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Abstract State-of-the-art decision tree methods apply heuristics recursively to
create each split in isolation, which may not capture well the underlying char-
acteristics of the dataset. The optimal decision tree problem attempts to resolve
this by creating the entire decision tree at once to achieve global optimality. In
the last 25 years, algorithmic advances in integer optimization coupled with hard-
ware improvements have resulted in an astonishing 800 billion factor speedup in
Mixed-Integer Optimization (MIO). Motivated by this speedup, we present Op-
timal Classification Trees, a novel formulation of the decision tree problem us-
ing modern MIO techniques that yields the optimal decision tree for axes-aligned
splits. We also show the richness of this MIO formulation by adapting it to give Op-
timal Classification Trees with Hyperplanes that generates optimal decision trees
with multivariate splits. Synthetic tests demonstrate that these methods recover
the true decision tree more closely than heuristics, refuting the notion that optimal
methods overfit the training data. We comprehensively benchmark these methods
on a sample of 53 datasets from the UCI Machine Learning Repository. We estab-
lish that these MIO methods are practically solvable on real-world datasets with
sizes in the thousands, and give average absolute improvements in out-of-sample
accuracy over CART of 1-2% and 3-5% for the univariate and multivariate cases,
respectively. Furthermore, we identify that Optimal Classification Trees are likely
to outperform CART by 1.2-1.3% in situations where the CART accuracy is high
and we have sufficient training data, while the multivariate version outperforms
CART by 4-7% when the CART accuracy or dimension of the dataset is low.
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1 Introduction

Decision trees are one of the most widely-used techniques for classification prob-
lems. Guided by the training data (xi,y;),¢ = 1,...n, decision trees recursively
partition the feature space and assign a label to each resulting partition. The
tree is then used to classify future points according to these splits and labels.
The key advantage of decision trees over other methods is that they are very in-
terpretable, and in many applications, such as healthcare, this interpretability is
often preferred over other methods that may have higher accuracy but are rela-
tively uninterpretable.

The leading work for decision tree methods in classification is CART (Clas-
sification and Regression Trees), proposed by Breiman et al (1984), which takes
a top-down approach to determining the partitions. Starting from the root node,
a split is determined by solving an optimization problem (typically minimizing
an impurity measure), before proceeding to recurse on the two resulting child
nodes. The main shortcoming of this top-down approach, shared by other popular
decision tree methods like C4.5 (Quinlan 1993) and ID3 (Quinlan 1986), is its fun-
damentally greedy nature. Each split in the tree is determined in isolation without
considering the possible impact of future splits in the tree. This can lead to trees
that do not capture well the underlying characteristics of the dataset, potentially
leading to weak performance when classifying future points.

Another limitation of top-down induction methods is that they typically require
pruning to achieve trees that generalize well. Pruning is needed because top-down
induction is unable to handle penalties on tree complexity while growing the tree,
since powerful splits may be hidden behind weaker splits. This means that the best
tree might not be found by the top-down method if the complexity penalty is too
high and prevents the first weaker split from being selected. The usual approach
to resolve this is to grow the tree as deep as possible before pruning back up the
tree using the complexity penalty. This avoids the problem of weaker splits hiding
stronger splits, but it means that the training occurs in two phases, growing via
a series of greedy decisions, followed by pruning. Lookahead heuristics such as
IDX (Norton 1989), LSID3 and ID3-k (Esmeir and Markovitch 2007) also aim to
resolve this problem of strong splits being hidden behind weak splits by finding
new splits based on optimizing deeper trees rooted at the current leaf, rather than
just optimizing a single split. However, it is unclear whether these methods can
lead to trees with better generalization ability and avoid the so-called look-ahead
pathology of decision tree learning (Murthy and Salzberg 1995a).

These top-down induction methods typically optimize an impurity measure
when selecting splits, rather than using the misclassification rate of training points.
This seems odd when the misclassification rate is the final objective being tar-
geted by the tree, and indeed is also the measure that is used when pruning the
tree. Breiman et al (1984, p.97) explain why impurity measures are used in place
of the more natural objective of misclassification:

... the [misclassification] criterion does not seem to appropriately reward
splits that are more desirable in the context of the continued growth of the
tree. ... This problem is largely caused by the fact that our tree growing
structure is based on a one-step optimization procedure.
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It seems natural to believe that growing the decision tree with respect to the final
objective function would lead to better splits, but the use of top-down induction
methods and their requirement for pruning prevents the use of this objective.
The natural way to resolve this problem is to form the entire decision tree in
a single step, allowing each split to be determined with full knowledge of all other
splits. This would result in the optimal decision tree for the training data. This is
not a new idea; Breiman et al (1984, p.42) noted the potential for such a method:

Finally, another problem frequently mentioned (by others, not by us) is
that the tree procedure is only one-step optimal and not overall optimal.
... If one could search all possible partitions ...the two results might be
quite different.

This issue is analogous to the familiar question in linear regression of
how well the stepwise procedures do as compared with ‘best subsets’ pro-
cedures. We do not address this problem. At this stage of computer tech-
nology, an overall optimal tree growing procedure does not appear feasible
for any reasonably sized dataset.

The use of top-down induction and pruning in CART was therefore not due to a
belief that such a procedure was inherently better, but instead was guided by prac-
tical limitations of the time, given the difficulty of finding an optimal tree. Indeed,
it is well-known that the problem of constructing optimal binary decision trees
is NP-hard (Hyafil and Rivest 1976). Nevertheless, there have been many efforts
previously to develop effective ways of constructing optimal univariate decision
trees using a variety of heuristic methods for growing the tree in one step, in-
cluding linear optimization (Bennett 1992), continuous optimization (Bennett and
Blue 1996), dynamic programming (Cox Jr et al 1989; Payne and Meisel 1977),
genetic algorithms (Son 1998), and more recently, optimizing an upper bound on
the tree error using stochastic gradient descent (Norouzi et al 2015). However,
none of these methods have been able to produce certifiably optimal trees in prac-
tical times. A different approach is taken by the methods T2 (Auer et al 1995),
T3 (Tjortjis and Keane 2002) and T3C (Tzirakis and Tjortjis 2016), a family of
efficient enumeration approaches which create optimal non-binary decision trees of
depths up to 3. However, trees produced using these enumeration schemes are not
as interpretable as binary decision trees, and do not perform significantly better
than current heuristic approaches (Tjortjis and Keane 2002; Tzirakis and Tjortjis
2016).

We believe the lack of success in developing an algorithm for optimal decision
trees can be attributed to a failure to address correctly the underlying nature of
the decision tree problem. Constructing a decision tree involves a series of discrete
decisions—whether to split at a node in the tree, which variable to split on—and
discrete outcomes—which leaf node a point falls into, whether a point is correctly
classified—and as such, the problem of creating an optimal decision tree is best
posed as a Mixed-Integer Optimization (MIO) problem.

Continuous optimization methods have been widely used in statistics over the
past 40 years, but MIO methods, which have been used to great effect in many
other fields, have not had the same impact on statistics. Despite the knowledge
that many statistical problems have natural MIO formulations (Arthanari and
Dodge 1981), there is the belief within the statistics/machine learning community
that MIO problems are intractable even for small to medium instances, which
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was true in the early 1970s when the first continuous optimization methods for
statistics were being developed.

However, the last twenty-five years have seen an incredible increase in the com-
putational power of MIO solvers, and modern MIO solvers such as GUROBI (Gurobi
Optimization Inc. 2015b) and CPLEX (IBM ILOG CPLEX 2014) are able to solve
linear MIO problems of considerable size. To quantify this increase, Bixby (2012)
tested a set of MIO problems on the same computer using CPLEX 1.2, released
in 1991, through CPLEX 11, released in 2007. The total speedup factor was mea-
sured to be more than 29,000 between these versions (Bixby 2012; Nemhauser
2013). GUROBI 1.0, an MIO solver first released in 2009, was measured to have
similar performance to CPLEX 11. Version-on-version speed comparisons of suc-
cessive GUROBI releases have shown a speedup factor of nearly 50 between GUROBI
6.5, released in 2015, and GUROBI 1.0 (Bixby 2012; Nemhauser 2013; Gurobi Op-
timization Inc. 2015a), so the combined machine-independent speedup factor in
MIO solvers between 1991 and 2015 is approximately 1,400,000. This impressive
speedup factor is due to incorporating both theoretical and practical advances
into MIO solvers. Cutting plane theory, disjunctive programming for branching
rules, improved heuristic methods, techniques for preprocessing MIOs, using lin-
ear optimization as a black box to be called by MIO solvers, and improved linear
optimization methods have all contributed greatly to the speed improvements in
MIO solvers (Bixby 2012). Coupled with the increase in computer hardware during
this same period, a factor of approximately 570,000 (Top500 Supercomputer Sites
2015), the overall speedup factor is approximately 800 billion! This astonishing
increase in MIO solver performance has enabled many recent successes when ap-
plying modern MIO methods to a selection of these statistical problems (Bertsimas
et al 2015; Bertsimas and King 2015a,b; Bertsimas and Mazumder 2014).

The belief that MIO approaches to problems in statistics are not practically
relevant was formed in the 1970s and 1980s and it was at the time justified.
Given the astonishing speedup of MIO solvers and computer hardware in the
last twenty-five years, the mindset of MIO as theoretically elegant but practically
irrelevant is no longer supported. In this paper, we extend this re-examination of
statistics under a modern optimization lens by using MIO to formulate and solve
the decision tree training problem, and provide empirical evidence of the success
of this approach.

One key advantage of using MIO is the richness offered by the modeling frame-
work. For example, consider multivariate (or oblique) decision trees, which split on
multiple variables at a time, rather than the univariate or azis-aligned trees that
are more common. These multivariate splits are often much stronger than univari-
ate splits, however the problem of determining the split at each node is much more
complicated than the univariate case, as a simple enumeration is no longer possi-
ble. Many approaches to solving this problem have been proposed, including using
logistic regression (Truong 2009), support vector machines (Bennett and Blue
1998), simulated annealing (Heath et al 1993), linear discriminant analysis (Loh
and Shih 1997; Lépez-Chau et al 2013), Householder transformations (Wickrama-
rachchi et al 2016), and perturbation of existing univariate trees (Breiman et al
1984; Murthy et al 1994). Most of these approaches do not have easily accessible
implementations that can be used on practically-sized datasets and as such, the
use of multivariate decision trees in the statistics/machine learning community
has been limited. We also note that these multivariate decision tree approaches
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share the same major flaw as univariate decision trees, in that the splits are formed
one-by-one using top-down induction, and so the choice of split cannot be guided
by the possible influence of future splits. However, when viewed from an MIO per-
spective the problems of generating univariate and multivariate problems are very
similar, and the second is in fact simpler than the first, allowing a practical way
to generate such trees which has not previously been possible for any heuristic.
The flexibility of modeling the problem using MIO allows many such extensions
to incorporated very easily.

Our goal in this paper is to demonstrate that formulating and solving the
decision tree problem using MIO is a tractable approach and leads to practical
solutions that outperform the classical approaches, often significantly.

We summarize our contributions in this paper below:

1. We present a new, novel formulation of the classical univariate decision tree
problem as an MIO problem that motivates our new classification method,
Optimal Classification Trees (OCT). We also show that by relaxing constraints
in this model we obtain the multivariate decision tree problem, and that the
resulting classification method, Optimal Classification Trees with Hyperplanes
(OCT-H), is easier to train than its univariate counterpart, a fact that is not
true about heuristic approaches for generating multivariate decision trees.

2. Using a range of tests with synthetic data comparing OCT against CART, we
demonstrate that solving the decision tree problem to optimality yields trees
that better reflect the ground truth in the data, refuting the belief that such
optimal methods will simply overfit to the training set and not generalize well.

3. We demonstrate that our MIO methods outperform classical decision tree
methods in practical applications. We comprehensively benchmark both OCT
and OCT-H against the state-of-the-art CART on a sample of 53 datasets
from the UCI Machine Learning Repository. We show that across this sample,
the OCT and OCT-H problems are practically solvable for datasets with sizes
in the thousands and yield higher out-of-sample accuracy than CART, with
average absolute improvements over CART of 1-2% and 3-5% for OCT and
OCT-H, respectively, across all datasets depending on the depth of tree used.

4. We provide a comparison of OCT and OCT-H to Random Forests. Across all
53 datasets, OCT closes the gap between CART and Random Forests by about
one-sixth, and OCT-H by about half. Furthermore, for the 31 datasets with
two or three classes, and p < 25, OCT-H and Random Forests are comparable
in accuracy.

5. To provide guidance to machine learning practitioners, we present simple deci-
sion rules using characteristics of the dataset that predict with high accuracy
when the Optimal Tree methods will deliver consistent and significant accu-
racy improvements over CART. OCT is highly likely to improve upon CART
by 2-4% when the CART accuracy is low, and by 1.2-1.3% when the CART
accuracy is high and sufficient training data is availble. OCT-H improves upon
CART by 4-7% when the CART accuracy is low or the dimension of the dataset
is small.

We note that there have been efforts in the past to apply MIO methods to
classification problems. CRIO (Classification and Regression via Integer Optimiza-
tion), proposed by Bertsimas and Shioda (2007), uses MIO to partition and clas-
sify the data points. CRIO was not able to solve the classification problems to
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provable optimality for moderately-sized classification problems, and the practical
improvement over CART was not significant. In contrast, in this paper we present
a very different MIO approach based around solving the same problem that CART
seeks to solve, and this approach provides material improvement over CART for
a variety of datasets.

The structure of the paper is as follows. In Section 2, we review decision tree
methods and formulate the problem of optimal tree creation within an MIO frame-
work. In Section 3, we present a complete training algorithm for optimal tree
classification methods. In Section 4, we extend the MIO formulation to consider
trees with multivariate splits. In Section 5, we conduct a range of experiments
using synthetic datasets to evaluate the performance of our method in recovering
a known ground truth. In Section 6, we perform a variety of computational tests
on real-world datasets to benchmark our performance against classical decision
tree methods in practical applications. In Section 7, we include our concluding
remarks.

2 Optimal Decision Tree Formulation using MIO

In this section, we first give an overview of the classification problem and the
approach taken by typical decision tree methods. We then present the problem
that CART seeks to solve as a formal optimization problem and develop an MIO
model formulation for this problem allowing us to solve it to optimality, providing
the basis for our method Optimal Classification Trees (OCT).

2.1 Overview of Classification Problem and Decision Trees

We are given the training data (X,Y), containing n observations (x;,y;), ¢ =
1,...,n, each with p features x; € RP and a class label y; € {1,..., K} indicating
which of K possible labels is assigned to this point. We assume without loss of gen-
erality that the values for each dimension across the training data are normalized
to the 0-1 interval, meaning each x; € [0, 1].

