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A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-
mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson
could exist in extensions of the standard model with two Higgs doublets, and could be produced via
pp̄ → H�hf → W�hfhf → 4γ þ X, whereH� is a charged Higgs boson. This analysis uses all events with
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at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of
1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of
9.2 fb−1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and
100 GeV=c2 are excluded at 95% Bayesian credibility.

DOI: 10.1103/PhysRevD.93.112010

In the standard model (SM) of particle physics, the
masses of elementary particles are generated by the
spontaneous breaking of the electroweak gauge symmetry
[1], which predicts the existence of the Higgs boson. In
2012, the ATLAS and CMS experiments at CERN’s Large
Hadron Collider (LHC) discovered a scalar boson with
mass of approximately 125 GeV=c2 and properties con-
sistent with those expected for the SM Higgs boson [2,3].
Some evidence for such a boson had also been presented by
the Tevatron experiments [4]. The detailed phenomenology
of the Higgs boson is, however, yet to be investigated. The
possibility that the recently observed Higgs boson is part of
an extended Higgs sector is attractive because it would
address some relevant open questions about the SM such as
the generation of matter-antimatter asymmetry in the
Universe [5] and it is not ruled out experimentally.
A minimal extension, the “two-Higgs-doublet model”

(2HDM) [6], assumes two doublets of Higgs fields. The
resulting particle spectrum for the CP-conserving case
consists of three electrically neutral Higgs bosons, h0, H0

and A0, and two charged Higgs bosons, Hþ, H−, where h0

is less massive than H0. The acronym CP represents the
combined operations of charge-conjugation and parity
transformation. An important parameter for predictions
from the model is the ratio tan β of the two vacuum-
expectation values for the neutral components of the two
Higgs doublets. Assuming that the boson discovered
recently at the LHC is the h0, searches for additional,
more-massive neutral Higgs bosons were performed [7,8],
yielding exclusion limits on production cross sections.
In this paper, we consider an alternative case in which the

newly discovered boson corresponds to the high-mass H0

and the lower-mass h0 is yet to be observed. This scenario
is poorly constrained experimentally if tan β is large and h0

has suppressed couplings to fermions at leading order. The
h0 is referred to as the fermiophobic Higgs boson (hf).
Searches performed at various experiments [9–11] have
set lower bounds of its mass, mhf , at 100–150 GeV=c2.
These mass limits, however, were obtained assuming
simplified models in which the couplings between the
hf and electroweak-gauge bosons are of the same strength
as those in the SM, which is not necessarily true in
the 2HDM, as they may be strongly suppressed when
tan β is large [12], by a factor of approximately 10−2

when tan β ¼ 10, for example. A low-mass hf (mhf ≲
100 GeV=c2), therefore, could have eluded the previous
searches if tan β is large. To fill this gap in exploring the

Higgs sector, we focus on the process qq̄0 → W� → hfH�,
followed by the decay H� → hfW�, where q and q̄0 are
quarks and antiquarks in the colliding protons and anti-
protons taking part in the hard interaction, and W�

represents a virtual W boson. This process, involving
H�, has enhanced production rates for large tan β [13].
By assuming no couplings to fermions, the branching
fraction (B) of hf decays to two photons, hf → γγ, is near
100% for mhf ≲ 95 GeV=c2 [13,14]. The production of
two hf particles could result in a distinctive multiphoton
topology with small background rates. The couplings of the
H0 to SM particles in this scenario are similar to those of
the SM Higgs boson [13] and we perform the analysis
assuming that its mass, mH0 , is 125 GeV=c2. The decay
of H0 → hfhf, when it is kinematically allowed and when
the coupling is sizable, can also lead to multiphoton final
states. We conservatively neglect this contribution to the
expected signal. We also assume the A0 mass, mA0 , to be
350 GeV=c2, large enough so as not to contribute to
H� decays—the specific choice of mA0 has little effect
on the final result, and we take tan β ¼ 10. The expected
production cross section multiplied by the appropriate
branching fractions ranges approximately from 100 pb to
10 fb for the explored mhf and the H� mass (mH�) values,

from 10 to 105 GeV=c2 and from 30 to 300 GeV=c2,
respectively.
This analysis is based on the entire data set of proton-

