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Abstract

We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase 

transition in the tripeptide L-alanyl-L-prolyl-glycine monohydrate (APG) from 6 to 320 K and 

report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat 

capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. 

The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by 

strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition 

and show that differential scanning calorimetry can reliably characterize the observed phase 

transition with <5 mg of the sample. Additionally, the standard entropy of formation from the 

elemental substances and the standard entropy of hypothetical reaction of synthesis from the 

amino acids at 298.15 K were calculated for the studied tripeptide.

INTRODUCTION

Partial or complete structural elucidation of the atomic level structure of biological 

molecules, such as peptides and proteins, is essential for subsequent investigation of their 

function and disfunction. Structural information at the atomic level is primarily provided by 
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diffraction and magnetic resonance techniques. Because both techniques can benefit from 

low temperatures, these experiments are often performed on cryogenically cooled samples. 

Furthermore, certain techniques, such as dynamic nuclear polarization (DNP)1,2 in 

combination with cryogenic magic-angle spinning (MAS)3 nuclear magnetic resonance 

(NMR), provide valuable information, which may not be otherwise available. At the same 

time, it is the ambient temperature structure, which is of interest4–7

Calorimetric techniques, such as differential scanning calorimetry (DSC) or adiabatic 

calorimetry, are particularly suitable for probing temperature-dependent changes in 

structure, including polymorphism8–10 and glass-like transitions.5,11–15 If phase 

transformations, irreversible changes, or inadequate reproducibility cannot be detected in 

calorimetric experiments, the low-temperature spectroscopic data are likely to be relevant. 

Additionally, calorimetric information is also valuable for thermodynamic analysis of 

processes and thermodynamic databanks.16

Canonical amino acids or their common derivatives and small peptides are two classes of 

relatively simple molecules conventionally used for methods development aimed at 

biological objects. Several such model molecules have been routinely used in the Griffin 

Lab. Low-temperature thermodynamic properties are available for most of the canonical 

amino acids,8-10,18-31 as well as a number of other biological molecules,17 including short 

peptides32–36 and even proteins.11,15,37–40 Most of these works report relatively monotonic 

heat capacity dependence without well-pronounced phase transitions, and additive behavior 

of heat capacity in a wide range of temperatures.34,36 The present work was motivated by a 

variety of spectral changes observed in variable temperature MAS NMR spectra of two 

model tripeptides, APG (Ni et al., in preparation) and N-formyl-L-Met-L-Leu-L-Phe (N-f-

MLF–OH).41 Our previous investigation of MLF–OH that exhibits similar peculiarities in 

the NMR data41 did not reveal any phase transitions.36 Thus, the purposes of the present 

study included the extension of that investigation to APG using adiabatic calorimetry and 

DSC, detection of possible phase transitions and their thermodynamic characteristics, and 

obtaining the standard thermodynamic properties of the tripeptide in a wide temperature 

range from 6 to 320 K.

EXPERIMENTAL SECTION

Synthesis and Characterization of the Tripeptide

Tripeptide Ala-Pro-Gly (lot 0513046) was purchased from Bachem (King of Prussia, PA) 

and recrystallized from water. The crystal structure of the sample (space group P212121, Z = 

442,43 was confirmed by single-crystal X-ray diffraction (Siemens three-circle Platform 

diffractometer) and by powder X-ray diffraction (PANalytical X-’Pert Pro multipurpose 

diffractometer equipped with Oxford Cryosystems PheniX cryostat). The sample purity was 

>99% (TLC) and in accordance with elemental analysis for anhydrous tripeptide 

(C10H17N3O4), found/calculated (mass %): C 46.09/45.97, H 7.27/7.33, N 16.01/16.08.

Adiabatic Calorimetry

A precision adiabatic calorimeter (Block Calorimetric Thermophysical, BCT-3) was used to 

measure heat capacities over the temperature range from 6 to 320 K. The design and 
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operation of an adiabatic calorimeter are described in detail elsewhere.44,45 A calorimetric 

cell is a thin-walled cylindrical vessel made from titanium with a volume of 1.5 × 10−6 m3 

and mass of 1.626 ± 0.005 g. A miniature iron–rhodium resistance thermometer (nominal 

resistance 100 Ω; calibrated on ITS-90 standard by the Russian Metrology Research 

Institute, Moscow region, Russia) was used to measure the temperature of the sample. The 

temperature difference between the ampule and an adiabatic shield was controlled by a four-

junction copper–iron chromel thermo-couple. The sensitivity of the thermometric circuit was 

1 × 10−3 K and that of the analog-to-digital converter was 0.1 μV. The accuracy of the 

calorimeter was verified using standard reference samples (K-2 benzoic acid and α-

Al2O3)46,47 prepared by the Institute of Metrology of the State Standard Committee of the 

Russian Federation. The deviations of our results from the recommended values of NIST46 

are within 0.02 Cp,m between 6 and 20 K, 0.005 Cp,m between 20 and 40 K, and 0.002 Cp,m 

between 40 and 320 K. The standard uncertainty for the temperature was u(T) = 0.01 K, and 

the relative standard uncertainty for the enthalpies of transitions was ur,(Δtr,H) = 0.002.

