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The Double Chooz experiment has determined the value of the neutrino oscillation parameter 613 from
an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a
three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a
region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used
in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely

independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and
energy-dependent fit finds sin® 2613 = 0.097 = 0.034 (stat.) & 0.034 (syst.), excluding the no-oscillation
hypothesis at 2.00. This result is consistent with previous measurements of sin? 26;3.

© 2013 Elsevier B.V. All rights reserved.

Neutrino oscillations are well established in the three flavor
paradigm and can be described by three mixing angles (612, 623,
013), a CP-violating phase §, and two mass-squared differences
(Am3,, Am2,). Among the three mixing angles, 643 is the small-
est and has recently been revealed to be non-zero [1-7]. The value
of 613 is a critical input for plans to measure § and the neutrino
mass hierarchy. Furthermore, it may provide important clues for
physics beyond the Standard Model. The current best measure-
ments of 613 come from the reactor v.-disappearance experiments
Double Chooz, Daya Bay, and RENO [6,7,5]. All three experiments
rely on the detection of the inverse beta decay (IBD) interaction,
De+p — et +n, in Gd-doped liquid scintillator (LS). Typically these
experiments search for a prompt positron signal followed by an
~ 8 MeV gamma cascade from neutron capture on Gd. Background
due to natural radioactivity, which is predominantly below 4 MeV,
is largely suppressed. However, in Double Chooz it is also possible
to search for a prompt positron followed by a 2.2 MeV gamma ray
from neutron capture on hydrogen, thanks to the low background
environment in the detector.

Though the latter analysis presents several challenges, it pro-
vides important benefits: a cross-check on the standard Gd analysis
and improved V. energy spectrum shape information which is es-
sential to our knowledge of 613.

In this Letter we present an analysis of IBD interactions with
neutron capture on hydrogen in the Double Chooz far detector. Fol-
lowing the same approach as in previous reports [3,6], this analysis
compares the candidate event rate and prompt energy spectrum
shape to the Monte Carlo (MC) prediction. This analysis, how-
ever, differs from those reported [3,6] in two major ways. First,
the definition of the delayed signal is changed from the ~ 8 MeV
gamma cascade characteristic of a neutron capture on Gd to the
2.2 MeV gamma ray characteristic of a neutron capture on hydro-
gen. This change allows us to select a data set that is statistically
independent of the Gd-based data set and has different system-

atic uncertainties and background characteristics. Second, because
hydrogen captures occur in the undoped LS in addition to the Gd-
doped region, a three times larger fiducial volume is available for
analysis.

The Double Chooz far detector is located at a distance of
~ 1050 m from the two 4.25 GWjy, reactor cores of the Chooz
Nuclear Power Plant, with a rock overburden of 300 meters wa-
ter equivalent. The central region of the detector consists of three
concentric cylinders, collectively called the inner detector (ID). The
innermost cylinder is the 10.3 m? target. This is surrounded by
a y-catcher (22.5 m3). The target liquid is a PXE-based LS doped
with Gd at a concentration of 1 g/I [8], while the y-catcher liquid
is an undoped LS. Outside the y-catcher is the buffer, a 105 cm
thick layer of non-scintillating mineral oil contained in a stainless
steel tank. Light from the target and y-catcher volumes is collected
by 390 low-background 10-inch PMTs installed on the inner wall
of the buffer tank [9-11]. Outside the buffer tank, and optically
isolated from it, is the inner veto (IV), a 50 cm thick layer of liq-
uid scintillator in a steel tank. The IV is equipped with 78 8-inch
PMTs and serves as a veto for cosmic rays and fast neutrons en-
tering the detector. The IV is surrounded by a 15 cm thick layer of
demagnetized steel which suppresses y-rays from radioactivity in
the surrounding rock. Above the IV is the outer veto (OV) detec-
tor, a scintillator-strip-based muon tracking system. The OV system
was installed during the data taking period, and about 2/3 of the
data in this analysis benefit from OV use. A more detailed descrip-
tion of the entire detector can be found in Ref. [6].

The number of protons is estimated to be (6.747+0.020) x 10%°
in the target [6] and (1.582 = 0.016) x 10%C in the y-catcher vol-
ume, the latter being based on a geometrical survey and measure-
ments of the scintillator hydrogen fraction.

