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Abstract The B0
s and B0 mixing frequencies, �ms and

�md , are measured using a data sample corresponding to an
integrated luminosity of 1.0 fb−1 collected by the LHCb ex-
periment in pp collisions at a centre of mass energy of 7 TeV
during 2011. Around 1.8×106 candidate events are selected
of the type B0

(s) → D−
(s)μ

+ (+ anything), where about half
are from peaking and combinatorial backgrounds. To de-
termine the B decay times, a correction is required for the
momentum carried by missing particles, which is performed
using a simulation-based statistical method. Associated pro-
duction of muons or mesons allows us to tag the initial-
state flavour and so to resolve oscillations due to mixing.
We obtain

�ms = (
17.93 ± 0.22(stat) ± 0.15(syst)

)
ps−1,

�md = (
0.503 ± 0.011(stat) ± 0.013(syst)

)
ps−1.

The hypothesis of no oscillations is rejected by the equiv-
alent of 5.8 standard deviations for B0

s and 13.0 standard de-
viations for B0. This is the first observation of B0

s mixing to
be made using only semileptonic decays.

1 Introduction

B0
s and B0 mesons propagate as superpositions of particle

and antiparticle flavour states. For a flavour-specific decay
process1 such as B0 → D−μ+ν, particle-antiparticle mix-
ing lends a sinusoidal component to the decay rates [1, 2].
To measure mixing, the flavour state of the B meson must be
observed to change, which requires knowledge of the state
from at least two points in time. The experimentally acces-
sible times to determine the flavour are at production and

1In this paper, charge conjugate modes are always implied.

� e-mail: Rob.Lambert@cern.ch

decay. Neglecting CP -violation in mixing, the decay rate N

at a proper decay time t simplifies to

N±(t) = N(0)
e−�t

2

[
cosh (��t/2) ± cos (�mt)

]
, (1)

where �� and �m are the width and mass differences2

of the two mass eigenstates, and � is the average decay
width [2]. The positive sign applies when the B meson de-
cays with the same flavour as its production and the nega-
tive sign when the particle decays with opposite flavour to
its production, later referred to as “even” and “odd”. In this
study, a sample of semileptonic decays obtained with the
LHCb detector is used to measure the mixing frequencies
�ms and �md for the B0

s and B0 systems. These quanti-
ties have previously been measured to high precision, usu-
ally in the combination of several channels, relying heavily
on hadronic decay modes (see for example Refs. [3, 4] and
our recent results, Refs. [5–7]). To date no observation of
B0

s mixing has been made using only semileptonic decay
channels.

2 Experimental setup

The LHCb detector [8] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed
for the study of particles containing b or c quarks. The
detector consists of several dedicated subsystems, orga-
nized successively further from the interaction region. A
silicon-strip vertex detector surrounds the pp interaction re-
gion and approaches to within 8 mm of the proton beams.
The first of two ring-imaging Cherenkov (RICH) detectors
comes next, followed by the remainder of the tracking sys-
tem, which comprises, in order: a large-area silicon-strip

2The mass difference is measured here as an angular frequency, in units
of inverse time.
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detector; a dipole magnet with a bending power of about
4 Tm; and three multilayer tracking stations, each with cen-
tral silicon-strip detectors and peripheral straw drift tubes.
After this comes the second RICH detector, the calorimeter
and the muon stations.

The combined high-precision tracking system provides
a momentum measurement with relative uncertainty that
varies from 0.4 % at 5 GeV c−1 to 0.6 % at 100 GeV c−1,
and impact parameter3 resolution of 20 µm for tracks
with high transverse momentum. By combining informa-
tion from the two RICH detectors [9] charged hadrons can
be identified across a wide range in momentum, around
2 to 150 GeV c−1. The calorimeter system consists of
scintillating-pad and preshower detectors, an electromag-
netic calorimeter and a hadronic calorimeter, allowing iden-
tification of photon, electron and hadron candidates. Muons
that pass through the calorimeters are detected using a sys-
tem of alternating layers of iron and multiwire proportional
chambers [10]. Triggering of events is performed in two
stages [11]: a hardware stage, based on information from
the calorimeter and muon systems, followed by a software
stage, which performs full event reconstruction.

