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Abstract

Recent progress in heavy traffic theory has presented great opportunities in simultan-
eously analyzing multiple complexities facing single machine scheduling. The thesis
examines how setups, due-dates and standardized-customized product mix individu-
ally and jointly effect optimal scheduling in a stochastic environment. The Heavy
Traffic Averaging Principle (HTAP) is used to optimize a dynamic cyclic policy. The
qualitative nature of the results provides a unified view of single machine scheduling
and allows a detailed discussion of the interactions between the due-date, setup and
product mix facets. A computational study is also performed on several sub-problems.
The proposed dynamic cyclic policy is compared to various straw policies and an op-
timal policy when it can be calculated. The derived dynamic cyclic policy is shown
to be robust under many circumstances.
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Chapter 1

Introduction

1.1 Motivation

The aim of this thesis is to provide a unified view of single machine scheduling. We
jointly examine the influences of three facets of multiple product class manufacturing
in a stochastic environment: standardized-customized product mix, setup cost and
time penalties and due-dates. This is an ambitious goal as most work in the past has
focused on only a few features of this general scheme. A variety of analytic methods
have studied simplified systems developing well known results such as the “cu” rule.
Here we apply the now maturing tools of heavy traffic theory to the whole multi-faceted
problem. The main analytic contribution is the extension of a particular technique,
the Heavy Traffic Averaging Principle (HTAP). to the set of dynamic cyclic policies
for queueing systems wiih due-dates. Many of the insights we shall derive, however,
draw upon the interaction of all these problem complexities. There has been no other
work which has addressed them all in unison.

We consider a manufacturing system with one machine which produces multiple
classes of product. Products can be either customized, which require the request of
an order before production can begin, or standardized, which can be pre-stocked in
a finished goods inventory (FGI). The machine is limited in capacity and can only
produce one class of product at a time. Whenever the machine switches producing

one class and starts another, a setup cost or setup time penalty is incurred. Orders
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for product arrive to the system, each requesting the product at a specified due-
date. Products assigned to orders before the due-date must be held and incur an
earliness (holding) cost. Products delivered late incur a tardiness (backordering) fee.
Standardized products held in finished goods inventory also incur a holding cost equal
to that product class’ earliness fee. Demand interarrival times, service times, due-dates
and setups are product class specific random variables. The machine follows a dynamic
cyclic policy. The machine produces the product classes in a fixed cycle and depending
on the state of the system can do one of the following three actions: 1) produce the
class currently setup for, 2) begin setup of the next product class in the cycle and 3)
idle. We wish to optimize the system with respect to long run average costs.

The three complexities of product mix, setups and due-dates provides a rich en-
vironment to consider many issues confronting manufacturing. The mixture of cus-
tomized products and standardized ones captures the trade-offs involved with make-
to-stock/make-to-order decisions and the effects of a finished goods inventory on a
facility’s ability to service a variety of customer demands. Setup costs and setup
times each introduce different trade-offs between longer production lot sizes and setup
penalties. Due-dates allow the servicing of orders early and provide a mechanism for
studying the value of foreknowledge of customer demand. We attempt to optimize
the system with all three of these facets and hope to address not only the impact of
each one individually but also of their interactions. Parts of this thesis have already

appeared in Markowitz, Reiman and Wein [30).

1.2 Literature Review

Figure 1-1 outlines the relationships between these issues. Let us step one-by-one
through each of the regions in the diagram, discuss the relevant literature and highlight
several qualitative trends which will be important references when discussing our own
proposed policies. As we focus on the stochastic version of these problems, we do
not include the vast literature on deterministic or static stochastic scheduling as their

insights do not directly pertain to the work done in this thesis.
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Customized
No Setups
No Due-Dates

X

Due-Dates

Standardized

Figure 1-1: Breakdown of general problem

The outer area of Figure 1-1 corresponds to systems with only customized goods,
no setup penalties and no due-dates. These systems are the simplest of the ones
displayed in the diagram and have been extensively studied. Cox and Smith [10], see
also Klimov [24], show the optimality of the “cu rule.” or priority service of the class
which while serviced removes cost from the system at the highest rate. This simple
policy has several important characteristics. First, although considered a “static”
priority policy, it is dynamic in that it can instruct the machine to change setup based
on any minor fluctuation in the state of the system. Second, it chooses to service high

cost customers at the expense of low cost ones.

The region of the Venn diagram corresponding to customized products with setups
and no due-dates has also been extensively studied. These systems are models fre-
quently used in the design of communication and computer networks. In addition,
they represent make-to-order manufacturing facilities with non-trivial penalties when
switching production between product classes. The amount of work in this area is

quite large; we briefly name just a few of its many contributors. The works of Takagi
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[43] have studied the performance of these systems under a variety of polling policies.
Hofri and Ross [20] examine a two-product case and develop a double threshold policy
which is optimal when the two products have the same "cp.” In this policy, the server
works on a product class to exhaustion and only switches when the other class has
reached a minimal level. This policy is dynamic as it depends on the current levels
of inventory and the setup of the machine. The policy also gives insight on the trade-
offs involved when one adds setups to a customized product system. Since the two
product classes are nearly identical, there is no preference for working on one class
over another as seen in the “cy” rule. Instead, the policy balances machine removal
of orders from the system and machine setups: by implementing an idling threshold
based on a minimum level of inventory before switching, minimum lot-sizes are guar-
anteed and excessive setups are avoided. This is performed at the expense of longer
queues and their associated costs. Reiman and Wein [39] use the HTAP to create
policies for two product classes with asymmetric cost parameters. Their policies are
again dynamic and exhibit this trade-off between queuing costs and setup penalties.
They implement a state-dependent switching threshold which not only controls the
frequency of setups but also regulates the amount of orders in each queue. Thus,
they create a state-dependent lot size which simultaneously controls the ratio of costs
incured by each queue and balances these holding costs with the setups penalties.
They conjecture their policies are asymptotically optimal. Systems with more than
two classes of products are more difficult to analyze: there is not only the problem of
determining when to switch to another class but also of finding which class to setup.
Boxma, Levy and Westrate [5] create polling tables to minimize mean waiting time.
Browne and Yechiali [6] create a quasi-dynamic index policy to chose sequences of
classes to service at the start of each cycle. Van Oyen and Duenyas [34] construct a
dynamic policy based on a myopic “look ahead,” and in {12] they examine the problem

with setup costs.

The region of Figure 1-1 corresponding to customized products with due-dates
and withcut setups has also been studied, but not to the extent of either of the

two previous regions. These systems reflect manufacturing facilities which service
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customer orders on a make-to-order basis with the additional aspect that customers
do not want the goods immediately but at some future time. This problem, however,
is more complex than the previous ones because the state-space of the system has
exploded in dimensionality: each order potentially must pass through a continuum
of due-date lead time states before it exits the system. Baccelli, Liu and Towsley
[2] consider ordering policies to minimize job lateness. Pandelis and Teneketzis [35]
look at earliness and tardiness penalties and examine properties of an optimal policy.
Righter [40] uses stochastic ordering to further characterize aspects of an optimal
policy. Several simplification schemes can also be used. Van Mieghem [44] studies
a system with generalized product class costs based upon each order’s age in the
system. This can be interpreted as a class dependent deterministic due-date cost
structure. Using heavy traffic analysis, Van Mieghem shows that a generalized “cpu”
rule is asymptotically optimal. The policy is similar to the zero due-date case in that
it is dynamic and dedicates the machine to servicing orders which will remove cost

from the system at the fastest rate.

The combination of setups and due-dates in a customized product system has been

little studied. We know of no previous work analytically treating this problem.

Systems with standardized products are a conventional means of modeling finished
goods inventories with backordering: a situation common in manufacturing problems.
Their analysis, however, is generally considered to he more complex than systems with
customized products because of the inherent non-linear cost structure introduced by
having both holding and backorder costs. Additionally, when constructing policies
for multi-class inventory systems, there are no natural switching boundaries as with
exhausting a queue in customized systems. These difficulties have inhibited the ana-
lysis of even the most simple case: standardized products with no due-dates and no
setups. Zheng and Zipkin [47] and Pena and Zipkin [36] look at multiclass symmetric
product systems under base-stock policies. The base-stock method is an intuitive ap-
proach where one sets a base-stock level for each product high to avoid backordering.
Ha (18] also studies a multiclass production system and examines the optimality of

base-stock policies with switching curves. Wein [46] uses heavy traffic theory to show
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that asymptotically a mixture of priority policies with an idling threshold is optimal.
All but the lowest holding cost, “hu,” or backorder cost, “bu,” product are prioritized
and in the limit vanish. Only the cheapest holding and backorder products are seen
in queue. This is reminiscent of the “cp” rule for the customized system: the policy is
dynamic and it attempts to focus on products where cost can quickly be removed from
the system while ignoring lower cost items. The results are also important because
of its interpretation of the role of a finished goods inventory. The inventory acts as
a reservoir of stored capacity allowing the server to dynamically allocate its limited
resources on high cost orders. Instead of individual inventories hedging against back-
ordering, the total reserve machine capacity stored in the cheapest product acts as a
buffer against missing demand. Veatch and Wein (45} expand upon this by examining

index policies in a two product Markovian setting.

Standardized goods with setups and without due-dates has long been considered
the prototype for modeling manufacturing systems servicing a finished goods invent-
ory.

The dynamic scheduling, or lot-sizing, of the machine is a stochastic version of the
classic economic lot scheduling problem (ELSP), which is NP-hard (Hsu [21]) and has
not been solved in general. Despite the vast literature devoted to the ELSP (see the
survey paper by Elmaghraby [13], and Zipkin [48] for a list of more recent references),
its deterministic viewpoint has probably prevented its widespread industrial use: the
solution to a deterministic problem in a make-to-stock setting will not hedge against
uncertainty in future service times (e.g., machine failures) and demand, resulting in

many costly backorders (see the numerical results in Federgruen and Katalan [14]).

Not surprisingly, the stochastic version of the ELSP appears to be analytically
intractable. When the state space is taken to be discrete, the stochastic ELSP (or
SELSP) can be viewed as a make-to-stock version of the dynamic scheduling problem
for a polling system, which is a traditional (i.e., make-to-order) multiclass queue with
setups. The SELSP is more challenging than the polling scheduling problem because
of the nonlinear cost structure and the lack of an imposed boundary at the origin.

Despite its difficulty, this problem has been the subject of a recent flurry of activity.
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Graves [17] develops a Markov decision model for a one-product problem, and uses it to
develop a heuristic for the SELSP in a periodic review setting. Leachman and Gascon
[27], Gallego [16] and Bourland and Yano [4] develop heuristic lot-sizing algorithms for
the ELSP with stochastic demands that are rooted in the solution to the deterministic
ELSP; the first of these papers considers a discrete time problem with nonstationary
demand. Sharifnia, Caramanis and Gershwin {41} employ a hierarchical approach to
develop heuristic policies for a stochastic fluid version of the problem. They propose
a piecewise linear system of switching curves which dynamically trade-off holding and
backorder costs with setups. Federgruen and Katalan [14, 15] develop accurate distri-
butional approximations for polling systems, and use these to analyze the performance
of a class of periodic base stock policies for the SELSP. Anupindi and Tayur [1] also
consider a class of periodic base stock policies, and use a simulation based approach
(infinitesimal perturbation analysis and gradient search) to obtain good base stock
policies for a variety of performance measures. Sox and Muckstadt [42] formulate
the SELSP as a stochastic program and propose a heuristic decomposition algorithm
to solve it. Qiu and Loulou [37] formulate the problem as a semi-Markov decision
process, and numerically compute the optimal solution in the two-product case; this

is the only paper to date to gain any insight into the nature of the optimal solution to
the SELSP.

The case of standardized products with due-dates and without setups has not been
extensively studied. Similarly, the system with setups, the dead center of Figure 1-
1, has also not been examined. Anupindi and Tayur [1] mention that this area is
particularly vacant in consideration. As in the the customized cases, due-dates make
this problem extremely difficult to exactly analyze. Nonetheless, this area has become
increasingly important due to the interest in Just-in-Time manufacture. As cited in
Federgruen and Katalan [15], increased information lead time of demand has sparked
a desire to delete inventory and service orders for standardized goods in a make-to-
order fashion. A contribution of this paper is to optimize this system as is and let
the due-date distributions themselves decide which product classes are serviced in a

make-to-stock versus make-to-order manner.
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Additionally, we consider mixed systems with both standardized and customized
products, which would correspond to the border of the “Standardized” circle of Fig-
ure 1-1. The distinction between customized and standardized is based entirely on
product design. Much of the work in the area, however, has been aimed at answer-
ing make-to-stock/make-to-order decisions and so the partition of “customized” and
“standardized” goods is a parameter to be optimized. This has led to models of hy-
brid systems like those of Carr et. al. [7] where the make-to-order goods represent
low demand items that are made Just-in-Time and thus have priority over the make-
to-stock ones. These intrinsic priority rules allow for a performance analysis of the
MTO/MTS partition, but do not involve optimally scheduling of the product ciasses
themselves. Nguyen [32] has iooked at the performance of hybrid systems but with
lost-sales instead of backordering. In a following paper [33], she examines different
priority rules for the MTS and MTO products and suggests an algorithm for setting

base-stock levels.

Mixed systems with setups and no due-dates have also often been used to examine
MTS/MTO product partitions. The presence of setups, however, forces some sort of
scheduling optimization to be performed. Federgruen and Katalan [15] examine such
hybrid systems and compare several priority rules for switching from MTS goods
to MTO instead of the absolute priority rule in Carr et. al. [7]. From scheduling
techniques, they propose a heuristic for partitioning MTS and MTO items.

Lastly, there is the full problem: customized and standardized goods, setups and
due-dates. All of the previous cases are subsets of this general model. It is the proper
setting to ask questions of balancing inventory costs and setup penalties, of setting
finished goods inventory levels and avoiding backordering, of determining due-date
lead time effects and natural due-date partitions of MTS/MTO goods. In this paper,
we asymptotically optimize the full problem over dynamic cyclic policies and are able

to derive insights on the combined answer to these seemingly separate questions.
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1.3 Approach

This thesis draws upon the methods of Reiman and Wein [39]. In that paper, the
system is approximated using two limits under the HTAP (see Coffman, Puhlaskii
and Reiman [9, 8] for details, Lennon Olsen (28] for refinements) which requires that
the total utilization be close to one. Two sets of scalings are used, a fast one where
time is sped up by a factor of O(n) and a slow one where time is increased by a factor
of O(y/n). Under the fast scaling the total number of orders behaves like a diffusion
process and is called the diffusion limit. Under the slow scaling, individual inventories
act deterministically and can be approximated by a fluid limit. The HTAP couples
these two processes. Individual inventories move an order of magnitude faster than
the total workload, and so the fluid limit evolves for a period while the total workload
remains relatively constant. For example, the total workload might change on the

order of weeks, individual inventories change daily.

By isolating the variability of the system into one scaling, there is an opportunity
to selectively optimize the system. A main analytic contribution of this thesis is
determining how the proposed family of policies behave in the fluid limit and then
optimize them in two stages: first in the fluid and then in the diffusion limits. The
results which we obtain, however, are not closed form but must be numerically solved.
For more insight into the problem, we reduce the general case to a class dependent

deterministic due-date example which we can analyze in depth.

In an attempt to both assess the effectiveness of our proposed policies and the
strength of our approximation, we perform a computational study. We start with the
SELSP and compare our proposed policies to two straw policies that are closely related
to those considered by Federgruen and Katalan [14] and by Sharifnia, Caramanis and
Gershwin [41]. All policies are examined for a variety of two product problems and
several five product cases. Simulations are additionally performed on a select number

of two product due-date examples.

The explicitness of our results reveals a number of new and unexpected insights into

the nature of the optimal solution for a wider range of scheduling problems. Readers
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who are not curious about the mathematical details but who wish to obtain a deeper
understanding of the inter-relationships between setups. due-dates and product mix
may find it useful to bypass the heavy traffic analysis and focus on Chapter 4.5, where
the key insights and observations are collected.

The thesis itself is organized as follows: the exact problem is formulated and the
HTAP outlined in Chapter 2. In Chapter 3 we show how the proposed policies behave

under the fluid limit and in Chapter 4 we work through the deterministic example.



Chapter 2

The Problem and Approach

2.1 Problem Formulation

A single machine produces N classes of goods. Of these, N¢ are customized and N°®
are standardized. Without loss of generality, we assume that products 1,2,... .. Ve are
customized and N°+1,..., N°+ N® = N are standardized. Each product class 7 has its
own generally distributed service time with mean p;! and coefficient of variation c;,.
Orders for product arrive from an exogenous renewal demand process. For each class
i, the demand interarrival time is generally distributed with mean ;! and coefficient
of variation c¢;,. The demand and service distributions for each class are assumed to
be independent, although they need not be (see Reiman [38] for compound renewal
processes). Orders arrive to the system with a specified due-date. The due-date lead
time s of a class i arrival is determined by a random variable with density fi(s) and
mean [; and is independent of the service and demand distributions. We assume that
there is a minimum and maximum feasible due-date lead time, denoted by &; and b;
respectively. With this notation, each product class has a utilization p; = );/y; and
the total utilization is p = =N, p;.

Orders for customized goods are immediately queued. The machine can only work
on a customized class if an order is present. Once an order is serviced it is either
held until the order’s due-date or sent immediately if tardy. If held, the order incurs

an earliness fee (holding cost) h; per unit time until the due-date; if late, the order
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incurs a tardiness fee (backorder cost) of b; per unit time late. These costs can also

be stated in terms of units of work: we denote them by h; = u.-iz.- and b; = u.-i),-.

Standardized goods can be pre-stocked and can be assigned to any order. Thus,
when an order for a customized item arrives, the order is queued and can be filled by
an item either from the finished goods inventory or directly from the output of the
machine. Once an item is assigned to an order, either an earliness fee il,' is incurred for
each unit of time until the order’s due-date or a tardiness fee of b; per unit time late.
Standardized goods in the finished goods inventory also accrue holding cost at a rate
of h; per item per unit time. Again, these costs workload equivalents are h; = u;iz,-
and b; = [J,,'i),‘.

The state of the system is reflected in several processes. The “tilde” denotes a
lack of scaling, later other notation will be given for the two heavy traffic scalings. Let
[,(t) be the number of outstanding product  orders at time ¢, Wi( t) be the amount of
work in outstanding product i orders at time ¢ and H;(t) the amount of work stored
in product 7 finished goods inventory. Let I(t) and H(t) represent the N and N*
dimensional vector processes of I;(t) and H;(t) respectively. Lastly, let W(t) be the
total work in outstanding orders at time ¢ and is equal to "N, W;(t). We do not have
a process monitoring the setup of the machine as the notation will not he necessary

in our analysis.

The machine follows a dynamic cyclic policy. All classes of items are serviced
in a fixed cycle. At any point in time the machine has three options: 1) produce
the class currently setup for (this might not be possible if setup for a customized
class and there are no orders present), 2) begin setup of the next product class in the
cycle, or 3) idle. Thus, the amount of time allocated to each class is decided by the
current state of the system. This gives the policy a dynamic nature in that lot size and
cycle length can be molded to address changing needs of the system. Every time the
machine switches production to the next class in the cycle a penalty is incurred. This
can be a cost, a period of down-time or both. Let the average cost per cycle be K,
the average down-time per cycle s. If only one form of setup penalty is present and

setups are product dependent, we assume that the cycle order minimizes the average
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cycle penalty (this can be considered a TSP where the product classes are nodes and
the product dependent setup penalties are the costs for the connecting arc). If Foth
setup costs and times are present, the situation is more complex. We do nct consider
the influence of pre-emptive service as the approximation scheme we use is too coarse
to differentiate a system with a pre-emptive resume policy versus one without.

We wish to minimize the long run average cost of the system. In order to formulate
this, we need additional notation. Let T,; be the time that the nth class ¢ product is
assigned to an order. Let J(t) be the cumulative number of cycle completions at time
t. Let Gi(s,t) be the amount of product i work at time ¢ due at time s + {. When a
product is assigned to an order, we assume that it is assigned to the order with the
smallest due-date lead time in that product class as this will minimize cost. Thus, let
Li(t) be the smallest due-date lead time in the product : unfinished orders queue. The
long run average cost can now be stated as:

Ny oo g (Sners (Snitneer hiLF (Tw) + BiL7 (Toi) + o hipsi Hi(1)dt )

. o _ i (2.1)
+ =X (Saitueer L (Toi) + b:L7 (Twi)) + KJ(T))

In some respects this formulation of cost is not standard. We have “reversed the
order of integration.” Normally the multiplicative product of cost and queue length
(e.g. iz,if’ (t)) is integrated over time. Instead, we have chosen to sum the product of
cost and time (e.g. h;L} (T,)) over orders. This is a necessary step in analyzing the

effects of due-dates.

2.2 Heavy Traffic Approximations

The Heavy Traffic Averaging Principle (HTAP), formally developed in Coffman, Puh-
laskii and Reiman [9, 8], has augmented the way we view single station queuing systems
(see Lennon Olsen (28] for refinements for polling systems with setup times). By us-
ing two sets of limits, it distinguishes the order of magnitude of different sources of
variability in a multiclass system. Although rigorously proved for a two product MTO

system (with setups in {8]) following an exhaustive service policy, it has beer assumed
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that its results hold for a wider class of systems. It has been used with success in
Reiman and Wein [39]. We shall briefly motivate the HTAP results so that conclusions
can be drawn for systems with due-dates, but refer to either Coffman, Puhlaskii and

Reiman [9, 8] or Reiman and Wein [39] for a more detailed discussion.

The HTAP is based on two sets of limits, taken as the total utilization goes to one
and synchronized by a scaling parameter n. The first limit of the HTAP states that as
V(1 —p) = constant, then W (nt)/\/n — a diffusion process, W(t), with parameters
defined by the system data and policy. It is called the diffusion limit. Without setups,
this would be a standard heavy traffic limit (see Iglehart and Whitt [22]) and W (¢)
would be an RBM. The second limit, called the fluid limit, states that for the same
scaling parameter n and for a given total workload, W;(y/nt)/v/n — Wi(t) a fluid

process. The result is related to the strong law of large numbers.

Moreover, setups are affected by the two scalings. Setup times completely disap-
pear in the fluid limit and become incorporated into the drift of the diffusion process.
As shown in Coffman, Puhlaskii and Reiman (8], the drift of the diffusion process for

total workload level w is
s

r(w)

c (2.2)

where T(w) is the average cycle length. Since cycle length is effected by dynamic
cyclic policies the drift of the diffusion process is policy dependent. The variance of

the process is
N

ﬁ=2%@ﬁéx (2.3)
=1 M¢

and, thus, is only dependent on system parameters. Setup costs are also affected and

only appear as a scaled version K = K /n in the fluid limit.