Decision tree methods seek to recursively partition [0, 1]? to yield a number of
hierarchical, disjoint regions that represent a classification tree. An example of a
decision tree is shown in Figure 1. The final tree is comprised of branch nodes and
leaf nodes:

— Branch nodes apply a split with parameters a and b. For a given point i, if
a®x; < b the point will follow the left branch from the node, otherwise it takes
the right branch. A subset of methods, including CART, produce univariate
or azis-aligned decision trees which restrict the split to a single dimension, i.e.,
a single component of a will be 1 and all others will be 0.

— Leaf nodes are assigned a class that will determine the prediction for all data
points that fall into the leaf node. The assigned class is almost always taken to
be the class that occurs most often among points contained in the leaf node.

Classical decision tree methods like CART, ID3, and C4.5 take a top-down
approach to building the tree. At each step of the partitioning process, they seek
to find a split that will partition the current region in such a way to maximize
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agxi <bp

Fig. 1 An example of a decision tree with two partition nodes and three leaf
nodes

a so-called splitting criterion. This criterion is often based on the label impurity
of the data points contained in the resulting regions instead of minimizing the
resulting misclassification error, which as discussed earlier is a byproduct of using
a top-down induction process to grow the tree. The algorithm proceeds to recur-
sively partition the two new regions that are created by the hyperplane split. The
partitioning terminates once any one of a number of stopping criteria are met. The
criteria for CART are as follows:

— It is not possible to create a split where each side of the partition has at least
a certain number of nodes, Nmin;
— All points in the candidate node share the same class.

Once the splitting process is complete, a class label 1,..., K is assigned to
each region. This class will be used to predict the class of any points contained
inside the region. As mentioned earlier, this assigned class will typically be the
most common class among the points in the region.

The final step in the process is pruning the tree in an attempt to avoid over-
fitting. The pruning process works upwards through the partition nodes from the
bottom of the tree. The decision of whether to prune a node is controlled by the
so-called complexity parameter, denoted by «, which balances the additional com-
plexity of adding the split at the node against the increase in predictive accuracy
that it offers. A higher complexity parameter leads to more and more nodes being
pruned off, resulting in smaller trees.

As discussed previously, this two-stage growing and pruning procedure for cre-
ating the tree is required when using a top-down induction approach, as otherwise
the penalties on tree complexity may prevent the method from selecting a weaker
split that then allows a selection of a stronger split in the next stage. In this sense,
the strong split is hidden behind the weak split, and this strong split may be
passed over if the growing-then-pruning approach is not used.

Using the details of the CART procedure, we can state the problem that CART
attempts to solve as a formal optimization problem. There are two parameters
in this problem. The tradeoff between accuracy and complexity of the tree is
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controlled by the complexity parameter ¢, and the minimum number of points we
require in any leaf node is given by Nmin. Given these parameters and the training
data (xi,y:),7 =1,...,n, we seek a tree T that solves the problem:

min Ry (T) + |T|

1
st. Nz(l) > Nmin Vi € leaves(T') S

where R, (T) is the misclassification error of the tree T' on the training data, |T'| is
the number of branch nodes in tree 7', and N;(I) is the number of training points
contained in leaf node [. We refer to this problem as the optimal tree problem.

Notice that if we can solve this problem in a single step we obviate the need
to use an impurity measure when growing the tree, and also remove the need to
prune the tree after creation, as we have already accounted for the complexity
penalty while growing the tree.

We briefly note that our choice to use CART to define the optimal tree problem
was arbitrary, and one could similarly define this problem based on another method
like C4.5; we simply use this problem to demonstrate the advantages of taking
a problem that is traditionally solved by a heuristic and instead solving it to
optimality. Additionally, we note that the experiments of Murthy and Salzberg
(1995b) found that CART and C4.5 did not differ significantly in any measure of
tree quality, including out-of-sample accuracy, and so we do not believe our choice
of CART over C4.5 to be an important one.

2.2 Formulating Optimal Tree Creation as an MIO Problem

As mentioned previously, the top-down, greedy nature of state-of-the-art decision
tree creation algorithms can lead to solutions that are only locally optimal. In
this section, we first argue that the natural way to pose the task of creating the
globally optimal decision tree is as an MIO problem, and then proceed to develop
such a formulation.

To see that the most natural representation for formulating the optimal deci-
sion tree problem (1) is using MIO, we note that at every step in tree creation, we
are required to make a number of discrete decisions:

— At every new node, we must choose to either branch or stop.

After choosing to stop branching at a node, we must choose a label to assign

to this new leaf node.

— After choosing to branch, we must choose which of the variables to branch on.

— When classifying the training points according to the tree under construction,
we must choose to which leaf node a point will be assigned such that the
structure of the tree is respected.

Formulating this problem using MIO allows us to model all of these discrete de-
cisions in a single problem, as opposed to recursive, top-down methods that must
consider these decision events in isolation. Modeling the construction process in
this way allows us to consider the full impact of the decisions being made at the
top of the tree, rather than simply making a series of locally optimal decisions,
also avoiding the need for pruning and impurity measures.

We will next formulate the optimal tree creation problem (1) as an MIO prob-
lem. Consider the problem of trying to construct an optimal decision tree with a
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maximum depth of D. Given this depth, we can construct the mazimal tree of this
depth, which has T' = 2P+ _ 1 nodes, which we index by t =1,...,T. Figure 2
shows the maximal tree of depth 2.

afxi < b

al'x; < by al'x; > b3

Fig. 2 The maximal tree for depth D = 2

We use the notation p(t) to refer to the parent node of node ¢, and A(t) to
denote the set of ancestors of node ¢. We also define Ay (t) as the set of ancestors
of t whose left branch has been followed on the path from the root node to t, and
similarly Ag(t) is the set of right-branch ancestors, such that A(t) = Ar(t)UAR(t).
For example, in the tree in Figure 2, Az (5) = {1}, Ar(5) = {2}, and A(5) = {1, 2}.

We divide the nodes in the tree into two sets:

Branch nodes: Nodes t € T = {1,..., |T/2]|} apply a split of the form a'x < b.
Points that satisfy this split follow the left branch in the tree, and those that
do not follow the right branch.

Leaf nodes: Nodes t € Tr, = {|T/2] + 1,...,T} make a class prediction for each
point that falls into the leaf node.

We track the split applied at node ¢ € 7g with variables a; € RP and b; € R.
We will choose to restrict our model to univariate decision trees (like CART), and
so the hyperplane split at each node should only involve a single variable. This is
enforced by setting the elements of a; to be binary variables that sum to 1. We
want to allow the option of not splitting at a branch node. We use the indicator
variables d; = 1{node ¢ applies a split} to track which branch nodes apply splits.
If a branch node does not apply a split, then we model this by setting a; = 0 and
by = 0. This has the effect of forcing all points to follow the right split at this node,
since the condition for the left split is 0 < 0 which is never satisfied. This allows
us to stop growing the tree early without introducing new variables to account for
points ending up at the branch node—instead we send them all the same direction
down the tree to end up in the same leaf node. We enforce this with the following
constraints:

p
Zajt = dt, Vt € TB7 (2)

i=1

0<b: <di, VteTp, (3)
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G/th{O,l}, jzlv"'apa VtETB7 (4)

where the second inequality is valid for b; since we have assumed that each x; €
[0,1]7, and we know that a: has one element that is 1 if and only if d¢ = 1, with
the remainder being 0. Therefore we it is always true that 0 < a]x; < d; for any
i and t, and we need only consider values for b; in this same range.

Next, we will enforce the hierarchical structure of the tree. We restrict a branch
node from applying a split if its parent does not also apply a split.

de <dpy, VteTp\{1}, (5)

where no such constraint is required for the root node.

We have constructed the variables that allow us to model the tree structure us-
ing MIO; we now need to track the allocation of points to leaves and the associated
errors that are induced by this structure.

We introduce the indicator variables z; = 1{x; is in node t} to track the
points assigned to each leaf node, and we will then use the indicator variables
l = 1{leaf ¢ contains any points} to enforce a minimum number of points at each
leaf, given by Nmin:

zit <, t € Tp, (6)
Zzit 2 Nminlta te TB' (7)
=1

We also force each point to be assigned to exactly one leaf:

dzu=1, i=1,...,n. (8)

teTy

Finally, we apply constraints enforcing the splits that are required by the struc-
ture of the tree when assigning points to leaves:

a;xi<bt+M1(1—zit), i=1,...,n, Vt € T, Ym € AL(), (9)
a;xi th—MQ(l—zit), i=1,...,n, Vt € Tg, VmEAR(t), (10)

Note that the constraints (9) use a strict inequality which is not supported
by MIO solvers, so this must be converted into a form that does not use a strict
inequality. To do this we can add a small constant € to the left-hand-side of (9)
and change the inequality to be non-strict:

alxi+e<bm—+M (1—2zy4), i=1,...,n, Vte T, Vme Ar(t)  (11)

However, if € is too small, this could cause numerical instabilities in the MIO
solver, so we seek to make € as big as possible without affecting the feasibility of
any valid solution to the problem. We can achieve this by specifying a different ¢;
for each feature j. The largest valid value is the smallest non-zero distance between
adjacent values of this feature. To find this, we sort the values of the jth feature
and take

€ = min{x§i+1) - x;i)
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where argi) is the ith largest value in the jth feature. We can then use these values
for € in the constraint, where the value of €; that is used is selected according to

the feature we are using for this split:
al(xi+€) <bm+M (1—2z:), i=1,...,n, VteTg, Yme ALt) (12)

We must also specify values for the big-M constants M; and M. As mentioned
previously, we know that both af x; € [0,1] and b; € [0,1], and so the largest
possible value of a7 (x; + €) — by is 1 + €max, Where emax = max;{e;}. We can
therefore set M1 = 1 + €max. Similarly, we have the largest possible value of
bs —at z; is 1, and so we can set My = 1. This gives the following final constraints
that will enforce the splits in the tree:

al (xi+€) <bm + (1 + emax) (1 —2it), i=1,...,n, Vt €T, Ym € AL(t),
(13)

ajnxime—(l—zit), i=1,...,n, Vt € Tr,, Ym € Ag(t).
(14)

The objective is to minimize the misclassification error, so an incorrect label
prediction has cost 1, and a correct label prediction has cost 0. Let us define the
matrix Y using the data, where

1, ify;=k
Y= Th V=R K, i=1,....n.
—1, otherwise

We set Ni; to be the number of points of label k£ in node ¢, and N¢ to be the
total number of points in node ¢:

1 n
th=§;(1+m)zit, k=1,...,K, te Ty, (15)
Ne =z, Vt € Tr. (16)
=1

We need to assign a label to each leaf node t in the tree, which we denote with
ct € {1,...,K}. Tt is clear that the optimal label to predict is the most common
of the labels among all points assigned to the node:

¢t = arg max{ Nk } (17)
k=1,...,K
We will use binary variables cg¢ to track the prediction of each node, where
ckt = 1{c: = k}. We must make a single class prediction at each leaf node that
contains points:

K
> e =1, VteTr. (18)

k=1
Since we know how to make the optimal prediction at each leaf ¢ using (17),
the optimal misclassification loss in each node, denoted L: is going to be equal to
the number of points in the node less the number of points of the most common

label:

Ly = Nt — k:ql’gfc’K{th} = k:IR}g,K{Nt — Nit}, (19)
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which can be linearized to give

LtZNt—th—M(l—th), k':l,...,K, VtETL, (20)
Ly < N¢ — Ngt + Mcgg, k=1,...,K, Vt e Tp, (21)
L >0, vt € 1r, (22)

where again M is a sufficiently large constant that makes the constraint inactive
depending on the value of cg¢. Here, we can take M = n as a valid value.

The total misclassification cost is therefore > teT, L¢, and the complexity of
the tree is the number of splits included in the tree, given by ZteTB d. Follow-

ing CART, we normalize the misclassification against the baseline accuracy, L,
obtained by simply predicting the most popular class for the entire dataset. This
makes the effect of o independent of the dataset size. This means the objective
from problem (1) can be written:

min % Z Li+a Z dy. (23)

teTy, teTp

Putting all of this together gives the following MIO formulation for problem (1),
which we call the Optimal Classification Trees (OCT) model:

min % > Lita ) d (24)

teTr teTp
s.t. LtENt—th—n(l—th), k=1,...,K, Vte T,
Ly < N¢ — Nyt + ncge, k=1,...,K, Vte T,
L; >0, vt € 1r,
1 n
th=§;(1+5/ik)zit, k=1,...,K, VtETLv
n
Ntzzzit, vt € 1,
i=1
K
cht:lt, VtETL,
k=1
a;Xith—(l—Zit), i=1,...,n, Vt € Tp, Vm € Agr(t),

ar (xi+€) <bi+ (14 emax)(1 — zi), i=1,...,n, Vt € T, Ym € AL(t),

g zit = 1, i=1,...,n,

teTy,
zit < i, vt € 11,
n
Zzit > Nminlt, vVt € Tp,
i=1
P
Zait:dt’ Vt € 1B,
i=1

0 <b: <dy, vVt € Tg,
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di < dp(t), vt € T \ {1},
Zit7lt6{0,1}7 i=1,...,n, Vt € T,
ajt,dt€{0,1}7 j=1,...,p, Vt € Tp.

This model as presented is in a form that can be directly solved by any MIO
solver. The difficulty of the model is primarily determined by the number of binary
variables z, which is n- 27, Empirically we observe that we can find high-quality
solutions in minutes for depths up to 4 for datasets with thousands of points.
Beyond this depth or dataset size, the rate of finding solutions is slower, and more
time is required.

There are three hyper-parameters that need to be specified: the maximum
depth D, the minimum leaf size Nmin, and the complexity parameter ov. We will
present in Section 3 effective methods for tuning these parameters in validation.

2.3 Improving MIO Performance using Warm Starts

MIO solvers benefit greatly when supplied an integer-feasible solution as a warm
start for the solution process. Injecting a strong warm start solution before start-
ing the solver greatly increases the speed with which the solver is able to generate
strong feasible solutions (Bertsimas and Weismantel 2005). The warm start pro-
vides a strong initial upper bound on the optimal solution that allows more of
the search tree to be pruned, and it also provides a starting point for local search
heuristics. The benefit realized increases with the quality of the warm start, so it
is desirable to be able to quickly and heuristically find a strong integer-feasible
solution before solving.

