
MIT Open Access Articles

Nonlocal dynamics of dissipative phononic fluids

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune and Fang, Nicholas. 
"Nonlocal dynamics of dissipative phononic fluids." Physical Review B 95, 224304 (June 2017): 
1-15 © 2017 American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevB.95.224304

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/110347

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110347


PHYSICAL REVIEW B 95, 224304 (2017)

Nonlocal dynamics of dissipative phononic fluids

Navid Nemati,1,* Yoonkyung E. Lee,1 Denis Lafarge,2 Aroune Duclos,2 and Nicholas Fang1

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Laboratoire d’Acoustique de l’Université du Maine, UMR 6613, Le Mans, France

(Received 12 August 2016; revised manuscript received 20 March 2017; published 27 June 2017)

We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by
periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is
based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed
by Lafarge and Nemati [Wave Motion 50, 1016 (2013)]. This scheme arises from a deep analogy with
electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures,
whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify
further its founding physical principles through presenting it in a unified formulation together with the two-scale
asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that
the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well
beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including
the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic
crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based
on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated
parameters are analyzed by treating the phononic crystal as a random medium.

DOI: 10.1103/PhysRevB.95.224304

I. INTRODUCTION

The field of phononic crystals (PCs) for acoustic/elastic
waves [1,2], which has been developed in analogy to the
concept of photonic crystals related to electromagnetic (EM)
waves [3], has been a subject of intensive theoretical and
experimental investigations over the past two decades [4–7].
PCs are the periodic arrangement of solid/fluid inclusions
embedded in a host solid/fluid material, configured to control
and manipulate acoustic/elastic wave propagation that can
exhibit band gaps forbidding propagation. The existence of the
forbidden bands or band gaps in phononic materials, usually
displayed in ω-k (angular frequency-wave vector) space, is
due to Bragg scattering which at specific frequencies, namely
band-gap frequencies, leads to destructive interferences. In-
deed, the solid/fluid periodic inclusions act as scatterers in the
medium.

PCs are studied and applied across broad and various
research areas, such as sound isolation [7–10], wave guiding
[4,11], nanoscale thermal control [6], and quantum informa-
tion processing [12]. Depending on the research area and the
size of materials and devices made by the PCs, the wave
frequency in these materials is ranging from sonic/audible
frequencies (kHz) for sound proofing to ultrasonic imaging
(MHz), hypersound (GHz) in optomechanics, and thermal
applications (THz) [6]. Respectively, the material size charac-
terized by its periodicity L covers the scale from the centimeter
to millimeter, micrometer, and nanometer.

We distinguish ordinary PCs, with periodic acoustic
metamaterials (AMM), in that the particular wave control
features of PCs are produced by the spectral bands through
Bragg scattering, that occurs when the effective wavelength λ

propagating in the material is close to the period L. Bragg’s
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spectral bands depend essentially on the periodic arrangements
of the structural units. In contrast, the unusual macroscopic
properties of the AMMs originate in local resonances leading
ultimately to one or more negative effective-medium parame-
ters such as density, bulk modulus, and elastic modulus, when
λ is several times larger than L. The AMM’s properties rely
on the internal structure of a single periodic unit including its
topology and constituent materials, that characterize localized
resonances. In order to design materials that exhibit the
required macroscopic properties, we need to employ an
appropriate effective-medium theory.

Effective-medium theories aim at establishing macroscale
equations that govern the effective dynamics of a medium at the
scale of measurement with heterogeneities at the microlevel.
These equations typically include the field equations and
constitutive relations, where the latter characterize and are
specific to the medium. Within effective-medium theories,
homogenization techniques are employed for upscaling or
coarse graining the microscale properties, either rigorously,
phenomenologically, or approximately. As a result, microscale
information such as microtopology, densities, bulk moduli,
volume fraction of the medium constituents are encoded in a
few effective parameters at macrolevel, where the medium is
assumed to be homogeneous. However, describing the effec-
tive properties of PCs and AMMs is generally restrictive within
classical homogenization theories. The long-wavelength res-
onant behaviors of AMMs are often not captured, and the
Bragg scattering in PCs is commonly thought to escape a
macroscopic description as this phenomenon occurs for small
wavelengths on the order of the period. Efforts have been made
to capture local resonances in AMMs with elastic materials
by coherent potential approximation (CPA) [13] that is based
on minimizing scatterings in the long-wavelength limit. An
enhanced scheme has been developed to obtain the effective
properties of the same type of materials in a broader frequency
band by matching the lowest-order scattering amplitudes that
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arise from the unit cell, with that of the homogenized material
(metasolid) [14]. Although it was known that nonlocal effects
were relevant in EM materials as a small correction when
the wavelengths reduce, these effects have been also found
to be impactful in EM metamaterials [15] and AMMs [16] at
long wavelengths. Nonlocal homogenization approaches were
formulated to derive broadband effective EM parameters by
averaging the response of an appropriate distribution of sources
[17] or by using the CPA method in the long-wavelength
regime [18].

Here, we study the special case of heterogeneous two-
phase media with a motionless nondeformable solid and a
viscothermal fluid. The medium forms a connected fluid phase
which is the seat of the wave propagation. At long wavelengths
λ � L, the standard approach to define an effective medium
and compute its effective properties is based on the two-scale
asymptotic method of homogenization for periodic media (see,
e.g., [19, Appendix A]). We show that, at the leading order, the
results corresponding to this approach can be directly found
from the simplifying assumption to take partially temporal
dispersion effects into account, but unreservedly ignore spatial
dispersion effects [20]. It means that the field dynamics at one
location retains (partially) a memory of the field values at the
same location, but is not affected by the neighboring values.
In other words, the medium behaves locally in space by the
virtue of which this approach is called here “local theory.”
In the absence of the spatial dispersion, we clarify that this
theory presents a truncated scheme that can only be applied
to the materials without widely different characteristic pore
sizes. Therefore, it cannot describe the behavior of AMMs
since exhibiting local resonances at long wavelengths in rigid
solid/fluid media requires widely different characteristic pore
sizes to be involved in the building block, e.g., materials
made of Helmholtz resonators [16,21]. This approach has
been extended to describe fluid/solid media with Helmholtz
structures, but at the cost of separating the fluid region into
different portions, in which different asymptotic expansions
and rescaling are performed [22].

Furthermore and in particular, since the long-wavelength
condition must be satisfied within the local approach, this the-
ory fails to describe Bragg scattering in PCs, which is related
to the core subject of this paper. To devise a macroscopic
theory allowing for both temporal and spatial dispersion,
and applicable regardless of the geometry and wavelength
sizes, we follow a deep EM analogy within a Maxwellian
nonlocal theory. This nonlocal theory is formulated to describe
the wave propagation in stationary random media, such that
the macroscopic fields are defined through application of
ensemble-averaging operators over microscopic fields, either
directly or indirectly. The theory can also be applied to the
special case of periodic media by considering that the ensemble
of realizations is obtained by the random translation of one
reference periodic sample. However, this application of the
nonlocal approach implies an ambiguity that originates in the
particular choice of the periodic structural unit. Indeed, the
reference period can be an arbitrary number of the irreducible
period. We will refer to these types of media as the oxymoron
“periodic random” to emphasize that although these media are
random and therefore they are subject to the application of the
nonlocal theory, they keep their periodic nature.

R

L

FIG. 1. Two-dimensional array of rigid cylinders with identical
radius R, embedded in a viscothermal fluid (air). The nearest
neighbors in this lattice are distanced with the length L. The reference
periodic cell considered is shown by the square of length L.

For solid/solid stationary-random composites or periodic
random media, a general nonlocal form of the macroscopic
equations has been proposed by Willis [23]. Within the same
effective-medium formulation, effective parameters have been
calculated by different techniques, in one dimension (1D)
[24], two dimensions (2D) [25], and three dimensions (3D)
[26,27]. Interestingly, it turns out that the nonlocal Maxwellian
description of fluid/rigid media that we discuss here involves
equations of the same form as those of Willis, but without
the coupling terms. The absence of these coupling terms
is due to the different ways of defining the macroscopic
fields from microscopic fields, although both schemes have
nonasymptotic character and employ the ensemble-averaging
concept.

In this paper, using the macroscopic equations of the
Maxwellian nonlocal theory as well as a corresponding action-
response homogenization method to compute the constitutive
nonlocal operators, we describe accurately 1D nonlocal dy-
namics of PCs composed of two-dimensional periodic array
of rigid cylinders permeated by air as a viscothermal fluid
(Fig. 1). We demonstrate that the nonlocal approach enables
us to characterize the material, that is regarded as the ensemble
of random translations of one periodic sample, through a
complex density and bulk modulus, or effective phase velocity
and impedance, of an effective fluid in a broadband regime
including the high-frequency range where the wavelength is
as small as the periodicity of the PC (λ � L). We refer to this
effective fluid as a phononic fluid, in contrast to metafluids
whose properties are based on local resonances. The validity
and precision of the calculations are verified when the results,
based on the effective-medium theory, are compared with
those produced by a completely different direct Bloch wave
approach (DBA) treated by multiple scattering (MS) method
that incorporates the viscothermal losses. Comparison of the
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phase velocity of the least-attenuated mode computed by
nonlocal theory via the action-response problems, with that
obtained by the source-free DBA through calculation of Bloch
wave number, shows remarkable agreement between the two
schemes.