Both the coupling of the diffusion and fluid processes by conditioning on the total
workload and the disappearance of setups are the distinguishing features of the HTAP
for applications. It'’s interpretation is intuitive: as utilization approaches one, work
in the system is large and setups are infrequent. Since the average demand rate is
equal to the average production rate, the total workload cannot change quickly, yet,

by focusing on one class and setting up for another, work in individual queues can
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shift rapidly between product classes. The shifting occurs an order of magnitude,
O(+/n), more quickly than the total workload. The nature of the fluctuation in W;(t)
is determined by which class is given attention and which is neglected, namely the
fluctuation is determined by the policy. Another consequence of this is that if the
machine is following a cyclic policy, many cycles will be completed before there is
significant change in total workload W(t). As there are many cycles for a given total
workload, we can find an average cost per cycle for a given workload. This allows
us to restate equation 2.1 in terms of W, a total workload process, and c(w), the
average cost for a given total workload (for future readability, we denote by W the
total workload process and by w an arbitrary feasible total workload). Suppressing
the notation illustrating the dependence of the cost on our policy, this is

T
lim il,- /0 (W (1))dt. (2.4)

T—o00

It is useful to view the control policy as consisting of two interrelated decisions: a
busy/idle policy and a dynamic lot-sizing policy that specifies what the server should
do while working. We begin by characterizing the busy/idle policy. The HTAP and the
well known relationship between queueing systems and production/inventory systems
(e.g., Morse (31]) imply that the system state of the heavy traffic control problem
is the one-dimensional total workload process W, which measures the total machine

"time needed to complete the current orders in queue. Furthermore, the tctal workload
process is directly affected by the server’s busy/idle policy. Hence, a reasonable form
of the optimal busy/idle policy is for the server to stay busy if W(t) > wp and to idle
if W(t) < wo, for the unspecified control parameter wp. The quantity we will often
be referred to as the idling threshold, and can be viewed as an aggregate base stock
level. The HTAP implies that the total workload process W is a diffusion process
on [wg, 00) under this busy/idle policy. Moreover, we can rewrite 2.4 in terms of the

steady state distibution, dW of the diffusion process and get

/: o(w)dW (w). (2.5)
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The calculation of ¢(w), the average cost per cycle as a function of total workload,
is central to the optimization of equation 2.4 and 2.5. The strong law of large numbers
embedded in the fluid limit allows ¢(w) to be tractably analyzed. This is the focus of
Chapter 3.

For the full problem, we wish to include due-dates in the HTAP calculation of ¢(w).
We assume that due-dates are incorporated in the fluid scaling and so f;(\/ﬁs) = fi(s)
is well defined and non-trivial. Thus, under a diffusion time scaling the density f;(ns)
converges to a point mass at s equal to zero and is zero elsewhere. This implies that
due-dates do not appear in the diffusion process: they have been isolated in the fluid
limit.

The question remains as to how due-dates impact the arrival process. Let us
initially assume that each class arrives with a deterministic due date lead time of f;
with fluid version f; = f,/ v/n. Under the fluid scalings the class ¢ workload arrival
process is deterministic and {iows in at rate p;. Thus at any dt instant of time p;dt
units of work due in f; time units are arriving to class i. We can generalize one
step and have class i orders arrive with due-date lead time f/ with probability p
and f” with probability 1 — p. Thus, since a fraction of work arriving to the fluid
system represents /n units of work in the unscaled process, by the strong law of large
numbers in the fluid scalings pp; units of class : work arrive with due-date lead time
f! and (1 — p)p; units of work arrive with due-date lead time f. The same reasoning
holds for any PMF due-date distribution and thus we can approximate any continuous
distribution as closely as we would like. Therefore, for general due-date distribution
fi(s) = fi(v/ns), fi(s)pidt units of work due in s units of time arrive at any instant
in the fluid liinit: we have a deterministic due-date arrival rate. In addition to the
scaling of f;, the accounting functions L; and G!(s, ¢) are also transformed in the fluid
limit. As before the bar superscript denotes fluid versions, and thus let L;(t) equal
Li(t)/+/n, let GI(s,t) be G!(\/ns,\/nt)//n and let [; be [;/\/n. In the next Chapter

we shall use this result to calculate ¢(w) and detail equation 2.4.



Chapter 3
Dynamic Cyclic Policies

The goal of this chapter is to determine the structure of ¢(w) and detail a method
‘or optimizing the heavy traffic version of the dynamic cyclic policy. We shall study
the structure in two steps: first we will study the behavior of W;(t) under a dynamic
cyclic policy and second we shall calculate the cost per cycle for a customized and
a standardized product. We will then examine a general method for optimizing the

heavy traffic policy and end with an interpretation of the original unscaled policy.

3.1 Cyclic Policies and W;

A cyclic policy is characterized by the lot size for each product (or equivalently, since
the analysis is deterministic, the length of time each product is served in a cycle).
Because idleness is only incurred when the total workload reaches a certain base
stock level, we assume that no idleness is incurred during a cycle. When W (t) = w,
a cyclic policy is best viewed as a closed N—dimensional deterministic path in the
constant workload hyperplane SN, w; = w; that is, the process traverses the same
path repeatedly, once per cycle.

Although a cyclic policy can be specified in many ways, we choose a particular
characterization that is convenient for analysis. A cyclic policy (or, equivalently, the
closed loop generated by the policy) will be defined by N + 1 quantities: the cycle

length T and the cycle center z¢ = (z§,...,z%). These control parameters are actually
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functions of the total workload w, but this dependence will be suppressed for improved
readability. The cycle length 7 is the length of time required to perform a cycle, and
x¢ is product i’s “center of fluctuation”, or equivalently, the average amount of this
product’s inventory over the course of a cycle. Because the transient effects associated
with initiating or temporarily moving a cycle vanish in the heavy traffic time scaling,

the cycle center z¢ can be placed anywhere in the constant workload hyperplane.

We begin by examining the deterministic behavior of the individual product work-
load levels W; under a cyclic policy when W(t) = w. For the system to remain
balanced, the amount of each product produced per cycle must equal the amount de-
manded, and hence each product must be produced a fraction p; of the time; we assume
that p equals one throughout this fluid analysis, so that the server is busy throughout
the cycle. Thus, for an arbitrary instantaneous total workload w and cycle time 7,
each product 7 must be serviced for p;7 units of time per cycle. Therefore, when
the machine is servicing product i, the work content in this product’s order queue is
augmented at rate p; and is serviced at rate one, and so W; decreases at the fixed rate
1 — p; for p;7 units of time per cycle. For the remaining (1 — p;)7 time units in the
cycle when product i is not being serviced, the workload queue is increasing at rate
pi. To uniquely determine the behavior of a cyclic policy, a reference starting point
also needs to be specified. We use z¢, product ’s average order level, as the reference

point. Readers are referred to Figure 3-1 for a reinforcement of these notions.

Thus, class i’s workload level fluctuates by p;(1 — p;)7 over the course of a cycle.
This implies that the maximum amount of work over the cycle is z§ + pi(1 — p;)7/2 and
the minimum is z§ — p;(1 — p;)7/2. Cycle center and cycle length are both parameters
which can be set by the policy. There are some restrictions: the sum of the cycle centers
must equal the total workload, i.e. YV, x5 = w; for a customized class i < N°® the
minimum amount of work over the cycle must be non-negative, z{ — p;i(1 —p;)7/2 > 0;
and if there are setup penalties then the cycle length must be greater than zero.

The idling threshold wp is a policy parameter which has no effect on the fluid
process and hence ¢(w). It only impacts the diffusion process W(t): it is the reflection

point of W. There are restrictions on wp only if there are no standardized goods in
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Figure 3-1: Workload fluctuation over a cycle.

the system, that is N* = 0. In this case, wo must be non-negative.

3.2 Cost per Cycle

Given the behavior of the dynamic cyclic policy, we can express the cost of a fluid
limit cycle in terms of parameters z¢ and 7. As the cost per cycle is composed of

individual product class costs and setup costs, we can reduce c(w) to

N¢ N [_r

c(w) = Zci(a:c,'r, w) + Z ci(zf,T,w) + 7‘ (3.1)

i=1 i=Nc+1

where c;(z°, 7, w) is the product i average cost rate for a cycle given a policy z¢ and
7 and total workload w.
Traditionally, the average cost per cycle is calculated by integrating the cost over
a production cycle and then dividing by the cycle length. Using the notation we have
developed, inventory holding and backorder costs would usually have an expression
like
(a°,7,w) = / haW(2) + bW (t)dt. (3.2)

We perform the same form of calculation for our due-date problem but “interchange

the order of integrations” as previously discussed. Instead of integrating over time
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in the cycle, we will integrate over orders filled over the cycle. We shall first cover

ci(z®, 7, w) for customized items and then for standardized ones.

3.2.1 Customized Goods

From the previous results, the amount of work in the system at the start of a cycle,
which we denote by z?, is equal to z{ — 7p;(1 — p;)/2. As stated before, the individual
workload W;(t) varies between z¢ —7p;(1—p;)/2 and z§ +7p;(1—p;)/2 and so z? is the
smallest amount of orders in the system over the course of a cycle. This work must
be stored in the system as orders with due-dates greater than L;(0), by definition the
earliest due-date in the system at time 0. The process G!(s,t) denotes the number of
goods at time t with due-date lead time s and thus is a more detailed measurement of

orlers than W;. Their relation at time zero is summarized by

i = G¥(s,0)ds. 3.3
Moreover, we have

Proposition 3.1 For s > L;(0), G/(s,0) = p:F¢(s) (where FS(s) is defined as 1 —

Fi(s)) and is 0 for s < L;(0). Additionally, .
M ® ‘F.C d . .4
%= o i (s)ds (3.4)

Proof: The orders at time ¢ with due-date lead time s is bounded by the maximum
amount of work which could have arrived with a due-date of ¢t + s. At time 0, the
maximum orders with lead time s is the recently arrived work plus work which arrived
r units in the past with a due-date of s+r. Notationally, this is [5° p; fi(s +r)dr which
is equal to p; F¥(s). Thus, G/(s,0) < p;F7(s). The only way G/(s,0) is strictly less
than p; F(s) would be if orders with due-dates higher than L;(0) were worked on.
Since an earliest due-date policy is being used and the rate of the production process
is 1, which is strictly greater than p; F%(s), then G!(s,t) at the next instant either

vanishes or is untouched by service and only affected by arrivals. At time t = 0,
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the machine has just switched out of producing class i. implying that the work above
L;(0) has not been touched and that there has been no opportunity for orders to
arrive with due-date helow L;(0~), the earliest due-date on hand the instant before
the switch in setup. Thus, G/(s,0) = p; Ff(s) for s > L;(0) and is 0 below. x} equal

to [£0) piF¢(s)ds follows as a consequence.

We can describe how G/(s,t) and L;(t) evolve over the course of the cycle. From
time ¢t = 0 until £ = 7(1 — p;) no services occur and only orders arrive to the queue.
Since the orders corresponding to the G/(L;(0),0) work age and so get closer to
their due-date, the earliest due-date in class ¢, L;(t), is monotonically decreasing for
t € (0,7(1 — p;)). From time ¢t = 7(1 — p;) until 7, L;(¢) is monotonically increasing
since the service rate is always greater than G7Y(s,t), that is, orders are being filled

faster than they can age.

The functions G!(s,t) and L;(t) are natural tools to understand the behavior of
the system over the course of a cycle. The interaction of G/(s,t) and L;(t), however,
is complex. In order to simplify our calculations, we will create another version of
G!(s,t) which will track its behavior. Let Gi(s,t) be the amount of work at time ¢
with due-date lead time s if the machine did no work on the product class fromt = 0
until T; Gi(s,t) is only defined for t € (0,7). Thus, Gi(s,t) = G!(s,t) for s > Li(t)
but is not necessarily 0 for s < L;(t). Gi(s,t) is useful for two reasons: first it is easy
to describe its behavior; second L;(t) can be found directly from it. The evolution of

Gi(s, t) is described by the following proposition:

Proposition 3.2 Fort € (0,7)
Gi(s,t) = pi(Ff(s) = Fe(s + t)) + Gl (s + t,0). (3.5)
Proof: By construction G;(s,t) evolves according to the differential equation

Gi(s,t + dt) = Gi(s + dt,t) + pifi(s). (3.6)
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That is, at the next dt instant of time the amount of work due s units in the future is
equal to the amount of work previously in the system with due-date lead time of s +dt
which has aged dt time units plus the amount of work with a due-date lead time of s
which has just arrived. Given that Gi(s,t) equals G!(s,t) at ¢ = 0, the proposition
follows as the solution to equation 3.6. 8

The evolution of G;(s,t) has some noticeable characteristics. For a lack of termin-
ology, we label some of the more prominent features for future reference. At time ¢ for
s > Li(0) — t, Gi(s,t) is the “steady state distribution” p; F¢(s). The point L;(0) — ¢
marks a barrier above which there is a surge of orders and, forgive the colloquial
simile, acts as a storm “front” of orders moving closer to its due-date. Below the
“front” orders are gradually building-up from 0. At the point &@; = &;/v/n, Gi(a;,t)
accumulates no more orders. Let’s call this the lowest due-date “line”: work corres-
ponding to G;(s,t) below the line does not grow, but drifts at the same level toward
or past its due-date.

We can calculate L;(t) from G;(s,t). When the machine is servicing other classes,
the order with the earliest due-date corresponds either to the earliest due-date request
just as the server switched out of product class i (i.e. L;(0) < &) or the request
with the due-date lead time of @; which just arrived after the machine switched out
(i.e. L;i(0) > @). Thus, for t € (0,7(1 — p;)), Li(t) equals min[a; — ¢, L;(0) — ¢).
For t € (7(1 — p;),7), the server should have completed ¢t — (1 — p;) units of work.
Since the machine works on earliest due-date first, work corresponding to G(s,t) for

s below L;(t) has been completed. Thus we have the following proposition,
Proposition 3.3 L;(t) is the smallest quantity which satisfies

t—1(l—pi) = /L'(t) Gi(s,t)ds. (3.7)

This uniquely determines Li(t).

Given L;(t) we can now state class i’s average inventory costs per cycle for a given
z¢ and 7. It is equal to the average of the earliness or tardiness costs associated with

orders as they are filled. Since the machine follows an earliest due-date policy, the
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holding or backorder time is either L;(t) or the due-date associated with the arrival if
that arrival had a due-date less than L;(t). If there are arrivals with due-dates s less
than L;(t), then the machine spends p; f;(s) fraction of effort on them and 1—p, F;(Li(t))

fraction of effort on products with due-date L,(t). Thus the cost for a class i good is

ci(zf, 7, w) =

_ _ ) ) (3.8)
L gy (L7 (1) + i [ (1 = peFALu(0) LH () + Jo pifi(s)sds]) .

Although this formulation is complex, the average cost per cycle is computable.
The HTAP has dramatically simplified the problem. In Teneketsis, an infinite dimen-
sional state space was needed to track the evolution of orders with due-dates over time.
The fluid limit has transformed order progression through this infinite dimensional
state space into G/(s,t). From a functional analysis point of view, the ideas are nearly
identical because G!(-,t) is a bounded function on a compact domain and so a point in
the infinite dimensional space of square integrabie functions L?. The fluid limit thus
approximates the evolution of orders in the system as a path in L?, parameterized
by the index ¢ in G/(-,t). Aithough this relationship is abstract, the path in L? is
easily made calculable by propositions 3.1 — 3.3. Moreover, by “reversing the order of
integration,” we are able to take advantage of this phenomena and translate G/(s,t)

into average cost per cycle.

3.2.2 Standardized Goods

The difficulty in directly translating the customized goods calculation to a standard-
ized one is that with customized goods we permanently assign an item to an order
before the order’s due-date is past while with standardized goods this is not necessar-
ily the case. For example, when there are few orders in the system and the machine
is about to switch out of producing a given class, the earliest due-date in the system
can be quite high (notationally, L;(7~) >> @;). In order to perform p;T units of work
during the cycle, the machine must keep busy and is forced to work on orders that

may be due far in the future. The customized good is then shelved and held on the
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shipping dock until its due-date. In the standardized case, this does not have to be
done. At 7, the instant before switching out of the product class, we would prefer
to make the product but assign it to the order that will arrive an instant later with
due-date of a;. That is, at the time of an order's due-date, we like to take the item
off the finished goods inventory shelf and then ship it. A standardized product is not

fixed to any given order.

Therefore, we need to keep track of the finished goods inventory over the course
of the cycle in addition to the number of orders (represented by Gi(s,t) and L;(t))
because we would like to have both orders and finished goods present at the same
time. Let H;(t) represent the amount of product ¢ work in finished goods inventory
at time ¢ (time is in the fluid scaling and WLOG we assume that at time ¢ = 0 the
server has just switched out of product i, as was done in the customized case). An
important aspect of H;(t) is that it must be positive as it represents actual goods in
inventory: backorders are in the form of unfulfilled orders in G'.'(S,t). Thus, we can
view total work to be done (i.e. work requested beyond our immediate capability to

service) at time ¢ as

Wit) = /L w)G,—(s,t)ds — Ai(t). (3.9)

Thus, product i work to be done is equal to the amount of work currently being

requested minus the work stored in inventory which could be assigned to the orders.

One can think of product and order flow somewhat differently for the standardized
case than customized one. Orders with due-dates and products enter the system like
a fluid as before. Orders enter a queue represented by Gi(s,t) and products enter
the finished goods inventory represented by H;(t). Orders “leave the system” when a
product is assigned to them. Products “leave the system” when assigned to orders. If
Li(t) is greater than zero and a product is assigned to the earliest due-date then the
order will sit in the shipping area and an earliness cost will be incurred. If L;(t) is
less than zero and a product is assigned, a tardiness cost is incurred. Products also

accumulate holding cost by sitting in inventory. Therefore, the cost per cycle is then
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equation 3.8 plus the holding cost due to finished goods H,(t) which is:
/' hi H(1)d1. (3.10)
0

We can now make a few quick statements about the behavior of the system. Since
the holding costs for goods sitting on the shipping dock are the same as those in the
inventory, there is no benefit for assigning goods to orders early. More flexibility is
created (and hence a better policy) by not assigning goods to orders if L;(t) is strictly
greater than zero and instead storing the products as finished goods inventory.

We then have L;(t) < 0 for all £. The rationale for this is simple: if for some
unexplainable reason L;(t) > 0 (for instance when a rare event suddenly shifts the
total workload level W;(#)) then we shall assign no product to orders and place them
in finished goods inventory. The earliest due-date lead time L;(¢) will then decrease
to zero and never again go higher. This is a transitory effect which will be washed
away after the repetition of several cycles and so can be ignored. From this we can
conclude that for s > 0,

Gi(s,t) = piF(s) (3.11)

for all . Moreover, f,,-(t) is less than zero only when there are no finished goods,
i.e. Hi(t) = 0. This is true because we allocate goods from inventory to prevent
backorders.

From this we get the useful relation that H;(t) is positive only if
Wit) < [ piFr(s)ds
0

and so
Bi(t) = (Wit = [ piFe(s)ds) (3.12)

It is important to notice that we already know the behavior of W;(t) from Chapter 3.1.
Thus, the holding cost portion of the cost per cycle is just a translation in terms of
workload (or equivalently cycle center z$) of the holding cost portion of ¢;(z¢, T, w) —

a cycle center translation by f5° p; F¥(s)ds.
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The tardiness portion of the cost per cycle is also a workload translation by
Js° pi F¥(s)ds of the SELSP costs. When there are backorder costs, the work in finished

goods inventory is zero. Thus by equation (3.9) and the relation in equation (3.11),

we have
-i = oo :!f st .
Wi(t) /L.-(z)C (s, t)ds (3.13)
which is
W t)—/° ~ds+/°° Fe(s)ds (3.14)
'( - zi(t)pt o P: N . .

Noting that tardiness only occurs if L;(t) is less than zero, we conclude that in the

backorder regions
_ - co  _ +
pli(t)= (Wit = [~ pifs(s)ds) (3.15)

Thus the time average backordering cost for a given total workload is

2N (W) - [ pFe(s)ds)” . (3.16)
PiT |Jr(1—-pi) 0

Again, this is a translation of the SELSP cost per cycle.

Therefore, the cost per cycle for standardized goods with due-dates is exactly the
same as in the SELSP with a cycle center shift by f;° p;F*(s)ds which is just the
average class i due-date lead time. Thus ¢;(z°, 7, w) is broken down into three regions
based on if there is 1) only holding, 2) only backordering or 3) mixed costs over the

cycle. The cost can be expressed as

[ ol —= € - a5 > 2oice)
ci(zf, T, w) = (b + hy) 1oz 4 hishi(p ] — 22)  if O € [pil; — xf £ T2l=2u)]
+2‘rz.:(l,:p,v)(piii - xf)z

| —blpili - z0) if pli — of < —1ed=e)
(3.17)
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3.3 Optimization

With an expression for average cost for each level of workload we can optimize over
our policy as determined by z¢, 7 and wo. The generality of the due-date distribution
prevents an exact solution. A numerical method, however, is possible. Policy optimiz-
ation must be performed on both the fluid and the diffusion levels. We first motivate
the nature of the optimization in each scaling and then suggest an algorithm for the

whole problem.

Under the fluid scalings, the cycle center z° can be optimized with respect to a
given cycle length 7 and total workload level w. This is a non-linear optimization
which we call the Cycle Center Optimization (CCO) program. It can be stated as

follows

(CCO) ,?&nn YN izt T, w) (3.18)
such that: YN z¢f=w (3.19)
z¢ > eillze)  fori=1,...,N°, (3.20)

The highly non-linear aspects of L; and thus ¢;(z°, 7, w) make this problem complex.

Nonetheless, the solution is a function of 7 and w and we denote it by z¢ (7, w).

In the diffusion scheme, the long run average cost of the entire problem is minim-
ized. Because of the presence of setup times, the cycle length T affects the drift of the
diffusion process. Thus the minimization of equation 2.4 reduces to a diffusion control
problem with parameters 7(w) and wp given that the optimal cycle center z°° (7, w) is
known. Although the drift of W(t) is unbounded, we assume that the dynamic pro-
gramming formulation applies (see Mandl [29]). Let V{(w) be the potential (relative
value) function and g be the gain. The associated Jacobi-Hamilton-Bellman equations

are

l;!iliiul)l{c(.‘l!c.(T,ID),T,‘lD) -9+ (-ﬁ - c) V'(w) + g;V"(w)} =0 forw < wp
(3.21)
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and

V'(w)=0 for w > wo. (3.22)

The minimization on the left hand side of equation 3.21 is important and we call it
the Cycle Length Optimization (CLO) program. Using the definition of average cost
per cycle, the srogram can be written as

al . K + sV’
(CLO)  min Y- ai(= (r,w), ) + 2+ V()

=1

2
—g—cV'(w)+ %—V”(w). (3.23)

The quantity A"+ sV’/(w) represents the effective cost of setups during a cycle given a
total workload level of w. As the drift, or the average rate of change, of the diffusion
process is affected by the percent of time wasted setting up, the rate of change of the
potential function, V’(w), measures the marginal cost of time for a workload level w.
We let S equal to A"+ sV'(w) be the aggregate form of setup penalty. It is important
to note that if we have a closed form solution to cost per cycle in terms of 7, w and
V'(w) we can solve for optimal 7 by differentiating equation (3.23) with respect to 7
and solving against zero.

Since problem (3.21) cannot be solved analytically, we pursue a numerical solu-
tion. The algorithm we propose implements these two levels of optimization. In
particular, the Markov chain approzimation technique developed by Kushner [25] is
employed. This method systematically discretizes both time and the state space, and
approximates a diffusion control problem by a control problem for a finite state Markov
chain. Weak convergence methods have been developed by Kushner and his colleagues
to verify that the controlled Markov chain (and its corresponding optimal cost) ap-
proximates arbitrarily closely the controlled diffusion process (and its corresponding
optimal cost); we refer readers to Kushner and Dupuis [26] for an up-to-date account
of this research area, and retain most of their notation for ease of reference.

Before describing the method, we introduce a slight modification to the heavy
traffic analysis to account for the fact that setup times do not vanish in the original
problem. The cycle length 7(w) consists of the time devoted to processing and the

time allocated to setups. In the fluid scaling, s//n units of time are spent setting
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up over the course of a cycle; although this quantity vanishes in the limit, we include
it in our analysis as an intended refinement. More speciiically, we replace 7(w) by
T(w) + s/\/n.

