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We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band
100–1500 Hz and with a frequency time derivative in the range of ½−1.18;þ1.00� × 10−8 Hz=s. Such a
signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our
galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter
space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak
outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No
gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest
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upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7 × 10−25 near 169 Hz, while at the
high end of our frequency range we achieve a worst-case upper limit of 5.5 × 10−24. Both cases refer to all
sky locations and entire range of frequency derivative values.

DOI: 10.1103/PhysRevD.94.042002

I. INTRODUCTION

In this paper we report the results of a comprehensive
all-sky search for continuous, nearly monochromatic
gravitational waves in data from LIGO’s sixth science
(S6) run. The search covered frequencies from 100 Hz
through 1500 Hz and frequency derivatives from
−1.18 × 10−8 Hz=s through 1.00 × 10−8 Hz=s.
A number of searches for periodic gravitational waves

have been carried out previously in LIGO data [1–10],
including coherent searches for gravitational radiation from
known radio and X-ray pulsars. An Einstein@Home search
running on the BOINC infrastructure [11] has performed
blind all-sky searches on S4 and S5 data [12–14].
The results in this paper were produced with the

PowerFlux search program. It was first described in [1]
together with two other semicoherent search pipelines
(Hough, Stackslide). The sensitivities of all three methods
were compared, with PowerFlux showing better results in
frequency bands lacking severe spectral artifacts. A sub-
sequent article [3] based on the data from the S5 run featured
improved upper limits and a systematic outlier follow-up
search based on the Loosely Coherent algorithm [15].
The analysis of the data set from the sixth science run

described in this paper has several distinguishing features
from previously published results:

(i) A number of upgrades to the detector were made
in order to field-test the technology for Advanced
LIGO interferometers. This resulted in a factor of
about two improvement in intrinsic noise level at
high frequencies compared to previously published
results [3].

(ii) The higher sensitivity allowed us to use less data
while still improving upper limits in high frequency
bands by 25% over previously published results.
This smaller data set allowed covering larger param-
eter space, and comprehensive exploration of high
frequency data.

(iii) This search improved on previous analyses by par-
titioning the data in≈ 1month chunks and looking for
signals in any contiguous sequence of these chunks.
This enables detections of signals that conform to
ideal signal model over only part of the data. Such
signals could arise because of a glitch, or because of
influence of a long-period companion object.

(iv) The upgrades to the detector, while improving
sensitivity on average, introduced a large number
of detector artifacts, with 20% of frequency range
contaminated by non-Gaussian noise. We addressed

this issue by developing a new universal statistic
[16] that provides correct upper limits regardless of
the noise distribution of the underlying data, while
still showing close to optimal performance for
Gaussian data.

We have observed no evidence of gravitational radiation
and have established the most sensitive upper limits to date
in the frequency band 100–1500 Hz. Our smallest 95%
confidence level upper limit on worst-case (linearly polar-
ized) strain amplitude h0 is 9.7 × 10−25 near 169 Hz, while
at the high end of our frequency range we achieve a worst-
case upper limit of 5.5 × 10−24. Both cases refer to all sky
locations and entire range of frequency derivative values.

II. LIGO INTERFEROMETERS AND
S6 SCIENCE RUN

The LIGO gravitational wave network consists of two
observatories, one in Hanford, Washington and the other in
Livingston, Louisiana, separated by a 3000 km baseline.
During the S6 run each site housed one suspended
interferometer with 4 km long arms.
While the sixth science run spanned a ≈ 15 months

period of data acquisition, this analysis used only data from
GPS 951534120 (2010 Mar 02 03:01:45 UTC) through
GPS 971619922 (2010 Oct 20 14:25:07 UTC), for which
strain sensitivity was best. Since interferometers sporadi-
cally fall out of operation (“lose lock”) due to environ-
mental or instrumental disturbances or for scheduled
maintenance periods, the data set was not contiguous.
The Hanford interferometer H1 had a duty factor of 53%,
while the Livingston interferometer L1 had a duty factor of
51%. The strain sensitivity was not uniform, exhibiting a
∼50% daily variation from anthropogenic activity as well
as gradual improvement toward the end of the run [17,18].
Nonstationarity of noise was especially severe at

frequencies below 100 Hz, and since the average detector
sensitivity for such frequencies was not significantly better
than that observed in the longer S5 run [3], this search was
restricted to frequencies above 100 Hz.
A detailed description of the instruments and data can be

found in [19].

