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Observation of Five New Narrow Ω0
c States Decaying to Ξ +

c K −

R. Aaij et al.*

(LHCb Collaboration)
(Received 14 March 2017; published 2 May 2017)

The Ξþ
c K− mass spectrum is studied with a sample of pp collision data corresponding to an integrated

luminosity of 3.3 fb−1, collected by the LHCb experiment. The Ξþ
c is reconstructed in the decay mode

pK−πþ. Five new, narrow excited Ω0
c states are observed: the Ωcð3000Þ0, Ωcð3050Þ0, Ωcð3066Þ0,

Ωcð3090Þ0, and Ωcð3119Þ0. Measurements of their masses and widths are reported.

DOI: 10.1103/PhysRevLett.118.182001

The spectroscopy of singly charmed baryons cqq0 is
intricate. With three quarks and numerous degrees of
freedom, many states are expected. At the same time,
the large mass difference between the charm quark and the
light quarks provides a natural way to understand the
spectrum by using the symmetries provided by the heavy
quark effective theory (HQET) [1,2]. In recent years,
considerable improvements have been made in the pre-
dictions of the properties of these heavy baryons [3–14].
In many of these models, the heavy quark interacts with a
ðqq0Þ diquark, which is treated as a single object. These
models predict seven states in the mass range 2.9–3.2 GeV
(natural units are used throughout this Letter), some of
them narrow. Other models make use of lattice QCD
calculations [15].
The spectroscopy of charmed baryons, particularly the

Λþ
c , Σc, and Ξc states, has also seen considerable exper-

imental progress, with results obtained at the B factories
and is in the physics program of the LHCb experiment
at CERN [16,17]. Among the expected charmed baryon
states, this work addresses the Ω0

c baryons, which have
quark content css and isospin zero. Their spectrum is
largely unknown: Only the Ω0

c and Ωcð2770Þ0, presumed
to be the JP ¼ 1=2þ and 3=2þ ground states, have been
observed [16,18].
To improve the understanding of this little-explored

sector of the charmed baryon spectrum, this Letter presents
a search for new Ω0

c resonances that decay strongly to the
final state Ξþ

c K−, where the Ξþ
c is a weakly decaying

charmed baryon with quark content csu. (The inclusion of
charge-conjugate processes is implied throughout, unless
stated otherwise.) The measurement is based on samples of
pp collision data corresponding to integrated luminosities

of 1.0, 2.0, and 0.3 fb−1 at center-of-mass energies of 7, 8,
and 13 TeV, respectively, recorded by the LHCb experi-
ment. The LHCb detector is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks,
and is described in detail in Refs. [19,20]. Hadron iden-
tification is provided by two ring-imaging Cherenkov
detectors [21], a calorimeter system, and a muon detector.
The online event selection is performed by a trigger, which
consists of a hardware stage, based on information from
the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction [22].
Simulated events are produced with the software packages
described in Refs. [23–28].
The reconstruction begins with the Ξþ

c baryon, via the
decay Ξþ

c → pK−πþ. The Ξþ
c candidates are formed from

combinations of three tracks that originate from a common
vertex. These are required to pass a cut-based preselection
and then a multivariate selection based on likelihood ratios,
described below. Candidates fulfilling these requirements
are then combined with a fourth track to form Ω0

c → Ξþ
c K−

candidates to which additional selection requirements,
also described below, are applied.
The Ξþ

c preselection requires a positively identified
proton and a large Ξþ

c flight-distance significance (defined
as the measured flight distance divided by its uncertainty)
from a primary pp interaction vertex (PV). The Ξþ

c
candidates are also constrained to originate from the PV
by requiring a small χ2IP (defined as the difference between
the vertex fit χ2 of the PV reconstructed with and without
the candidate in question). The resulting pK−πþ mass
spectrum is fitted with a linear function to describe the
background and the sum of two Gaussian functions with a
common mean to describe the signal. The fit is used to
define signal and sideband regions of the Ξþ

c invariant
mass spectrum: The signal region consists of the range
within �2.0σ of the fitted mass, where σ ¼ 6.8 MeV is the
weighted average of the standard deviations of the
Gaussian functions, and the sidebands cover the range
3.5 − 5.5σ on either side. The fit is also used to determine
the Ξþ