3 Data selection and reconstruction

The LHCb dataset used in this analysis corresponds to
an integrated luminosity of 1.0 fb−1 collected in pp col-
lisions at a centre of mass energy of 7 TeV during the
2011 physics run at the LHC. Where simulation is required,
PYTHIA 6.4 [12] is used, with a specific LHCb configu-
ration [13]. Decays of hadronic particles are described by
EVTGEN [14], in which final-state radiation is generated
using PHOTOS [15]. The interaction of the generated par-
ticles with the detector and the detector response are imple-
mented using the GEANT4 toolkit [16, 17] as described in
Ref. [18]. Input to EVTGEN is taken from the best knowl-
edge of branching fractions (B) and form factors at the time
of the simulation [1]. The same reconstruction and selection
is applied on simulated and detector data.

A sample of events is selected in which a D+
(s) →

K+K−π+ candidate forms a vertex with a muon candi-
date. A cut-based selection is applied to enhance the frac-
tion of real D+

(s) mesons in this sample that arise from B0
(s)

semileptonic decays. Vertex and track reconstruction quali-
ties, momenta, invariant masses, flight distances and particle
identification (PID) variables are used. The selection was
initially optimized on simulated data to maximize the signal
significance, S/

√
(S + B), where S (B) denotes the num-

ber of selected signal (background) candidates. The most

3The impact parameter is the distance of closest approach of a track to
a primary interaction vertex.

important cuts for this analysis are those on the PID and
invariant masses. Combined information from the RICH de-
tectors, muon stations, calorimeters and tracking allows us
to place stringent requirements on a log-likelihood based
PID parameter for each final-state particle separately, ensur-
ing at least 99 % purity in the muon sample, and suppress-
ing peaking backgrounds such as D+ → K−π+π+ decays,
where a pion has been misidentified as a kaon. To allow a
simultaneous measurement of �ms and �md , a broad mass
window for the K+K−π+ system is used to cover both the
D+ and D+

s masses, −0.2 < M(K+K−π+) − M0(D
+
s ) <

0.1 GeV c−2, where M0(D
+
s ) is the known mass of the

D+
s meson [1]. Decays of the type D∗(2010)+ → D0π+

are additionally suppressed by requiring that the invariant
mass of the two kaons M(K+K−) < 1.84 GeV c−2, and
combinatorial background with slow collinear pions is sim-
ilarly removed with the mass requirement M(K+K−π+) −
M(K+K−) − M0(π

+) > 15 MeV c−2.
Simulation studies indicate that the selected sample is

dominated by B0
s → D−

s μ+(ν,π0, γ ), B0 → D−μ+(ν,

π0, γ ) and B+ → D−μ+(ν,π+, γ ) decays, where no spe-
cific intermediate states are required other than those men-
tioned, and where at least one neutrino will occur together
with any number of the other particles in the parentheses.
These additional particles are ignored and so a clear B mass
peak cannot be reconstructed. For simplicity, to quantify the
measured mass, M(Dμ), within its possible range, we de-
fine a “normalized mass”, n, relative to the known masses
(M0) of the B , D, and μ:

n = M(Dμ) − M0(D) − M0(μ)

M0(B) − M0(D) − M0(μ)
. (2)

We require 0.24 < n < 1.0, where the lower cut mainly re-
moves low-mass combinatorial background candidates. The
K+K−π+ invariant mass distribution and the normalized
mass distribution (n) of the selected candidates are shown in
Fig. 1, in which the D+

s and D+ peaks can clearly be seen
over the combinatorial background.