antiproton collisions at a center-of-mass energy of 1.96 TeV
collected with the Collider Detector at Fermilab (CDF II)
between February 2002 and September 2011, corresponding
to an integrated luminosity of 9.2 fb−1. We select events
with multiple photon candidates by applying criteria opti-
mized for achieving the best sensitivity. We compare the
observed event yields with background expectations, which
are evaluated using a combination of Monte Carlo (MC)
simulation and experimental data. A challenge is to estimate
the contribution from background events containing clusters
of particles (jets) misidentified as photons.
CDF II is a general-purpose detector consisting

of tracking devices in a 1.4 T axial magnetic field,
surrounded by calorimeters with a projective-tower geom-
etry, and muon detectors surrounding the calorimeters. Gas
proportional wire chambers with cathode strips (shower-
maximum strip detectors) are located at a depth approx-
imately corresponding to the maximum development of
typical electromagnetic (EM) showers to measure precisely

T. AALTONEN et al. PHYSICAL REVIEW D 93, 112010 (2016)

112010-4

http://dx.doi.org/10.1103/PhysRevD.93.112010
http://dx.doi.org/10.1103/PhysRevD.93.112010
http://dx.doi.org/10.1103/PhysRevD.93.112010
http://dx.doi.org/10.1103/PhysRevD.93.112010


their centroid position and shape in the plane transverse to
the shower development. Detailed descriptions of the
CDF II detector are in Ref. [15].
The initial data sample is obtained using a real-time

event-selection system (trigger) that requires either two
EM-energy clusters in the calorimeter, each with
ET ≡ E sin θ > 12 GeV, or three clusters, each with
ET > 10 GeV, where E is the cluster energy measured
with the calorimeter, θ is the polar angle, and ET is the
transverse energy [16]. In the analysis, we select events
with at least three EM-energy clusters with ET > 15 GeV.
They must be located in the central detector (pseudora-
pidity magnitude jηj < 1.1) [16], where reliable tracking of
charged particles is available [17]. The photons are also
required to be isolated: additional calorimeter ET in a cone
of angular radius R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

¼ 0.4 [16] around
the photon candidate must be less than 2 GeV, and the
scalar sum of transverse momenta of charged particles in
the same cone must be less than 2 GeV=c. We then apply
photon-identification criteria based on the EM-shower
profile, which must be consistent with the expectation
for an isolated photon [18]. For photons withET > 15 GeV
in a fiducial region of the central detector, the probability to
pass all selections is 80%–90%.
We estimate the reconstruction efficiency for signal

events as a function of mhf and mH� using PYTHIA (version
6.4) MC simulation [19]. The generated events are passed
through the full detector simulation based on GEANT [20].
The simulation of the EM response of the detector is
calibrated by matching the observed energies in samples of
Z → eþe− events in the data and the MC simulation [18].
The fractions of generated signal events to pass all event
selections are in the range 1%–10% depending on mhf
and mH� .
Direct triphoton production is a major source of back-

ground events. We predict the kinematic distributions from
simulated data generated with MADGRAPH (version 5)
interfaced with MADEVENT [21] and combined with parton
showering from PYTHIA. MADGRAPH provides direct tripho-
ton production with up to two additional jets. The renorm-
alization and factorization scales are set to the sum of the
squares of the photons’ transverse momenta. The generated
events are passed through the full detector simulation andwe
apply the same photon selection as that used for data.
Another source of background is the production of

events with jets misidentified as photons. This background
includes photons produced in the fragmentation process of
quarks or gluons to hadrons. For estimating this contribu-
tion, we introduce a loose photon selection which simply
collects EM-energy clusters without any associated tracks.
In a sample of three-photon candidates selected with the
loose selection, there are eight possible combinations of
ET-ordered photons and EM-like jets, γγγ; γγj;…, where j
represents an EM-like jet. The numbers of these events are
unknown and we express them by a vector n� of event