III. THE SEARCH FOR CONTINUOUS
GRAVITATIONAL RADIATION

A. Overview

In this paper we assume a classical model of a spinning
neutron star with a rotating quadrupole moment that
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produces circularly polarized gravitational radiation along
the rotation axis and linearly polarized radiation in the
directions perpendicular to the rotation axis. The linear
polarization is the worst case as such signals contribute the
smallest amount of power to the detector.
The strain signal template is assumed to be

hðtÞ ¼ h0

�
Fþðt; α0; δ0;ψÞ

1þ cos2ðιÞ
2

cosðΦðtÞÞ

þ F×ðt; α0; δ0;ψÞ cosðιÞ sinðΦðtÞÞ
�
; ð1Þ

where Fþ and F× characterize the detector responses to
signals with “þ” and “×” quadrupolar polarizations [1–3],
the sky location is described by right ascension α0 and
declination δ0, the inclination of the source rotation axis to
the line of sight is denoted ι, and the phase evolution of the
signal is given by the formula

ΦðtÞ ¼ 2πðfsource · ðt − t0Þ þ fð1Þ · ðt − t0Þ2=2Þ þ ϕ; ð2Þ

with fsource being the source frequency and fð1Þ denoting
the first frequency derivative (which, when negative, is
termed the spindown). We use t to denote the time in the
Solar System barycenter frame. The initial phase ϕ is
computed relative to reference time t0. When expressed as a
function of local time of ground-based detectors Eq. (2)
acquires sky-position-dependent Doppler shift terms. We
use ψ to denote the polarization angle of the projected
source rotation axis in the sky plane.
The search has two main components. First, the main

PowerFlux algorithm [1–3,20–22] was run to establish
upper limits and produce lists of outliers with signal-to-
noise ratio (SNR) greater than 5. Next, the Loosely
Coherent detection pipeline [3,15,23] was used to reject
or confirm collected outliers.
Both algorithms calculate power for a bank of signal

model templates and compute upper limits and signal-to-
noise ratios for each template based on comparison to
templates with nearby frequencies and the same sky
location and spindown. The input time series is broken
into 50% overlapping 1800 s long segments which are
Hann windowed and Fourier transformed. The resulting
short Fourier transforms (SFTs) are arranged into an input
matrix with time and frequency dimensions. The power
calculation can be expressed as a bilinear form of the input
matrix fat;fg:

P½f� ¼
X
t1;t2

at1;fþδfðt1Þa
�
t2;fþδfðt2ÞKt1;t2;f ð3Þ

Here δfðtÞ denotes the detector frame frequency drift due to
the effects from both Doppler shifts and the first frequency
derivative. The sum is taken over all times t corresponding
to the midpoint of the short Fourier transform time interval.

The kernel Kt1;t2;f includes the contribution of time
dependent SFT weights, antenna response, signal polari-
zation parameters and relative phase terms [15,23].
The main semi-coherent PowerFlux algorithm uses a

kernel with main diagonal terms only and is very fast.
The Loosely Coherent algorithms increase coherence time
while still allowing for controlled deviation in phase [15].
This is done by more complicated kernels that increase
effective coherence length.
The effective coherence length is captured in a parameter

