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Abstract

Finding the components of cellular circuits and determining their functions systematically remains 

a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 

libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis 

factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to 

pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 

signaling, as well as dozens of previously unknown candidates that we validated. By measuring 

protein markers and mRNA profiles in DCs that are deficient in the known or candidate genes, we 

classified the genes into three functional modules with distinct effects on the canonical responses 

to LPS, and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) 

complex. Our findings uncover new facets of innate immune circuits in primary cells, and provide 

a genetic approach for dissection of mammalian cell circuits.

Introduction

Regulatory circuits that control gene expression in response to extracellular signals perform 

key information processing roles in mammalian cells, but their systematic unbiased 

reconstruction remains a fundamental challenge. There are currently two major strategies for 

associating targets with their putative regulators on a genomic scale (reviewed in (Kim et al., 

2009)): (1) observational (correlative) approaches that relate them based on statistical 

dependencies in their quantities or physical associations; and (2) perturbational (causal) 

approaches that relate them by the effect that a perturbation in a putative regulator has on its 

target.

While observational strategies have become a cornerstone of circuit inference from genomic 

data, perturbational strategies have been more challenging to apply on a genomic scale, 

especially in primary mammalian cells. RNAi, which until recently was the main tool 

available in mammals, is limited by off-target effects and lack of sufficient suppression of 

expression (Echeverri et al., 2006), whereas more effective strategies based on haploid cell 

lines (Carette et al., 2009) are not applicable to the diversity of primary cell types and their 

specialized circuitry. As a result, a hybrid approach has emerged (Amit et al., 2011), where 

genomic profiles (e.g., of mRNAs, protein-DNA binding, protein levels, protein 

phosphorylation, etc.) are used to build observational models from which a smaller set of 

dozens of candidate regulators are identified. These candidates are in turn tested by 

perturbation.

The recent introduction of genome editing in mammalian cells using the clustered, regularly 

interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 system has 

enabled pooled genome-wide screens of gene function (Gilbert et al., 2014; Konermann et 
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al., 2015; Shalem et al., 2014; Wang et al., 2014). In such screens, pooled libraries are 

introduced into cell lines and cellular phenotypes are selected based on cell lethality or 

growth. To expand the biological processes that can be studied, there remains a need to 

adapt these methods for short-term primary cell cultures and selecting cellular phenotypes 

based on more versatile molecular markers.

Here, we present a pooled CRISPR strategy to dissect the innate immune response of bone 

marrow derived dendritic cells (‘BMDCs’ or ‘DCs’) isolated from Cas9-expressing 

transgenic mice. Building on our recent observation that lentiviruses expressing guide RNAs 

could be used to knockout genes in these cells (Platt et al., 2014), we infected DCs with a 

pooled, genome-wide library of lentiviruses, stimulated them with lipopolysaccharide (LPS), 

and monitored their responses by intra-cellular staining for the inflammatory cytokine Tnf, a 

major marker of the early response to LPS. We used flow cytometry to isolate cells that 

failed to fully induce Tnf or that induced it more strongly, and then determined sgRNA 

abundance by deep sequencing. We recovered many of the key known regulators of TLR 

signaling, validated dozens of new regulators and identified 3 functional modules of 

regulators with distinct regulatory effects. Our study identifies new facets in the complex 

response of immune cells to pathogens, and provides a general strategy for systematically 

dissecting circuits in other primary mammalian cells.

Results

A system for cell-autonomous, pooled genetic screens in BMDCs derived from Cas9-
expressing mice

To enable genome-wide pooled genetic screens, we developed a cell autonomous readout of 

innate immune activation by intracellular staining of a central inflammatory cytokine, Tnf. 

To test the assay, we individually transduced BMDCs with lentiviruses expressing single 

guide RNAs (sgRNAs; Experimental Procedures) that target each of three genes: (1) Tlr4, 

the cell membrane receptor that senses bacterial LPS; (2) Myd88, a key component required 

for Tlr4 signaling to induce Tnf; and (3) Zfp36 (TTP), an RNA binding protein that 

destabilizes Tnf mRNA. Following LPS activation, we added Brefeldin A to block Tnf 

secretion, and at 8 hours post-activation detected Tnf with a fluorescent antibody using flow 

cytometry. Compared to a non-targeting sgRNA control, sgRNAs targeting Myd88 or Tlr4 

strongly reduced Tnf, whereas sgRNAs targeting Zfp36 increased Tnf (Figure 1A). These 

results provide an experimental system in BMDCs for an autonomous genome-wide pooled 

screen based on cell sorting.