counts (n�γγγ; n�γγj;…). By applying the full set of criteria for
the photon selection, we categorize the events in eight
classes depending on whether each of the photon candi-
dates in a given event passes (p) or fails (f) the full photon
selection (nppp; nppf;…), denoted by n. The components
of n� are obtained by solving eight linear equations
n ¼ En�, where E is an 8 × 8 matrix, the elements of
which are calculated from the probability for a genuine
photon or jet that meets the loose selection to also meet the
full photon selection. Once n� is obtained by inverting the
matrix E, we estimate the misidentified-jet contribution to
nppp using E and the calculated elements of n� except n�γγγ .
Statistical uncertainties are propagated to n�. The photon
efficiencies are measured with the PYTHIA MC and detector
simulation, with a final calibration derived by comparing
unbiased electrons in Z → eþe− events in the data and the
MC simulation. We estimate the probability for misidenti-
fying jets as photons as a function of ET using isolated jets
in data samples collected with inclusive jet triggers. We
correct for contributions of genuine photons to the set of
objects passing the photon selection in the jet samples
based on the differences in the expected distributions of
isolation and shower shape variables [18]. Genuine photons
tend to be isolated and to have good χ2 values for the
comparison of the observed and expected shower shapes,
while misidentified jets show broad distributions in both
quantities. These differences enable us to extrapolate the
amount of misidentified jets from regions of larger isolation
and χ2 values to the region selected by the photon
identification. The fraction of misidentified jets is then
estimated to be approximately 30% using the calorimetry-
based isolation. The misidentification probability varies
from a few percent to 25% depending on the ET .
A third source of background events arises from

electroweak processes containing Zð→eeÞγ, Wð→eνÞγ,
Zð→ττÞγ, or Wð→τνÞγ decays with additional misidenti-
fied jets or other photonlike particles that result in the γγγ
signature. We predict these backgrounds using PYTHIA MC
and detector simulation, after normalizing the cross sec-
tions to observed W and Z yields in the data.
The total expected number of background events at this

stage is 10.3� 0.2, where the uncertainty is statistical.
We observe ten events in the data, which is consistent with
the background expectation. None of the observed events
contains four or more photons.
In order to further improve the search sensitivity, we

apply an additional criterion on the summed ET of the
two highest-ET photons, Eγ1

T þ Eγ2
T . To quantify the search

sensitivity, we calculate Bayesian [22] expected limits on
the product of the cross section and the branching fraction,

σðpp̄ → hfH�Þ × BðH� → hfW�Þ × ½Bðhf → γγÞ�2;

with respect to theoretical predictions by integrating
posterior probability density functions based on the
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predicted number of background events. We assume a
uniform prior probability density for the signal rate. The
theoretical cross sections at leading order are computed
using PYTHIA with an enhancement factor of 1.4 to
approximate higher-order contributions. This factor is
taken to be the ratio of the W boson production cross
section measured by CDF [17] to the corresponding
prediction by PYTHIA. This is similar to a calculation of
the ratio of the next-to-leading-order prediction to the
leading-order prediction of 1.3� 0.3 for Higgs boson pair
production in Drell-Yan-like processes at the LHC [23],
and we note that the central values, which are expected to
be similar, are within the theoretical uncertainty on the
Higgs boson pair production prediction, which is much
larger than the experimental uncertainty on the W boson
enhancement factor. Because the hf signal production
process under study begins with W boson production,
we use the measured W boson production enhancement
factor, but we use the uncertainty on the theoretical
prediction, �0.3, as an estimate of the uncertainty in
extrapolating the enhancement factor from one process
to the other. The branching fractions are calculated with
the 2HDMC program (version 1.6.5) [24]. The expected limit
is the median in a large set of simulated experiments based
on the Poisson fluctuation of the background events. We
choose Eγ1

T þ Eγ2
T > 90 GeV as the final requirement

because it provides the best expected limit. Figure 1 shows
the predicted and observed distributions of Eγ1

T þ Eγ2
T and

includes the requirement defining the signal region. We
compare the background distribution and the expected
signal distribution for a signal point having mhf ¼
75 GeV=c2 and mH� ¼ 120 GeV=c2.

