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We investigate graphs that can be disconnected into small components by removing a vanishingly small
fraction of their vertices. We show that, when a controllable quantum network is described by such a graph
and the gaps in eigenfrequencies and in transition frequencies are bounded exponentially in the number of
vertices, the network is efficiently controllable, in the sense that universal quantum computation can be
performed using a control sequence polynomial in the size of the network while controlling a vanishingly
small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are
efficiently controllable and explore generalizations to percolation clusters and random graphs. We show
that the classical computational complexity of estimating the ground state of Hamiltonians described by
controllable graphs is polynomial in the number of subsystems or qubits.
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Controlling large quantum networks and performing
universal quantum computation are two important and
related problems in quantum information processing. A
common goal is to perform control and computation
efficiently, by accessing a minimum number of directly
controlled parts. Quantum networks were introduced in
Ref. [1]. In Ref. [2], it was shown that almost any quantum
network with a single probe is controllable. If controls can
be applied to quantum degrees of freedom in a pairwise
fashion, then the control is computationally universal [3].
The connectivity of the graph of interactions plays an
important role in controllability and computation [4].
Under mild assumptions about network topology and the
algebra of controls, Ref. [5] gave sufficient conditions for a
network to be controlled using a small number of control
qubits, without regard for the efficiency of the control
sequence. See [6] for a similar study of classical linear
systems. In suitable systems, quantum computation is
possible with only a few control qubits [7,8]. As suggested
in these papers, spin chains with specific Hamiltonians can
give controllability as well as the ability to enact efficient
universal quantum computation on the chain. These results
raise the question of when it is possible to perform
universal quantum control and quantum computation effi-
ciently on a general quantum network. This Letter shows in
a general setting that it is possible to perform universal
quantum control and computation in time polynomial in
network size on a wide variety of controllable quantum
networks with Hamiltonians whose gaps in eigenfrequen-
cies and in transition frequencies are bounded exponen-
tially in the number of vertices while acting on only a
vanishingly small fraction of their nodes. This naturally
leads one to define an interesting class of graphs, which we
call efficiently controllable graphs, which admit efficient

control by acting on a vanishingly small fraction of
controlled nodes. The existence, construction, and analysis
of this new class of graphs pose an intriguing problem in
the graph theory. In this work, we construct several
examples of such families of graphs and show that the
ground states of Hamiltonians of systems whose inter-
actions are determined by such graphs can be approximated
efficiently.
Consider a quantum system consisting of subsystems

interacting via local Hamiltonians. The subsystems can be
represented as vertices of an interaction (hyper)graph where
(hyper)edges exist only between vertices corresponding to
coupled subsystems. For simplicity of exposition, we will
restrict our attention to pairwise Hamiltonians and inter-
action graphs. However, all our results apply to general local
Hamiltonians and interaction hypergraphs. Without the loss
of generality, here the quantum systems are restricted to
networks of qubits.
Since implementation becomes more complex as the

number of controlled spins grows, a scalable implementa-
tion needs to choose the smallest number of controlled
spins possible while still preserving polynomial efficiency
of quantum computation. The primary purpose of this
Letter is to show that there exist families of interaction
graphs such that the quantum computational efficiency
scales polynomially with the number of vertices and the
fraction of controlled qubits approaches zero as the number
of nodes in the graph goes to infinity given assumptions on
the spectrum of the Hamiltonian and controllability. That is,
there are scalable and efficient quantum computer archi-
tecture schemes that make use of a vanishing fraction of
controlled qubits. Lattices and uniform tilings are examples
of such families. Expanders and complete graphs are not
likely to be such graphs. Not every family of graphs admits
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such schemes; therefore, we define a new family, which we
call efficiently controllable graphs. An efficiently control-
lable graph is a graph that can be divided into components
of size poly½logðnÞ� by removing a vanishingly small
fraction of vertices, where n is the number of vertices.
Assuming controllability conditions, we prove that on a
quantum network described by such a graph one can
perform universal quantum computation efficiently by
controlling a vanishingly small fraction of vertices in the
limit that the size of the graph goes to infinity.
In a connected network architecture of n spins satisfying