The results related to the local approach or two-scale
asymptotic homogenization method are also provided to
present the validity domain of the latter. It is important to
note that the nonlocal theory is able to predict, for a given
frequency, several modes propagating and attenuating in the
material, with each of which different frequency-dependent
effective parameters are associated. Here, as mentioned above,
we are investigating only the material properties related to the
least-attenuated mode; the higher-order modes will be studied
in a forthcoming paper. To the best of our knowledge, this is the
first time that a dissipative phononic (sonic) crystal is precisely
characterized by its effective properties in a large frequency
range extending over Bragg’s regime covering the entire first
and second Brillouin zones, thereby the concept of phononic
fluids is introduced. This is a breakthrough step towards
bridging the physics of waves in materials at microscale and at
homogeneous macrolevel, noting that it has been commonly
presumed impossible to achieve an effective medium when the
microstructure is not below the scale of measurement.

In the following, Sec. II recalls the microscopic governing
equations for the linear acoustics. In Sec. III A, the local and
nonlocal approaches of the macroscopic theory are presented
in a unified formulation. The action-response problems in-
volving partial differential equations (PDEs) to achieve the
effective parameters are reviewed for local theory in Sec. III B
and for nonlocal theory in Sec. III C. Section IV is devoted to
the calculation of the phase velocity in the PC based on DBA
via MS method that accounts for viscous and thermal effects.
The results generated by local and nonlocal approaches and
DBA are reported in Sec. V, followed by concluding remarks
and discussions on future research prospects in Sec. VI.

II. MICROSCOPIC EQUATIONS

In a heterogeneous rigid solid/fluid system, as the PC
represented in Fig. 1, the governing equations consist of
bulk-fluid equations and solid/fluid boundary conditions. At
the microscopic scale, the linear equations governing the
dynamics of small-amplitude disturbances in a homogeneous
viscothermal fluid come from linearized balance equations of
mass, momentum, and energy, the constitutive relations, and a
general state equation of the fluid. These governing equations
describe the small deviations of thermodynamic pressure p,
density ρ, temperature T , velocity v, and entropy s from their
rest state p0, ρ0, T0, v0 = 0, and s0, up to the terms of first order.
In the framework of classical irreversible thermodynamics
[28,29], the two constitutive relations are those of Stokes and
Fourier. They are written as

σ ′
ij = 2η

(
eij − 1

3 (∇ · v)δij

) + ζ (∇ · v)δij , (1a)

q = −κ∇T . (1b)

Stokes’s law is a linear isotropic relation between the com-
ponents of the viscous shear stress σ ′

ij and strain rate eij =
1
2 (∂ivj + ∂jvi), where δij is the Kronecker symbol, η and ζ are

the first and second viscosity of the fluid. The heat conduction
Fourier’s law is a corresponding relation between q the heat
flow and the temperature gradient, with κ the coefficient of
thermal conductivity.

Using Stokes’s law (1a), the conservation equations of
mass, and momentum in the bulk fluid Vf for a fluid particle
yield [30,31]

∂b

∂t
+ ∇ · v = 0, (2a)

ρ0
∂v

∂t
= −∇p + η∇2v +

(
ζ + 1

3
η

)
∇(∇ · v), (2b)

where b ≡ ρ ′/ρ0, ρ ′ the density deviation. For convenience,
we denote the pressure deviation as well as the absolute
pressure by p. When we expand the thermodynamic equations
of state ρ = ρ(p,s) and T = T (p,s) near the rest state up to
the first term, and making use of the thermodynamic iden-
tities (∂ρ/∂s)p = −ρ0β0/cp, (∂T /∂p)s = β0T0/ρ0cp, c2

0 ≡
(∂p/∂ρ)s where c0 represents the adiabatic sound speed, β0 ≡
ρ0[∂(1/ρ)/∂T ]p and cp ≡ T0(∂s/∂T )p are the coefficients of
thermal expansion and the specific heat at constant pressure,
that are evaluated at the fluid rest state, then we can write
the state equations as ρ ′ = (1/c2

0)p − (ρ0β0T0/cp)s ′ and T ′ =
(T0β0/ρ0cp)p′ + (T0/cp)s ′, respectively. Omitting s ′ in the
latter equations leads to the expression of the state equation

γχ0p = b + β0τ, (3)

where χ0 ≡ ρ−1
0 (∂ρ/∂p)s is the coefficient of adiabatic

compressibility at rest state, γ ≡ cp/cv the relative specific
heats at constant pressure and constant volume, involved in
the thermodynamic identity γ − 1 = β2

0T0/ρ0cp, and τ is a
simpler notation for the excess temperature T ′.

The linearized energy balance equation is reduced to the
linear heat transfer equation [30,31] ρ0T0∂s ′/∂t = κ∇2τ ,
where the left side is obviously the quantity of heat gained per
unit volume, and for writing the right side, Fourier’s law (1b) is
used. This equation combined with the aforestated expression
of the state equation T = T (p,s) leads to the following form
of energy balance equation:

ρ0cp

∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ, (4)

which complements governing equations (2) and (3) in the
bulk fluid.

In the (rigid) solid phase region Vs , the energy balance
equation is reduced to ρscs

p(∂τ s/∂t) = κs∇2τ s , where ρs is
the constant solid density, τ s the solid excess temperature,
and κs the solid coefficient of thermal conductivity. On the
fluid/solid interface ∂V , we have the conditions of continuity
of the excess temperature τ = τ s and the heat flux κ∇τ =
κs∇τ s . We admit that the coefficient of thermal conductivity
of the solid is much larger than that of the fluid κs � κ , and
the heat capacity at constant pressure of the solid part is much
larger than that of the fluid part, i.e., (1 − φ)ρscs

p � φρ0cp,
where φ is the fluid filling fraction (porosity). The latter
assumptions combined with the Fourier heat diffusion in the
solid, and the temperature and heat flux continuity relations
generally result in the vanishing of the fluid excess temperature
at the fluid/solid boundaries. In addition, we assume no-slip
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condition on the fluid/(rigid) solid interface. The boundary
conditions for the velocity and excess temperature on ∂V are
finally written as

v = 0, τ = 0. (5)

Equations (2), (3), and (4) with boundary conditions (5)
establish the governing microscale equations on the field
variables v, b, p, and τ .

III. LOCAL AND NONLOCAL THEORIES:
PHONONIC FLUIDS

We summarize here the Maxwellian local and nonlocal
macroscopic acoustics associated with a given macroscopi-
cally homogeneous fluid/rigid random medium. Then, the lo-
cal and nonlocal action-response problems for determining the
effective-medium parameters within the respective schemes
are stated.

We consider that the medium occupies the whole space
and is assumed to be macroscopically homogeneous in an
ensemble-averaged sense. We imagine that we are given
infinite number of samples ω of the medium from a probability
space �, the ensemble of which defines the homogeneous
macroscopic medium. In each realization ω, the medium
is composed of two regions: the void (pore) region Vf (ω)
which is a connected region permeated by the fluid, and
the complementary solid-phase region Vs(ω); the pore-wall
region or fluid/(rigid) solid interface is denoted by ∂V(ω). The
characteristic function of the pore region is defined by

I (r; ω) =
{

1, r ∈ Vf (ω)

0, r ∈ V s(ω).
(6)

Microscopically, the fields are of the form a(t,r; ω) and
the dynamics of the system is governed by Eqs. (2)–(5)
with Vf , Vs , and ∂V replaced by Vf (ω), V s(ω), and ∂V(ω).
The ensemble-average operation at position r is denoted
equivalently by 〈. . .〉(r) or 〈. . . (r)〉, that gives the expectation
value of the microfield at the same position. For instance,
〈I 〉(r) ≡ 〈I (r)〉 is the porosity φ, giving the probability that
the position r lies in the fluid, over an infinite number
of realizations. Since we assume the solid motionless and
thermally inert [Eqs. (5)], all microscopic fields a(t,r; ω)
that specify the fluid motion in Vf (ω) can be by convention
extended to be zero in the solid V s(ω). The macroscopic
mean A(t,r) of the field a(t,r; ω) is defined through A(t,r) =
〈a(t,r; ω)〉.

We study here the case of periodic random media with
the 2D PC depicted in Fig. 1 as the reference configuration.
The random PC is the ensemble of realizations obtained by
random translation of this reference configuration in the x

and y directions. Thus, ω can be regarded here as (ωx,ωy)
with ωx and ωy random variables uniformly and independently
distributed in [−L/2,L/2]. The characteristic function of the
pore region is then interpreted as I (r; ω) = I (r − ω) = 1 if
r − ω is in the fluid region, and equals 0 if r − ω is in the
solid region of the reference configuration.