The IBD signal is a twofold coincidence of a prompt positron
energy deposition, Eprompt, and a delayed gamma energy deposi-
tion, Egelay, resulting from a neutron capture on hydrogen or Gd.
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The separation in time and space, At and Ar, of the coincident
events are determined by neutron capture physics. Neutron cap-
ture times are 200 ps in the y-catcher and 30 ps in the target,
where the presence of Gd greatly increases the neutron capture
probability. In this analysis, where we search for Egejay =~ 2.2 MeV
without any fiducial volume cuts, we expect to detect candidates
in both the target and y-catcher. Given that only 13% of the IBD
interactions in the target volume are followed by neutron capture
on hydrogen [6], 95% of the signal events used in this analysis are
located in the y-catcher.

Vertex reconstruction is based on a likelihood maximization of
the charge and timing of the pulses detected at each PMT [6]. It
allows the spatial correlation of prompt and delayed events, effec-
tively removing accidental backgrounds.

We reconstruct the energy of all events via two steps: (1) a
total charge (Qo) to photoelectron (PE() conversion; and (2) a
PE¢y¢ to visible energy (E,is) conversion as done in the Gd anal-
ysis [6]. The first step takes into account a channel-by-channel,
non-linear gain calibration. The second step uses a light yield of
~ 230 PE/MeV, defined by the neutron capture peak on hydro-
gen in 2>2Cf calibration source data. By applying correction factors
derived from spallation neutron data, this step also corrects for
the time variation and vertex dependence of the detector response.
The same method is used to determine E,;s for the MC sample.

This analysis uses data collected by the Double Chooz far de-
tector between April 13, 2011 and March 15, 2012, which is the
same time-period used in the latest Double Chooz Gd analysis [6].
The total live time is 240.1 days, which is different from 227.9 days
used in the Gd analysis [6] because of different analysis cuts.

The IBD candidate selection is performed via the following pro-
cedure. To reduce muon-induced backgrounds, we reject all events
that occur less than 1 ms after a cosmic muon crosses the IV or
the ID. We use PMT charge isotropy and PMT pulse simultane-
ity cuts to reduce backgrounds caused by light emitted from PMT
bases (“light noise”) [3]. We apply the following coincident selec-
tion cuts to the remaining events: 0.7 MeV < Eprompt < 12.2 MeV;
1.5 MeV < Egelay < 3.0 MeV; 10 ps < At < 600 ps; Ar < 90 cm.
Furthermore, we reject prompt candidates that are coincident with
a signal detected in the OV. This veto, along with the 10 ps lower
bound of the At cut, renders backgrounds due to stopped muons
negligible. Finally, we apply a multiplicity cut to reduce fast neu-
tron backgrounds. This cut demands that no trigger occur in the
600 ps preceding the prompt candidate and that no trigger other
than the delayed candidate occur in the 1000 ps following the
prompt candidate.

The selection cuts yield a total of 36284 events. Among these
IBD candidates are backgrounds due to uncorrelated accidental co-
incidences, fast neutrons produced by muons traversing the nearby
rock, long-lived cosmogenic isotopes (mainly °Li), and a small
contribution from light noise. Accidentals are the dominant back-
ground, comprising almost half the IBD candidate sample.

We measure the rate and energy spectrum of accidentals by
analyzing a sample of off-time coincidences. We collect this sam-
ple by looking for a delayed trigger between 1 s + 10 ps and
1 s+ 600 ps after a prompt candidate event and applying a mul-
tiplicity cut for a period of 1 s — 600 ps to 1 s+ 1000 ps. To
increase sample statistics, we open 124 consecutive windows af-
ter this first window, thus sampling accidentals between 1 s and
1.2 s after each prompt candidate. After correcting for inefficiencies
associated with this selection method, we obtain an accidentals
rate of 73.45+0.16 events/day. The result is cross-checked among
multiple independent methods, and the quoted value includes the
largest systematic uncertainty among them.

The fast neutron background consists of a proton recoil, the
prompt event, in coincidence with the capture of the neutron, the

delayed event. A single muon passing close to the detector may
generate one or more fast neutrons which traverse the IV and ID.
We tag the number of IBD candidates in which fast neutrons are
recorded simultaneously in the IV and ID by requiring > 2 IV
PMT hits and an ID-IV pulse-timing correlation. We estimate the
tagging efficiency from an event sample with Eprompe > 12 MeV,
following the same method as used for the Gd analysis [6]. From
this sample we obtain a spectrum shape and, using the tagging ef-
ficiency and sample purity, we calculate the fast neutron rate to be
2.50 £ 0.47 events/day.