A genome-wide pooled sgRNA library screen in primary BMDCs

We performed three independent, pooled genome-wide screens using a library of 

lentiviruses harboring 125,793 sgRNAs targeting 21,786 annotated protein-coding and 

miRNA mouse genes (Sanjana et al., 2014), as well as 1,000 non-targeting sgRNA as 

negative controls. In each of the three replicate screens, we infected 60–200 million BMDCs 

with the library at a multiplicity of infection (MOI) of 1, stimulated cells with LPS and 

sorted Cd11c+ cells based on high or low Tnf expression levels (~5 million cells/bin, Figure 

1B, Experimental Procedures). We then amplified and sequenced sgRNAs from 4 sources 
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(Figure 1B, thick grey arrows): post-LPS cells with (1) high Tnf (“Tnfhi”) or with (2) low 

Tnf (“Tnflo”), (3) cells from the last day of differentiation prior to LPS stimulation (day 9, 

“pre-LPS”), and (4) plasmid DNA of the input lentiviral library (“Input”). We reasoned that 

sgRNAs against positive regulators of Tnf expression would be enriched in Tnflo relative to 

Tnfhi, that sgRNAs targeting negative regulators will be enriched in Tnfhi relative to Tnflo; 

and that sgRNAs targeting genes essential for DC viability or differentiation would be 

depleted in pre-LPS compared to Input. We established two computational methods to 

address the inherent noise of the screen (Figure S1A): the first using Z scores of the fold 

change in normalized sgRNA abundance (and then averaging the top 4 sgRNAs per gene), 

and the second analogous to differential expression (DE) analysis of sequenced RNA (Love 

et al., 2014), (Experimental Procedures). The top ranked genes substantially overlap 

between the two approaches (50/100 for positive regulators, 30/100 for negative regulators, 

P < 10−10, hypergeometric test), and their rankings are well correlated (Figure S1B,C) up to 

ranks 150 and 50 for positive and negative regulators, respectively (Figure S1D and S1E). 

While our screen is in principle compatible with discovery of both positive and negative 

regulators, it was conducted at high (near-saturation) levels of LPS, and is thus likely to be 

less sensitive for discovery of negative regulators, due to limited dynamic range for 

observing further Tnf induction.

The screen correctly identifies known regulators of cell viability, differentiation, Tnf 
expression and Tlr4 signaling

To assess the initial quality of our screen and scoring scheme, we first determined that, as 

expected, sgRNAs against ‘essential’ genes (Hart et al., 2014) were depleted in pre-LPS 

samples compared to Input (Figure 1C, Figure S1F and Table S1).

Next, a comparison of sgRNAs between Tnfhi and Tnflo was also consistent with our 

predictions, with sgRNAs targeting known positive regulators of the response (e.g., Tlr4 and 

Myd88) were enriched in Tnflo compared to Tnfhi, and those targeting negative regulators 

(e.g., Zfp36) were depleted in Tnflo (ZS analysis: Figure 1D and Table S1; DE analysis: 

Figure S1G and Table S1). The top-ranked genes were highly enriched for those annotated 

as responsive to LPS (the highest scoring category; GOrilla, FDR q-val = 10−12) or assigned 

to the Tlr4 to Tnf pathway (in KEGG (Kanehisa and Goto, 2000), Figure 1E, Supplemental 

Experimental Procedures); they were also far more likely to be expressed (Figure S1H, e.g., 

78% of the top 169 genes, compared to 44% of all genes; P-value = 10−16, hypergeometric 

test), at higher levels (p =10−6 Kolmogorov-Smirnov (KS) test), and more likely to be 

differentially expressed by RNA-Seq following LPS stimulation (Experimental 
Procedures; Table S1).

The top 10 ranked positive regulator genes were almost exclusively populated by the 

hallmark members of TLR signaling, with many others among the top 100, showing that an 

unbiased, genome-wide screen can decipher near-complete pathways (Figure 2B; Table S1). 

Tnf had the top rank, demonstrating the screen’s quantitative nature. Key regulators of the 

LPS response with high ranks in our screen included (Figure 2B): Tlr4 (rank 10) and its co-

receptors Ly96 (MD2) (rank 2) and Cd14 (rank 3); well-known members of LPS/Tlr4 

signaling, including Ticam2 (TRAM, rank 5), Ticam1 (TRIF, rank 8), Myd88 (rank 4), Tirap 
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(rank 9), and Traf6 (rank 13); Rela (rank 11), a component of NFKB, which regulates Tnf 

transcription; and two regulators of NFKB: Ikbkb and Ikbkg (NEMO) (rank 23 and rank 84, 

respectively). Other notable known regulators of the immune response and DC function 

include the DC pioneer transcription factor Cebpb (rank 21), Akirin2 (rank 39), and Rnf31 

(rank 42) and Rbck1 (rank 19), two subunits of the linear ubiquitin chain assembly complex 

(LUBAC) that tags NEMO and enables NFKB activation. Overall, the top 100 ranked genes 

were highly enriched for central genes in the LPS to Tnf pathway as annotated by KEGG 

(13/35 annotated genes are in the top 100; P = 10−22, hypergeometric test).