δ, which describes the amount of phase drift that the kernel
allows between SFTs, with δ ¼ 0 corresponding to a fully
coherent case, and δ ¼ 2π corresponding to incoherent
power sums.
Depending on the terms used, the data from different

interferometers can be combined incoherently (such as in
stages 0 and 1, see Table II) or coherently (as used in stages
2, 3 and 4). The coherent combination is more computa-
tionally expensive but provides much better parameter
estimation.
The upper limits (Fig. 1) are reported in terms of the

worst-case value of h0 (which applies to linear polarizations
with ι ¼ π=2) and for the most sensitive circular polariza-
tion (ι ¼ 0 or π). As described in the previous paper [3], the
pipeline does retain some sensitivity, however, to non-
general-relativity GW polarization models, including a
longitudinal component, and to slow amplitude evolution.
The 95% confidence level upper limits (see Fig. 1)

produced in the first stage are based on the overall noise
level and largest outlier in strain found for every template
in each 0.25 Hz band in the first stage of the pipeline. The
0.25 Hz bands are analyzed by separate instances of
PowerFlux [3]. A followup search for detection is carried
out for high-SNR outliers found in the first stage. Certain
frequency ranges (Table I) were excluded from the analysis
because of gross contamination by detector artifacts.

B. Universal statistics

The detector sensitivity upgrades introduced many
artifacts, so that in 20% of the sensitive frequency range
the noise follows non-Gaussian distributions which, in
addition, are unknown. As the particular non-Gaussian
distribution can vary widely depending on particular
detector artifacts, the ideal estimate based on full knowl-
edge of the distribution is not usually available. In the
previous analysis [1–3], the frequency bands where the
noise distribution was non-Gaussian were not used to put
upper limits. However, in the present case this approach
would have resulted in excluding most of the frequency
bands below 400 Hz and many above 400 Hz; even though
the average strain sensitivity in many of these frequency
bands is better than in the past.
To make use of the entire spectrum, we used in this work

the Universal statistic algorithm [16] for establishing upper
limits. The algorithm is derived from the Markov inequality
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and shares its independence from the underlying noise
distribution. It produces upper limits less than 5% above
optimal in case of Gaussian noise. In non-Gaussian bands it
can report values larger than what would be obtained if the
distribution were known, but the upper limits are always at
least 95% valid. Figure 2 shows results of an injection run
performed as described in [3]. Correctly established upper
limits are above the red line.

C. Detection pipeline

The detection pipeline used in [3] was extended with
additional stages (see Table II) to winnow the larger number
of initial outliers, expected because of non-Gaussian
artifacts and larger initial search space. This detection
pipeline was also used in the search of the Orion spur [4].

The initial stage (marked 0) scans the entire sky with
semicoherent algorithm that computes weighted sums of
powers of 1800 s Hann-windowed SFTs. These power
sums are then analyzed to identify high-SNR outliers. A

Frequency (Hz)

h0

50 300 500 700 900 1100 1300 1500

1e
−
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−
24
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−
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worst case (linear)
best case (circular)
60 Hz harmonics

FIG. 1. S6 upper limits. The upper (yellow) curve shows worst-case (linearly polarized) 95% CL upper limits in analyzed 0.25 Hz
bands (see Table I for list of excluded bands). The lower (grey) curve shows upper limits assuming a circularly polarized source. The
values of solid points and circles mark frequencies within 1.25 Hz of 60 Hz power line harmonics for circularly (solid points) and
linearly (open circles) polarized sources. The data for this plot can be found in [24].

TABLE I. Frequency regions excluded from upper limit analy-
sis. “Violin modes” are resonant vibrations of the wires which
suspend the many mirrors of the interferometer.

Category Description

First harmonic
of violin modes

343.25–343.75 Hz,
347–347.25 Hz

Second harmonic
of violin modes

686.25–687.5 Hz

Third harmonic of
violin modes

1031.00–1031.25 Hz

log10(Injection strain)
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FIG. 2. Upper limit validation. Each point represents a separate
injection in the 400–1500 Hz frequency range. Each established
upper limit (vertical axis) is compared against the injected strain
value (horizontal axis, red line).
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separate algorithm uses universal statistics [16] to establish
upper limits.
The entire data set was partitioned into 7 segments of

equal length and power sums were produced independently
for any contiguous combinations of these stretches. As in
[4] the outlier identification was performed independently
in each stretch.
High-SNR outliers were subject to a coincidence test.