Determination of the initial-state flavour is performed us-
ing the standard LHCb flavour-tagging algorithms, which
are described in detail elsewhere [5, 6, 19]. These algorithms
rely on the reconstruction of particles that were produced
in association with, and are flavour-correlated with, the sig-
nal B-meson. The correlations arise either from fragmenta-
tion, which often produces a kaon or pion of specific charge
correlated with the signal, or from “opposite-side” decays,
where the decay products of the partner b quark are recon-
structed (e.g. a muon). A neural network combines tagging
decisions for the best tagging power [6].

A hypothesis is required for the nature of the recon-
structed candidate, either B0

s or B0, in order to choose the
tagging algorithms to be applied and to select the appro-
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Fig. 1 Mass distributions for all selected signal candidates. Left, the
K+K−π+ invariant mass, where the known mass of the D+

s has been
subtracted. Right, the Dμ normalized mass as defined in Eq. (2). Neu-
tral candidates are those of the form D∓μ±, while double-charged can-

didates are those of the form D±μ±. The double-charged candidates
arise from several background sources, most of which are also present
in the neutral sample. In the left plot, the neutral sample exhibits much
larger D mass peaks, indicative of the large B signal component

priate mass with which to calculate n. A split around the
midpoint between the D+

s and D+ peaks is used. For the
B0

s hypothesis all available tags are used. For the B0 hy-
pothesis only opposite-side tags are used, to reduce the dif-
ference between B+ and B0 tagging performance and thus
better constrain the B+ background (see Sects. 5 and 6).
The flavour-tagged dataset comprises 594,845 selected
candidates.

Two techniques are employed to measure the mixing
frequencies: (a) multidimensional log-likelihood maximiza-
tion, simultaneously fitting �ms and �md ; (b) model-
independent Fourier analysis, used as a cross-check, which
determines �ms with good precision, but �md with a very
poor precision. Both methods use a common determination
of the proper decay time and so share a portion of the corre-
sponding systematic effects.

4 Proper decay-time distributions

To obtain the B-meson decay times, a correction is applied
for the momentum lost due to missing particles, using a k-
factor method as employed in many previous measurements
(see, for example, Refs. [20] and [21]). The k-factor [22] is
a simulation-based statistical correction, where the average
missing momentum in a simulated sample is used to cor-
rect the reconstructed momentum as a function of the re-
constructed Dμ mass (as shown in Fig. 2). In this study we
use a fourth-order polynomial to parameterize k as a func-
tion of the normalized Dμ mass (n from Eq. (2)), which

Fig. 2 Input to obtain the k-factor correction from the fully-simulated
B0

s sample. For each event the ratio of reconstructed to generated mo-
mentum, prec/psim is plotted against the normalized Dμ mass (n in
Eq. (2)). The curve shows a fourth-order polynomial resulting from a
fit to the mean of the distribution (in bins of n)

allows us to use the same correction for B0
s and B0. With

this approach, both �ms and �md exhibit residual biases of
around 1 %; these biases are known to good precision from
the full simulation and are corrected in the final results.

The experimental resolution of the proper decay time (t)
reduces the visibility of the oscillations, smearing Eq. (1)
with a resolution function R(t, t ′ − t), where t is the true
decay time and t ′ is the measured value. The limited perfor-
mance of the tagging also reduces the visibility of the oscil-
lations. Our selection requirements include variables that are
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Fig. 3 Illustration of the decay time resolution obtained from a fully
simulated B0 signal sample. The left plots demonstrate the Gaussian
fits (solid lines) using the full LHCb simulated data (filled), to de-
termine the decay time resolution. Each measured (reconstructed and
corrected) time, t ′, is compared to the corresponding simulated decay

time, t . The results are shown for several bins of t ′. The dependence on
decay time of the mean (bias, μ) and width (standard deviation, σ ) can
be fitted with a quadratic or cubic function of either t or t ′. The right
hand plot shows a quadratic fit to the widths

correlated with the decay time, leading to a time-dependent
efficiency function, ε(t ′). Thus Eq. (1) becomes

N±
(
t ′
) = N(0)η

e−�t

2

[
cosh (��t/2)