Dozens of positive regulators identified by the screen validated using individually-cloned 
sgRNAs

To validate the top genes in the ranked list, we next tested 2–3 sgRNAs against each of the 

top 176 (112 positive and 64 negative) ranked candidate regulators in individual assays, 

rather than pooled, along with 53 non-targeting controls. We measured intracellular Tnf 

levels by flow cytometry (Figure 2A), excluding sgRNAs with significant reduction in 

viability (Table S2, Experimental Procedures).

Overall, we verified 57 positive regulators out of 112 tested: 45 with at least two 

independent sgRNAs and another 12 genes with one sgRNA (Figure 2C, Table S1), 

including key known regulators (Figure 2B right). The rate of true positives regulators was 

in agreement with our predicted FDR (Figure 2E), and the effect size of TNF phenotype was 

well correlated with the original ranking (Figure 2D), supporting the accuracy of our 

statistical framework. Notably, 27/57 validated genes are not previously annotated for 

immune function or Tnf regulation (e.g., the RNA export factor, Ddx39b; Experimental 
Procedures and Table S1).

We explored the basis for false negatives among the positive regulators by examining 15 

known regulators of LPS activation that were not among the top 100 ranked genes in the 

screen. Using 28 additional sgRNAs, we found that 8 of the 15 known regulators indeed 

reduced Tnf levels (Figure S2A and S2B; notably these 8 were better ranked (187–4417) 

than the remaining 7 genes (2,871–18,314) in the original screen), demonstrating that some 

factors outside our threshold still have functional impact in this complex response.

Optimized characterization of novel negative regulators by analysis at unsaturated levels 
of Tnf

Only 4 of 64 (Figure S2C, Table S1) putative negative regulators were initially validated by 

two independent sgRNAs, including: Zfp36 (rank 1 among the ZS negative regulators, 

Figure 1A), Stat5b (rank 9), Pdcd10 (CCM3, rank 32), and Ppp2r1a (rank 16). Each of 

these, including Zfp36, our known control, associates with human disease. Stat5b, a 

transcription factor activated in response to cytokine induction (Darnell, 1997), is important 

for DC differentiation (Sebastian et al., 2008) (consistent with a low-Cd11c phenotype in its 

targeted cells; Figure S2E), but was not previously implicated in regulation of Tnf. Pdcd10 

(CCM3), was not previously reported to regulate Tnf, and is associated with familial 

Cerebral Cavernous Malformations (CCM) (Faurobert and Albiges-Rizo, 2010), a vascular 

pathological condition. Pdcd10 (CCM3) was also found to physically interact with Ppp2r1a, 
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the fourth negative regulator (Goudreault et al., 2009). Interestingly, Calyculin A, a drug 

that inhibits the protein phosphatase1 and protein phosphatase 2A complexes, of which 

Ppp2r1a is a member, was previously shown to induce Tnf secretion (Boehringer et al., 

1999).

The small proportion of validated negative regulators and their relatively subtle phenotype 

suggested that our screen, conducted with a high (100 ng/ml) LPS concentration that leads to 

near-saturated Tnf levels, may be less sensitive for further induction of Tnf when perturbing 

negative regulators. To increase sensitivity for negative regulators, we reduced LPS by 5-

fold, and observed higher Tnf for 24 of 37 (65%) retested sgRNAs targeting 22 genes, 

including the previously unknown translation initiation factor Eif5 and the Rela-homolog 

DNA binding protein Dnttip1 (TdIF1) (Yamashita et al., 2001) (Figure S2D). While this test 

is different from the initial screen and thus cannot assess its FDR, it does provide additional 

functional regulators.

A deeper secondary pooled screen uncovers additional regulators with greater sensitivity 
and specificity

To reduce false negatives due to limited cell numbers relative to the size of the sgRNA 

library or to sgRNA design, we performed a secondary pooled screen targeting the top 

ranked 2,569 genes from the genome-wide screen with 10 sgRNAs per gene (using the 

improved design of (Doench et al., 2014)) and 4.9 -fold more cells per sgRNA. The 

secondary screen showed greater specificity and sensitivity, as reflected in enrichment of the 

known regulators (Figure S2F and S2G), highly correlated ranking of hits from the Z score 

and DE analyses (Figure S2H, Table S1) and reduced FDR compared to the genome-wide 

screen (e.g., FDR=6.7% for top 100 genes, Figure S2I), indicating a reduction in noise and 

enrichment for true positives. The hits included: Irak4 (ranked 9 in the secondary screen vs. 

187 in the primary screen), Irak1 (60 vs. 992), Sharpin (another subunit of the LUBAC 

complex, ranked 36) and Nedd8 (ranked 52) and its E2 conjugation enzyme, Ube2f (ranked 

25). In the secondary screen we found 19 positive regulators with no immune annotation that 

were not found in the primary screen (Z>1.5 FDR=0.094; Table S1; e.g., Gpatch8). A 

deeper secondary screen is thus an effective strategy for increasing the rate of true positives 

when the primary screen is not feasible to expand.