We analyze acoustic waves propagating perpendicular to
the cylinders in the direction of principal x axis, connecting the
nearest neighbors in the lattice, whose unit vector is ex . In what
follows, as the macroscopic nonlocal theory is presented in the

form of Maxwellian acoustics, we present the macroscopic
equations of local theory in a Maxwellian form as well, in
order to compare the two frameworks and clarify further their
respective properties. Also, ensemble-average conception is
employed for both nonlocal and local schemes [32].

A. Macroscopic equations: Local and nonlocal

The macroscopic or effective-medium equations in local
and nonlocal approaches include field equations that are
general and valid for all media and constitutive relations
involving effective parameters, here effective density and bulk
modulus operators, that are specific to each medium depending
on the type of the fluid and the geometry of the solid structure.
These equations are written in analogy to Maxwell equations in
electrodynamics. The macroscopic condensation and velocity
are defined as the direct ensemble averages B = 〈b〉 and
V = 〈v〉, where V ≡ V ex in the present 1D macroscopic
longitudinal wave propagation along the principal x axis.

Since the velocity vanishes on the cylinder walls, the
following direct commutation relation between averaging
and divergence operators holds: 〈∇ · v〉 = ∇ · 〈v〉 = ∇ · V =
∂V/∂x [33]. Thus, Eq. (2a) is directly averaged to yield

∂B

∂t
+ ∂V

∂x
= 0. (7)

This equation is the counterpart of the EM equation ∂ B/∂t +
∇ × E = 0, that is obtained in the same direct way from its
respective microscopic equation. We name “Lorentz” fields,
the two quantities V and B, that are, like their EM counterparts
E and B, the direct averages of the microscale fields. We note
that the Lorentz fields are all true tensors, i.e., tensors of weight
zero [34], when we write the above EM equation in a tensorial
form and make appear the antisymmetric second-order tensor
Bij , such that, e.g., B12 = B3. Here, the acoustic analog of Bij

is a scalar because we study the propagation along a single
principal axis.

The averaged form of Eq. (2b) will be written in a formal
indirect manner. We rewrite the starting microscale equation
(2b) in the form

ρ0
∂v

∂t
= −χ−1

0 ∇b + j , (8)

where j is introduced as

j = −∇p + χ−1
0 ∇b + η∇2v + (

ζ + 1
3η

)∇(∇ · v) (9)

and we average it to get

ρ0
∂V
∂t

= −χ−1
0 ∇B + J, (10)

where the expression

J = 〈 j〉 − χ−1
0 〈b∇I 〉 (11)

is obtained by using the commutation relation 〈∇b〉 − ∇〈b〉 =
−〈b∇I 〉 [see Eqs. (51) and (53) in Ref. [35]]. Now, a way to
effect formally the mean operation defining J in (11) suggests
itself by noting that Eq. (10) is analogous to the following
macroscopic EM equation in a material medium in absence of
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external charges or electric currents

ε0
∂ E
∂t

= μ−1
0 ∇ × B − J, (12)

where ε0 and μ0 are the electric and magnetic permittivities in
vacuum, and J is the EM current associated with the macro-
scopic motion of the particles, induced by the macroscopic
EM field perturbation in the medium. Following Lorentz [36],
in macroscopic EM framework, this induced bulk current is
formally decomposed into a temporal derivative and a spatial
derivative term: J = ∂ P/∂t + ∇ × M, where P and M are
EM polarizations. Substituting this equation in (12) yields
∂ D/∂t = ∇ × H , with D = ε0 E + P and H = χ−1

0 B − M.
Similarly, in our acoustic context, we assume that the induced
bulk force J = J ex in (11) can undergo the same type of
formal decomposition

J = ∂P

∂t
+ ∂M

∂x
. (13)

Substituting the above equation in (10) yields

∂D

∂t
= −∂H

∂x
(14)

with

D = ρ0 V − P, H = χ−1
0 B − M. (15)

The fields D and H thus introduced will be the effective
acoustic momentum and effective acoustic pressure at the
macroscopic scale. As in EM, we assume the existence of
constitutive laws P = χ̂pV and M = χ̂mB, that relate the
“polarizations” P and M to the Lorentz fields V and B,
where χ̂p and χ̂m are convolution operators, such that in the
most general manner, we have P (t,x) = ∫ t

−∞ dt ′
∫

dx ′χp(t −
t ′,x − x ′)V (t ′,x ′) and M(t,x) = ∫ t

−∞ dt ′
∫

dx ′χm(t − t ′,x −
x ′)B(t ′,x ′). The time invariance and macroscopic spatial
homogeneity of the system result in the dependence of the
kernels on the differences t − t ′ and x − x ′. Then, we are led
to complete the field equations (7) and (14) by the following
constitutive relations:

D = ρ̂ V , H = χ̂−1 B, (16)

where ρ̂ = ρ0Î − χ̂p and χ̂−1 = χ−1
0 Î − χ̂m, with Î the

identity operator. Explicitly, these are the nonlocal constitutive
equations

D(t,x) =
∫ t

−∞
dt ′

∫
dx ′ρ(t − t ′,x − x ′)V (t ′,x ′), (17a)

H (t,x) =
∫ t

−∞
dt ′

∫
dx ′χ−1(t − t ′,x − x ′)B(t ′,x ′) (17b)

stating that the fields D and H at a given time t and position
x depend on the fields V and B at all previous time and all
points of the space.

We assert that the EM fields H , D, P , and M, and
acoustic fields H , D, P , and M , that are tensor densities of
weight −1 [37] (substituting for H and M the corresponding
antisymmetric tensors), further differ from the Lorentz fields in
that they are not the direct average of corresponding microscale
fields. This will be justified below in the acoustical case.

In what follows, these are called “Maxwell” fields to be
distinguished with Lorentz fields.

The constitutive laws express the Maxwell fields in terms
of the Lorentz fields. The relation (17a) is written in the most
general form. Indeed, it is useless to add an extra convolution
term to the right-hand side of this equation, for relating D(t,x)
to values of the other Lorentz field, i.e., B(t ′,x ′). Because the
fields V and B are related by the field equation (7), the effect
of such an additional term is already incorporated in (17a)
that includes the temporal and spatial dispersion in a general
manner. The second constitutive relation (17b) is also written
in the most general form. Because of Eq. (7), there is no need
to add an extra convolution term to the right-hand side of
Eq. (17b) for connecting H (t,r) with the values of V (t ′,r ′).
Similar types of arguments can be found in [38], Sec. 103,
in the context of electrodynamics. We note that the additional
terms, which are not required in our framework, are of the
same nature as the Willis coupling terms [23], which relate
acoustic mean momentum (here, D) to mean strain (here, B)
and, also, acoustic mean stress (here, H ) to mean velocity.
That is, if we wanted to consider the Willis coupling terms in
the structure of our equations, it turns out that they would be
set to zero.

The general equations (17) in the Fourier space are written
as

D(ω,k) = ρ(ω,k) V (ω,k), (18a)

H (ω,k) = χ−1(ω,k) B(ω,k) (18b)

provided that

ρ(t,x) =
∫

dω

2π

dk

2π
ρ(ω,k) e−iωt+ikx,

χ−1(t,x) =
∫

dω

2π

dk

2π
χ−1(ω,k) e−iωt+ikx .

Because of the medium homogeneity with respect to time and
space, D(ω,k) is related to V (ω,k) and H (ω,k) is related to
B(ω,k) for the same values of ω and k.

Now, while Eqs. (9), (11), and (13) uniquely fix the
induced density field J , they are not determining the related
polarization fields P and M independently. Thus, the fields H

and D are also defined ambiguously, as yet. To fix all Maxwell
fields, and thereby also the operators, we need an additional
condition. Based on physical considerations inspired by the
EM analogy and the thermodynamic concept of generalized
susceptibilities [38,39], we postulated [35] that the field H

should be identified by the acoustic part of energy current
density (or acoustic energy flux) S = Sex = 〈pv〉, by setting
the “Poynting-Schoch” energetic relation as follows:

〈pv〉 = H 〈v〉. (20)

The vector S = H V plays the role of an acoustic Poynting
vector analogous to its counterpart in EM. This relation (20)
gives the relevant “macroscopic part H” in the microscale
pressure field p. As p is the thermodynamic excess pressure,
and pv is interpreted as the acoustic energy flux, it may be
viewed as a thermodynamic relation. This relation supports our
previous assertion that, unlike the Lorentz fields, the Maxwell
field H is generally not the direct average of a corresponding
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microscale field. In particular, H is not exactly the mean
pressure in the fluid 〈p〉/φ.

By (indirectly) fixing the field H , the condition (20) also
(indirectly) fixes all other Maxwell fields. Indeed, M derives
from H and B, using the second equation of (15); P derives
from M and J , using Eq. (13); and, finally, D derives from P

and V by the first equation of (15). The nonlocal relations (17)
completed by the definition (20) provide a coherent framework
to take fully into account the temporal and spatial dispersion.