c purity after the preselection, defined as the signal
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yield in the signal region divided by the total yield in the
same region. A purity of 41% is obtained, which is not
sufficient for the spectroscopy study but allows the extrac-
tion of background-subtracted probability density functions
(PDFs) of the kinematic and geometric properties of the
signal. These distributions are taken from the data rather
than the simulation, given the limited understanding of
heavy baryon production dynamics and the difficulty of
modeling them correctly for different center-of-mass
energies.
For each variable of interest, the background PDF is

obtained from the corresponding distribution in the mass
sideband regions and is also used for the background
subtraction. The signal PDF is obtained from the normal-
ized, background-subtracted distribution in the signal mass
region. Variables found to have a good discrimination
between the signal and background are the vertex fit χ2,
the Ξþ

c flight-distance significance and χ2IP, the particle
identification probability for the proton and the kaon from
the Ξþ

c decay, the χ2IP of the three individual tracks, the Ξþ
c

transverse momentum pT with respect to the beam axis, the
pseudorapidity η, and the angle between the Ξþ

c momentum
and the vector joining the PV and the Ξþ

c decay vertex.
The PDFs of the 11 variables (x) above are used to form

a likelihood ratio, whose logarithm is defined as

LðxÞ ¼
X11
i¼1

½ln PDFsigðxiÞ − ln PDFbackðxiÞ�; ð1Þ

where PDFsig and PDFback are the PDF distributions for the
signal and background, respectively. Correlations between
the variables are neglected in the likelihood.
The likelihood ratios and their PDFs are defined sepa-

rately for the three data sets at different center-of-mass
energies due to their different trigger conditions. The
selection requirements on the likelihood ratios are also
chosen separately for the three samples and lead to Ξþ

c
purities of approximately 83% in the inclusive Ξþ

c sample.
Figure 1 shows the pK−πþ mass spectrum of Ξþ

c
candidates passing the likelihood ratio selection for all
three data sets combined, along with the result of a fit with
the functional form described above. The Ξþ

c signal region
contains 1.05 × 106 events. Note that this inclusive Ξþ

c
sample contains not only those produced in the decays of
charmed baryon resonances but also from other sources,
including decays of b hadrons and direct production at
the PV.
Each Ξþ

c candidate passing the likelihood ratio selection
and lying within the Ξþ

c signal mass region is then
combined in turn with each K− candidate in the event.
A vertex fit is used to reconstruct each Ξþ

c K− combination,
with the constraint that it originates from the PV. The Ξþ

c K−

candidate must have a small vertex fit χ2, a high kaon
identification probability, and transverse momentum
pTðΞþ

c K−Þ > 4.5 GeV.

The Ξþ
c K− invariant mass is computed as

mðΞþ
c K−Þ ¼ mð½pK−πþ�Ξþ

c
K−Þ −mð½pK−πþ�Ξþ

c
Þ þmΞþ

c
;

ð2Þ

where mΞþ
c
¼ 2467.89þ0.34

−0.50 MeV is the world-average Ξþ
c

mass [16] and ½pK−πþ�Ξþ
c

is the reconstructed Ξþ
c →

pK−πþ candidate.
In this analysis, the distribution of the invariant mass

mðΞþ
c K−Þ is studied from the threshold up to 3450 MeV.

The Ξþ
c K− mass distribution for the combined data sets

is shown in Fig. 2, where five narrow structures are
observed. To investigate the origin of these structures,

) [MeV]+π−
pK(m

2440 2460 2480 2500

C
an

di
da

te
s 

/ (
1 

M
eV

)

