3
8 , 7

8 SB:8F
0 ( 2

−1/8 )

TABLE XXXIV. Z
f

4 -SET orders for fermionic systems. The list contains all topological orders with N = 6 D2 � 100, N = 8 D2 � 60,
and N = 10 D2 � 20.

N |�|
c D2 d1,d2, . . . s1,s2, . . . comment

40
0 4 1,1,1,1 0,0, 1

2 , 1
2 E = sRep(Zf

4 )

60
0 12 1,1,1,1,2,2 0,0, 1

2 , 1
2 , 1

6 , 2
3 K = −

(
1 2
2 1

)
60

0 12 1,1,1,1,2,2 0,0, 1
2 , 1

2 , 1
3 , 5

6 K =
(

1 2
2 1

)
80

0 8 1,1,1,1,1,1,1,1 0,0, 1
2 , 1

2 , 1
4 , 1

4 , 3
4 , 3

4 2B
−1 � sRep(Zf

4 )

80
0 8 1,1,1,1,1,1,1,1 0,0, 1

2 , 1
2 , 1

4 , 1
4 , 3

4 , 3
4 2B

1 � sRep(Zf

4 )

80
−14/5 14.472 1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0,0, 1

2 , 1
2 , 1

10 , 1
10 , 3

5 , 3
5 2B

−14/5 � sRep(Zf

4 )

80
14/5 14.472 1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0,0, 1

2 , 1
2 , 2

5 , 2
5 , 9

10 , 9
10 2B

14/5 � sRep(Zf

4 )

80
0 20 1,1,1,1,2,2,2,2 0,0, 1

2 , 1
2 , 1

10 , 2
5 , 3

5 , 9
10 SB:10F

0 ( ζ 1
2
0 )

80
0 20 1,1,1,1,2,2,2,2 0,0, 1

2 , 1
2 , 1

5 , 3
10 , 7

10 , 4
5 SB:10F

0 ( ζ 1
2

1/2 )

100
0( 4

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 ,0, 1
2 SB:8F

0 (
√

8
0 )

100
0( 4

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 ,0, 1
2 SB:8F

0 (
√

8
0 )

100
0(

√
8

1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
8 , 5

8 SB:8F
0 ( 2

1/8 )

100
0(

√
8

1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
8 , 5

8 SB:8F
0 ( 2

1/8 )

100
0( 0

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
4 , 3

4 SB:8F
0 ( 0

0 )

100
0( 0

0 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 1
4 , 3

4 SB:8F
0 ( 0

0 )

100
0(

√
8

−1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 3
8 , 7

8 SB:8F
0 ( 2

−1/8 )

100
0(

√
8

−1/8 ) 16 1,1,1,1,1,1,1,1,2,2 0,0, 1
2 , 1

2 ,0,0, 1
2 , 1

2 , 3
8 , 7

8 SB:8F
0 ( 2

−1/8 )
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However, the above fusion rule is too restrictive. Although
[g,q ′] and [g,qq ′] differ by charge q, we do not know the net
charge of [g,q ′] when g �= 1. Thus the more general fusion
rule that still preserves charge conservation is

[g,q] ⊗ [g′,q ′] = [gg′,ω2(g,g′)qq ′], ω2(g,g′) ∈ G. (B3)

From

([g1,q1] ⊗ [g2,q2]) ⊗ [g3,q3]

= [g1g2g3,ω(g1,g2)ω(g1g2,g3)q1q2q3]

= [g1,q1] ⊗ ([g2,q2] ⊗ [g3,q3])

= [g1g2g3,ω(g1,g2g3)ω(g2,g3)q1q2q3], (B4)

we see that

ω(g1,g2)ω(g1g2,g3) = ω(g1,g2g3)ω(g2,g3). (B5)

i.e., ω(g1,g2) is a group 2-cocycle in H2(G,G).
In the above, we have assumed that the modular extension

is Abelian (i.e., all the particles in the modular extension have a
quantum dimension 1). We see that the fusion rules of Abelian
modular extensions are labeled by 2-cocycles in H2(G,G).