For each outlier with SNR > 7 in the combined H1 and L1
data, we required there to be outliers in the individual
detector data that had SNR > 5, matching the parameters
of the combined-detector outlier within a distance of
0.03 rad · 400 Hz=f on the sky, 2 mHz in frequency,
and 3 × 10−10 Hz=s in spindown. However, the com-
bined-detector SNR could not be lower than either sin-
gle-detector SNR.
The identified outliers using combined data are then

passed to followup stage using Loosely Coherent algorithm
[15] with progressively tighter phase coherence parameters
δ, and improved determination of frequency, spindown and
sky location.
As the initial stage 0 only sums powers it does not use

relative phase between interferometers, which results in
some degeneracy between sky position, frequency and
spindown. The first Loosely Coherent followup stage also
combines interferometer powers incoherently, but demands
greater temporal coherence (smaller δ) within each inter-
ferometer, which should boost SNR of viable outliers by at
least 20%. Subsequent stages use data coherently providing
tighter bounds on outlier location.
The testing of the pipeline was done above 400 Hz

and included both Gaussian and non-Gaussian bands. We
focused on high frequency performance because prelimi-
nary S6 data indicated the sensitivity at low frequencies
was unlikely to improve over S5 results due to detector
artifacts.
The followup code was tested to recover 95% of

injections 50% above the upper limit level assuming
uniform distribution of injection frequency (Fig. 3).
Recovery of signals injected into frequency bands which
exhibits non-Gaussian noise was 75% (Fig. 4). Our
recovery criterion demanded that an outlier close to the
true injection location (within 2 mHz in frequency f,

3 × 10−10 Hz=s in spindown and 12 rad · Hz=f in sky
location) be found and successfully pass through all stages
of the detection pipeline. As each stage of the pipeline only
passes outliers with an increase in SNR, this resulted in an
outlier that strongly stood out above the background, with
good estimates of the parameters of the underlying signal.
It should be noted that the injection recovery curve in

Fig. 3 passes slightly below the 95% level for h0 equal to
the upper limit. However, the upper limits are based on
power levels measured by stage 0, independent of any
follow-up criteria. That is, we can say with 95% confidence
that a signal above the upper limit level is inconsistent with
the observed power, even though such a (hypothetical)
signal might not pass all of our follow-up criteria to be
“detected.” The main reason that these injections fail to be
detected is the different sensitivities of the H1 and L1

TABLE II. Analysis pipeline parameters. Starting with stage 1, all stages used the Loosely Coherent algorithm for demodulation. The
sky and frequency refinement parameters are relative to values used in the semicoherent PowerFlux search.

Stage
Instrument

sum
Phase coherence Spindown step Sky

refinement
Frequency
refinement

SNR increase
rad Hz/s %

0 Initial/upper limit
semicoherent

NA 2 × 10−10 1 1=2 NA

1 Incoherent π=2 1.0 × 10−10 1=4 1=8 20
2 Coherent π=2 5.0 × 10−11 1=4 1=8 0
3 Coherent π=4 2.5 × 10−11 1=8 1=16 12
4 Coherent π=8 5.0 × 10−12 1=16 1=32 12

h0 relative to upper limit

%
 fo
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FIG. 3. Injection recovery in frequency bands above 400 Hz.
The injected strain divided by the upper limit in this band (before
injection) is shown on the horizontal axis. The percentage of
surviving injections is shown on the vertical axis, with horizontal
line drawn at 95% level. Stage 0 is the output of the coincidence
test after the initial semicoherent search.
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detectors. When one interferometer is less sensitive sensi-
tive we can still set a good upper limit, but the initial
coincidence criteria requires that an outlier be marginally
seen in both interferometers. In the previous analysis [3] the
interferometers had similar sensitivity and the curve passed
through the intersection of the green lines (horizontal axis
value of 1, vertical axis value of 95%).