To demonstrate the effectiveness of warm starts, Figure 3 shows an example of
the typical evolution of upper and lower bounds as we solve the MIO problem (24)
for the optimal tree of depth 2 on the “Wine” dataset, which has n = 178 and p =
13. We see when no warm start is supplied, the upper bound decreases gradually
until the eventual optimal solution is found after 270 seconds. An additional 1, 360
seconds are required to prove the optimality of this solution. When we inject a
heuristic solution (in this case, the CART solution) as a warm start, the same
optimal solution is found after just 105 seconds, and it takes an additional 230
seconds to prove optimality. The total time required to find and prove optimality
in this example decreases by a factor of 5 when the warm start is added, and
the time taken to find the optimal solution decreases by a factor of around 2.5,
showing that using high-quality warm start solutions can have a significant effect
on the MIO solution times. Additionally, we see that the optimal tree solution
has an objective with roughly half the error of the CART warm start, showing
that the CART solutions can indeed be far from optimality in-sample. Finally,
we observe that the majority of the time is spent in proving that the solution is
optimal. A proof of optimality is good to have for comparison to other methods,
but is not necessarily required in practice when evaluating a classifier (note that
other methods make no claims as to their optimality). It is therefore a reasonable
option to terminate the solve early once the best solution has remained unchanged
for some time, because this typically indicates the solution is indeed optimal or
close to it, and proving optimality may take far more time.
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Fig. 3 Comparison of upper and lower bound evolution while solving MIO prob-
lem (24) with and without warm starts for a tree of depth D = 2 for the Wine
dataset with n = 178 and p = 13

We already have access to good heuristic methods for the MIO problem (24);
we can use CART to generate these warm start solutions. Given a solution from
CART, it is simple to construct a corresponding feasible solution to the MIO
problem (24) using the splits from CART to infer the values of the remaining
variables in the MIO problem.

By design, the parameters Nmin and « have the same meaning in CART and
in problem (24), so we can run CART with these parameters to generate a good
solution. We must then prune the splits on the CART solution until it is below
the maximum depth D for the MIO problem to ensure it is feasible.

We can also use MIO solutions that we have previously generated as warm
starts. In particular, if we have a solution generated for a depth D, this solution
is a valid warm start for depth D + 1. This is important because the problem
difficulty increases with the depth, so for larger depths it may be advantageous to
run the MIO problem with a smaller depth to generate a strong warm start. This
technique is used heavily in the validation procedure described in Section 3.

3 Using Optimal Classification Trees for Classification

In this section, we present the implementation details of a full algorithm for train-
ing a decision tree classifier using the Optimal Classification Trees MIO problem
from Section 2. In particular, we devise a procedure for effectively tuning the values
of the hyperparameters of this model.

The most important parameter to choose is the maximum depth of the tree
D. As discussed in Section 2, the depth has a very large effect on the difficulty of
the resulting problem, and it is advantageous to reuse solutions from lower depths
as warm starts for the higher-depth problems. To take advantage of this, we will
specify a maximum depth Dmax, and start building trees from depth 2 up to this
maximum depth, maintaining a pool of possible warm start solutions.
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We also have to tune the value of the complexity parameter a. Recall that the

objective is given by
1
min = > Li+a Y d. (25)
L7, teTp

It is hard to tune the value of the continuous-valued parameter «. A typical
approach would be to discretize the search space and test each value. In our case,
this would involve solving the MIO problem for each value, which is expensive.
Additionally, multiple values of o might give the same solution which would mean
that solving these problems was unnecessary. Ideally we could simply search over
the “critical” values of a that would lead to different solutions, minimizing the
number of MIO problems that need to be solved.

Observe that the penalty term can be rewritten into constraint form as follows:

1
min — E L
L=
€Ty

st. » di <C,

teTp

where C' is some constant corresponding to the value of a.

Note that the term in this constraint is the number of splits in the model and
is integer-valued. This means we need only test values of C' that are integral. We
can therefore search over C' = 1,..., Cmax to generate the entire range of possible
solutions, where Crax = 2 — 1 is the maximum number of possible splits in the
solution. Additionally, a solution to the problem for C is a feasible warm start
solution for the problem at C + 1, so the solutions generated during this search
can be stored and reused during the remaining search.

It can happen that the solution for a particular value of C is not actually an
optimal solution to the original problem (24) for any value of «. This means it is
dominated by solutions for other values of C. Such solutions can be removed in a
post-processing step to ensure that only solutions optimal for the original problem
for any value of o remain.

Given this set of optimal solutions for each value of C, we evaluate each on a
validation set and identify the solution that performs best. We can then calculate
the interval for a in which this solution is the minimizer for problem (24). We use
the midpoint of this interval as the final tuned value for a. In case of a tie, we
take the union of the intervals for all such solutions and take the midpoint of this
union interval.

An overview of the complete process for tuning the parameters using a valida-
tion set follows:

1. Set the maximal depth for the MIO problem, Dmax, and the minimum leaf size
Nmin-
2. For D=1,...,Dmax:
(a) ForC =1,...,2° —1:
i. Run CART using Nmin with a = 0. Trim the solution to depth D and
to a maximum of C' splits.
ii. Search through pool of candidate warm starts (including CART) and
choose the one with the lowest error.
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iii. Solve MIO problem for depth D and C splits using the selected warm
start.
iv. Add the MIO solution to the warm start pool.
3. Post-process the solution pool to remove all solutions that are not optimal
to (24) for any value of a.
4. Identify the best performing solution on a validation set, and the range of « for
which this solution is optimal. Use the midpoint of this interval as the tuned
value of a.

We have not addressed how to tune the value of Npyin as this was not required
for the computational experiments in Section 6. In theory it would be simple to use
a similar approach for reusing solutions as warm starts by noting that a solution
for a value of Npyin is also valid for any smaller value of this parameter. In this
way, it would be best to search over the Ny, values in reverse order, and this
could be carried out as the outermost loop in the search procedure.

Having tuned the parameter values using the training and validation sets, we
proceed to use these parameters to train a final tree on the combined training and
validation sets. Following a similar procedure as in the validation, we use solutions
from lower depths to warm start higher depths. For each depth D =1,..., Dnax,
we run the MIO problem, with the warm start being either CART trimmed to
this depth, or the best MIO solution from a lower depth. Finally, we take the final
solution and evaluate this on the test set to get the out-of-sample error.

4 Optimal Multivariate Decision Trees using MIO

So far, we have only considered decision trees that use a single variable in their
splits at each node, known as wunivariate decision trees. In this section, we show
that it is simple to extend our MIO formulation for univariate trees to yield a
problem for determining the optimal multivariate decision tree.

4.1 Formulating the Multivariate Optimal Tree Problem

In a multivariate decision tree, we are no longer restricted to choosing a single
variable upon which to split, and instead can choose a general hyperplane split at
each node. The variables a; will be used to model the split at each node as before,
except we relax (4) and instead choose a; € [—1,1]” at each branch node t. We
must modify (2) to account for the the possibility these elements are negative by
dealing with the absolute values instead:

p
Z|ajt| < d, VtGTB7

Jj=1

which can be linearized using auxiliary variables to track the value of |aj|:

J
a/jtza’jt7 jzlv"'apa VteTB7
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a/jtz_a/jta j=1...,p, vt € Tp.

As before, these constraints force the split to be all zeros if d; = 0 and no split
is applied.
We now have that af x; € [—1, 1], so we replace (3) with:

—dy < by <d, VteTp.

Now we consider the split constraints (9) and (14). Previously we had that the
range of (aj x; — by) was [—1,1], whereas it is now [~2,2]. This means we need
M = 2 to ensure that the constraint is trivially satisfied when z;; = 0. The
constraints therefore become:

arXi <bm+2(1—ziy), i=1,...,n, Vt € Tg, Ym € AL(t), (26)
alx; >bm —2(1—2y), i=1,...,n, Vt €T, Ym € Ag(t), (27)

Finally, as before we need to convert the strict inequality in (26) to a non-strict
version. We do this by introducing a sufficiently small constant u:

aﬁxi+ﬂgbm+(2+u)(lfzit)7 i=1,...,n, Vt € T, Ym € AL(t),

Note that we need to include p in the rightmost term to ensure the constraint
is always satisfied when z;; = 0. Additionally, unlike in the univariate case, we
cannot choose a value for p in an intelligent manner, and instead need to choose
a small constant. Choosing i too small can lead to numerical issues in the MIO
solver, while too large reduces the size of the feasible region, potentially reducing
the quality of the optimal solution. We take p = 0.005 as a compromise between
these extremes.

Previously, we penalized the number of splits in the tree. In the multivariate
regime where a single split may use multiple variables, it seems sensible to gener-
alize this to instead penalize the total number of variables used in the splits. To
achieve this, we introduce binary variables s;; to track if the jth feature is used
in the tth split:

—sjt < aj¢e < Sjt, 7=1...,p, Vt € 1p

We must also make sure that the values of s;; and d; are compatible. The
following constraints ensure that d; = 1 if and only if any variable is used in the
split:

Sjtgdta j:17"'7pa VteTB7

p
> sje>di, VtETp.

j=1

Finally, we modify the objective function to penalize the number of variables
used across the splits in the tree:

p
min%ZLt—k - ZZSﬁ

teTy teTp j=1
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Combining all of these changes yields the complete Optimal Classification Trees
with Hyperplanes (OCT-H) model:

P
min %ZLt+ a~ZZsjt (28)

teTr teTp j=1

st. Lt > Nt — Nig —n(l — cpy), k=1,...,K, YVt e T,

Ly < Nt — Niy + nege, k=1,...,K, YVt e T,

Ly >0, vt e 1,

1 n
th:§;(1+}/;k)zit, k=1,...,K, Vt € Tp,
=
Nt:Zzit, VteTL,
=1

K

cht:lt7 VteTlﬁ

k=1

a%xi—f—ugbm—{—@—i—u)(l—zit), t=1,...,n, Vi € Tg, Ym € AL(1),

alx; > bm —2(1 — 2zi1), i=1,...,n, ¥t € T, Vm € Ag(t),

Zzitzl, = geeey T

teTyr,

Zit <lt, VtETL,

ZZ” > Nninlt, vt e 711,

i=1

p

Zdjtgdta vtETB,

=1

djtzajt, j=1,...,p, Vt € Tp,

aje > —aje, j=1,...,p, Vt € Tp,

— 85t < aje < Sjt, 1=1...,p, YVt € 1

55¢ < d, j=1,...,p, Vt € Tp,

P

ZSjt >dt, VtGTB7

j=1

*dt<bt<dt, VtETB7

dy Sdp(t), VtGTB\{l},

zit, It € {0,1}, i=1,...,n, Vt € Tg,

d: € {0,1}, j=1,...,p, Vte Ip.

Note that the OCT-H formulation actually contains fewer binary variables than
the OCT problem, as the integrality requirements on a; have been relaxed. This
means the OCT-H problem tends to be easier to solve than the OCT problem,
which is not usually the case for hyperplane tree methods.
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Additionally, from this formulation we can easily obtain the OCT problem as
a special case by restoring the integrality constraints on a¢. The close relationship
between the univariate and multivariate problems reinforces the notion that the
MIO formulation is the natural way to view the decision tree problem.

4.2 Warm Starts for Optimal Classification Trees with Hyperplanes

As a result of relaxing the constraints that required the splits in the tree be
univariate, the warm start trees from before are no longer ideal for warm starting
the solving process. Because we have only relaxed constraints in the model, these
previous warm starts are still feasible solutions, but it is possible that we can
inexpensively find better warm starts that exploit the increased solution space in
the OCT-H problem. Recall that the quality of the warm start solution has a large
effect on the speed of the solving process, so it is generally a good idea for us to
generate higher quality warm starts where possible.

The approach we employ to generate a high-quality warm start to the OCT-
H problem is to use greedy top-down induction with multivariate splits. This is a
natural extension of the univariate heuristics to the multivariate case. To determine
the multivariate split at each node, we simply solve a reduced version of the OCT-
H problem for the points in the current node by restricting the solution to a single
split. This is a much smaller problem than the full OCT-H problem, and so it
solves much faster and without the need for a warm start, although it can also use
the best univariate split as a good warm start.

Note that it would be possible to determine the split at each node using any
other multivariate classification technique, such as logistic regression or support
vector machines. This may increase the speed at which the multivariate warm
starts are generated, since highly optimized versions of these algorithms exist for
most programming languages. It may also lead to increased quality of the warm
start solution, although this has not been tested.

4.3 Training Procedure for Optimal Classification Trees with Hyperplanes

The OCT-H problem (28) has exactly the same parameters as the OCT problem,
and thus the procedure in Section 3 can be used for tuning these parameters. The
only difference is that each split in the tree can now use up to p variables, and so
the maximum tree complexity, Cmax, becomes p(2D —1). As before, we can search
over all values of C' =1, ..., Cnax, solving the complexity-constrained problem for
each and then post-processing to obtain the corresponding tuned value for .

It can happen that p is too large to make this computationally feasible, and it
may be more efficient to simply search over a discretized range of possible a values
as is typically done during validation. In this case, the number of problems to solve
is D - |A|, where A is the discretized set of values to search. The same approach
of reusing the solutions from lower depths as warm starts can still be applied to
speed up the solutions. Whether this approach is better than the constraint-based
approach depends on the size of A that is chosen, and the number of problems
that must be solved by each approach, which is D - |.A| compared to p(2” — 1).
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5 Computational Experiments with Synthetic Datasets

In this section, we examine the performance of Optimal Classification Trees on a
variety of synthetically-generated datasets in order to understand how effective the
method is at discovering the underlying ground truth in a dataset whose structure
is in fact described by a decision tree.

The experiments we conduct are adaptations of the experiments by Murthy
and Salzberg (1995b). These experiments use a single decision tree as the ground
truth to generate datasets, and then different methods are used to induce decision
trees on these datasets and are then compared to the ground truth tree to evaluate
performance. To construct the ground truth, a decision tree of a specified depth
is created by choosing splits at random, and the leaves of the resulting tree are
labeled such that no two adjacent leaves have the same label, ensuring that this
tree is the smallest representation of the ground truth. The training and test
datasets are created by generating each x; as a uniform random vector, and then
using the ground truth tree to assign the corresponding label to the point.

Following Murthy and Salzberg (1995b), we report six measures of tree quality
in all experiments:

— In-sample accuracy: accuracy on the training set.

— Out-of-sample accuracy: accuracy on the test set.

— Tree size: number of leaf nodes.

— Maximum depth: total depth of the tree.

— Average depth: average depth of leaf nodes in the tree.