However, sometimes the modular extension can be non-
Abelian, such as the modular extension of sRep(Zf

2 ) and
Rep(Z2 × Z2 × Z2). To allow such a possibility, we allow
[g,q] to be a many-to-one label of the particle, and define a
subgroup Hg ⊂ G:

Hg = {h|[g,q] = [g,hq],h ∈ G}. (B6)

The mapping g → Hg is an important data to describe the
fusion. Hg represents the charge ambiguity of the symmetry
twist [g,q]. To get a one-to-one label, we can use

[g,qHg]. (B7)

Note that, when g is an identity: g = 1, Hg is trivial: H1 = 1.
The fusion of [1,q ′] and [g,qHg] is still given by

[1,q ′] ⊗ [g,qHg] = [g,q ′qHg]. (B8)

We also have Hg = Hg−1 and

[g,qHg] ⊗ [g−1,q ′Hg] = ⊕h∈qq ′Hg
[1,h]. (B9)

We see that the quantum dimension of [g,qHg] is d = √|Hg|.
The fusion rule should satisfy

[1,q] ⊗ ([g1,q1Hg1 ] ⊗ [g2,q2Hg2 ])

= ([1,q] ⊗ [g1,q1Hg1 ]) ⊗ [g2,q2Hg2 ]

= [g1,q1Hg1 ] ⊗ ([1,q] ⊗ [g2,q2Hg2 ]). (B10)

We find that the following ansatz satisfy the above condition:

[g1,q1Hg1 ] ⊗ [g2,q2Hg2 ] = mg1g2

|(Hg1∨Hg2 )∩Hg1g2 |
⊕q∈ω(g1,g2)q1q2Hg1 ∨Hg2

[g1g2,qHg1g2 ], (B11)

where mg1g2 ∈ Z and Hg1 ∨ Hg2 is the subgroup generated by
Hg1 and Hg2 . The above implies that

√|Hg1 |
√|Hg2 | = mg1g2

|Hg1 ∨ Hg2 |
|(Hg1 ∨ Hg2 ) ∩ Hg1g2 |

√|Hg1g2 |.
(B12)

We see that different fusion rules are labeled by ω(g1,g2)
and Hg .

It is much easier to find all the Hg’s that satisfy Eq. (B12)
and all the ω(g1,g2) that satisfy Eq. (B5). From those solutions,
we can directly construct the fusion rule from Eq. (B11).

APPENDIX C: CONDITIONS TO OBTAIN UMTC/E ’s

In our simplified theory, a UMTC/E is described by an
integer tensor N

ij

k and a mod-1 rational vector si , where i,j,k

run from 1 to N and N is called the rank of the UMTC/E . We
may simply denote a UMTC/E [the collection of data (Nij

k ,si)]
by C, a particle i in C by i ∈ C. Sometimes it is more convenient
to use abstract labels rather than 1 to N ; we may also abuse C
as the set of labels (particles).

Not all (Nij

k ,si) describe a valid UMTC/E C with modular
extensions. In order to describe a valid C, (Nij

k ,si) must satisfy
the following conditions [8,13,43–45].

(1) Fusion ring. N
ij

k for the UMTC/E C are non-negative
integers that satisfy

N
ij

k = N
ji

k , N1i
j = δij ,

N∑
k=1

Nik
1 N

kj

1 = δij ,

∑
m

Nij
m Nmk

l =
∑

n

Nin
l Njk

n or
∑
m

Nij
m Nm = NiNj , (C1)

where the matrix Ni is given by (Ni)kj = N
ij

k , and the indices
i,j,k run from 1 to N . In fact N

ij

1 defines a charge conjugation
i → ī:

N
ij

1 = δīj . (C2)

N
ij

k satisfying the above conditions define a fusion ring which
is viewed as the set (of simple objects)

{1,2, . . . ,N}. (C3)

(2) Charge conjugation condition:

N
ij

k = N
jk̄

ī
= Nk̄i

j̄

= Nīk
j = N

kj̄

i = N
j̄ī

k̄
. (C4)

(3) Rational condition. N
ij

k and si for C satisfy [8,46–48]∑
r

V r
ijklsr = 0 mod 1, (C5)

where

V r
ijkl = Nij

r Nkl
r̄ + Nil

r N
jk
r̄ + Nik

r N
jl
r̄

− (δir + δjr + δkr + δlr )
∑
m

Nij
m Nkl

m̄ . (C6)

(4) Verlinde fusion characters. Let the topological S matrix
be (see Eq. (223) in Ref. [9])

Sij = 1

D

∑
k

N
ij

k e2π i(si+sj −sk )dk, (C7)

where di (called quantum dimension) is the largest eigenvalue

of the matrix Ni and D =
√∑

i d
2
i (called the total quantum
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dimension). Then [49]

SilSjl

S1l

=
∑

k

N
ij

k Skl . (C8)

(5) Weak modularity. Let the topological T matrix be

Tij = δij e2π isi . (C9)

Then (see Eq. (232) in Ref. [9])

S†T S = �T †S†T †,

� = D−1
∑

i

e2π isi d2
i = |�|e2π ic/8. (C10)

The parameter c mod 8 is defined via �, if |�| �= 0.
(6) Charge conjugation symmetry:

Sij = S∗
ij̄

, si = sī , or S = S†C, T = T C, (C11)

where the charge conjugation matrix C is given by Cij =
N

ij

1 = δij̄ .
(7) The centralizer describes the symmetry. Let the central-

izer of C, Ccen
C , be the subset of the particle labels:

Ccen
C =

{
i|Sij = didj

D
, ∀j ∈ C

}
. (C12)

Then, Ccen
C = E .