As in EM, the spatial dispersion effects can be very
small in the long-wavelength limit. In that case, the nonlocal
constitutive relations can be practically indistinguishable from
local constitutive relations, that are expressed as

D(t,x) =
∫ t

−∞
dt ′ρ(t − t ′) V (t ′,x), (21a)

H (t,x) =
∫ t

−∞
dt ′χ−1(t − t ′) B(t ′,x). (21b)

We see in the above relations that temporal dispersion effects
are taken into account in the sense that the fields D and H at a
given position x and time t depend on the history of the fields
V and B at the same position. However, as we will explain
below, the temporal dispersion is admitted in a limited way
and is purely linked with the viscous and thermal losses. The
time invariance of the system results in the dependence of the
density and bulk modulus kernels on the time difference t − t ′.
Therefore, we can write Eqs. (21) in Fourier space as

D(ω,x) = ρ(ω) V (ω,x), (22a)

H (ω,x) = χ−1(ω) B(ω,x) (22b)

provided that

ρ(t) =
∫

dω

2π
ρ(ω) e−iωt ,

χ−1(t) =
∫

dω

2π
χ−1(ω) e−iωt .

The above relations correspond to an approximate modeling
in the long-wavelength regime, which is meaningful to
consider only when the geometries are sufficiently simple,
without the involvement of very different pore sizes. This
simplification makes the formalism fail to describe local-
resonance behavior in the medium because it assumes that,
in the limit λ � L, the fluid motion at the pore scale can be
viewed divergence free:

∇ · v = 0. (24)

In other terms, the microscopic divergence is assumed to be on
the order of the macroscopic divergence, which is taken to be
zero in the limit ε ≡ L/λ → 0. In fact, as spatial nonlocality
is simply ignored, the time nonlocality is not completely de-
scribed, in the sense that the latter originates only in dissipative
processes that occur with delays. Indeed, if we remove the
viscothermal losses and assume local behavior so that the fluid
is incompressible at the pore scale [Eq. (24)], then the response
of the fluid to an excitation should be instantaneous. Thus, the
density and compressibility kernels become proportional to
the Dirac delta: ρ(t − t ′) = ρ0α∞δ(t − t ′) and χ−1(t − t ′) =

χ−1
0 δ(t − t ′), where the geometric constant α∞ � 1 is known

as tortuosity [40], which describes an apparent increase in the
inertia of the incompressible ideal fluid that is forced into the
tortuous pore network. Therefore, in this case, no temporal
dispersion manifests. This demonstrates that the dispersion
within the limit of Eqs. (21) is wholly linked to the losses.

In presence of the losses, the simplifying assumption that in
the long-wavelength limit the fluid appears as incompressible
at microscale enables the separation of viscous/inertial and
thermal/elastic effects. Hence, according to local theory, the
viscous and inertial effects are encoded in the frequency-
dependent effective density ρ(ω) [40], and the thermal and
elastic effects are described by the effective bulk modulus
χ−1(ω) [19]. It can be shown that, when the frequency
is considered as a complex quantity, because of the fluid
incompressibility, the poles and zeros of these functions are
on the negative imaginary axis of the frequency [19,40,41].
On the real frequency axis, this leads to monotonic variations
of these functions, excluding in particular resonant behaviors
[42,43] and expressed by simple and robust models of ρ(ω)
and χ−1(ω), in terms of certain geometrical parameters [44].

To elucidate further why the fluid incompressibility at the
pore scale requires a simple material geometry, suppose that we
want to estimate the order of magnitude of the fluid divergence
∇ · v at microlevel. Let v be a characteristic amplitude of the
velocity. Since the geometry is assumed to be simple, the
period L is also a valid estimate of the characteristic pore
length. While, for a general compressible fluid motion, the
magnitude of the microlevel divergence can be estimated as
v/L, we know that in our system the correct order of the
magnitude of this quantity should be v/λ. As the order of
magnitude of v/λ relative to v/L is ε(=L/λ), and the local
asymptotic approach is in the limit ε → 0, it is clear that
the fluid moves in an incompressible manner at the pore
scale [Eq. (24)]. Likewise, to estimate the order of magnitude
of the fluid pressure gradient ∇p at microlevel, let p be a
characteristic amplitude of the pressure represented in the
form of p = P + δp, where P ≡ 〈p〉/φ (not to be confused
with polarization field with the same notation P ) is the mean
fluid pressure that varies at the macroscopic scale, and δp is a
pressure deviation with zero mean value. Therefore, we have
∇p ∼ P/λ + δp/L. If the fluid is compressible, δp ∼ P and
∇p ∼ P/L, while in our system ∇p ∼ P/λ. This means that
δp/L ∼ P/λ, i.e., the deviation amplitude δp compared to the
mean value P , is very small, of the order ε. Consequently, in
the long-wavelength limit ε → 0, there is no gradient for the
pressure (and its time derivative); the pressure profile can be
regarded as uniform at the pore scale

∇(∂p/∂t) = 0. (25)

The above equation will be used later, in particular, for the
evaluation of χ−1(ω) in local theory. Finally, we note that, in
local theory, because the pressure deviation is negligibly small
δp ∼ εP � P , in Eq. (20), p can be replaced by its mean
value in the fluid P = 〈p〉/φ and extracted from the average
operator. This immediately leads, in this special case, to the
identification H = 〈p〉/φ = P .

In the above discussion, we have interpreted the local
constitutive relations as if there is not any difference between
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the cell period L and the characteristic pore lengths. Only
with this feature, the application of the two-scale asymptotic
homogenization method is justified. In general, when widely
different characteristic pore lengths are present, the scale
separation parameter ε becomes ill defined owing to the
arbitrariness in the choice of microlevel characteristic length.
In that case, Helmholtz structures exhibiting local resonances
may appear in the medium, and the nonlocal description will be
required in general [16]. Another case requiring the nonlocal
description is when the long-wavelength condition λ � L is
no longer satisfied, meaning that the fluid motion is no longer
divergence free at the pore scale and, in particular, Bragg
scattering may appear.

Contrary to the approximate local framework, the general
relations allowing for spatial dispersion provide, at the same
time, the correct and untruncated description of temporal
dispersion. Particularly, in a lossless medium, the temporal
dispersion effects do not completely disappear, that is, the
fluid does not respond instantly to an excitation, due to its
compressible motion at the pore scale [45, Sec. SI].

In summary, the definitions of the macroscopic Lorentz
fields based on microscopic fields, combined with the Lorentz
and Maxwell field equations (7) and (14), along with either the
constitutive local relations (21) or nonlocal relations (17), and
finally the Poynting thermodynamic relation of acoustic energy
flux (20), establish a closed form, uniquely defined system
within local approach or nonlocal approach, respectively.
However, only the nonlocal system takes the full account
of the microscopic equations and, therefore, applies without
restrictions on geometries and frequencies. In the following,
we will present the recipes to obtain the local effective
functions ρ(ω) and χ−1(ω) involved in Eqs. (22), and the
nonlocal effective functions ρ(ω,k) and χ−1(ω,k) introduced
in Eqs. (18), based on the knowledge of microscale properties.

B. Determination of local effective parameters

The procedure to obtain effective properties of the medium
in local theory derives based on the two assumptions that
there is a scale separation (λ � L), and also the fluid motion
may be viewed as divergence free at the microlevel. Based
on our previous considerations, we can directly write the two
independent action-response problems, the solution of which
determines the frequency-dependent density and bulk mod-
ulus. Hereafter, for convenience, we omit systematically the
symbol Re[. . .], in writing the fields in the form Re[f e−iωt ].

To compute the local effective density ρ(ω) for a given real-
value frequency, we consider the following action-response
problem. Coherent with the assumption of the fluid incom-
pressibility at microscale, when a harmonic bulk force F(t) =
F0e

−iωt , where F0 = F0ex , with constant F0, is applied to the
fluid or, equivalently, when a uniform harmonic macroscopic
pressure drop −∇P (t) = F0e

−iωt is applied, we need to solve
the following system in each realization ω (i.e., each random
positioning in space without rotation of the PC sketched in
Fig. 1):

∇ · v = 0, (26a)

−iωρ0v = −∇p + η∇2v + F0 (26b)

in Vf (ω),

v = 0 (27)

at ∂V(ω), where the fields are the amplitudes of the re-
sponse solutions in the form of v(t,r; ω) = v(ω,r; ω)e−iωt and
p(t,r; ω) = p(ω,r; ω)e−iωt . The local theory’s characteristic
assumption (26a) leads to the Laplacian form of the viscous
terms in Eq. (26b) and is consistent with F0 treated as a
spatial constant. Indeed, in the above action-response problem,
the sum −∇p + F0 embodies −∇p in the source-free wave
propagation problem. In line with our previous discussion on
the fluid incompressibility in local theory (Sec. III A), F0 and p

correspond to −∇P and δp, respectively. As we neglect spatial
dispersion, i.e., the dependence of the medium properties on
the spatial inhomogeneity of the macroscopic acoustic fields,
it is consistent to treat F0 as a spatial (pore) constant.