0

20000

40000

60000

80000

LHCb

FIG. 1. Distribution of the reconstructed invariant mass
mðpK−πþÞ for all candidates in the inclusive Ξþ

c sample passing
the likelihood ratio selection described in the text. The solid (red)
curve shows the result of the fit, and the dashed (blue) line
indicates the fitted background.
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FIG. 2. Distribution of the reconstructed invariant mass
mðΞþ

c K−Þ for all candidates passing the likelihood ratio selection;
the solid (red) curve shows the result of the fit, and the dashed
(blue) line indicates the fitted background. The shaded (red)
histogram shows the corresponding mass spectrum from the Ξþ

c
sidebands, and the shaded (light gray) distributions indicate the
feed-down from partially reconstructed ΩcðXÞ0 resonances.
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Fig. 2 also shows the distribution of mðΞþ
c K−Þ in the Ξþ

c
sidebands as a shaded (red) histogram; no structure is seen
in this background sample. In addition, wrong-sign Ξþ

c Kþ
combinations are processed in the same way as the right-
sign combinations. The resulting wrong-sign Ξþ

c Kþ mass
spectrum is shown in Fig. 3, scaled by a factor of 0.95
so that the two spectra approximately match at a large
invariant mass, along with the right-sign mðΞþ

c K−Þ spec-
trum for comparison. No structure is observed in the
wrong-sign mass spectrum. The absence of corresponding
features in the control samples is consistent with the five
structures being resonant states, henceforth denoted
ΩcðXÞ0 for mass X. It can also be seen that the two mass
spectra in Fig. 3 exhibit different behavior close to the
Ξþ
c K− threshold (2960–2970 MeV). The right-sign distri-

bution has a much steeper rise compared to the wrong-sign
spectrum, suggesting the presence of additional compo-
nents in the Ξþ

c K− mass spectrum as discussed below.
Further tests are performed by studying combinations of

one of the Ξþ
c → pK−πþ decay products with the other

kaon used to form the ΩcðXÞ0 candidate (i.e., pK−, K−K−,
and πþK−). The resulting two-body invariant mass spectra
do not show any structure except for a small K̄�0 signal in
the πþK− mass, also visible in the Ξþ

c sidebands, which is
attributed to background contributions. Another class of
potential misreconstruction consists of Ξþ

c π
− combinations

in which the π− is misidentified as a kaon. To test for this,
the selected Ξþ

c K− sample is investigated with the pion
mass assigned to the kaon candidate. No narrow peaks are
observed in this pseudo-Ξþ

c π
− spectrum, indicating that

peaks in the Ξþ
c K− spectrum do not arise from misidenti-

fied Ξþ
c π

− resonances.
The wrong-sign Ξþ

c Kþ sample is used to study the
combinatorial background. The parameterization used
is [29]

BðmÞ ¼
�
PðmÞea1mþa2m2

for m < m0;

PðmÞeb0þb1mþb2m2

for m > m0;
ð3Þ

where PðmÞ is a two-body phase-space factor and m0, ai,
and bi are free parameters. Both BðmÞ and its first
derivative must be continuous at m ¼ m0; these constraints
reduce the number of free parameters to four. This model
gives a good description of the wrong-sign mass spectrum
up to a mass of 3450 MeV with a p value of 18% for a
binned χ2 fit.
To study the reconstruction efficiency and the mass

resolution of each of the structures, samples of simulated
events are generated in which ΩcðXÞ0 resonances decay to
Ξþ
c K−, with the masses and natural widths of the ΩcðXÞ0

chosen to approximately match those seen in the data.
The mass residuals, defined as the difference between the
generated ΩcðXÞ0 mass and the reconstructed value of
mðΞþ

c K−Þ, are well described by the sum of two Gaussian
functions with a common mean. The parameters of these
fits are used to determine the mass-dependent experimental
resolution, which runs from 0.75 MeV at 3000 MeV to
1.74 MeV at 3119 MeV, and is found to be well described
by a linear function. The simulation samples are also used
to obtain the reconstruction efficiency, which is consistent
with being constant as a function of mðΞþ

c K−Þ.
Another possible decay mode for ΩcðXÞ0 resonances is

ΩcðXÞ0 → K−Ξ0þ
c with Ξ0þ

c → Ξþ
c γ ð4Þ

or, in general, to a final state that includes Ξþ
c K− but also

contains one or more additional particles that are not
included in the reconstruction. For the case of a narrow
ΩcðXÞ0 resonance decaying via Ξ0þ

c , the resulting distri-
bution in mðΞþ

c K−Þ is a relatively narrow structure that is
shifted down in mass (feed-down) that needs to be taken
into account in the description of the data. Simulation
studies of the decay chain shown in Eq. (4) have been
performed with resonance masses of 3066, 3090, and
3119 MeV. It is found that the feed-down shapes deviate
from Breit-Wigner distributions and are therefore para-
meterized by B splines [30].
A binned χ2 fit to themðΞþ

