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Abstract

Hair cells transduce acoustic or mechanical inputs to electrical signals that are inter-
preted by the central nervous system. The mechanically sensitive hair bundles come
in a variety of shapes and sizes. In vestibular organs hair bundles are relatively long
and thin. In auditory organs, hair bundles are an order of magnitude shorter and
wider. Also, in auditory organs, hair cells have hair bundles that are graded in height,
and the range of frequencies to which these cells are sensitive vary with height—the
shorter the hair bundles, the higher the frequency range to which it responds.

We determined the relationship between size and shape of the hair bundle and
its sensitivity at asymptotically high and low frequencies. We extended the results of
an analysis of hair bundle hydrodynamics in two dimensions to three dimensions. A
hemispheroid was used tc represent the hair bundle. The hemispheroid had a number
of advantages—it could represent shapes that range from thin, pencil-like shapes, to
wide, flat, disk-like shapes. Also analytic methods were used in the high frequency
range to obtain an exact solution to the equations of motion.

In the low frequency range, where an approximate solution was found using bound-
ary element methods, the symmetry of the hemispheroid was exploited to reduce the
number of equations that needed to be solved and so to simplify the numerics. At low
frequencies, the sensitivity of the responses of hair cells was mainly proportional to
the cube of the heights of their hair bundles, and at high frequencies, the sensitivity
of the hair cells was mainly proportional to the inverse of their heights. An excellent
match between measurements of sensitivity curves in the basillar papilla of the alli-
gator lizard and the models predictions was found. These results also suggested why
hair bundles of hair cells in vestibular organs which are sensitive to low frequencies
have ranges of heights that are an order of magnitude larger than the range of heights
of hair bundles of hair cells found in auditory organs.

Thesis Supervisor: Dennis M. Freeman
Title: Assistant Professor
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Chapter 1

Background

1.1 Structure and function of hair bundles

Hair cells transduce the motion of their hair bundles, which is driven by acoustic
or mechanical inputs, to electrical signals {Pickles, 1988). Hair cells are found in
vestibular organs such as the semicircular canals, the utricle, saccule, and lagena
and their signals are interpreted by the central nervous system to control balance
and movement. Hair cells are also found in the amphibian papilla, and the basilar
papilla of reptiles and birds, and in the cochlea of reptiles, birds, and mammals. In
these auditory organs, they operate over a wide range of frequencies and are used to
transduce acoustically-driven fluid motion.

The hair cells are attached to the basilar membrane; the hair bundles are sur-
rounded by fluid and are often covered by a gelatinous membrane: the tectorial mem-
brane for auditory organs, the cupula for the semicircular canals, and the otolithic
membrane for otolithic organs. Motion of the basilar membrane, motion of the over-
lying membrane, and motion of the surrounding fluid result in the deflection of the
hair bundles. The process by which this happens is not well understood, but previous
results suggest that hydrodynamic forces are significant in causing hair bundle mo-
tion, and that the shape of the hair bundles influences the hydrodynamics (Freeman

and Weiss, 1990a).



1.2 Anatomical studies of hair bundles

A thorough investigation of the anatomical details of hair bundles found in vertebrate
inner ears (Lewis et al., 1985) indicated differences in the lengths and shapes of hair
bundles. The hair bundles consist of an array of 10 to 220 stereocilia (Figure 1-1).
The cross section of the array is often nearly circular, although in the mammalian
cochlea, the shape of the cross-section is that of a line segment (for “inner” hair cells)
or that of a “v” or “w” pattern (for “outer” hair cells). Stereocilia in each row have
the same height, and the heights are graded, giving the hair bundles a “pipe organ”
appearance as indicated in Figure 1-2 and Figure 1-3.

Hair bundles tend to be tall (40-120 um) in vestibular organs and to be short
(.8-30 um) in hearing organs. The range of heights is from .8-120um, the range of
widths is 1-10 um (Freeman and Weiss, 1988), and the aspect ratio of height te width
varies from about 16 for hair cells in the cristae of the semicircular canals (Lewis
et al., 1985) to about 0.1 for hair cells in the organ of Corti of the horseshoe bat
(Vater and Lenoir, 1992).

The hair bundles of the outer hair cells of echolocating bats are distinctive—
these have extremely short heights (.8 ym), a wider “w” pattern, and an exaggerated
angle of inclination of the shortest row of stereocilia to the next taller one (Vater
and Lenoir, 1992). These distinctions are possibly micromechanical adaptations to
ultra-high frequency hearing.

Hair bundle morphology of the basilar papilla of two species of lizards has been
thoroughly investigated (Koppl, 1988; Mulroy, 1974; Mulroy and Williams, 1987). In
the basilar papilla of the bobtail lizard, the heights range from 6um at the base to
13um at the apex, and the number of stereocilia range from 30 in short hair bundles
to 42 in tall hair bundles. The basilar papilla of the alligator lizard contains a region
of hair bundles that are topped by a tectorial membrane, and a region of hair bundles
that are a free-standing. Several differences were observed between the hair bundles
of the two regions. In the tectorial region, hair bundles are shorter, have heights

that are constant along the length of the papilla, face the same direction, and are



Figure 1-1: A scanning electromicrograph of hair bundles found in the basilar papilla
of the alligator lizard. Hair bundles of three hair cells are shown in the foreground.
Each hair bundle consists of approximately 60 hairs, organized by length (from about
2 pm to 20 pm for the cells shown here) in an orderly staircase array. Micrograph
taken by Ruth Anne Eatock.
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Figure 1-2: Schematic representations of hair bundle types found in vestibular organs
of bony fishes, frogs, and lizards (Lewis et al., 1985). The hair bundles consist of an
array of stereocilia which are indicated as black, finger-like projections. In vestibular

organs, a kinocilium, indicated by the tall, white projection, is present. The aspect
ratios (height to width) for the hair bundles depicted here range from ~ 16 to ~ 1.
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Figure 1-3: Schematic representations of hair bundle types found in the chinchilla
cochlea (Lewis et al., 1985). The chinchilla cochlea contains one row of inner hair

cells (IHC) and three rows of outer hair cells (OH,, OH,, and OHj). The hair bundles
are graded in length from base to apex.



structurally more complicated. In the free-standing region, hair bundles have heights
that increase along the length of the papilla. The membrane surface areas of hair
bundles in the free-standing region are greater than those of the tectorial region, and
are, in fact, proportional to their heights. The hair bundles are also bidirectional in

orientation.

1.3 Study of hair bundle motion in the free-standing
region of the basilar papilla of the alligator
lizard

This section describes observations of hair bundle motion in this free-standing region
of the alligator lizard. Because there is no tectorial membrane present the role of hair
bundle shape is simpler to assess.

It has been shown that, in auditory organs, hair cells are frequency selective, that
is, different hair cells respond more vigorously to different tone frequencies (Pickles,
1988). Studies of hair bundle motion in the free-standing region of the basilar papilla
(Figure 1-4) of the alligator lizard suggest that the origin of the frequency selectivity is
the hair bundle motion (Frishkopf and DeRosier, 1983; Holton and Hudspeth, 1983).
Motion of the hair bundles in the free-standing region can be accounted for by motion
of the papilla and motion of the surrounding fluid. It has been shown, however, that
motion of the basilar papilla is constant throughout the papilla so that it cannot
be papilla movement that is determining the frequency selectivity. Moreover, as
in mechanical resonators, “long” hair bundles have lower characteristic frequencies
than “short” hair bundles. These results suggest that hydrodynamic forces coupled
with mechanical forces of the hair bundles themselves are providing the frequency

selectivity.
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Figure 1-4: A top view of the basilar papilla in alligator lizard (Freeman et al., 1993).
There are five rows of hair cells, with nerve fibers that project from the hair cells to
the central nervous system. The papilla contains two regions of hair cells: a region
with a tectorial membrane and a free-standing region. The insets display a transverse
view of the basilar papilla.

14



1.4 Studies of the hydrodynamics of hair bundle
motion

A previous theoretical study (Freeman and Weiss, 1990a) indicated the effects of
hair bundle height on the hydrodynamics of hair bundle motion. The hair bundle
was represented by a two-dimensional structure shaped as a flap with no overlying
membrane present. The hydrodynamics were analyzed as a function of frequency of
motion and height of the flap. The results suggest that mechanical and hydrodynamic
forces can provide the frequency selectivity observed in the alligator lizard.
Although the 2-D model is very useful in illuminating the hydrodynamics of hair
bundle motion, it is limited in important ways. In 2-D motion, the fluid can flow over
the flap only. In 3-D motion, fluid can flow both over and around the structure. In
addition, shearing forces produce no torque on a flap, since the shear is parallel to the
radial vector along the flap. However, in a 3-D body of finite width, shearing forces in
addition to pressure forces contribute to the torque. The effect of hair bundle shape
was not addressed in the 2-D study. Hair bundles come in various sizes and shapes

which surely affect the hydrodynamics.

1.5 Studies of mammalian cochlear mechanics

Unlike motion of the basilar papilla of the alligator lizard, motion of the mammalian
organ of Corti is not uniform but frequency selective—different parts of the basilar
membrane respond more to different tone frequencies. Moreover, the mammalian
basilar membrane does not contain a free-standing region, and although hair bundles
are graded in length, mechanical resonances of individual hair bundles are often not
considered in models of cochlear mechanics. Instead, the frequency selectivity is
mainly attributed to structural changes in the basilar membrane (Zwislocki, 1965;
Siebert, 1974; Steele and Taber, 1978). More recent models (Geisler and Sang, 1995;
Neely, 1993; Hubbard, 1993) contain active elements. Since the length of outer hair

cells of the mammalian cochlea can change in response to a voltage across the cell
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membrane (Brownell et al., 1985), it has been suggested that outer hair cells can
actively enhance the motion of the basilar membrane. Although these models capture
many of the characteristics of of cochlear mechanics, no one model can match all
experimental observations (Rhode, 1971; Khanna and Leonard, 1982). In this thesis,
we explore the role of hair bundle hydrodynamics in the frequency response of hair

cells.

1.6 Aims

Our purpose is to extend the previous two-dimensional hydrodynamic study to three
dimensions, and study the effects of hair bundle shape on the hydrodynamics. In the
2-D study, the hydrodynamic equations of motion could not be solved exactly for all
frequencies, and finite difference methods were used to obtain approximate solutions.
Finite difference methods could not be extended to 3-D because discretizing a 3-D
volume would result in too many equations to accurately solve. Therefore, in this 3-D
study, boundary element methods, which have not been previously used in modelling
the hydrodynamics of the inner ear, are used to solve the equations of motion at
low frequencies. Boundary element methods reduce the three-dimensional differential
equations to two-dimensional integral equations so that only a 2-D area need be
discretized. Furthermore, analytic methods, which take advantage of the symmetry
of the problem, will be incorporated into the BEM, and will further reduce the number
of equations that need to be solved.

We will study the solution to the equations of motion in the limit of low and high
frequencies where the equations of motion can be simplified, and we will use these
solutions to gain insight into the hydrodynamic consequences of hair bundle shape.
We will also compare these results to those of the 2-D study, to determine the validity
of the results of the 2-D model. We will incorporate our model into a more general
model of ear physiology and compare the model’s predictions of sensitivity curves to
measurements.

This study investigated the hydrodynamics of hair bundle motion for low and high

16



frequencies. The equations of motion valid for all frequencies have not been solved,
since these equations are more difficult to solve. The results of this study, however,
can serve as a check on a future solution to the equations of motion for all frequencies.

Results of this dissertation are not only relevent to the field of hearing research but
could also prove useful to the field of computational fluid dynamics. Although there
are known exact and approximate solutions to the hydrodynamics of full spheroids
_(Chwang and Wu, 1975), (Pozrikidis, 1639), there are not known solutions for the
hydrodynamics of hemispheroids on a plate. These results could also find applications
in the field of micromachines, where, as in the inner ear, the dimensions are small,

and the linear approximations used in this thesis are appropriate.
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Chapter 2

Hemispheroid model of hair

bundle mechanics

In this chapter, we describe the hemispheroid model used to represent the hair bundle
mechanics. The hemispheroid model is a specific application of a general model of a
hair bundle represented by a rigid body of some arbitrary shape developed elsewhere
(Freeman and Weiss, 1990b; Freeman and Weiss, 1990c; Freeman and Weiss, 1990d).
The general model has already been applied to a 2-D structure shaped as a flap
(Freeman and Weiss, 1990a) and the results of that study will be described at the

end of this chapter.

2.1 Hemispheroid model

A hemispheroid will represent the shape of the hair bundle (Figure 2-1). This shape
was chosen because the shape of the hemispheroid can be easily changed by modifying
a single parameter £, which determines the aspe< ratio of the hemispheroid (Figure 2-
2), and the size of the hemispheroid can be easily changed by varying the focal length
L. The hemispheroid was also chosen because the surface of a hemispheroid is a
coordinate surface in spheroidal coordinates, and an exact solution to the equations
of motion can be derived in the high frequency limit using spheroidal coordinates.

An exact solution simplifies the analysis of the effect of shape by clarifying the roles

18



Figure 2-1: A comparison of two and three dimensional models of hair bundles. The
flap structure (left) is 2D: it has finite height (% direction), zero thickness (% direction),
and infinite width (¥ direction). The flap is attached to an infinite plate by a spring-
loaded hinge. Motions of the structure in the X and 6 directions cause fluid to flow
over the flap. The free-standing hemispheroid (right) is 3D: it has finite dimensions
in all three directions. Motions of this structure in %X and 6 cause fluid to flow over
and around the hemispheroid.

Prolate Oblate
Hemispheroids Hemispheroids

Figure 2-2: The shapes of pro-
late and oblate hemispheroids
are illustrated as a function of
the parameter, &,.

of the shape parameter ¢, and the size parameter L. The properties of hemispheroids

will be described in greater detail in Section 2.4.