The main systematic uncertainty on the signal efficiency
comes from that on the estimation of the identification
efficiency for three photons, which is 8% of the total
efficiency based on studies comparing Z → eþe− in data
and simulation [18] by assuming full correlation among
three photons. Other sources of systematic uncertainties
include those on the parton momentum distributions in the
colliding hadrons, the initial- and final-state radiation of a
gluon, and the renormalization scale, which are each found
to contribute less than 3% of the total efficiency [18].
We compare the MADGRAPH cross section with MCFM

[25] calculations that take into account different higher-
order contributions and take the resulting difference of 0.83
events as a systematic uncertainty on the yield of direct
triphoton events. The systematic uncertainty from the
renormalization scale, that from the initial- and final-state
radiation, and that from the luminosity measurement [26]
range from 0.16 to 0.21 events. We estimate the total
systematic uncertainty on the expected yield of events with
misidentified jets to be 0.17 events, which includes the
contribution from the measurement of the misidentified-jet
probability and that from the possible difference of the
probabilities between jets originating from quarks and
gluons. The dominant uncertainty on the electroweak
contribution originates from the limited size of the simu-
lated event samples used to estimate the small probability to
find an extra photonlike particle in the Wð→ eνÞγ events.
Table I shows the expected number of background

events and the number of events found in data after the
final selection. We find five candidate events in data, which
is consistent with the expected number of background
events.
We check the background predictions using background-

rich control samples. In events containing one lower-
quality photon candidate that passes the loose selection
but fails the full selection, the predicted and observed
numbers of events are 372� 68 and 370, respectively. In
events with Eγ1

T þ Eγ2
T < 90 GeV, 6.6� 1.7 events are

predicted and five events observed. The observed agree-
ment supports the reliability of the background estimation.
We perform a Bayesian limit calculation restricted to

events observed in the signal region, Eγ1
T þ Eγ2

T > 90 GeV,
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FIG. 1. Distribution of Eγ1
T þ Eγ2

T in events containing three
or more photons for data, SM background prediction, and
hypothetical signal for a signal point having mhf ¼75GeV=c2

and mH� ¼ 120 GeV=c2.

TABLE I. Expected number of background events compared to
the observed number of events after the final event selection. The
first contribution to the uncertainty is statistical and the second is
systematic.

Events in signal region
(Eγ1

T þ Eγ2
T > 90 GeV)

Direct triphoton 2.60 � 0.04 � 0.93
Misidentified jets 0.32 � 0.07 � 0.17
Electroweak 0.04 � 0.01 � 0.03
Total 2.96 � 0.08 � 0.94
Data 5
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as a function of mhf , ranging from 10 to 105 GeV=c2, and
mH� , ranging from 30 to 300 GeV=c2. We include system-
atic uncertainties due to the signal efficiency, the predicted
number of background events, and the luminosity, as well as
the theoretical uncertainty of 20% on the cross section of
Higgs boson production [23]. Figure 2 shows the expected
and the observed cross section limits at 95% credibility for a
particular choice ofmhf andmH� , with possible variations of
the expected limits obtained by assuming 68% or 95% of
Poisson fluctuations of the number of background events.
From Fig. 2, the mhf region between 14 and 62 GeV=c2 is
excluded for mH� ¼ 75 GeV=c2. Connecting the boundary
regions of the excludedmhf region for various values ofmH�

in the mhf vs mH� plane, we form contours of the excluded
mass regions and present them in Fig. 3. The region of
parameters given by mhf between 10 and 100 GeV=c2 and
mH� between 30 and 170 GeV=c2 is excluded. The result
does not change significantly if we repeat the analysis by
assuming tan β ¼ 30, while the excluded region shrinks
by approximately 20 GeV=c2 for both mhf and mH�

for tan β ¼ 3.
In conclusion, we report on a search for the fermiophobic

Higgs boson in the two-Higgs-doublet model using events
with at least three photons in the final state, resulting from
the hypothetical process pp̄ → hfH� followed by H� →
hfW� and hf → γγ. The observed number of signal
candidate events in data is consistent with the expected
number of background events. We calculate the upper limit
on the product of the cross section and the branching

fraction at 95% Bayesian credibility for mhf values ranging
from 10 to 105 GeV=c2 and for mH� values ranging from
30 to 300 GeV=c2, and then translate these limits into an
excluded region in the mhf vs mH� plane, shown in Fig. 3.
The region of parameters given by mhf between 10 and
100 GeV=c2 and mH� between 30 and 170 GeV=c2 is
excluded for tan β ¼ 10. This is the first search for a
fermiophobic neutral Higgs boson with mass smaller than
the boson discovered at the LHC in the two-Higgs-
doublet model.
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