c K−Þ spectrum is performed in
the range from the threshold to 3450 MeV. In this fit, the
background is modeled by Eq. (3), while the resonances are
described by spin-zero relativistic Breit-Wigner functions
convolved with the experimental resolution. In addition,
three feed-down contributions arising from the partially
reconstructed decays of Ωcð3066Þ0, Ωcð3090Þ0, and
Ωcð3119Þ0 resonances are included with fixed shapes
but free yields. It is found that the fit improves if an
additional broad Breit-Wigner function is included in the
3188 MeV mass region. This broad structure may be due
to a single resonance, to the superposition of several
resonances, to feed-down from higher states, or to some
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FIG. 3. Distribution of the reconstructed invariant mass
mðΞþ

c K−Þ for all candidates passing the likelihood ratio selection,
shown as black points with error bars, and the wrong-sign
mðΞþ

c KþÞ spectrum scaled by a factor of 0.95, shown as a solid
(red) histogram.
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combination of the above. Under the simplest hypothesis,
namely, that it is due to a single state, its parameters are
given in Table I.
This configuration is denoted the reference fit and is

shown in Fig. 2. No significant structure is seen above
3300 MeV. Table I gives the fitted parameters and yields of
the resonances, along with the yields for the feed-down
contributions indicatedwith the subscript “fd”. The statistical
significance of each resonance is computed asNσ ¼

ffiffiffiffiffiffiffiffi
Δχ2

p
,

where Δχ2 is the increase in χ2 when the resonance is
excluded in the fit. Very high significances are obtained for
all the narrow resonances observed in themass spectrum.The
threshold enhancement below 2970 MeV is fully explained
by feed-down from the Ωcð3066Þ0 resonance.
Several additional checks are performed to verify the

presence of the signals and the stability of the fitted
parameters. The likelihood ratio requirements are varied,
testing both looser and tighter selections. As another test,
the data are divided into subsamples according to the data-
taking conditions, and each subsample is analyzed and
fitted separately. The charge combinations Ξ̄−

c Kþ and
Ξþ
c K− are also studied separately. In all cases, the fitted

resonance parameters are consistent among the subsamples
and with the results from the reference fit.
Systematic uncertainties on the Ω0

c resonance parameters
are evaluated as follows. The fit bias is evaluated by
generating and fitting an ensemble of 500 random mass
spectra that are generated according to the reference fit.
For each parameter, the absolute value of the difference
between the input value and the mean fitted value of the
ensemble is taken as the systematic uncertainty.
The background model uncertainty is estimated by

exchanging it for the alternative function B0ðmÞ ¼
ðm −mthÞαeβþγmþδm2

, where mth is the threshold mass
and α, β, γ, and δ are free parameters. The uncertainty

associated with the choice of the Breit-Wigner model is
estimated by fitting the data with relativistic L ¼ 1, 2
Breit-Wigner functions with varying Blatt-Weisskopf
factors [31] and is found to be negligible.
Resonances can interfere if they are close in mass

and have the same spin parity. The effect is studied by
introducing interference terms between each resonance and
its neighboring resonances, one pair of resonances at a
time. This is implemented with an amplitude of the form
A ¼ jciBWi þ cjBWjeiϕj2 for the interference between
resonances i and j, where BWi and BWj are complex
Breit-Wigner functions and ci;j and ϕ are free parameters.
For the central three resonances, where interference could
occur with the state to the left or to the right, the absolute
values of the deviations are added in quadrature. No
evidence for interference effects is observed.
Recently, the Belle Collaboration has reported a meas-

urement of the Ξ0þ
c mass [32] that is significantly more

precise than the previous value and which differs from it by
þ2.8 MeV. The effect of this is tested by shifting the
Ωcð3066Þ0, Ωcð3090Þ0, and Ωcð3119Þ0 feed-down shapes
accordingly, and it is included as a systematic uncertainty.
The mass scale uncertainty is studied with a series of

control samples and is found to be 0.03% of the mass
difference from the threshold ðm −mthÞ. A comparison
between the fitted Ξþ

c mass resolution in the data and
simulation shows a 1.7% discrepancy, which is assigned as
a systematic uncertainty on the width of the resonances.
The description of the broad, high-mass structure labeled
Ωcð3188Þ0 is changed to the sum of four incoherent
Breit-Wigner functions, and the effect on the other five
resonances is included in the list of the systematic uncer-
tainties. The largest contribution is found to be from
possible interference, while the feed-down shift has a
sizable effect only on the Ωcð3000Þ0 parameters. For the