2.2 Description of model

The hair bundle is modelled as a hemispheroid attached with a compliant hinge to a
basal plate that represents the epithelium of the hair cells (Figure 2-1). We assume
there is no overlying membrane because this assumption simplifies the analysis, and
also because considerable investigation into the properties of hair cells of the free-
standing region of the basilla papilla has been performed (Mulroy, 1974; Holton and
Weiss, 1983b; Holton and Weiss, 1983a; Frishkopf and DeRosier, 1983; Mulroy and
Williams, 1987; Eatock et al., 1993). The basal plate is translating sinusoidally in

19



its plane with magnitude U, and radian frequency w. This oscillation results in the
hemisphe'roid translating sinusoidally, and also rotating sinusoidally about the hinge
with an angle of rotation, ©. Motion of the hemispheroid and basal plate results in a
torque on the hemispheroid. The torque results from mechanical torques caused by
its attachments, and hydrodynamic torques that result from fluid inertial forces and

viscous forces.

2.2.1 Equations of motion for the fluid

For infinitesmal motions of the hemispheroid with basal plate, the equations of fluid
motion are linear and can be solved in the sinusoidal steady state (Freeman and
Weiss, 1990a). Let U(r,w) and P(r,w) represent the complex amplitudes of the fluid
velocity and pressure, let p represent the density of the fluid, x4 represent the viscosity
of the fluid, w, represent the radian frequency of vibration in the steady state, and j

represent v/—1. Since fluid momentum is conserved (Landau and Lifshitz, 1959),
JwpU(r,w) = =V P(r,w) + uV?U(r,w), (2.1)
and since the fluid is incompressible,
V.-U(r,w) =0. (2.2)

For infinitesimal motions the torque on the hemispheroid is given by (Freeman and

Weiss, 1990a)

Th(w) = 7 - /S r x dF(r,w), (2.3)

where

dF(r,w) = —P(r,w)dS + pdS - VU(r,w) + pV(dS - U(r,w)), (2.4)

20



r represents a point on the surface of the hemispheroid, S represents the surface, and

dS is in the normal direction to the surface.

2.2.2 Boundary conditions

The equations of motion must be solved subject to boundary conditions. Equation 2.2
requires that normal components of the fluid velocity adjacent to the surfaces of the
hemispheroid and the plates be equal to the normal components of the velocities of
these structures. The no-slip condition requires that the tangential components of the
fluid velocity next to the surfaces equal the tangential components of the velocities
of these structures.

In the sinusoidal steady state the velocity of the basal plate is U;%X. Because the
motions of the hemispheroid are infinitesmal, a stationary boundary approximation
can be used (Freeman and Weiss, 1990a). The velocity of a point on the hemispheroid
can be described by the sum of a component due to translation of the plate (Freeman
and Weiss, 1990d) and a component due to rotation of the hemispheroid about its

hinge,

U(r,w) = Usk — jwOVz? + 220 (2.5)

where O is the complex amplitude of the angle the hemispheroid makes with z-y
plane.

Far away from the basal plate and hair bundle, the fluid velocity is equal to that
which would result if the body were not present. This velocity can be expressed as

(Freeman and Weiss, 1990c),
U(r,w) = Upe  V 2. (2.6)

2.2.3 Use of superposition

The hemispheroid has two distinct modes of motion — translation and Totation.

In translation, the plate is translated and the hinge is fixed to the plate so that

21



© = 0. The torque on the hemispheroid is determined by the hydrodynamic transfer
function Hy = T;/U, where T} is the torque on the hemispheroid due to a translation
of the plate. In rotation, the hemispheroid is rotated about its hinge and the plate
is stationary so that U, = 0. The torque on the hemispheroid is determined by the
rotational impedence Z, = T, /(—jw®) where T, is the torque due to rotation of the
hemispheroid about its hinge. T} and T, are determined by solving the fluid equations.
Because the hydrodynamic equations are linear, the torques due to translation of
the plate and rotation of the hemispheroid can be determined separately and then
superposed (Freeman and Weiss, 1990d). Therefore the hydrodynamic torque that

results for arbitrary combinations of U, and O is

Th = HbUb —ij,-@.

2.2.4 Network model

A linear network that represents the components of the torque on the hemispheroid
is illustrated in Figure 2-3.

The separation of mechanical forces from hydrodynamic forces minimizes the num-
ber of hydrodynamic computations needed to analyze models of hair bundle motion
and clarifies the role of fluid forces. The analysis of the hydrodynamic torque is sim-
plified with the use of superposition to separate the computation of the components

due to translation of the plate and rotation of the hinge.

The sensitivity transfer function H,(f)

The sensitivity transfer function H,(f) = ©/U, describes the response of the hair
bundle to hydrodynamic and mechanical torques and can be obtained from the linear

network of Figure 2-3,

¢S] H, + H;
Hu(f)z'U— :

= ; —. 2.7
b é'*‘]wzr"']wl ( )
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Hydrodynamics Mechanics
Z,=T;/jo® Jjw®
2% %Y P

+ hy ‘Body
! Inertia -
. Body
T - ,

_ _,‘i C == Attachment

Figure 2-3: A linear network that represents the components of the torque on the
hemispheroid. The hydrodynamic torque is represented by a source term, HyU, that
is proportional to basal plate velocity, and an impedance, Z,, that is proportional to
angular velocity. The mechanics are represented by a mass, I, that represents the
moment of inertia of the body, a source, H;Us, proportional to plate velocity that
accounts for the accelerating reference frame, and a compliance, C, that represents
the hinged attachment.

Because Hy, H;, Z,, and I, are functions of both shape of the hair bundle and fre-
quency, the frequency response of H,(f) will be different for different shapes and for

different frequencies.

2.2.5 Hydrodynamic forces on hair bundles for asymptoti-

cally low and high frequencies
The equations of motion can be made simpler, and, therefore easier to solve, if we
consider asymptotically low frequencies and asymptotically high frequencies.
Hydrodynamic forces on hair bundles for the low frequency asymptote

We can expand the hydrodynamic variables and the boundary conditions in terms of
powers of jw. By equating like powers of jw, the Navier-Stokes equation reduces to

the simpler Stokes equation.
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Translational motion. For translational motion the distant boundary condition
is given by Equation 2.6. Therefore let us expand the hydrodynamic variables in a

power series of \/jwp/u,

U(r,w) = Up(r, w)+‘/ Ul(, )+———U2(r w) + (2.8)
P(r,w) = Py(r, )+\/——P1( )+-;-P2(r,w)+... (2.9)

—z, [iwe
Upe Vo = Ub—z/ PU, +z“ ”U,,+
Substituting Equations 2.8 and 2.9 into Equation 2.1 and Equation 2.2, we have,
for the zero order term and the first order term, Stokes equation, instead of the

linearized Navier-Stokes equation. For the zero order term, the equations of motion

can be expressed as,

VPh(r,w) = pV?Uy(r,w),
V‘Uo(l‘,&l)) = 0,

For points along the plate and hemispheroid described by the surface r = r' ,
Uo(r =71') = Up%,

and far from the body,
Up(r — 00) = Upk.

The solution to the zero order equations is trivial—Upy(r,w) = Upk everywhere in
the fluid.

For the first order term we have,

VP(r,w) = pV?U(r,w), (2.10)
V- Ui(r,w) = 0, (2.11)
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with boundary conditions along the plate and hemispheroid,

U(r=r) = 0, (2.12)
Ui(r = 00) = —zUpk. (2.13)

The solution to the first order term is non-trivial and requires numerical methods

(Brenner, 1995). Since w — 0, only zero order and first order terms are significant.

Rotational motion. To simplify the low-frequency analysis for rotational motion,

let us expand the hydrodynamic variables in integer powers of jw, i. e.,

U(r,w) = Up(r,w) + jwUi(r,w) — w?@*Uy(r,w) + ... (2.14)
P(r,w) = Po(r,w)+ jwPi(r,w) — wPy(r,w) + ... (2.15)

Substituting Equations 2.14 and 2.15 into Equation 2.1 and Equation 2.2, and equat-
ing like powers of jw, we have for the zero order term, Ug(r,w) = 0, Po(r,w) = 0

everywhere, and for the first order term,

VP (r,w) = pVU(r,w), (2.16)
V.U(r,w) = 0, (2.17)
Ui(r=r') = O(z% — 3), (2.13)
Uy(r - o0) = 0. (2.19)

Numerical methods are needed to solve these equations of motion (Brenner, 1995).

Hydrodynamic forces on hair bundles for the high frequency asymptote

In the high frequency range, the boundary layer becomes vanishingly small, so that the
fluid can be considered inviscid and hence irrotational (Freeman and Weiss, 1990b).

Because viscous forces are negligible, conservation of momentum is expressed by

U(r,w) = —=VP(r,w)/(jwp). (2.20)

25



Substituting Equation 2.20 into Equation 2.2 we obtain Laplace’s equation,
V. VP(r,w) = V*P(r,w) = 0. (2.21)

We see that in the limit of high frequencies, instead of solving the Navier-Stokes
equation, which is a vector equation involving velocity and pressure, we can solve
Laplace’s equation which is a scalar equation in pressure only. Moreover, for some

simple geometries, an exact solution can be obtained.

2.3 Application of the hair bundle mechanics model

to a 2-D flap structure

2.3.1 Summary of results

The results of Section 2 have been applied in a two dimensional structure (Freeman
and Weiss, 1990a). The rigid body is a flap that extends to infinity in y. The basal
plate extends to infinity in both z and y and no overlying plate is present (Figure 2-1
left). Analytic solutions were determined for the hydrodynamic torque, fluid pressure
and velocity in the high frequency and low frequency limits. In the mid-frequency
range, the results were determined numerically. The effects of hinge compliance,
mass of flap, and height of flap on the transfer function ©/U, were studied and the
results were compared to experimental results measured in the alligator lizard. The
results suggested that hydrodynamics can be important in determining the frequency

selectivity of hair bundles on the basilar papilla of the alligator lizard.

2.4 Spheroidal coordinates

The simplest way to mathematically describe the surfaces of a hemispheroid on a plate
is with spheroidal coordinates. Spheroidal coordinates, represented by ¢, 7, and g, are

similar to spherical coordinates, represented by r, 6, and ¢ (g is the azimuthal angle,
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usually labeled ¢). Figure 2-4 illustrates surfaces of constant r and 6 in spherical
coordinates and surfaces of constant ¢ and 7 in spheroidal coordinates. In spherical
coordinates, surfaces of constant r define spheres; in spheroidal coordinates, surfaces
of constant { define spheroids. A cross-section of a spheroid in the z-y plane has
the shape of a circle; a cross-section of a spheroid in the z-z plane or the y- z plane
has the shape of an ellipse. There are two types of spheroids—prolate and oblate.
For prolate spheroids, the heights of the cross-sectional ellipses are larger than the
widths; for oblate spheroids, the converse is true. As £, — oo, both the prolate
and oblate spheroids approach a sphere. As £, — 0, the prolate spheroid becomes
pencil-shaped (i.e., its width becomes vanishingly small in the z- and y-directions)
whereas the oblate spheroid approaches the shape of a thin disk (i.e., its height in the
z-direction becomes vanishingly small). In spherical coordinates, surfaces of constant
0, are half-cones; in spheroidal coordinates, the corresponding surfaces are hyper-
boloids described by surfaces of constant 7. The azimuthal angle q is the same in
both coordinate systems and a surface of constant ¢ describes a half-plane in z; ¢ = 0
describes the half-plane, z > 0, y = 0; ¢ = 7/2 describes the half-plane, z = 0,
y > 0. In the limit, as { — oo, surfaces of constant ¢ approach spheres, surfaces
of constant n approach half-cones, and spheroidal coordinates become spherical co-
ordinates. Spheroidal coordinates (Moon and Spencer, 1971) are defined for prolate

spheroidal coordinates as

z = Lsinh ¢sinncosg,
y = Lsinh¢sinnsing, (2.22)

z = Lcosh € cos 7,

and for oblate spheroidal coordinates as

z = L cosh¢sinncos g,
y = L cosh ¢ sinysing, (2.23)

z = Lsinh € cos .
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Figure 2-4: Left: A surface of con<*ant r describes a sphere and a surface of constant
0 describes a half-cone in spherical coordinates.

Right: A surface of constant ¢ describes a spheroid and a surface of constant 7
describes a hyperboloid in spheroidal coordinates.

€ ranges from 0 to oo, 7 ranges from 0 to 7, and ¢ ranges from 0 to 27. An infinitesmal

distance is written as
(ds)? = (h1d€)? + (hadn)® + (hadg)?,

where h; are the metric coefficients. For prolate spheroidal coordinates, the metric

coeflicients are expressed as

hy = L\/(sinh2 € +sin®n)

and

h, = Lsinh ¢ siny).

For oblate spheroidal coordinates, h; and h, are given by

hi = L\/(sinh2 € + cos?n)

and

hy = L cosh € sin.

28



o 1=0

=1 n

n=n/2 0
0 z X 0 .1 g

Figure 2-5: The hemispheroid on a plate is defined by a surface of constant ¢ and the
surface 7 = m/2. The hemispheroid and plate in rectangular coordinates (left panel)
transform to orthogonal planes in prolate spheroidal coordinates (right panel).

In spheroidal coordinates Laplace’s equation is (Moon and Spencer, 1971)

02 9% 90 o9 0%
2 — h=2 |z * -2
V*®(¢,n,9) = hy ( e T cothé——aé + gz + ot n—an) + h; ErE (2.24)

Hemispheroid and plate

To describe a hemispheroid, we restrict 7 to range from zero to 7/2. The tip of
the hemispheroid is at n = 0; the base is at n = 7/2. Figure 2-5 illustrates the
hemispheroid on a plate in rectangular coordinates and in spheroidal coordinates. In
rectangular coordinates, the surface of a prolate hemispheroid is described by

z? + y? n 22
(Lsinh§,)? * (Lcoshé,)

> =1, for 2 >0,

and the surface of an oblate hemispheroid,

2% + ¢ s 22
(Lcoshé,)?  (Lsinh¢,)?

=1, for 2 > 0.