Differential Scanning Calorimetry

DSC experiments were conducted on a differential scanning calorimeter DSC 204 Fl 

Phoenix, Netzsch–Gerätebau, Germany. The calorimeter was calibrated and tested against 

melting of n-heptane, mercury, tin, lead, bismuth, and zinc. The standard uncertainty for 

temperature was u(T) = 0.5 K, and the relative standard uncertainty for enthalpies of 

transitions was ur(ΔtrH) = 0.01. The measurements were carried out in an argon atmosphere 

in accordance with protocols described elsewhere.48,49

Heat Capacity Measurements

A sample of tripeptide (0.1991 g) was placed in a calorimetric ampule, which was then filled 

with dry helium gas to the pressure of 4 kPa at room temperature to facilitate heat transfer. 

Initially, the sample was cooled to the temperature of the measurement onset (~6 K) at a rate 

of 0.01 K/s. Then, the sample was heated in 0.5 to 2 K increments at a rate of 0.01 K/s. The 

sample temperature was recorded after an equilibration period (temperature drift <0.01 

K·s−1, ~10 min per experimental point).

The experimental values of Cp,m were obtained in four series reflecting the sequence of 

experiments. The heat capacity of the sample was between 15 and 50% of the overall heat 

capacity of the calorimetric ampule with the substance within the studied temperature range.

The experimental data were smoothed using least-squares polynomial fits as follows

where Ai and Bi are polynomial coefficients. Smoothing of the experimental values of Cp,m 

was performed over the whole temperature range excluding the intervals of phase 
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transitions. The relative standard uncertainty of heat capacity ur(Cp,m) is 0.006 and 0.003 in 

temperature ranges 6 ≤ T ≤ 40 K and 40 ≤ T ≤ 320 K, respectively.

The molar mass of L-Ala-L-Pro-Gly·H2O (261.28 g·mol−1) was calculated from the 

International Union of Pure and Applied Chemistry (IUPAC) table of atomic weights.50

RESULTS AND DISCUSSION

Heat Capacity and Thermodynamic Characteristics of Phase Transition

Experimental molar heat capacity Cp,m of L-Ala-L-Pro-Gly·H2O over the temperature range 

from 6 to 320 K is presented in Figure 1. There are two regions in which heat capacity 

changes nonmonotonically.

The strong peak in the range of 226 to 265 K is characteristic of a first-order phase 

transition, which is assigned to a polymorphic solid-to-solid phase transition (crII ↔ crI). 

The anomaly between 275 and 287 K is attributed to excitation of rotational degrees of 

freedom. Both of these features were well-reproducible in all experiments, and their 

standard thermodynamic properties obtained using adiabatic vacuum calorimetry are 

presented in Table 1.

The crI ↔ crI phase transition exhibits strong thermal hysteresis, and upon slow cooling 

(0.05 K/s) the high-temperature phase crI could be supercooled to ~210 K (pink trace in 

Figure 1). Further cooling of the sample was accompanied by heat liberation associated with 

the transformation of the metastable phase crI to the stable phase crII. This supercooling 

phenomenon was also clearly observed in a single-crystal X-ray diffraction study, where 

single-crystal disintegration occurred in the same temperature range (Figure 2). All X-ray 

attempts to cool a single crystal of APG eventually resulted in full disintegration of the 

sample, sometimes in an explosive manner, indicating significant changes in the crystal 

structure. The strong thermal hysteresis is, in turn, consistent with a large activation barrier 

separating two significantly different crystal structures. Present result can thus be contrasted 

with the previously studied tripeptide N-f-MLF–OH.36 While both exhibit similar anomalies 

in the temperature-dependent MAS NMR spectra involving line doubling, calorimetric 

experiment established that no phase transitions occurred in the case of N-f-MLF–OH.