Let h denote the finite difference interval. which dictates how finely both the state
space and time are discretized. One can consider a sequence of controlled Markov
chains indexed by the interval h, and as the value of h becomes smaller the resulting
discrete time, finite state Markov chain described below becomes a better approxim-

ation of the controlled diffusion process.

To numerically solve (3.21), we need to confine the one-dimensional diffusion pro-
cess W to a bounded region. Since W resides on a halfline, the state space of the
controlled Markov chain will be {—M,—M + h.....Vi — h, M}, where M is a positive
integer multiple of h. For now let us fix the idling threshold wg (this parameter will
be optimized later on) such that jwp] < M and wp is an integer multiple of h. Hence,
the Markov chain actually resides in {wo,wo + h....,M — h, M}. The approximating

Markov chain has nonzero transition probabilities

o +2h(c — 2 +
PMw,w+ k) = (¢ = sTeptery) (3.24)
202 + 2h|c — i ,.I

and

PMw,w—h) = o+ 2h(c - Terivm)
20? +2h|c— ml

on the interior of the state space, and the time intervals, or interpolation intervals, are

(3.25)

of length
B2

Ath = — — .
o+ hic— T(w)+s//n

(3.26)

Two issues need to be addressed to obtain our approximating controlled Markov
chain: (i) for an ergodic cost problem, the interpolation interval At* must be inde-
pendent of the state w and control 7(w) [26, page 209], and (ii) the behavior of the
Markov chain at the boundary states w = M and w = wg. To deal with the first issue,

we define Q* = o2 + MaXy, r(w) hlc - Wl . Since the smallest nonzero value of
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T(w) is h, we let Q" = 0% + |ch — 5| , and define the new nonzero interior transition

probabilities
B 0% 4+ 2h(c— $ *
P"(w,w + h) — ( .)Q""‘(WH-’/;") . (3‘0,7)
. %+ 2h(c— > B
PMw,w—h) = ( -)QZ""H’N“) (3.28)
and .
_ o + hlc— 2
Phw,w)=1- ( | Qh’ ‘”’*’/U"I) , (3.29)
and the new interpolation interval
h2
Ath = o (3.30)

Now we consider the boundary states. A reflecting boundary is empioyed at the
idling threshold. However, the Markov chain approximation method assumes that
At* = 0 for a reflecting boundary state. Because the interpolation interval At* takes
on a value different than (3.30) at wo, this boundary state must be eliminated. We

define the transition probability [26, page 212]
P*(wo — hywo —h) =1 — P*(wo — h,wo — 2h) . (3.31)
We also impose a reflecting boundary at state Af. and define the transition probability
P*M —h,M —h)=1— P(M — h, M —2h) . (3.32)

Although the reflecting barrier at M is artificial in the sense that P(M,M — h)
would be positive if the boundary was chosen to be larger than M, the effect of
this approximation should be negligible if the value of M is sufficiently large, and
consequently visited sufficiently infrequently. In our implementation, the size of the
Markov chain is chosen so that a further increase in M does not change the optimal

solution (7(w),wp). In summary, our approximating Markov chain has state space
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{wo + h.wo + 2h,...,M — 2h, M — h}, interpolation interval defined by (3.30), and
nonzero transition probabilities P*(w,y) defined by (3.31)-(3.32) and Ph(w,y) =
Ph(w,y) otherwise, where P*(w,y) are defined in equations (3.27)-(3.29).

The dynamic programming optimality equation for the controlled Markov chain is

given by [26, eqn 5.3, page 204]
V(w) =Y PHw,y)V(y) + (c(z". 7, w) — g) At*, (3.33)
v

and the Markov chain control problem can be solved using the following policy im-
provement algorithm. First, we choose the initial policy: 7(w) = w — wp for w > wp
and arbitrary wo. In the evaluation step of the algorithm, a generic policy (7(w), wo)
is evaluated (that is, V(w) and g are found) recursively. Since the Markov chain
is a birth-death process, the stationary probability distribution ,, for w € {-M +
hy...,M —h}is

{

0 forw < wo+h

wo—h P"(kk-h

k2wl PR (k= k) forw>we+h , (3.34)

Ty = { Wu,o_hn

-h —h Ph(kk—h))"!
\ (1 + 2N f;m.;r}m) forw=wo+h

and the gain is
wo—h

g= Y muc(z¥, 7(w) + s/v/n,w). (3.35)

w=—-N+h
We set V(—M) =0, so that V(w) = 0 for w < wo, by equation (3.22). For w > wy,
equation (3.33) implies that V(w + k) can be calculated recursively by

2", 7(w), w) + (1 = P*(w, w))V(w) — PP(w,w — h)V(w — h)

_g9—¢
Viw+h) = w0 + 1)

.

(3.36)

In the policy improvement step we first solve for the cycle length 7(w) and then
for the idling threshold wo. The cycle length is determined by minimizing the right
side of (3.33) with respect to 7(w) > 0.
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Therefore, with V(w) and g determined an improvement iteration on 7 can be
done using equation 3.21 and on wp by finding the threshold which minimizes the gain

g. The algorithm ends when 7 and wq converge.

When there is no setup time, however, the diffusion control problem is trivial.
Although the cycle length T and cycle center z° must still be optimized for each total
workload level, they can be done individually without the need to refer to or update
the potential funciion V’(w). As the steady state distribution of the total workload

process W(t) is exponential, the idling threshold can be found by

[s <]

wo = argmi 2 - F(u-vyg 3.37
o = argmin,, c(w)aze w (3.37)

w'

where ¢ and o? are the parameters for the RBM W(t).

3.4 Proposed Policies

The optimal cyclic policy derived under the heavy traffic limits needs to be unscaled
to be implemented. The translation to an unnormalized policy has much room for
interpretation. The difficulty lies in the dimensionality of the problem. Under the fluid
scalings the individual workload processes jointly form a 1-dimensional deterministic
path in a constant total workload hyperplane. It is a closed loop specified by cycle
center z¢° and cycle length 7. The heavy traffic policy defines a 1-dimensional loop
for every value of the total workload, another 1-dimensional process. This creates a
2-dimensional structure from which we need to infer how to control the machine over
the N dimensions of possible queue length values in the unnormalized system.

We propose an intuitive policy. The heavy traffic theory finds a minimum level
of work experienced by an individual queue over the course of a cycle for every total
workload level. We suggest the the machine continue production on the current class
until this minimum amount of orders is reached, then begin setup for the next class in
the cycle and idle when the total workload level has fallen to the idling threshold. This

can be regarded as a dynamic order up to policy. In the unscaled system parameters,
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the dynamic order up to level can be stated as a switch from the product class : when

the unscaled order level I; satisfies

-1 _1 1__ ;
L < Vapi |z Z:""I) _17-—) )

z8 L (3.38)

where z¢"(w) and 7(w) are determined from the optimization detailed in section

Chapter 3.5 and idle when
N
Z[,ti_ll.' = lvoﬁ. (339)

i=1

More complicated policies can be created. The 1-dimensional workload path in
the fluid limit additionally specifies the relative evolution of the individual workload
processes. For example, the heavy traffic theory predicts that when a product has
reached its minimum level and the setup for the next class begins, workload of the
product class being setup is z¢* + 7pi(1 — p;)/2. Thus for any given total workload,
the HTAP predicts that a machine following a dynamic cyclic policy would have a
fixed range of individual workload fluctuations. This can be thought of as a workload
“confidence interval.” Such intervals for three workloads in a hypothetical five preduct
case are given in Figure 3-2. This type of information can be used to determine
when random events throw the cycle off course in a manner not predicted by the
HTAP’s O(y/n) fluid scaling. The dynamic cyclic approach can thus give “red flags”
or warnings for unusual surges in demand or slow-downs in machine processing. A
more complicated policy using this information would be able to specify when to skip
product classes in the cycle or when to jump to a product class that has unusually high

number of orders. Thus, the HTAP is sufficiently robust to suggest more complicated

scheduling techniques.
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Total Workload: 10
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Figure 3-2: Hypothetical Workload Fluctuation “Confidence Intervals.”



Chapter 4

Deterministic Due-Dates

In this chapter we investigate systems with deterministic due-dates. By explicitly
stating a deterministic due-date lead time distribution, we are able to write a closed
form expression for the cost per cycle (equation 3.1). In addition we are able to
state a quick method for determining optimal cycle center z°* and provide a formulaic
solution. With this, cycle length 7 is found in terms of V’(w) and total workload w.
The diffusion control algorithm must still be performed. A numerical study is done to
test our proposed policies. Lastly, we discuss how our proposed policy changes over

the range of systems outlined in the Literature Review.

4.1 Cost per Cycle

Let each product class i have a deterministic due-date of f;. Under the fluid scalings

the due-date lead time is f; = f;//n. The cumulative distribution function is then

Ff(s):{ 0 ifs>ji (4.1)
1 ifSSf,'

4.1.1 Standardized Product Classes

From the discussion in Chapter 3.4, the average cost per cycle for a class i standardized

good is not difficult to determine. According to equation (3.17), for a given cycle center
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x¢, cycle length T and total workload level w the cost per cycle is
( 7 c . F [ Tpi(l—p,
hi(pifi — z) if pifi — xg > Tdizel

(bi + hi)Teelized 4 bty o 06y if 0 € [pifi — 28 £ T2072)

+2Tz;(1tp.)(9i.f_‘i - xf)2

ci(zf,T,w) = m

L _bi(Pi.fi - xf) if p.'f—',' -5 < _fm!lz—p,)
(4.2)

since the mean [; of the deterministic due-date is f;. For ease of reference, if the
parameters are such that p;f; — z¢ > 7p;(1 — p;)/2 , we call product 7 in condition
1. Similarly, we call product i in condition 2if 0 € [p;f; — z{ £ 7pi(1 — p;)/2] and in
condition 3 if p; f; — x§ < —7pi(1 — pi)/2.

4.1.2 Customized Product Classes

To find the optimal cost per cycle for a customized product, we must determine the

behavior of Gi(s,t), Li(t) and G!(s,t) given z¢ and 7. By Proposition 3.1, we have

i
T = ‘/;',;(0) pids. (4.3)
Solving for L;(0) we get
Li(0) = fi — x}/p:. (4.4)

Therefore, L;(0) has a range of [—o0, f;] since for customized products z! is greater
than or equal to zero. This makes intuitive sense: the highest earliest due-date is f;
since no orders can arrive with larger due-dates. From Proposition 3.1 we additionally

have

(4.5)
0 otherwise

G.’(S,O) - { pi if s € (fl - ‘t:/pis f;) .
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From Proposition 3.2, we have

0 ifss_f—,'—.’l":/pg—t
Gi(s,t)=9 pi  if fi—aifpi—t<s<fi. (4.6)
0 iffi<s

We can solve for L;(t) by using Proposition 3.3. We get for ¢ € (7(1 — p;), T)

L.(t)
t—1(1—pi) = _/j;'—;:‘/p, pids, (4.7)
and so
Li(t) = fi—z}/pi — (1 = pi)7 + (1 — pi)(t — 7(1 = pi))/ pi- (4.8)

As (1 —p;)(t —7(1 = p;))/pi — (1 - p;)7 is less than or equal to zero, L;(t) is bounded
above by f;. This again corresponds to our intuition that the earliest due-date lead
time can at most be f;. It is also important to note that L;(t) is a function of our

policy variable z{ in the form of z?.

With L;(t) we can find the average cost per cycle from equation 3.8. Since no
orders arrive with due-date lead times L;(t) less than f;, we can rewrite equation (3.8)

as

ci(zf, T, w) = l/f;-p.-) (b,-Z,.‘(t) + h,-L;-*(t)) dt. (4.9)

T

The cost per cycle is broken down into three cases depending on if there are only late
products assigned to orders, only early products or both during the course of the cycle.
If L(t) is always greater than zero over the course of the cycle, orders are always filled

early and so equation (4.9) implies

st rw) = 2he [ [fiatfpi= (L= pir + (1= p(t = 701 = )/ o] di.
(4.10)
This simplifies to

_zl+7pi(l - pi)/2

c',(zc, T, w) = hiPi [f; P

] (4.11)
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or just

ci(zf, T,w) = hip; lf, - %‘c—] . (4.12)

This is remarkably similar to the results from standard queueing theory where one
would expect the average cost to be the unit holding cost times the average queue
length. This likeness also makes intuitive sense: it is an application of Little’s law
which is a statement about the relationship between queue length and waiting time.
In our notation, Little’s Law states that given the utilization p; is the arrival rate,
fi — x¢/p; is the average waiting time then their product is the number in queue.
Thus, by exchanging the order of integration. we have effectively re-proved Little's
Law.

Similarly, if products are always late or L;(t) is always less than 0 for all ¢ € {0, 7],

then the cost is

ci(zf, T, w) = bip; [i - fz] . (4.13)

If orders are both late and early over the cycle and so L;(t) is both positive and

negative over the cycle then the average cost per cycle is

(fi" ;,")2 1

ci(zf,T,w) = bip; [m - i %,:) +57(1 = Pi)]

. (4.14)
(fi-;")z 1/ F ¢ 1
+hipi | matey +3(fi — 20 +sT(1—pi)| -
In summary, for customized products the average cost per cycle is
( hi(pifi — z£) for condition 1
b; +h; ou(l=pi) 4 hi=b, fi — x$ for condition 2
ci(zf, T w) = { ( )% 7 (hi) ) (4.15)

taatice (pifi = =0)?

‘ —bi(pi fi — z¢) for condition 3

This leads to a remarkable result: equations (4.2) and (4.15) imply that for the de-

terministic due-date case the cost structure for customized and standardized products
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are ezactly the same. The only difference between the two types is the restriction that
for customized goods the cycle center z{ cannot be less than p;(1 — p;)7/2. Due-dates
have transformed customized products into quasi-standardized ones. We shall discuss

the interpretation of this result later in Chapter 4.4.

4.2 Optimization

With an explicit formulation of average cost per cycle we can optimize the system.
First, we suggest a form of solution to the CCO and CLO programs and secondly we

detail further an algorithm for use in the diffusion control problem.

4.2.1 Cycle Center Optimization

We begin by showing the existence of a cost-minimizing cycle center z° for a given total
workload w and cycle length 7. Note that the cost function ¢(7, z¢, w) is differentiable

with respect to z¢ and its derivative is continuous. If one ignores the constant workload

N _c
=i T§

constraint ) = w, for fixed 7 the cost function in terms of z°¢ is piecewise-
quadratic with linear edges; its second derivative is a nonnegative step function. Thus
¢(7, 2%, w) is convex and the restriction of the cost function to the constant workload
hyperplane determined by w is also convex. This fact implies the existence of a

solution to the constrained minimization problem.

The major complication in solving the CCO program is the boundary conditions
in equation 3.20. We exploit the structure of the objective function to determine
the structure of z¢" and to find which z¢* are binding with respect to the inequality
constraints. As per Bertsekas [3], the Lagrangian function of the CCO program with
fixed cycle length 7 and total workload level w is

L(z. M\ pu) = c(zf, T, w) + A (i z — w) + § p,-(M —-z5) . (4.16)

=1 J=1 2

The Kuhn-Tucker necessary conditions state that for local minimurn z¢* there exists
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lagrangian multipliers A* and yj, for j = 1,..., N¢, such that

VeeL(zF, X% p5") = 0 (4.17)
u; >0 (4.18)
g, = 0 Vjeer (4.19)

where O is the set of non-binding cycle centers, i.e. products j such that :c§° >
Tp;(1—p;)/2. We suppress the dependence of ©° on 7 and w for increased readability.
For additional ease of reference, we categorize the binding products by their condition.
We let ©*! be the set of product classes with binding cycle centers and in condition
1 and ©2 be the set of binding product classes in condition 2 (as the workload must
reach zero for a product class to be binding and f; is non-negative, no binding product
class can be in condition 3). The product classes with binding cycle centers can be
considered to be “maxed-out” because no more work can be performed on that product
class. Equation (4.17) implies that for each component i < N° of the gradient of the

Lagrangian function

a

aa:;_:c,-(:z: y TW + A —p; =0 (4.20)
and for 1 > N°¢
a e _
a:"::;c,-(:c ,Tw)+A=0. (4.21)

Thus, for i € ©*(7,w) and : < N°¢

d

a:”_‘;c,-(:::':.,'r,w) +A2=0. (4.22)

Therefore the derivatives of both the average cost per cycle for non-binding stand-
ardized and customized products satisfy an identical Kuhn-Tucker equation. We use
this similarity of the cost structure between non-binding customized and standardized
goods to determine some properties about the optimal solution. For this discussion we
need to denote what is the cheapest non-binding product as it will play an important

role. Let 6} be the cheapest tardiness cost product in ©*(7, w) and 6} be the cheapest
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earliness cost product. For ease of notation let 6* equal 8} if w > YN, pif; and 6;,
otherwise.

We begin by re-deriving equations (4.21) and (4.22) so as to remove A. The total
workload constraint can be used to eliminate one of the non-binding variables and
then to express the earliness and tardiness costs of the non-binding product classes as
a piecewise polynomial function of |©*| — 1 variables, where |- | denotes the cardinality
of a set. The non-binding cycle centers must sum to @ = w — Y ;¢e- TPi(1 — pi)/2 by
definition of the binding constraints. Thus for any j € ©* the cost per cycle due to

non-binding product classes is

Z ci(zf, r,w) = }: ci(zf, T, w) + ¢j(w — Z z$, T, w). (4.23)

ico* ie{0*\} i€{6°\s}
Over this reduced hyperplane, the polynomial order of the |©*| — 1 variables fluctuates
between one and two depending on whether |p;f; — z¢| > &%&1 or |pifi — z¢| <
ﬁ(-'{—"l)-, respectively. For the gradient with respect to the non-binding cycle centers
to be equal to zero, each of the |©@*| — 1 variables must be quadratic. Consequently, at
the optimal z¢, at least |©*| — 1 of the ¢;(T, z{, w)’s are of order two, with the remaining
component possibly being linear. To see this, suppose that some of ¢;(z{, T, w)’s are
not of order two, and let j denote the index of such a term. If we eliminate z;, the

gradient equation can then be written as

Vze Z ci(zé, T,w) + ¢ (113— E a:f,r,w)]:O.

ie{0°\;} i€{©°\s}

This equation will have a solution only if the remaining N — 1 ¢;(z§, T, w)’s are quad-

ratic.

The following proposition greatly simplifies our analysis.

Proposition 4.1 If there are only |©*| — 1 quadratic c;(z¢,T,w) terms in

Y c(zf, T, w)

1€0°
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at the optimal z¢, then the linear term must be c-(x§., 7, w).

Proof: This fact is most easily seen by examining the function c¢;(z{,7,w) +
coo(25., T, w), where 1 € O, ¢; is linear and cg- is quadratic. By (4.2) and (4.15), the

sum is

hilpifi — 28)* + bilpi fi — 18)™ + (boe + o) 2elimoen) oy erdher (. o — 2.2
+59‘T'bﬂ(po. foe — 25.).
(4.24)
The tradeoff between z{ and z§. can be examined by looking at this sum along the
line z{ + z§. = w' (with w' arbitrary). Substituting w’ — z§. for z{ into equation (4.24)

and taking the derivative with respect to zj. yields

_ hao - bgo bo. + hao

2 7pe(1—poe)
_ hao - boo boo + hao

2 Tpg+(1 — pg+)

+h; (po- for — £5.) if pifi + 25 > w',  (4.25)

—b; (poofoo — .l‘z.) if p.'f.' + l‘g. <w'. (426)

Since the quadratic region of z§. is restricted to the region |pgs fpe — 25| < Ml{—p’ﬂ,
it follows that the quantity in (4.25) is less than or equal to hg. — h;, and the quantity
in (4.26) is greater than or equal to b; — bg.. Hence. neither (4.25) nor (4.26) can equal
zero unless h; equals hg. for p; f; + zg. > w' or b; equals bg. for pifi + zf. < w'. If the

holding or backorder costs are equal, then the optimal z§. satisfies |pge foo — 5.
29:112"_99;1, resulting in multiple optimal solutions along the line z§ + z§. = ' with
|pe= for — 5| > 22;(‘5-_”&1 and |p; f; — x| > l%'—”‘l. Although many of these solutions
lie in the region where products i and N are linear. one of the optimal solutions occurs
when at least N — 1 of the cost components are quadratic (or on the border between
quadratic and linear). Hence, if there is a linear cost component at the optimal z¢, it
will be ¢go (7, z5., w). 8

As a consequence, the optimal cycle center, or average amount of orders per cycle,
for product i € {©* \ 6°} is restricted to the region [p;f; — Tp;(1 — p;)/2,p:i fi +
7pi(1 — pi)/2], whereas product 8*’s cycle center can be arbitrarily far from pge foe.

Intuitively, this fact suggests that product 6*, which is the least cost product by our
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indexing convention, is the product that will hold the excess or deficit amounts of work

when the total workload w fluctuates far from ¥; p; fi.

We now use Proposition 4.1 to find the optimal cycle center z¢. Without loss of
generality, the workload constraint is used to eliminate z§. from the cost function, so
that 2. = w — Y V7! z¢. To find the optimal center, we take the gradient of the right

hand side of (4.23) and set it equal to zero:

Ve[ Y cilal,mw)tepe(d— Y, zf,T,w)+ -IE] = 0. (4.27)

ie(ene*) ie{em\0%) T
At this point, we do not know whether cg«(z5., 7, w) is linear or quadratic. Let z¢ be
the (|©*| — 1)-dimensional vector that solves (4.27) under the assumption that all O~
of the ¢;(z¢, 7,w)’s are quadratic in z{. Taking the (J©*| — 1)-dimensional gradient, we
find that z¢ satisfies (w and 7 multiply their vectors component-wise in the analysis

below)

1 = - N s 0 —. - li)
SA(f -2 -m— Zie f’r fim @~ (4.28)
where
[ 0 Lo 1
R bge + hge ) )
A = bi+h; —_— | S, 4.2
pi(1—pi) + PO'(I - PO') . . ( 9)
0 1 1
f = 1|pfil, (4.30)
n o= L’s‘.;_'h _ bge—hpe °;" = |, (4.31)
— bge+hge
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Thus,

= f—raly = (X pifi —9)A e, (4.33)
1€O*

where the matrix elements of A~! are

2:(1=pi) p; (1-0;)

bi+hi b,+h, . .
o = — = for 1#3, and (4.34)
! Zlee‘ mb,l.g.h?
1—
bithi Tieen p‘b,:.—h‘:

If |pge for — (0 — Tigqomrory T5)| < Z2e2(1220%) then . (z§., 7, w) is indeed quadratic
and z¢ determines the optimal center: z¢ = z¢ for i € {0*\8*} and z§. = - N z5.
If |pge for — (0 — Tie{or\o+) TF)| > 29;(12-_100:)., we must solve the multivariate gradient
equation with the linear form of ce(z§., 7, w). With this substitution, equation (4.27)
decomposes into univariate expressions of the form

hi — b b; + h; s

- 2 + -,-p'.(l — pi)(pifi — :rf) - hO' = 0 (436)

if Pa-fo- - (lb - Zie{eu\oo} .'Z;f) > oge(1-pge) 12_" > and

hi—b | bith
LT

5 T Tl = gy Pifi — )+ bee =0 (4.37)

if poe foo —(W—Tic(oo\00) TF) < __Tﬁe:le:ﬂ:).. Putting the results from (4.33) and (4.36)-

(4.37) together, we obtain a complete expression for the optimal cycle center. For
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1 € {0\ 6"} we have

p, fi -

. pifi —TQi* "M —

\

where q; is the ith row of A~!. The cheapest product class cycle center is

pifi —

802 [k 1 )

bi+h

if (Lico Pifi —-—w)—- } 5> "'Pg‘!;—pg-)

ie{01\6*

(Z;ee- Ptft
if (Tico- pifi — ) —

w)a; -y

}.’Ec‘ < Tpao!l—pgo!
el - 2

Lic{o\o*

Tpi(1-pi) [Q,_—_h_,_ _ bo']

bi+h, 2

if (Cicon ,f).'f,' —w) . rp,-glz—pe.)