± (1 − 2ω) cos (�mt)
] ⊗ R

(
t, t ′ − t

) × ε
(
t ′
)
,

(3)

where η is the tagging efficiency and ω is the mistag prob-
ability (the fraction of tags that assign the wrong flavour).
We parameterize the time-dependent efficiency with an em-
pirical “acceptance” function. Specifically Gaussian func-
tions are used as motivated by data and full simulation stud-
ies [22], ε(t ′) = 1 − f G(t ′;μ0, σ1) − (1 − f )G(t ′;μ0, σ2),
where G is the Gaussian function and the parameters are de-
termined from fits to the data (typical values are σ1,2 < 1 ps
and μ0 ≈ 0.01 ps).

The k-factor is a relative correction for the average miss-
ing momentum at a given value of n; as shown in Fig. 2, the
range of missing momenta is broad and varies from about
70 % at n = 0.2 to zero at n = 1. This large relative uncer-
tainty on the corrected momentum (p′) dominates the decay
time resolution, i.e. σ(t ′)/t ′ ≈ σ(p′)/p′. Hence σ(t ′) is ap-
proximately proportional to t ′ (as seen in Fig. 3) and the
decay time resolution worsens as decay time increases. This
dependence is determined and parameterized from the full
simulation. We may choose between a parameterization in
terms of either the generated (“true”) decay time, using a nu-
merical convolution, or in terms of the measured decay time,
using analytical methods; the latter is the default approach.

The resolution dependence is well-fitted with second or third
order polynomials.

5 Multivariate fits to the data

A binned, multidimensional, log-likelihood fit to the data is
made, using the ROOT and embedded ROOFIT fitting frame-
works [23, 24]. In order to improve the resolution on the fit-
ted value of �ms , the sample is divided into two subsamples
about normalized mass n = 0.56 (with this value determined
using fast-simulation “pseudo-experiment” studies), and the
two subsamples are fitted simultaneously as described be-
low. There are 101,000 bins over the K+K−π+ mass, the
measured decay time (t ′), the normalized mass (n < 0.56
and n > 0.56), and the tagging result (even and odd). Seven
categories of signal and background are assigned compo-
nent probability density functions (PDFs) whose fractions
and shape parameters are left free in the fits to the data. The
backgrounds are categorized in terms of their shapes in the
mass and decay-time observables. Using the M(K+K−π+)

distribution we separate out peaking D+
(s) components from

combinatorial background components. Each of these cate-
gories can be further divided into two based on their decay-
time shape. We use the term “prompt” to describe fake can-
didates containing particles exclusively produced in the pri-
mary pp interaction, and the term “detached” for candidates
that contain at least one daughter of a secondary decay and
which therefore tend to exhibit a significantly larger lifetime.
Candidates for the signal B-decays of interest must be both
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detached and peaking. The signal-like decays are usually
grouped together in the fit; however, we separate the spe-
cific background contribution of B+ within the D+ peak and
fit that directly. These components are shown in together
in Fig. 4 and separately in different M(K+K−π+) regions
in Figs. 5 and 6. Each mass PDF is a Gaussian function
or a Chebychev polynomial (Fig. 4), and each background
decay-time PDF is a simple exponential with an appropri-
ate acceptance function as previously described (Fig. 6). For
the signal decay-time shape we use the model described in
Eq. (3), with one instance for each peak. The majority of our
sensitivity arises from the mixing asymmetry, whose time-
dependent fit in the signal regions is shown in Fig. 7. Any
odd/even asymmetry is assumed to be constant as a func-
tion of time for prompt backgrounds and for backgrounds
that are known not to mix (B+,Λb, etc.). Generic detached
backgrounds are allowed to have a time-dependent asymme-
try varying as an arbitrary quadratic polynomial.