While adiabatic vacuum calorimetry is a reliable and precise method of investigation of 

polymorphic phase transitions in different materials, including peptides and proteins, it 

requires a relatively large sample size, thus limiting its application to mass limited 

biomolecules. DSC is less precise but can be used to study smaller samples. To test its 

limits, we applied DSC to characterization of the polymorphic phase transition crII ↔ crI 

using two small samples (10.6 and 4.7 mg) and compared the obtained thermodynamic 

properties with the result of adiabatic vacuum calorimetry. Figure 3 shows the DSC traces 

for the two studied samples, and the corresponding thermodynamic properties of the phase 

transition are presented in Table 2. The enthalpy of transition, transition temperature, and 

temperature range agree with each other for the two experiments and are within the 

experimental error compared with the values obtained by adiabatic vacuum calorimetry 
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(Table 1). Therefore, DSC should be suitable for characterization of polymorphic phase 

transitions in peptides and, possibly, other biomolecules using several milligrams of sample.

Low-temperature heat capacity data were also analyzed using the multifractal model51

(1)

where D is the fractal dimension, N is the number of atoms in a molecular unit, k is the 

Boltzmann constant, γ is the γ function, ξ is the Riemann ξ function, and Θmax is the 

characteristic temperature. For a particular solid, 3D(D + 1)kNγ(D + 1)ζ(D + 1)= A is a 

constant, and eq 1 can be rewritten as follows

(2)

which can be used to obtain D and Θmax. Because below 50 K Cp ≈ Cν, experimental data 

in the range 20 ≤ T ≤ 50 K were used. We obtained Θmax = 252.0 K (relative standard 

uncertainty ur(Θmax) = 0.007) and D = 2, which according to the fractal model51 

corresponds to a layered structure.

Standard Thermodynamic Functions

The Debye theory52 was used to fit the experimental data in the range 6 ≤ T ≤ 12 K and 

extrapolate it to 0 K

(3)

where D is the Debye function and n and ΘD are fitting parameters. Using this equation, we 

obtained n = 6, ΘD = 130.5 K, and the relative standard uncertainty of the fit ur(Cp,m) = 

0.013 for 6 ≤ T ≤ 12 K. In subsequent calculations, we assumed that the relative standard 

uncertainty of the extrapolated Cp,m to T = 0 K was the same.

H(T) - H(0) and S(T) were calculated by numerical integration of Cp,m with respect to T and 

ln T, respectively, and Gibbs energy was calculated from enthalpy and entropy following 

published procedures.53 The residual entropy of L-Ala-L-Pro-Gly·H2O was assumed to be 

zero (Table 3). The standard entropies of the tripeptide and elemental substances, including 

carbon,54 hydrogen,55 nitrogen,54 and oxygen,55 yielded the standard entropy of formation

where cr, gr, and g are crystal, graphite, and gas, respectively. The standard entropies of 

amino acids, including alanine,31 proline,28 and glycine,27 also yielded the standard entropy 

of synthesis of the tripeptide from individual amino acids
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The formation of a complex molecule (tripeptide) from several simpler molecules (amino 

acids) usually results in reduction of entropy. The positive change of entropy in this process 

indicates that the formation of another small molecule (water) in the liquid state outweighs 

the loss of entropy due to formation of a larger molecule. The overall magnitude of entropy 

change is relatively small and the Gibbs energy of the reaction is likely to be dominated by 

the enthalpy contribution.

CONCLUSIONS

Adiabatic vacuum calorimetry revealed a well-defined first-order polymorphic phase 

transition in a crystalline tripeptide L-Ala-L-Pro-Gly·H2O. This transition exhibits a strong 

thermal hysteresis, and the high-temperature phase can be readily supercooled by ~50 K. 

The supercooling phenomenon was also observed in single-crystal X-ray experiments. 

Because of the polymorphic transition in this situation, structural information obtained at 

cryogenic temperatures is likely to be irrelevant to the room temperature structure.

In DSC experiments, the same transition was accurately reproduced with <5 mg of sample. 

The standard thermodynamic characteristics of the phase transition were independently 

determined by both adiabatic calorimetry and DSC, and the obtained values were within the 

experimental error. Thus, it should be possible to apply DSC to the investigation of small 

biological samples, although additional verification on other model systems is desirable.

Heat capacity of the peptide was measured over the range from 6 to 320 K by precise 

adiabatic vacuum calorimetry. Standard thermodynamic functions of the tripeptide were 

calculated over the range from 0 to 320 K. The standard entropies of formation of the 

tripeptide from elemental substances and individual amino acids have also been reported.