Muon-induced radioactive isotopes which emit a neutron im-
mediately following B-decay, such as °Li, can be a background to
IBD reactions. As the lifetime of °Li is 257 ms, we use the cor-
relation of the °Li decay events to previously detected muons to
estimate the °Li background rate. To increase the purity of °Li
in our sample, we consider only the subset of IBD candidates for
which the spatial separation between the prompt event and the
reconstructed muon track is within a defined distance. While ID
PMTs are used to reconstruct the muon tracks in the Gd analy-
sis [6], IV PMTs are used in this analysis to account for muons
going through non-scintillating buffer liquid. To estimate the °Li
rate in this subsample, we fit the time difference At, between
the IBD candidate prompt events and preceding muons with an
exponential function characterized by the °Li lifetime, plus a flat
function to accommodate remaining accidentals and IBD candi-
dates. The estimated rate is found to be consistent with that in
the Gd analysis [6], accounting for the different fiducial volumes
and selection efficiencies, and the difference is included in the sys-
tematic uncertainty. We find a °Li rate of 2.8 4 1.2 events/day.
Muon track reconstruction efficiency is evaluated by a MC study
and added into the systematic uncertainty. We estimate the shape
and associated systematic uncertainty from MC, as was done in the
Gd analysis [6].

Finally, we found a small number of light noise events creat-
ing two consecutive triggers that are identified as IBD candidates.
A volume cut on the reconstructed vertex is used to quantify the
rate and Eprompe spectrum shape for this type of background. We
estimate this background rate as 0.32 4 0.07 events/day.

Calibration data taken with a 2>2Cf source in both the neutrino
target and the y-catcher are used to evaluate the fraction of neu-
tron captures on hydrogen within the selection cuts At, AEgelay,
and Ar. From these data, biases in these neutron selection criteria
are evaluated and their contribution to the systematic uncertain-
ties is estimated. The neutron detection efficiency, €,, which in-
cludes both the efficiency of the IBD selection and the fraction of
neutron captures which occur on hydrogen, is found to be 78.53%
in the y-catcher, 1.66% lower than the fraction predicted by sim-
ulation. Therefore, the Monte Carlo simulation for the prediction
of the number of captured neutrons was reduced by a factor of
0.984 in the y-catcher. The remaining spread in the difference be-
tween the data and Monte Carlo across the y-catcher amounts to
0.46%, resulting in €; = 0.7853 + 0.0036. A similar procedure was
implemented in the target giving €, =0.0846 & 0.0018.

Weighting by the fraction of predicted IBD candidates in each
region, we estimate the uncertainty in the detection efficiency over
the entire fiducial volume as 1.0%. Finally, we find that an uncer-
tainty of 1.2% accounts for the MC modeling of neutron migration,
called spill-in/out [6], between detector subvolumes. Adding these
factors in quadrature, we obtain a total detection efficiency uncer-
tainty of 1.6%.

Energy scale uncertainty arises from three sources: time vari-
ation, non-linearity, and non-uniformity in the detector response.
We treat the first two effects exactly as in Gd analysis [6]. The
third effect has a larger impact on the hydrogen analysis because
of its extended fiducial volume. We estimate it by comparing data
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Table 1

Summary of the number of observed IBD candidates and the predic-
tions for the signal and background contributions used as input for
the oscillation fit analysis.

Source Predicted/observed
events

Ve prediction (no osc.) 17690

Accidentals 17630

Cosmogenic isotopes 680

Fast neutrons 600

Light noise 80

Total prediction 36680

Observed IBD candidates 36284

Table 2
Summary of signal and background normalization uncertainties rela-
tive to the predicted signal.

Source Uncertainty [%]
Reactor flux 1.8
Statistics 1.1
Accidental background 0.2
Cosmogenic isotope background 1.6
Fast neutrons 0.6
Light noise 0.1
Energy scale 0.3
Efficiency 1.6
Total 31

Table 3
Summary of pull parameters in the oscillation fit. The input values are determined
by measurements, and the best-fit values are outcome of oscillation fit.

Pull parameter Initial Best-fit
value value
Cosmogenic isotope [day~!] 28+1.2 3.9+0.6
Fast neutrons [day~'] 2.54+0.5 2.6+04
Energy scale 1.00+0.02 0.99+0.01
Am%(1073 eV?) 2.32+0.12 2.31+0.12

and MC from calibration source deployments in the y-catcher. In
total, we find an energy scale uncertainty of 1.7%, as compared to
1.1% used in the Gd analysis [6].

The reference Eprompt spectrum is selected from the same reac-
tor power-based v, MC sample generated for the Gd analysis [6].
Systematic uncertainties on the reference spectrum are the same
as for the Gd analysis. We use the Bugey4 measurement to mini-
mize the systematic uncertainty on the reactor neutrino flux pre-
diction [12,6], which is the dominant uncertainty in this analysis.
The no-oscillation expectation for the number of neutrino candi-
dates is 36680 £ 520, including background. The predicted number
of events for both signal and backgrounds are summarized in Ta-
ble 1, and uncertainties relative to the predicted signal statistics
are shown in Table 2.