(8) The second Frobenius-Schur indicator. Let

νk = D−2
∑
ij

N
ij

k didj cos(4π (si − sj )), (C13)

then νk ∈ Z if k = k̄ [50].
(9) Symmetry breaking. There is a symmetry breaking

induced map C → C0, where C0 is a UMTC if E = Rep(G)
or a UMTC/sRep(Z2) if E = sRep(Gf ). See Appendix D for
details.

(10) Modular extension. The UMTC/E C has modular
extensions.

The above conditions are necessary and sufficient (due
to condition 10) for (Nij

k ,si) to describe a UMTC/E C with
modular extensions.

However, when we calculate the tables in Appeandix A,
we do not use condition 10. So the used conditions are only
necessary. As a result, the tables may contain fake entries that
have no modular extensions.

To numerically solve the above conditions to obtain the
classification tables, we first search for N

ij

k ’s that satisfy
condition 1 and 2. Then for each N

ij

k , we calculate si’s that
satisfy condition 3 via the Smith normal form of integer matrix
V r

ijkl , where ijkl is viewed as a single index. Last, from the

obtained N
ij

k ,si’s, we select those that satisfy all the conditions.

APPENDIX D: SYMMETRY BREAKING

A UMTC/E C describes a SET with symmetry E (up
to invertible GQLs). If we break the symmetry E , then
the UMTC/E will become a UMTC C0 if E = RepG or
become a UMTC

/Z
f

2
C0 if E = sRepGf . So there is a natural

mapping from UMTC/E ’s to UMTCs or UMTC
/Z

f

2
: C → C0.

Requiring the exitance of such map can give us some additional
conditions on (Nij

k ,si) of C.
To understand such a map, we note that C can be viewed as

a subcategory of C0, in the sense that the simple objects in C
can be viewed as the simple or composite objects in C0:

i → ⊕IM
iI I, i ∈ C, I ∈ C0. (D1)

Physically, if we just pretend the symmetry is not there, then
every particle in C can also be viewed as a particle in C0.
However, a particle in C may be the direct sum of several
degenerate particles in C0, where the degeneracy is due to the
symmetry, as described by Eq. (D1).

In the following, we will obtain some conditions on MiI ,
which will help us to calculate it. Let us label the particles in C
as {i} = {1,a,b, . . . ,x,y, . . .}. Here, a,b, . . . label the bosonic
part of E , and x,y, . . . label the fermionic part of E (if any)
and the rest of nontrival topological excitations. We have also
used I to label the particles in C0. Clearly, the bosonic part of
E are local excitations and are direct sums of 1 ∈ C0:

a → da1, or MaI = daδ1I . (D2)

(Here, 1 is the trivial particle in C0.) By computing i ⊗ j in
two different ways, we find that MiI must also satisfy∑

IJ

MiIMjJ NIJ
K =

∑
k

N
ij

k MkK. (D3)

Taking K = 1, we obtain∑
I

MiIMjĪ =
∑

a

Nij
a da. (D4)

Assuming the charge conjugation symmetry: MiI = MīĪ , we
can rewrite the above as∑

I

MiIMjI =
∑

a

Nij̄
a da, (D5)

which implies that∑
I

(MiI )2 =
∑

a

Niī
a da. (D6)

To obtain more properties of MiI and to solve the above
conditions on MiI , let us consider the fusion with a particles:

a ⊗ x = ⊕yN
ax
y y. (D7)

We define x to be equivalent to y if there exists a such that
Nax

y �= 0. Let [x] be the equivalent class of x. Clearly [1] = [a].
First, we like to pointed out that if i and j are equivalent,

then i and j are formed by the same combination of I ’s, up to
an overall factor, such as

i → I1 ⊕ 2I2, j → 3I1 ⊕ 6I2. (D8)

This is because a particles in C is mapped to the direct sum of
identity in C0. Since i and j is related by fusing a or identity
in C0, then i and j must be formed by the same combination
of I ’s.

Second, if i and j are not equivalent, then the I ’s that enter
i do not overlap with the I ’s that enter j . This is a consequence
of Eq. (D5). The right-hand side of Eq. (D5) will vanish if i

and j are not equivalent.
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Third, the I ’s that appear in i must have the same quantum
dimensions and spins. This is because those I ’s must be
degenerate. This can only happen if they have the same
quantum dimensions and spins.