Positive Tnf regulators are organized in functional modules by their impact on RNA and 
protein expression

While all the validated regulators affect Tnf levels, the pathways and mechanisms through 

which they act may be distinct. To help determine those, we first measured the impact of the 

validated positive regulators on the expression of four additional protein markers 

(Experimental Procedures), each reflecting distinct facets of DC biology: Cd11c (the 

defining surface marker of BMDCs), Cd14 (a Tlr4 co-receptor), Mip1a (an induced 

chemokine), and Il6 (an induced inflammatory cytokine). We statistically tested the effect of 

each sgRNA on protein expression compared to a set of 6–8 non-targeting controls (Figure 

S3A, Experimental Procedures), and then grouped genes based on the similarity of their 

effects (Figure 3A,B, and Table S2). Notably, the Tnf distribution varied from unimodal to 

bimodal across different targeted genes (Figure 2B); sequencing several target genes showed 
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that in some, but not all, cases this could be explained by the proportion of edited cells 

(Figure S4A–C).

The genes are largely partitioned into 3 major modules (Figure 3A): Module I consisted of 

sgRNAs targeting 17 genes, including 9 canonical regulators validated in the screen, each 

reducing the levels of Cd14 and Il6, but not Cd11c (Figure 3A–C and Table S2), consistent 

with the roles of the known regulators in LPS signaling. Additional module members 

(Figure 3A) included: Ctcf, previously implicated in DC differentiation and activation 

(Koesters et al., 2007) and Tnf expression (Nikolic et al., 2014); and the miRNA, mmu-

mir-106a, a member of the microRNA-17/20a family. Module II included nine regulators 

whose sgRNAs reduced all four proteins, among them: four subunits of the OST protein 

glycosylation complex (see below), Alg2, a glycosyltransferase involved in oligosaccharide 

synthesis (Haeuptle and Hennet, 2009; Huffaker and Robbins, 1983), and genes whose 

molecular function is currently unknown, such as Tmem258 (Figure 3A). Module III 
consisted of sgRNAs targeting three subunits of the PAF complex and Pol2rg; each reduced 

Cd11c and Il6 expression, but had a very minor, albeit consistent, effect on Mip1α (Figure 

3B,C) and no effect on CD14. Some genes were not part of the 3 modules, including Midn, 

which is encoded in a locus associated with ulcerative colitis (based on GWAS studies 

(Beck et al., 2014)) but has no known molecular function.

Regulators in each of the modules may affect Tnf levels through mechanisms that are shared 

by members of the same module, but distinct from those of the other modules. To further 

assess this, we next measured with RNA-Seq the global effects of each regulator on mRNA 

levels at 0,2,4 and 6 hours post-LPS (without Brefeldin), compared to 12–14 non-targeting 

sgRNAs per time point (Figure 3D–F and Figure S3B–E, Experimental Procedures). 

Grouping regulators into modules based on similarity in their profiles, we found that the 

modules change over time – with the distinctions sharpened earlier in the response, and 

diminishing at later time points, as they converge through likely indirect effects. Pre-LPS 

(t=0h, Figure 3D), most regulators show little effect compared to non-targeting controls, 

except for one group consisting almost entirely of members of the OST complex, as well as 

Alg2 and Tmem258. At 2 and 4 hours (Figure 3E,F), the regulators partition to several 

modules – including the known TLR regulators, a PAF complex module, and a module 

associated with RNA regulators including Akirin2, Polr2g and Pabpc1. Perturbation of the 

genes in the latter module reduces (p-value <0.001) the expression of genes involved in 

immune effector processes, and regulation of immune system process (GOrrila qFDR 

0.0377 and 0.0246 at t=2h Table S3). By 6 hours (Figure S3E), the transcriptional effect of 

most regulators is more similar. Notably, addition of Brefeldin in these profiling 

experiments does not affect Tnf expression, suggesting that the effect of gene perturbation in 

the screen vs. the profiling experiment is comparable for inflammatory gene expression 

(Figure S3F).

Taken together, our data suggests three key modules that impact Tnf levels in distinct ways. 

We next explored these, focusing on the modules of the OST and PAF complexes.
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Components of the OST complex and the ER folding and translocation pathway are 
important for Tnf expression in response to LPS

Among the 57 genes that were confirmed individually (Figure 3C and Figure 4) were 4 

structural subunits of the 9-protein oligosaccharyltransferase complex (OSTc): Dad1, Ddost/

OST48, Rpn1, and Rpn2. Consistent with their physical association, they were all members 

of the same protein- and RNA-defined modules (Figure 3A; Figure 3D–F). The ER-resident 

OSTc tags asparagine residues of newly translated proteins with oligosaccharide chains that 

are critical for protein folding and transport through the ER. At least 6 other genes essential 

for the ER transport pathway (Alg2, Srpr, Srp54c, Sec61, Hsp90b, Sec13, Figure 4A), 

upstream or downstream of OSTc, were also among the top-ranking validated positive 

regulators (although not necessarily in the OSTc module).