— Expected depth: average depth of leaf nodes in the tree, weighted by the pro-
portion of the test set that belongs to each leaf node (this is also sometimes
referred to as dynamic complezxity).

In each experiment, 10 random trees are generated as different ground truths,
and 10 training and test set pairs are created using each tree. The size of the
training set is specified by the experiment, and the size of the test set is always
2D . (p—1)-500, where D is the depth of the ground truth tree and p is the number
of features in the data, both specified by the particular experiment. The quality
measures are calculated over all 100 instances of the problem, and we present the
means and standard errors of these measures.

The methods we compare are our OCT method, the standard CART heuristic,
and a modified CART heuristic that imposes a depth limit equal to the depth
of the ground truth. The purpose of this third method is to examine the impact
of trimming the CART solution as a method of obtaining a simpler and more
interpretable tree. For experiments with noise in the data, 10% of the training set
is reserved for validation purposes in order to tune the complexity parameter «.
Note that Murthy and Salzberg (1995b) found that C4.5 and CART gave near-
identical results for all experiments they conducted and reported only the C4.5
results, so our results for CART should also be similar to those that would be
obtained using C4.5.

The first experiment evaluates the effectiveness of each method as the problem
complexity increases by increasing the depth of the ground truth while holding
the training set size and dimension fixed at n = 100 and p = 2, respectively.
There is no noise present in the training data. Table 1 shows the results of this
experiment. We see that depth-constrained CART is significantly worse than the
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];[‘r uteh Method IAn-‘san}p-le OuAt—‘olf—anTlple Tree Size Depth
P ccuracy ccuracy Maximum  Average Expected
CART-depth 86.60 & 2.01 92.03 +£1.01 3.3+0.1 1.8+£0.0 1.74£0.0 1.6+0.0
9 CART 100.00 £ 0.00 97.79 +£0.18 4.6 £0.2 2.8+0.1 22+01 20+0.1
OCT 100.00 + 0.00 98.11+0.14 3.9+0.0 2.0+ 0.0 20+0.0 1.9+0.0
Ground truth  100.00 £ 0.00 100.00 + 0.00 3.9+0.0 2.0+0.0 20£00 1.9£0.0
CART-depth 88.21 +1.32 93.43 +0.42 52+0.1 3.0£0.0 25+00 23%+0.0
3 CART 99.96 + 0.04 95.43 +0.24 7.6+0.3 4.5+0.1 33+01 27401
OoCT 100.00 + 0.00 96.01 + 0.20 74+£0.1 3.0+0.0 29+00 29+0.0
Ground truth ~ 100.00 £ 0.00 100.00 + 0.00 7.8+0.0 30+£00 3.0£00 29400
CART-depth 90.49 + 0.86 87.36 + 0.57 9.5+0.2 4.0+0.0 34+0.0 3.1+0.0
4 CART 100.00 + 0.00 89.82 4+ 0.39 129+03 55+0.1 41401 35+0.1
OoCT 100.00 + 0.00 89.91 +0.33 14.7+0.1 40+£00 394+00 3.9+0.0

Ground truth ~ 100.00 + 0.00 100.00 £ 0.00 15.1+0.1 4.0£0.0 394+00 3.9+0.0

Table 1 Effects of noise in ground truth depth. No noise in data. Training size
= 100.

Tr;:injlrng Method glfsample Ou[:foffsample Tree Size Depth

set size ceuracy ceuracy Maximum  Average  Expected
CART-depth 86.60 &+ 2.01 92.03 + 1.01 3.3+0.1 1.8+£0.0 1.7£00 1.6+0.0

100 CART 100.00 £ 0.00 97.79+£0.18 4.6+0.2 2.8+0.1 22+0.1 20+£0.1
OCT 100.00 £ 0.00 98.16 + 0.13 3.9+0.0 2.0+0.0 1.9+00 1.940.0

Ground truth ~ 100.00 £ 0.00 100.00 £ 0.00 3.9£0.0 2.0+0.0 20+00 1.9+0.0
CART-depth 93.48 +1.03 97.18 +0.47 3.1£0.1 1.94+0.0 1.7+00 1.5+£0.0

200 CART 100.00 £ 0.00 99.24 + 0.06 3.7+0.1 2.5+0.1 20+00 1.7+£0.0
OCT 100.00 £ 0.00 99.21 +0.07 3.8+0.0 2.0+ 0.0 1.9+00 19400

Ground truth ~ 100.00 % 0.00 100.00 + 0.00 3.7+ 0.0 2.0+ 0.0 1.9+0.0 1.84+0.0
CART-depth 89.62 + 1.49 97.58 +0.25 3.3+0.0 2.0+ 0.0 1.8+£0.0 1.6+0.0

400 CART 100.00 £ 0.00 99.47 +0.04 4.7+0.1 2.7+0.0 23+00 19+£0.0
OCT 100.00 £ 0.00 99.64 + 0.03 3.9+0.0 2.0+ 0.0 20+£0.0 2.0+£0.0

Ground truth ~ 100.00 % 0.00 100.00 £ 0.00 3.8+0.0 2.0+0.0 1.9+00 1.940.0
CART-depth 89.75 + 1.51 96.59 + 0.52 3.24+0.0 2.0+0.0 1.7£0.0 1.640.0

200 CART 100.00 £ 0.00 99.80 + 0.02 4.0£0.1 24401 21+00 1.8£0.0
OCT 100.00 £ 0.00 99.82 + 0.02 3.8+0.0 2.0£0.0 1.9+00 19+£0.0

Ground truth ~ 100.00 % 0.00 100.00 + 0.00 3.6 +0.0 2.0+ 0.0 1.9+00 19400
CART-depth 97.38 £ 0.57 99.65 + 0.05 3.4+0.0 2.0+ 0.0 1.8+£0.0 1.6+0.0

1600 CART 100.00 £ 0.00 99.89 + 0.01 3.9+0.1 2.3+0.1 20+0.0 1.7+£0.0
OCT 100.00 £ 0.00 99.89 + 0.01 3.8+0.0 2.0+ 0.0 1.9+00 1.940.0

Ground truth ~ 100.00 £ 0.00 100.00 £ 0.00 3.5£0.1 2.0£0.0 1.8+0.0 1.8+0.0

Table 2 Effects of training set size. No noise in data. Ground truth trees are
depth 2.

other methods when compared to the ground truth, a result that is common to
all of these experiments. In terms of out-of-sample accuracy, both CART and
OCT are about the same in all tests, with OCT having a very slight advantage
at all depths that is largest at depth 3. We see that the out-of-sample accuracies
decrease significantly as the depth increases, which is to be expected because the
training problem is becoming more complex with the same amount of training data
available. In terms of the other quality measures, OCT matches the ground truth
nearly identically in all cases across the measures, whereas CART is significantly
different and seems to be learning trees that are structurally different to the ground
truth. This experiment demonstrates that although different methods can have the
same out-of-sample accuracy, the underlying structure learned by each method can
still be significantly different from one another, and in this case OCT is a much
closer match for the ground truth.
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Cle'mss Method In-sample Out-of-sample
Noise Accuracy Accuracy

Tree Size Depth

Maximum  Average Expected

CART-depth 98.77 +0.21 98.27 £ 0.19 3.4+0.0 2.0£0.0 1.8+£0.0 1.74+0.0

0% CART 100.00 £ 0.00 99.03 = 0.08 4.0+0.1 24+0.1 20+00 1.8£0.0
OoCT 100.00 £ 0.00 99.16 & 0.07 3.9+0.0 2.0+0.0 20+00 2.0+£0.0
Ground truth ~ 100.00 % 0.00 100.00 £ 0.00 3.6+0.0 2.0+0.0 1.9+0.0 1.84+0.0
CART-depth 88.02+0.75 95.96 + 0.67 3.5+0.1 1.9+£0.0 1.8£0.0 1.840.0
5% CART 91.20 +£0.20 98.62 +0.14 3.8£0.1 22+0.1 1.9+00 1.9+£0.0
OoCT 91.46 +0.16 98.84 +0.11 3.7£0.1 1.94+0.0 1.9+00 1.9+£0.0
Ground truth 95.16 4+ 0.03 100.00 £ 0.00 3.8£0.0 2.0£0.0 1.9+00 2.0+£0.0
CART-depth 79.77 £ 0.60 95.39 +0.49 3.5£0.1 2.0£0.0 1.8+0.0 1.9+0.0
10% CART 83.71 £ 0.45 98.33 £ 0.23 4.3£0.2 2.6+£0.1 22+£01 2.0£00
OCT 83.97 £ 0.26 98.85 1+ 0.10 3.9+0.0 2.0£0.0 1.9+£0.0 20400
Ground truth ~ 90.66 £ 0.06 100.00 £ 0.00 3.9+0.0 2.0+0.0 20+00 20+£0.0
CART-depth 74.914+0.51 97.90 & 0.26 34+0.1 1.9+0.0 1.8+£0.0 1.74+0.0
15% CART 76.03 + 0.52 97.70 +0.33 4.0+0.2 23+0.1 1.9+01 1.8+0.1
oCT 76.18 +0.33 98.53 +0.21 3.5+0.1 1.9+£0.0 1.8£0.0 1.840.0
Ground truth 86.50 +0.10 100.00 £ 0.00 3.6+0.0 2.0+0.0 1.9£00 18400
CART-depth 66.17 £ 0.66 95.01 +0.44 3.5£0.1 1.94+0.0 1.8+0.0 1.8+0.0
20% CART 68.39 &+ 0.70 95.43 + 0.46 4.4£03 2.6+0.2 21+£01 19£0.1
OCT 68.53 £+ 0.43 97.34 +£0.28 3.5£0.1 1.94+0.0 1.8+0.0 1.8+0.0
Ground truth ~ 82.93 £0.15 100.00 £ 0.00 3.7£0.0 2.0£0.0 1.9+00 1.9+£0.0
CART-depth 62.02 & 0.56 95.95 & 0.49 3.5+0.1 1.94+0.0 1.8+£0.0 1.940.0
25% CART 63.34 4 0.60 96.20 = 0.38 42404 24+0.2 20+0.1 20+£0.1
OoCT 62.69 + 0.57 96.86 4= 0.38 3.6+0.1 1.9+0.0 1.8+£0.0 1.94+0.0

Ground truth 79.10+0.18 100.00 £ 0.00 3.94+0.0 2.0+0.0 20+00 2.0+£0.0

Table 3 Effects of noise in class labels. Ground truth trees are depth 2.

The second experiment investigates the effect of the amount of available train-
ing data relative to the complexity of the problem. We increase the size of the
training set while holding the depth of the ground truth fixed at D = 2 and the
dimension fixed at p = 2. There is no noise in the training data. Table 2 shows a
summary of the results. We see that all methods increase in out-of-sample accuracy
as the training size increases, approaching 100% accuracy at the higher sizes. We
see that initially depth-constrained CART is a poor approximation to the ground
truth, but it becomes as accurate out-of-sample as the other methods if sufficient
training data is available. In a data-poor environment, depth-constrained CART
performs significantly worse, and OCT offers a slight improvement over CART in
terms of out-of-sample accuracy. This offers clear evidence against the notion that
optimal methods tend to overfit the training data in data-poor scenarios; in fact
the optimal method performs stronger. In terms of the other metrics, OCT most
closely matches the attributes of the true trees in nearly all cases, indicating it is
actually learning the truth in the data.

The third experiment examines the impact of adding noise to the labels of the
training data. In this experiment, 100 training points were generated per distinct
label of the ground truth tree (D = 2, p = 2). Noise was then added to the
training set by increasing by 1 the label of a random k% of the points, where k
is a parameter of the experiment. Table 3 shows the impact of increasing levels
of label perturbations in the training data. As the level of noise increases, the
accuracies of all methods tend to decrease, as would be expected. The difference
between the out-of-sample accuracies of CART and OCT increases with the level
of noise up to 20%, indicating that OCT is able to better identify the true tree than
CART when exposed to such noise, and this difference quickly becomes significant
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Attrljbute Method In-sample Out-of-sample
Noise Accuracy Accuracy

Tree Size Depth

Maximum  Average Expected

CART-depth 98.77 +0.21 98.27 £ 0.19 3.4+0.0 2.0£0.0 1.8+£0.0 1.74+0.0

0% CART 100.00 £ 0.00 99.03 = 0.08 4.0+0.1 24+0.1 20+00 1.8£0.0
OoCT 100.00 £ 0.00 99.16 & 0.07 3.9+0.0 2.0+0.0 20+00 2.0+£0.0
Ground truth ~ 100.00 % 0.00 100.00 £ 0.00 3.6+0.0 2.0+0.0 1.9+0.0 1.84+0.0
CART-depth 95.13 +£0.67 96.46 + 0.54 34+0.1 1.9+£0.0 1.8£0.0 1.7£0.0
5% CART 98.77 £ 0.10 98.76 +0.13 3.9£0.1 23£0.1 20+00 2.0%£0.0
OoCT 98.83 +£0.10 99.10 +0.07 3.6 £0.1 2.0£0.0 1.9+00 1.9+£0.0
Ground truth 99.28 £ 0.06 100.00 £ 0.00 3.8£0.0 2.0£0.0 1.9+00 1.9+£0.0
CART-depth 93.77 £ 0.82 95.19 & 0.69 3.1£0.1 1.94+0.0 1.7+0.0 1.5+0.0
10% CART 98.02 £ 0.17 98.78 £ 0.12 3.6 £0.1 2.4£0.0 1.9+00 1.6+£0.0
OCT 98.03 £ 0.18 98.80 +0.14 3.4+0.0 2.0£0.0 1.8+£0.0 1.74+0.0
Ground truth ~ 98.73 £0.10 100.00 £ 0.00 3.4+0.0 2.0+0.0 1.8+£0.0 1.74+0.0
CART-depth 93.87+0.76 97.08 & 0.36 3.0+0.0 1.9+0.0 1.6+£0.0 1.54+0.0
15% CART 96.49 4 0.26 97.78 £ 0.25 3.3+0.1 2.2+0.1 1.8+£0.0 1.6+0.0
oCT 96.48 + 0.26 98.05 % 0.22 3.24+0.1 1.9+£0.0 1.7£0.0 1.6%0.0
Ground truth 97.37+0.20 100.00 £ 0.00 3.3+0.0 2.0+0.0 1.8£0.0 1.6%0.0
CART-depth 92.07 £ 0.84 96.92 +0.43 29+0.1 1.7+0.0 1.5+00 1.5+0.0
20% CART 95.56 & 0.29 97.824+0.22 3.3£0.1 21+0.1 1.7+0.1 1.6+£0.0
OCT 95.73 £ 0.27 97.81 +0.22 3.2£0.1 1.84+0.0 1.7+0.0 1.7+£0.0
Ground truth ~ 97.16 £ 0.19 100.00 £ 0.00 3.7£0.0 2.0£0.0 1.9+00 1.9+£0.0
CART-depth 91.47 £ 0.56 95.09 & 0.54 3.24+0.0 2.0£0.0 1.7£0.0 1.74+0.0
25% CART 94.28 +0.29 97.14 £ 0.27 3.6+0.1 24+0.1 1.9+0.0 1.840.0
OoCT 94.51 4+ 0.28 97.29 +0.25 3.6+0.1 2.0+0.0 1.9+0.0 19400

Ground truth 96.01 4+ 0.23 100.00 £ 0.00 3.7+0.0 2.0+0.0 1.9+£00 1.840.0

Table 4 Effects of noise in attribute values. Ground truth trees are depth 2.