The surface of the plate is described by z = 0. In prolate or oblate spheroidal
coordinates, the surface of the hemispheroid is described by ¢ = ¢, and the surface of
the basal plate is described by 7 = 7/2. So we see that the hemispheroid and plate

are coordinate surfaces in spheroidal coordinates.
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Chapter 3

High frequency solution

3.1 Introduction

We will show that, in the limit of high frequencies, the full linearized Navier-Stokes
equation need not be solved, and the simpler Laplace’s equation can be used. We will
solve Laplace’s equation exactly, using prolate and oblate spheroidal coordinates, and,
with that solution, we will derive the hydrodynamic pressure, velocity, and torque.
We will study the effects of shape on these hydrodynamic quantities, and we will show
that height, width, and focal length are important in determining the hydrodynamic

torque in this frequency limit.

30



3.2 Hydrodynamic model

3.2.1 Hydrodynamic equations

In the high frequency limit, the fluid velocity U(r) is proportional to the gradient of
the pressure (Equation 2.20) and the pressure P(r) is a solution to Laplace’s equation
(Equation 2.21). To simplify the analysis, let us express U(r) as the gradient of a

scalar velocity potential function ®(r),
U(r) = V&(r). (3.1)
P(r) is then represented by
P(x) = —jup®(r), (3.2)
and the velocity potential satisfies Laplace’s equation,
V-Vd(r) = V¥®(r) =0.

Laplace’s equation must be solved subject to boundary conditions. The normal
velocity of the fluid at the surface of the hemispheroid must equal the normal velocity
of the hemispheroid. The velocity of the hemispheroid depends on both translation
of the basal plate and rotation of the hemispheroid about the hinge. The velocity of
a point on the surface is given in Equation 2.5. The normal velocity of the fluid at
the surface of the plate must equal the normal velocity of the plate which is zero. In
addition, far away from the hemispheroid, the fluid velocity must go to zero.

The hydrodynamic torque T} on the hemispheroid is
Th = — / r x AiP(r)dA, (3.3)

where r is a vector from the hinge (located at the center of the hemispheroidal surface

on the basal plate) to a point on the surface of the hemispheroid, and 1i is the normal
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to the surface of the hemispheroid (pointing outward). Due to the reflection symmetry

about the z-z plane, the torque has only a y component whose magnitude is T},.

3.2.2 The velocity potential &(r)
Translation of the plate

We first solve Laplace’s equation for the fluid motion resulting when the plate is trans-
lated in its plane and the hinge is fixed so that the hemispheroid cannot rotate. To
solve Laplace’s equation in spheroidal coordinates, we need to express the boundary
conditions in these coordinates. We will use prolate spheroidal coordinates to derive
the solution. The solution in oblate spheroidal coordinates can be obtained from the
solution in prolate spheroidal coordinates by letting cosh{ — jsinh§, and L — —j;L.

On the surface of the hemispheroid, the normal component of the fluid velocity is

equal to the normal component of the velocity of the hemispheroid, UpX, i.e.,
Vo(r) i = Uk -1, for { =&,.

The unit vectors can be expressed as i = —¢ and % = Vz. Taking Vz in prolate

spheroidal coordinates yields

00(r)
o€

= LUy cosh ¢ sing cosq, for £ = &,. (3.4)

In addition, the normal component of the fluid velocity at the plate is zero,

Vo(r)-2=0, for z=0,

which in spheroidal coordinates yields

0%(r)
an

=0, for p = =/2. (3.5)

At £ = oo, we impose the condition that the fluid potential is finite.

As shown in the Appendix, the solution to Laplace’s equation subject to these
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boundary conditions is

_ UsLcosh¢,

O(r) = 1) Q1 (cosh €)sinncos g, (3.6)

where Q](cosh €) is an associated Legendre function of the second kind, and

bre y _ 0@(cosh€)
OHe) = =5 |

A similar solution results for an oblate hemispheroid,

_ U,Lsinh ¢,

O(r) = D) Q}(7 sinh ) sin g cos q, (3.7)

where

DH(e,) = 2UsinhE) ol
=60
For both hemispheroids, ®(r) is a product of five terms. The first term is the velocity
of t‘he plate (U;). The second term depends only upon the shape of the hemispheroid
through its height (L cosh(,) for the prolate hemispheroid and Lsinh(¢,) for the
oblate hemispheroid) and the shape factor {,. Each of the remaining three terms

express the dependence of ®(r) on one of the coordinates — ¢, 7, and gq.

Rotation of the hemispheroid

The boundary condition on the surface of the hemispheroid for the fluid motion

resulting from rotation of the hemispheroid while the plate is stationary is
Vo(r) i = —jwOVz? + 228 - A, for ¢ = ¢, (3.8)
which in prolate spheroidal coordinates is

Q—% = L*jwOsinn cosqcosq, for £ =¢,.

33



The other boundary conditions are the same as for translational motion. As shown

in the Appendix, the solution for the prolate hemispheroid is

®(r) = jwOL? cosqz L

=0 2l+1

(&) 2ll+1 (cos W)Q;H-x (cosh §), (3.9)

where I; = /(41 + 3)/(8T(1.5 — I)I'(3 + 1)). For an oblate hemispheroid, ®(r) is

I .
®(r) = jwOL? cosqz D;H-l(fo) 21,+1(cos n)Q;H_I(] sinh £). (3.10)

=0

The velocity potentials for both the prolate and oblate hemispheroids share sev-
eral properties. Both are proportional to the product of the angular velocity of the
hemispheroid (jw®) and L?. As for the solution in response to translation of the
plate, both solutions for rotation of the hemispheroid depend upon cos q. In contrast
to solutions in response to translation of the plate, both solutions for rotation of the
hemispheroid, have a velocity potential that depends upon the shape factor of the
hemispheroid and on ¢ and 7 through an infinite sum of Legendre functions.

Because all the hydrodynamic variables (e.g., fluid velocity, torque on the hemi-
spheroid) are computed from the velocity potential, we examined the numerical con-
vergence of the series solution for the velocity potential of a prolate hemispheroid
(Equation 3.9) in order to determine the number of terms required to adequately
approximate the velocity potential. Since we have a closed form expression for the
normal derivative of the velocity potential on the surface of the hemispheroid (Equa-
tion 3.5), we compared this value to that derived from the partial sum of the se-
ries solution. For convenience, we used the normalized velocity potential defined as
d(r) = ®(r)/(jwOL? cos q)- The normal derivative of the normalized velocity poten-
tial on the surface of the hemispheroid is ®'(r) = 9®(r)/d¢ le=¢, = sinnpcosn. We
compared this expression to the derivative computed from normalized partial sum
based on Equation 3.9, by evaluating &' (r) = 8%,,(r)/0¢ at £ = ¢, where ®,(r) is
given by

& n(r) = Z Cl;.,.l(fo) Py (cos 1)Q2141(cosh €)

1=0
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Figure 3-1: A comparison of ®'(r) (solid) with &’ (r) (dashed). The left panel shows
the partial derivatives plotted versus n for different values of 5. The right panel shows
the partial derivatives plotted versus 5 for n = 4 (dot-dash) and n = 6 (dash).

for different values of n. The results are shown in Figure 3-1. For values of 5 other
than 7 /2, ® (r) is within 2% of ®'(r) for n > 4 terms. The convergence is somewhat
slower for n = 7/2, where ®'(r) = 0. At § = 7/2 with n = 5, @' (r) = 0.06, and with
n = 40, @ (r) = 0.008. To facilitate the computation, subsequent evaluations of ®(r)

will include only the first five terms.
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3.3 The hydrodynamic pressure, fluid velocity,

and torque on the hemispheroid

3.3.1 Pressure
Translational motion

The pressure on the hemispheroid surfaces due to translation of the nlate can be
obtained from Equations 3.2, 3.6, and 3.7. The pressure on a flap and on a sphere
are given elsewhere (Freeman and Weiss, 1990a), (Batchelor, 1967). By examin-
ing these equations, we see that the pressure varies linearly with the height of the
structure which is L for the flap, Lcosh{, for the prolate hemispheroid, L sinh &
for the oblate hemispheroid and L for the hemisphere of radius L. Thus, it is
informative to examine the effect of the shape of the structure on the fluid pres-
sure by normalizing the structures to have the same height. Therefore, we de-
fine the dimensionless, normalized pressures on the surface of each structure as
Ppiap(r) = Pyiap(r)/(jwpUsL) for the flap, Prrotate(r) = Prrotate(r)/(jwpUsL cosh £,)
for the prolate hemispheroid, f’ouate(r) = Pobiate(r)/(jwpUs Lsinh &,) for the oblate
hemispheroid, and, ﬁ,phe,e(r) = Piphere(r)/(jwpUs L) for the hemisphere. Therefore,

the normalized pressures are

Ppigp(r) = siny,

~ _ Qi(cosh&,)\ .

Pyrotate(r) = ( CIE) sin7 cos g, (3.11)
5 _ Qi(jsinh &)Y .
P, oblatc(r) = ( D} ( 60) sin 7 cos q,

Psphere(r) = 1 sin 7 cos q.

2

For all these geometries, the normalized pressure is proportional to siny. Thus, the
pressure is zero at the tip of the flap and hemispheroids (n = 0), because displacement
of the tip displaces no fluid. The pressure is maximal at the base (y = 7/2), because

maximal fluid is displaced there. For the hemispheroids, normalized pressure is also
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proportional to cos ¢ because the normal component of the surface velocity is propor-
tional to cos g. Thus, a displacement in the positive z-direction applies a compressive
force to fluid for |¢| < 7/2 and a tensile force on the fluid for 7/2 < |¢| < 7. In ad-
dition, the magnitude of the pressure must be zero at ¢ = 7/2 where the velocity of
the hemispheroid is tangential to the fluid, and maximal at ¢ = 0 where the velocity
is normal to the fluid.

The dependence of the normalized pressure on 5 for different shapes of hemi-
spheroids, some of which are illustrated in Figure 3-3, and for the flap and hemisphere
is shown in Figure 3-2. In this comparison, all the structures have the same height.
All these structures show a sinusoidal increase in normalized pressure from the tip
of the structure (7 = 0) to its base along the plate ( = 7/2). As the £, — oo,
both the prolate and oblate hemispheroids approach hemispheres and the normalized
pressure approaches that of a hemisphere. For prolate hemispheroids, as ¢, — 0 the
hemispheroid becomes infinitesimally narrow and the pressure produced on its sur-
face becomes infinitesimal. For oblate hemispheroids, as £, — 0 the hemispheroid
infinitely wide and the results approach most closely those of the flap. The flap has
the largest pressure because it displaces the most fluid when it is translated. It ex-
ceeds the pressure even on an infinitely wide oblate hemispheroid, because translation
of the flap is normal to its surface whereas that for the oblate hemispheroid is not.

The effect of shape is examined more directly in Figure 3-4 which shows the nor-
malized pressure at the base of the hemispheroid as a function of its shape. As shown
in Figure 3-3, for small values of £,, the prolate hemispheroid is more pencil-shaped
and the pressure is small because the cross-sectional area of the prolate hemispheroid
is small and little fluid is displaced by its motion. If we restrict ourselves to ex-
clude narrow hemispheroids ({, < .2), which displace little fluid, the pressures for
hemispheroids of fixed height whose shapes range from infinitely wide oblate hemi-
spheroids down to narrow prolate hemispheroids differ by less than a factor of 4. The
change in pressure with &, for hemispheroids of fixed height is greatest for thin prolate
hemispheroids. For prolate hemispheroids, if £, is increased from .2 to .6, then the

pressure is increased by a factor of two.
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Figure 3-2: The normalized pressure on the flap, hemisphere, prolate hemispheroids,
and oblate hemispheroids resulting from translational motion of the plate plotted
versus 7 for different geometry shapes. All structures have the same height. Results
for the hemispheroids are given for different values of the parameter &,. The arrows
point in the direction of increasing ¢,.

Figure 3-3: A cross-section of prolate and oblate hemispheroids of fixed height.

Translational

/4 oblate Figure 3-4: The normalized pres-
\\ sure as a function of ¢, for p =
172 7/2 for prolate and oblate hemi-

spheroids as well as the normal-
ized torque for translational motion,

prolate T./(jwpUs L*hwr [4).

Normalized pressure or torque
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Rotational motion

The pressure on the hemispheroid surface due to rotation of the hemispheroid can
be obtained from Equations 3.2, 3.9, and 3.10, and the pressure on the flap is given
elsewhere (Freeman and Weiss, 1990a). It will soon be shown that it is the focal
length, L, and not the height, that mainly determines the pressure; therefore, we
shall compare the pressure of structures with the same focal length.

For rotational motion, we dcfine the normalized pressures as Pyiqp(r)/(—w?p©L?)
for the flap, Pyrotate(r)/(—w?p©L?) for the prolate hemispheroid, Popiate(r)/(—w?pOL?)

for the oblate hemispheroid. The normalized pressures are

Prap(r) = S Jisin(2l +1)n,
(=0
=) Il

Prcac r =
protner) = B &) o,

(o2}

D Il 1 1 . s
Po ate = N P. h )
blate(T) g D§z+1(fo) sinh? ¢ 21+1(C°S 77)Q21+1(J sinh )

Psphere(r) = 0,

P211+1 (cosn)Qé,“(cosh £), (3.12)

where I; = 4(—=1)*) /(21 + 1)((2 + 1)? — 4)).

Figure 3-5 and Figure 3-7 illustrate the normalized pressure on the surface for
hemispheroids with the same focal length. These hemispheroids are shown in Figure 3-
6. We see that, except for prolate hemispheroids with very small cross-sectional area,
the normalized pressure varies by less than a factor of four for fixed L so that it is
the focal length that, to first order, determines the pressure for rotational motion.

For both prolate and oblate shapes, for fixed L, the size of the hemispheroids
increases with increasing ¢,, approaching infinity as £, — oo and the shape becomes
hemispherical.