We can find unique amplitude fields v(ω,r; ω) and
p(ω,r; ω), that are response solutions to Eqs. (26) and (27). In
our periodic PC, these solutions are periodic with period L in
the x direction [46]. Equations (26) and (27) in the reference
configuration can be obtained by the aforementioned two-scale
asymptotic homogenization method at the leading order of
the asymptotic expansions [47,48]. Averaging the response
field v(ω,r; ω) over the realizations, the local density for the
effective fluid is given by

ρ(ω) = − F0

iω V (ω)
. (28)

We note that, owing to the construction of the ensemble,
exactly the same mean value V (ω) is obtained by solving (26)
and (27) in one single realization, and then, volume averaging
the response velocity in one unit cell; this is the procedure
within the aforementioned standard homogenization.

To compute the local effective bulk modulus χ−1(ω) at a
real ω, we apply an excitation in the form of a heating rate at
constant pressure Q̇(t) = Q̇0e

−iωt , where Q̇0 is a constant or,
equivalently, the material is subject to a uniform time harmonic
pressure, such that β0T0∂p/∂t = Q̇0e

−iωt . This results in the
following action-response problem for the amplitude of the
excess temperature field τ (t,r; ω) = τ (ω,r; ω)e−iωt :

−iωρ0cpτ = κ∇2τ + Q̇0 (29)

in Vf (ω),

τ = 0 (30)

at ∂V(ω). There is a unique amplitude field τ (ω,r; ω) response
solution to Eqs. (29) and (30), which is L periodic. This
action-response problem in the reference configuration can
also be obtained at the leading order within the classical
asymptotic homogenization [19]. It is based on the physical
assumption that the pressure field is a slowly variable quantity
that may be viewed in first approximation as equal to the
mean pressure. This assumption is incorporated in (29) in
the very fact that Q̇0 is taken as a spatial constant. In fact,
Q̇0 embodies the term β0T0∂p/∂t in the wave propagation
problem, and it is consistent to treat Q̇0 as a spatial constant:
as we saw earlier, the divergence-free nature of the motion
leads to β0T0∇(∂p/∂t) = 0 [Eq. (25)]. Once the solution field
τ is found, the factor ρ ′ analogous to the previous ρ is given as
ρ ′(ω) = −Q̇0/iωT (ω), where T = 〈τ 〉. In the framework of
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the local theory, the following direct relation exists between the
two functions ρ ′ and χ : χ (ω) = φχ0[γ − (γ − 1)ρ0cp/ρ ′(ω)]
[45, Sec. SII]. Thus, the local bulk modulus for the effective-
fluid medium is obtained as

χ−1(ω) = φ−1χ−1
0

[
γ + (γ − 1)

iωρ0cpT (ω)

Q̇0

]−1

. (31)

Again, the ensemble average 〈. . . 〉 can be performed here by
solving in one single realization and, then, volume averaging
the response temperature in one unit cell; this is the procedure
given by the classical homogenization.

In the local effective fluid, for a given frequency ω, there
is only one single normal mode that can propagate in the
positive-x direction. With this single mode is associated a local
wave number kl(ω) that verifies the following local dispersion
relation:

ρ(ω)χ (ω)ω2 = k2
l (32)

such that Im(kl) > 0. The frequency-dependent complex phase
velocity c(ω) and complex impedance Z(ω) are immediately
written as

c(ω) = ω

kl(ω)
, Z(ω) = [ρ(ω) χ−1(ω)]1/2. (33)

C. Determination of nonlocal effective parameters

The procedure to obtain effective properties of the medium
in nonlocal theory can be viewed as a generalization of the
preceding local action-response problems, which accounts for
the physical fact that, once the fields vary in time, they also
necessarily vary in space. Thus, once external fields varying
with respect to time as e−iωt are introduced, we should consider
that they include spatial variations as well. We can extract one
given Fourier component eikx of these spatial variations.

The Fourier coefficients ρ(ω,k) and χ−1(ω,k) in (19) are
directly related to the macroscopic (averaged) response of
the permeating fluid subjected to a single-component (ω,k)
Fourier pressure term P(t,x) = P0e

−iωt+ikx that is added to
the pressure, either in the Navier-Stokes equation (2b) to
obtain the nonlocal effective density or to the Fourier equation
(4) to obtain the nonlocal effective bulk modulus [35]. In
the former action-response problem, the excitation performs
inhomogeneous (variable in time and space) work per unit
volume and time and in the latter it pumps an inhomogeneous
amount of heat per unit volume and time. The two systems
of equations to be solved in each realization are written as
follows. In the fluid region Vf (ω),

∂b

∂t
+ ∇ · v = 0, (34a)

ρ0
∂v

∂t
= −∇p + η∇2v + · · ·

+
(

ζ + 1

3
η

)
∇(∇ · v) + F0e

−iωt+ikx,︸ ︷︷ ︸
added for determination of density

(34b)

ρ0cp

∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ + Q̇0e

−iωt+ikx,︸ ︷︷ ︸
added for determination of bulk modulus

(34c)

γχ0p = b + β0τ. (34d)

On the fluid/solid interface ∂V(ω),

v = 0, τ = 0. (35)

The excitation amplitudes are written as F0e
−iωt+ikx = −∇P

and Q̇0e
−iωt+ikx = β0T0(∂P/∂t), with P = P0e

−iωt+ikx , that
are independent of the realization. It is important to emphasize
that the excitation variables ω and k are set as independent
variables.

The solutions to the above systems for the response fields
p, b, τ , and components of v take the form p(t,r; ω) =
p(ω,k,r; ω)e−iωt+ikx , and so on, where the amplitudes are
periodic functions of x and proportional to the excitation
amplitude P0. However, these solutions are not unique in
the sense that the period can be chosen as any integer
multiple of the irreducible period L. In what follows, we
exclude this ambiguity by taking the period as equal to
the irreducible period, i.e., requiring the amplitudes of the
solutions to be periodic with period L. Once the above
systems are solved independently in each realization, we
use the fundamental relation (20) to write P〈v〉 = 〈pv〉,
where P(t,x) = P(ω,k)e−iωt+ikx is the macroscopic part of the
pressure response p(t,r; ω), whose amplitude is determined
by P(ω,k) = {〈p(ω,k,r; ω)v(ω,k,r; ω)〉 · ex}/V (ω,k).

For determination of ρ(ω,k), we use the Fourier transform
of Eq. (14). Applying Eq. (18a), and postulating that the
addition of the two parts P and P0 establishes the field H ,
gives rise to the nonlocal density of the phononic fluid, which
is valid for any ω, and k:

ρ(ω,k) = k

ωV (ω,k)
[P(ω,k) + P0]. (36)

We note that, owing to the construction of the ensemble,
exactly the same mean values V (ω,k) and P(ω,k) are obtained
by solving (34) and (35) in one single realization, and then
making the averages 〈. . . 〉 by volume integration in the chosen
periodic unit cell.

In order to get the response fields p(ω,k,r) and v(ω,k,r)
in the reference configuration and perform the cell averages,
we explicitly solve in the reference unit cell the PDEs relating
only the amplitude fields, that are periodic functions over the
unit-cell boundaries. These PDEs are given in [45, Sec. SIII].

For determination of χ−1(ω,k) we use the Fourier transform
of Eq. (17b). As before, admitting that the field H is
built upon adding the two contributions P and P0 yields
P(ω,k) + P0 = χ−1(ω,k)B(ω,k). Here, the field B has yet to
be identified based on microscale dynamics. We postulate that
it is composed of two parts B = B + B0: one nonisothermal
response part B(ω,k) ≡ 〈b(ω,k,r; ω)〉 that originates in the
field b(t,r; ω) = b(ω,k,r; ω)e−iωt+ikx of the action-response
problem (34) and (35), and the other is an isothermal constant
contribution, that can be directly written by averaging the
isothermal term γχ0P0, i.e.,B0 ≡ 〈γχ0P0〉 = φγχ0P0, where
φ is the porosity of the PC. The construction of B in
such a manner by these two independent parts has been
suggested through following the operation of the theory in a
homogeneous viscothermal fluid without any solid inclusions
[35]. Therefore, the nonlocal bulk modulus of the phononic
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fluid is expressed as

χ−1(ω,k) = 1

B(ω,k) + B0
[P(ω,k) + P0]. (37)

Averaging the amplitudes v(ω,k,r; ω) and b(ω,k,r; ω) or
product of amplitudes p(ω,k,r; ω)v(ω,k,r; ω) can be per-
formed equivalently over the unit-cell average in the reference
configuration. Here also, in order to get the response fields,
we solve the PDEs relating only the amplitude fields [45, Sec.
SIII], that are periodic functions over the unit-cell boundaries.
Contrary to the case of local theory, here, since we take
into account spatial dispersion, several normal-mode solutions
might exist, with fields varying as e−iωt+ikx . Solutions must
satisfy the following nonlocal dispersion equation:

ρ(ω,k)χ (ω,k)ω2 = k2 (38)

which is easily derived from the Maxwellian macroscopic
equations. That is, with each frequency ω, several normal-
mode complex wave numbers kn(ω), Im(kn) > 0, n = 1,2, . . .,
solution to the nonlocal dispersion equation (38), may be
associated. Furthermore, with each wave number kn are
associated a frequency-dependent density and bulk modulus,
such that

ρn(ω) = ρn[ω,kn(ω)], χ−1
n (ω) = χ−1

n [ω,kn(ω)]. (39)

Therefore, the phase velocity and impedance of the normal
mode n are written as

cn(ω) = ω

kn(ω)
, Zn(ω) = [

ρn(ω) χ−1
n (ω)

]1/2
. (40)

The fact that at each frequency ω, we obtain several normal
modes propagating and attenuating in the medium, with
wave numbers kn(ω) (equivalently phase velocities) constants
of the medium, and other effective parameters, is a direct
consequence of the nonlocal description. The interpretation
of these wave numbers is immediate: because our ensemble of
random realizations is made of the random translation of one
periodic sample, the above wave numbers must coincide with
the so-called Bloch wave numbers associated with the periodic
geometry. In this paper, we focus only on the least-attenuated
mode n = 1 and its associated effective parameters. The results
produced by the local and nonlocal theories and respective
upscaling procedures will be illustrated in Sec. V. They will
be evaluated by performing an independent direct computation
of the complex wave number (or phase velocity) of the
least-attenuated Bloch wave propagating in the reference PC.