(1-2% for noise levels of 15-20%). At the highest level of noise, the difference
between these methods is diminished, reflecting the difficulty of learning the truth
in such a noisy environment. The other metrics also indicate that OCT again most
closely matches the ground truth as the noise levels are increased. We remark that
these results counter the idea that optimal methods are less robust to noise in
the data than current heuristic approaches due to problems of overfitting, as we
clearly see that the OCT trees are significantly stronger out-of-sample than the
heuristic counterparts for high levels of label noise.

The fourth experiment is similar to the previous one, except it considers noise
in the features of the training data instead of the labels. Again, 100 training points
are generated for each distinct label in the ground truth tree (D =2, p = 2). We
introduce noise by selecting a random k% of the training points and to each of
these adding random noise ¢ ~ U(—0.1,0.1) to every feature. Table 4 shows the
impact of increasing levels of this feature noise in the training data. At all levels of
noise, the out-of-sample accuracies of CART and OCT are comparable, as are the
other tree metrics. Even at the highest level of noise, where 25% of the training
data are perturbed in all features by up to 10%, both methods have an out-of-
sample accuracy above 97%. We conclude that in the presence of significant feature
noise, neither method outperforms the other, and the optimal method is clearly
not overfitting the training data.

The final experiment considers the effect of increasing the dimensionality of the
problem while holding the training size and ground truth depth fixed at n = 100
and D = 2, respectively. Table 5 shows the effect of increasing the number of
features for fixed training size and tree depth. At the lower dimensions, there is
no significant difference between CART and OCT, but at higher dimensions the
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Number of Method In-sample Out-of-sample Depth

Tree Size
features Accuracy Accuracy

Maximum  Average Expected
CART-depth 86.60 & 2.01 92.03 £ 1.01 3.3+0.1 1.84+0.0 1.7£0.0 1.640.0
CART 100.00 £ 0.00 97.79+0.18 4.6+0.2 2.8+0.1 22401 20+£0.1
oCT 100.00 £ 0.00 98.16 +0.13 3.9+0.0 2.0+0.0 1.9+00 19400
Ground truth ~ 100.00 % 0.00 100.00 £ 0.00 3.94+0.0 2.0+0.0 20+£00 1.9+£0.0

CART-depth 98.31 +£0.37 98.25+0.13 3.3+0.0 2.0+0.0 1.8£0.0 1.6%0.0

4 CART 100.00 £ 0.00 98.55 +0.11 3.6 £0.1 2.3£0.0 1.9+00 1.6+£0.0
OoCT 100.00 £ 0.00 98.48 +0.10 3.8£0.0 2.0£0.0 1.9+00 1.9+£0.0
Ground truth ~ 100.00 % 0.00 100.00 £ 0.00 3.6 £0.0 2.0£0.0 1.9+00 1.8+0.0
CART-depth 95.99 £+ 0.70 96.37 + 0.42 3.8£0.0 2.0£0.0 1.9+00 19+0.0
8 CART 100.00 £ 0.00 97.64 +0.18 4.5£0.1 25£0.1 22+£00 2.0£00
OCT 100.00 £ 0.00 98.25 +0.12 4.0+0.0 2.0£0.0 20+00 20+£0.0
Ground truth ~ 100.00 % 0.00 100.00 £ 0.00 3.9+0.0 2.0+0.0 20+00 20+£0.0
CART-depth 96.33 4 0.59 97.28 +0.20 3.94+0.0 2.0+0.0 20+00 2.0+£0.0
16 CART 100.00 £ 0.00 97.424+0.17 44+0.1 2.4+0.0 22400 20+£0.0
oCT 100.00 £ 0.00 98.06 + 0.16 4.0+0.0 2.0+0.0 20+00 2.0+£0.0

Ground truth ~ 100.00 £ 0.00 100.00 £ 0.00 4.0£0.0 2.0£0.0 20+00 20%£0.0

Table 5 Effects of dimensionality. Training set size = 100. No noise. Ground
truth trees are depth 2.

difference is about 0.6% and is significant. The other metrics show that again the
OCT trees are the best match for the ground truth. These results echo those from
the second test and show that the optimal method performs stronger relative to
CART in data-poor environments where relatively little training data is available
compared to the problem complexity.

We conclude by summarizing the collective findings of these tests with synthetic
data. In nearly all cases, the trees generated by the OCT method most closely
matched the quality metrics of the ground truth trees. In particular, the OCT
trees in most cases had out-of-sample accuracies that were significantly higher
than those of CART, even in the presence of significant levels of noise in the
training data. This provides strong evidence against the widely-held belief that
optimal methods are more inclined to overfit the training set at the expense of out-
of-sample accuracy. A secondary conclusion is that the depth-constrained CART
method is a poor way of constructing a decision tree of a given depth. Creating
complete trees and then trimming these to shorter depths yields trees that are
significantly worse in nearly all cases than those created by OCT, which creates
the tree with the depth limit in mind.

6 Computational Results with Real-world Datasets

In this section, we report the performance of Optimal Classification Trees with and
without hyperplanes on several publicly available datasets widely-used within the
statistics and machine learning communities, and compare these to the prominent
decision tree method, CART.

In order to provide a comprehensive benchmark of performance for optimal
trees, we used a collection of 53 datasets obtained from the UCI Machine Learning
Repository (Lichman 2013). These datasets are used regularly for reporting and
comparing the performance of different classification methods. The datasets we
use have sizes up to thousands of points, which we demonstrate can be handled
by our methods. Datasets with tens of thousands of points were tested, but the
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time required for our methods to generate high-quality solutions was prohibitive.
For these experiments, we seek to demonstrate the improvement delivered by our
methods on these common datasets of manageable size.

Each dataset was split into three parts: the training set (50%), the validation
set (25%), and the testing set (25%). The training and validation sets were used
to tune the value of the hyperparameter a. We then used this « to train a tree
on the combined training and validation sets, which we then evaluate against the
testing set to determine the out-of-sample accuracy.

To reduce the amount of computation required across all the datasets, we
elected not to tune the parameter Npnin. Instead, we set this to 5% of the total
number of points in the dataset so that this value would work across all datasets.

We trained Optimal Trees of depths 1-4 on all datasets, and compared them
to solutions from CART trimmed to the same depth. These CART solutions were
obtained by fixing Npin to the same value as for Optimal Trees, and tuning the
hyperparameter « in the usual way for CART. The resulting tree was then trimmed
to the specified depth. This lets us evaluate the performance of all methods in the
same depth-constrained scenario, which is often important for applications that
require interpretability of the solutions. In such cases, we seek solutions with very
few splits that best capture the structure in the data. We collected data for CART
without the depth constraints to examine whether shallower Optimal Trees can
achieve the same accuracy as deep CART trees.

In order to minimize the effect of the particular splitting of the data into train-
ing, validation and testing sets, the entire process was conducted five times for
each dataset, with a different splitting each time. The final out-of-sample accura-
cies were then obtained by averaging the results across these five runs.

For testing the performance of CART, we used the RPART package (Therneau
et al 2015) in the R programming language (R Core Team 2015). The hyperparam-
eters Nmin and a correspond to the parameters minbucket and cp. As discussed
earlier, we post-processed the trees to satisfy any depth constraints.

The Optimal Classification Tree problems (OCT and OCT-H) were imple-
mented in the JULIA programming language, which is a rapidly maturing language
designed for high-performance scientific computing (Bezanson et al 2014). We for-
mulated our MIO models using the JUMP package, a state-of-the-art library for
algebraic modeling and mathematical optimization (Lubin and Dunning 2015),
and solved them using the GUROBI 6.5 solver, one of the fastest available commer-
cial MIO solvers (Gurobi Optimization Inc. 2015b). Again, we tuned the value of
« through the validation process described in Section 3.

All problems were solved in parallel using the Amazon Web Services (AWS)
Elastic Compute Cloud (EC2). We used the compute-optimized c4.xlarge in-
stances, which have have 4 virtual CPU cores (2.9 GHz) and 7.5 GB RAM.

A time limit was applied to each Optimal Tree problem. On most datasets
for OCT this was 30 minutes, but for some of the larger datasets we increased
the time limit up to 2 hours to ensure that the solver could make progress. The
OCT-H problem is easier to solve and so only required time limits of 5~15 minutes.
When generating heuristic warm starts for the multivariate problem by recursively
solving the OCT-H problem with a single split, we used a time limit of 60 seconds.
We found this was more than enough to find a good greedy solution.

As discussed in Section 2, the application of a time limit when solving an MIO
problem when using strong warm starts and heuristics does not usually affect the
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Max. depth  CART OCT  OCT-H (top-down) OCT-H

1 71.0%  71.3% 74.5% 76.1%
2 76.2%  78.0% 78.7% 81.0%
3 78.8%  79.5% 79.9% 82.3%
4 79.8%  80.4% 80.6% 82.9%

Table 6 Mean out-of-sample accuracies across all datasets for each method,
according to the maximum tree depth.

quality of the solution if the time limit is sufficiently large. As we saw in Figure 3,
the solution that is eventually shown to be optimal is typically found very close
to the beginning of the solve, especially when warm starts are used. Moreover,
the majority of the time is spent in proving that this solution is in fact optimal,
which is not required for our purposes. If we set the time limit intelligently, we can
avoid the lengthy process of proving optimality while still generating high quality
solutions. However, this does mean that most of our results for OCT and OCT-H
do not carry explicit certificates of optimality.

6.1 Overall Comparison of All Methods

We first provide a summary of all methods for comparison purposes. Table 6 shows
the average out-of-sample accuracy across all datasets for each method and tree
depth. For reference we also include the results for a top-down induction version
of OCT-H, where the tree is decided greedily, one split at a time, providing a
reference point for the performance of top-down multivariate methods. We see
that CART performs the weakest, and is outperformed at all depths by OCT by
about 1-2%, demonstrating the advantage that can be realized by using optimal
trees. OCT-H is significantly more powerful than all other methods; in particular,
OCT-H performs significantly stronger than the top-down OCT-H heuristic, over
2% better on average, indicating that multivariate trees also benefit significantly
from taking a global perspective when choosing the splits.

When we run CART without constraining the depth of the trees, the maximum
tree depth required is 10 and the resulting average accuracy across all datasets is
80.7% . We note this is very close to the accuracy of 80.4% of OCT at depth
4. Tt is quite possible that with a longer time limit, OCT at depth 4 would be
able to achieve accuracies similar to those of CART at depth 10. This would be
very significant for applications that require interpretation of the decision trees,
since shallow trees are much more interpretable. We also note that even the depth
2 accuracy of OCT-H at 81.0% is greater than this depth 10 CART accuracy,
indicating that very shallow multivariate decision trees can outperform the deepest
univariate trees.

6.2 Optimal Classification Trees vs. CART

We now present an in-depth direct comparison of OCT and CART. Both methods
seek to solve the same decision tree problem, so this comparison aims to show the
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Mean out-of-sample

Dataset Mean
accuracy .
improvement

Name n p K CART OCT

acute-inflammations-1 120 6 2 88.7 100.0 +11.33+1.70
acute-inflammations-2 120 6 2 100.0 100.0 0.00 = 0.00
balance-scale 625 4 3 64.5 67.1 +2.68 +1.30
banknote-authentication 1372 4 2 89.0 90.1 +1.05 +0.77
blood-transfusion 748 4 2 75.5 75.5 0.00 = 0.00
breast-cancer-diagnostic 569 30 2 90.5 91.9 +1.40 £ 0.63
breast-cancer-prognostic 194 32 2 75.5 75.1 —0.41 £0.41
breast-cancer 683 9 2 92.3 94.5 +2.22 +1.00
car-evaluation 1728 15 4 73.7 73.7 0.00 £ 0.00
chess-king-rook-vs-king-pawn 3196 37 2 78.2 86.7 +8.51 +0.56
climate-model-crashes 540 18 2 90.1 90.5 +0.44 +0.44
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.4 71.2 +0.77 £ 0.77
connectionist-bench 990 10 11 24.8 29.0 +4.21 +1.68
contraceptive-method-choice 1473 11 3 46.8 48.4 +1.57 &£ 1.57
credit-approval 653 37 2 87.7 87.7 0.00 £ 0.00
cylinder-bands 277 484 2 62.6 62.6 0.00 £ 0.00
dermatology 358 34 6 65.4 67.4 +2.02 £ 2.02
echocardiogram 61 6 2 74.7 77.3 +2.67 +1.63
fertility 100 12 2 88.0 85.6 —2.40 £ 2.40
haberman-survival 306 3 2 73.2 73.2 0.00 £ 0.00
hayes-roth 132 4 3 52.7 45.5 —7.27 +3.66
heart-disease-cleveland 297 18 5 54.1 53.6 —0.53 £0.53
hepatitis 80 19 2 83.0 83.0 0.00 £ 0.00
image-segmentation 210 19 7 38.9 53.6 +14.724+1.25
indian-liver-patient 579 10 2 71.7 70.9 —0.83 £0.83
ionosphere 351 34 2 87.8 87.8 —0.00 £0.36
iris 150 4 3 92.4 92.4 0.00 + 0.00
mammographic-mass 830 10 2 81.2 81.2 0.00 £ 0.00
monks-problems-1 124 11 2 57.4 67.7 +10.32+6.24
monks-problems-2 169 11 2 60.9 60.0 —0.93£0.93
monks-problems-3 122 11 2 94.2 94.2 0.00 £ 0.00
optical-recognition 3823 64 10 29.7 29.4 —0.27£0.17
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 84.1 83.7 —0.41 £2.27
pima-indians-diabetes 768 8 2 71.9 72.9 +1.04 +1.04
planning-relax 182 12 2 71.1 71.1 0.00 £ 0.00
gsar-biodegradation 1055 41 2 76.4 76.1 —0.30 £0.28
seeds 210 7 3 87.2 88.7 +1.51 +£0.92
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 72.7 98.2 +25.45+1.82
spambase 4601 57 2 84.2 84.3 +0.03 +0.03
spect-heart 80 22 2 64.0 65.0 +1.00 £ 7.14
spectf-heart 80 44 2 69.0 72.0 +3.00 + 3.39
statlog-project-german-credit 1000 48 2 70.1 70.5 +0.40 +0.40
statlog-project-landsat-satellite ~ 4435 36 [§ 63.2 63.2 0.00 £ 0.24
teaching-assistant-evaluation 151 52 3 38.9 42.2 +3.24 + 2.76
thoracic-surgery 470 24 2 85.5 84.6 —0.85£0.85
thyroid-disease-ann-thyroid 3772 21 3 95.6 95.6 0.00 £ 0.00
thyroid-disease-new-thyroid 215 5 3 91.3 92.8 +1.51 +1.10
tic-tac-toe-endgame 958 18 2 68.5 69.6 +1.17 £ 0.82
wall-following-robot-2 5456 2 4 94.0 94.0 0.00 £ 0.00
wine 178 13 3 81.3 91.6 +10.22+1.51

Table 7 Full results for CART and OCT at depth 2.
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Max. depth  CART wins OCT wins Ties . Accuracy p-value
Improvement

1 4 19 30 0.36% 0.0141

2 9 25 19 1.86% ~ 1076

3 14 21 18 0.73% 0.0065

4 13 21 19 0.62% 0.0279

Table 8 Comparison of CART and OCT across a range of depths, showing the
number of datasets for which each method had the highest out-of-sample accuracy,
and the mean improvement in out-of-sample accuracy when using OCT across
all datasets along with the p-value indicating the statistical significance of this
difference.

effectiveness of formulating the problem under an MIO framework and solving the
exact same problem to optimality.