The reason why L determines the pressure in rotational motion is because, except
for very thin prolate hemispheroids, the more eccentric the hemispheroid (or the
lower &), the more fluid is displaced by its rotational motion so that small prolate

hemispheroids and small oblate hemispheroids displace as much fluid as large, nearly
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Figure 3-5: Plotted versus 5 are the normalized pressure for rotational motion on
flap, prolate, and oblate hemispheroids. All structures have the same focal length L.
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Figure 3-6: A cross-section of prolate and oblate hemispheroids of fixed L.

hemispherical hemispheroids. For a hemisphere, since its normal, fi =  is everywhere
perpendicular to its direction of motion, #, no fluid is displaced, and for a finite
hemisphere, the fluid pressure everywhere is zero (Figure 3-5 and Figure 3-7 illustrate
the pressure for an infinite hemisphere). As £ — 0, for both prolate and oblate
shapes, A — . For very thin prolate hemispheroids, however, the cross-sectional
area approaches zero as {, — 0 and the amount of fluid displaced approaches zero.
For fixed L and ¢,, the pressure first increases and then decreases with 7 (Figure 3-
5), in contrast to the pressure for translational motion which monotonically increases

with 7 (Figure 3-2). The increase in pressure with increasing 5 results from the
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increase in the width with 7, and the decrease in pressure with further increase
in 7 results from the decrease in the normal component of surface velocity of the

hemispheroid with 7 (Equation 3.8) which negates the effects of the increasing cross-

sectional area.

Hydrodynamic pressure far from surface

We can derive the behaviour of the hydrodynamic pressure far from the surface in
the following manner: From Equations 2.22 and 2.23, we see that as { — oo, 7
(which equals /2% + y? + 2?) approaches Lef/2. Therefore, let £ = log2r/L in the
expressions for ®(r), Equation 3.6, Equation 3.7, Equation 3.9, and Equation 3.10.
For each expression, we find that ®(r) is proportional to 1/r?, so that independent

of shape, the pressure, which is proportional to ®(r), decays as 1/r.

3.3.2 Fluid velocity

In this section we examine the fluid velocity induced by the motion of the hemi-

spheroid. The fluid velocity, U(, 7, q), is the gradient of the fluid potential, ®(¢,7, q)

(Equation 3.1) and for either prolate or oblate hemispheroids for either translational

or rotational motion can be expressed as a simple function of g,

Uf(fi"i Q) = fl(Ev 7]) Cos q
U‘f)(fa s q) = gl(fﬂ]) cos q, (313)
Uq(f,fl, (I) = hl(f, 77) sin q,



Ue(&, 7, q) represents the velocity in a direction perpendicular to a contour of constant
£. Hence, this velocity is perpendicular to the hemispheroid on its surface. Similarly
U,(&,m,9) and U,(&,n, q), represent velocities that are perpendicular to contours of
constant 7 and constant q respectively. On the surface of the hemispheroid, U, (¢, 7, ¢)
and U,(€,n,q) are tangential to the surface, with U,(£,n,q) representing flow over
the hemispheroid, and U,(§,n, q) representing flow around the hemispheroid. The
g dependence of the velocity components can be understood in the following way.
In the z-z plane, where ¢ = 0 or ¢ = m, Uy(§,7,q) = 0 — there is no preferred §
direction in the z-z plane due to the reflection symmetry of the problem about this
plane. In the y-z plane where ¢ = 7/2 or q = 37/2, U¢(€,7,9) = 0 and U, (€,7,q) =
0 because U¢(€,n,q) and Uy,(¢,n,q) are antisymmetric about this plane due to the
antisymmetry of the velocity of the surface of the hemispheroid. Therefore if fluid at a
point z,y, z is flowing away from (positive f direction) and over (negative 7 direction)
the hemispheroid, fluid at the corresponding point —z,y, z is flowing towards the

hemispheroid in the positive 7 direction.

Translational motion

The fluid velocity for a prolate hemispheroid translating sinusoidally is

Uy cosh &, sin7 cos q

Ue(&,n,9) = C1(8), 3.14
e(&m,9) CHEu)/omb?E + s’y 1(6) (3.14)
Uycosh§,cosncosqg
Un(§,n,0) = h¢), 3.15
(¢ 9) C}({o)\/sinhzf+sin2nQ1(cos £) (3.15)
—Up cosh &, si
Un(ema) = gy Qlcosh). (3.16)

Figure 3-8 illustrates the velocity fields for translational motion for a thin prolate
hemispheroid ({, = .1). The cosq dependence of U¢(¢,7,q) and U,(€,7,q), and the
sin ¢ dependence of U,(&,7, q) are evident when comparing the upper right panel (the
velocity field in the z-z plane (¢ = 0 or ¢ = 7)), and the lower right panel (the velocity
field in the z = —y plane (¢ = 37/4 or ¢ = Tx/4)). In the upper right panel, the
velocity has only U¢(¢,7,q) and U,(§, 7, ¢) components— fluid flows out from (in the
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£ direction) and over (in the # direction) the hemispheroid. In the lower right panel,
there is a finite U, (£, 7, q) component and the Ug(¢,7,q) and U,(¢,7,q) components
are smaller.

The upper left panel indicates the magnitude of the velocity in the z-z plane close
to the hemispheroid, with the lengths of the arrows proportional to the magnitudes
of the velocities. At the plate (lower left panels) U, (£,7,q) = 0. Since the plate is
moving only in the X, direction, its normal component of velocity, which is the only
component that influences the fluid, is zero.

Figure 3-9 illustrates the translational component of the velocity field in the z-z
plane for points close to the surface of an almost hemispherical hemispheroid. A
comparison of Figure 3-9 to the upper left panel of Figure 3-8 illustrates some of
the effects of the shape on fluid velocity. For the thin, prolate hemispheroid, the
fluid velocity, in the z-z plane, close to the surface, is almost all in the normal or f
direction which is approximately X, the direction of motion of the hemispheroid. For
the almost hemispherical hemispheroid in the z-z plane, there is more 7 component
because there is more slip. There is also less ¢ component and this makes sense—
wider hemispheroids should have more fluid flowing over (i direction) than around
(q direction) compared to thinner hemispheroids. To understand the effect of shape

on the direction of fluid flow, we study the ratios of the velocity components,

Un(€;m,9) _ —cospcot gsinh ¢

= , (3.17)

Ug(€:m,9) \/sinh2§ + sin® g

Ue(6,m0) _ CH(tann

Un(&;m9)  Qi(cosh§)’

for a prolate spheroid, and
Un(&,m,9) _ —cosncot gcoshé
Us(§:1,9)  \[sinh?¢ +sin’p
D}(€)t
Ue(§,m,9) _ Di(§)tann (3.18)

Un(€,m9)  Qi(jsinh§)’
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for an oblate hemispheroid. We can derive the behavior of Ug(¢,n,4)/Uq(&, 7, q) from
the behavior of the other ratios. At first glance it would seem that shape doesn’t
effect the ratios since all the factors that depend on &, have cancelled. However, the
value of £ on the surface equals £, so that for points close to the surface the ratios
depend on £, and for points far from the surface, the effects of shape become small.
Therefore, to understand the effects of shape, let us set { = £, and look at points in
the fluid next to the surface of the hemispheroid. Also, since the ¢ dependence of the
velocities is independent of shape, let us set ¢ = 7/4, so that cot ¢ = 1 and see how

the ratios vary with shape. As £ — 0, Equation 3.17-Equation 3.18, become

Up(€ =&,m,9= T/4)
UQ(f =& 1,9 = 77/4)

= —§, cot 7,

Ueg(§ =&,n,q)  —tang

- ’

Un(€ = N &

for a very thin prolate hemispheroid, and,

Un(€ =M, 9= 7!'/4) —
U,(6=mmam=n/d) ™

UE(€ = 6)7773 q) — —4tany
U"I(é. = fm Tlaq) T ,

for a flat, wide, oblate hemispheroid. As £, — oo, the ratios become for both oblate

and prolate hemispheroids,

Up(€ =&0ym,9= 77/4) -
Uq(f =&,1,9 = 7r/4)

— cos 7,

Ue(€ = &6,1,9)
= -2 )
Un(€ = Eomrg) - onT

For all the shapes, we see that |U,(€,7,q)/U,(é,7, q)| decreases with . At n =0, the

most fluid flows in the 7 direction, over the hemispheroid. At 7 = 7/2, no fluid flows
in the 7 direction—all the fluid flows in ¢ and §, which is out from and around the
hemispheroid.

We also observe that |Ug(€,7,9)/Us(§,n,q)| increases with 7 for all shapes. This
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follows from the increase in £ - %, as 7 increases from zero to 7 /2 which increases
|Ue(€,m,4q)|- The decrease in |Uy,(€,n,q)| with  also causes the magnitude of this
ratio to increase.

We find that |U,(¢,7,q9)/Us(€,7,q)| is smallest and |Ue(&,n, q)/Un (€, 1, q)| largest
for the thin, prolate hemispheroids. |Uy,(&,7,q)/Us(&, 1, q)| is smallest because fluid
can easily flow around the thin hemispheroid in the q direction. |U¢(¢,7,¢)/U,(€,7, q)|
is largest because for most of its surface, £ - & is largest for a prolate hemispheroid . As
the shape becomes wider U, (¢, 7, q)/U,(&,n, q)| increases, and |Ue(¢,7,9)/Uy(€,7, 9)|
decreases. The wider hemispheroids have more fluid flowing over in % than the thinner
hemispheroids. For wider hemispheroids, - % is less.

For a 2-D flap, the ratios can be expressed as

Un(€,m,9) = oo

Ug(&:m,9) ’
Uf(£$”7) Q) —
Un(é,m,9) = —fany.

Fluid can not go around the 2-D flap so that |U,(¢,7,9)/U,(&,n,q)] = oo for all
points in the fluid. |Ug(&,n,q)/U,(€,7m,q)| has values for all n that are closest to
\Ue(€,n,9)/Un(&, 7, q)| for a wide oblate hemispheroid. Recall that the pressure along
the flap most resembled that of a wide oblate hemispheroid.

Figure 3-10 illustrates the ratios as a function of {, with = n/3 and q = 7 /4.

Magnitude of fluid velocity

We have shown that, to first order, the height of the hemispheroid determines the
pressure due to translational motion. However, the velocity in the fluid due to trans-
lational motion, is, to first order, determined by the volume of the hemispheroid.
Figure 3-11 illustrates the magnitude of fluid velocity, |U(¢,7 = 7/3,q = 0)] as a
function of r, the radial distance for fixed volume. Hemispheroids with the same

volume are illustrated in Figure 3-12. Except for points close to the surface of thin
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Figure 3-8: The velocity field for a thin prolate hemispheroid (£, = .1) for transla-
tional motion. The upper panels illustrate the velocity field in the z-z plane. The tail
of each vector is placed at the point in the fluid. The magnitude decreases sharply
with distance. The upper left panel shows the velocity field for points close to the
hemispheroid with the lengths of the arrows proportional to the magnitude of the
velocity. The upper right panel shows the velocity field over the same plane. The
lengths of the vectors are scaled to a constant magnitude in this right panel and in the
lower panels. Apparant differences in the lengths are due to perspective. The lower
panels show the vector field along the plate (left) and in the plane, ¢ = 37/4, 77 /4
(right).

Figure 3-9: The velocity field for a hemispherical prolate
hemispheroid (¢, = 5) for points close to the surface with
the lengths of the arrows proportional to the magnitude
of the velocity. The tail of each vector is placed at the
point in the fluid.
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Figure 3-10: Left: U,(¢,7m,9)/Uq(€,n,q) for n = 7/3 and ¢ = 7/4 for translational
motion. Right: U¢(€,9,9)/U,(€,n,q) for n = m/3 and all ¢ for translational motion.
The results are also shown for a 2-D flap.

prolate hemispheroids ({, < .3), the variation in |U(r)| with &, is less than a factor
of two. On the surface, the thin prolate hemispheroid has the largest velocity, since
its normal is almost parallel to the direction of motion. For the full range of shapes,
for large r, |U(r)| decays as 1/r3. For large ¢ we can approximate ¢ ~ log2r/L and

n = 0 in Equations 3.14-3.16, and express |U(r)| as

U
[U(x) | profate T—;\/l + 3sin?0 — 3sinfsin’ g, (3.19)

3CH(&)
'2L3 sinh &,
3D{ (&)

'2L3 cosh,

U
U (r)]obtate r—;’\/ 1+ 3sin?0 — 3sin?0sin?q|, (3.20)

We consider the magnitude to be the product of two terms— a velocity shape factor
that depends only on &, and a factor that contains the r, § and ¢ dependences.

For hemispheroids with the same volume, the velocity shape factors for translational

motion,
o 9 (3.21)
prolate 3sinh2€0011(§°) ’ |
2
v foblate 3cosh?¢,D}(E,) |’
1
[vSflsphere = 9
(3.22)
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Figure 3-11: The magnitude of fluid velocity for translational motion for prolate and
oblate hemispheroids of the same volume as a function of r with 7 = 7/3 and ¢ = 0.

are illustrated in Figure 3-13. As was indicated in Figure 3-11, for the same volume,
the variation in magnitude, for large r, is at most a factor of two for all shapes, with
the thin, tall, prolate hemispheroid having the largest fluid velocity, and the wide, flat,
oblate hemispheroid, the smallest. Why is the volume mainly determined by |U(r)|
and not the height, which was important for pressure? Consider an infinitely wide
oblate hemispheroid, with fixed height, k. The pressure for this shape is, except for
very thin prolate hemispheroids, comparable to the pressure of all hemispheroids of
height h (Figure 3-2). However because its width extends infinitely into the fluid, the
fluid velocity due to its motion at a particular r in the fluid will be much larger than
that of a hemispheroid of height A and finite width. To summarize, the magnitude of
the fluid velocity, except for points close to the surface of thin prolate hemispheroids,
is mainly determined by the volume of the hemispheroid. For a fixed volume, for
points close to the surface, thin prolate hemispheroids have larger magnitudes than
other shapes. For points far from the surface, the magnitude for all shapes varies by

less than a factor of two and decays as 1/r3.