The proportion of B+ → D−μ+(ν,π+, γ ) with respect
to B0 → D−μ+(ν,π0, γ ) is fixed to 11 % with a ±2 % un-
certainty, using the ratio of known fragmentation functions
and branching fractions [1]. Based on the full LHCb simula-

tion, this ratio is corrected by 25 % to account for differences
in the reconstruction and tagging efficiencies, with the full

Fig. 4 Distribution of measured K+K−π+ mass, where the known
mass of the D+

s has been subtracted. Black points show the data,
and the various lines overlay the result of the fit. The small step at
−50 MeV c−2 is the result of differences in tagging efficiency for the
B0

s and B0 hypotheses

Fig. 5 Measured B decay-time distribution, overlaid with projections
of the fit, for background-only regions. Top left: a region between the
two signal peaks, −80 to −20 MeV c−2 (with respect to the known
mass of the D+

s ), showing only low decay times. Top right: a region

to the right of the signal peaks 20 to 100 MeV c−2, showing only low
decay times. Bottom row: the same on an extended decay-time scale
and logarithmic. The legend is the same as in Fig. 4
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Fig. 6 Measured B decay-time distribution, overlaid with projections
of the fit, for signal regions. Top left: for odd-tags, high-n and a region
of ±20 MeV c−2 around the D+

s mass peak, showing only low decay
times, where B0

s oscillations can be clearly seen. Top right: for odd-

tags and all n for a region of ±20 MeV c−2 around the D+ mass peak,
showing only low decay times. Bottom row: for both tags and all n for
regions of ±20 MeV c−2 around the D+

s (left) and D+ (right) mass
peaks. The legend is the same as in Fig. 4

Fig. 7 Tagged (mixing) asymmetry, (N+ − N−)/(N+ + N−), as a
function of B decay time. The left plot shows the asymmetry for events
for a region of ±20 MeV c−2 around the D+

s mass peak, and the right
plot shows the corresponding asymmetry around the D+ mass peak.

The black points show the data and the curves are projections of the
fitted PDF. On the left plot the fast oscillations of B0

s are gradually
washed out by the increasingly poor decay-time resolution

value of this correction taken as a systematic uncertainty. We
fix ��s using the result of a recent LHCb analysis [25], and
��d is fixed to zero.

Only the signal mass shapes and the parameters of inter-
est, �ms and �md , are shared between the two subsamples
in n, which are fitted simultaneously. The goodness of the
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fit is verified with a local density method [26], which finds a
p-value of 19.6 %.

6 Fit results and systematic uncertainties

Table 1 gives the fitted values for some important quantities.
In principle the signal lifetimes are also measured, but these
have very large systematic uncertainties and so no results are
quoted. The systematic uncertainties on �ms and �md are
first discussed before the final results are given.

Several sources of systematic uncertainty on the main
measured quantities, �ms and �md , are considered, as
summarized in Table 2. The majority of the systematic un-
certainties are obtained from the data.

– The k-factor: the k-factor correction is a simulation-
based method, and so differences between the simula-
tion and reality that modify the visible and invisible mo-
menta potentially invalidate the correction. Such differ-
ences could for example be in D∗∗ branching fractions or

Table 1 A selection of fitted parameter values, for which statistical
uncertainties only are given. The B0

s signal fraction includes contri-
butions from any detached D+

s production. When the omitted fractions
(of combinatorial background components) are included, the total frac-
tion sums to unity within each n region separately

Quantity Normalized mass region

Low-n High-n

Fit fraction of:
– B0

s signal 0.3247 ± 0.0029 0.3604 ± 0.0023

– B0 signal 0.0781 ± 0.0017 0.0968 ± 0.0022

– prompt D+
s 0.0410 ± 0.0026 0.0444 ± 0.0018

– prompt D+ 0.0196 ± 0.0018 0.0311 ± 0.0024

Mistag probability ω:
– B0

s signal 0.347 ± 0.054 0.333 ± 0.021

– B0 signal 0.3567 ± 0.0063 0.3319 ± 0.0065

Total candidates 368,965 225,880

form factors. Large-scale pseudo-experiment studies are
combined with full simulations to vary these underlying
distributions within their uncertainties and examine biases
produced on the fitted �m values. Small relative uncer-
tainties are found, 0.3 % for �ms and 1.0 % for �md ,
representing the ultimate limit of this technique without
further knowledge of the various sub-decays.