Over 2,300 proteins are known to be N-glycosylated (Zielinska et al., 2010) and knocking 

out subunits of OSTc may affect Tnf levels directly or indirectly, and – in either case – 

could reflect a more global effect on N-glycosylated proteins and cell phenotype in LPS-

stimulated BMDCs. Since both Ly96 and Tlr4 are N-glycosylated, and Tlr4 transport to the 

membrane is disrupted in the absence of tagged asparagines (da Silva Correia and Ulevitch, 

2002), we hypothesized that OSTc could affect Tnf levels by impacting Tlr4 and/or its 

signaling. Indeed, targeting any of the four OSTc structural subunits or Alg2 (Figure 3C and 

Figure S4D) strongly reduced each of the four protein markers (Figure 3A), including 

CD11c. This general reduction is consistent with either of two hypotheses: (1) the cells are 

not properly differentiated; or (2) the cells have differentiated properly but their LPS sensing 

is compromised. In the latter case, OSTc mutants could have either (2a) a global signaling 

defect (e.g., due to a lack of key membrane receptors) or (2b) a more specific regulatory 

effect.

To distinguish between these hypotheses, we examined the specific genes whose expression 

is affected in OSTc-targeted cells, compared to cells targeted by known regulators from the 

TLR pathway, or in cells with non-targeting sgRNA controls, either before or after LPS 

stimulation (Figure 4B–E, Experimental Procedures). A global differentiation defect 

should be apparent in genome-wide expression profiles pre-LPS, a global LPS signaling 

defect would be apparent post-LPS, while a specific regulatory effect would be manifested 

as a more specific transcriptional signature.

Pre-LPS (Figure 4B), there were few transcriptional differences between cells in which 

OSTc is targeted or not (Table S3), except for a group of 60 OST-induced genes that are 

enriched for the ER stress response (FDR q-value = 5.83X10−16, GOrrila). Furthermore, 42 

(p value < 10−10, Hypergeometric test) of these genes are bound by the transcription factor 

XBP1 at their proximal promoter in bone marrow derived macrophages (Maxim Artomov, 

Laurie Glimcher, and AR, unpublished results). Thus, OSTc perturbation has a limited and 

unique pre-LPS effect on ER stress response genes, and the reduction in CD11c is not 

associated with a differentiation defect. Notably, N-glycosylation and ER stress were 

previously shown to interact with the TLR pathway (Komura et al., 2013; Martinon et al., 

2010), however direct involvement of OSTc was not shown.
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The LPS response in DCs has been previously characterized (Shalek et al., 2014) by three 

distinct co-expression signatures: (1) anti-viral genes (‘Anti viral’), (2) inflammatory genes, 

including Tnf, whose expression peaks at 2h (‘Peaked Inflammatory’); and (3) inflammatory 

genes with sustained expression within the 6h time scale (‘Sustained Inflammatory’). While 

several of the mutants in the known TLR pathway genes were defective in activating all 

three signatures (Figure 5C–E), targeting OSTc members reduced the inflammatory 

signatures (sustained: P=0.01; peaked: P=0.01, T=4h t-test), but not the anti-viral signature 

(P=0.24 t-test) (Figure 4B–E and Figure 5C–E), suggesting a specific rather than global 

effect on the Tlr4 response.

Additional regulators with the same profile as OSTc may regulate Tnf through related 

pathways. These include Hsp90b and Alg2, known members of the protein folding and 

secretion pathways (Figure 4A and Figure S4D) and Tmem258, whose human orthologue 

resides in a locus associated with Crohn’s disease (Franke et al., 2010) and targeted by 

ANRIL, a long non coding RNA associated with immune and metabolic diseases (Bochenek 

et al., 2013). Targeting of Tmem258 induced the same ER stress genes pre-LPS (5/14 genes; 

7.7X10−5 Q-FDR GOrrila; Table S3), and similar profiles post-LPS.

The PAF complex and its physical interactors form a module that positively regulates Tnf 
protein expression

Five of six known subunits of the PAF complex (PAFc; Paf1, Ctr9, Wdr61, Rtf1, Leo1), a 

regulator of transcription elongation and 3’ mRNA processing (Jaehning, 2010), were 

identified as positive regulators of Tnf expression among the top 100 ranked genes in the 

primary screen; each was validated individually (Figure 3C, Figure 5A, 5B, and Figure 

S5A), did not significantly affect cell proliferation (data not shown), had a similar effect on 

RNA and protein expression, and associated most strongly with a single module (Figure 3, 

blue). The sixth subunit, Cdc73 (rank 842 in the primary screen) was likely a false negative, 

since two additionally designed sgRNAs did reduce Tnf expression (Figure S5B). The Ash2l 

subunit of the MLL complex, previously reported to physically interact with Cdc73 

(Rozenblatt-Rosen et al., 2005), was also validated as a positive regulator of Tnf in our 

screen (rank 41, Figure S5B).