Rotational motion

The fluid velocity for a prolate hemispheroid rotating sinusoidally is

—jwOLcosq & I;
\/sinh2§ + sin® 7y 1=0 Coina(&o)

dQ3,.,(cosh ¢
P 2ll+1 (cosn) 2‘+td(§ ) ’

U€(€1 7 q) =
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Figure 3-12: A cross-section of prolate and oblate hemispheroids of fixed volume.
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—jwOLcosqg X I, dP} (cosn)
\/ sinh? £ 4 sin? 5 I=0 Carp1(éo) dn
JwOLsingq

- S 1 1 1
Up(§smq) = sin7 sinh £ g Czll+l(£o)P2l+l(COS N)Q2141(cosh §),

Un(&smq) = Q3141(cosh &), (3.23)

(3.24)

and similar expressions can be derived for the oblate case. The velocity field is
shown in Figure 3-14. Unlike translational motion, the fluid closer to the base of the
hemispheroid is directed downward (Uy,(¢,7,q) > 0 for ¢ = 0 and upward for ¢ = =
(upper panels). This feature is also evident for the 2-D flap (Freeman, 1990).

The ratios, |Uy(€,7,9)/Us(€,,9)|, and |Ue(€,7,9)/Un(€,7,q)| were studied and
are plotted for » = 7/3 and ¢ = 7 /4 in Figure 3-15. Because the solution for ro-
tational motion is an infinite series, simple asymptotic expressions for the ratios as
& — 0 for prolate and oblate hemispheroids could not be obtained. However, from
studies of the ratios for the full range of £,, 7 and g, we observe the same trends as for
translational motion — for thin, prolate hemispheroids, the fluid flows mainly around
the hemispheroid, and as the hemispheroid becomes wider, more fluid flows over the

hemispheroid.

Magnitude of fluid velocity

In translational motion, the magnitude of the fluid velocity is mainly determined
by the volume of the hemispheroid. For rotational motion, the quantity that, to first
order, determines |U(r)| is Lw, the focal length time the width, which is L?sinh £, for
prolate hemispheroids and L? cosh ¢, for oblate hemispheroids. Figure 3-16 illustrates
the magnitude of fluid velocity, |U(¢,7 = 7/3,q = 0)| as a function of r, the radial
distance, for hemispheroids with the same Lw. Hemispheroids with the same Lw
are illustrated in Figure 3-17, and Figure 3-18. The curves look strikingly similar to
those of Figure 3-11. For large r, the magnitudes of the velocities for the full range
of hemispheroidal shapes are nearly the same, and decay as 1/r3.

Why is the magnitude of the velocity mainly determined by Lw? The focal length
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is important in determining the fluid velocity for the reasons stated in Section 3.3.1,
the amount of normal component of the surface velocity for rotational motion is, to
first order, determined by focal length and the relevence of width for determining
|U(r)| was discussed in Section 3.3.2.

As was done for translational motion, we let ¢ — 0o, and express the magnitudes

of the velocities as

L4
|U(r)|protate |401 ) \/1 + 3sin? @ — 3sin? fsin? g,
L wd / 6 — 3sin® 6
|U(r)loblate D) 1+ 3sin?0 — 3sin®fsinq|.

The expressions are similar to Equations 3.19-3.20 except the velocity shape fac-

tors are different,

L4
|vs flprotate 'ZC_'RET) ,
L4
Ivsfloblate |4D}(€o) . (325)

For fixed Lw (L = 1/v/sinh¢, for prolate hemispheroids and L = 1/y/cosh§, for
oblate hemispheroids), the velocity shape factors are the same (scale by 8/3) as those

of translational motion (Equations 3.21) for fixed volume.

3.3.3 The Hydrodynamic Torque induced by the hemispheroid

The hydrodynamic torque induced by the hemispheroid is described in prolate spheroidal

coordinates by

T = / / - (r(é,7m) x {)L sinh £, sin n\/smh &, + sin? pdndyq,
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Figure 3-15: Left: U,(¢,7,9}/Uy(€;n,q) for
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7/3 and ¢ = = /4 for rotational
motion. Right: U¢(¢,7,q)/Un(€,n,q) for n = /3 and all ¢ for rotational motion. The
results are also shown for a 2-D flap.
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Figure 3-16: The magnitude of fluid velocity for rotational motion for prolate and
oblate hemispheroids with Lw.
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Figure 3-17: A cross-section of prolate hemispheroids with fixed Lw = L?sinh§,.
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Figure 3-18: A cross-section of
oblate hemispheroids of fixed Lw =
L? cosh &,.

-2 -1

where r is the radial vector, and L?sinh¢, sin7/sinh?®¢, + sin? pdndq describes an
area element in prolate spheroidal coordinates. Because the fluid is modelled as

inviscid there is no shearing force contributing to the torque.

Translational motion

The hydrodynamic torque for a prolate hemispheroid in translational motion is found

by substituting Equation 3.2 and Equation 3.6 into Equation 3.3,

_ jwpL*Uy cosh €, sinh £, 7Q}(cosh §,)

T 1CI(6)

(3.26)

Equation 3.3 and Equation 3.26 are derived in this chapter’s appendix. The hydro-
dynamic torque for an oblate hemispheroid in translational motion can be expressed

as

_ jwpL*Uy cosh &, sinh §,7Q}(j sinh &,)
4D (&) ‘

We see that the torque varies linearly with L*cosh &, sinh¢, or L?hw, the product

T, (3.27)

of the focal length squared and the cross-sectional area. The focal length is an im-
portant factor in determining the hydrodynamic torque for the same reason that it
was important i determining the hydrodynamic pressure for rotational motion— for
rotational motion, fluid is only displaced by the normal component of the 6 compo-
nent of surface velocity. For a hemisphere, for which L = 0, the normal component
of 6 equals zero, so that the hydrodynamic torque induced by the hemisphere is zero.

The more eccentric the shape, the more torque is obtained because the normal to the
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Figure 3-19: Cross-section of hemispheroids with fixed L2hw.

surface has a larger component in the 6 direction. The cross-sectional area is also

an important factor in determining the hydrodynamic torque because the larger the

cross-sectional area, the more fluid is displaced. Figure 3-4, which illustrates nor-

malized hydrodynamic pressure for hemispheroids for which & is fixed, also illustrates

normalized hydrodynamic torque for translational motion for hemispheroids for which

L*hw is fixed (Figure 3-19).

The rotational torque for a prolate hemispheroid is described by
T, = —pL®sinh £,w?O K,

where

2,+1(cos 7) sin® 7 cos 7dn,

= Q3141 (cosh €o)I2I+l (4l + 3)
fa= / I—EO (21 + 1)(21 4+ 2)Casa ()

and for the oblate hemispheroid,
T, = —pL5 cosh {awz(:)Ka,

with

/ Z Q3141 (J sinh &) Lyg1 (41 + 3)
i 2L+ 1)(21 + 2)Daya (&)
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These integrals may be evaluated term by term.

Figure 3-20 illustrates the truncated series approximation for the normalized
torque, (T} )/(L°® cosh® &,pw?®) as a function of the number of terms, n. The torque
computed by the first three terms of the series is within .02% of its correct value.

The hydrodynamic torque for rotational motion varies linearly with L4*w. Here,
height is of lesser importance and focal length is more important than in translational
motion because height is of lesser importance and focal length is more important in
determining the hydrodynamic pressure for rotational motion. Figure 3-21 illustrates
the hydrodynamic torque for rotational motion for hemispheroids for which L%w is

fixed (Figure 3-22). These curves scale almost linearly with those of Figure 3-4 as

well as those of Figure 3-7.
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Figure 3-22: Cross-section of hemispheroids with fixed L*w.
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3.4 Conclusion

We have derived analytic solutions in the limit of high frequencies for the hydrody-
namics of a hemispheroid hinged to an oscillating plate using spheroidal coordinates,
and we have studied the effect of shape of the hemispheroid on the hydrodynam-
ics. Shape has an important effect on the hydrodynamics. We studied the effect of
shape by first determining which combination of size parameters such as focal length,
height, width, or volume, had a large effect on the hydrodynamics. We then fixed the
combination with the largest effect, and studied the hydrodynamics as a function of
€., the shape parameter.

The pressure due to translation of the plate is largely affected by height. For nearly
all hemispheroids of the same height, except for extremely thin prolate hemipsheroids
with £, < .2, the difference in pressure between all the shapes varies by less than a
factor four. The change in pressure with ¢, for hemispheroids of fixed height is greatest
for thin prolate hemispheroids. For prolate hemispheroids, if £, is increased from .2
to .6, then the pressure is increased by a factor of to.

The pressure due to rotation about the hinge is large'y affected by focal length
and is linearly proportional to its square. This implies that the more eccentric the
hemispheroid, the larger is the pressure. For fixed focal length, the change in pres-
sure with £, is similar the change in pressure with £, for translational motion for
hemispheroids with fixed height.

The hydrodynamic torque is, largely determined by the product of L2hw for trans-
lational motion and L*w for rotational motion. This means that for translational
motion, for hemispheroids of fixed cross-sectional area, the more eccentric the shape,
the larger is the hydrodynamic torque. For rotational motion, for hemispheroids of
the same width, the more eccentric the shape, the larger is the hydrodynamic torque.

The direction of fluid flow is affected by shape. Fluid tends to flow mainly around
thin, prolate hemispheroids. For wider shapes, fluid flows over and around the hemi-
spheroid.

Away from the hemispheroid, the volume of the hemispheroid mainly determines
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magnitude of the fluid velocity for translational motion. For rotational motion, it is
the the product of focal length and width that mainly determines magnitude of the
fluid velocity.
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3.5 Appendix

Laplace’s equation (Equation 2.24) is separable in prolate spheroidal coordinates so

that the solution can be expressed as (Moon and Spencer, 1971)

o(r) = 35 H2(€)08(n) 22 (q),

p=0p=0

where H, O, and Z satisfy the equations

d’H(£) dH(£) p’ _
g + COthE_df - (p(p +1) + —_sinhzf) H(¢) =0, (3.30)
d? d 2
ot (plp 1) - ) o =0, (3:31)
d?Z(¢
qu‘—) +0%Z(q) = 0. (3.32)

The solution to Equation 3.30 is a linear combination of Legendre functions in cosh ¢,
H(¢) = ASP)(cosh¢) + B7Q(cosh §),

and the solution to Equation 3.31 is a linear combination of Legendre functions in

cos 7,

O(n) = C;PY(cosn) + D2 Q(cos ),

where A, BS, C?, and D; are constants determined by boundary conditions. The

solution to Equation 3.32 is a linear combination of sinusoidal functions in q,
Z(q) = E’ cos pg + F”sin pq.

Since @(r) is finite at both 7 = 0 and £ = oo, and since Q(cosn) and P?(cosh¢)

are infinite at 7 = 0 and ¢ = oo respectively, we set the coefficients of these terms to
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zero. The general form of the solution is then

o(r) = i i (K,f sin pg + M} cos pq) Qp(cosh £) Py (cos 7), (3.33)

p=0 p=0

where K,‘,’ and M,‘,’ are constants.

3.5.1 Translational motion

Applying Equation 3.5 we obtain

® & 17) 4 pr
-3 K2Q?(cosh {)—%OS—@L sin pq+M; Q5 (cosh {)i—lg;—osl)l” cos pq = 0.
=r/2 =x/2

p=0 p=0
Therefore we find that

OP?(cos n)L _o
a'] =r/2

Now
oP?
_p@lﬁ = f(T)sin(=(p + p)),
T] =71’/2 2

(Abramowitz and Stegun, 1964) where f(T') is a function of I functions which has no

zero. Therefore p + p is an even number. Applying Equation 3.4 we obtain

3 K7 Cy (&) Py (cosn) sin pg + MECE(E,) P (cos 1) cos pq
p=0 p=0

= LUy cosh ¢, sinncosq

where

Co(éo) = 2@_5’(%81152, for ¢ = &.

Therefore we have

p=1, K:/=0, ) M;,HC;,“({O)P;,“(COS 7) = LU, cosh &, sin 9.

4
=0
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Since

P}(cosn) = sin7,

all the terms are zero except for ! = 0, so that M}C}(&,) = LU, cosh§,. Therefore,
the solution for ®(r) is

o(r) = %}%Q}(cosh €) sin 7 cos q.

Rotational motion

The boundary condition on the hemispheroid surface that results from hemispheroid

rotation with the plate stationary can be written as
VO(r) - fi = —jwOVz? + 220 - i, for £ = ¢,

which can be expressed as

VO(r) - € = —jwOVe? + 22(Va? + 22V0 - §).

Hence, after cancelling metric coefficients we obtain

8% (r)
o¢

ae(:':,y)_

. 2, 2
= —jwO(z* + z°) o

We use © = tan™'(z/z) and the chain rule for evaluation of d0(z, z)/9¢ to yield the

boundary condition

99(r) _
o€

L*jwOsinn cosncos g, for £ = &

The boundary conditions on the plate and at co are the same as for translational
motion. We obtain the same general solution as Equation 3.33 and we again have

p + p is even. However, now we have
[o <IN o}

3 ALCP (&) P (cosn)sin pq + BSCS(€,) P (cosn) cos pq

p=0p=0
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= L?jwO sin 7 cos 7y cos q.
We still have
p=1 A=0
so that p is odd. Now we have
> B111Ci41(60) Poyr (cosn) = L*jwBOsing cos 7. (3.34)
k=0

We use the orthogonality property of Legendre functions to find the coefficients Byj;.
We multiply Equation 3.34 by sinnP},,(cosn). With z = cosp, dz = —sinndy,
V1 — z? = sin 7, we integrate from 1 to 0 to obtain (Morse and Feshbach, 1953)

204 1)(21 + 2)
le+1C§1+1( 41)-5-3 ]wO/ V1 — P21+1 z)dz.

From (Prudnikov, 1986),

v/ 2p _ V(2L +1)(21 + 2)
/"" 1—a*Fyyy yC)d““"81‘(3.-1)1“(34-1)’

so that the solution for ®(r) is

I;
o(r) = jwOL? COS‘IZ Cl (&) 21+1(C°s W)Q;IH(COSh £),

=0

where I; = /7(41 + 3)/(8T'(2 — )I'(3 + 1)).