– Detector alignment: momentum scale, decay-length scale,
and track position uncertainties arise from known align-
ment uncertainties and result in variations in recon-
structed masses and lifetimes as functions of decay open-
ing angle. These uncertainties have been studied using
detector survey data and various control modes; they are
well determined and small in comparison to the statistical
uncertainties [27].

– Values of ��: The quantities ��d and ��s are nomi-
nally constant in our fits. When they are varied, within
±5 % for ��d (chosen to well-cover the experimental
range given the lack of information on its sign [1]) and
within the known uncertainty on ��s [25], our result is
only marginally affected.

– Model bias: a correction has been made for the 1 % resid-
ual frequency bias seen in full simulation studies, as dis-
cussed in Sect. 4. This is taken directly from simulation
and half of the correction is assigned a systematic uncer-
tainty.

– Signal proper-time model: the fit is repeated with two
different time-resolution models. (a) When the resolu-
tion is parameterized as a function of true rather than
measured decay time, using full numerical convolution,
a (0.09, 0.002) ps−1 variation is seen in (�ms , �md ).
(b) When a time-independent (average) resolution is used,
a 0.001 ps−1 variation is seen in �md (this method is
not applicable to the measurement of �ms due to many
factors; crucially, within the time frame of any single B0

s

oscillation the decay time resolution worsens by an ap-
preciable fraction of the oscillation period, seen in Figs. 3
and 7). With other modifications to the signal model (res-
olutions and acceptances) a larger variation in �md of
0.007 ps−1 is found.

Table 2 Sources of systematic
uncertainty on �ms and �md .
“Simulation” implies a
combination of full LHCb
simulation and
pseudo-experiment studies

Source of uncertainty Method Systematic uncertainty

�ms [ps−1] �md [ps−1]

k-factor Simulation 0.06 0.0052

Detector alignment Calibration 0.03 0.0008

Values of �� Data refit n/a 0.0004

Model bias Simulation 0.09 0.0055

Signal proper-time model Data refit 0.09 0.007

Other models and binning Data refit 0.05 0.001

B+ (B, efficiency, tagging) Data refit n/a 0.008

Total Sum in quadrature 0.15 0.013
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– Other models and binning: the order of the Chebychev
polynomial is varied, Crystal Ball functions are used for
the mass peak shapes, and the background parameteriza-
tions and the binning schemes are varied. Out of these
modifications, the binning scheme has the largest effect.
Resulting uncertanties of 0.05 ps−1 and 0.001 ps−1 are
assigned to �ms and �md , respectively.

– Assumptions on B+ decays: The �md measurement is
sensitive to χd , the integrated mixing probability, which
in turn is sensitive to the non-mixing B+-background. We
hold constant several B+-background parameters in the
baseline fit, determined from the full simulation. Many
features of the B+ background fit are varied to evaluate
systematic variations, including the fraction, the lifetime,
and the corrections for relative tagging performance. The
largest uncertainty arises from tagging performance cor-
rections and for this a 0.008 ps−1 uncertainty is assigned
to �md . It is possible to leave one or more of these param-
eters free during the fit, but the loss in statistical precision
is prohibitive.

For cross-checks the data are split by LHCb magnet po-
larity and LHCb trigger strategies; no variations beyond the
expected statistical fluctuations are observed.

We obtain

�ms = (
17.93 ± 0.22(stat) ± 0.15(syst)

)
ps−1,

�md = (
0.503 ± 0.011(stat) ± 0.013(syst)

)
ps−1.