The entire set of mean out-of-sample accuracies on each dataset for both meth-
ods at depth 2 is provided in Table 7, which reports the size and dimension of the
dataset, the number of class labels K, and the average out-of-sample accuracy of
each method along with the mean accuracy improvement for OCT over CART
and the corresponding standard error (results for depths 3 and 4 are provided in
Appendix A).

In Table 8, we present the number of datasets for which each method per-
formed strongest, broken down by the maximum depth of the trees. We see that
at all depths, OCT is stronger on roughly twice as many datasets as CART. This
table also shows the mean difference between the out-of-sample accuracies of each
method across all datasets at each depth, along with the p-value indicating the
statistical significance of this difference. We see that the OCT trees have a higher
accuracy of around 0.5-2% at all depths, and that this difference is statistically
significant for all depths. The largest difference is at depth 2, and at depths 3 and
4 this difference is smaller, but still significant both statistically and in magnitude.
The result at depth 2 shows there is scope for OCT to significantly outperform
CART by a large margin. We believe the smaller differences at higher depths can
be attributed to the MIO problems being harder to solve, and so less progress is
being made at these depths for the same time limit. Another explanation is that
the natural advantage we would expect optimal methods to have over CART is
less pronounced at higher depths, but this runs contrary to intuition which would
suggest that larger trees have more scope for optimization than shallower ones.

Note that even at depth 1, a significant difference is present between the meth-
ods, which is simply the effect of using the misclassification score to select the best
split as opposed to an impurity measure.

We have established that OCT is more likely to outperform CART, and has
a small yet significant gain in out-of-sample accuracy across the collection of
datasets. Next, we will consider the relative performance of the methods according
to characteristics of the dataset in order to identify the types of problems where
each method is more likely to outperform the other.

Table 9 presents a comparison of OCT against CART as a function of the
accuracy of CART. We can see OCT consistently has an edge when the CART
accuracy is above 80% or below 60%. The win rates in these areas also favor
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Max. CART CART OCT wins  Ties Accuracy
depth Accuracy wins Improvement

0-60% 1 6 3 0.11%
60-70% 1 5 5 0.90%
1 70-80% 2 6 7 0.33%
80-90% 0 1 8 0.33%
90-100% 0 1 7 0.01%
0-60% 2 5 0 3.75%
60—-70% 1 5 2 1.12%
2 70-80% 3 6 4 2.87%
80-90% 3 5 4 1.71%
90-100% 0 4 9 0.43%
0-60% 3 3 0 2.53%

60—-70% 2 2 1 —0.28%
3 70-80% 5 6 4 0.06%
80-90% 3 4 4 1.22%
90-100% 1 6 9 0.66%
0-60% 2 3 0 1.58%
60-70% 4 4 1 0.11%

4 70-80% 4 3 4 —0.19%
80—-90% 2 5 5 1.37%
90-100% 1 6 9 0.60%

Table 9 Breakdown of results according to the accuracy of CART on the dataset
and the maximum depth of the trees. For each instance, the number of wins for
each method is shown as well as the mean accuracy improvement for OCT over
CART across all datasets.

OCT. In the region where CART accuracy is 60-80%, the results are mixed with
no clear winner at the higher depths. The main conclusion of this comparison is
that OCT is able to consistently deliver improvements in accuracy when CART
performs either well or poorly. To understand this, it seems that a high CART
accuracy indicates that axis-aligned decision tree methods are well-suited to the
dataset in question, which means solving the problem using MIO is more likely
to lead to better decision trees with higher accuracy on the problem. Conversely,
when CART performs very poorly, it may be the result of bad decisions in the
trees that OCT can avoid. However, when the CART accuracy is in the middle, it
could indicate that CART is hitting the limit of what is possible for a decision tree
method and so the benefits of a stronger decision tree in-sample are not realized
out-of-sample.

Figure 4 shows the winning method for trees of depth 2 plotted according to
the accuracy of CART and the ratio of n and p. We see that the top-left corner
has a very high concentration of OCT wins, and this pattern is present in both the
depth 3 and 4 plots as well so they are omitted for brevity. The dashed lines on
the plot indicate a region of high OCT performance, which are those datasets with
CART error below 20% and n/p over 10. This region was determined by looking
at the results collectively across all depths.

Table 10 summarizes the results for each depth according to whether they are
in this region of high performance. We see that in the regions of high performance,
OCT is almost always the winning method if there is a winner, and the average
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Fig. 4 Plot of winning method (CART vs. OCT) by the accuracy of CART and
the ratio of the number of points to the dimension of points, n/p, in each dataset
for trees of depth 2. The high-performance where OCT is highly likely to perform
strongest is indicated by the dashed lines.

Max. In High-perf. CART . . Accuracy
depth Region? wins OCT wins Ties Improvement
1 v 0 1 13 0.01%
X 4 18 17 0.49%
9 v 1 9 12 1.31%
X 8 16 7 2.25%
3 v 2 9 12 1.15%
X 12 12 6 0.41%
4 v 1 10 13 1.19%
X 12 11 6 0.15%

Table 10 Breakdown of results according to whether the dataset is in the region
of high-performance and the maximum depth of the trees. For each instance, the
number of wins for each method is shown as well as the mean accuracy improve-
ment for OCT over CART across all datasets.

improvement for OCT is consistently around 1.2-1.3%. For the datasets that are
not in this region, the results are more mixed and there is no clear winner, although
at depth 2 there is a large difference of 2.2% between the accuracies of CART and
OCT, and in all other cases OCT has a slight accuracy advantage.

This breakdown suggests that we can predict with high probability that OCT
is very likely to outperform CART if the following expression is true:

(CART accuracy > 80%) A (n/p > 10)

This rule makes sense intuitively, as datasets where CART performs well are
likely those which are well suited to decision tree models, which means that creat-
ing these trees optimally could well lead to better performance, whereas this may
not be as likely if tree models are a poor fit to the data. Additionally, if n > p,
this suggests we have enough data relative to the number of possible splits to learn
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Max. depth  CART wins OCT-H wins Ties . Accuracy p-value
Improvement

1 3 36 14 5.12% ~ 10—16

2 10 32 11 4.88% ~ 10714

3 13 31 9 3.59% ~ 10712

4 13 29 11 3.12% ~10-11

Table 11 Comparison of CART and OCT-H across a range of depths, showing
the number of datasets for which each method had the highest out-of-sample
accuracy, and the mean improvement in out-of-sample accuracy when using OCT-
H across all datasets along with the p-value indicating the statistical significance
of this difference.

a good tree without overfitting, echoing the results of the second synthetic test in
Section 5.

The other key takeaway is that if we are not in this region, there is no indication
of any ill-effects; the results outside this region are balanced, and there is even a
slight edge towards Optimal Trees.

Based on the strength of these results, this partitioning based on n/p and
CART accuracy should provide a highly accurate and useful guide for when OCT
are likely to yield accuracy improvements on real-world problems.

6.3 Optimal Classification Trees with Hyperplanes vs. CART

We now present a comparison of out-of-sample accuracies between OCT-H and
CART. Recall that after formulating the OCT problem using MIO, we were able
to easily obtain the OCT-H problem by relaxing integrality constraints on the split
variables a. This comparison aims to examine the possible accuracy gains from
first formulating the problem using MIO and then relaxing a subset of difficult
constraints to generate a model that is simpler to solve.

The entire set of mean out-of-sample accuracies on each dataset for both meth-
ods at depth 2 is provided in Table 12, which again reports the size and dimension
of the dataset, the number of classes K, and the average out-of-sample accuracy of
each method along with the mean improvement of OCT-H over CART and the as-
sociated standard error (results for depths 1, 3 and 4 are provided in Appendix B).

Table 11 shows a summary of the relative performance of CART and OCT-H
according to the depth of the trees. We see that at all depths, OCT is stronger than
CART on the vast majority of datasets. OCT-H also gives a significant increase of
3-5% in out-of-sample accuracy compared to CART across all datasets, depending
on the tree depth. The corresponding p-values confirm this difference to be highly
significant statistically. We believe the smaller differences at higher depths can be
attributed to the MIO problems being harder to solve, and so less progress is being
made at these depths for the same time limit. Similar to the OCT comparison, the
advantage of OCT-H over CART decreases as the depth of the trees increases. This
could be due to the increasing difficulty of the problems as the depth increases
as for OCT, but it may also be the case that most of the accuracy advantage
from multivariate decision trees can be realized with shallower trees, and so the
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Mean out-of-sample

Dataset Mean
accuracy .
improvement

Name n p K CART OCT-H

acute-inflammations-1 120 6 2 88.7 100.0 +11.33+1.70
acute-inflammations-2 120 6 2 100.0 100.0 0.00 £+ 0.00
balance-scale 625 4 3 64.5 87.6 +23.18+1.61
banknote-authentication 1372 4 2 89.0 91.5 +2.51 +6.86
blood-transfusion 748 4 2 75.5 77.2 +1.71 +0.62
breast-cancer-diagnostic 569 30 2 90.5 93.1 +2.66 = 1.16
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00 £ 0.00
breast-cancer 683 9 2 92.3 97.0 +4.68 = 0.76
car-evaluation 1728 15 4 73.7 87.5 +13.80 4+ 0.69
chess-king-rook-vs-king-pawn 3196 37 2 78.2 94.9 +16.75 + 1.57
climate-model-crashes 540 18 2 90.1 92.9 +2.81 +0.64
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.4 70.0 —0.38 £1.12
connectionist-bench 990 10 11 24.8 24.9 +0.08 + 0.08
contraceptive-method-choice 1473 11 3 46.8 46.8 0.00 £ 0.00
credit-approval 653 37 2 87.7 87.9 +0.12 4+ 0.12
cylinder-bands 277 484 2 62.6 66.4 +3.77 £ 1.98
dermatology 358 34 6 65.4 74.2 +8.76 £ 2.81
echocardiogram 61 6 2 74.7 77.3 +2.67 +1.63
fertility 100 12 2 88.0 88.0 0.00 £ 0.00
haberman-survival 306 3 2 73.2 73.0 —0.26 £0.26
hayes-roth 132 4 3 52.7 61.2 +8.48 £5.70
heart-disease-cleveland 297 18 5 54.1 54.7 40.53 +0.90
hepatitis 80 19 2 83.0 81.0 —2.00 £ 1.22
image-segmentation 210 19 7 38.9 49.1 +10.19 £ 2.96
indian-liver-patient 579 10 2 71.7 72.6 +0.83 £ 0.67
ionosphere 351 34 2 87.8 86.2 —1.61 £2.08
iris 150 4 3 92.4 95.1 +2.70 £ 1.71
mammographic-mass 830 10 2 81.2 81.2 0.00 £ 0.00
monks-problems-1 124 11 2 57.4 93.5 +36.13 +4.00
monks-problems-2 169 11 2 60.9 75.8 +14.88+6.18
monks-problems-3 122 11 2 94.2 92.3 —1.94+1.94
optical-recognition 3823 64 10 29.7 29.3 —0.38 £0.38
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 84.1 84.9 +0.82 +1.04
pima-indians-diabetes 768 8 2 71.9 71.4 —0.52 £ 1.42
planning-relax 182 12 2 71.1 70.7 —0.44 £0.44
gsar-biodegradation 1055 41 2 76.4 83.0 +6.54 £ 1.67
seeds 210 7 3 87.2 90.6 +3.40 +1.83
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 72.7 98.2 +25.45+1.82
spambase 4601 57 2 84.2 85.7 +1.46 +1.44
spect-heart 80 22 2 64.0 70.0 +6.00 4+ 2.92
spectf-heart 80 44 2 69.0 67.0 —2.00 £4.90
statlog-project-german-credit 1000 48 2 70.1 70.4 +0.32 £ 0.32
statlog-project-landsat-satellite 4435 36 6 63.2 63.2 0.00 £ 0.00
teaching-assistant-evaluation 151 52 3 38.9 55.7 +16.76 & 4.63
thoracic-surgery 470 24 2 85.5 83.9 —1.54+1.54
thyroid-disease-ann-thyroid 3772 21 3 95.6 92.5 —3.10 £ 0.06
thyroid-disease-new-thyroid 215 5 3 91.3 95.8 +4.53 +0.75
tic-tac-toe-endgame 958 18 2 68.5 97.0 +28.54+0.41
wall-following-robot-2 5456 2 4 94.0 94.0 0.00 £ 0.00
wine 178 13 3 81.3 91.1 +9.78 + 3.76

Table 12 Full results for CART and OCT-H at depth 2.