D. Gaussian false alarm event rate

The computation of the false alarm rate for the outliers
passing all stages of the pipeline is complicated by the fact
that most outliers are caused by instrumental artifacts for
which we do not know the underlying probability distri-
bution. In principle, one could repeat the analysis many
times using nonphysical frequency shifts (which would
exclude picking up a real signal by accident) in order to
obtain estimates of false alarm rate, but this approach is
very computationally expensive. Even assuming a perfect
Gaussian background, it is difficult to analytically model
the pipeline in every detail to obtain an accurate estimate of
the false alarm rate, given the gaps in interferometer
operations and nonstationary noise.
Instead, following [4], we compute a figure of merit that

overestimates the actual Gaussian false alarm event rate.
We simplify the problem by assuming that the entire
analysis was carried out with the resolution of the very
last stage of follow-up and we are merely triggering on the
SNR value of the last stage. This is extremely conservative
as we ignore the consistency requirements that allow the

outlier to proceed from one stage of the pipeline to the next;
the actual false alarm rate could be lower.
The SNR of each outlier is computed relative to the

Loosely Coherent power sum for 501 frequency bins
spaced at 1=1800 Hz intervals (including the outlier) but
with all the other signal parameters held constant. The
spacing assures that correllations between neighboring
sub-bins do not affect the statistics of the power sum.
To simplify computation we assume that we are dealing

with a simple χ2 distribution with the number of degrees of
freedom given by the timebase divided by the coherence
length and multiplied by a conservative duty factor reflect-
ing interferometer uptime and the worst-case weights from
linearly-polarized signals.
Thus to find the number N of degrees of freedom we will

use the formula

N ≈
timebase · δ · duty factor

1800 s · 2π
ð4Þ

with the duty factor taken to be 0.125 and δ giving the
phase coherence parameter of the Loosely Coherent search.
The duty factor was chosen to allow for only 50%
interferometer uptime and only one quarter of the data
receiving high weights from our procedure, which weights
the contribution of data inversely as the square of the
estimated noise [20,21].
Thus we define the outlier figure of merit describing

Gaussian false alarm (GFA) event rate as

GFA ¼ K · Pχ2ðN þ SNR ·
ffiffiffiffiffiffiffi
2N

p
;NÞ ð5Þ

where N defines the number of degrees of freedom as given
by equation (4), Pχ2ðx;NÞ gives the probability for a χ2

distribution with N degrees of freedom to exceed x, and
K ¼ 1.3 × 1014 is the estimated number of templates.
We point out that the GFA is overly conservative when

applied to frequency bands with Gaussian noise, but is only
loosely applicable to bands with detector artifacts, which
can affect both the estimate of the number of degrees of
freedom of the underlying distribution and the assumption
of uncorrelated underlying noise.

IV. RESULTS

The PowerFlux algorithm and Loosely Coherent method
compute power estimates for gravitational waves in a given
frequency band for a fixed set of templates. The template
parameters usually include frequency, first frequency
derivative and sky location.
Since the search target is a rare monochromatic signal,

it would contribute excess power to one of the frequency
bins after demodulation. The upper limit on the maximum
excess relative to the nearby power values can then be
established. For this analysis we use a universal statistic
[16] that places conservative 95% confidence level upper
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FIG. 4. Injection recovery in non-Gaussian bands above
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percentage of surviving injections is shown on the vertical axis,
with horizontal line drawn at 75% level.
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limits for an arbitrary statistical distribution of noise power.
The universal statistic has been designed to provide close
to optimal values in the common case of Gaussian
distribution.
The PowerFlux algorithm and Loosely Coherent method

have been described in detail in [1,2,15,20–22].
Most natural sources are expected to have negative first

frequency derivative, as the energy lost in gravitational or
electromagnetic waves would make the source spin more
slowly. The frequency derivative can be positive when the
source is affected by a strong slowly-variable Doppler shift,
such as due to a long-period orbit.
The large gap in data taking due to installation of