— Yie(or\or} T <

For i € {©"! U ©*%}, we have

c® Tpi(1 — pi)
T =

For completeness of notation, we denote by

and

apn=— Y. a,
i€e{©°\6*}

agey2 =1— Z oY, -
i€{O°\6*}

Thus, we have the following algebraic simplification for all : € ©*

a;i"

and

Z;ee (

) 2y (1-p,)
Zjeer =, 5,

b, +h,

) p;(1-p))
2(bi + hy) ) ’

pi(l—pi
v bi+h;
0:72— Z p!l—p)'
JEO® Th th,

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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Thus. all but the cheapest earliness or tardiness product classes are in condition 2.
We use the condition of the cheapest product to categorize the total feasible workload
levels by dividing them into 3 regions: region I where the cheapest product is in
condition 1, region II where the cheapest product is in condition 2 and region III

where the cheapest product is in condition 3.

It is important to note that when a product class i is binding yet its Lagrangian
multiplier y; is zero, the inclusion or absence of ¢ in ©* does not effect the other
product classes’ cycle centers. This can be seen by setting the borderline class’s
cycle center as derived from equation (4.38) equal to 7p;(1 — p;)/2 and subsequent
algebraic manipulations. In addition, on the border between regions Il and I or III
the cycle center does not change if using any of the two corresponding expressions in

equation (4.38). We can therefore conclude that cycle center is a continuous function

of cycle length 7.

With these expressions for cycle center, we can restate the average cost per cycle in
terms of cycle length 7 and total workload level w. If we let we. denote 3~ ;cq- p; fi—w

then for 2 € ©*\ ™ cost per cycle is

(b + hi)eiGzed 4 2plioed [bichs 4 piu] [Bizhe 4 hge]

. N Tei(1-0pi) T(bithi) (.
(bl +ht) 2 8 £ + 29'.(1_,,'-)(&'71)2

arw) =) Tatia(em) (@) (wes + 7 Tjger 2078 II

+52th (wee + T T jg0e e.d%-_f'd)2(a..72)2

27pi(1~-pi)

(4.45)

+ASb (T oy + (wes + T g0 220721 )ay)

| (b4 b)) 4 o [och _p, ] [ach g,
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For the cheapest product the cost per cycle is

ho-(we- + 7L ¢er & L y I
—hoeT Cicon\or _bL+:-h_pl (o5t + he

(bo- +ha_)fpe'(l-t’o°) + T(ba'+ho-)(ao‘7l)2

2pge(1—pge)
+berthe_ (0 Y(@peya)(wor + T X jger 20522L) 1

pge(1—ppe)

+grethe—(wer + T jger 252 )2 (aps)?

coe (T, W) = ¢

hge — bge (1 = p:
J.,—o("'aa“h + (wee +7 Y ﬂ-3-'0—1))09-’72)
2 iges  °
—bps (wer + T Tjg0r 22521) 11
L +bac1’ Ziee‘\O' p_.b(.l-f-—_h‘:.l [é’;—h" hd bgo])

(4.46)
The maxed-out product classes can either be in condition I or in condition 2. Thus

for i € {©*! U ©*?} the cost per cycle is

hi(pi fi — 2472 for i € O
ci(r,w) = L (447
21-,,,(1_,, )(ptfl, - b (Ptfn ﬂl?ﬂ) for : € @'2

- 4.2.2 Cycle Length Optimization

Given the form of the cost per cycle in terms of 7 and w, we can find an expression
for the optimal cycle length 7 by differentiating equation 3.23 with respect to 7 and
solving against zero. The optimal cycle length is expressed in terms of basic system
parameters, the set of binding products and the eflective sctup cost per cycle S =
K — sV'(W). Thus ©*, ©*! and ©*2 are all functions of S and w. Using (4.45) and
(4.46), if we let

. 2
o =y Bithdadl=p) pll-p) (b,-—z-h; 4 ,,a,) (4.48)

ico*\0* 8 2(b; + k)

T L T

i€0°! i€cO*?

- pi)
PE P (hee + ),
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- (i fi)2(bi + h)
& = igz 50— p)) (4.49)

. (bi + hi)pi(1 — pi) b; + h; 2, hi—=b;
= i i 4.50)
R migen st
b; + h; 1-—
+ ( oy 2) (Z pJ( 2 pJ))2 oy 2(2 pJ p]
t(l - ) jgoer J¢eo --
pi(l — pi) P:(l pi)
- hi——— + bj———
6;9-1 2 ;ez:e-ﬁ
. bi + hi 2
= —— " (a;72)%, (4.51
“ .-g';‘- 2pi(1 - P.‘)( ™) )
o° (bi + hi)pi(1 — pi)  pi(l — pi) [bi — ks )2
_ _ — bge 4.52
? ieez'\o- 8 2(bi + hi) 2 ’ (4.52)
€Ol "' 1€0*2
the optimal cycle length can be stated as
4 SZ£9. I
1
T. = { \/S+£ (Z,egft p.f._w)2+€e° II . (4-53)
S+€2°
ot I11

Using (4.43) and (4.44), we additionally have the following simplifications

. 1
€ = — (4.54)
T e BT
and
. pi(l = p;) (bi + hi)? — (b — h;)?
¢ - % [ e . (4.55)

pi(l = pi) [ Lieos(bj — hj)g‘bi,%:"l ’
8(b; + hi)

1-
Zjee- ,,b +hp
2 )




4.2. OPTIMIZATION 31

(1-p,) by=h) py{1-p;)
(21¢ . gJ__‘_’J__) ZJEG‘ 2 b,+h, (E pJ(l p] )

- —»,)
—Zh”' p,+2b/),) pi)
'eecl 169'2 -
which is
ey(1-p,)
o il = pi) gy 4 1 [Siee 450 — )] 4.56
SR P> Thith ity =21 (4.56)
169' Zjee‘ b, +h,
(1-p,)\2 b,—h, p,(1=
+(Ej‘e° 2brnl)  Tieo M4 (Z p;i(l —-p;))
1=5,) )
2icor G5 Tieo i \ieer
i(1 — pi i(1 = pi
_ s nlp) el o pd)
ieeol hnd 16902 -
_ Tico: Ticor —b(;T'j'lL’zb%’:-(bb + hihj — hib; — bihj + 2b;h; + 2bjh;)
- (1=p,)
8% eon Elbjﬁpf‘
(1-p,))? b (1~
(Sigor 252)"  Tieor 25552 (Z pi(l ' )
(12 (1-
2% jeor ,,b( +h‘: : Ljeor ﬂ'ﬁ;ﬁ’l jges
pi(1 — pi) P:(l Pn)
hi————— bi—————
P P M

;ee'l ,eeoz
Although this expression looks complicated, it gives insights into how the policy be-
haves when either all of the earliness costs or tardiness costs are equal. That is, if

b; = b; for all + and j in O then

2
(Ejee° pi(l — Pj)) pi(l — p;) pi(1 — p;)
& = — - S oA Y b (4.57)
82,1'69' Eé%:‘:ﬁ i€O*! 2 i€O*? 2
-0;)\2 b=h, p,(1=p,)
(Tiger 252)"  Tjeor 255000 (Z pi(1 - p; )

) 2y(1—p,) - , 2,(1-p;)
2 cer b, +h, Yjeor by+h, iger

+

which, ignoring the terms created by the binding variables, is rather simple. Interest-

ingly, the expression is identical if h; = h; for all i and j in ©* instead of the tardiness

costs.

Therefore in order to use the algorithm detailed in section 4.5, we need to be able
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to find 7" and z¢° for a given w and for varying V’(w). Thus. it is necessary to find ©~
as a function of S = K — sV'(w) and w (for clarity we will re-introduce the notation
specifying the dependence of O~ on S for the remainder of this section). We suggest
an algorithm which constructs ©=(S) by finding an initial set for S equal to zero and
then tracks how the set evolves as S increases. Qur task is complicated by two facts:
the first that as S increases the optimal solution jumps in region and the second that
there is no guarantee that when a product class becomes binding and leaves O7(.S) it
does not re-enter for larger S. We simplify our calculations of ©(S) by including the
type of region the cycle center and cycle length ii.gly in our accounting. Let ©/(S)
denote O(S) when the cycle ceater and cycle length satisfy the region I conditions,
©!1(S) for the region II conditions and ©'//(S) for the third region. The algorithm is
hased on the following observations:

1. Cycle center z¢° and cycle length T are continuous functions of effective setup
cost per cycle S. For a given w and V’(w), the objective function in the CLO program
is continuous with continuous derivatives with respect to cycle length v (7 > 0), cycle
center z¢ and effective setup cost per cycle S. In addition, the boundary conditions
are also continuous with continuous derivatives with respect to z¢, 7 and S. Thus, the
Kuhn-Tucker necessary optimality conditions change continuously with S. The only
way the optimal z¢* and 7* could be discontinuous with respect to an increase in S is
if there were multiple optimal solutions for a given S and w. This is not the case since
the objective function is convex with respect to cycle center and cycle length and has
the unique optimal solution presented in equations 4.38 and 4.53.

2. Optimal cycle length T is monotonically increasing with respect to S. This is
easily seen from equation 4.53 and the first observation implying the continuity of 7*
during changes of binding products ©* and changes in region.

3. If product class 1 is not in ©%, then for ©' = ©* U {i} the cycle center ' and
cycle length 7' calculated with ©' satisfy z&' < 7'p;(1 — p;)/2. This follows from the

construction of ©~.

4. If " and S” are such that S’ < S” and both their respective optimal cycle
lengths and cycle centers satisfy region I (III) conditions then ©*1(S") c ©*1(S")
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(©11(5"y c ©*111(S")). We show this by inducting on the cheapest product classes.
Consider the region [ case: let 6} be the first cheapest product to become binding in
region | at effective setup cost S* with cycle length 7!. All other classes with smaller
earliness costs must be binding in condition 2. The instant product 8§} becomes binding

the cycle center has reached the positivity boundary and so

- P oi(1—p: bi—hi+2h,
w — Zieeol(sl)\all. [p,ft — P-(zl -pi) T h]
) (4.58)
Tlp,(1-p.) P\ " "Pa} 0
= Licos) — - — T =0.

In order for the minimum work experienced over the cycle, ¢ — 7p;(1 — p;)/2, to reach

the boundary as 7 increased, its derivative must be negative, that is

(1l —pi (1 — p;) bi — hi+2h 1-
3 P,(l2 p;)_l_ 3 p.(l2 pi) ks o Payl . Pt ) <0. (450)
i€@%3(S1) ie@1(S1)\0} i+ i

For larger S, the cheaper binding condition 2 product classes will not re-enter in region

1 since they can only re-enter in condition 2 as T will be larger. Additional product
bi—hi+2h,

s+ < 1 equation 4.59 will become more

classes might leave ©@*/(S') but since
negative. This implies that equation 4.58 will remain negative for larger 7, and so 6}
cannot re-enter ©*/. The ith induction on the cheapest product class results in an
" argument identical to the previous one where equations 4.58 and 4.59 are modified by
replacing 0} with 6} and S* with S*.

The other more expensive classes which become binding in region I also cannot

re-enter ©*/. Since hgg (sny > hgg(s), from the above induction we have

pi(1 — pi) bi — hi + 2 + hox(s) < pi(1 — pi) bi — hi + 2 + hgs (s
2 b; + h; 2 b; + h; '

(4.60)

Therefore, the more expensive non-binding product classes’ cycle centers are lower for
larger S. Since cycle length 7 increases with S, if the cycle center becomes less than
7pi(1 — pi)/2, and hence binding, it will remain binding.

The same argument holds for region III.

5. If S is such that optimal cycle length and cycle centers imply a shift from
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region I1 to region I (I1I), then ©*1(S*) = ©*/1(§-) (©*111(S*+) = ©*!1(5~)). Since
cycle centers and cycle length are continuous in S, this is equivalent to the statement
that no binding products in region II become non-binding after a transition to region
[. Binding condition ! product classes must have become binding in region [ and
remain binding by the 4th observation (In region III, condition I product becoming
non-binding would violate the region III definition). Condition 2 variables in region I
will have a cycle center of the form p; f; — Ta; -7 — ( Yo Pj f; —w')a; -7, and so the
derivative of z§ — 7p;(1 — p;)/2 with respect to 7 is always negative. This implies that

a condition 2 binding cycle center will continue to push against the orthant boundary.

6. If S' and S” are such that §' < 5" and both their respective optimal cycle
lengths and cycle centers satisfy region II conditions then O*!1(S") C ©*11(S"). We
shall prove this by examining z{ — 7p;(1 — p;)/2, the derivative of the minimum amount
of work over the course of a cycle, with respect to 7. Once the derivative is negative,
we shall show that it remains so as further products are removed from ©=//. Thus
when a product class becomes binding at z§{—71p;(1—p;)/2 = 0, as T expands. it cannot
re-enter: the negative derivative would continue to push the cycle center against the
orthant boundary. Since no binding products in ©*//(S) can become non-binding in

the other regions by observation 5, ©*//(S) is a non-increasing set with S.

The derivative of minimum workload in region II for a non-binding product class

is
i(,,? - Zﬁi_(l__p‘)) = —am — pi(l—p))  “pep > pi(l — p;)
aT ! 2 2 X igel(s) 2
i(1—p,
_ ;(b.'-'l-:.') ) . pj(l = pj) i ,
=-=1 ) (2bi + by — b;)=———+ Y. pi(l—p;)|(4.61)
= €0*11(S) j + 1y iges11(s)

where £ = 3 icqer1(5)pi(1 — p;)/(bj + h;). Therefore the derivative is negative if and
only if

(1 — p. =
Z (2b; + hj — b,)p"b(_-'_’-:i) + 2 pj(l - p_,-) > 0. (4.62)
jee‘”(S) 2 J jgeou(g)

Thus, at effective setup cost S, if the derivative of product class i is negative and a
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more expensive tardiness product class [ leaves to form ©*//(S’), then equation 4.62

implies
S @hth-p)2LTB s a0 )
seesiis)uq) ithi gesinsiug
which is
(1= p; bi — b
> (2bi+h; —bj)u+ Y- pill—pj)+20(1 —p)3 - > 0. (4.64)
j€011(S) bithi " jgeics) 0t
Since b; — b; < 0, we have
pi(l = pj)
> (2bi+h;— bj)ﬂr + > pill=p;) >0, (4.65)
jES‘”(S) J ") J'ﬁeoll(S)

and so the derivative remains negative. If a cheaper tardiness class [ leaves forming

©11(S), the derivative of the cheaper class implies

Y. (@b+hi— bj)&b(,_*_—',—ff]_) + ) pi(l-p)>0. (4.66)
jeori(s)u{l) it jgers)u

The left hand side is less than

Y (2bi+hy —bj)% + 2 pill—p)) (4.67)
jeosTi(s) it s

since their difference is

pi(l = p;)
2(b; — b))—=. 4.68
jee;,(s) (b — br) b, T (4.68)

Therefore the derivative of the minimum workload over a cycle for product class i

remains negative after [ becomes binding.

7. When a condition 1 binding product class i changes to condition 2, it remains
binding. If this change occurs in regions I or IIl, the class ¢ product remains maxed-
out because in these regions the 2(z¢ — ﬂ;——p')) is always negative for a condition

2 product class. If the change occurs in region I, a condition I variable in region II
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implies that

> AUy g oy 2O o (4.69)
j€o* 1 I(S)\{i} 2( ; + j) <
or
pi-p)+ 3 BB g on <o (4.70)
jeoI(S\\{i} J

Subtracting equation 4.62 from equation 4.69 we get

S a4 k2R (4.11)
jeorI(S\(i) it R

which is positive. As stated in observation 6, this implies that %(zf - L;_”')-) is
negative.

8. If S such that optimal cycle length and cycle centers imply a shift from region I
or III to region II, ©*11(St) can be calculated by an iterative algorithm. A conclusion
from the previous seven observations is that ©*(S) is relatively predictable with the
notable exception of transitions from regions I and III to region II. At these transitions,
binding variables may again enter ©%(S). Re-calculation of ©*//(S), however, is not
difficult. At the effective setup cost S point of transition from region I or III to
region II, all binding product classes not before in ©*//(S’) for §' < S should be
re-included in ©*//(S). The cycle center can then be re-calculated. Those product
classes such that either their cycle centers are infeasible or were previously binding
and currently have a negative cycle center derivative (as determined by equation 4.62)
can be removed from ©*//(S). By observation 6, they do not re-enter. This process
can be iteratively done until ©*//(S) is found such that all binding variables with
negative minimum workload per cycle derivatives are removed. The resulting ©*//(5)
is equal to ©*11(S+).

With these eight observations, the algorithm we suggest is simple. From an initial
©*1(0), ©*//(0) and ©*'1(0), we track how each evolves as S is increased. Three
types of events can change ©*(S): a shift in region, a non-binding customized class

can become binding and a condition I binding class can become condition 2. Given
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equations 4.38 and 4.53, we can exactly calculate the range of S before any one of

these events occur.

The initial set of non-binding product classes is chosen as follows. For effective
setup cost of zero, cycle length 7 becomes zero as region II vanishes. A low total
workload level w may imply that some product classes are binding, that is there is
few orders remaining in the system and it may be advantageous to max-out some of
the cheaper customized product classes. This occurs if w is less than SN | p; fi. Let
{e1,é€a,...,en} be an earliness ordering of the product classes such that k., < h,, <
-+ < h,,,. We find ©*/(0) by one-by-one removing classes. A class e; is removed if it
is next in the e; list, is customizable and is insufficient for storing the remaining work,
ie. O pifi < YN pifi — w. The process stops when either a standardized product
is reached in the e; list or the next product e; implies Z:{;, pifi >N pifi—w fw
is greater than "N, p; i, then ©°/(0) is set to {1,..., N}. Both ©*7/(0) and ©*///(0)
are always set to {1,...,N}.

Given an initial ©*(0) we can find the range of effective setup cost before the set
changes. The range is the minimum S such that one of the three events happen: 1)
a shift in region, 2) the binding of a customized product class or 3) the change in

condition of a binding class. For a given S’ with non-binding set ©*(S’) a region
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change occurs when S is

-1

' e.[(s') Z.eecl(sl) plj-i_w 2 eol(S:)
& = — &

region | to region II shift

2
e*I(s") ( 09;(51)12(2.‘9.[](51’ pifi—w) )
3

P|(“"P1)) Po"‘(s')(‘;"o"‘(s'))

—@ep(sHMN —°a°(s')72(z.¢e-"(s'

e-ll(sl 9"’(5')
—&5 2

Yicosirs pifi —w)? —

region II to region I shift
S = . (472)

2
seol(sl) ( 09;(5')”(2069’”(5') pfi—w)

Pg;(sl)(l-Pg;(sl))
2

l_
-"0‘(5")’yl -09'(5’)72(Z'¢9011(51) el ))

e.ll sl e-ll s’
-5 (2.69-“(3') pifi —w)? — (=)

region II to region III shift

e.[l’(s') Zlee'lll(sl) Plf-i—'w 2 _ eclll(sl)
€s €8

=2

region III to region II shift

where

—_ (1 — pi) | b; — h; ercn(l — pgercr
Z = Z p(f..*.hp.) [ 5 +ho-(s:)] + P 5 PO,.(S)) (4.73)

iefor(s\ay(sy O T

z Pi(l - pi)
‘)
i¢e.l(SI)

— 1 1 L ! 1 hand . ]
_ 5 plf 2 pi) [ _bo;(s‘)] _ pays - Po.,(S))(4_74)

iefeisngy(syy Ot

pi(l —
- Z _2__

ige.l"(sr)
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A customized product class becomes binding when S is

(07 ( _pditbth) \* _ €075
1 Pu(l-l’l)(bl'f’ha;) 2

region [, : # 6} binding

F 2
Ee"(s') (Z.e{e-l(s')\a;(s'n""f"“’> _ c.e"(s')
1 2

region I, 6; binding

~ - 2
636.”(5‘)( Plfl"(z:’e{eoll(sl)P)!)—“')al'Y? ) __ 629"’(5')

S ) al’Yl"“'L—""!p U—p +Z,¢eoll(¢l) - “2-P ) (4 75)
= Q! 59 .
—&4 ( (LJeem(s')PJfJ - w)?
region II, 7 binding
Ee.lll(s,) p.f.[b,‘-{'hi! 2 _ Ee.l”(sl)
5 pi(1=p:)(bi=bgs) 2
region III, z # 6; binding
o111 (s") z-e(e-"'(s')\a;(s'n"'f"‘” : o111 (s")
€s = — &
\ region III, §; binding
Lastly, condition I variables change to condition 2 when S is
( Eecl(sl)l_é‘p_ €2eolll(sl) regionl
e*ll(g! os!l! S' oll(g’ .
S=4¢ g )—ép—. e (zJee-"(s') pifi —w)* =& ¥ region II
Eeolll(sl)-él;,. 69.111(5‘) region III
(4.76)

Thus the current set of ©*(S’), ©*}(S5’) and ©*%(5’) is valid for effective setup cost
from S’ to the minimum S greater than S’ in the above equations (4.72, 4.75, 4.76).
At that point, ©*/(S), ©*/1(S) and ©*///(S) are updated according to observations 5
through 8 and the process is re-iterated. "he algorithm ends when either all custom-

ized products are binding or all but one of the customized products are binding and
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the cheapest is the condition 3 product in region 3 with ;—f(xf - m(;_—&)) < 0 (in the
other regions, growing cycle length would imply that either the customized product

will become binding or that the region would eventually shift).

Therefore for each total workload this algorithm generates the set of binding cus-
tomized product classes as a function of effective cost. With this cycle length and
cycle center, cycle cost can be calculated. This can then be fed into the algorithm
detailed in section Chapter 3 so that V’(w) can be computed and with it the proposed
policy.

It is also possible to derive several structural properties about the potential func-
tion V’/(w) and so gain some qualitative insight about the proposed policy. We assume
that as w — oo the set of binding variables O~ stabilizes, that is there exists a w' such
that for all w;, w; > w' then ©*(w;) = ©*(w;). We feel that this is a natural assump-
tion since there are only a finite number of possibilities for @* and behavior evident in
observations 1-8 which demonstrate how the product classes smoothly become binding

with respect to S and w.

Property 1. If average setup time s is greater than zero and as w — oo region II

conditions hold, then

+ o(w) (4.77)

2 * . + L4
V,(w) — v 63 6‘; 66 w
where O is the set containing the standardized goods and the cheapest backorder good
(this product could either be the cheapest customized or a standardized product) and
. Tigor pi(1 = p;) + Tjcen (hj — b;)2lzed)
66 _ i¢e* F; .‘I) JEO ( ] .1) b,+h, . (4.78)

p)(1-p;)
2Y e b,+h,

If region III conditions hold then

V'(w) = _b_le + o(w) (4.79)

where © is again the set containing the standardized goods and the cheapest backorder
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good.

The derivation of this property, which assumes an asymptotic monotonicity prop-
erty, is nearly identical to that in the Appendix of Reiman and Wein [39]. Please see

Appendix A for details of the proof.

Property 2. If K = 0 and all of the products are standardized, the policy at the
idling threshold wq satisfies the region II conditions if and only if h; = h; for all i and
J. If this condition holds then

7 (wo) = \/€a/E( Y pifi — wo). (4.80)

€O

If h; # hj for some 1 and j then the idling threshold satisfies the region I conditions

and 7™ (wg) = 0.