Optimal Classification Trees 33

Max. CART CART OCT-H . Accuracy
. . Ties
depth Accuracy wins wins Improvement

0-60% 0 7 3 6.74%

60-70% 0 10 1 8.18%

1 70-80% 1 11 3 6.00%
80-90% 1 5 3 1.73%

90-100% 1 3 4 1.05%

0-60% 0 6 1 10.31%

60-70% 1 6 1 10.39%

2 70-80% 4 8 1 5.11%
80-90% 3 7 2 2.02%

90-100% 2 5 6 0.95%

0-60% 1 5 0 6.13%

60—-70% 1 4 0 9.12%

3 70-80% 3 9 3 4.38%
80-90% 5 6 0 2.06%

90-100% 3 7 6 1.21%

0-60% 1 3 1 4.96%

60-70% 1 8 0 5.17%

4 70-80% 3 5 3 4.66%
80—-90% 5 6 1 1.95%

90-100% 3 7 6 1.22%

Table 13 Breakdown of results according to the accuracy of CART on the
dataset and the maximum depth of the trees. For each instance, the number of
wins for each method is shown as well as the mean accuracy improvement for
OCT-H over CART across all datasets.

advantages of deeper trees are less pronounced, allowing CART to reduce the
accuracy gap with increasing depth.

Unlike the OCT vs. CART comparison, the depth 1 difference here is very
significant because multivariate trees of depth 1 can still use multiple variables in
the splits, and this leads to a very significant mean improvement of around 5%.

As we did for OCT, we will now consider the influence of problem character-
istics on the performance of the OCT-H.

Table 13 compares OCT-H to CART broken down by the accuracy of CART.
Unlike OCT, we see that OCT-H improves significantly upon CART accuracy
in each group, with the most significant gains coming from the datasets where
CART is weakest (below 80%), showing average improvements of 5-10%. As the
CART accuracy increases, the improvement offered by OCT-H decreases, but they
still have an advantage even at the highest CART accuracies. This indicates that
multivariate trees are able to exploit problem structure in a way that univariate
trees cannot, and this exploitation is most beneficial when univariate decision trees
perform poorly.

Figure 5 shows the winning method for each dataset as a function of the CART
accuracy on each dataset and the number of features in the data. As we did for
OCT, we can identify a region where OCT-H is highly likely to outperform CART.
Like OCT, we have considered the results for all depths when identifying this region
but the plots for other depths show similar patterns and are omitted. We see that
this region of high-performance is when either the CART accuracy is low or the
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Fig. 5 Plot of winning method (CART vs. OCT-H) by the accuracy of CART
and the dimension of points, p, in each dataset for trees of depth 2. The high-
performance where OCT-H is highly likely to perform strongest is indicated by

the dashed lines.

Max. In High-perf. CART OCT-H . Accuracy
. . . Ties
depth Region? wins wins Improvement
1 v 0 27 6 6.23%
X 3 9 8 3.29%
9 v 3 21 5 6.51%
X 7 11 6 2.90%
3 v 5 19 2 5.21%
X 8 12 7 2.02%
4 v 5 19 4 4.25%
X 8 10 7 1.86%

Table 14 Breakdown of results according to whether the dataset is in the region
of high-performance and the maximum depth of the trees. For each instance, the
number of wins for each method is shown as well as the mean accuracy improve-
ment for OCT-H over CART across all datasets.

number of features is low, with the following test determining membership of the
region:

(CART Accuracy < 70%) V (p < 10)

Table 14 shows the relative performance of the methods in each of the re-
gions. We see that in terms of the win rate, OCT-H is highly likely to deliver
significant out-of-sample accuracy improvements on datasets that fall into the
high-performance region, and in this region the average accuracy improvement
over CART is 4-7% depending on depth. Outside the region, OCT-H is still likely
to beat CART, but less so than in the region, and the average accuracy improv-
ment is 2-3%. We have already addressed why OCT-H is likely to do well when
the CART accuracy is poor, but these results also suggest that OCT-H performs
better when the dimension of the data is small. We presume that this may be
because there are fewer possible hyperplane splits to consider and so the feasible
space for the problem is smaller, allowing better solutions to be found faster.
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6.4 Optimal Classification Trees vs. Random Forests

We conclude our experiments on real-world datasets by providing a brief compari-
son with Random Forests (Breiman 2001). Random forests achieve state-of-the-art
accuracies, and so this allows us to place our results in a wider context. We would
like to note that our goal in developing these methods was not necessarily to
develop the best classification method overall; rather, we intended to show the
benefits of taking a problem that is traditionally solved by a heuristic and in-
stead solving this problem to optimality. Nevertheless, these comparisons help to
quantify the significance of the improvements in accuracy.

We ran random forests on all datasets using the RANDOMFOREST package (Liaw
and Wiener 2002) in R, using the same training, validation and testing splits as
the other methods. The random forests do not require any tuning, so they were
trained on the combined training and validation sets and then evaluated on the
testing set. This was averaged over five splits as for the other methods. The forests
were trained with 100 trees.

The average accuracy of Random Forests across all 53 datasets was 85.8%,
which is about 6%, 5% and 3% higher than CART, OCT and OCT-H at depth 4,
respectively. We see that across all datasets, OCT closes the gap between CART
and Random Forests by about one-sixth, and OCT-H by about half. We believe
this demonstrates the significance of our accuracy improvements when measured
against the improvement offered by Random Forests.

We found that Random Forests performed strongest relative to OCT-H on
datasets with a high number of classes, K, or features, p. If we consider only
datasets with K = 2 or K = 3 classes, and p < 25, we find that OCT-H and
Random Forests are comparable in accuracy, with average out-of-sample accura-
cies of 85.2% and 85.1%, respectively. We can therefore achieve state-of-the-art
accuracies in this regime with just a single tree learner, allowing us to maintain
some interpretability in the model, albeit less than an axis-aligned tree, but still
much more than a forest. We note that 31 of the datasets we considered fall into
this regime, so we do not believe it is a restrictive setting.

Finally, we note that we did not tune the value of Ny, in our experiments,
nor did we consider other improvements to the original OCT problem that could
improve accuracy. With the right selection of model and parameters, we believe
it is possible to train a single decision tree learner that has the accuracy of a
random forest without sacrificing interpretability, which would be significant for
those applications where interpretability is required.

7 Conclusions

In this paper, we have revisited the classical problem of decision tree creation under
a modern MIO lens. We presented a novel MIO formulation for creating optimal
decision trees that captures the discrete nature of this problem and motivates
two new methods, Optimal Classification Trees (OCT) and Optimal Classification
Trees with Hyperplanes (OCT-H).

Experiments with synthetic data provide strong evidence that optimal decision
trees can better recover the true generating decision tree in the data, contrary to
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the popular belief that such optimal methods will just overfit the training data at
the expense of generalization ability.

Exploiting the astonishing progress of MIO solvers in the last twenty-five years,
our comprehensive computational experiments showed that both the OCT and
OCT-H problems are both practically solvable and deliver solutions that outper-
form the classical state-of-the-art methods, with average absolute improvements
in out-of-sample accuracy over CART of 1-2% for OCT and 3-5% for OCT-H
across all datasets, depending on the depth of the tree. We also provided guidance
for each method that predict when each is most likely to outperform CART.

For OCT, we predict consistent accuracy improvements of 2-4% when the
CART accuracy is below 60%, and improvements of 1.2-1.3% when the CART
accuracy is above 80% and there is sufficient training data available relative to the
complexity of the problem (n/p > 10). Outside these cases, we find that OCT and
CART are competitive with each other.

For OCT-H, we can predict consistent accuracy improvements of 4-7% over
CART if the CART accuracy is below 70% or the dimension of the data is no more
than 10. On other datasets, we can still predict strong performance by OCT-H,
but with a smaller yet still significant average improvement of 2-3%.

These results provide comprehensive evidence that the optimal decision tree
problem is tractable for practical applications and leads to significant improve-
ments over heuristic methods.
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A Additional Results for OCT vs. CART

Mean out-of-sample

Dataset Mean
accuracy .
improvement
Name n p K CART OoCT
acute-inflammations-1 120 6 2 95.3 100.0 +4.67 £2.91
acute-inflammations-2 120 6 2 100.0 100.0 0.00 £ 0.00
balance-scale 625 4 3 70.4 68.9 —1.53+£0.87
banknote-authentication 1372 4 2 89.0 89.6 +0.58 + 0.58
blood-transfusion 748 4 2 77.5 77.0 —0.53 £0.41
breast-cancer-diagnostic 569 30 2 90.5 91.5 +0.98 £ 0.82
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00 £ 0.00
breast-cancer 683 9 2 93.1 95.3 +2.22 4+ 1.00
car-evaluation 1728 15 4 77.4 7.4 0.00 £ 0.00
chess-king-rook-vs-king-pawn 3196 37 2 90.6 90.6 0.00 £ 0.00
climate-model-crashes 540 18 2 91.0 91.4 +0.44 4+ 0.30
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.8 69.6 -1.15+1.88
connectionist-bench 990 10 11 34.4 36.4 +2.02 £ 0.44
contraceptive-method-choice 1473 11 3 50.8 50.1 —0.70 + 1.87
credit-approval 653 37 2 87.7 87.7 0.00 £ 0.00
cylinder-bands 277 484 2 61.7 61.7 0.00 £ 0.00
dermatology 358 34 6 8.7 78.7 0.00 £ 0.00
echocardiogram 61 6 2 72.0 74.7 +2.67 £ 2.67
fertility 100 12 2 86.4 86.4 0.00 + 1.26
haberman-survival 306 3 2 73.5 73.2 —0.26 £ 0.26
hayes-roth 132 4 3 56.4 53.3 -3.03+1.66
heart-disease-cleveland 297 18 5 54.9 54.7 —0.27 £ 0.27
hepatitis 80 19 2 82.0 81.0 —1.00 £ 1.00
image-segmentation 210 19 7 52.5 65.3 +12.83 £ 1.10
indian-liver-patient 579 10 2 71.6 1.7 +0.14 £ 0.14
ionosphere 351 34 2 87.8 87.6 —0.23£0.23
iris 150 4 3 92.4 93.5 +1.08 £ 1.08
mammographic-mass 830 10 2 81.7 81.7 0.00 £ 0.00
monks-problems-1 124 11 2 65.8 70.3 +4.52 + 4.63
monks-problems-2 169 11 2 60.9 60.0 —0.93 £0.93
monks-problems-3 122 11 2 94.2 94.2 0.00 £ 0.00
optical-recognition 3823 64 10 41.4 41.6 +0.21 £ 0.21
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 86.1 86.5 +0.41 £ 0.41
pima-indians-diabetes 768 8 2 70.6 71.1 +0.52 + 1.61
planning-relax 182 12 2 71.1 71.1 0.00 £ 0.00
gsar-biodegradation 1055 41 2 78.5 78.6 +0.15 £ 0.09
seeds 210 7 3 86.8 87.9 +1.13+1.28
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 100.0 98.2 -1.82+1.82
spambase 4601 57 2 86.0 86.0 0.00 £ 0.00
spect-heart 80 22 2 64.0 67.0 +3.00 £ 3.00
spectf-heart 80 44 2 69.0 61.0 —8.00 £6.24
statlog-project-german-credit 1000 48 2 70.7 70.5 —0.24 £ 0.68
statlog-project-landsat-satellite 4435 36 6 7.7 77.9 +0.18 £ 0.08
teaching-assistant-evaluation 151 52 3 38.9 43.2 +4.32 £2.02
thoracic-surgery 470 24 2 85.5 84.6 —0.85+0.85
thyroid-disease-ann-thyroid 3772 21 3 95.6 95.6 0.00 £ 0.00
thyroid-disease-new-thyroid 215 5 3 91.3 94.3 +3.02 £ 1.28
tic-tac-toe-endgame 958 18 2 73.1 74.1 +1.00 £+ 0.54
wall-following-robot-2 5456 2 4 100.0 100.0 0.00 £ 0.00
wine 178 13 3 80.9 94.2 +13.33 £ 1.86

Table 15 Full results for CART and OCT at depth 3.
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Mean out-of-sample

Dataset Mean
accuracy .
improvement
Name n P K CART OoCT
acute-inflammations-1 120 6 2 95.3 100.0 +4.67 £ 2.91
acute-inflammations-2 120 6 2 100.0 100.0 0.00 £+ 0.00
balance-scale 625 4 3 73.4 71.6 -1.78 £1.05
banknote-authentication 1372 4 2 89.0 90.7 +1.63 + 1.06
blood-transfusion 748 4 2 77.5 77.0 —0.53 £ 0.41
breast-cancer-diagnostic 569 30 2 90.5 91.5 +0.98 + 0.82
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00 £ 0.00
breast-cancer 683 9 2 93.1 95.3 +2.22 £ 1.00
car-evaluation 1728 15 4 78.8 78.8 0.00 £ 0.00
chess-king-rook-vs-king-pawn 3196 37 2 90.4 90.4 0.00 £ 0.00
climate-model-crashes 540 18 2 91.0 91.1 +0.15 £ 0.15
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.0 69.6 —0.38 £ 2.68
connectionist-bench 990 10 11 43.9 44.6 +0.73 £ 0.65
contraceptive-method-choice 1473 11 3 53.8 53.3 —0.49 £0.92
credit-approval 653 37 2 87.5 87.5 0.00 £ 0.00
cylinder-bands 277 484 2 62.6 62.6 0.00 £ 0.00
dermatology 358 34 6 89.2 89.2 0.00 £ 0.00
echocardiogram 61 6 2 72.0 72.0 0.00 £ 0.00
fertility 100 12 2 88.0 88.0 0.00 £ 0.00
haberman-survival 306 3 2 72.7 73.2 +0.52 4+ 0.52
hayes-roth 132 4 3 56.4 59.4 +3.03 £ 2.54
heart-disease-cleveland 297 18 5 54.9 53.6 -1.33+1.33
hepatitis 80 19 2 82.0 81.0 —1.00 £ 1.00
image-segmentation 210 19 7 64.2 72.8 +8.68 £ 2.90
indian-liver-patient 579 10 2 69.8 1.7 +1.93+1.76
ionosphere 351 34 2 87.8 87.6 -0.23 £0.23
iris 150 4 3 92.4 93.5 +1.08 £ 1.08
mammographic-mass 830 10 2 81.7 81.7 0.00 £ 0.00
monks-problems-1 124 11 2 68.4 74.2 +5.81 + 3.87
monks-problems-2 169 11 2 62.8 54.0 —8.84 +3.99
monks-problems-3 122 11 2 94.2 94.2 0.00 £ 0.00
optical-recognition 3823 64 10 54.7 54.7 —0.02 £ 0.02
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 86.1 86.5 +0.41 £ 0.41
pima-indians-diabetes 768 8 2 T1.7 72.4 +0.73 £ 0.45
planning-relax 182 12 2 71.1 71.1 0.00 £ 0.00
gsar-biodegradation 1055 41 2 79.6 79.8 +0.15 £ 0.09
seeds 210 7 3 86.8 89.1 +2.26 £ 1.51
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 100.0 98.2 —-1.82+1.82
spambase 4601 57 2 86.0 86.1 +0.09 £ 0.09
spect-heart 80 22 2 64.0 66.0 +2.00 £ 2.00
spectf-heart 80 44 2 70.0 62.0 —8.00 + 5.61
statlog-project-german-credit 1000 48 2 69.9 69.8 —0.16 £ 0.16
statlog-project-landsat-satellite 4435 36 6 78.2 78.0 —0.25 £ 0.28
teaching-assistant-evaluation 151 52 3 45.4 51.4 +5.95 £ 5.01
thoracic-surgery 470 24 2 85.5 85.5 0.00 £ 0.00
thyroid-disease-ann-thyroid 3772 21 3 95.6 95.6 0.00 £ 0.00
thyroid-disease-new-thyroid 215 5 3 91.3 93.6 +2.26 £ 1.10
tic-tac-toe-endgame 958 18 2 74.2 73.3 -0.92 £ 0.92
wall-following-robot-2 5456 2 4 100.0 100.0 0.00 £ 0.00
wine 178 13 3 80.9 94.2 +13.33 £ 1.86