Fourth, the I ’s that appears in i must each enter with an
equal weight, such as

i → 2I1 ⊕ 2I2. (D9)

Again, this is because those I ’s must be degenerate. This can
only happen if they can be mapped into each other by symmetry
transformations. Since the symmetry transformations only
permute I ’s, each I enters with an equal weight.

Combine the above results, we see that MiI has the fol-
lowing block structure. We can divide the index I into groups
[I ], such that there is one-to-one correspondence between [i]
and [I ]: [i] ↔ [I ][i], and

MiI = 0 if i ∈ [i], I /∈ [I ][i],

MiI = mi > 0 if i ∈ [i], I ∈ [I ][i]. (D10)

Therefore we have

m2
i n[i] =

∑
a

Niī
a da, (D11)

where n[i] is the size of the set [I ][i]. Since

i = ⊕I∈[I ][i]miI, (D12)

we have

mimjn[i] =
∑

a

Nij̄
a da, i,j ∈ [i]. (D13)

In other words, the matrix Ñ with elements Ñij = ∑
a N

ij̄
a da

is block diagonal. Each block is formed by particles in an
equivalent class [i], and is given by the above expression.
We see that, for i,j ∈ [i],

∑
a N

ij̄
a da must be a symmetric

matrix with a single nonzero eigenvalue n[i]
∑

j∈[i] m
2
j and

eigenvector (mj ).
We also find that

di = min[i]dI , (D14)

or

dI = midi∑
a Niī

a da

∀ I ∈ [I ][i]. (D15)

Using the fact si = sj = sI , ∀i,j ∈ [i], I ∈ [I ][i], we can
obtain (dI ,sI ) of C0 from (Nij

k ,si) of C. The resulting (dI ,sI )
must be the quantum dimensions and the spins of a UMTC.
This gives us some extra conditions on (Nij

k ,si).

APPENDIX E: PHYSICAL AND MATHEMATICAL
MEANING OF UMTC/E AND ITS MODULAR EXTENSIONS

In the main text of the paper, we have explained why
UMTC/E describes the bulk particlelike excitations. We also
explained the motivation of modular extension via “gauging”
the symmetry. In this section, we will discuss a deeper meaning
of UMTC/E and its modular extensions.

We know that UMTC/E is a very abstract way to describe
the non-Abelian statistics of the excitations. It is not clear

at all that why the excitations described by UMTC/E can be
realized by a local lattice model with on-site symmetry. In
physics, we mainly concern about local lattice models and
their properties. It appears that there is a big gap between the
UMTC/E studied in this paper and local lattice models that
physicists want to study. In fact, the two are closely related.
Here, we will try to explain such a connection between lattice
models and UMTC/E (with their modular extensions).

We know that the fusion-braiding properties of particles
within a two-dimensional open disk can be described by a
unitary braided fusion category. From this point of view, a
unitary braided fusion category is a local theory that only
encode the local properties of the fusion and braiding (i.e., on
an open disk). We want to promote fusion-braiding properties
to be integrable to any two-dimensional manifolds because
we want those fusion-braiding properties to be realizable by
some local lattice models, which can always be defined on
any two-dimensional manifolds. Therefore the integrability of
fusion-braiding properties to any two-dimensional manifolds
is necessary for the fusion-braiding properties to be realized
by some local lattice models.

Now we assume that “all two-dimensional manifolds” are
the most powerful probes. This means that the integrability
of the local fusion-braiding properties to global invariants (on
all two-dimensional manifolds), satisfying natural physically
required properties, is also sufficient for those properties to be
realizable by some local lattice models.

The process of integrating the local fusion-braiding prop-
erties of particles (described by a UBFC C) to give global
invariants is defined by the so-called factorization homology
[51,52]. In order to be free of framing anomaly, we need a
spherical structure, which is guaranteed by the unitarity of a
UBFC [9]. For general UBFCs, although the global invariants
are well-defined by factorization homology [52], they do not
have nice properties that allow us to give them a natural
physical meaning. A stronger integrability condition needs
to be imposed in order for the global invariants to have natural
physical meanings.