Proof: The setup cost A" equal to zero implies that the penalties associated with
short cycle length are only due to the potential function V’(w) and setup time s. It is
not difficult 1o see that the idling threshold wy is less than or equal to SN, p; fi: for
any fixed cycle length 7 and its associated optimal cycle center, from equations (4.45)
and (4.46) the average cost per cycle is convex in total workload level with minimum
at YN | p;fi. Thus, the optimal idling threshold must be less than YN | pif; since any
policy with idling threshold w}) > YN p;f; would be improved by setting 7(w) to
some trivial length for workloads levels w below w}, up to SN, pi f;. Thus, for K =0

the idling threshold must be in regions I or II.

The boundary condition p(wg) = 0, K = 0 and equation (4.53) imply that 7™(wo) =
0 if region I conditions are satisfied and 7*(wp) = \/EE(Z-‘GG’ pifi — wo) if region
IT conditions hold. As there are only standardized product classes, ©* is trivially
{1,...,N}. Thus, in order for the region II conditions to apply at total workload
level wo, 7"(wo) must satisfy the cycle placement conditions originally specified in
equation (4.2). We can rewrite the centering condition as

I( Z pifi — w)agey: + Tage | < rpo-(1 = pr) (4.81)

i€O* 2
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Rearranging terms, this inequality is

E_“(pﬂ‘(l — PO')

agey2 < ; 5
3 r4

— Qge1)- (4.82)

From the simplifications performed in (4.54) and (4.56), this inequality is false if
inventory holding costs are not identical and holds at equality only if h; = h; for all
i and j. In the cost-symmetric case, the placement conditions in equation (4.81) are
satisfied at equality by the idling threshold wp, and hence wg is the boundary between

regions I and II. o

Property 3. If average setup time s is greater than zero, region Il conditions hold in
the limit as w — oo if and only if the tardiness costs of all the standardized goods are
equal and the cheapest tardiness cost customized good is equal to or greater than the
standardized cost (or all of the customized product classes tardiness costs are equal

given that there are no standardized products).

Proof: According to Property 1, in the limit V'(w) grows linearly with respect to w.
Thus, for large w, 7 is also increasing with respect to w and grows without bound.
Therefore, if region II conditions hold, by Property 1 7*(w) — \/m w and by
observation 6 O has a limit as w grows. Thus, to remain in region II, the cycle

placement condition

Tpg=(1 — pe-)

I( Z pifi — w)agey: + Tagem| < (4.83)
€0 =
Rearranging terms, this inequality is
. 1 —_ .
arrra < [ ¢ ). (4.84)

Again, using equations (4.54) and (4.56), this inequality is false if the tardiness costs
b; for : in ©* are not equal and holds at equality only if they are identical. Thus, if
the region Il conditions hold in the limit, all of standardized goods goods’ tardiness
costs must be the same. The customized goods can have higher tardiness costs as this

would imply that they are binding in the limit(that is, a non-binding, higher tardiness
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cost product would imply region III for large w - a class which will eventually become
binding as 7(w) grows). 1

These structural properties of the potential function V'(w) give some insight on
the behavior of the policy. Unfortunately, no closed form solution to V'(w) is possible
even if ©" is known for all total workload level. As in Reiman and Wein [39], we
can pursue both an approximate analytical solution and a numerical solution. The
approximate analytical solution aims to compute a function V’(w) that nearly satisfies
the optimality conditions (3.21) and (3.22). The basic idea behind the method is to
use Taylor series expansions to linearize the square root terms created by the optimal
form of the cycle length 7, and then to use Properties 1 through 3 to paste together
the solutions of the resulting ODE’s so as to ensure that the principle of smooth fit
holds. However, our initial results in evaluating the scheduling policy arising from this
analysis did not perform consistently well and received no further attention. What

work has been done for the no due-date, standardized only case is included in Appendix

B.

4.3 Proposed Policy

As stated in Chapter 3.6, the policy derived in the fluid and diffusion limits needs
to be unscaled for use. The presence of deterministic due-dates, however, provides
an additional method of unscaling. The policy suggested in Chapter 3.6 implements
a switching rule for the machine based on Wi, the current workload present in indi-
vidual orders. The equivalence between workload level and the time to the due-date
of the oldest order in queue developed in Chapter 4.1 allows us to create a switching
rule based on the easiest due-date in a product class queue. In some industries this
approach might be easier to implement as the earliest due-date data might be more

readily available.

The original proposed policy used the number of product i orders currently in the

system, f;, as a method for estimating the product i workload level, VV;, present by
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pitI; = W;. The policy was then stated as switch when I; satisfies

_1 EN_I“J L 1—
I; < /np; |z¢ =1 f )—T(_LT_)pt( P . (4.85)

1 vn 2

By the discussion in Chapter 4.1, the HTAP states that the workload level W, could

equally be approximated by
Wi = pi (fi — L) (4.86)

where L; is the time to the earleist due-date order in the ith product class order queue.

The policy can then be stated as switch when

5N i fi - L —’7—"’)’”' i(1 —pi
L)< Vn wf(zj_lpj\(/{l— J))— il = oo . (4.87)

pi(fi—

and idle when

S pi (i~ Li) = wov/ (4.88)

i=1

where n is the scale factor. Under the HTAP, either method is allowable. We further
study the effectiveness of each in the second part of the computational section where

we analyze a two product mixed system with due-date lead times.

4.4 Computational Study

In this section we evaluate the effectiveness of our proposed policies by conducting
a series of experiments. We study a standardized only system with no due-dates
and either a setup cost or setup time penalty, a mixed system with due-dates and
setup times and lastly a standardized only system with due-dates. We discuss the

standardized system first.
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4.4.1 Standardized Products, setups and no due-dates

We look at experiments involving two-product and five-product systems which have
eitner only setup costs or only setup time penalties. For the two-product cases, we
compare the performance of our proposed policy and two “straw” policies against a

numerically derived optimal policy.

For the two product czses, a dynamic programming value iteration algorithm is
used to find the optimal policy and evaluate the performance of all four policies.
We assume that the service times, demand inter-arrival times and setup times are
exponentially distributed and that the service is pre-emptive. Thus the system can
be expressed as a Markov chain where the state is given by the setup of the machine
and the number of orders for each product class. With some new notation, we can
state the Bellman optimality conditions for the Markov process, which form the basis
for deriving the optimal policy. Let I be the 2-vector (Iy,I;) of number of orders
in queue, : the class currently set up, :° the other product class, y = max(yu,, us),
A=X +X+pu, e =(1,0) and e; = (0,1). For the setup cost problems, the optimal

value function V/(I,i) must satisfy:

- 1 [&,, - - . 2 . :
V(l,:) = A [Z(hklk +bklk+)+Z/\kV(1+ek,z)
k=1 k=1

K

+min {ﬂ,V(i - €4, 1)1/‘1‘/( i’ l)s 9

+ eV (T = e, i‘)}] . (4.89)

The three terms inside the minimization correspond to the three possible choices the
server must make at any given time: produce the current product class, idle or switch.

For the setup time problems, let u, be the max(2, uy,u2), and A = Ay + Ay + ;. The

s?

potential function must then satisfy

~ ., 1 2 s - g 2\ I~ .
vl = ¢ S (el + 00T ) + S MV + exy i)

k=1 k=1
+min {u V(T = i) + (e — ) V(1,3),

w0, VL) + (s = 2V (4.90)
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The three terms inside the minimization correspond to the three possible choices the
server must make at any given time: produce the current product class, idle or begin

the setup of the other class.
From this we use a value iteration algorithm to compute the suboptimality for the

proposed and two straw policies by the formula

licy’ t — optimal cost
policy’s cos opti « 100%

olicy’s suboptimality = -
policy’s suboptimality optimal cost

In implementing the value iteration algorithm, the inventory state space was truncated
to [—150, 150] by [—150,150] for the setup cost cases and [—250,250] by [—250,250]
for the setup time cases. To achieve three-digit accuracy of the suboptimalities. 7,000
iterations of the algorithm were required for the setup cost problem and 14.000 for

the setup time problem.

For the five product cases, a dynamic programming algorithm is not feasible due
to the large number of inventory states, and thus no optimal policy is derived. Instead,
discrete event simulation is used to evaluate the proposed policy and the two straw
policies. To evaluate a policy for a particular scenario, we perform 5 independent
runs of 6,000,000 time units for the setup cost problems and 10 independent runs
of 6,000,000 time units for the setup time problems; each run starts with an empty
system and statistics from the first 10,000 time units are discarded. We assume that the
demand interarrival times, service times and setup times are exponentially distributed;

unlike the two product cases, service time is non-preemptive.

For systems with two products, we consider 20 setup cost cases and 14 setup
time cases; all but two cases for each type of problem assume that the products have
identical parameters. Although nearly all of our cases are symmetric, the numerical
results in Reiman and Wein [39] suggest that the heavy traffic analysis is equally
accurate for symmetric and asymmetric problems. For systems with five products, we
consider six setup cost cases and four setup time cases. We focus on the two-product
setting for several reasons. The optimal solution can be numerically computed in this

setting, which allows us to assess the suboptimality of our proposed policies; since
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the optimal policy is a dynamic cyclic policy in the two-product case (i.e., the optimal
policy chooses one of the three scheduling options that we allow at each point in time),
we conjecture that our proposed policies are optimal in the heavy traffic limit. Also,
the graphical depictions of the various policies in two dimensions (see Figures 4-2
through 4-5) help us to understand the subtleties of the behavior of this system. The
two straw policies are described in the following subsection, and the numerical results
for the setup cost and setup time problems are given next. Our key observations for

the SELSP are summarized last and then the due-date experiments are described.

Straw Policies

To help assess the effectiveness of the proposed policy. we consider two simpler classes
of cyclic policies, and use heavy traffic analysis to optimize within these classes. One
is a generalized base stock policy and the other is a fixed size corridor policy similar
to one considered by Sharifnia, Caramanis and Gershwin [41]. Neither straw policy
employs the s/\/n refinement that was introduced in Chapter 3.5; we discuss this issue

later.

Generalized Base Stock Policy.

The generalized base stock policy can be stated as follows. If the server is set up
for product ¢, then serve this product if the number of products in firished goods
inventory is less than the base-stock level ;, or equivalently if the work in unfilled
orders W;(t) is greater than #;. If W;(t) < #;, then idle if product j, the next product
to be produced in the cycle, has a workload level W;(t) < ¥; + ;; otherwise, switch
to product j at this point. Hofri and Ross [20] prove that the make-to-order version
of this policy is optimal in a two-product symmetric polling system. The generalized
base stock policy can be thought of as a refined version of the cyclic base stock policy
considered by Federgruen and Katalan [14], in the sense that their policy can only
insert idleness in a state-independent manner. Although the generalized base stock
policy contains 2N parameters, the heavy traffic behavior of this policy (see Reiman

and Wein [39] for details) depends on the §’s only via max;<i<n ¥i; let us denote
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this quantity by . Hence, we set each g; equal to gy, and optimize over the .V + 1
normalized parameters (v,,...,vn,y), where y = §//n and v; = ;/y/n. In heavy
traffic, this policy is equivalent to one that completes production of product / when
its inventory level reaches v;, and employs the workload idling threshold SN iy
see Figure 4-1.

To calculate the cost associated with this policy, we move from these natural
parameters to those used in Chapter 4.1.1. Under the HTAP results, for a given total

workload w, a generalized base stock policy has cycle center

c pi(l —
: = v; ) - 4.91
zi(w) = v; Zz-l p;(l ) Jz:lt w) ( )

and cycle length
T(w) =2

. (4.92)
ol p.(l - pi)
Product i's average inventory cost is obtained by substituting these parameters into
P-(I’I’;)(Z:;,VJ-'”),Q w=) v ’ w).

2= Pa(1=py) Yo, p(1-p1)
Using the HTAP results, we can derive the total average cost for the generalized

equation (3.17); i.e., ¢;i(vi +

base stock policy for both the setup cost and time problems. In the setup cost case,
total average cost is calculated by integrating the average inventory costs plus average
setup costs over the stationary distribution of the normalized total workload. Since
the normalized total workload W is approximated by a RBM, the total average cost

is

00 N . ) pi(1— pl)(E)_ UJ—!U) N v
fy+z.’:l Uy ( =1 c'(v' E’n; P;(l p;) ,QZl_l pi(1-pi) w) (4 93)
Pl(l Pl) _a(w_z:l_ u..)
+ 2(w-2|=l tll ) ac =t dw,

where a = 2\/n(1 — p)/o?®. For the setup time problem, the average inventory cost
is similar, although the stationary distribution of W is no longer exponential, but

gamma (see Coffman, Puhalskii and Reiman [8]). The total average cost is

N . p.’(l-ps)(z";lu,-w) we ’: i
y+z._ ( = ci(vi + Zﬁnp’("”ﬂ ,2E.=.P'("P-)’w)

a(a(w=3"" )P _aw-TV .,
T(6+1) ¢ = 2ms W,

(4.94)
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Figure 4-1: The two straw policies.

where a is as above and 8 = s | pi(1—p;)/o?. We set n equal to (1—p)~? and use a
steepest descent algorithm to find the parameters (vy,...,vy,y) that minimize (4.93)
and (4.94). For both the setup cost and setup time cases, we reverse the heavy traffic

scaling to obtain the proposed parameter values v; = v;/(1 — p) and § = y/(1 — p).

The Corridor Policy

This policy can be stated in terms of switching hyperplanes in the product workload
space. The hyperplanes are created to form a fixed width corridor with its long axis
orthogonal to the constant workload plane (see Figure 4-1). The policy represents a
natural embodiment of the “constant lot size” philosophy within a dynamic stochastic
framework, and is defined by N +2 parameters: The cycle length 7 (or corridor width),
the idling threshold wy and the parameters (y;,....yn), which determine the intercept
of the corridor’s axis. We can use these variables and the notation of the previous two
sections to formulate the average inventory cost of the policy. For a given workload w,
the cycle center z{ is equal to w/N +y; and the cycle length is 7. Product i's average
inventory cost for workload w is then ¢;(w/N + y;, 7, w).

Because the cycle length is independent of workload, in both the setup cost and
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setup time cases the diffusion process W is approximated by a RBM on (—oc, wg,
which has an exponential steady state distribution. The drifts of the RBM are ¢ and
¢ — s/t for the setup cost and time problems, respectively. Thus, the total average
cost is
o (N k\ 2y/n(l - 2y/A(1—p)
/ (z Ci(ﬂ +yi, T w) + ) _\/___(2_P_)e_ T (womw) gy (4.95)
)

wo N T o

1=1

for the setup cost problem, and

o?

w (N —p)— s/T) _2a/mQ-pi=e/r}
/ (Zci(%w.-,r,w)) AL ZofT) gty (199
=0 \i=1 ¢

for the setup time problem. The cost-minimizing parameters for (4.95) and (4.96)
are determined by a steepest descent algorithm. Although we were able to use n =
(1 = p)~? in our computations, in the setup time problem one must be careful to
choose the heavy traffic scaling factor n so that \/n(1 — p) is greater than s/7. thereby
guaranteeing a well defined integral. This inequality is simply the stability condition
that the fraction of time the server spends processing units and setting up must be
less than one. Finally, the proposed parameter values are given by 7; = y;/(1 — p)

and 7 = 7/(1 — p).

The Setup Cost Problem: Two Product Case

To standardize the two-product scenarios, we set the service rates g, = p; = 1 and
control the utilization rates p; by varying the demand rates ;. We also set h, = | and,
by modifying h;, by and b,, select product 2 as the least cost product. Inventory costs
and arrival rates are identical across products in the 18 symmetric cases, and each case
is characterized by three parameters: Backorder cost, traffic intensity and setup cost
per cycle. We examine all permutations of values shown in Table I; notice that some
of these scenarios grossly violate the heavy traffic conditions. The parameters for the
first asymmetric case are A\, = 0.6, A\, = 0.3, h; = 2, b, = 10, b, = 5 and A" = 200.

The second asymmetric case is the same as the first, except that the backorder cost is
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Figure 4-2: Switching curves for a symmetric setup cost case.

doubled to b, = 20 and b, = 10.

Backorder Cost Setup Cost Traffic Intensity

b K P
Low 5 20 0.5
Medium 100 0.7
High 10 200 0.9

Table I: The 18 test cases for the symmetric two-product setup cost problem.

Table II displays the results for the 20 two-product cases and Tables I1I to V show
the averages (for the 18 symmetric cases) over individual parameters for each policy.
The switching curves for the optiraal and proposed policies for the (b = 5, A" = 200,
p = 0.9) two-product symmetric case is depicted in Figure 4-2, and corresponding

curves for the b, = 10 asymmetric case are displayed in Figure 4-3.
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Backorder Setup  Traffic  Optimal Suboptimality
Cost Cost Intensity Policy Proposed Corridor Gen. Base Stock

b K p Gain Policy Policy Policy
5 20 0.5 4.30 6.0% 6.5% 9.6%
5 20 0.7 6.73 8.3% 1.5% 20.1%
5 20 0.9 17.99 3.8% 7.5% 26.8%
5 100 0.5 7.00 6.2% 6.4% 18.5%
5 100 0.7 9.72 2.1% 2.6% 18.5%
5 100 0.9 20.14 1.5% 8.1% 27.4%
5 200 0.5 9.14 15.0% 7.2% 25.3%
5 200 0.7 12.24 2.6% 2.9% 21.3%
5 200 0.9 22.22 0.7% 7.5% 26.1%
10 20 0.5 5.30 14.1% 2.2% 20.0%
10 20 0.7 8.41 13.9% 4.2% 24.6%
10 20 0.9 23.58 6.0% 11.7% 33.0%
10 100 0.5 7.98 8.0% 6.1% 15.5%
10 100 0.7 11.31 14.5% 3.7% 25.5%
10 100 0.9 25.44 3.3% 9.6% 34.9%
10 200 0.5 10.21 6.4% 7.2% 18.6%
10 200 0.7 13.79 3.5% 4.7% 24.3%
10 200 0.9 27.26 2.1% 10.0% 35.0%

Asym. b=10 28.71 2.6% 13.1% 35.8%

Asym. 5;=20 35.76 3.4% 14.9% 45.8%

Table II: Results for the two-product setup cost cases.

Setup Cost: Five-Product Cases

We set A; = 0.18 and y; = 1 for : = 1,...,5 for each of the six cases, resulting in
a traffic intensity of 0.9. We also set b; = 5h; for : = 1,...,5 for half the cases and
b; = 10h; for the other half. Each case is characterized by h;, b; and the setup cost.
Four of the six cases are symmetric (h; =1 for i = 1,...,5) and two of the six cases
are asymmetric (h; =i forz = 1,...,5). The average cost for each policy (along with

95% confidence intervals) is displayed in the first six rows of Table VI.

The Setup Time Problem

As in the two-product setup cost test cases, we assume that u; = y, = 1 and hy = 1.

In the 12 symmetric scenarios, each product’s inventory costs and service utilizations
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Backorder Cost Setup Cost Traffic Intensity

b K p
Low 5.1% 8.7% 9.3%
Medium 4.3% 5.8%
High 6.9% 5.0% 2.9%

Overall Average Suboptimality = 6.0%

Table III: Average suboptimality of the proposed policy: Setup cost problem.

Backorder Cost Setup Cost Traffic Intensity

b K P
Low 5.6% 5.6% 5.9%
Medium 6.1% 3.3%
High 6.6% 6.6% 9.1%

Overall Average Suboptimality = 6.1%

Table IV: Average suboptimality of the corridor policy: Setup cost problem.

are identical and we vary only the backorder cost, the traffic intensity and the average
i setup time per cycle. Table VII reports all of the permutations of values analyzed.
The first asymmetric scenario is defined by A} = 0.6, A\ = 0.3, uy = p2 =1, by = 2,
h, =1, b, =10, b, = 5 and s = 20. The second asymmetric scenario is identical

except that the backorder costs are b, = 20 and b, = 10.

The individual results for the 14 runs are displayed in Table VIII and policy
summaries for the 12 symmetric runs are given in Tables IX to XI. In addition,
Figures 4-4 and 4-5 provide a graphical depiction of the proposed arnd optimal policies

for a symmetric case (b= 5, s = 2, p = 0.9) as well as the b, = 10 asymmetric case.

Results for two five-product scenarios can be found in Table VI; they are identical
to the setup cost scenarios described in §3.2, except that setup times (with s = 50)

are incurred rather than setup costs.
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Backorder Cost Setup Cost Traffic Intensity
b K P
Low 21.5% 22.4% 17.9%
Medium 23.4% 22.4%
High 25.7% 25.1% 30.5%

Overall Average Suboptimality = 23.6%

Table V: Average suboptimality of the generalized base stock policy: Setup cost prob-

lem.

Back-  Setup Cost of Cost of Cost of
order Cost or Cost Proposed Corridor Gen. Base Stock

Cost Time Structure Policy Policy Policy
b=5 K=50  Symmetric 25.32(+0.46) 28.78(%0.63) 33.23(+0.45)
b=5 K =500 Symmetric 37.23(£0.10) 37.25(%0.32) 44.02(10.20)
b=10 K =50  Symmetric 36.79(£0.73) 39.39(%0.91) 40.54(+0.68)
=10 K =500 Symmetric 47.08(+£0.38) 46.02(+0.27) 54.29(4:0.52)
=5 K =500 Asymmetric 79.91(+0.41) 86.65(%0.67) 121.11(£1.57)
b=10 K =500 Asymmetric 98.46(+0.77) 105.958(1+1.49) 138.88(%1.14)
b=5 s=50 Symmetric 215.4(£4.9) 228.0(%+16.1) 214.1(42.6)
b=10 s=50 Symmetric 264.7(£10.4) 532.5(+136.8) 260.2(£4.7)
=5 s=50 Asymmetric 610.8(%£8.9) 683.9(£35.2) 661.0(£9.1)
b=10 s=50 Asymmetric 737.4(£18.7) 827.9(+66.5) 791.7(£16.1)

Table VI: Results for the five-product cases.
Observations

QOur observations from the numerical results are summarized in this subsection. The

five-product cases are discussed after the two-product cases.

Performance cf the proposed policy: In the setup cost cases, the proposed policy’s
average suboptimality is 6.0% over the 18 symmetric scenarios. The policy performs
very well when the heavy traffic conditions are satisfied; for example, the suboptimality
is 0.7% when b, = 5, A = 200 and p = 0.9. Considering that the proposed policy was
constructed via a heavy traffic approximation, it operates reasonably well over a wide

range of system parameters, incl. ling a low utilization rate of 0.5. Not surprisingly,



4.4. COMPUTATIONAL STUDY 85

Optimal Proposed
W, ! Wa |
. )
104 10
; ]
, ]
B} o
. - y. . T = i
'( JH 10 Wl . 10 Wl
]
l -
o0
‘\ .i
‘.\J ----- idle if setup for 1
N idle if setup for 2

- switch from 1 to 2

— switchfrom2to 1

Figure 4-3: Switching curves for the b, = 10 asymmetric setup cost case.

the policy performs worst when the traffic intensity is low, the setup costs are small,

and the backorder costs are high. The policy also performs well (2.6% and 3.4%

suboptimalities) in the asymmetric cases.

In the setup time cases, the average suboptimality over the 12 symmetric cases is
7.2%. The policy performs very well (1.8% average suboptimality) when the traffic
intensity is high, but degrades somewhat in the lighter traffic cases. It also performs

well in the asymmetric cases (1.5% and 3.3% suboptimalities).