3.5.2 Hydrodynamic Torque

The torque on the hemispheroid is given by Equation 4.10. Since

r(n,q) = |r|Vr = Ly/cos?p + sinh®¢,Vr,
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Vr can be expressed as,

1 or. Or
Vr = —————(—£{ + —),
Ly/sin?  + sinh? g,(af n )

and dr/0n is equal to
Or  —Lcosysing

on \/cos2 n + sinh?¢, ’

r x £ can be expressed as

Ex €= —Lcosnsing a.
\/sinzn + sinh?¢,

With
q = (—sin gk + cos ¢¥),

the torque on the hemispheroid is equal to
2r /2 3 2
T= / / P(r) - (—L”sinh §, sin® 5 cos n(— sin gk + cos q¥))dndg.
o Jo

The pressure P(r) can be obtained from Equation 3.2 and Equation 3.6, so that

Q] (cosh &,)

T, = jpr3Ub cosh &, sinh§, 1CIE)
1 o

For rotational motion, the pressure P(r) can be obtained from Equation 3.2 and
Equation 3.9. The result is given by Equation 3.28. This integral may be solved for

each term of the associated Legendre series.
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Chapter 4

Low frequency solution

4.1 Introduction

In this chapter we show that in the limit of low frequecies, the full linearized Navier-
Stokes equation need not be solved, and the simpler Stokes equation can be used.
Since an analytic solution to the resulting hydrodynamic equations is not known, an
approximate solution is found using a method we call Boundary Element Method
with Analytic techniques (BEMA). We start this chapter by describing the Boundary
Element Method (BEM), and we subsequently discuss the BEMA, a method which
takes advantage of the rotational symmetry of the spheroid and hemispheroid and
partially solves the equations of motion analytically. We apply the BEMA to full
spheroids with no plate present because exact solutions exist which can check the
BEMA results, and because the methods for a full spheroid are the same in many ways
as those of the hemispheroid with a plate, so that much of the computer code can be
checked. Section 4.5 details the BEMA applied to a hemispheroid with a plate which
uses an additional analytic method to solve the equations of motion exactly along
the plate. Complex analytic expressions are needed and we apply checks at different
stages in the method to verify that the equations of motion for the hemispheroid with
a plate are satisfied throughout the fluid. Section 4.6 examines the convergence of the
fluid velocities along the boundary surface as well as the hydrodynamic pressure along

the surface and the torque induced by the motion of the hemispheroid with a plate.
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The final section of this chapter analyzes the results of our numerical simulations and

describes the effect of shape on the hydrodynamic pressure, velocity, and torque.
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4.2 Boundary Element Methods

The BEM is a numerical approximation of the boundary integral or singularity
method (BIM), which represents the solutions to a homogeneous linear differential
equation with specified boundary conditions as a weighted integral of Green’s func-

tions. Let us begin our discussion of the BEM with a description of the BIM.

4.2.1 Boundary integral or singularity methods

Let
D(y(r)) =0, (4.1)

represent a homogeneous linear differential equation with conditions along the bound-

ary surface,

y(r') = g(r'), (4.2)

where r’ represents a vector to a point on the boundary surface and g(r) is some

arbitrary function. The solution to Equation 4.1 can be expressed as,
y(r) = /S G(r,) fpialr')dS,
where G(r) is the Green’s function or impulse response of the Equation 4.1, i.e.,
D(G(r)) = é(r).

frice are the weightings of the impulses located along the surface that are needed
to satisfy the surface boundary conditions, Equation 4.2; S’ represents the surface,
and r’ represents a vector to the surface (Figure 4-1). (If Neumann conditions are
specified, then dG(r)/dr is used.) Once the weightings are found, all other physical
properties can be obtained by using the appropriate Green'’s function. There are three
categories of BEM~indirect, semi-direct and direct (Becker, 1992). In the indirect
BEM, the weightings have no physical significance, but can be integrated to find all

the real physical quantities. In the semi-direct BEM, the weightings are not actual
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AN=§G(LP)f (') dS’

Figure 4-1: The boundary integral method- fy; are the weightings of the Green'’s
functions along the surface that are needed to match the surface boundary conditions,
S’ represents the boundary surface, and r' represents a vector to that surface.

physical properties but can be related to physical properties. In the direct method,
the weightings represent actual physical properties. In this thesis, we will be using
the indirect BEM which, for our applications, have simpler Green’s functions and are

easier to integrate.

4.2.2 Green’s functions for Stokes’ flow

For slow, viscous, incompressible fluid, conservation of momentum is described by

Stokes’ equation,

pV3U(r) — VP(r) = 0,

and conservation of mass is described by
V-U(r)=0.
Therefore, the Green’s functions for Stokes’ flow satisfy

—VGpa(r) + VG (r) = %6(r),
V-Gyu(r) =0,
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=VGyy(r) + V3 Gy (r) = y6(r), (4.3)
V. .Gyu(r)=0,

—VGpu(r) + 4G (r) = 26(r),
V.G (r) =0,

where Gyi(r) and G.i(r) represent the pressure and velocity Green’s functions due to
an impulse of force in the i** direction.

The Green’s functions of Equation 4.3 are called stokeslets (Pozrikidis, 1989).
Gz, the velocity due to the z component of an impulse can be expressed as

1 i+x2i+zy5'+zzﬁ

Guz(r) = 87"/‘(

).

T r3

The velocities due to the other components have similar forms. The pressure stokeslet
can be expressed as

1 zx+yy+ 22

Gp(r) = —(——F%—

4 rd

). (4.4)

For Stokes flow in the presence of boundary surfaces, the solution for the :t* compo-

nent of the velocity can be expressed as
Ui(r) = /S Gui(r, 1) - fia(r')dS', ! (4.5)
and the pressure as

P(r) = /s Gy(r,r) - friae(r')dS". (4.6)

f1:c+(r') represents the weightings of the impulses along the surface. Since each impulse
has a direction, fy;«(r') is a vector. From Equation 2.3 and Equation 2.4, the torque

exerted by the i** component of an impulse on 2 surface S surrounding the impulse

This is true since the i** component. of a velocity stokeslet due to an in impulse in the j**
direction is equal to the j** component of a velocity stokeslet due to an in impulse in the i*h
direction.
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can be expressed as

Gri(r') = /s Gri(r',r)dS, (4.7)

where

Gri(r) = r x (RGyi(r) + uV(f - Gui(r)) + (R - V)Gui(r)), (4.8)

and can be considered a Green’s function for torque per unit area. We can consider
the Green’s function given in Equation 4.7 and Equation 4.8 as the torque stokeslet,

and we can therefore express the i** component of torque as
To= [ Grlr') - fialr')dS"

4.2.3 Boundary element methods

For most problems, ff;; cannot be obtained by analytic techniques, and a numerical
approximation of the boundary integral method, the BEM, is used to obtain an
approximation of fy;: (Pozrikidis, 1992). With the BEM, the surface boundaries
are broken into /N elements with an approximation of f;: in each element. There
are many ways to approximate the continuous BIM with a discrete representation.
We use a constant approximation for fy;c;, so that the integrals of Equation 4.5 and

Equation 4.6 become sums, i.e.,

N n F '
AOEDD /d , Gui(r,) - FriagdS,

i=1

N
Pr)~Y /d , Go(r,r") - e dS}.
2

Jj=1
f},-ct(r’) is the piecewise constant approximation of fy;:(r’). We use a collocation
method to obtain f fict- We break the surface into IV elements and approximate U;(r)

as 0}‘, a piecewise constant function with 0,-" = Uj(rk), the velocity at the midpoint
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of the k*h element. We set U¥ to the known boundary conditions, Usy,f,i(rk) so that

sur!.t(rk) = Uk Z/ ul(rlu fflct,JdS (4.9)

i=1
The midpoint of each element is known as the collocation point. f fict 1s found by
solving Equation 4.9, for each element, for each component of the velocity (Figure 4-

2). Therefore, a 3N by 3N matrix must be inverted. The following summarizes the
steps of the BEM:
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o Step 1:
Break surface S into N elements, the j** element has area S;.
e Step 2:

Compute a 3N by 3N matrix of fluid velocities. Each entry is Guijii, the
fluid velocity in the X; direction, at ry, due to a constant distribution of
impulses along S;, in the %; direction. Rows of the matrix specify the
surface velocities that result for each fictitious source. Columns specify

the contributions of all fictitious sources to each surface velocity.
o Step 3:

Solve a system of 3N equations,

Usurs,i(ri) = Guijii frict i

for the 3N unknowns, f],‘cg'jl.
o Step 4:

Compute entries for matrices G,iji(r), (a 3N by 3 matrix), G,ji(r), (a 3N by 1
matrix), and Gr;;i(r) (a 3N by 3 matrix) to calculate velocity and pressure
at a point r, and the torque on the body, respectively. Since velocity and
torque are vectors, the matrices for velocity and torque consist of three

rows.

Compute velocity, pressure, and torque using fyice jt,

Ur) = Guijl(r)f fict,jl
P(r) = Gpjl(r)f!ict.ﬂ
Tir) = Gri(r)fricest



=h>

fict
et Figure 4-2: In the BEM, the surface is broken into

N elements, and the weightings of the impulses are
AL assumed to be constant in an element. The ** com-
Ui ponent of velocity of the k** element is given by

Uk = Zﬁ—-l Jis» Gui(r,¥') - ff""‘-jds"

Note that the calculation of the torque is somewhat more complicated than that of

velocity and pressure since an additional integration over the surface is required.

4.2.4 Non-integrable singularities in the pressure and torque

stokeslets

The pressure and torque stokeslets have non-integrable singularities on the boundary
surface. Therefore, in this thesis, we approximate the hydrodynamic pressure on
the surface with the hydrodynamic pressure a small distance away from the surface.
However, the torque on the body can still be calculated exactly despite the non-
integrable singularity. This is because the integration over S need not be over the
surface of the body- any surface that encloses the stokeslets will do because the torque

induced by the fluid on a closed surface is zero, i.e.,
— —Fn) — - 2 —
T = /S rx (Pn—7n) = /V r x (VP(r) — pV2U(r))dV = 0, (4.10)

where 7 is a tensor that represents the fluid shear. The appendix to this chapter

contains a derivation of this result.

4.3 BEM with Analytic techniques—BEMA

In this section we will derive analytic expressions for the azimuthal dependence of the
fice(r’) for structures with rotational symmetry about the z axis, and with motions

only in the z-z plane. We will incorporate this dependence into the BEM, and we
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will call the BEM with the known azimuthal dependence of the weightings, BEMA—
Boundary Integral methods with Analytic techniques.

4.3.1 Simplifications for structures with rotational symme-
try about the z axis, with motions only in the z-z

plane

Using Fourier analysis, we will derive the ¢’ dependence of fy;.(r') for the spheroidal
structures we are considering in this thesis. It can be shown (Dean and O’Neill, 1963)
that for structures that are symmetric about the z axis, and with motions only in the

z-z plane, the hydrodynamic pressure and velocity can be expressed as

P(&n,9) = fi(&,n)cosg, (4.11)
U:(6m9) = fa(€,m) cos® q + f3(€,m), (4.12)
Uy(&,m9) = fa(é,n)cosgsing, (4.13)
U.(6,m,9) = f5(€,m)cosq. (4.14)

We will use the known ¢ dependence of the pressure to derive the ¢’ dependence of
frice(r’). For this analysis, we will consider only boundary surfaces of spheroids, so
that fr(r') depends only on 7' and ¢’ and is independent of ¢’. We will check our
results by checking that the resulting velocities induced by the stokeslets have the
correct ¢ dependence.

The following summarizes the steps of the method used to obtain the ¢’ depen-

dence:
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e Step 1:

Represent fy;.(r') as a Fourier series in ¢,

e’y ) = 3 (o) cosia) + B sin(ia N

+ (ay;(n") cos(iq’) + by; (n') sin(jg’))¥
+ (@:5(n") cos(jq’) + b;(n’) sin(jq))2). (4.15)

o Step 2:
Express Gp(r,r’) in spheroidal coordinates.

o Step 3:

Calculate P(r) = [ G,(r,v")fi(n',¢')dn'dq. Let ¢" = ¢' + q, and perform the
integration in ¢” instead of ¢’. This shift simplifies the integration and
since the integral is over a full period, it does not affect the integration.

The terms that are odd functions of ¢” integrate to zero.
o Step 4:

See which terms of the Fourier series of f;4(r’) give the pressure terms with

cos ¢ dependence.
e Step 5:

The result is

ffict.z:(n’a fI') - a:O(nl) + az‘fl(nl) CO52 (1’, (4'16)
friecew(n'sqd') = az2(n)sing’cos ¢, (4.17)
frict:(n's4") = aa(n’)cosq, (4.18)

where az0(n') = @:0(n') = @z2(7'), az2(n') = 2z2(7'), and a1 (') = @a(7').
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This method is discussed in more detail in the appendix to this chapter. Note that
although there are four different ¢’ dependencies, 1, cosq’, cosq’singq’, and cos? ¢/,
there are only three weighting functions, a,0(n’'), az2(n’), and a1 (7'); the X cos®q’
term must have the same weighting as the ysin¢'cos ¢’ in order to obtain the cosgq
dependence of the pressure. Having determined the ¢’ dependence of fy.(n',q’),
we can integrate Equation 4.5 and Equation 4.6 analytically with respect to ¢'. To

simplify the expressions for pressure and velocity, let f,.(g') be the following functions

of ¢,
fo(q') = 1,
fld) = cosq,
f(d) = cos’d,
_fg(q') = sinq' cos¢/,

and let Giji(r,€',7') represent either the integrated velocity stokeslet in X;, or the

integrated pressure stokeslet if ¢ = p, due to a source in %; with strength, fi(¢') , i.e.,
~ 7 e ' N &8 Fot !
Cise(r,€,1) = [ ha(€', 1) Guslr, ') %3 feld' )

- 2 -
Gpik(r,&,n") = /0 ha(€', 1" )Gp(r,v') - %, fi(q')dq'.