The low-temperature (T ≤ 50 K) heat capacity was analyzed using Debye’s theory of heat 

capacity and its multifractal model, and a layered structure topology was established for the 

studied tripeptide.

The next stage should involve application of calorimetry to other objects, such as model 

amyloidogenic peptides.
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Figure 1. 
Temperature dependence of the molar heat capacity Cp,m of L-Ala-L-Pro-Gly·H2O. Pink line 

corresponds to a metastable state.
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Figure 2. 
Photographs showing a supercooled single crystal of APG fracturing due to a polymorphic 

phase transition.
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Figure 3. 
DSC traces for two samples of APG (10.6 mg, top; 4.7 mg, bottom) showing the phase-

transition region.
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Table 1

Standard Thermodynamic Characteristics of Phase Transitions of L-Ala-L-Pro-Gly·H2O Obtained by Adiabatic 

Vacuum Calorimetry

transition temperature range (K) Tmax (K) ΔtrHm (kJ·mol−1) ΔtrSm (J·K−1·mol−1)

crII ↔ crI 226–265 257.7 ± 0.5 2.944 ± 0.015 11.42 ± 0.06

anomaly 275–287 280.7 ± 0.5 0.0806 ± 0.0004 0.2873 ± 0.0014
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Table 2

Standard Thermodynamic Characteristics of the crII ↔ crI Phase Transition of APG Obtained by DSC

sample mass
(mg)

temperature range
(K) Tmax (K) ΔtrHm (kJ·mol−1)

10.6 228–263 257.7 ± 0.5 2.887 ± 0.014

4.7 228–263 257.9 ± 0.5 2.992 ± 0.015
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Table 3

Calculated Molar Heat Capacities and Thermodynamic Functions of Crystalline L-Ala-L-Pro-Gly·H2O at 0.1 

MPa
a

T (K) Cp,m (J·K−1·mol−1) H(T) – H(0) (kJ·mol−1) S(T) (J·K−1·mol−1) –[G(T)– H(0)] (kJ·mol−1)

Crystal II

5 0.235 0.000322 0.0783 0.0000977

10 1.79 0.00473 0.627 0.00149

15 6.26 0.0234 2.08 0.00782

20 13.50 0.07282 4.868 0.02455

25 22.66 0.1631 8.848 0.05817

30 32.37 0.3001 13.83 0.1148

35 42.52 0.4874 19.58 0.1980

40 52.79 0.7255 25.93 0.3115

45 62.63 1.014 32.72 0.4580

50 71.54 1.350 39.79 0.6394

60 89.18 2.154 54.39 1.110

70 106.6 3.133 69.45 1.729

80 122.9 4.281 84.76 2.500

90 137.5 5.585 100.1 3.424

100 150.2 7.025 115.3 4.501

110 162.1 8.587 130.1 5.728

120 174.1 10.27 144.8 7.103

130 186.1 12.07 159.2 8.623

140 197.2 13.99 173.4 10.29

150 208.8 16.01 187.3 12.09

160 222.5 18.17 201.3 14.03

170 235.1 20.46 215.1 16.11

180 246.6 22.87 228.9 18.34

190 258.0 25.39 242.5 20.69

200 269.8 28.03 256.1 23.19

210 282.2 30.79 269.5 25.81

220 292.6 33.67 282.9 28.58

230 302.3 36.64 296.1 31.47

240 312.0 39.71 309.2 34.50

250 321.7 42.88 322.2 37.65

260 331.4 46.15 335.0 40.94

265 336.3 47.82 341.3 42.63

Crystal I

265 336.3 50.76 352.4 42.63

270 341.9 52.46 358.8 44.41

273.15 345.8 53.54 362.7 45.55

280 354.7 55.94 371.4 48.06
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T (K) Cp,m (J·K−1·mol−1) H(T) – H(0) (kJ·mol−1) S(T) (J·K−1·mol−1) –[G(T)– H(0)] (kJ·mol−1)

290 367.0 59.55 384.1 51.84

298.15 376.6 62.58 394.4 55.01

300 378.8 63.28 396.7 55.74

310 393.2 67.13 409.4 59.77

320 418.1 71.17 422.2 63.93

321 421.6 71.59 423.5 64.35

a
Standard uncertainty of temperature u(T) = 0.01 K. Relative standard uncertainty of heat capacity ur(Cp,m) is 0.02, 0.005, and 0.002 in ranges 6 ≤ 

T ≤ 15 K, 15 ≤ T ≤ 40, and 40 ≤ T ≤ 321 K, respectively.
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