IV. DIRECT BLOCH WAVE APPROACH (DBA)

Here, we aim to obtain the phase velocity of the least
attenuated Bloch wave propagating in the 2D fluid/solid
reference PC illustrated in Fig. 1, solving directly the source-
free microscopic equations (2)–(5). Achieving the Bloch
wave number kB(ω) as eigenvalue of the medium, through
DBA, is fundamentally different from the way we obtain this
quantity based on local and nonlocal theories, via Eqs. (32)
and (38). These theories define in an appropriate manner the
effective susceptibilities of the media (effective density, bulk
modulus) that concern macroscopic response of a medium
to an applied field. Within these theories, procedures are

established to determine the way in which the effective
density and bulk modulus can be obtained based on microlevel
“action-response” problems. Once the effective parameters are
obtained, the effective wave numbers can be achieved, thus,
in an indirect fashion. In contrast, as DBA is not based on a
macroscopic theory, it cannot by itself define, independently,
the effective susceptibilities of the material.

For the simple fluid/solid geometry illustrated in Fig. 1, a
precise and relatively simple calculation of the possible Bloch
wave numbers kn(ω) is feasible by the MS approach [49]. We
sketch here the generalization of the MS approach developed
in [50] for a lossless host fluid and the same geometry to the
present case of a viscothermal fluid. The details of calculations
are given in [45, Sec. SIV]. The fluid motion corresponding
to the source-free equations (2)–(5) can be described in terms
of three velocity potentials: the acoustic potential φa , entropic
potential φe, and vorticity potential ψ such that

v = ∇(φa + φe) + ∇ × ψ . (41)

The vorticity potential ψ has just one component, which is
directed along the z axis and is denoted by φv . In the harmonic
regime, three independent Helmholtz equations

[∇2 + (kα)2]φα = 0, α = a,e,v (42)

must be satisfied in Vf , where (kα)2, α = a,e,v, are the
squared wave numbers associated with acoustic, thermal, and
viscous waves, respectively. The former two (ka)2 and (ke)2 are
the opposite signs of the small and large solutions λ1 ≡ λa and
λ2 ≡ λe of Kirchhoff-Langevin’s dispersion equation [see Eq.
(14) in [51], and the latter is (kv)2 ≡ iω/ν, where ν = η/ρ0

is the kinematic viscosity. It is easy to express the excess
temperature in terms of potentials, for instance, by using (41)
and (42) and Eq. (12c) in [51]:

β0τ

γ − 1
=

(
κ

ρ0cv

+ iω

λa

)−1

φa +
(

κ

ρ0cv

+ iω

λe

)−1

φe. (43)

The boundary conditions at the solid-fluid interface for the
potentials arise from the fact that the displacement u and excess
temperature fields vanish on ∂V:

u = 0, τ = 0. (44)

These boundary conditions establish the relationship between
the potentials, such that a wave carried by one potential is
scattered in the three types of waves through interacting with
the solid cylinders.

In this paper, we are not concerned with the terms of
minor importance related to the intrinsic bulk-fluid attenuation.
Thus, as a simplification we set −λa ≡ (ka)2 = (ω/c0)2, that
is, we neglect the damping of the acoustic mode. As it
is explained in [45, Sec. SIV], this simplification leads to
slowly convergent Hankel series that can, however, be replaced
by rapidly convergent Schlömilch series. Moreover, we also
neglect the higher-order terms governing the attenuation of
entropic waves, and set as another simplification −λe ≡
(ke)2 = iωρ0cp/κ . Consistent with the first simplification, we
have to remove the thermal conductivity term in the first set of
parentheses in (43). After straightforward calculation using the
thermodynamic identity γ − 1 = T0β

2
0c2

0/cp, the following
relation is obtained: τ = (T0β0/cp)iωφa + (ρ0cp/β0κ)φe.
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FIG. 2. One row of infinite number of rigid cylinders.

Considering one row containing an infinite number of
cylinders, as is shown in Fig. 2, we expand the potentials
in terms of right- and left-going plane waves

φα
0 (r) =

∞∑
n=−∞

(
A+α

0n eikα
n .r + A−α

0n e−ikα
n ·r),

φα
L(r) =

∞∑
n=−∞

(
A+α

Ln eikα
n ·(r−Lex ) + A−α

Ln e−ikα
n ·(r−Lex )

)
.

The ingoing or outgoing of the four types of amplitudes A

are illustrated in Fig. 2. The index α refers to the type a,
e, or v of potential field. It is clear that the periodicity of
the potential fields with respect to y coordinates implies that
for each n, the y component of the wave vectors kα

n must
be kα

ny = 2πn/L, thus, (kα)2 = (kα
nx)2 + (2πn/L)2. Another

symmetry consideration of the problem is based on the fact
that we are interested only with the solutions leading to a
fluid motion symmetric around each cylinder. This restriction
implies that the fields φa and φe are even functions, and φv

an odd function, of y coordinates. Thus, regarding the terms
in the above equations, after combining the up and down
components n and −n, there will appear a y dependence in
the form of cos(2πny/L) for acoustic and entropic potentials,
and in the form of sin(2πny/L) for vorticity potential. To
account explicitly for this symmetry in the notation, we replace
the above equations by the following condensed form of the
potentials:

φα
0 (r) =

∞∑
n=0

Cα
n (y)

(
A+α

0n eikα
nxx + A−α

0n e−ikα
nxx

)
,

φα
L(r) =

∞∑
n=0

Cα
n (y)

(
A+α

Ln eikα
nx (x−L) + A−α

Ln e−ikα
nx (x−L)),

where Cα
n (y) =

{
cos (2πny/L), α = a,e

sin (2πny/L), α = v.

Also, we note that with each n, α, and ω, we may associate
a characteristic incidence angle θα

n , such that kα sin(θα
n ) =

2πn/L and kα cos(θα
n ) = kα

nx . For the acoustic type α = a, this

angle is real when the frequency is such that 2πn/(kαL) < 1.
It is complex and equal to π/2 − iξ at higher frequencies,
with ξ > 0 ensuring that Im(kα

nx) > 0. For the entropic and
vorticity types, this angle is complex, which is chosen to satisfy
Im(kα

nx) > 0. The first step in the calculation is to obtain the
reflection and transmission properties of the row of cylinders,
or the following scattering matrix, which relates the outgoing
waves to the ingoing ones:(

A−
0

A+
L

)
=

(
T R
R T

)(
A−

L

A+
0

)
, (47)

where A−
0 =

⎛
⎝A−a

0
A−e

0
A−v

0

⎞
⎠, A+

L =
⎛
⎝A+a

L

A+e
L

A+v
L

⎞
⎠,

and so on for the vectors A+
0 and A−

L . Each of the vectors
A+α

L , A+α
0 , A−α

L , and A−α
0 contains the whole ensemble of

plane-wave amplitudes with α = a,e,v, each of which is
indexed by n. The reflection and transmission matrices R and
T , respectively, thus have elements of the type R

αβ
pn and T

αβ
pn ,

where the indexes on the right refer to ingoing waves and
those on the left to outgoing waves. The presence of different
elements results from the interactions and transformations of
different kinds of potentials into one another, via boundary
conditions (44).
To compute R and T , and thereby construct the scattering
matrix, the analysis of the scattering problem is divided in
different elementary parts, that are combined in the end. The
detail of the calculation, leading to the expressions of the
scattering matrix elements R

αβ
pn and T

αβ
pn , is given in [45,

Sec. SIV].
At this point, reflection and transmission properties of one row
are entirely determined. Now, we consider an infinite number
of rows separated by the distance L (Fig. 1). We make use
of the concept of scattering matrix introduced for an arbitrary
row, and apply the Bloch condition for this case of periodic
medium. We have (

A+
L

A−
L

)
= eikBL

(
A+

0
A−

0

)
, (48)

where kB denotes the Bloch wave number to be determined.
The use of scattering-matrix relation (47) and the Bloch
condition (48) leads to the following eigenvalue problem:(

T R
0 I

)(
A+

0
A−

L

)
= eikBL

(
I 0
R T

)(
A+

0
A−

L

)
, (49)

where 0 and I are the zero and identity matrices, respectively.
Since at this stage the reflection and transmission matrices R
and T are known, we are able to solve the above eigenvalue
problem numerically. In this manner, we get the complex
eigenvalues μ = eikBL that determine the possible Bloch wave
numbers kB . For each eigenvalue μ there must be an eigenvalue
μ−1 corresponding to the opposite sign of kB , i.e., the reversed
direction of propagation. We restrict the solutions to forward
propagation by imposing |μ| < 1 and Im(kB) > 0. Note that
the real part of the wave number is defined only modulo 2π/L.
Customarily, this indeterminacy issue is resolved by requiring
that −π/L < Re(kB) < π/L, i.e., the wave number is chosen
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TABLE I. Fluid (air) properties used in all computations.