Equation 4.5 and Equation 4.6 can now be written as

Ur) = [ dn'ha(€n') x (Girolr, €7 )asolr
+ éiﬂ(r, fl, 77’)“::2(77') + éiy-‘i(r, 'fla 7)')“:2(71') + Gizl (X‘, 6'1 n')azl (77,))’

P = [ dn'(€n) x (Geole, € )azoln)
+ épxz(!‘, 6” 77’)0‘1‘2(77') + él'y3(r’ f'a 77,)“1‘2(77’) + GPZI (l‘, EI’ 77’)‘121 (77,))7
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If we factor out from é,-,-k(r, 7') the terms that only depend on ¢, we can express

the components of the velocity as

Ualr) = [ dn'ha(€, )%
(G226, €'0) + G2.(&,m, €', 1") cos? q)azo(7)
+ (G (6m€sn) + Gloryy (&1, €',7") c05? q)aa(n)
+ (GR.(6:m:&,7") + GL(6,m: €, 7') cos® g)an(n')),

U,(r) = cosgsin q/ dn'hy(€',7") x
0

(G2 (6m, € 0" ) aso(n') + G pyy (6,1, €1 Yataa(n') + G2, (6,1, €', 7 )an (7)),

U.(r) = cosq/o dn'h(€',n")x
(GL(E-1, 60" )azo(n') + Grpryy (6,1, € 1 )ana(0') + GL(E,1, €, 0" )aa (7)),

where é;k represents combinations or portions of the integrated Green’s functions
without the ¢ dependences, ¢ denotes ¢ dependence in the same way that 7 denotes ¢
dependence of f;(q); J denotes X;, the velocity direction; and k denotes X, the source
directions. If k = z + y, then G;L represents a sum of integrated Green’s functions
due to sources in X with a cos? ¢’ dependence and ¥ with a sin ¢’ cos ¢’ dependence.

The pressure can be expressed as

P(r) = cosq j‘/) " dn' (€', 7)
(Gha(€,m, €0 )as0(0') + Gy (6,1, €0 )aza(n') + G (6,1, €', 7Y (7))

Using the known ¢ dependencies of the hydrodynamic pressure for structures
with rotational symmetry about the z axis, with motion solely in the z-z plane,
we have derived the correct ¢' dependences of fy;4(r’), and we have indicated that

these dependencies lead to the correct q dependencies of the velocity components.
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4.3.2 Numerical methods— the 7' dependencies of f;

Since we are unable to determine the 7’ dependencies of fy;:(7’,q’) exactly, we must
now rely on numerical methods. To derive the  dependence of fy;(7',q'), that is,
to solve for azo(7’), az2(n') and a.1(n’), we use the BEM discussed previously. Only
an arc of the spheroid need be broken into elements, since we have solved for the ¢’
dependence. Breaking up the surface into N elements along an arc of constant ¢, the

fluid velocity and pressure can be represented as

N
Us(r) =) /,(Z_,2 dn'hy (€', ") x
N

=1
(GL.(&m, €, 0") + G2.(€,1,€',7') cos® @)tz

+ (ég(x+y)(€a 7, 6,, 77') + éz(z+y) (67 7, €Ia 7”) C’052 q)&:ﬂ,j

+ (G2(&,n,€,7") + G2 (6,0, €, 7') cos? q)inn ), (4.19)

N .m
. N ) '
Uy(r) = cosqsmqZA _y ' (€)%
N

Jj=1

(Goa (s €0 Vo0 + G2 oy (6,1, €0 )aans + G2 (E,m, €1 ) 5), (4.20)

Y % ’ ! /
() = cosq =1y 2 G, 7
Uslr) = cosq 3= [, dn'l€' ')

1=1

(é;x(€7 7, 6’, ﬂl)&zo,j + éi(:+y) (Ea n, {ls 77')&1‘2.1' + é:z (67 7, 5,1 7]’)&'21,.7)’ (421)

N ’-;vl 1 ! 1
P(r) = coqu/,“_,) dn'hi(€',n") %
N

J=1

(é}:x (6, 7, glv nl)&xo.j + GA;(::-*-y) ('fa 7 £I’ 77,)&1‘2,]' + GA'::(& 7, 61’ 77')?1:1,1‘), (422)

where a0, G;2, and @ represent piecewise constant approximations to azo(n'), az2(n’)
/
and a; (7).
To determine dzo, @2, and @,;, boundary conditions are needed. However, because

the dependence of ff;+(7',¢') on ¢’ has already been determined, only the velocities
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for an arc of constant ¢’ need be set. The following summarizes the steps of the

BEMA:

o Step 1:

Using the known weightings in ¢, integrate the Green’s functions with respect

to ¢'.
o Step 2:
Break contour of constant ¢’ into N elements, the j** element has area S;.
o Step 3:

Compute a 3N by 3N matrix of fluid velocities using the stokeslets and image
stokeslets. Each entry is Gy;;ki, the velocity in the %X; direction, at ry, due

to a constant distribution of impulses along S;, in the %, direction.
e Step 4:

Solve a system of 3N equations,

Usurs,i(re) = Guijrisi,

for the N unknowns, a;; with @;; = Gy0,j, @j2 = Gz2; = Gy2,5, ajz = Q.
o Step 5:

Compute entries for matrices G.iji(r), (a 3N by 3 matrix), Gp;(r), (an 3N
by 1 matrix), and Gry;(r) (an N by 1 matrix) using stokeslets and image

stokeslets.
Compute velocity, pressure, and torque using a;;,
Ui(r) = Guij(r)aj

P(r) = Gpi(r)aj
T,(r) = Gra(r)a;
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4.3.3 Other analytic techniques

Other analytic techniques can be incorporated into BEMA to simplify the numerics;
for full spheroids, which are symmetric about the z-y plane, we will take advantage of
this symmetry and only discretize the upper half of the spheroid. For hemispheroids
hinged to a plate, we will use a Green'’s function that gives the correct fluid velocities
along the plate, so the plate needn’t be discretized. These methods will be discussed

in more detail in the next few sections.
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4.4 Analysis of full spheroid in uniform and shear
flows using BEMA and symmetry

In this section, we describe the results of the BEMA for a stationary full spheroid in
uniform and shear steady flow. The numerics of the BEMA will be further simplified
by using symmetry to predict the stokeslet weightings in the lower half of the spheroid.
Since there are known exact solutions (see appendix of this chapter), we can check
the BEMA results and gain understanding of the sources of error. This exercise also
serves as a partial check on the BEMA applied to a hemispheroid with a plate since

there is much overlap in the the numerical code used to solve the two problems.

4.4.1 Boundary conditions

For uniform flow, let the fluid velocity far from the spheroid be represented by —U,%,
and for shear flow, let the fluid velocity far from the spheroid be represented by —Qz%.
If we shift reference frames to be such that the fluid is stationary at infinity, the fluid

velocity along the surface of the spheroid, in the new reference frame is given by
U =¢&,m4q) = UX,

for uniform flow, and for shear flow, it is given by
U =&,n,q) = Q2%

Exact solutions to Stokes equation with these boundary conditions are found in the
appendix. From symmetry it has been determined that for a full spheroid, a.2(7') = 0,
so that either Uy (¢ = &,7,q) or U.(§ = &,7,¢) need be set to zero. We arbitrarily

chose U.(§ = &,,7,q), and use the known surface velocity U, to check our results.
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4.4.2 Symmetry

Because the spheroid and boundary conditions are symmetric about the equatorial
plane, where = 7 /2, only the half contour, of constant g, above the equator, need
be discretized by adding or subtracting to the stokeslet, its image stokeslet. The
x and y components of stokeslets due to impulses in % are symmetric about the
equatorial plane as is the z component of stokeslets due to impulses in 2. The other
stokeslets are antisymmetric. Since the boundary conditions are symmetric in % and
z for uniform flow and in % for shear flow, but are antisymmetric in % for shear
flow, the sign of the image stokeslets in % for shear flow are negative. Therefore,

Equation 4.19-Equation 4.22 can be expressed as

Us(r) = é/:v_ﬂ dn'hi(€',n') x ((Goa(&m,€,7')
t (Go(&m, €\ m— 1)+ (GL (6.6, 0') £ G2(6,m, 8,7 — 7)) cos? q)io
(Go:(&,m €'\ n') + G (6, € 7 — )
+ (GL(&m € n) + G(E,n,€, 7 — 7)) cos® )it ),

N m .
Uy(r) = cosqsian/,gN!_,) dn'ha(€',0") x (G (&,m, €4 7")
j=1 N

* éz;(fa 7, 5’1 T 7’/))&1’0,]' + (G'iz(f, 7, g’v 77’) + ézz(€1 UR fla = n’))&zl,j)a

N = .
Uar) = cosq . [y, d1'ma(En) x (CL(&n,€,7)
=1 N

+ (é:x(fa 7 6,1 = 77,))&10,]' + (élz(é, UE! f'a 77’) + éiz(‘fi 7, f'a T = 77,))621,]')’

P(r) = cosq [, di'm(€,n) x (GL(&n,€\n)

+ Giz(fa 77,5',7" e 77’))&1-‘0,.7' + (éiz(éa 77)6'1 77') + é:z(€a Yl,f', T = 7)'))&:1,5),
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where G;'-,,(E y1,&'ym —n') denotes the image stokeslet.The + sign is used for uniform

flow, and the — sign, for shear flow.

4.4.3 The numerical integration of the Green’s function

with respect to 7’

The Green’s functions are integrated numerically with respect to 7’ using an iterative
trapezoidal rule with a user specified relative accuracy set by a parameter, ¢ which
is defined as the magnitude of the ratio between the difference in two i ccessive

estimates and the value of the latest estimate.

4.4.4 The matrix inversion

With N/2 contour elements, an N by N matrix is obtained. To determine é,o and
a1, the matrix is inverted using Mathematica’s Inverse subroutine which inverts this
type of matrix by Gaussian elimination.

The following summarizes the steps of the BEMA applied to the full spheroid in

uniform or shear steady flow:
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o Step 1:

Using the known weightings in ¢/, integrate the Green’s functions with respect
g gotings 1n q g P

to ¢'.
o Step 2:
Break contour of constant ¢’ into N/2 elements, the j** element has length S;.
e Step 3:

Compute a V by N matrix of fluid velocities using the stokeslets and image
stokeslets. Each entry is Gijk, the fluid velocity in the %X; direction, at
ri, due to a constant distribution of impulses along S;, in the %X; direction.
For the full spheroid, the indices, i and ! have two values, either 1 or 3

indicating X or Z.
o Step 4:

Solve a system of N equations,
Usurs,i(tk) = Guijui@ji,
for the N unknowns, aj with @, = as,;, and a3 = @ ;.

o Step 5:

Compute entries for matrices Guijui(r), (an N by 3 matrix), Gp;(r), (an N
by 1 matrix), and Gry;(r) (an N by 1 matrix) using stokeslets and image

stokeslets.
Compute velocity, pressure, and torque using a;,
Uir) = Guij(r)a;

p(r) = Gpu(r)a;
Ty(r) = Gryu(r)a;
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4.4.5 The torque calculation

The calculation of the torque is somewhat more complicated than that of velocity
and pressure since an additional integration over the surface is required. Using Equa-
tion 4.7 and Equation 4.8, the torque, which, for the structures considered bzre, is

completely in ¥, can be expressed as
N ~
T, ~ / sy / Gu(r,v') - &yier ;S
s j=7ds

The torque can be found by first analytically integrating Gu(r, r') over ¢’ and g,
numerically integrating over dp’, summing the dot product of the result and the

fictitious sources, integrating over dy, and then summing the result,

Q

N
Ty % % [y i, Ohsln, )
b= N

N m

N A ~

X ?.—_':1['(’»7” d’)'hl(n',fl)hz(fl',{')/;de/q, dq'Gri(re, ') - Rietj
N/2 zk

2N .
= 22 [ Bha(n, Ohaln, O,

with

Nf2  m . .
gl,k = Z ﬁ:lN_q dn’hl(”,’él)hd(””{l) / dq /, dq’(Gﬁ(rkar,) + Gii(rk,r:’mage)) ’ ifict,j
j=1Y 2N 9 9

g1,k is a piecewise constant function. The + is used for the stokeslets in Z and the —
for stokeslets in X (only shear flow produces a torque on the spheroid). To obtain a
better approximation to the torque, a fitted polynomial approximation to §; 4 is used,
1.e.,

w/
7,2 [ ha(n, O)kaln, u(n)en,

where g;(n) is the fitted polynomial to §; x. The following summarizes the steps of

the torque calculation:
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o Step 1:

Using the known weightings in ¢', and the known dependencies of the torque
stokeslets in ¢, integrate the torque stokeslets with respect to ¢’ and with

respect to q.

o Step 2:
Compute a N by 1 matrix of torques using the torque stokeslets and image
torque stokeslets. Each entry is Gryju, the y component of torque/n, in
Sk due to a constant distribution of impulses along S, in the %; direction.
o Step 3:
Using the known weightings, calculate the torque/,
k -
T, = Gryjua;
o Step 4:
Fit a polynomial in 7 to T:,
k
I, -T)
o Step 5:

Integrate T} with respect to 7,

Wy

T, = [* k() Tpdn
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4.4.6 Results

We will now compare results of the BEMA to the exact solution. There are two
main sources of errors in the BEMA— the piecewise constant approximation to the
weightings and the numerical integration in ’. We chose to study a nearly spherical
spheroid in uniform flow, since, for this case, a;o(7') and a (7’) are nearly constant
and we can focus on the size of the error due to numerical integration. We also
describe the results for a thin prolate spheroid in shear flow, for which a,o(n’) varies.
For both cases, we will study the convergence of d,0 and é,;, examine U, on the surface
to verify that it converges to zero (U, was not used to compute the weightings), and
compare the BEMA results for fluid velocities, pressures and torques to those of the

exact solution.