certain assumptions on the drift and control Hamiltonians,
enacting an arbitrary unitary operation within a constant
error ϵ requires sðnÞ ¼ O(2nxpolyð1=ϵÞ) elementary oper-
ations for some x as we show now. Consider a connected
network of n spins. To make the argument simple, restrict
to the Hamiltonian with a single control term HðtÞ ¼
H0 þHcγðtÞ where −iH0;−iHc∈ suðd¼2nÞ are bounded.
We assume that the pair ðH0; HcÞ is controllable. See, for
example, [4,5,9,10] for sufficient conditions for local
controllability. The control problem is to find γðtÞ to
drive an initial unitary, which is the identity, to the ϵ
neighborhood of a final unitary. The Hamiltonian defines a
flow in the set of unitaries as _UðtÞ ¼ −i½H0 þHcγðtÞ�UðtÞ,
where UðtÞ ∈ SUðdÞ. Assume that H0 ¼

P
kEkPk is non-

degenerate to accuracy 1=dr, where Pk ¼ jkihkj is the
projector onto the eigenvector jki ofH0 with eigenvalue Ek.
Assume also that jΔjkj ¼ jEj − Ekj > 1=dr are distinct and
PkHcPm ≠ 0 for all k,m (this condition can be relaxed: see
[11]), and ∥Hc∥ ¼ Oð1Þ where ∥U∥ ¼ supy∈Cd;y†y¼1∥Uy∥
is the operator norm. It is an interesting feature that there
are few if any nontrivial many-body systems whose level
statistics are proven to obey the above conditions. However,
for example, extensive numerical evidence suggests that
one-dimensional spin chains with randomly constructed
Hamiltonians [12,13] exhibit Wigner-Dyson-like statistics
and therefore energy level repulsion [14], implying that
the probability of having exponentially small level spacing
or transition level spacing is exponentially small in d.
Drive the system with control with amplitude A, resonant
frequency Δjm, and phase ϕ, so that the Hamiltonian takes
the form HðtÞ ¼ H0 þ A cosðΔjmtþ ϕÞHc. Now go to the
interaction picture by definingUiðtÞ viaUðtÞ¼e−itH0UiðtÞ.
Then

_UiðtÞ ¼ −ieitH0A cosðΔjmtþ ϕÞHce−itH0UiðtÞ:
The approximate solution of this equation is given by the

Magnus expansion [15] as

U0ðTÞ ¼ exp½−iΩðTÞ�
¼ e−i

R
T

0
dt expðitH0ÞA cosðΔjmtþϕÞHc expð−itH0Þ

with error ∥U0ðTÞ − UiðTÞ∥ ¼ OðjAj2T2∥Hc∥2Þ, where
jAjT∥Hc∥ < π for the convergence of the series. We write

ΩðTÞ ¼ Ω1ðTÞ þΩ2ðTÞ as the sum of the resonant term
and the off-resonant term. The resonant term is given by

Ω1ðTÞ ¼
A
2
Tðe−iϕPjHcPm þ eiϕPmHcPjÞ

and ∥Ω2ðTÞ∥ ¼ OðjAjd2þr∥Hc∥Þ. The error in neglecting
Ω2ðTÞ is given by [16]

∥U0ðTÞ−e−iΩ1ðTÞ∥≤ ∥e−i½Ω1ðTÞþΩ2ðTÞ�−e−iΩ1ðTÞe−iΩ2ðTÞ∥

þ∥e−iΩ1ðTÞe−iΩ2ðTÞ−e−iΩ1ðTÞ∥

¼Oð∥Ω1ðTÞ∥∥Ω2ðTÞ∥þ∥Ω2ðTÞ∥Þ
¼OðjAj2Td2þr∥Hc∥2þjAjd2þr∥Hc∥Þ:

Now bound the error between UiðTÞ and e−iΩ1ðTÞ using
the triangle inequality as

∥UiðTÞ− e−iΩ1ðTÞ∥≤ ∥U0ðtÞ− e−iΩ1ðTÞ∥þ∥UiðtÞ−U0ðtÞ∥
¼OðjAj2Td2þr∥Hc∥2

þjAjd2þr∥Hc∥þjAj2T2∥Hc∥2Þ:

Choose A and T such that

jAj2T2∥Hc∥2 > jAjd2þr∥Hc∥ > jAj2Td2þr∥Hc∥2;

implying 1 > jAjT∥Hc∥ ensuring the convergence of the
Magnus series, d2þr < jAjT2∥Hc∥, and T > d2þr. Such a
choice is possible by making A sufficiently small, hence
weak driving. Then