Regulation of transcription elongation was previously shown to be an important key step in 

the DC transcriptional response (Beaudoin and Jaffrin, 1989; Hargreaves et al., 2009). Prior 

studies have implicated Paf1 or PAFc in regulation of antiviral gene expression (Marazzi et 

al., 2012), but PAFc was not previously implicated in Tnf or inflammatory gene expression.

To decipher the specific impact of PAFc, we examined its effect on each of the 

transcriptional signatures. Targeting PAFc subunits significantly reduces the expression of 

the anti-viral and sustained inflammatory signatures, and has a weaker, albeit significant, 

effect on the peaked inflammatory signature, including on Tnf mRNA (Figure 5C–F).

To better understand PAFc’s function we analyzed PAFc interactors by immunopurification 

of Paf1 from BMDCs followed by mass spectrometry (MS) (Figure 5G and Table S4). We 

re-identified all known complex components, except Rtf1, and identified interactions with 

several RNA processing factors (Table S4), including the AU rich RNA binding and leucine 
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metabolism protein AUH (Kurimoto et al., 2009; Nakagawa et al., 1995), an interaction 

confirmed by Western blot (Figure S5E). Using an individual sgRNA targeting Auh (Figure 

5H), we found significant reductions in Tnf levels, whereas Srsf1 did not affect Tnf levels 

(Figure S5D). Since AUH binds AU-rich motifs in 3’UTRs, and the stability of the Tnf 

transcript is known to be regulated through an AU rich motif by three other RNA binding 

proteins (AUF1 (Khabar, 2010), Zfp36 (Carballo et al., 1998) and HuR (Dean et al., 2001; 

Tiedje et al., 2012)), it would be interesting to test if AUH also interacts with the 3’UTR of 

Tnf directly to regulate RNA levels.

Although Rtf1 interacts with Paf1 in lower organisms (Mueller and Jaehning, 2002), we did 

not observe a direct interaction between PAFc and Rtf1, when immunopurifying either Paf1 

(Figure 5G) or Rtf1 (Figure 5I and Table S4). Of seven Rtf1 interactors tested (Git1, 

Arhgef7, Gpx1, Sf3b1, Git2, Arhgef6 and Irf4), only one, Irf4, significantly reduced Tnf 

expression (Figure 5J) consistent with its ranking in the secondary screen (rank 13). We also 

found that Irf4 affects Cd11c (Figure S5C), consistent with previous findings (Lehtonen et 

al., 2005; Tussiwand et al., 2012). The interaction between Irf4 and Rtf1 may suggest that 

PAFc, Rtf1 and other accessory proteins can perform immune specific transcriptional 

activation by recruiting sequence-specific transcription factors.

Discussion

We developed a genome-wide genetic screen in primary cells, based on our previous 

demonstration that the genomes of BMDCs from Cas9-expressing mice could be edited 

effectively within a relatively short time window ex vivo (Platt et al., 2014). By focusing on 

a quantitative cellular marker, rather than cell viability, we illustrate the versatility of pooled 

screens, and provide an effective approach for screening in primary cells derived from the 

Cas9 transgenic mouse. Our secondary pooled screen illustrates how increases in the number 

and efficacy of sgRNAs per gene and number of cells infected per sgRNA can substantially 

improve the specificity and sensitivity of a pooled screen. We thus employed a strategy that 

uses the results of the primary screen with a relatively permissive FDR threshold, to then 

guide both a large number of individual sgRNA validation experiments and a secondary 

screen with a much lower FDR. Using these approaches, we systematically identified 

previously unrecognized regulators of Tnf in response to LPS, including two conserved 

protein complexes and many others (e.g., Tti2, Ruvbl2, Tmem258, Midn, Ddx39b, Stat5b and 

Pdcd10).

To determine if the genes that affect Tnf act through different cellular pathways, we 

quantified how these regulators alter expression of additional protein markers and genome-

wide mRNAs, and partitioned the regulators into 3 modules that are dominated by known 

Tlr4 pathway components, the OST complex or the PAF complex (Figure 3), thus providing 

clues for the functions of genes within each module. While we do not yet have a molecular 

model for how OSTc and PAFc impact the TLR pathway, we found that targeting subunits 

of the OSTc results in baseline ER stress that is likely regulated by XBP1 and may 

contribute to the reduction in TNF response. Our unbiased approach reveals how conserved 

cellular processes can have relatively specific effects on a well-defined response, offering a 

more comprehensive and unified view of how cellular functions are linked within a cell.
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Our genome-wide, unbiased approach allowed us to uncover new modules and factors even 

in a heavily investigated immune pathway, and will be useful across diverse biological 

systems, especially when coupled with advances in single cell profiling that bridge the gap 

between genome-wide pooled screens and deep molecular readouts.