Switching curves: The switching curves of the proposed and optimal policies are
remarkably similar in Figures 4-2 to 4-5 and are unlike either the corridor or gen-
eralized base stock policies. In the two symmetric problems (Figures 4-2 and 4-4),
these curves have the same general shape as predicted by our heavy traffic analysis:
A distinctive constant-workload idling threshold, a wide cycle time for large positive

and negative inventories and a small cycle time about the zero total workload level.
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Backorder Cost Setup Time Traffic Intensity

b s p
Low 5 2 0.5
Medium 0.7
High 10 20 0.9

Table VII: The 12 test cases for the symmetric setup time problem.

Backorder Setup  Traffic  Optimal Suboptimality
Cost Time Intensity Policy Proposed Corridor Gen. Base Stock

b s p Gain Policy Policy Policy
5 2 0.5 3.84 9.0% 12.8% 6.6%
5 2 0.7 7.45 74% 8.3% 7.8%
5 2 0.9 25.31 1.4% 6.7% 9.5%
5 20 0.5 13.58 10.1% 24.3% 19.9%
5 20 0.7 26.39 5.9% 16.0% 9.6%
5 20 0.9 79.40 1.4% 8.7% 3.5%
10 2 0.5 5.15 9.3% 11.0% 11.8%
10 2 0.7 9.85 8.2% 7.1% 9.0%
10 2 0.9 33.24 1.8% 4.5% 13.7%
10 20 0.5 17.75 18.7% 26.5% 17.9%
10 20 0.7 33.67 10.7% 16.8% 12.8%
10 20 0.9 98.93 2.6% 7.0% 5.9%

Asym. b;=10 104.91 1.5% 30.6% 11.5%

Asym.  5;=20 129.42 3.3% 60.9% 15.8%

Table VIII: Results for the two-product setup time cases.

In the asymmetric setup cost problem in Figure 4-3, the three-region categorization
predicted by the heavy traffic theory is easily recognizable in the optimal policy. Fig-
ure 4-5 confirms that lot sizes shrink as the idling threshold is approached. Finally,
as the total workload 1 tends to infinity, lot sizes appear to be growing roughly with

w in Figure 4-4 and with v/ in Figure 4-5.

Two key differences between the proposed and optimal policies emerge from study-
ing Figures 4-2 to 4-5; numerical results (not reported here) verify that both discrep-
ancies dissipate as the traffic intensity approaches unity, and get more severe in the

lower utilization cases. First, in all four figures, the proposed heavy traffic policies
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Backorder Cost Setup Time Traffic Intensity

b S p
Low 5.9% 6.2% 11.8%
Medium 8.1%
High 8.5% 8.2% 1.8%

Overall Average Suboptimality = 7.2%
Table IX: Average suboptimality of the proposed policy: Setup time problem.

Backorder Cost Setup Time Traffic Intensity

b s p
Low 12.8% 8.4% 18.7%
Medium 12.1%
High 12.1% 16.5% 6.7%

Overall Average Suboptimality = 12.5%
Table X: Average suboptimality of the corridor policy: Setup time problem.

have a tendency to backorder more than the optimal policy; this observation is most
obvious in the upper right portion of Figure 4-4. Because the HTAP time scale decorn-
position does not hold precisely for the original stochastic system, the optimal policy
hedges against backorders slightly more than the proposed heavy traffic policy, which
assumes that the inventory levels respond in a deterministic fashion in the fluid limit.
In terms of these figures, the cycle lengths (i.e., the distance along the total workload
line between the solid and dashed curves) tend to be slightly smaller in the optimal
policy: consequently, the workload process spends less time in the backorder region
and some of our remarks in Chapter 4.2 regarding the inventory levels at switching
epochs only hold in very heavy traffic. This limitation of the heavy traffic theory was
also noted in Wein [46].

The other main discrepancy occurs near the idling threshold in the asymmetric
cases: In Figure 4-5, the optimal lot sizes for product 1 decrease, rather than stay

constant, as the workload idling threshold is approached, and in Figures 4-3 and 4-
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Backorder Cost Setup Time Traffic Intensity

b s P
Low 9.5% 9.8%. 14.0%
Medium 9.8%
High 11.8% 11.6% 8.2%

Overall Average Suboptimality = 10.7%

Table XI: Average suboptimality of the generalized base stock policy: Setup time
problem.

5 there is a different idling threshold for each product. This discrepancy can be
explained as follows: wken the total workload is negative, the switchover cost (in
Figure 4-3) or time (in Figure 4-5) makes it beneficial to be setup for product 1, so
as to efficiently protect against costly product 1 backorders. If p is not close to one,
then it is likely that the total order workload will decrease while producing product
2; that is, the decrease in product 2’s order workload will exceed the increase in
product 1’s order workload. The optimal policy iakes adv: ~tage of this imbalance by
allowing product 2’s inventory (i.e. negative orders) to grow beyond the product 1
idling threshold; this extra product 2 inventory allows he server to idle while setup
for product 1.

Performance of the corridor policy. The corridor policy exhibits erratic behavior.
The policy performs very well in the symmetric setup cost cases (it outperforms the
proposed policy in six of the 18 scenarios, all of which have low or medium utilizations),
but degrades slightly at high utilization. A comparison of Figures 2 and 3 leads us to
believe that the parameters of the policy are being set correctly at high utilizations,
and the performance degradation is due to the corridor policy’s inability to employ

mean lot sizes that are state-dependent.

The corridor policy does not perform as well in the symmetric setup time cases;
it is not able to increase the cycle length 7 for large total order workloads and so has
difficulty recovering from this high backorder region. In contrast to the symmetric

setup cost cases, the corridor pdlicy’s performance diminishes in light traffic; we have
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Figure 4-4: Switching curves for a symmetric setup time case.

not determined how much of this degradation is due to the inaccuracy of the heavy

traffic approximation at low utilizations, and how much is intrinsic to the policy.

The corridor policy performs much worse when asymmetry is present: Its subop-
timality is 13.1% and 14.9% in the setup cost cases and increases to 30.6% and 60.9%
in the setup time cases. Comparing Figures 4-1, 4-3 and 4-5, it would appear that the
corridor policy would never be very close to optimal for an asymmetric problem. In
fact, Figure 4-5 suggests that a hyperplane corridor poli~y (see Figure 7 of Sharifnia,
Caramanis and Gershwin [41]) ruight perform reasonably well in the asymmetric setup
time problem; in the two-product case, the two lines forming the corridor in Figure 4-
1 would not be parallel in the hyperplane corridor policy, but would intersect at an
idling point in the lower left portion of the graph and generate a cone-shaped corridor

emanating out in the northeasternly direction.

Performance of the generalized base stock policy. The generalized base stock

policy performs better in the setup time cases than in the setup cost cases: Its average
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Figure 4-5: Switching curves for the b, = 10 asymmetric setup time case.

suboptimality is 23.6% for the 18 symmetric setup cost scenarios and 10.7% for the
12 symmetric setup time cases. In contrast to the corridor policy, the generalized
base stock policy’s use of large lot sizes when the total order workload is positive is
- a key reason for its ability to avoid poor performance in the symmetric setup time
cases: however, these large lot sizes lead to considerable backordering in the setup cost
scenarios. Like the corridor policy, the generalized base stock policy’s performance
deteriorates at high utilizations in the setup cost cases and at low utilizations in the

setup time cases.

The generalized base stock policy’s suboptimality is 35.8% and 45.8% in the asym-
metric setup cost cases and 11.5% and 15.8% in the asymmetric setup time case. It is
interesting to note that the generalized base stock policy handles expensive inventory
in a manner opposite to that cf the proposed policy. The order-up-to level of the most
costly good is set larger than those of less expensive products to reduce the risk of
expensive backordering; in contrast, the proposed policy minimizes the excess or de-

ficit amounts of expensive inventory. It is clear that the generalized base stock policy
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is incapable of closely approximating the optimal setup cost solution in Figure 4-3.

Five-product examples: In the six setup cost cases in Table VI, the proposed and
corridor policies are roughly comparable in the two A" = 500 symmetric cases and
the corridor policy is about 10% more costly in the two A" = 50 symmetric cases and
about 8% more expensive in the two asymmetric cases. The generalized base stock
policy does not fare as well in the four symmetric setup cost cases, incurring an 18.7%
cost increase relaiive to the proposed policy, on average. Once again, the generalized
base stock policy performs very poorly in the asymmetric setup cost cases.

In contrast, the generalized base stock policy performs slightly better than the
proposed policy in the two symmetric setup time cases in Table VI, and is about 8%
more costly than the proposed policy in the two asymmetric cases. Both of these
policies outperform the corridor policy in the four setup time cases. The corridor
policy is about 12% more costly than the proposed policy in the two asymmetric

cases, but performs extremely poorly in one of the two symmetric cases.

To compare the relative cost differences in the two-product cases and the five-
product cases, we can identify the six symmetric cases in Table VI with their two-
product counterparts in Tables II and VIII; for example, tt.2 first scenario in Table VI
corresponds to the b = 5, ' = 20, p = 0.9 case in Table II. For the four setup
cost cases, the cost increases of the straw policies relative to the proposed policy
are somewhat larger for the two-product cases: the generalized base stock policy's
average cost increase is 5.8% for the two-product cases versus 4.7% for the five-
product cases, and the corresponding quantities for the generalized base stock policy
are 26.3% and 18.7%, respectively. For the two setup time cases, the average cost
increase of the generalized base stock policy is 2.7% for the two-product scenarios and
-1.1% for the five-product cases. Disregarding the poor performance of the corridor
policy in one of the five-product symmetric setup cost scenarios, it appears that the
relative cost advantage of the proposed policy degrades slightly when the number of
products increases from two to five; however, further experiments are required to fully

investigate this issue.

Lack of Robustness. Simulation results not reported here show that the perform-
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ance of the three policies are rather sensitive to the policy parameters, particularly
in the setup time problem; this is somewhat surprising, given the robustness of some
simpler models (e.g., the EOQ model) that capture the tradeoff between inventory
costs and setups. Because it is unable to increase its lot sizes as the total inventory
decreases, the corridor policy is clearly the least robust of the three policies: if the
corridor width is set too narrow (as apparently happened in the eighth row of Table
VI) then stability problems can set in (notice the confidence intervals for this case).
The s/\/n Refinement. Recall that the s/\/n refinement described in Chapter
3.5 is incorporated into the proposed policy, but not the two straw policies. We
tested all three policies with and without the refinement, and summarize our findings
here. The refinement had a minor effect on the performance of the proposed policy in
the p = 0.9 cases; however, by decreasing the cycle length, it significantly irnproved
performance in the lower utilization cases. The refinement had a mixed influence
on the generalized base stock policy, sometimes improving and sometimes degrading
performance; overall, it slightly impaired performance. The refinement had a negative

effect on the corridor policy, and let to a severe stability problem in the eighth row of

Table VI.

Summary of SELSP Results

Although additional asymmetric cases need to be investigated before drawing defin-
itive conclusions for the two-product problems, our observations can be summarized
as follows.

The proposed policy performs very well in the 34 two-product cases: Figures 3
to 6 confirm that it captures nearly all of the complexities of the optimal policy, its
suboptimality is 6.0% over the 34 cases (and 2.1% over the 12 cases that do not
obviously violate the heavy traffic conditions), and it is quite robust with respect
to the heavy traffic conditions, especially considering that most potential industrial
applications for the SELSP are in settings with high traffic intensities. However, the
relative superiority of the proposed policy appears to degrade slightly as the number

of products increases, and this issue requires further investigation.
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The two straw policies are not flexible enough to consistently capture the subtleties
of the optimal policy. The corridor policy outperforms the generalized base stock
policy in 24 of the 34 two-product examples, and its average suboptimality is 11.2%
as compared to 19.5% for the generalized base stock policy. Nonetheless, in the setup
time cases the corridor policy fails to use large lot sizes when the total workload
is positive and can perform erratically (see Table VIII). The generalized base stock
policy is never close to optimal and performs poorly in the asymmetric setup cost

cases.

4.4.2 Mixed System with Dus-dates

In this section we construct a series of experiments for a mixed system with due-dates.
In the previous section (and Reiman and Wein [39]) it was shown that the HTAP is
robust in policies for systems with either setup costs or setup times and to a limited
extent multi-product systems. Here we wish to examine two further issues: the effects
of due-dates on scheduling and the ability of the HTAP to derive a policy for a mixed
system. Thus, we only consider a two product case with setup times. Using the samne
parameters as the by = 10,0, = 5 two product asymmetric setup time SELSP case,
we vary the length of the due-date lead time, f;, and compare our proposed policy
to several straw ones. We set f; = f, and test f; for values equal to 0, 20 and 100.
Since a true optimal solution cannot be found, we base our study on the results of 2
discrete time simulation of the systems. Again, service times, setup times and demand
interarrival times are exponentially distributed and, like the two product SELSP case,

the service is pre-emptive.

Straw and Proposed Policies

Since we do not have a convenient point of reference provided by an optimal policy,
we use a different collection of straw policies. We consider three test policies. The
first is a simple hybrid base-stock/exhaustive policy where the customized product is

serviced to exhaustion and the standardized product is produced up to a base stock
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level equal to a —v order workload level. The base-stock level is calculated in a fashion
similar to the one described in the standardized, no due-date case. The cycle center
for the customized good (or first product class) is set to 7(w)pi1(1 — p1)/2. The cycle
center of the standardized good is set to T(w)pa(l — p2)/2 + 0. Let v = v/\/n, then
the cycle length is

w-v (4.97)

) =2P1(1 —p) +p2(l — p2)

We then use the cost equations from Chapter 4.1 to find the average cost for this

policy given by

{
® (a w—y ,2 w—v w
f"’\ ‘(m(l—m)z,’=,p.(l—p.> Yoo pll=p) ) (4.98)
w—v 9 w—v v ala(w=v))?  ~u(w-v)
+Cz(v + ﬂ)(l'pQ)Z?-__l Pl(l—pl)*~23=| pl(l-Pl}’w)) r(a+1) ¢ dw,

where o is as above and 8 = s Y%, pi(1 — p;)/o?. We set n equal to (1 — p)~2 and
use a steepest descent algorithm to find the parameter v which minimizes (4.98).
The second policy is again a hybrid base-stock/exhaustive policy where the base-
stock level is determined by exhaustive search. This is simply performed by doing
multiple simulations (the results of which are not shown here). These two hybrid
policies together offer the opportunity to determine the accuracy of the HTAP. The
- third policy is the proposed policy without due-date considerations, that is, the policy
based on estimating workload by the number of orders in queue outlined in Chapter
4.3 is calculated with a due-date lead time f; set to zero. In addition, we look at
two variants of the proposed policy. They use the two methods of approximating
the workload level in queue given in section 4.3. The results are given in Table XIi
(the abbreviation “Order Num.” refers to the proposed policy where workload is
approximated by the number of orders in queue, “Next D-date” refers proposed policy
where the earliest due-date is used to find the workload). Switching curves for the

optimal search hybrid policy and proposed policy are given in Figures 4-6 to 4-8.

Observations

Hybrid Policies. The long run average cost for both the exhaustive search and HTAP
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Due-Date Cost of Cost of Cost of Cost of Cost of
Lead Hybrid Hybrid Proposed Proposed Proposed
Time HTAP Search w/o D-date  Order Num.  Next D-date

0 290.3 (£ 3.2) 290.0 (£ 2.7) 274.6 (£ 1.9) 274.6 (£ 1.9) 295.8 (+ 3.6)

20 201.8 (+ 2.7) 199.5 (+ 3.2) 186.3 (£ 2.1) 184.1 (£ 2.7) 197.0 (£ 3.9)
100 1228 (£ 1.4) 1213 (+ 1.3) 158.3 (£ 0.9) 109.7 (£ 1.1) 109.8 (& 1.2)

Table XII: Results for the Mixed System.

hybrid policies decreases with the longer due-dates. This makes intuitive sense: with
no due-date lead time orders for the high cost customized goods are immediately
backordered, driving up costs. As the due-date lead times are added, orders for the
customized good are less tardy and costs fall. Moreover. there is little change in
the costs due to the standardized product class: its average holding and backorder
costs remain approximately 23 and 14 respectively. Almost all of the savings are due
to the high cost product. This is as one would expect: the base-stock level for the
standardized product is chosen so as to optimally balance its earliness and tardiness
costs. Due-dates alter the base-stock level necessary to achieve this optimal balance,
but cannot alter the balance itself. Mathematically this result is quickly seen in the
expression for the cost per cycle in Chapter 4.1.1 and is discussed in more detail in
Chapter 4.5.2. Although in these three cases iong run average costs were decreasing
with longer due-dates, one would expect that eventually they would start to increase
again as the due-date lead times become inordinately long and holding costs become
excessive.

It is also interesting to compare the exhaustive search base-stock policy with the
one derived by the HTAP. They are nearly identical. The base-stock levels for each
are 45, 37 and 13 for the f; = 0, 20 and 100 cases respectively. The HTAP levels
are 39, 28 and 5. Although the base-stock levels for the search policy are consistently
higher than those of the HTAP policy, the actual difference in long run average cost
is statistically insignificant. For the exhaustive/base-stock policy the long run average
cost as a function of base-stock level appears to have a shallow slope about the optimal

solution. The heavy traffic theory is able to identify a set of parameters which perforins
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Figure 4-6: Switching curves for a mixed system with 0 due-date lead time.

quite well.

Proposed Policies. The proposed policies do quite well and, as with the hybrid
policies, have decreasing long run average costs as due-dates increase. The reason for
this is also the same: costs go down as there are opportunities to avoid tardiness of
the high cost customized good. The proposed policies have several advantages over
the hybrid policies: they are able to avoid large buildups cf high cost product 1 orders
both in queue and waiting to be shipped. For the [ = 0 case, the proposed policies
can avoid severe backordering by switching to setup product 1 if there is an excessive
number of orders in queue. However, due to the severity of the setup penalty, cycle
length 7 is long and so the product 1 buildup must be large. Thus, the marginal

benefit of the proposed policy over the hybrid policy is not great.

As the due-date lead time increases, however, the proposed policy has a greater
opportunity to avoid excessive product 1 costs. Cycle length 7 is still large but the
policy is able to attain a balance between earliness and tardiness costs by cycle center

placement. As seen in Figure 4-8, the amount of product 1 workload is maintained
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Figure 4-7: Switching curves for a mixed system with a due-date lead time of 20.

about the “due-date axis” p, f;, the level of produci 1 workload necessary for a new
order waits in queue for an amount of time exactly equal tc the due-date lead time.

The hybrid policy is not able to perform this type of cost minimization.

The two methods for estimating the workload present in each queue, however, ap-
pear to have different measures of success. The one where workload is approximated
by the number in queue clearly outperforms the earliest due-date approach. The differ-
ence, however, disappears as the due-date lead time length grows. This can potentially
be explained by the variance of the estimate. The earliest due-date approach uses the
next due-date in queue to approximate the number in queue which in turn is used
to calculate the workload presenut. Thus, is has a higher variance while counting the
number in queue is more direct. Once the due-date lead time becomes longer, there is
more to average, making both estimates tighter. One of the motivations for the earliest
due-date proceedure was to see if the policy was sensitive to single orders which might
not account for mu:h work but might be far overdue. The comparison between these

implementations of the proposed policy implies that this facto1 is negligable and that
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Figure 4-8: Switching curves for a mixed system with a due-date lead time of 100.

stray, overdue orders should not be used to force a setup of the machine.

MTS/MTO Partitions. It is also interesting to note the similarities between the
mixed system with a hybrid policy and the two product SELSP with a generalized
- base-stock policy. The system parameters used in the SELSP asyi..metric, setup time,
b, = 10 case are identical to the ones used in the mixed system. As implied in Chapter
4.1, when the due-date lead time in the mixed system approaches v,/p,, where v, is
the base-stock level from the SELSP case, the long run average costs should be about
equal for the two systems. Slight differences may still exist because the generalized
base-stock policy includes a non-trivial idling threshold not present in the hybrid
system. For this SELSP scenario, v; was found to be 49, making the critical due-date
lead time, [, equal to 81.6. Although we did not simulate this case, from the results
shown, it is not difficult to intuit that this case would have a much lower cost than

the f; = 0 case.

This sheds great light on the relationship between MTS/MTO partitions and due-

dates. As stated in the literature review, much of the motivation for Just-in-Time
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manufacture is derived from demand lead time: if demand is sufficiently forecasted
then orders for goods can be filled exactly on time and so no finished goods inventory
need be held. The foreknowledge of demand means that standerdized goods can be
serviced in a MTO fashion instead of MTS. We see this here, but in a slightly different
form. Sufficient (order /n) due-date lead times can imply that a mixed system has the
same long-run average cost as a purely standardized system. Thus, one is indifferent
to servicing orders for that class in either a MTS or a MTO fashion. Yet, switching
to a MTO service does not reduce costs as it is still optimal w. fill orders early and
incur the holding cost. These early orders provide a buffer wgainst backordering as

would a finished goods inventory. This is discussed in greater detail in Chapter 4.5.6.

4.4.3 Standardized System with Due-dates

In our last series of experiments, we wish to test the result that the long run average
cost for standardized products is independent of the due-date lead time. We study a
machine which services two identical standardized product classes, each with a holding
cost of one and a tardiness cost of five, and has a setup time penalty with a cycle mean
of s = 20. We vary due-date lead times and utilization. As with the mixed systems in
the previous section, a true optimal solution cannct be found, and so we implement
a discrete time simulation. Again, service times, setup times and demand interarrival
times are exponentially distributed and the service is pre-emptive.

We look at three utilizations (p equal to 0.5, 0.7 and 0.9) and three due-date lead
times (f; equal to 0, 20 and 100). This makes for a total of nine cases. The results

are given in Table XIII.

Observations

The due-date lead time f; equal to zero corresponds well with the dynamic program-
ming results given in the SELSP section. As due-date lead times increase, the long
run average cost remains relatively constant, as described by the theory. The con-

stant cost appears to degrade, however, in the f; = 100, low utilization case. Form the
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Due-Date Lead Time
p 0 20 100

0.5 | 14.91 (& 0.05) 13.88 (£ 0.04) 18.55 (& 0.05)
0.7 | 27.89 (£ 1.31)  27.01 (& 0.08) 29.00 (& 0.10)
0.9 | 80.41 (£ 1.52) 79.70 (+ 1.40) 79.36 (£ 0.98)

Table XIII: Long run average cost of two identical standardized products with varying
due-date lead times and traffic intensities.

simulation data itself, it appears that the idling threshold has been underestimated,
implying that the shift of “p;f;” was too small. We suggest that the actual waiting
time for the low utilization case is slightly different from our prediction where we
assumed that the total utilization was close to one. This error is minimal for the low
due-date case but becomes more significant as the due-date grows. Nonetheless, this

striking result appears to hold.

4.5 Discussion

The descriptive form of the optimal cycle center and cycle length given in equa-
tions 4.38 and 4.53 specifies the qualitative form of the optimal dynamic cyclic policies.
It is instructive to see how the the proposed policy changes over the range of problems
outlined in Figure 1-1. In a slightly different order as presented in the Literature Re-
view, we shall step through each regicn of the Venn diagram and state the proposed
policy in terms of the variables created in the previous section. We shall summarize
some of the results and provide a two product example for each case. We present the

policy as a set of switching curves on the plane where the axes represent the amount

of work to be done in each product class.

4.5.1 Customized products, no setups and no due-dates

The parameters from section 4.2 can be easily determined. The lack of setups forces

region II to vanish and the cycle length 7 to be zero. No due-dates indicates that
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Figure 4-9: Customized products, no setups, no due-dates.

fi = 0 for all product classes. This implies that only the region III conditions can
apply. Thus for any total workload w > 0, the cycle center z¢ is set to zero for
all 7 not equal to 6;, the cheapest backorder product, which itself is set to w. In
this special case, one can trivially calculate that the idling threshold wy is zero. The
implied dynamic cyclic policy is then simple in form: service all but the least expensive
product to exhaustion and switch out of producing the cheapest product if there are
any cther higher cost products present. The two product example given in Figure 4-9
is trivial: switch to produce product 1 whenever a product 1 order arrives, produce
product 2 only when there are no product 1 orders. This causes the switching curves

of the policy to nearly overlap on the product 2 axis.