For example, if C is assumed to be nondegenerate (i.e.,
UMTC), it was shown in Ref. [53] that factorization homology
of a UMTC C over a closed two-dimensional manifold is given
by the category of finite dimensional Hilbert spaces. If one
inserts a finite number of particlelike excitations x1, · · · ,xr

on the closed surface, one simply obtain the Hilbert space
homC(1,x1 ⊗ · · · ⊗ xr ), which is also the space of degenerate
ground states. This result remains to be true for all closed
two-dimensional manifolds with topological gapped defects
and with two cells decorated by different phases [53]. This
includes the cases that the topological order is defined on
any surfaces with boundaries. Therefore the nondegeneracy
is certainly a sufficient integrability condition, which is too
strong for the purpose of this work.

In this paper, we consider something more complicated—
the fusion-braiding properties of particles with symmetry. By
“with symmetry”, we mean to include local excitations that
carry representations of the symmetry group. Mathematically,
this means that the unitary braided fusion category C contain
a SFC E as its Müger center, i.e., a UMTC/E . We know
that either E = Rep(G) or E = sRep(Gf ), where G or Gf

is the symmetry group. In this case, we must find a proper
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(a) (b) (c)

FIG. 4. (a) A torus with a flat G connection (described by a
symmetry twist along the dashed loop). The thin solid loop is
a braiding path. (b) A handle is deformed into a very thin one.
(c) A very thin handle can be viewed as two defects, and each defect
corresponds to the added particle in the modular extension.

integrability condition that is weaker than the nondegeneracy
of UBFC.

In order for the factorization homology of C on a surface, a
unitary category denoted byC� , to have a physical meaning, we
suspect that we should be able to interpret its object as finite
dimensional Hilbert spaces in a natural way. This suggests
that the category C� should equipped with a natural functor
to the category of finite dimensional Hilbert spaces, which
is a factorization homology M� of a UMTC M [53]. So
we expect that we should be able to embed C into a UMTC
M such that the embedding naturally descends to a functor
C� → M� on factorization homologies. An arbitrary UMTC
such as the Drinfeld center Z(C) of C can not do the job
because there is no canonical way to identify C in M (with a
fixed symmetry E) so that it is unlikely that it can be compatible
with the integration process. So we expect that the condition
Ecen
M = C is a natural integrability condition that replace the

nondegeneracy condition in this case. This flow of thinking
leads us to the concept of the modular extension of C. It also
suggests that the nonexistence of the modular extension of a
given C means that C is somewhat inconsistent globally or
not integrable to all two-dimensional manifolds with natural
physical meanings.

This can also be viewed from a different point of view.
If we require each particle to be nontrivial in some sense,
then we must only consider the nondegenerate unitary braided
fusion category over SFC E . In this case, for particles not in
E , we know they are nontrivial because their nontrivial double
braiding (or nontrivial mutual statistics) with some particles.
But we still have trouble to know why the particles in E are

nontrivial? From their fusion and braiding properties, they just
behave like the identity or a composite of identities.

To fix this problem, we put our particles on any two-
dimensional manifolds. In this case, we can find a way to
understand the nontrivialness of the particle in E . This require
us to twist the symmetry G or Gf on the two-dimensional
manifold. In other words, we equip the two-dimensional
manifold with a flat G connection. Since the particles in E
all carry irreducible representations of G, as we move the
particles along a noncontractile loop, the flat G connection will
induce a G transformation on the particle (or more precisely,
on the hom space of the particles). This allows us to probe the
particles in E and detect their nontrivialness.

Therefore, as we put particles on a two-dimensional
manifold, it is important to allow any flat G connection
on the manifold. Now we ask, in this case, can a nonde-
generate unitary braided fusion category C over a SFC E
describes the fusion-braiding properties of particles that are
consistent on any two-dimensional manifolds with any flat
G connections?

In this paper, we propose that the answer is no. We
also propose that the answer is yes if the C over E has
modular extensions, which are the categorical ways of gauging
the symmetry E . So, nondegenerate unitary braided fusion
categories over SFC can describe the consistent local fusion
and braiding on an open disk. Only the ones with modular
extensions can describe the consistent fusion and braiding on
any manifolds (with any flat G connections).

The intuition for the above conjecture is explained in the
Fig. 4. Figure 4(a) describes a braiding of particles on a torus
with flat G connection. As we deform a handle into a very thin
one, we may view the above braiding on torus as a braiding
around the added particles in the modular extension. So the
consistent fusion and braiding on any manifolds with any
flat G connection must be closely related to the consistent
fusion and braiding on a sphere with the added particles in
the modular extension. So, the mathematical meaning of the
modular extension is to make the fusion and braiding to be
consistent on any manifolds with any flat G connection.

For a given C over E , there can be several modular exten-
sions M. We believe that those different modular extensions
describe the different structures at the boundary. This picture
leads to the physical conjecture that the triple (C,M,c) classify
the 2+1D topological/SPT orders with symmetry E .
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