∥UiðTÞ − e−iΩ1ðTÞ∥ ¼ OðjAj2T2∥Hc∥2Þ:

Note that Ω1ðTÞ is a single-qubit Hamiltonian acting on
the subspace spanned by jji and jmi. By adjusting ϕ, one
can implement

Vi ¼ e−iðA=2ÞTjhjjHcjkijσ;

where σ ¼ �σx;�σy. Now any SUð2Þ gate U2 can be
decomposed in the form U2 ¼ e−ic1σxe−ic2σye−ic3σx for
some c1, c2, c3. This is the Cartan decomposition of
SUð2Þ; see, for example, [17]. Therefore, it takes
Oð3=jAjTÞ gates to generate any U2 with error
O½ð3=jAjTÞjAj2T2� ¼ Oð3jAjTÞ, since the errors accumu-
late linearly [18]. An arbitrary unitary U ∈ SUðdÞ can be
implemented by at most dðd − 1Þ=2 ¼ Oðd2Þ SUð2Þ rota-
tions [16,18]. The total error is then ϵ ¼ Oð3jAjTd2Þ.
Therefore, it requires a total number of Oð3d2=jAjTÞ ¼
O½9d4ð1=ϵÞ� operations to implement any unitary with
accuracy ϵ. The gate complexity can be improved to
polyðdÞpoly logð1=ϵÞ by generating SUð2Þ gates via the
Solovay-Kitaev algorithm [19]. The ability to implement
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any unitary in the interaction picture implies the ability to
implement any unitary noting that UðT 0Þ ¼ e−iT

0H0UiðT 0Þ.
Note that, since in our setting we have a drift term whose

inverse cannot be reached directly, we could not invoke the
discrete Solovay-Kitaev bound [18,19] or bounds relating
optimal control costs to gate complexity [20,21].
Thus, the efficiency of universal quantum computation

scales exponentially with the total number of spins. Are
there architectures enabling control complexity to scale
polynomially, or subexponentially, yet the fraction of
controlled qubits vanishes with n? One such architecture
is to decompose the graph into N connected blocks, bj,
each containing L qubits with boundaries of size B between
them where L ≫ B for large n. The boundaries are
promoted to be controls. And we require that for each
block one can apply an additional control term, which
together with the Hamiltonian of the block satisfies the
assumptions of the complexity result proved above. Thus,
neighboring blocks are separated by a number of controlled
qubits. The ability to perform arbitrary transformations
on control qubits makes it possible to completely decouple
the blocks [22]. Decoupling every block but two, one can
perform a quantum computation on two adjacent blocks
with efficiency sð2LÞ. In an arbitrary network, two blocks
are at most N blocks apart from each other. To transfer
quantum information between two arbitrary blocks or
equivalently to apply any quantum operation to arbitrary
two blocks, one applies the following procedure. Let
bpð1Þbpð2Þ…bpðNÞ be a path of blocks between maximally
separated bpð1Þ and bpðNÞ, where pð·Þ is some permutation
of N blocks. Quantum information is mediated through the
network by first decoupling the adjacent blocks bpð1Þ and
bpð2Þ from the rest of the network and enacting a quantum
transformation on it. Then bpð2Þ and bpð3Þ are decoupled
from the rest, and quantum information is transferred
between these blocks. Continuing this way, quantum
information can be mediated between any two blocks
at most using OðNÞ pairwise decoupling operations. The
total gate complexity of applying any quantum operation
between any two blocks is at most O(Nsð2LÞ) ¼
OðN22xL=ϵÞ. How can the required operations be made
to depend subexponentially to n? Take a family of spin
networks, GðnÞ, indexed by the total number of qubits. If
each network in the family admits a decomposition into N
blocks of size L ¼ logN=2x while n ¼ N logN=2x, the
complexity can be made polynomial as O(Nsð2LÞ) ¼
OðN2=ϵÞ ¼ Oðn2=ϵÞ. If also the fraction of controls c=n
can be made to vanish as n grows large, where c is the
number of controls, one has a scalable quantum computer
architecture with a small fraction of controls whose gate
complexity is subexponential.
Not every family of graphs, GðnÞ, admits a decompo-

sition into blocks such that the fraction of controls vanishes
while the number of elementary operations needed scales