This policy can be interpreted as a two level priority rule: all but the least ex-
pensive products have high priority and are serviced to exhaustion in a cyclic manner;
the least expensive product has low priority. It is the dynamic cyclic version of the
“cp rule”, or “b rule” in our notation. The policy minimizes the number of high cost
product orders at the expense of backordering the cheapest product class. Moreover,
in the heavy traffic limit the queue length of the high priority products vanish and only
the lowest priority product is present. It is interesting to note that the heavy traffic
limiting behavior of the proposed policy is identical to that of a strict “b” priority
policy: the workload process lies along the 6; axis. Thus in the heavy traffic setting

nothing is lost between our proposed dynamic cyclic policy and well known cyu rule.
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Figure 4-10: Standardized products, no setups, no due-dates.

4.5.2 Standardized products, no setups and no due-dates

From the calculations involving setup penalties and cycle length in Chapter 4.2, 7 is
again zero for this case and only regions I and III are possible. The cycle center of
all but the cheapest product class is set to zero and :cg:: is set to w for w > 0 and a:g::
to w for w < 0. The idling threshold wy is non-trivial and negative. There is a simple
interpretation of this policy. Only the cheapest holding cost product 8} is stored in
the finished goods inventory, all of the other classes are serviced when orders arrive.
As in the previous case, the dynamic cyclic policy can be stated as a two level priority
system for unfulfilled orders with the added complication of a mechanism to build-up a
finished goods inventory. It has the following rules: 1) service all orders with finished
goods inventory if available; 2) all backordered orders for products other than the least
expensive backorder product 8; have priority and are serviced in an exhaustive cyclic
manner; 3) orders for the cheapest backorder product class have the lowest priority;
4) if no orders are present and the total order workload is above the idiing threshold,
produce the cheapest holding class product 6;. An example two product policy is
given in Figure 4-10 and, as in the customized case, the strict priority rule between

the classes causes the switching curves to nearly overlap on the 2nd product axis.
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The resulting policy is, in the heavy traffic limit, identical to the one suggested
by Wein [46]. In that paper, Wein optimizes over dynamic index rules and finds that
backordered products have priority in order of their relative cost per unit of work and
no inventory should be held for all but the cheapest holding cost product. The heavy
traffic behavior of this policy is the same as the optimal dynamic cyclic one.

Comparing the customized product and standardized product cases, we see from
the proposed policy a distinct role for inventory: it hedges against the risk of backor-
dering. According to the HTAP approximation, uncertainiy in production and demand
have their great impact on the total workload of the system. Finished goods inventory
acts as a total workload buffer against severe backordering. Temporary backordering
of high cost products is negligible compared to the costs of a high level of unfin-
ished work. By creating a buffer of stored work, the machine can flexibly address
requests for high cost products without the need of storing the products themselves
and without concern for satisfying the demands for the stored product class. Thus,
inventory acts as a reservoir of reserve capacity, able to absorb random fluctuations
in service and demand rates. The proposed policy stores this capacity in the most
economical manner possible: it places it in the cheapest holding cost product. Simil-
arly, when the finished goods inventory is exhausted, proposed policy is still able to
flexibly service requests for high cost products by neglecting the cheapest backorder
product, effectively storing deficit inventory in its cheapest form.

It is also interesting to note that in several simulation runs performed in Wein [46)
the heavy traffic solution can be slightly improved by a simple heuristic where small
buffer stocks of expensive product are introduced. The heavy traffic approximations
are not able to account for these small changes in inventory (they are absorbed in the
O(y/n) space scaling). We would expect the same form of improvements to hold in

the policies suggested here.

4.5.3 Customized products, setups and no due-dates

As in the previous customized case the lack of due-dates and of standard goods limits

the cycle center and cycle length equations to the region III formulations. Given that
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fi equals zero for all 7, all but the cheapest product, 6;, is binding and so ©* C {6;} for
all S and all w. Thus, the policy can be stated as follows: service each class in a cyclic
manner. When setup for all but the cheapest backorder class, service it to exhaustion.
When setup for 6; work on it until its workload reaches x,‘};(w) — 7(w)pes (1 — pg;)/2
where w is the current work in the system given by YN u:'I;. The presence of
setups eliminates the two level priority scheme seen in the previous no setup cases.
This makes intuitive sense because a strict priority scheme will lead to excessive
setups. The proposed policy avoids this by keeping to the cycle, yet minimizes cost by
guaranteeing speedy machine resources for high cost products at the possible neglect

of the 6; class.

Let us be exact in specifying the tradeoffs involved: the policy cannot allocate
“more” machine resources to high cost products and “less” to low cost ones as each
class ¢ will in the long run receive a p; fraction of machine effort. Instead, the policy
trades off on how quickly the machine can service the high cost orders. Getting to
the point where the machine can service a costly item involves machine setups. Thus
the essential tradeoff is between setup penalties and the degree of backordering each
product class experiences. Using the insights we have gained from the HTAP, the
total amount of work in the system does not change quickly and for the predicted
cycle length 7 we usually spend 7p; units of time on each class. However, on the

occasion that the total workload does change, say it increases, in the rush to the
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high cost products the policy neglects some of the low cost work. This can cause the
gradual buildup of 8; orders. Conversely, if the total workload perchance decreases,
then the policy makes can make up on some of the overdue 6; workload. Thus the
policy can be seen as not only balancing setups and backorder costs, as directly seen
in the formulation of 7 and z¢, but also can be viewed as controlling the randomness
of the system by isolating the effects of total work fluctuation in the least cost product
class. That is, the fluctuations in the inventory levels of the high cost products are
relatively constrained compared to those of the low cost one 8;. The degree of this
isolation is limited by the size of the setup penalty.

It is interesting to note that the two product case reduces to the same policy
outlined in Reiman and Wein [39]. A sample two product policy is given in Figure 4-
11. The presence of setup penalties has added breadth to the switching curves of
Figure 4-9. There is the same distinct feature of using the machine setup to move
inventory volatility to the cheaper inventory class. This is seen by the huge range of
low cost product inventory values (along the vertical axis) caused by the fluctuation of
total workload in the system versus the relatively confined range of the more expensive

products (along the horizontal axis).

4.5.4 Standardized products, setups and no due-dates

This case is often called the Stochastic Economic Lot Scheduling Problem (SELSP).
Since all of the products are standardized, there are no orthant constraints and so no
binding product classes, that is, ©* = {1,..., N}. All three regions are possible and
the cycle length, cycle center and idling threshold are not trivial. A sample policy is
given in Figure 4-12.

Our analysis reveals numerous insights into the behavior of the optimal policy in
heavy traffic.

Three Workload Regions. An essential feature of the heavy traffic policy is its
characterization via three workload regions. There is sufficient workload in region
I, significant backorders in region I1I, and region II represents the intermediate case

where the total workload is in an interval containing zero.
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Figure 4-12: Standardized products, setups, no due-dates.

State-Dependent Lot Sizes. Because the time spent producing product : within
a cycle is p;7, the optimal cycle length 7 determines the optimal lot sizes in heavy
traffic (and determines the optimal expected lot sizes for the SEL5P). We can oktserve
from (4.53) that the optimal lot sizes are dependent on the potential function V'(w)
~ which is in turn a function of the state w. If there are no setups, i.e. s = 0, and
so V/(w) is trivial then we see a slightly different behavior. The lot sizes are state-
dependent only when the total order workload is in region II. In centrast, the lot
sizes are constant in regions I and III; in these regions, surplus or deficit inventory
is unavoidable, and the trade-off between lot sizes and setup costs stabilize, thereby
generating constant lot sizes. This observation and (4.38) imply that the cycle center
z° remains constant in regions I and III, and gradually shifts between these two points
in the intermediate area of region II. It is worth pointing out that in nearly all of the
deterministic ELSP literature (Dobson [11] is a notable exception), the analysis is
restricted to policies with constant lot sizes. Yet, when there are setup times, optimal
cycle length is always dynamic. Generally, as the total order workload grows, machine

time is more important. Thus, it becomes optimal to increase lot-sizes so that the
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machine wastes less time setting up. Interestingly, when there are few orders and
surplus FGI, time is cheap. Cycle lengths shorten so that the machine can quickly

concentrate on high cost orders. If s > 0, constant lot sizes are far from optimal.

Relationship to the EOQ Model. As in the economic order quantity (EOQ) model,
the lot size is proportional to the square root of the setup cost ia regions I and III. In
region II, the setup cost again appears in the numerator of the square root term.

Inventory is Focused in the Least Cost Products. In region I, excess inventory is
built up in the product with the smallest h;, which is a product that is inexpensive
to hold (small h,) and lengthy to process (small g;). Similarly, in Region III, excess
orders (i.e., backorders) is held in the product with the smallest backorder cost index
b;; this product is inexpensive to backorder and has a long expected processing time.
In both regions, inventory is held in the least cost product so as to reduce the absolute
value of the inventory of the higher (holding in region I and backorder in region III)
cost products. In this regard, the dynamic lot-sizing policy derived here is similar to
the standardized, no due-date case described in Chapter 4.5.2. When setup penaities
are introduced, breadth is added to the normalized cycle length and, for a fixed total

workload, a “corridor” of possible inventory states replaces the least cost axes.

Lot Sizes Grow with Absolute Value of Total Workload. By (4.53), we see that
the optimal lot size is smallest when the total workload equals zero, and grows with
the absolute value of the workload. When the total workload is near zero, costly
backorders can be avoided by switching frequently between products. In contrast,
when the absolute value of the workload is large, it is possible to employ large lot
sizes without adversely affecting the inventory costs (because inventory tends to be
held in the minimum cost product in regions I and III); in this case, it is advantageous
to avoid setup penalties and produce products in large batches.

The Role of Inventory. We see from this discussion two roles for inventory. The
first role is identical to that explained in Chapter 4.5.2. Finished goods inventory is
used to hedge against demand and service rate uncertainty. This buffer is used on an
aggregate total workload level. The second role of inventory is to avoid backordering

over the course of an individual cycle. A long cycle length implies that the server
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will not be able to work on a product class for an extended period. The presence of

finished goods absorbs demand and minimizes backordering over this wait.

4.5.5 Customized products, no setups and due-dates

As in both no setup, no due-date cases, the lack of setup penalty causes the cycle
length 7 and region II to vanish. The presence of due-dates, however, moves the
switching curves into the orthant so that they lie on a new set of “axes.” That is, by
equation (4.38) the cycle centers z¢ are shifted by p;f;. The proposed policy then has
the following meaning: 1) if the total work in unfinished orders is less than ¥V p; f;,
then there is a two level priority scheme similar to the one in the standardized no due-
date case; 2) orders that are almost at their due-date have priority and are serviced in
a cyclic manner; 3) if there are no orders near their due-date and the total workload
level is above the idling threshold, the machine works on orders for the class with
the cheapest holding cost. If the total workload is greater than YV p;f; then again
there is a two level priority rule: all product classes other than the cheapest tardiness
class 0; have priority and their orders are serviced in a cyclic manner just as their
due-dates are reached or passed; the cheapest tardiness class 8; has lowest priority
and its orders are serviced only when the due-dates of the higher priority goods are
distant. A two product example is given in Figure 4-13.

Again as in the no due-date, no setup examples, the switching curves for the two
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products nearly overlap. However, the switching curve shift onto the new due-date
axes is readily transparent. The shift of the due-date axis in the workload plane
represents the tolerance of the policy toward aging orders not due in the near future.
The region corresponding to the “north-east” of the plane corresponds to the workload
states where there is too much work and orders are completed late. The “south-west”
portion of the plane is an area where there are too few orders waiting and if worked
on will be completed early. The intersection of the new axes (one of them is hidden
behind the switching curve) correspond to the state where the wait in queue for an
order exactly equals its due-date lead-time. It is also interesting to note the “kink”
in the switching curves when they come into contact with the orthant. The policy
attempts to avoid backordering by staying ahead of its orders — that is completing
some of them early to allow for more slack when there is an unexpected surge in
demand or difficulty in production. It hedges against this uncertainty in the most
economical manner possible, that is, it only completes early those products with the
cheapest earliness cost. In the example case, the proposed policy attempts to store
completed work in the cheapest class when possible, until no orders for that class
remain, and then will further hedge against backordering by completing early the

more expensive product.

Thus the proposed policy, as presented in the previous case, minimizes the invent-
ory costs of the higher cost product classes at the expense of the cheapest product.
The policy attempts to service the high cost product classes in such a manner that
they are completed exactly when they are due. As in the no due-date case, excess
orders are shifted to the cheapest tardiness product 6;. With due-dates, however,
there can now be too few orders and deficit workload is moved to the product class
easiest to store. The machine can be thought of as “ahead of schedule.” Moreover,
customized product classes have a limit on how much “deficit” workload they can
hold: the policy is forced to switch setup when a product class is exhausted of orders.
This causes the “kink” on the orthant boundary in the proposed switching curves in
Figure 6. In addition, given that the low total workload is costly, the idling threshold

may be non-trivial so as to avoid states of high earliness costs.
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It is interesting to compare these results to those of Van Mieghem. In [44], he
examines a multi-class single server queuing system where the order holding costs are
general convex, non-decreasing functions. This could be used to model a customized
only, not setup, deterministic due-date system where the earliness costs h; are set to
zero for all of the product classes. Van Mieghem’s results show that a generalized
“cu” rule is optimal for this system: that is tardy orders have priority and priorities
within this group are determined, in out notation, by the highest “b” rule: only when
there are no late orders can early ones be filled and this can be done in any manner.
There is no idling policy, the server works as long as there are orders waiting.

Our results provide the dynamic cyclic version of this policy just as was seen in
the no due-date, no setups standardized and customized cases. There is a two level
priority scheme for late orders with all but the cheapest tardiness cost product class
6; have priority and are serviced cyclically; late ; orders are serviced only when there
are no other late orders. Since all of the earliness costs are equal, the proposed policy
services the orders to exhaustion when there are no late orders. The idling threshold
is set at zero and so does not contribute to the policy: the machine works as long as
there is work to do. Again, as in the previous no setup cases, the heavy traffic limit of
the dynamic cyclic policies has the same behavior as the generalized “cy” rule. Thus
our policy and Van Mieghem's are similar when they both are restricted to the one

case where the models overlap.

4.5.6 Standardized products, no setups and due-dates

This problem is like the customized case without the orthant boundaries. Cycle length
and region II vanish. The cycle centers are shifted onto the new “due-date” axes p; f;.
The presence of a finished goods inventory, however, modifies the the proposed policy
from the previous customized one. The policy can be interpreted as the following
rules: 1) only fill orders when they are due, the order can be filled either from the
finished goods inventory or directly from the machine output; 2) if the total workload
present in orders minus that in finished goods inventory is above ¥; p; f; then follow

a two level priority scheme: 2a) orders for high tardiness cost goods (i.e. all but 6;)
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which are closer to their due-date have priority and are serviced in a cyclic manner
and 2b) late 6; orders have lower priority; 3) if total work is below 3", p; f;, then 3a)
late orders have priority and are serviced cyclically and 3b) if there are no late orders
the machine should work on the lowest holding cost product 6; and store them in
the finished goods inventory, up until the workload idling threshold is reached. An

example two product policy is given in Figure 4-14

It is interesting to note that this policy is exactly the same as a shifted standardized,
no setup, no due-da*e one. Moreover, in the heavy traffic limit both have eractly the
same long run average cost. This might seem like an amazing result, but on closer
inspection it makes intuitive sense. The due-dates we have considered have a special
structure: they are O(y/n) and so only influence the fluid limit. This implies that in
our policy, orders will arrive, become late and be serviced before the total workload
has an opportunity to significantly change. Moreover, the orders are continuously
arriving and in this time frame the machine is not able to either get ahead or fall
behind on orders. Thus, if we are servicing orders that are due today and arrived two
weeks ago, tomorrow we will be servicing orders due tomorrow that arrived two weeks

minus one day ago. Due-date lead times have not provided any additional flexibility
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to the system; orders are not serviced earlier or later than usual, only the absolute

time of service has been shifted.

The difference between this case and the customized one is the ability to pre-make
goods for a finished goods inventory. With standardized goods, the policy is always
allowed to hedge against backordering by investing in stored work in its cheapest
form. In the customized case, the inability to manufacture goods in anticipation of
future orders means that the policy might be forced to store work in a more expensive
class when it runs out of orders for #; products and so must finish early the next

cheapest holding cost class.

It is also interesting to note the difference between our system and that of Hari-
haran and Zipkin [19]. In [19], they examine a facility which services requests for
standardized products by re-ordering them. There are due-date lead times. Ly, on
requests and lead times for the facilities orders, L,. The facility follows a one-to-one
replenishment scheme, the factor to optimize is the on-site inventory level. They find
that increasing due-date lead times decreases the average cost of the system up until
the due-date lead time equals the re-order lead time, when L; > L, due-date lead times
have no value. The reason for the difference between this result and ours is twofold:
first, Hariharan and Zipkin consider an uncapacitated system, the constraining factor
is re-order time; and second, the time for an order to become available is greater than
the due-date lead time. Since their model has no capacity constraint, inventory in [19]
plays a slightly different role: it hedges against demand uncertainty but does not act
as stored workload, freeing machine resources for higher cost products. With longer
due-dates there is less urgency for orders to be replenished quickly and so less invent-
ory is needed on-site to hedge backordering risks. Yet in our model there is a capacity
constraint. The same amount of stored work is needed independent of due-date lead
time, as discussed above. Moreover, in their model the problem is only interesting if
Lq < L,, yet in our case, Ly is an order of magnitude greater than L, by our heavy
raffic scalings assumptions. By model construction, there is no conflict between these

two sets of results.
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4.5.7 Customized products, setups and due-dates

This case contains all of the complexity of Chapter 4.2. All three regions can be
present, cycle length, cycle center and idling threshold are non-trivial and product
classes can be binding. Example policies are given in Figures 4-15 and 4-16. It is
interesting to note that if the due-dates are long enough, the proposed policies look like
shifted SELSP switching curves (systems with setup times, however, will always be
slightly different because the expanding cycle length T will eventually hit the orthant
boundary for large total workload). If the due-dates are short, the switching curves
bump into the orthant and flatten out. This can be seen by comparing the long due-
date time in Figure 4-15 to the shorter due-date lead time in Figure 4-16. In addition to
viewing the case as a shifted SELSP policy, it can also be thought of as the customized
product, no setups and due-date case with breadth added to the switching curves as
was seen in the transformation between the no due-date cases without setups to the

case with setups (Figures 4-9 and 4-11).
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4.5.8 Standardized products, setups and due-dates

The switch to standardized products from the last case simplifies the nature of the
optimal dynamic cyclic policy: there are no orthant boundaries. The policy is merely
the SELSP policy on the shifted set of due-date axes (see the example in Figure 4-17).
It is interesting to note that as due-date lead times increase, the entire switching curves
pass into the positive orthant. Standardized goods are then effectively treated as a
customized set of products. Longer due-dates thus can transform a make-to-stock
method of servicing demand for standardized goods into a make-to-order method.
This suggests a relationship between due-date lead times and MTS/MTQ partitions

as briefly mentioned in Federgruen and Katalan (1994).

4.5.9 Mixed product classes

Systems with both customized and standardized goods represent the most general
case considered in this paper. This mix is accounted for in our calculations by the

presence of orthant constraints on some product classes and not others (see Figure 4-
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18 for an example of a mixed system with one customized class, one standardized
class, setup times and due-dates). This generality, however, does not complicate the
system beyond the previous cases. Most of the intuitions described earlier about the
interactions of setups, due-dates and orthant constraints curry over directly to the
combined system.

Overall. The previous discussion has shown how our calculations have allowed us
to freely move around the Venn diagram presented in Figure 1-1. Each circle adds
a component to our scheduling policy. In over-simplified terms, we can label their

effects on the switching curves as

due-dates = shifts
setups = breadth
customized/standardized goods = presence/absence of orthant boundaries.

With this three point guide we are able to qualitatively understand the nature of the
deterministic due-date scheduling problem and its solution even without exactly cal-
culating all of the solutions parameters. Although we have performed all of these

calculations for the deterministic due-date case, these three effects qualitatively hold
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for the more general case. In Appendix C, we examine the cost per cycle for a custom-
ized product with uniform due-date lead times. It would appear the same intuitions
of breadth, shift and orthant boundaries are useful in scheduling this more complex

problem. The insights are robust.



Chapter 5

Conclusion

Theories for scheduling a facility have examined the issues of customized/standardized
product mix, setup penalties and due-dates, but have focused on each of them separ-
ately. The Heavy Traffic Averaging Principle has provided a mechanism for invest-
igating the integrated problem. With it, we have outlined a method to numerically
compute an asymptotically optimal dynamic cyclic policy. For the deterministic due-
date case, we qualitatively describe the policy. The choice of dynamic cyclic policies,
however, was done because of its mathematical elegance. The same heavy traffic ap-
proach could have been used for more general total workload dependent polling tables.
Closed form solutions for this broader class of policies might not exist, but they should
be numerically computable (although they might be intensive in nature).

Nontheless, by studying the diffusion control problem and the optimal cycle center
and cycle length programs, we have not only learned about optimal dynamic cyclic
policies but also abcut the nature of the problem. The risks inherent in the uncertainty
of random demand and service rates cannot be removed. Yet, by proper scheduling, the
impact of the variability can be reduced by channeling the fluctuations in inventory or
order queue length into low cost areas. The presence of setups, due-dates and product
mix each modify how this dampening of cost is performed. Qur results give a simple
interpretation of each of these facets: setups add breadth to the policy switching
curves; due-dates add shifts; and customized products add orthant boundaries. These

guides strengthen our understanding of the unified scheduling problem.
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Appendix A
Limiting Behavior of V/(w)

The work done here is nearly identical to that done in Reiman and Wein [39]. Much

of it is included here merely for the sake of completeness.

As referenced in Chapter 4.2.2, we wish to examine the limiting behavior of V/(w).
There are two claims to demonstrate: the first one is about the limit of V'(w) as w — w
if region II conditions hold; and the second about V’(w) if region III conditions hold

in the limit.

For the first part, we would like to show that

lim V'(w) — 2\/ 376 + &6 )

w—00 w '} ? (A.l)
which is equivalent to (4.77). Since
V(w) = lim 8~V (w+ 8) - V(w)], (A2)

we can express (A.l) as

lim lim Y00 —V(w) _ V& +&" (A.3)

w—+00 540 wé c
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Thus we consider the quantity V(w + ) — V(w). We can write

o T (W(1))

V(w+8) — V(w) = Epys [/;Tw ([Ea W) Wit)

+& +& W]W(t) - g) dtl )

(A.4)
where T, is the first hitting time of w for the (s/7*(w) — ¢, 0?) diffusion process W,
and the expectation is with respect to the initial state w + §. Consider the trivial
policy #(w) = Cw where C is a constant large enough such that the policy always
satisfies the region II conditions as w grows large (this can be done since the cycle

center is a linear function of w). This trivial policy is suboptimal and thus we get
Ty o* . . 1
Viw+8) = V(w) < Euss [ [ (gc+e e cwn - o) dt] - (A%)
Combining (A.2) and (A.5) yields
V'(w) < lim = /T'" (E8°C + €8 + € C W (2) — g) dt (A.6)
S g Buss b 3 6 4 gq . .