Table 16 Full results for CART and OCT at depth 4.
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B Additional Results for OCT-H vs. CART

Mean out-of-sample

Dataset Mean
accuracy .
improvement
Name n p K CART OCT-H
acute-inflammations-1 120 6 2 78.7 100.0 +21.33 £ 3.09
acute-inflammations-2 120 6 2 92.0 97.3 +5.33 £1.70
balance-scale 625 4 3 60.9 87.6 +26.75 £ 0.73
banknote-authentication 1372 4 2 83.6 89.8 +6.18 + 8.63
blood-transfusion 748 4 2 75.9 77.2 +1.28 + 0.69
breast-cancer-diagnostic 569 30 2 88.5 93.1 +4.62 £ 1.39
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00 £ 0.00
breast-cancer 683 9 2 92.2 97.0 +4.8040.73
car-evaluation 1728 15 4 69.9 87.5 +17.55 £ 0.35
chess-king-rook-vs-king-pawn 3196 37 2 66.8 94.9 +28.14 £ 1.41
climate-model-crashes 540 18 2 91.9 93.2 +1.3340.82
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.4 70.4 0.00 £ 1.49
connectionist-bench 990 10 11 16.2 16.2 0.00 £ 0.00
contraceptive-method-choice 1473 11 3 42.8 45.4 +2.55 + 1.66
credit-approval 653 37 2 87.7 87.9 +0.12 £ 0.12
cylinder-bands 277 484 2 63.8 65.5 +1.74 £ 1.41
dermatology 358 34 6 49.4 50.3 +0.90 + 0.42
echocardiogram 61 6 2 72.0 76.0 +4.00 4+ 1.63
fertility 100 12 2 88.0 88.0 0.00 £ 0.00
haberman-survival 306 3 2 72.7 73.0 +0.26 + 0.26
hayes-roth 132 4 3 44.8 60.6 +15.76 £ 3.37
heart-disease-cleveland 297 18 5 50.7 53.9 +3.20 £ 1.55
hepatitis 80 19 2 83.0 83.0 0.00 £ 0.00
image-segmentation 210 19 7 26.4 26.4 0.00 £ 0.00
indian-liver-patient 579 10 2 1.7 72.3 +0.55 £ 0.40
ionosphere 351 34 2 80.7 85.3 +4.60 + 3.49
iris 150 4 3 64.9 64.9 0.00 £ 0.00
mammographic-mass 830 10 2 81.2 81.2 0.00 £ 0.00
monks-problems-1 124 11 2 50.3 83.9 +33.55 £ 2.99
monks-problems-2 169 11 2 60.5 65.1 +4.65 £ 2.94
monks-problems-3 122 11 2 74.2 92.3 +18.06 + 4.16
optical-recognition 3823 64 10 19.4 19.4 0.00 £ 0.00
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 84.9 86.5 +1.634+1.76
pima-indians-diabetes 768 8 2 70.8 71.6 +0.73 £ 0.73
planning-relax 182 12 2 71.1 69.8 —-1.33+1.33
gsar-biodegradation 1055 41 2 73.7 83.3 +9.58 £ 1.85
seeds 210 7 3 64.5 64.9 +0.38 £ 1.10
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 54.5 54.5 0.00 £ 0.00
spambase 4601 57 2 78.4 83.6 +5.16 £ 1.02
spect-heart 80 22 2 64.0 70.0 +6.00 £ 2.92
spectf-heart 80 44 2 68.0 69.0 +1.00 £ 3.32
statlog-project-german-credit 1000 48 2 70.0 71.6 +1.60 £ 1.17
statlog-project-landsat-satellite 4435 36 6 43.9 44.0 +0.14 £ 0.14
teaching-assistant-evaluation 151 52 3 35.7 47.0 +11.35 £ 3.67
thoracic-surgery 470 24 2 85.5 83.9 —-1.54+1.54
thyroid-disease-ann-thyroid 3772 21 3 95.6 92.5 —3.10 £ 0.06
thyroid-disease-new-thyroid 215 5 3 78.5 82.3 +3.77 £ 1.33
tic-tac-toe-endgame 958 18 2 70.6 97.2 +26.61 +£1.13
wall-following-robot-2 5456 2 4 78.8 78.8 0.00 £ 0.00
wine 178 13 3 64.0 66.2 +2.22 £ 2.22

Table 17 Full results for CART and OCT-H at depth 1.
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Mean out-of-sample

Dataset Mean
accuracy .
improvement
Name n P K CART OCT-H
acute-inflammations-1 120 6 2 95.3 100.0 +4.67 £ 2.91
acute-inflammations-2 120 6 2 100.0 100.0 0.00 £+ 0.00
balance-scale 625 4 3 70.4 87.6 +17.20 £ 1.42
banknote-authentication 1372 4 2 89.0 98.7 +9.62 4+ 0.77
blood-transfusion 748 4 2 77.5 77.4 —0.11+0.68
breast-cancer-diagnostic 569 30 2 90.5 94.0 +3.50 + 0.59
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00 £ 0.00
breast-cancer 683 9 2 93.1 97.0 +3.86 + 1.01
car-evaluation 1728 15 4 7.4 87.5 +10.09 £ 0.60
chess-king-rook-vs-king-pawn 3196 37 2 90.6 95.6 +4.98 £ 0.63
climate-model-crashes 540 18 2 91.0 92.9 +1.93 £ 0.69
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.8 70.8 0.00 £ 2.02
connectionist-bench 990 10 11 34.4 34.9 +0.49 £ 0.32
contraceptive-method-choice 1473 11 3 50.8 51.1 +0.27 £ 0.27
credit-approval 653 37 2 87.7 87.9 +0.12 £ 0.12
cylinder-bands 277 484 2 61.7 65.5 +3.77£1.98
dermatology 358 34 6 78.7 83.4 +4.72 £ 3.70
echocardiogram 61 6 2 72.0 77.3 +5.33 + 3.27
fertility 100 12 2 86.4 88.0 +1.60 £ 0.98
haberman-survival 306 3 2 73.5 73.0 —0.52 £ 0.52
hayes-roth 132 4 3 56.4 715 +15.15 + 4.49
heart-disease-cleveland 297 18 5 54.9 54.7 —0.27 £ 0.27
hepatitis 80 19 2 82.0 81.0 —1.00 £ 1.00
image-segmentation 210 19 7 52.5 57.4 +4.91 + 2.50
indian-liver-patient 579 10 2 71.6 72.6 +0.97 £ 0.68
ionosphere 351 34 2 87.8 86.2 —1.61 +£2.08
iris 150 4 3 92.4 95.1 +2.70 £ 1.71
mammographic-mass 830 10 2 81.7 81.4 —0.39£0.39
monks-problems-1 124 11 2 65.8 93.5 +27.74 £ 3.76
monks-problems-2 169 11 2 60.9 73.0 +12.09 £ 7.11
monks-problems-3 122 11 2 94.2 92.3 -1.944+1.94
optical-recognition 3823 64 10 41.4 41.0 —0.38 £ 0.38
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 86.1 84.9 -1.22+0.82
pima-indians-diabetes 768 8 2 70.6 71.4 +0.73 £ 1.97
planning-relax 182 12 2 71.1 69.8 -1.33£0.89
gsar-biodegradation 1055 41 2 78.5 83.0 +4.49 £ 1.40
seeds 210 7 3 86.8 91.3 +4.53 £ 1.75
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 100.0 98.2 —-1.82+1.82
spambase 4601 57 2 86.0 86.6 +0.59 + 1.24
spect-heart 80 22 2 64.0 70.0 +6.00 £ 2.92
spectf-heart 80 44 2 69.0 65.0 —4.00 £ 5.10
statlog-project-german-credit 1000 48 2 70.7 71.0 +0.24 £ 0.47
statlog-project-landsat-satellite 4435 36 6 7.7 7.7 0.00 £ 0.00
teaching-assistant-evaluation 151 52 3 38.9 55.1 +16.22 + 4.52
thoracic-surgery 470 24 2 85.5 83.9 —1.54+1.54
thyroid-disease-ann-thyroid 3772 21 3 95.6 92.5 —3.10 £ 0.06
thyroid-disease-new-thyroid 215 5 3 91.3 95.8 +4.53 £ 0.75
tic-tac-toe-endgame 958 18 2 73.1 97.0 +23.93 £ 0.69
wall-following-robot-2 5456 2 4 100.0 100.0 0.00 £ 0.00
wine 178 13 3 80.9 92.9 +12.00 £ 2.69

Table 18 Full results for CART and OCT-H at depth 3.
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Mean out-of-sample

Dataset Mean
accuracy .
improvement
Name n P K CART OCT-H
acute-inflammations-1 120 6 2 95.3 100.0 +4.67 £ 2.91
acute-inflammations-2 120 6 2 100.0 100.0 0.00 £+ 0.00
balance-scale 625 4 3 73.4 87.6 +14.27 £ 1.00
banknote-authentication 1372 4 2 89.0 98.7 +9.62 4+ 0.77
blood-transfusion 748 4 2 77.5 77.4 —0.11+0.68
breast-cancer-diagnostic 569 30 2 90.5 94.0 +3.50 + 0.59
breast-cancer-prognostic 194 32 2 75.5 75.5 0.00 £ 0.00
breast-cancer 683 9 2 93.1 97.0 +3.86 + 1.01
car-evaluation 1728 15 4 78.8 87.5 +8.61 4+ 0.37
chess-king-rook-vs-king-pawn 3196 37 2 90.4 95.6 +5.21 £0.75
climate-model-crashes 540 18 2 91.0 92.9 +1.93 £ 0.69
congressional-voting-records 232 16 2 98.6 98.6 0.00 £ 0.00
connectionist-bench-sonar 208 60 2 70.0 71.5 +1.54 £ 2.68
connectionist-bench 990 10 11 43.9 43.9 0.00 £ 0.00
contraceptive-method-choice 1473 11 3 53.8 53.3 —0.49 £0.49
credit-approval 653 37 2 87.5 87.9 +0.37 £ 0.25
cylinder-bands 277 484 2 62.6 65.5 +2.90 £ 1.45
dermatology 358 34 6 89.2 92.6 +3.37 £ 0.94
echocardiogram 61 6 2 72.0 77.3 +5.33 + 3.27
fertility 100 12 2 88.0 88.0 0.00 £ 0.00
haberman-survival 306 3 2 72.7 72.7 0.00 £ 0.00
hayes-roth 132 4 3 56.4 70.3 +13.94 £ 4.35
heart-disease-cleveland 297 18 5 54.9 55.5 +0.53 £ 0.53
hepatitis 80 19 2 82.0 81.0 —1.00 £ 1.00
image-segmentation 210 19 7 64.2 66.0 +1.89 +1.89
indian-liver-patient 579 10 2 69.8 72.6 +2.76 £ 1.68
ionosphere 351 34 2 87.8 86.2 —1.61 +£2.08
iris 150 4 3 92.4 95.1 +2.70 £ 1.71
mammographic-mass 830 10 2 81.7 81.4 —0.39£0.39
monks-problems-1 124 11 2 68.4 93.5 +25.16 + 4.93
monks-problems-2 169 11 2 62.8 73.0 +10.23 £ 7.52
monks-problems-3 122 11 2 94.2 92.3 -1.944+1.94
optical-recognition 3823 64 10 54.7 54.3 —0.38 £ 0.38
ozone-level-detection-eight 1847 72 2 93.1 93.1 0.00 £ 0.00
ozone-level-detection-one 1848 72 2 96.8 96.8 0.00 £ 0.00
parkinsons 195 21 2 86.1 84.9 -1.22+0.82
pima-indians-diabetes 768 8 2 71.7 70.3 -1.35+£2.70
planning-relax 182 12 2 71.1 68.4 -2.67+£1.78
gsar-biodegradation 1055 41 2 79.6 84.0 +4.41 £ 1.46
seeds 210 7 3 86.8 91.3 +4.53 £ 1.75
seismic-bumps 2584 20 2 93.3 93.3 0.00 £ 0.00
soybean-small 47 37 4 100.0 98.2 —-1.82+1.82
spambase 4601 57 2 86.0 86.6 +0.59 + 1.24
spect-heart 80 22 2 64.0 70.0 +6.00 £ 2.92
spectf-heart 80 44 2 70.0 65.0 —5.00 £ 5.92
statlog-project-german-credit 1000 48 2 69.9 71.0 +1.04+1.14
statlog-project-landsat-satellite 4435 36 6 78.2 78.2 0.00 £ 0.00
teaching-assistant-evaluation 151 52 3 45.4 56.2 +10.81 £+ 4.01
thoracic-surgery 470 24 2 85.5 83.9 —1.54+1.54
thyroid-disease-ann-thyroid 3772 21 3 95.6 92.5 —3.10 £ 0.06
thyroid-disease-new-thyroid 215 5 3 91.3 95.8 +4.53 £ 0.75
tic-tac-toe-endgame 958 18 2 74.2 97.0 +22.76 £ 1.03
wall-following-robot-2 5456 2 4 100.0 100.0 0.00 £ 0.00
wine 178 13 3 80.9 91.6 +10.67 £ 2.85

Table 19 Full results for CART and OCT-H at depth 4.
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