To extract sin®260;3 we compare both the rate and shape of
the data to the reference Eprompt spectrum in 31 variably sized
energy bins from 0.7 to 12.2 MeV. The fit procedure is identi-
cal to that used in the Gd analysis [3,6], except that we use a
single integration period and include the Ar cut efficiency as an
additional source of uncertainty. As in [3,6], the pull parameters
in Table 3 are allowed to vary in the fit, subject to the con-
straints listed on their initial values. We use the MINOS value of
Am? = (2.32 £0.12) x 1073 eV? as input for the fit [13]. We find
a best fit of

sin® 2613 = 0.097 £ 0.034 (stat.) £ 0.034 (syst.)

o z —— Data
5= Best fit: sin’(26,,) = 0.097
24 at Am? = 0.00231 eV ?
< 10° = Accidentals
E Lithium-9
C Fast neutrons
» E——1 Correlated light noise
10?

l||||||
1 IIIIII|

10 /
== 77
4 6 ] 12

‘ 10
Energy (MeV)

Fig. 1. (Color online.) Stacked histogram showing the prompt energy spectrum of
neutrino candidates without background subtraction (black data points with sta-
tistical error bars). The red (grey) line is the best fit oscillation hypothesis. Also
shown are contributions from accidentals (blue cross-hatched), °Li at the best-fit
rate (green vertical lines), fast neutrons at the best-fit rate (purple diagonal lines),
and correlated light noise (orange horizontal lines).

with x2/DOF of 38.9/30. As in the Gd analysis [6], we de-
fine statistical error as the portion of the 1 o error which can
be improved by collecting more data. This includes uncertainty
from our current statistics (see Table 2) and uncertainty on back-
ground shapes. We define systematic error as the uncertainty
which cannot be reduced simply by collecting more data. Fig. 1
shows the complete spectrum of IBD candidates with the fitted
background contributions, while Fig. 2 shows the background-
subtracted Eprompt spectrum along with the best fit. The pull pa-
rameters from the fit are summarized in Table 3 together with
the input values. We have performed a frequentist study to de-
termine the compatibility of the data and the no-oscillation hy-
pothesis. Based on a Ayx? statistic, defined as the difference
between the x2 at the best fit and at sin?26013 = 0, the data
exclude the no-oscillation hypothesis at 97.4% (2.00). A fit in-
corporating only the rate information yields sin®26y3 = 0.044 =+
0.022 (stat.) £ 0.056 (syst.). A simple ratio of observed to expected
signal statistics yields R = 0.978 £ 0.011 (stat.) £ 0.029 (syst.) at
the far site.

The smaller best-fit value of sin®26;3 by the rate-only anal-
ysis can be explained by the °Li background. The fit to the
energy spectrum indicates a larger °Li background contamina-
tion than the original estimate, although it is consistent within
the systematic uncertainty. If the input °Li rate is raised to
the best-fit cosmogenic isotope rate in Table 3, about 1 sigma
above the nominal input, the rate-only best fit moves to 0.072 +
0.055, in closer agreement with our rate + shape standard re-
sult.

In summary, due to the low level of backgrounds achieved in
the Double Chooz detector, we have made the first measurement
of sin®26;3 using the capture of IBD neutrons on hydrogen. This
technique enabled us to use a different data set with partially
different systematic uncertainties than that used in the standard
Gd analysis [6]. An analysis based on rate and spectral shape in-
formation yields sin? 2613 = 0.097 £ 0.034 (stat.) &= 0.034 (syst.),
which is in good agreement with the result of the Gd analysis
sin® 2613 = 0.109 & 0.030 (stat.) & 0.025 (syst.) [6]. With increased
statistics and a precise evaluation of the correlation of the system-
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Fig. 2. (Color online.) Top: Data with best-fit backgrounds subtracted (black points
with statistical error bars) are superimposed on the prompt energy spectra expected
in the case of no oscillations (dashed blue line) and for our best fit sin®26;3 (solid
red line). The best fit has x2/DOF of 38.9/30. Solid gold bands indicate system-
atic errors in each bin. Middle: The ratio of data to the no-oscillation prediction
(black points with statistical error bars) is superimposed on the expected ratio in
the case of no oscillations (blue dashed line) and for our best fit sin® 2613 (solid red
line). Gold bands indicate systematic errors in each bin. Bottom: The difference be-
tween data and the no-oscillation prediction is shown in the same style as the ratio
(above).

atic uncertainties, a combination of the two results is foreseen for
the future.
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