Advanced LIGO interferometers provided an opportunity
to cover an extended parameter space (Fig. 5). With respect
to previous searches, we have chosen to explore compre-
hensively both negative and positive frequency derivatives
to avoid missing any unexpected sources in our data.
The upper limits obtained in the search are shown in

Fig. 1. The numerical data for this plot can be obtained
separately [24]. The upper (yellow) curve shows the upper
limits for a worst-case (linear) polarizations when the
smallest amount of gravitational energy is projected toward
Earth. The lower curve shows upper limits for an optimally
oriented source. Because of the day-night variability of the
interferometer sensitivity due to anthropogenic noise, the
linearly polarized sources are more susceptible to detector
artifacts, as the detector response to such sources varies
with the same period. The neighborhood of 60 Hz har-
monics is shown as circles for worst case upper limits and
dots for circular polarization upper limits. Thanks to the use
of universal statistic they do represent valid values even if
contaminated by human activity.
Each point in Fig. 1 represents a maximum over the sky:

only a small excluded portion of the sky near ecliptic poles

that is highly susceptible to detector artifacts, due to
stationary frequency evolution produced by the combina-
tion of frequency derivative and Doppler shifts. The
exclusion procedure is described in [3] and applied to
0.033% of the sky over the entire run.
A few frequency bands shown in Table I were so

contaminated that every SFTwas vetoed by data condition-
ing code and the analysis terminated before reaching
universal statistic stage. While the universal statistic could
have established upper limits with veto turned off, we opted
to simply exclude these bands, as the contamination would
raise upper limits to be above physically interesting values.
If one assumes that the source spindown is solely due to

emission of gravitational waves, then it is possible to recast
upper limits on source amplitude as a limit on source
ellipticity. Figure 6 shows the reach of our search under
different assumptions on source distance. Superimposed
are lines corresponding to sources of different ellipticities.
The detection pipeline produced 16 outliers (Table III).

Each outlier is identified by a numerical index. We report
SNR, decimal logarithm of Gaussian false alarm rate, as
well as frequency, spindown and sky location.
The “Segment” column describes the persistence of the

outlier through the data, and specified which contiguous
subset of the 7 equal partitions of the timespan contributed
most significantly to the outlier: see [4] for details. A
continuous signal will normally have [0, 6] in this column
(similar contribution from all 7 segments), or on rare
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occasions [0, 5] or [1, 6]. Any other range is indicative of a
noncontinuous signal or artifact.
During the S6 run several simulated pulsar signals were

injected into the data by applying a small force to the
interferometer mirrors. Several outliers were due to such
hardware injections (Table IV). The full list of injections
including those too weak to be found by an all-sky search
can be found in [25]. The hardware injection ip3 was
exceptionally strong with a clear signature even in non-
Gaussian band.
The recovery of the injections gives us confidence that

no potential signals were missed. Manual followup has
shown noninjection outliers to be caused by pronounced
detector artifacts.

V. CONCLUSIONS

We have performed the most sensitive all-sky search
to date for continuous gravitational waves in the range

100–1500 Hz. We explored both positive and negative
spindowns and placed upper limits on expected and
unexpected sources. At the highest frequencies we are
sensitive to neutron stars with an equatorial ellipticity as
small as 8 × 10−7 and as far away as 1 kpc for favorable
spin orientations. The use of a universal statistic allowed us
to place upper limits on both Gaussian and non-Gaussian
frequency bands. The maximum ellipticity a neutron star
can theoretically support is at least 1 × 10−5 according to
[26,27]. Our results exclude such maximally deformed
pulsars above 200 Hz pulsar rotation frequency (400 Hz
gravitational frequency) within 1 kpc.
A detection pipeline based on a Loosely Coherent

algorithm was applied to outliers from our search. This
pipeline was demonstrated to be able to detect simulated
signals at the upper limit level for both Gaussian and
non-Gaussian bands. Several outliers passed all stages of
the coincidence pipeline; their parameters are shown in