ρ0 T0 c0 η ζ κ χ0 cp γ

(kg/m3) (K) (m/s) (kg/ms) (kg/ms) (W/mK) (1/Pa) (J/kgK)

1.2 293 343 1.8 × 10−5 0.6ηa 2.6 × 10−2 7.1 × 10−6 1005 1.4

aThis quantity is ignored in the MS method.

to lie in the “first Brillouin zone”. With each frequency ω there
might be associated, in the first Brillouin zone, different mode
solutions kB,n, n = 1,2,3, . . ., labeled by ascending order of
the values of Im(kB,n), and characterized by complex phase
velocities

cn(ω) = ω

kB,n(ω)
. (50)

Here, however, we study the least-attenuated mode n = 1,
propagating in the positive-x direction, and find it convenient
to express its wave number kB ≡ kB,1(ω) as a continuous
function of frequency, that becomes zero when the frequency
tends to zero. The wave number kB(ω) that is defined in this
manner will not always remain in the first Brillouin zone.
As it will be shown in the next section, when the frequency
increases sufficiently, the real part of the wave number may
be found in the interval [π/L,2π/L] (or upper), which means
that it passes into the second (or higher) Brillouin zone. The
same convention will be applied regarding the selection and
presentation of the wave numbers in nonlocal theory, where,
obviously, the same issues arise.

V. ILLUSTRATION OF THE RESULTS AND DISCUSSIONS

In this section, we present the results produced by local
theory, nonlocal theory, and DBA, concerning the propagation
of the least-attenuated mode in 2D PCs made of a square lattice
of rigid cylinders embedded in air, that acts as a viscothermal
fluid.

For the least-attenuated wave, we have computed the
effective macroscopic parameters based on local and nonlocal
theories, that include frequency-dependent phase velocity,
density, bulk modulus, and impedance. By DBA, based on
the quasiexact MS method, the phase velocity of the least-
attenuated Bloch wave is calculated. This serves as a measure
for the domain of validity of the local and nonlocal effective-
medium theories. The results are shown in a large frequency
range for the porosity φ = 0.9. With a fixed periodicity
L = 10 μm, the radius of the cylinders R = L[(1 − φ)/π ]

1
2 is

equal to 1.78 μm. The present topology that we study here does
not exhibit local resonances, thus, we expect the local theory to
cover long-wavelength (λ � L) frequency band. The nonlocal
approach is expected to be valid over the entire frequency
band, without any constraint. Beyond the long-wavelength
regime, the macroscopic wave and respective properties that
are outcomes of the nonlocal theory should be viewed as the
ensemble average of the propagation in the ensemble of media
that is generated by the random translations of the reference
PC illustrated in Fig. 1. Within the long wavelength regime,
based on both local and nonlocal approaches, these waves can
be equivalently regarded as a result of ensemble averaging,

or averaging microfields over the reference unit cell. Finally,
the the results provided by DBA concern the propagation of
the Bloch wave in the reference PC. This direct approach
provides, in principle, the dispersive Bloch wave number (or
phase velocity) without defining procedures to obtain effective
constitutive parameters.

The fluid properties for all computations are indicated in
Table I. One of the objectives of the present theoretical analysis
is to describe both viscous and thermal losses precisely
from the basic microscale equations, in effective-medium
approaches, as well as in DBA. Air, that is taken to be
the the host fluid, produces meaningful viscous, as well as
thermal, losses. The general thermodynamic identity γ − 1 =
β2

0T0/ρ0cp shows that the deviation of γ from unity is a
second-order effect on the thermal expansion coefficient β0.
For air which is a gas, β0 � 1/T0 is not especially small and
γ � 1.4, while for a liquid, like water, β0 is close to zero,
which implies that γ is very close to 1. In this case, the
values of the adiabatic bulk modulus χ−1

0(adiab) and isothermal

bulk modulus χ−1
0(isoth) are very close to each other since, in

general, χ−1
0(adiab) = γχ−1

0(isoth). Therefore, thermal exchanges
have practically no effects. Here, because γ − 1 is of order one,
thermal losses can be comparable to viscous losses. Indeed,
the thickness of the thermal boundary layer δt = (2κ/ρ0cpω)

1
2

is on the same order as the thickness of viscous boundary layer
δv = (2η/ρ0ω)

1
2 .

As regards the small dimension of our unit cell, it has
not been chosen for a special use in practice or a particular
experimental investigation, but as a proof of concept. In fact,
the impact of the dissipation on the results can be shown
in a more pronounced way, when the size of the cell is
decreased, and thereby the viscous and thermal losses are
enhanced in the medium. We note that for a given value of
the normalized frequency � ≡ k0L/π = ωL/c0π , where k0

is the wave number in air, decreasing the scale by a factor
a, results in decreasing the thickness of boundary layers by
only

√
a. Therefore, at a given �, a decrease in the size of

the structural unit leads to the increase of the unit-cell space
occupied by the boundary layers; that is, δv,t /L augments like√

a. Consequently, decreasing the structural size will enforce
the viscous and thermal effects, at a given value of normalized
frequency.

As it was mentioned before, the local theory that does
not allow for the spatial dispersion predicts a single wave
propagating in the medium. To obtain the equivalent-fluid
parameters according to local theory, we solved by FEM
the two sets of equations (26) and (27) and (29) and (30),
independently, in a unit cell including a single cylinder
(Fig. 1). Then, the frequency-dependent local density ρ(ω)
and local bulk modulus χ−1(ω) are given through Eqs. (28)
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and (31), respectively. The effective local phase velocity, that
is calculated via local dispersion equation (32), is given by
the left equation in (33), and the effective local impedance is
achieved by the right equation in (33).

To obtain the nonlocal frequency-dependent parameters, the
functions ρ(ω,k) and χ−1(ω,k) were first computed through
solving independently, by FEM, the equations (S6) and (S7)
and (S8) and (S9) in [45, Sec. SIII]. Based on these functions
of imposed independent values of ω and k, the frequency-
dependent wave number k1(ω) associated with the least-
attenuated normal mode was obtained by solving the nonlocal
dispersion equation (38). The latter was solved by a Newton-
Raphson scheme: we varied frequency step by step, taking
as initial value for k1(ω) at a given frequency the solution
value obtained at the preceding frequency. Only for the starting
frequency ω0 in the range of interest, we have chosen the value
kB,1(ω0) with a 10% discrepancy, where kB,1 that refers to
Eq. (48) is the least-attenuated Bloch wave number produced
by DBA based on the MS method. This immediately results
in the nonlocal phase velocity in Eq. (40). The frequency-
dependent effective density ρ[ω,k1(ω)] = ρ1(ω), and effective
bulk modulus χ−1[ω,k1(ω)] = χ−1

1 (ω), of the corresponding
principal normal mode are then calculated by replacing k =
k1(ω) in the aforementioned excitation terms in Eqs. (34b)
and (34c). Subsequently, the nonlocal impedance in (40) was
computed. We have performed all FEM computations, using
FREEFEM++ [52], an open-source PDE solver. The weak
form of the equations to be solved is first needed in order to
implement the FEM simulations through this solver. Adaptive
meshing was employed to deal with strong field variations in
the medium.