polynomially with the number of vertices. To distinguish
between efficiently controllable graphs and graphs that
are not efficiently controllable, we now present a formal
definition of the efficiently controllable family of graphs.
Definition: Efficiently controllable family.—A family of

graphs,GðnÞ, indexed by the number of vertices, n, is called
an efficiently controllable family if for every n there exists a

decomposition into connected subgraphs, blocks, GðnÞ ¼
∪NðnÞ

K¼1Gk such that limn→∞
P

1¼j<k¼N jGj ∩ Gkj=n → 0,
where jGj ∩ Gkj is the cardinality of Gj ∩ Gk, the controls
between two blocks; in addition, we require that control
complexity DðnÞs½LðnÞ� ¼ OðpolyðnÞ; polyð1=ϵÞÞ, where
LðnÞ is themaximum size of blocks andDðnÞ is the diameter
of the graph formed by the blocks. Note that the definition
can be easily generalized to the control of classical networks
and other complexity measures.
We give a simple example of a scalable network

architecture. Quantum information can be transferred from
one end to the other of a one-dimensional chain of n qubits
using a fraction of them as controls. This fraction can be
chosen so that it vanishes as n goes to infinity, and the
number of elementary operations required scales polyno-
mially with n. Assume N blocks of qubits of size L − 1.
Between neighboring blocks lies a single control qubit.
Then the fraction of controls is c=n ¼ 1=L. We choose
L ¼ logN=2x so that c=n vanishes as n goes to infinity. In
order to enact arbitrary unitary operations between the
blocks lying at the right and left ends, one first decouples
blocks 1 and 2 from the rest of the chain and transfers
quantum information coherently from 1 to 2, then decou-
ples blocks 2 and 3, then 3 and 4, etc. Thus, it takes OðNÞ
steps to mediate quantum information between the blocks
that lie at the ends. The number of elementary operations
required to perform arbitrary operations with accuracy ϵ
between adjacent blocks is of the order of sð2L − 1Þ. Thus,
the total number of elementary operations needed to couple
the blocks at the ends is O(Nsð2L − 1Þ). With the choice
we made for L, the quantum gate complexity to enact any
desired quantum logic operation between any two blocks is
at most Oðn2Þ.
The previous scheme can be easily generalized to a family

of d-dimensional cubic lattices.We takeNd blocks of sizeLd

where the total number of qubits is n ¼ NdLd. Between two
adjacent blocks lies a d − 1 dimensional layer of control
qubits. The fractionof controls is again c=n ¼ 1=L.Quantum
information can be transferred between blocks lying in the
opposite diagonal ends by OðdNÞ pairwise operations on
blocks lying in the interior. The number of elementary
operations required to enact quantum logic between adjacent
blocks with accuracy ϵ is given by s½ðL−1Þd−1ð2L−1Þ�.
Choosing L¼f½ðd−1

2
Þ=2x�logNg1=d, the total number of

elementary quantum operations is given byO(dNsð2LdÞ) ¼
Oðdn2=ϵÞ while c=n is vanishingly small in the limit of
large n. Now, the generalization to lattices or uniform tilings
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is evident. In the presence of symmetries [23] (existence
of a subalgebra of the Lie algebra commuting with the drift
and all the control terms), complete controllability is lost.
However, one can generically break symmetries by pertur-
bations in the coupling Hamiltonian or controls. Therefore,
assuming controllability, efficient controllability follows.
Note that the construction of efficiently controllable

families given above does not require the dimension d
to be an integer. Fractals such as the Sierpinski gasket
automatically generate efficiently controllable families.
An efficient way to generate efficiently controllable

families is via site percolation [24]. Consider an infinite
lattice of spins where spins sitting in adjacent lattice sites
interact with probability p and the interaction probabilities
for each edge connecting lattice sites are independent.
When p is just above the percolation threshold pc, the
graph is connected with unit probability, while the structure
of the cluster formed is a fractal [25]. At this point,
removing a vanishingly small fraction of the spins at
random separates the graph into disconnected pieces: that
is, those removed spins form the interfaces between those
pieces of the graph. The largest size of those disconnected
pieces can be estimated as follows. Start at p ≈ pc and
remove a fraction δ of the spins. A group of N previously
connected spins will remain connected if, by a statistical
fluctuation, the fraction of connections within that set
remains above pc. Otherwise, the group will become
disconnected for large N. The average fluctuation in
the number of connections in the group goes as
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pcð1 − pcÞN
p