To obtain a measure for the significance of the observed
oscillations, the global likelihood minimum for the full fit

is compared with the likelihood of the hypotheses corre-
sponding to the edges of our search window (�m = 0 or
�m ≥ 50 ps−1). Both would result in almost flat asymmetry
curves (cf. Fig. 7) corresponding to no observed oscillations.
We reject the null hypothesis of no oscillations by the equiv-
alent of 5.8 standard deviations for B0

s oscillations and 13.0
standard deviations for B0 oscillations.

7 Fourier analysis

The full fit as described above was performed in the time do-
main, but measurement of the mixing frequency can also be
made directly in the frequency domain as a cross-check, us-
ing well-established Fourier transform techniques [28–30].
The cosine term in Eq. 3 has a different sign for the odd
and even samples, where the lifetime, acceptance, and other
features are shared; this simplifies the analysis in the fre-
quency domain. Any Fourier components not arising from
mixing are suppressed by subtracting the odd Fourier spec-
trum from the even spectrum and no parameterizations of the
background shapes, signal shapes, or decay-time resolution
are required, allowing a model-independent measurement of
the mixing frequencies. We search for the �ms peak in the
subtracted Fourier spectrum, shown in Fig. 8. Extensive fast
simulation pseudo-experiments have shown that the value
of �ms is obtained reliably and with a reasonable preci-
sion using this method; however �md is heavily biased and
has a large uncertainty, and so a result is not quoted. Since
residual components of the Fourier spectrum are of much

Fig. 8 Result of using Fourier transforms to search for the �ms -
peak. The image on the left is constructed from bins of the K+K−π+
mass which are 25 MeV c−2 in width, analysed in steps of 5 MeV c−2

such that a smooth image is produced. The colour scale (blue–green–
yellow–red) is an arbitrary linear representation of the signal intensity;

dark blue is used for zero and below. The vertical dashed line is drawn
at 18.0 ps−1. The apparent double-peak structure is an artifact of this
image. On the right a slice around the D+

s mass region shows only the
peak as used to measure the central value and rms width
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lower frequency than the �ms component, and several com-
plete oscillation periods of �ms are observable, the search
for a spectral peak is relatively free from complications. For
�md , however, the relatively low frequency is similar to that
of many other features of the data, and only a single oscilla-
tion period is observed; therefore the determination of �md

is difficult with this simple model-independent approach.
Taking the spectrum for events in a 25 MeV c−2 bin

around the D+
s mass, we find a clear and separated peak

(Fig. 8, right). The rms width of the peak is 0.4 ps−1,
around a peak value of 17.95 ps−1; the rms can be used
as a model-independent proxy for the statistical uncertainty.
To further evaluate the expected statistical fluctuation in
the peak value, we perform a large set of fast simula-
tion pseudo-experiments taking the result of the multivari-
ate fit as a model for signal and background. The un-
certainty found from the simulation studies is 0.32 ps−1,
slightly smaller than given by the rms. We report �ms =
(17.95±0.40(rms)±0.11(syst)) ps−1, in order to be model-
independent. Systematic uncertainties arise from the detec-
tor alignment and the k-factor correction method, common
to both measurement techniques, as quantified previously in
Sect. 6.

8 Conclusion

The mixing frequencies for neutral B mesons have been
measured using flavour-specific semileptonic decays. To
correct for the momentum lost to missing particles, a
simulation-based kinematic correction, known as the k-
factor, was adopted. Two techniques were used to measure
the mixing frequencies: a multidimensional simultaneous fit
to the K+K−π+ mass distribution, the decay-time distribu-
tion, and tagging information; and a simple Fourier analysis.
The results of the two methods were consistent, with the first
method being more precise. We obtain

�ms = (
17.93 ± 0.22(stat) ± 0.15(syst)

)
ps−1,

�md = (
0.503 ± 0.011(stat) ± 0.013(syst)

)
ps−1.

We reject the hypothesis of no oscillations by 5.8 standard
deviations for B0

s and 13.0 standard deviations for B0. This
is the first observation of B0

s –B0
s mixing to be made using

only semileptonic decays.
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