Experimental Procedures

Pooled genome-wide CRISPR screens

For the pooled genome-wide CRISPR screen, BMDCs were isolated from six- to eight-week 

old constitutive Cas9-expressing female mice and used as described previously (Platt et al. 

2014). Cells were infected with the pooled lentiviral library at an MOI of 1 at day 2. At day 

9, BMDCs were stimulated with 100 ng/ml LPS and after 30min Brefeldin A (GolgiPlug, 

BD Biosciences) was added. After 8h of LPS stimulation, cells were harvested, fixed and 

stained for Tnf (Ramirez-Ortiz et al., 2015) and Cd11c, and FACS sorted (Supplemental 

Experimental Procedures). The genome-wide screens were performed as three independent 

replicates; in the first screen, 60 million infected cells yielded 350 million cells at day 9, 

while in the second and third screens, 200 million infected cells yielded 1 billion BMDCs at 

day 9. The secondary pooled screen (using a reduced library) was done using the same 

protocol with 200 million infected cells. For individual sgRNA experiments, we used a 

similar protocol, except BMDCs were infected with high MOI and selected with puromycin 

(Invitrogen).

Cloning of individual and libraries of sgRNAs and subsequent viral production

For the primary screen, we used the GeCKOv2mouse library in the lentiGuide-Puro vector 

(Sanjana et al., 2014), For the secondary screen, we designed 10 sgRNAs per gene (Doench 

et al., 2014) to target the top 2,569 genes in the DE analysis of the primary screen, and 

added2,500 non targeting sgRNAs (Table S5). For library construction we used a previously 

published protocol (Shalem et al., 2014). For individual sgRNA cloning, pairs of 

oligonucleotides (IDT) with BsmBI-compatible overhangs were separately annealed and 

cloned into the lentiGuide-Puro plasmid (also available at Addgene, plasmid # 52963) using 

standard protocols. Lentivirus was made using 293T cells transfected with lentiGuide-Puro, 

psPAX2 (Addgene 12260) and pMD2.G (Addgene 12259) at a 10:10:1 ratio, using 

Lipofectamine® LTX and plus reagents according to the manufacturer’s instructions.

Amplification and sequencing of sgRNAs from cells

After sorting, DNA was purified using Qiagen DNeasy Blood & Tissue Kit according to the 

manufacturer’s instruction. PCR was performed as previously described (Shalem et al., 

2014) and the PCR products were sequenced on a HiSeq 2500. The reads were aligned to the 

sgRNAs using Bowtie 1 (Langmead et al., 2009).

Analysis of screen

To score sgRNAs and genes based on their abundance in the different bins we used two 

strategies: in the first (DE) we normalized the raw reads and averaged on all the sgRNAs per 

gene and then performed differential expression analysis on three biological repeats using 

the R package DESeq2 (Love et al., 2014), which fits a negative binomial generalized linear 
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model (GLM). In the second strategy (ZS), we combined all low and high bins from the 

three experiments, into a single pair of TNFlow and TNFhi bins and fold changes of TNFlow / 

TNFhi were Z-score normalized. To collapse to gene level, the mean of the top four ranked 

sgRNAs was taken for positive regulators, and the bottom four ranked sgRNAs for negative 

regulators. For the secondary screen we used all sgRNAs in both methods. All the ranks in 

the paper are based on ZS unless otherwise noted.

Analysis of protein and RNA expression

Day 9 differentiated and transduced BMDCs were activated with LPS for 0, 2, 4 and 6 hours 

for the RNA-seq experiments or for 8 hours before staining with Il-6, MIp1a, CD11c and 

CD14 antibody. Cells with gene specific sgRNAs were compared to those with non-

targeting sgRNAs. For RNA purification we used Qiagen RNAeasy 96 Kit and constructed 

RNA libraries using the SMART-seq2 protocol (Picelli et al., 2013) in a 96 well plate format 

followed by Nextera XT DNA Sample Preparation (Illumina) and deep sequencing on a 

HiSeq 2500.

Protein Immunopurification

For each IP, 20 million unstimulated BMDCs were used. Each Paf1 or Rtf1 IP was always 

performed in parallel to a control IP and in two independent replicates. In one replicate of 

the experiment the digested proteins were labeled with iTRAQ and in the second replicate it 

was labeled with TMT10plex.