TABLE I. Results of the fit to mðΞþ
c K−Þ for the mass, width, yield, and significance for each resonance.

The subscript fd indicates the feed-down contributions described in the text. For each fitted parameter, the first
uncertainty is statistical and the second systematic. The asymmetric uncertainty on the ΩcðXÞ0 arising from the Ξþ

c

mass is given separately. Upper limits are also given for the resonances Ωcð3050Þ0 and Ωcð3119Þ0 for which the
width is not significant.

Resonance Mass (MeV) Γ (MeV) Yield Nσ

Ωcð3000Þ0 3000.4� 0.2� 0.1þ0.3
−0.5 4.5� 0.6� 0.3 1300� 100� 80 20.4

Ωcð3050Þ0 3050.2� 0.1� 0.1þ0.3
−0.5 0.8� 0.2� 0.1 970� 60� 20 20.4

<1.2 MeV, 95% C.L.
Ωcð3066Þ0 3065.6� 0.1� 0.3þ0.3

−0.5 3.5� 0.4� 0.2 1740� 100� 50 23.9
Ωcð3090Þ0 3090.2� 0.3� 0.5þ0.3

−0.5 8.7� 1.0� 0.8 2000� 140� 130 21.1
Ωcð3119Þ0 3119.1� 0.3� 0.9þ0.3

−0.5 1.1� 0.8� 0.4 480� 70� 30 10.4
<2.6 MeV, 95% C.L.

Ωcð3188Þ0 3188� 5� 13 60� 15� 11 1670� 450� 360

Ωcð3066Þ0fd 700� 40� 140

Ωcð3090Þ0fd 220� 60� 90

Ωcð3119Þ0fd 190� 70� 20
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total systematic uncertainty, the individual contributions are
added in quadrature. Finally, an uncertainty arises from the
uncertainty on the Ξþ

c mass, whose world-average value is
mðΞþ

c Þ ¼ 2467.89þ0.34
−0.50 MeV [16]. It is quoted separately

from the other uncertainties on the resonance masses and is
the dominant uncertainty on several of them.
The Ωcð3050Þ0 and Ωcð3119Þ0 resonances have very

narrow widths. For these states, Table I also includes
Bayesian 95% confidence level (C.L.) upper limits [16]
on the widths, evaluated from the statistical and systematic
uncertainties assuming Gaussian PDFs.
The observation of theseΩc states in an inclusive process

through a two-body decay does not allow the determination
of their quantum numbers, and therefore no attempt is made
to compare the measured masses with HQET expectations.
More information can be obtained from the study of
possible three-body decays or when reconstructing these
states in decays of heavy baryons.
In conclusion, the Ξþ

c K− mass spectrum is investigated
using a data set corresponding to an integrated luminosity
of 3.3 fb−1 collected by the LHCb experiment. A large
and high-purity sample of Ξþ

c baryons is reconstructed in
the Cabibbo-suppressed decay mode pK−πþ. Five new,
narrow excited Ω0

c states are observed: the Ωcð3000Þ0,
Ωcð3050Þ0, Ωcð3066Þ0, Ωcð3090Þ0, and Ωcð3119Þ0, and
measurements of their masses and widths are reported. The
data indicate also the presence of a broad structure around
3188 MeV that is fitted as a single resonance but could be
produced in other ways, for example, as a superposition of
several states. In addition, the partially reconstructed decay
Ωcð3066Þ0 → Ξ0þ

c K− is observed via its feed-down in the
threshold region. Similarly, indications are found of
Ωcð3090Þ0 and Ωcð3119Þ0 decays to Ξ0þ

c K−.
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