TABLE III. Outliers that passed detection pipeline. Only the highest-SNR outlier is shown for each 0.1 Hz frequency region. Outliers
marked with “line” had strong narrowband disturbances identified near the outlier location. Outliers marked as “non-Gaussian” were
identified as having non-Gaussian statistics in their power sums, often due to a very steeply sloping spectrum. GFA is the Gaussian false
alarm figure of merit described in Sec. III D. Segment column reports the set of contiguous segments of the data that produced the
outlier, as described in IV. Frequencies are converted to epoch GPS 961577021.

Idx SNR log10ðGFAÞ Segment
Frequency Spindown RAJ2000 DECJ2000

DescriptionHz nHz/s degrees degrees

1 3331 −9360 [0, 6] 192.49269 −8.650 351.371 −33.342 Hardware injection ip8
21 1329 −3114 [1, 5] 108.85717 −0.000 178.417 −33.400 Hardware injection ip3,

Non-Gaussian, disturbed H1 spectrum
42 957 −2622 [0, 6] 575.16354 0.005 215.261 3.370 Hardware injection ip2
69 112 −196 [0, 3] 397.51894 −0.115 271.698 67.257 Non-Gaussian, Line in H1, disturbed spectrum in L1
72 93 −78 [4, 4] 1397.76097 −11.220 296.704 −16.069 Induced by loud hardware injection ip4,

Non-Gaussian, highly disturbed H1þ L1 spectra
76 82 −162 [0, 5] 1145.20043 0.400 90.936 −67.610 Highly disturbed H1 spectrum, stationary line area
79 64 −98 [1, 4] 566.08359 −4.850 91.028 86.915 Line in H1 at 566.085 Hz
81 54 −68 [2, 4] 704.03500 4.110 117.932 50.411 Disturbed H1 and L1 spectrum
82 48 −86 [0, 6] 1220.74448 −1.120 223.413 −20.502 Hardware injection ip7, sloping H1 and L1 spectra
83 48 −73 [0, 4] 140.41014 −0.010 270.298 66.821 Highly disturbed H1 spectrum, stationary line area
94 36 −44 [0, 3] 192.65413 9.270 145.440 10.439 Induced by loud hardware injection ip8
95 35 −28 [2, 3] 250.01082 2.750 247.459 −76.842 Lines in H1 and L1, Non-Gaussian
101 19 −13 [2, 6] 1145.30312 8.515 196.471 33.778 Highly disturbed H1 spectrum
102 18 −12 [0, 4] 1397.91328 1.070 42.627 32.827 Induced by loud hardware injection ip4,

Non-Gaussian, highly disturbed H1þ L1 spectra
103 17 −4 [3, 4] 1143.41710 −2.455 107.611 −56.347 Highly disturbed H1 spectrum
107 14 −0 [2, 3] 451.47993 −10.880 49.317 33.890 Line in H1 at 451.5 Hz

TABLE IV. Parameters of hardware-injected simulated signals detected by PowerFlux (epoch GPS 961577021).

Label
Frequency Spindown RAJ2000 DECJ2000

Hz nHz/s degrees degrees

ip2 575.163 54 −1.37 × 10−4 215.256 17 3.4440
ip3 108.857 16 −1.46 × 10−8 178.372 57 −33.4366
ip4 1397.831 947 −25.4 4.886 71 −12.4666
ip7 1220.744 496 −1.12 223.425 62 −20.4506
ip8 192.492 709 −0.865 351.389 58 −33.4185
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Table III. However, manual examination revealed no true
pulsar signals.
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