. The probability that the group remains
connected goes as e−δ

2N=pcð1−pcÞ. Accordingly, if one
removes a fraction δ of the spins, the largest connected
group size goes as Oðδ−2Þ. This gives the same scaling for
the fraction of control spins required as that for a two-
dimensional lattice, where a group of size N has a
boundary of size Oð ffiffiffiffi

N
p Þ. But that family is efficiently

controllable, as shown above. Consequently, a graph just
above the percolation threshold realizes an efficiently
controllable family: universal quantum computation can
be effected by controlling a vanishingly small fraction of
the spins. The same argument holds for other families of
graphs with percolation thresholds, e.g., Erdos-Renyi
graphs [26].
The site percolation construction above can be applied

to scale-free networks characterized by the degree dis-
tribution PðkÞ ∼ k−α, where PðkÞ is the probability for a
site to be connected to k other sites. For the random
removal of sites, the percolation threshold is either 0 or
finite [27]. However, for α ¼ 2, the removal of high degree
nodes makes the percolation threshold approach 1, and
removing a fraction ∼1=N of nodes is sufficient to break
down the network [28] into clusters of size logN=loglogN,
where N is the total number of sites [29]. Therefore,
scale-free networks with α ¼ 2 can be made efficiently
controllable. Take high degree nodes as controls for

decoupling, and take one node for each decoupled cluster
as the control for enacting quantum gates. The total
number of controls required to perform a quantum
computation efficiently is then a vanishing fraction of
the total number of sites.
The purely graph-theoretic definition of an efficiently

controllable family has applications outside of the quantum
control theory. Consider, for example, the problem of
approximating the ground state energy of a system,
classical or quantum, whose interactions correspond to
an efficiently controllable graph. The construction of
efficiently controllable graphs shows that the problem of
finding a state whose energy is within a multiplicative
factor ϵ of the actual ground state energy is polynomial in
the size of the system. More precisely, consider a quantum
Hamiltonian described by the graph G ¼ ðV; EÞ, where
each vertex corresponds to a variable and each edge to a
pairwise interaction. We want to find a state whose energy
is within a factor ϵ of the actual ground state. Let n be the
number of variables and N the number of clusters, each of
size logN, so that n ¼ N logN. Disconnect and decouple
the clusters of size logN by removing the control qubits,
the boundaries between the clusters, to get the Hamiltonian
~H ¼ P

kHCk
, where HCk

is the Hamiltonian acting on the
cluster Ck. The error introduced in calculating the ground
state energy is at most ϵn, where ϵ is the fraction of
controls; i.e., the ground state energy ofH is ϵn close to that
of ~H. But the ground state of ~H is the tensor product of the
ground states of fHCk

gk. By standard matrix diagonaliza-
tion techniques, the ground state energy of HCk

can be
found in OðpolyNÞ ¼ OðpolynÞ steps. There are N clus-
ters, so it still takes only polynomial steps to calculate the
ground state energy of ~H and therefore to approximate that
of H within accuracy ϵN which vanishes as n becomes
large. Note that our construction is a polynomial time
approximation scheme for finding the ground state energy
of a 2-local Hamiltonian [30] using clustered product
states. Although our construction is in the spirit of product
state approximations to ground states [31,32], we are
approximating with a multiplicative error instead of an
additive error.
This Letter investigated the requirements for being able

to control extended systems efficiently. Quantum systems
that can be controlled in time polynomial in the number
of coupled variables in the system Hamiltonian, by only
operating on a vanishingly small fraction of those variables,
correspond to efficiently controllable families of interaction
graphs. Such graphs can be divided into clusters of size
O(polyðlognÞ) while removing a fraction ϵ of the n
vertices, with ϵ → 0 in the limit n → ∞. Canonical graph
families such as regular lattices are readily shown to be
also efficiently controllable. The general criterion for when
families of graphs admit a polynomially efficient universal
quantum computation yet using a vanishing fraction of
fully controlled qubits is an open question. Other open
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questions include the computational complexity of the
construction of efficiently controllable families and
whether existing heuristics for graph partitioning problems
can be exploited to find approximate solutions.
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