We see in Fig. 3 that the real and imaginary parts of the
phase velocity computed by nonlocal theory (40) via Newton’s
method converge exactly to the real and imaginary parts of
Bloch phase velocity (50) which have been computed by the
completely different DBA, in a very wide frequency range. The
frequency range starts at k0L/π = 0.05 corresponding to λ0 =
40L, and ends at k0L/π = 2, where the wavelength in air is
equal to the periodicity, i.e., λ0 = L. The effective wavelength,
according to either nonlocal theory or DBA, is λ � 33L at the
starting frequency and is λ � L at the ending point of the
frequency band. The frequency band covers short waves up to
those with wavelengths as small as the periodicity λ � L. This
includes the region where band gaps would appear in absence
of viscothermal losses. In fact, based on the real part of the
effective wave number (see Fig. S2 in [45]), we specify in Fig.
3 that the nonlocal theory predicts accurately the dispersive
phase velocity, at least, for the whole first and also the entire
second Brillouin zones. Here, the first Brillouin zone is, by
definition, bounded by 0 < |Re(k)| < π/L. Thus (see Fig. S2
in [45]), the normalized frequency k0L/π associated with this
zone lies in 0 < k0L/π � 1. Regarding the second Brillouin
zone π/L < |Re(k)| < 2π/L, we indicate in Fig. 3 that its
corresponding frequency band is limited by 1 � k0L/π � 1.8.
The rapid variations around k0L/π = 1 correspond to the
location of the first band gap. This may be viewed as a
Bragg cell resonance, which occurs when the length of the
cell is around λ/2. We see that for all frequencies, in the
presence of dissipation, the propagation is possible, however,
it slows down around “Bragg frequencies” through destructive
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FIG. 3. Real and imaginary parts of the phase velocities of the
least-attenuated wave according to local theory, nonlocal theory, and
DBA for φ = 0.9. The frequency domain of the validity of the local
theory is shown. The Brillouin zones are determined following the
values of the real part of the wave number.

interferences. In fact, losses do not allow for perfect destructive
interferences.

In contrast, phase velocities predicted by the local theory
cease to be valid above a certain frequency. As it was
mentioned in Sec. III, this is due to the fact that the validity of
the effective-medium parameters generated by the local theory
is bounded up to the frequencies satisfying the condition that
the fluid motions remain incompressible [Eq. (24), for the
purpose of determining the microscopic velocity pattern] and
the pressure field remains uniform [Eq. (25), for the purpose
of determining the excess temperature pattern] at microscale.
For this reason, in the validity domain of the local theory, the
macroscopic pressure can be simplified as the direct average
of the microscopic pressure in the fluid H = 〈p〉/φ = P ≈ p

instead of the general relation that is set in nonlocal theory:
H = 〈pv〉/〈v〉 [Eq. (20)]. These characteristics are illustrated
in Fig. 4 presenting the divergence of the microscopic velocity
normalized by its macroscopic value, and the microscopic
pressure field normalized by its macroscopic part H , at two
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FIG. 4. Field distribution for velocity divergence (a), (b) and
pressure (c), (d). Normalized velocity divergence (a), and pressure
(c), at normalized frequency k0L/π = 0.1 in the domain of validity
of the local theory, where λ � L. Normalized velocity divergence
(b), and pressure (d), at normalized frequency k0L/π = 1 in Bragg’s
regime.

representative frequency points: k0L/π = 0.1 on the left,
which is seated in the validity domain of local approach,
and k0L/π = 1 on the right, which recognizably belongs
to a region of Bragg scattering and rapid variations of the
microscopic field patterns, where the local description is in
error. Real parts of (∇ · v)/(∇ · V ) and p/H are plotted, in

order to depict noncomplex values. It is clearly illustrated
that, as the local theory remains valid, the microscopic
velocity divergence and pressure are distributed closely around
their macroscopic values, which is a small quantity and a
pore constant, respectively, owing to the long-wavelength
condition. On the contrary, when the frequency is in Bragg’s
regime, the microscopic velocity divergence and the pressure
are widely distributed around their macroscopic values. As
such, the local theory fails to describe correctly the dispersive
phase velocity for about one third of the first Brillouin zone,
and the entire second Brillouin zone (Fig. 3). It is valid up to
the frequency k0L/π � 0.3, where the real part of the wave
number Re(k) � 105 (1/m) (see Fig. S2 in [45]).

Figures 5(a)–5(c) show the nonlocal density, bulk modulus,
and impedance, as well as those based on the local theory, in
functions of frequency. The local theory describes correctly
the effective parameters only in the frequency range up to
k0L/π � 0.3, where λ0 = 10L and λ = 7L, which covers
only the lower one third of the first Brillouin zone.

We have performed the same computations for the case of
φ = 0.7 (R = 3.1 μm), and observed also excellent agreement
between the nonlocal theory and MS method. For the more
concentrated medium (φ = 0.7), the discrepancies between
local theory and DBA predictions are larger and commence at
lower frequency. Indeed, it is known that in PCs, when the
medium becomes more concentrated, the band gaps occur
through larger frequency intervals (see, e.g., [4]) and the
scattering phenomena become more influential. Although our
analysis concerned a 2D PC, the present nonlocal approach
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wave according to local theory, and nonlocal theory, for porosity φ = 0.9.
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and its equations presented therein permit easily to consider
the three-dimensional medium, e.g., with spherical inclusions,
as long as the propagation is along an existing principal
symmetry axis. This is only a computational issue. The reason
that in this paper we restricted our study to the propagation
along a principal symmetry axis is that, in this condition, the
Poynting-Schoch quantity 〈pv〉 [Eq. (20)] lies in the direction
of 〈v〉 and, thus, H is a scalar field. For an arbitrary direction of
propagation, a generalization could be possible, which would
extend the definition of the macroscopic fields, action-response
problems, and constitutive operators. Contrary to local, where
indeed this generalization can be easily performed by tensor
analysis, in nonlocal theory, because the Fourier components
of the constitutive kernels are k dependent, a distinctive
direction is generated. This feature, inherent to nonlocal
approach, can engender new dynamics and mechanisms in the
effective medium. This can be interesting, but requires further
studies.

VI. CONCLUDING REMARKS

We have shown that the exploited Maxwellian nonlocal
approach fully describes the effective dynamics of a (rigid)
solid/fluid phononic crystal, in terms of a an equivalent fluid
with nonlocal properties at macroscale. Within this framework,
the medium is treated as the ensemble of random translations of
the crystal. In particular, this effective fluid allowing for short
waves accounts also for the Bragg scattering phenomena, by
virtue of which, introducing a new class of effective media, can
be referred as phononic fluids. In addition, for the phononic
fluids, we have precisely and from the microscale equations
taken into account both viscous and thermal losses.

In order to demonstrate the above, we studied at the
macroscopic level, 1D sound propagation in a 2D PC, made of
periodic arrays of parallel rigid cylinders that are embedded in
a viscothermal fluid. To investigate properly the macroscopic
dissipative dynamics of the medium, the nonlocal and local
approaches are presented in a unified formulation analogous
to EM Maxwell equations. The temporal and spatial dispersion
effects are incorporated in the constitutive relations in the same
fashion as in EM. In-depth analysis is provided to situate
here the classical homogenization given by the two-scale
asymptotic expansion method of homogenization for periodic
media, that is interpreted as a truncated local homogenization.
To compute the local and nonlocal effective-fluid parameters,
procedures within local and nonlocal approaches, involving
action-response problems, were summarized, respectively.
The dispersion equations related to local and nonlocal schemes
are used to yield the frequency-dependent effective wave
numbers as eigenvalues of the medium accordingly.

Furthermore, a different approach based on Floquet-Bloch
theorem (DBA) was implemented to calculate the Bloch
waves by solving directly and analytically the source-free

microscopic equations via multiple scattering method. This
quasiexact method, that takes into account the viscothermal
effects, has been used to specify the validity domain of
the effective-fluid schemes. Based on the local and nonlo-
cal approaches, we have computed the frequency-dependent
effective parameters associated with the least-attenuated wave.
Comparisons were made between the quasiexact DBA results
related to phase velocity of the normal mode and those
produced by the effective theories in an air-filled medium.
This showed remarkable agreement between the nonlocal
theory and multiple scattering method for all frequencies, and
demonstrated the range of validity of the local approach. We
demonstrated that the nonlocal theory predicts accurately the
effective-medium parameters for the entire first and second
Brillouin zones, while the local theory is valid only for the
lower one third of the first Brillouin zone. As such, the nonlocal
approach has been validated to describe correctly the effective
parameters of the phononic fluid in frequency bands, where
the effective wavelength is equal to the periodicity, and
thereby strong Bragg scattering occurs. We also discussed and
illustrated the important role of the microscopic distribution
of the velocity divergence of the fluid, that is indeed linked
with the microscopic pressure profile, as the microlevel origin
of the macroscopic spatial dispersion, and also its essential
role to allow for full macroscopic temporal dispersion.

Although we studied the properties associated to the
least-attenuated mode, the extension of this work to explore
higher modes’ properties can bring novel applications to
control waves in metafluids. In addition, the nonlocal theory
is expected to directly extend to the case where the separated
inclusions in the fluid host are elastic solid, and the perturbation
is considered to originate in the fluid. For the propagation
along the principal lattice axis, the macroscopic equations
remain in the same form with, obviously, modified kernel
functions. To obtain the modified kernel functions, one can
easily complete the microlevel action-response equations (34)
by including the governing equations of the solid inclusions,
as well as replacing the boundary conditions (35) by the
appropriate new ones at the (elastic) solid/fluid interfaces.
The forcing terms would not change in the fluid host and
would be set to zero in the solid. In this case, comparison
of the results of the nonlocal theory with those given by
the layer-multiple-scattering method [53] would be feasible.
Similarly, nonlocal properties of media made up of inclusions
in the form of gas bubbles in a liquid host could be studied.
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