For full methods see Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlight

• Cytokine stain readout for genome-wide CRISPR screen in primary immune 

cells

• Individual validation of dozens of known and novel regulators of the LPS 

response

• Regulators cluster into three modules by knockout effect on expression

• General multi-pronged approach to CRISPR screens

A protein marker-based, genome-wide CRISPR screen has been developed in primary 

immune cells to identify genes that control the induction of tumor necrosis factor. Many 

of the known regulators, as well as dozens of previously unknown candidates have been 

identified, individually validated, classified into three functional modules.
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Figure 1. A genome-wide pooled CRISPR screen in mouse primary DCs
(A) Flow cytometry of intracellular Tnf levels following 8h of LPS stimulation for single 

sgRNAs. (B) Design of a genome wide CRISPR screen. (C) Cumulative distribution 

function (CDF) plots of the gene level Z-score distribution of genes annotated as ‘essential’ 

(purple) and ‘core essential’ (black) in (Hart et al., 2014), ‘Translation’ (in GO, blue), and 

all other genes (grey). (D) Left: Binned Z-scores (ZS) of the Tnflo / Tnfhi ratios (y-axis) vs. 

sgRNA mean abundances in Tnflo and Tnfhi (x-axis). Right: Gene score distribution for 

positive (ZS) and negative (ZS) regulators (Experimental Procedures). (E) CDFs of gene 

rank for the 35 genes in the TLR pathway from LPS to Tnf (KEGG, blue), non-targeting 

controls (black) and all other genes (grey).

Also see Figure S1, related to Figure 1.
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Figure 2. Individual sgRNAs verify dozens of top hits from the pooled screen
(A) Experimental design to validate top screen hits by individual sgRNA knockouts. Tnf 

levels were measured by flow cytometry for each sgRNA (filled) vs. control sgRNAs (lines). 

Right: the numbers of positive and negative candidate regulators tested and verified using 

100ng/mL or, in parentheses, 20ng/mL LPS. (B) Left: All components of the TLR pathway 

(KEGG) linking LPS and Tnf, and their ranks in the genome wide screen (blue scale). Right: 

Intracellular Tnf levels for each targeted gene (filled) compared to sgRNA controls (lines). 

(C) The intracellular Tnf signal (sgRNA Z-score relative to non-targeting sgRNA) of 
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candidate positive regulators (right) and non-targeting controls (left). Blue: validated hits. 

(D) Mean Tnf Z score for all sgRNAs targeting the same gene at each screen rank. (E) 

Theoretical (grey) and empirical (blue) FDR by screen rank.

Also see Figure S2, related to Figure 2.
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Figure 3. The validated positive regulators partition into key modules by their effect on protein 
and RNA expression
(A) Change in expression (blue, reduced; red, increased) of 5 protein markers (labeled 

columns) measured by flow staining with antibodies (Experimental Procedures) for cells 

with sgRNAs targeting the indicated genes (rows). Three modules indicated with brackets, 

and color bar on left corresponds to legend on right. (B) Violin plots of the distribution of Z 

scores of true positive regulators of Tnf (left) or of non-targeting control sgRNAs (right) for 

each marker. Functional groups are colored as in (A). (C) Effects of selected sgRNAs 
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targeting genes in each of three modules on protein markers for true positives (filled) vs. 

non-targeting controls (lines). (D-F) Correlation of global RNA expression profiles 

(normalized to non-targeting control values) for verified positive regulators per time point 

post-LPS, as indicated. Color scale: Pearson correlation coefficient.

Also see Figure S3, related to Figure 3.
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Figure 4. The OST complex strongly affects the BMDC inflammatory response
(A) Left: positive regulators in the context of the secretory pathway; right: intracellular Tnf 

staining for sgRNAs against each targeted gene (filled) vs. non-targeting controls (lines). (B 
- E) Impact of OSTc perturbation on gene expression at indicated times post LPS. 

Heatmaps: row-normalized Z-scores (relative to non-targeting controls) of mRNA levels for 

each sgRNA-targeted sample (columns). Only mRNAs that are differentially expressed (at 

least one time point, adjusted p-value <0.001) are shown, in the same order in each panel.

Also see Figure S4, related to Figure 4.

Parnas et al. Page 22

Cell. Author manuscript; available in PMC 2016 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The Paf complex strongly affects the LPS response
(A,B) Intracellular Tnf staining in cells with sgRNAs targeting Paf1 (A) or Rtf1 (B) (filled), 

compared to sgRNA controls (lines). (C-F) Violin plots of the distribution of response 

scores per sgRNA (calculated as an average of all RNA changes relative to non-targeting 

controls) in cells treated with sgRNAs targeting known regulators, non-targeting controls 

(NT), OSTc members, and PAFc members for each of 3 response signatures: anti-viral (C, 

4h post LPS), sustained inflammatory (D, 4h post LPS), and peaked inflammatory (E, 2h 

post LPS), as well as Tnf transcript (F, 2h post LPS). Positive and negative values: increased 
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and reduced response, respectively. (G, I) Scatter plots of two independent 

immunopurifications (IP) of Paf1 (G) or Rtf1 (I) followed by LC-MS/MS. Blue dots: 

interactors tested by individual sgRNA experiments for an effect on Tnf expression. Bold: 

IP target . (H, J) Intracellular Tnf staining in cells with sgRNAs targeting Auh (H) or Irf4 (J) 

(filled), compared to sgRNA controls (lines).

Also see Figure S5, related to Figure 5.
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