In order to show the first part about a region II limit, we need to demonstrate that

both of the following are true

T (w) > 00 as w — oo, (A.7)
and .
() — 549. as w — oo. (A.8)
w 3

The first limit follows quickly from the region II conditions in (4.53). The second is

more difficult.

Based on equation (4.53), 7™ increases with respect to w since V'(w) is positive

and hence § is positive. Therefore 7* increases without bound.

We prove (A.8) by examining the region II conditions. If the region II conditions
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hold in the limit, then

(w) = J S+ faae.(z.’ee-ffn;fi - w)? 4+ &

e‘
" (w) > w,l E‘-’—.. (A.10)

Therefore the drift of W (t) satisfies

and so for large w

7(w)

p(w) = —c——c as w— 0. (A.11)

Take w' large enough so that u(w') < —£. Note that p(w) < —5£ for w > w'. Let
W denote a (—%, 02) Brownian motion, and T, its first passage time. For w > w/, it

follows that the integral in (A.6) has the bound
Tw ~ TO ~
E, ;s [/0 W(t)dt] S wEy4s(Tu] + Es [/0 W(t)dt] , (A.12)

where Tp is the first passage time to wp for a (—£,0%) Brownian motion.

To evaluate the last term in (A.12), let
Tons -
Mﬂ:&U ummL (A.13)
0

where Ty, denotes the first hitting time for W to either wg or b. This function satisfies

the ordinary differential equation (Karlin and Taylor [23])
c ! 02 "
- §h (6) + —2—h (6) = -4, (A.14)

subject to the boundary conditions h(wp) = h(b) = 0, which yields

20%6
2

(20%b + b2c)(1 — e°b/?)
c*(ecb/o® — 1)

h(8) = +§+ (A.15)
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Therefore,
To . . 2026 62
Es [/{; W(t)dt] = blif,r,lo h(8) = 2 + e (A.16)
Since
28
w+6[Tw] =7 (A.17)

it follows from (A.6), (A.12) and (A.16) that as w — oo,

Viw) < lim(£°C+E +&C™) (2“’5 (A-18)

= (&' Cc+e +ac” )(2:’+'—26"72).

20%6 62)
+ _—

c?

Since V'(w)/w? — 0 as w — oo, by (4.53) we have 7*(w)/w — g—.— as w — 00,

which is the claim in (A.8). We are almost ready to show (A.1). Fix w and let W) (¢)
denote a Brownian motion with fixed drift y(w) = s/7*(w) — ¢, and fixed variance
o2. Let T denote the first passage times for this process. The unbounded nature of

7*(w) implies that

-~ 7{o0) L
wE o[ T4) + E; [ J5 W(°°)(t)dt]
- o (A.19)
< Euss [T W()dt] < wEossTW) + Ey [foo W('”)(t)dt] ,

where W(®) is a Brownian motion with drift —c and variance oZ. By the same analysis

as done in equations (A.12) to (£.18), we get

wd o2 §? Tw wé o026 8
=+ 25+ 5= < Buss { /o W(i)dt] <o) Yo Ty (A

Since we have

. T (W . . o
i [ T v e O <o/ e
then
lim lim L (09 = V(w) _ Ve (A.22)

w=$00 § 30 w(s c
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This is what we wished to show for the first claim.

For the second claim we will repeat several of the same procedures used in the
first part, but since the structure of V’(w) is fundamentally different in the limit, the
proof will be more involved and follows the spirit of Reiman and Wein’s proof in [39]

even more closely. We would like to show that

lim L) _ b (A.23)

w=—00 w C

which is equivalent to (4.77). As before. since
V'(w) = ‘lsi_rggé"[V(w + §6) — V(w)), (A.24)

we can express (A.23) as

V(w+4) - V(w) _ bge

Jl,n;lo}'_r,?) wd c’ (A-25)
Thus we consider the quantity V(w + ) — V(w). We write
_ T (W(t)
V(w+8) - Viw) = Eus [ [ (el -g gt (a)
£
Ty WO - ") ‘”] ’
where
. p;(l—-pg) b,'—h,'_ h,'—b,'_
o= .-e{ez':\o-} (2(5:' + hi) [ 2 bo.] [ 2 bo‘] (A.27)
+Pi(1 — pi)(bi + hi)) oo 3 AL Pi) P:(l p;) (A.28)
8 jge*
be pll—pi) [hi—hi ] A.29
+0¢ 55{92;\0-} b 1 l 2 9 { )
o 2
s = 2 bipifi+be X pif: (A.30)

jge* i€0°
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. b + h;
e _
v = X3 20:(1 - pi)

iges

s (oif) (A.31)

We will also make a critical assumption: that the cycle length 7*(w) is monotonically

increasing in w for region III.

As in the first part, we show two claims as an intermediary step in the proof. We

first show
" (w) , (A.32)
w
and
T (w) > 00 as w — oo. (A.33)

Unlike the first part, equation (A.33) is not trivial. and so instead we start with
equation (A.32) and show it by contradiction. Assume that lim,,_,o,7*(w)/w does not

vanish. Using the same trivial policy constructed for equation (A.5) we get

w P e. .
V(1) < Tmsao s Buss [/OT ([»57 O+ g+ c-‘+bo-1W(t)—g) dt]
(A.34)

Assuming the monotonicity of 7 and equation (A.33), the drift of the diffusion process
goes to —c as before. Thus, take w' large enough so that u(w’) < —£. Note that
p(w) < =5 for w > w'. Let W denote a (—%,02) Brownian motion, and T, its first

passage time. Using the same steps as done in equations (A.12) to (A.17) we get

Vi(w) < hm (E-, C+ed°C! +be-) (2t:J+ (A.35)

L ] L] 2 2
= ('C+eC +by) (—:’-+—c‘§-)

2026 52)
+ —_—

c2

Thus, by being in region III, equation (4.53) implies that 7*(w)/w — 0, a contradiction
to the assumption and so proving (A.32).

We show the second claim again by contradiction. Since we have assumed the
monotonicity of 7*, if equation (A.33) does not hold the cycle length must converge to a
constant, denoted by 7*(o0). For large w, W (t) behaves as a (¢, 0%) Brownian motion,

where 1 = s/7*(00) — ¢ could be of either sign. From the fact that s/7*(00) < s/7*(w)
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we obtain
Vi(w) > }l_r)n 6 Eouts [/ Wi(t) dtj - hm Ew+5[Tw] (A.36)
b W — -
> lim = I Es(To), (A.37)

where T is the first hitting time for a Brownian motion with drift u and variance
o2 If p > 0, then E;[To] = oo, and if u < 0, then E;s[Tp] = —4/u. Hence,
Jim V'(w) 2 lim b =g _ 0. (A.38)

w00 |Il|

Equations (A.38) and (4.53) gives the result we wanted to show by contradiction, that
™ (w) — oo.
With both of these claims, we follow steps (A.19) to (A.22) from the first claim

and derive the desired result that

lim lim V(w+6) - V(w) = -@:.
w=+00 § 0 wd c

(A.39)

The structure of O follows directly from the eight observations in Chapter 4 and

the fact that = is expanding.



126 APPENDIX A. LIMITING BEHAVIOR OF V'(W)




Appendix B

An Approximation for V/(w).

In this section, we try to approximate the potential function V’(w) by a closed form
expression. We are interested characterizing the form of V'(w) implied by equa-
tions (3.21) and (3.22) so that we can have a clearer idea about the behavior of the
proposed dynamic cyclic policies. In order to perform some of our calculations, we
only examine a limited case: a system with only standardized products and only setup
times. Because only standardized products are considered, the cost per cycle is easy
to calculate and is given by equation (3.17). In addition, there are no orthant con-
straints as there are no customized products and thus the set of non-binding product
classes ©* is equal to {1,..., N}. The limitation to only setup time penalties is this
discussion, yet does not overly degrade its pertinence as the potential function is al-
most entirely dependent on the setup time penalty and not the setup cost one. Since
the cost per cycle is only dependent on the first moment of the due-date lead time
distribution, the expression for the optimal cycle center z°* and cycle length 7*, given

in equations (4.38) and (4.53) respectively, hold. Thus we can rewrite equation (3.21)

as

2
2/€0" V(1) + horwee g = eV'(w) + ZV"(w) = 0 regionl, (B.1)
2/E9" 69" wh + E9" V(1) + €5 wor

2
—cV'(w) + %—V”(w) —g = 0 regionIl, (B.2)
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2
2\/€9° sV (w) — bgewee — g — cV'(w) + %V"(w) = 0 region III, (B.3)

where we- is Y_;ce- pili — w.

These ODEs have no closed form solution. We relabel our V'(w) approximation
p(w) for ease of notation. We construct p(w) in parts based on the natural region
breakup of the cost function, cycle center and cycle length. In the numerical experi-
ments, we have found that the idling threshold is critical in determining the perform-
ance of the policy and is easily underestimatea. Thr's we start with p(w)’s asymptotic
limit derived in Property 3 in Chapter 4 and by using Taylor Series approximations to
equation (B.1) to (B.3) attempt to push wy as low as the local behavior about p(wy)

will allow, as one would squeeze toothpaste to the front a tube with a fixed cap.

We implement two methods depending on if the inventory costs are identical. If
they are asymmetric, we approximate p(w) in parts: ps(w) will represent p(w) for
w in region III, ps(w) for w in region II but w greater than ¥;cqe pili, p2(w) for w
in region II and w less than };cq. p,-[;, and p;(w) for w in region I. The tail py(w)
we shall assume is the asymptotic limit. p3(w) shall solve a 1st order Taylor series
approximation to the ODE about the region III - region II border, p,(w) solve one
about 3 ;co. pili . and p;(w) around wo. Let us label the workload level at the region

I - region II border as w; and the workload level at the region II - region III border

as wy. The three Taylor series approximations are then as follows

2
hor(w — wo) — epy(w) + Zpi(w) = 0,  (B4)
2\/&?'81’( Y pili) + 68 wee — hee (. pili — wo)
1€0* 1€O*
265" sph(Tico- pili) o’ , _
\/f;?'sm oo Pl )we- — cpa(w) + ?Pz(w) = 0, (B.5)
2, (87627 (X pili — wa)? + €5 sp(ws) + €7 we-

i€0*
+ 26562 (Ticor pili — w2) + 65" sply(w2) (w; —

= = = )
VE €97 (Tico pili — w2)? + £5" spa(w:) P




129

gl

—hor( T pili —wo) = cps(w) + Sph(w) = 0. (BS)
i€0*

The proposed solutions are

heo heo 0’2 heo 0'2

n(w) = —c“(w wo) — 2c2 52 et (w-uo) (B.7)
2 57 €3 3P~;(Zsee‘ pil )
paw) = $1*Y% + ¢ — 1w+ _=w, (B.8)
l C\/fs sp3(Licos pi
o
po(w) = 45"/ + by~ Tow (B.9)

25" €9 (Ticor pili — w2) + f:?‘SPQ(wz)w
c\/€8°€9" w3 + €9" spa(w2)
be.

mw) = w+ s, (B.10)

+

k]

where ¢, ¢2, @3, P4, ¢s, wo, w; and w, are unknown. By the Principle of Smooth Fit,
p'(w) is continuous and thus we have the following smoothness constraints on p(w):
pi(wi) = pa(wr), pi(w1) = py(wr), P2(Ticor pili) = P3(Ticer pili)s Py(Ticor pili) =
P3(Zico P:'l-:')s p3(w2) = pa(w2), p3(w2) = ply(w2). We can additionally impose con-
tinuity constraints on 7(w). Setting T(w{) equal to 7(w;) and 7(w3) equal to 7(w;)
and solving for p(w) we get
o* +0"
w?
p(w) = A2, (B.11)
1y ST - &)
0°* 0% 2

w,) = 4% Wi .
Pslwa) = e ) (B.12)

!

This makes eight equations for eight unknowns. Unfortunately, we have not been
able to find a closed form solution to these unknowns and must resort to numerical
methods. However, the expressions in (B.7) to (B.10) do show the general shape of
the potential function: it starts off growing at an exponential rate and then settles
into a linear growth rate.

If the inventory costs are symmetric, we again approximate p(w) in parts: p;(w)
represents p(w) for w > 0 and p,(w) approximates p(w) for w < 0. We shall use the

same Taylor series approximation of the ODE around wy for p;(w). For py(w), we
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shall proceed with a two step approximation. Noting that for identical costs £ =
(b + h)w and £9°¢9° = L‘;gﬁ. we can first use the asymptotic limit to

simplify the square root in the ODE by

e (h +b)c

h+b 2 2sp(w) Yieo- pi(l — pi) ~ h+b| , 2563 ico pi(l — pi)
— | wd. — ~ - w
4 h+b

(B.13)

We can then use a Taylor series approximation about ¥ ,ce. pili and get for w >

Licor pil

5bYco0 pi(l — pi)

2sb N, pi(1 — pi)
2. _ =1 = Wee B.14

\l“’e h+be Yt T by (B.14)

Using these simplifications and noting that £2° = 232, we arrive at the following two
ODE approximations for equation (B.2)

o?
hon(w — o) + epy(w) + TAi(w) = 0,  (B15)
sb 3K, pi(1 - pi) 2

—bwe — hwo + + cpa(w) + %—p’z(w) = 0. (B.16)

2c

Unlike the asymmetric cost problem, we can find a closed form expression to both
- p1(w) and p;(w) by proposing a more general solution to the ODEs and using the
Principle of Smooth Fit to find the exact answer. We propose the following generalized

forms for the potential function

Plw) = 2w o) + e Coeoe ) 4 g, (B.17
_ h 7 b 0% sbY ice- pi(l — pi) -2
pa(w) = c(;“; pili — wo) + “Wer — 55 2 + ¢4e” -7 {B.18)

where ¢, @2, ¢3, ¢4 and wp are constants which must be computed. Given the asymp-

totic result for p,(w), the constant ¢4 must be zero. Using the smoothness constraints

pi(wo) = 0, pi(wo) = 0, pi((Ticor pili)*) = p2(Ticor pili)7)s PL((Ticer pili)*) =
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Po((Tice- pili)), we can solve for the remaining unknowns. They are

5 i e G Er )

We ]
i€e* 2c
h+b
$h = - 92 [0% +s )" pill - pi)],
¢ i€e*
2c
¢2 =

02+ 5 ico0 pi{l — pi)’
ho? + hs Ticee pi(1 = pi))
2¢c?

With these approximations for p(w) we could find both the cycle time 7 and the
cycle center z° of the proposed optimal cyclic policy for the heavy traffic limit. Yet
these equations for p(w) are more interesting for their statement about the potential
function: that is, p(w) again initially grows in a highly non-linear fashion about the
idling threshold and then stabilizes to a linear limit. The algorithm given in Chapter
3 is more accurate in determining the actual potential function V’(w) and so was used

in the numerical experiments given in Chapter 4.
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Appendix C

Uniform Due-dates

In this section, we derive the cost per cycle for a customized product class with a
uniform due-date lead time distribution. Let f;(s) be uniform between &; and b;. The

fluid limit of the distribution then is

f,(s) _ { S‘(_)La: if s € (t-l,',l_).') ’ (C.1)

otherwise

and the complement of the cumulative distribution is

1 if s < a;
Fis) =4 gio(bi—s) ifse(ab) - (C.2)
0 if s > B.’

For a given cycle center and cycle length, we have the product i work at the cycle

start z]. Proposition 3.1 implies that z} = [}, piFf(s)ds and so L;(0) is defined by

_ I-),'— 25,'-——,'5- for:c;?ss—"'—&ig
L.-(O):{ V20— @) z P (C.3)

bda: k4 -
bitdi = for z§ > %sEip,

We can find Gi(s,t) from Proposition 3.2. The function breaks down into cases

depending on if the steady-state distribution (the “storm front” from before) has
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reached the minimum order due-date a;. Thus if L;(0) — ¢t > &, then

4

0 fors <a;—t
;.-Ea—_(s—(&.—t)) fora;, —t<s<a
Gi(s,t) = J pa- fora; <s< Lj(0)—t . (C.4)
72 (bi — s) for Li(0) -t <s<b
‘ 0 for s > b;
If L,(0) -t < &, then
' 0 fors<a;,—t
(s —(ai — t)) fora; —t <s < Li(0) —¢
Gi(s,t) = < pi for [i(0)—t<s<a - (C.5)
;;'-E'a—'(l_); - 8) fora; <s<¥
{ 0 for s > b;

The non-trivial values of G;(s,t) can be broken-down into three distinct parts. They
are separated by the two partitions @; and L;(0) — t. The earliest due-date function
Li(t) has three forms depending on which part of G;(s,t) the server has competed
work up to. We can find when these epochs occur and then characterize L;(t). Let
t:1 be the time when L;(t) reaches the first partition and t,, be the time of the second
partition. A singe prime (i.e. 7;,) will mark the first case where a; is the first partition,
a double prime for the second where L;(0)—1 is the firsi partition. We shall use similar

conventions for L;(0).

Let’s first examine the @; < L;(0)—t case. The time until @, is reached must satisfy

# = / " - a —(s — (@ — th))ds. (C.6)

Solving for t;, we get

oo bz \/1 _ Zreil = pi)y (C.7)
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With this, we have for t € (7(1 — p;), t};)

L) = a4 J2(B.- =)t =il ) 3)
Similarly t, must satisfy
t = /:'_‘:2 . (@ — tl,))ds + / B0t sf"&ids. (C.9)
Thus we have
t, = Li(0) — & -- &:m+J@mn—m—“;my+§jf%u-m)(cm)

and so for t € (t};,t};)

=, - l_).'—(-l.'t-—T(l'—p.') l
Lilt) = 3+ 7= t 3t (C.11)

Lastly for t € (t!,,T)

2t —1(l—p
Pi

‘))(5,- —&). (C.12)

';a(t)=l3.-—\/ — (b; — Li(0))? + 2(b; — a;)t —

For the second case L;(0)—t is less than @;. By similar manipulations as performed

above we have

th = g ey L0 — @Y (C.13)
and for t € (1(1 — pi), t}})
Zf-’,(t)z&,--—t+Jz(ai—&i)(t; T(l—'Pi)). (C.14)
Again we can find ¢, as before and get
" P (Li(0) = @)® (@ = Lio))| + 7 (C.15)

1—pi | 2(bi — @)
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and have for t € (8}, )

Li(t) = t-r(l=pi) + Li(0) — t — S_Lﬂ)__)_, (C.16)
P. "‘( i i)
Lastly for t € (ti5,7)
Li(t) = b; — \/(b — Li(0))2 + 2(b; — a)t — At = 5,1 — p’)) - a;). (C.17)

With this machinery, we can derive the average cost per cycle. First, we find which
case holds based on z¢ and 7. In total we have three cases: 1) If Li(0) —a; <t
(i.e. the steady-state distribution “front” hits the earliest due-date “line” before ¢;;)
then L;(t)" is always used; 2) if L;(0) — @ > t!, and L;(0) — @; < 7 (i.e. the earliest
due-date function hits the steady-state “front” above the earliest due-date line and the
steady-state front at some time would have hit the earliest due-date line) then Li(t)
is used for t € (r(1 — pi), Li(0) — &) and L;(t)" for t € (Li(0) — @;,7); and 3) if
Li(0) — @; > 7 (i.e. the steady-state “front” never hits the earliest due-date line), then
Li(t) is always used.

If 2 > (b; — &;)/2 then L;(0) — a@; < 0 which is less than ¢;;,. Therefore in
this case L;(t)” is always used. Moreover the cost per cycle is the same as that in
the deterministic due-date case. The cost per cycle for class i is then the same as

equations 4.12, 4.13 and 4.14 with the [; — z¢/p; term replaced by (b; +a;)/2 — ¢/ p;.

If £ < (b; — @;)/2 then the cost per cycle is more complicated. Let’s calculate
the backorder (the first term in equation 3.8) and holding cost (the last two terms of

equation 3.8) parts of the cost per cycle separately.

Backordering only occurs if @ is less than 7(1—p;). If L;(0) is less than min(t},, t}))
then only the triangular shaped region of Gi;(s.t) will fall below zero over the course
of the cycle. In this case, the earliest due-date function L;(t) leaves the backorder

region (i.e. becomes positive) at the point t}, which satisfies

0 .
tl = = Pi s —(a; —th 018
b= [ ol (@ = th)ds (C.18)
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and so

thy = b, — a; +a — J(b; - a; +a)?—a? _gur(l - pi). (C.19)

pi Pi

The backorder cost for the cycle is then

- /% a—t+ \l 206 - a")(tp"' (1= pi)) g, (C.20)

If L;(0) is greater than t, then both the triangular shaped and flat part of Gi(s,t) is

in the backorder region. Thus, backorders are completed at time t2, when

L.(0)-23 . 0
2 _ o P (5. — 42 )
£ = / e el (@ todst [ pids. (C.21)
and so )
2 _ P [(Li(0)—a)? 5
th= 12 | ey~ L) +7 (C.22)
The backorder cost is
7 £ . 2(5,‘ —a;)(t—7(1 = p)) th ‘
i [/ G —t+ J - dt + /t:'. pedt] . (C.23)

There are four cases for the holding cost per cycle: 1) the steady-state distribution
front has passed iuto the backorder region; 2) the steady-state front makes contact
with L;(t) below the earliest due-date line but above zero; 3) the steady-state “front”
make contact above the earliest due-date line and would have had time to hit the
earliest due-date line; and 4) the steady-state “front” does not have enough time to

hit the earliest due-date line.

Thus the case 1) holding cost occurs if t% is more than t}} and the cost is

i f:'2 =4 T ; - i i:’ 1) — —,' .
h; [/p (ng(t)) dt +/t~ ((’,.{)_&,(Lii"(t) —a;)+ (1 —/’i_[})#_)—&,i)l'm(t)) dtl '
" (C.24)

10
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Case 2) is for t3 and L;(0) — @; less than t}} and the cost is

[ (La(h) dt + i (Lip(0)) dt

(C.25)
+ fn (s (L (n—a)+(1—p.L,,“’ 2)L(1)) dt] .

For case 3), L;(0) — a; is greater than t}, and less than 7. The holding cost for the

cycle is then

B 1 (Latt) de + £ (r,e;—,u‘::-z(t)-a.-)+(1—p.ag‘—:’;i)Lz(t)

Li0)=a, ( Fo ey )—a\rl/\ [
S A T A U Gy (T =prgl=ty E (1)) dt (C.26)—

+ fL.(o,-a. (2 (L) — @) + (1 — pi BE=2) L(1)) dt]

For the last case, L;(0) — a; is greater than t}, and 7. The holding cost is

B [f: (a0) e+ 5 (2 (B0 ~3) + (0 - BE @) &
417, (52 (Ei(t) — ) + (1 — pe B2 Lig(0)) ]

As can be seen, the average cost per cycle for the uniform due-date case is more
complicated than the deterministic due-date example. Much of the structure, however,
carries over from the deterministic due-date case. If the cycle start z} is above (b; —
@;)/2 then the cost structures are the same and one would expect a form of switching
curves identical to the SELSP ones shifted by p;(b; +@;)/2. Thus, we expect the same
qualitative value for due-dates as in the deterministic case. Differences begin to occur
when the cycle start moves close to the positi\}e workload constraints. Cost per cycle
increases rapidly as the machine is forced to work on orders with due-dates farther
in the future than would have been the case in a deterministic due-date setting with
a fixed due-date of (b; + @;)/2. If the cycle center was moved into this region. the
higher inventory cost would favor a shorter cycle length than would be found in the
deterministic due-date case.

Finding the optimal policy, however, by optimizing the average cost per cycle with
respect to cycle center z¢ and cycle length 7 appears to be numerically intensive.

Nonetheless. the calculation performed here could be used for the potential function
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optimizatior vuilined in Chapter 3.
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