Results for a nearly spherical spheroid in uniform flow (Figure 4-3) Fig-
ure 4-4 illustrates the normalized stokeslet weightings dzom = Gz0/(pUs) and a1, =
a:1/(uUs) for a nearly spherical spheroid in uniform flow, with N/2 = 8 and € = .001,
along the arc ¢ = 0. We see that G0, and @, are very nearly constant— a1, is
close to zero (= 107°%) and Gzo,n ~ .0597/R, where R is the radius of the sphere. (Note
that although we have an exact solution for the pressure, velocities, and torque, we
do not have an exact solution for the stokeslet weightings.) As we mentioned before,
because the stokeslet weightings are nearly constant, the errors in the solution are
primarily due tc numerically integrating the Green’s function in 5’ and are not due
to approximating the weightings as constant in an element. This is made evident in
Figure 4-5 which illustrates the normalized y velocity U,, = U,/U, on the surface
along the arc, ¢ = 7 /4, for N/2 = 8, for two integration criteria, ¢ = .005 (-) and
€ = .001 (+4). This velocity should be zero. We see that the error decreases for the
tighter integration criterion, with |Up,| < 6-107° for € = .005 and |Up,| < 21075 for
€ = .001. Using the tighter criterion result in 50% more computational time.

Our results are compared with those of the exact solution for fluid velocities along
an arc, £ = 6 (or r = 2.7R), ¢ = 7 /4, in Figure 4-6. The solutions match to one part

in ten thousand which is the same as the results for fluid velocities along the surface
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0.4 Figure 4-6: The fluid velocities
0.3 along an arc in the fluid, ¢ = 6
: (or r = 2.7R), ¢ = 7 /4 calculated

0.2 with BEMA with N/2 = 8 and
€ = .001 (denoted by the symbols

0.1 z for Upz, y for Uy, 2 for U,;) and
M calculated with the analytic solu-

7 7 T2 tion (solid line).

normalized veolcity

215

% Figure 4-7: The normalized
5 1 pressure, P/(uU,) on the sur-
3 face (£ = 5.005 or r = 1.005R)
N along the arc, ¢ = 0 calculated
g 05 with BEMA (-) and with the
g analytic solution (solid line).

/4 w2

(Figure 4-5).

The Green’s function for pressure contains a non-integrable singularity on the sur-
face, and we use the pressure for points close to the surface, (¢ = 5.005 or r = 1.005R)
to approximate the pressure on the surface. Figure 4-7 indicates the numerical results
for normalized pressure, P/(uUs), next to the surface along the arc, ¢ = 0.

Approximating the pressure of points on the surface with the pressure of points

S Figure 4-8: The fractional dif-
§ ference between the the numer-
& 0.012 ical solution for pressure at £ =
£ 0010 : c 5.005 and the analytic solution
§ 0.008 « o e at £ =, = 5 with e = .005 (),
_ﬁ_‘) 0.006 | ° : and the difference between the
g 0.004 the nu.mencal. solution and the
8] e . analytic solution at ¢ = 5.005
S 0.002 ° + t o+ with ¢ = .005 (+) and with
- 44— oo —o—o—o _1n-=5
/4 1:/211 €=107" (o)

89



Figure 4-9: A thin, prolate spheroid (£, = .1) in shear
flow. The arrows indicate the magnitude and direction
of the flow.

-
<

close to the surface is an additional source of error. To examine the magnitude of this
error, we studied the difference between the numerical solution calculated along the

contour, £ = 5.005 and the exact solution calculated along two different contours:
1. the surface contour, £ = ¢, = 5,
2. the contour, £ = 5.005.

We chose € = .005 for the the first case, and for the seccd o, we chose € = .005,
and € = 10~° (Figure 4-8). By varying the contour, and by varying €, we can see how
the approximations contribute to the error. From Figure 4-8 we see that the error
from approximating the pressure on the surface ¢ = €, = 5 with the pressure off the
surface (¢ = 5.005) is much larger than the error due to numerical integration.

We cannot study torque for this example since, from symmetry, there is no torque

in uniform flow.

Results for a thin, prolate spheroid in shear flow (Figure 4-9) The normal-
ized stokeslet weightings dzon = dz0/(1Q) and .1, = @.1/(uQ) for a thin, prolate
spheroid (§, = .1) in shear flow are illustrated in Figure 4-10, with N/2 = 16 and
€ = .005. We see that a.),, is nearly zero for all  and é@,o, monotonically decreases
with 7.

Figure 4-11 indicates Uy, on the surface contour ¢ = 7/4 for N/2 =8 and N/2 =
16. We see that the error is two orders of magnitude larger than that of the translating,

nearly spherical spheroid, with a nearly constant .0, We also observe that the
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Figure 4-12: Uy, U,y, and U,,
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' .2, ¢ = w/4), calculated with
0.2 BEMA (N/2 = 8 and ¢ =
) .005). The exact solution is in-
M 1 dicated by the solid lines.
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maximum error for N/2 = 16 is approximately balf that for N/2 = 8. Therefore we
conclude that the the piecewise constant approximation of the stokeslet weighting .o
is the main source of error.

Figure 4-12 compares our results (N/2 = 8) with the exact solution for fluid
velocities along the arc { = .2, ¢ = /4. The results match to one part in a thousand.

Figure 4-13 compares the pressure next to the surface (¢, = .1005) for ¢ = 0,
N/2 = 8 and N/2 = 16 with the exact solution on the surface. The largest errors occur
where the pressure is rapidly varying with 7 and the piecewise constant approximation
of the weightings with N/2 = 8 or N/2 = 16 cannot accurately sample the variation.

Increasing N/2 to 16 results in a decrease in the largest error by a factor of three.
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analytic | numeric | N/2 | £
-12.57 | -12.77 4 |5.01
-12.57 -12.52 8 |5.01
-12.57 -12.42 16 | 5.01
-12.57 -12.56 32 |5.01
-12.57 -12.55 64 | 5.01
-12.57 -12.56 8 |6.00
-10.18 -10.11 8 1.01
-10.18 -10.17 8 12.00
-7.18 -7.15 8 .60
-7.18 -7.18 16 .60
-7.18 -7.18 32 | .60
-3.33 -3.33 8 1.00

< len|en|en S
== or|en|en|en| e enfs

Table 4.1: A table of results for the normalized torque, T, = T,/(uf), calculated for
spheroids with different . The torque is calculated on different surfaces surrounding
the spheroid (the surfaces are denoted by ¢), for different discretizations (N/2).

4.4.7 The torque for full spheroids in shear flow for different
shapes

To understand the sources of error in our torque calculation, we computed the nor-
malized torque T, /(uQ) for different shapes (Figure 4-14) and compared our results
to those of the exact solution (Table 4.4.7). We also verified our code by checking that
the torque on different surfaces surrounding the spheroid is the same — this implies
that the torque induced by the fluid is zero and that Stokes equation is satisfied. The
spheroid is denoted by a surface of constant ¢,, and the different surrounding surfaces
are denoted by £.

Three features are evident— the error is small (maximum error is 1.6% for N/2 =
4), the error decreases with the distance between the surrounding surface and the
spheroidal surface, and the error decreases (although not monotonically) with in-
creasing N. The decrease with N is to be expected—the piecewise constant ap-
proximation improves with increasing N; that the decrease is not monotonic may
be because there is an additional source of error in the torque calculation coming

from the polynomial fit approximation. The decrease in error with distance can be
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Figure 4-14: The spheroids for which the torque was calculated (solid lines) along
with the enclosing surfaces (dashed lines) used in the calculation.
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understood—as the distance from the surface of the spheroid increases, the distance
from the non-integrable singularities increase, and the numerical integration can be

performed more accurately.

4.4.8 Conclusion

We have shown that our results for full spheroids appear to converge to the exact
results as N — oo and as ¢ — 0, and that the primary source of error, when the
weightings of the stokeslets vary, is the piecewise constant approximation. For the
thin, prolate spheroid, if we double the number of elements, we halve the magnitude
of the error. When the stokeslet weightings are nearly constant, if we tighten the
numerical integration criterion by a factor of five, we reduce the error by about a
factor of three.

In the next section, we will describe the BEMA applied to the model of the
hair bundle structure, the hemispheroid with a plate, in the limit of low frequencies.
We will see that the methods are similar, and that this exercise in using BEMA to
calculate the hydiodynamics for full spheroids has checked much of the method for

the hemispheroid with a plate.
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4.5 Low-frequency solution for hemispheroid with
a plate

We now discuss the method to compute the low-frequency solution for the hemi-
spheroid hinged to a plate for both translational motion and rotational motion. We
will first describe the equations of motion and the boundary conditions in the limit
of low frequencies. Next, we will describe the method used to solve the equations
of motion. We will then discuss results obtained for three hemispheroidal shapes
that represent extrema of the shapes considered in this study—a very thin prolate
hemispheroid (§, = .1), a wide, flat oblate hemispheroid (£, = .1), and a nearly
hemispherical hemispheroid (¢, = 5).

4.5.1 Low frequency analysis

In Section 2.1.5 we showed for low frequencies instead of solving the Navier-Stokes
equation, we can solve the simpler Stokes equation. We simplified the Navier-Stokes
equation by expanding the hydrodynamic variables and the boundary conditions in
terms of powers of jw. By equating like powers of jw, we showed that steady equations
of motion can be solved which are independent of jw. We determined that only the
first order terms were significant to motion of the hemispheroid. The equations of
motion and boundary conditions are given in Equations 2.10-2.13 for translational

motion and in Equations 2.16-2.19 for rotational motion.

Frame of reference for translational motion

ror translational motion, the distant boundary condition is non-zero. To simplify the
analysis, we will choose a frame of reference for which the distant boundary condition
is zero. The advantage of this frame of reference is that a stokeslet, whose velocity
approaches zero as { — oo, can be used in the BEMA. Let Uy (r) represent the

velocity in this frame of reference,

Uu(r) = Ul(r) + ZU[,)T{.
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For this frame of reference, the equations of motion remain the same while the bound-

ary conditions can be expressed as,

Uil = o,ma) = 2Up%, (4.23)
U(é,n = 7l'/2,q) = 0, (4'24)
Uyt(§ — o0,9,q) = 0. (4.25)

Since

pV3(zUpk) = 0,

the pressure is the same in either frame of reference, i. e.,
Pu(r) = Pl(r).

Since

T = /S (r x (uV(# - 2UsR)) + p(f - V)2Upk))dS = 0, (4.26)

the torque remains the same. (See appendix of this chapter for the derivation of

Equation 4.26.)

4.5.2 Boundary condition at plate

The problem of a hemispheroid with a plate is similar in many ways to the problem
of a full spheroid. It has the same rotational symmetry, and the motion of the body is
solely in the z-2 plane. We therefore know the q dependence of the stokeslet weightings
(see Section 4.3.1). The main difference in applying the BEMA to a hemispheroid
with a plate is satisfying the boundary condition along the infinite plate. We could
discretize a contour along the plate in addition to the contour along the hemispheroid,
and find the stokeslet weightings that would satisfy the boundary conditions, but the
computational domain must be finite. Therefore we would need to introduce artificial
boundaries in the fluid at some distance away from the hemispheroid, but the use

of artificial }-oundaries would introduce errors. An alternate method, and what we
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chose to do, is to use a Green’s function that has the correct boundary conditions

along the plate.

4.5.3 The Green’s function for a stokeslet with a plate

The j* component of the Green’s function for velocity due to a stokeslet in the kt*

direction in the presence of a plate can be expressed as (Blake, 1971)
G:,plate,j(r’ r’) = Gﬁ,] (l‘, I") - G:,j(r'I r’image) + Gﬁw,j(ri rll'mage)'l (427)

where G}, ;(r) is the j® component of velocity due to a stokeslet in the kt" direction

k
uw,j

with no plate present, r{,,,. = z'% + y'y — 2’2, and G¥_ (r, i nage) Satisfies Stokes

equation, and has the necessary velocity along the plate to ensure that Gy late; (T, 1)

equals zero along the plate. Gﬁw,j(r, I rage) Can be expressed as
1 0
G i (0 iage) = ——2'(8kabot — Si3ba
(0 Fimase) = g # Brebt =Sl
[Z’(mj — z;,image) _ ( 6] (zJ - m;,image)(z + Z’) )]
II' - l.:"m.a_qe |3 lr - r:'magel Ir - r:'mugels

The Green’s function for pressure due to a stokeslet in the k** direction in the presence
of a plate can be expressed as

Gk,plate(r7 l") = G’;(I‘, l") - G’;(l‘, r'irrzage) + G:w(r? rlimagc)’ (428)

p

where G';(r) is the pressure due to a stokeslet in the k' direction with no plate
present, and, G§,(r, I';nage) accounts for the presence of the plate,
0 z+4+ 2

] :E;.image) Ir - r:’magels.

’ -2
Gl;w(r?r imayc) = E‘__(é‘ka‘sﬂl - 6k363l) a(

These Green’s functions are mathematically equivalent to a stokes doublet and source
doublet in the image plane (Blake, 1971) and for simplicity we will label these Green’s

functions as the “w” sources.
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4.5.4 BEMA for hemispheroid with a plate

Fo: the full spheroid, we represented the hydrodynamics as a weighted integral of
stokeslets. For the hemispheroid with a plate, we will represent the hydrodynamics
as a weighted integral of the vector sum of a stokeslet, an image stokeslet and a “w”
source. We will refer to this sum of a stokeslet, an image stokeslet and a “w” source
as the “source” for the hemispheroid with a plate.

As we mentioned, the ¢ dependence of the weightings are already known. To
obtain the source weightings in 7, a similar procedure to the one outlined for the full

spheroid is used except that
1. We have “w” sources in addition to the stokeslet and image stokeslet.

2. Instead of using two of the three boundary conditions to obtain the weightings,

three are needed because a.2(n) is no longer zero.

Since the procedure for the hemispheroid is similar to that of the full spheriod, we will
continue using the same notation so that N/2 is the total number of discretization
elements.

The following summarizes the steps of the BEMA applied to the hemispheroid
with a plate:
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o Step I:

Using the known weightings in ¢’, integrate the Green’s functions with respect
g ghting q g p

to ¢'.
o Step 2:
Break contour of constant ¢’ into N/2 elements, the j** element has length S;.
o Step 3:

Compute a 3N/2 by 3N/2 matrix of fluid velocities using the stokeslets, image
stokeslets and “w” sources. Each entry is Gy, the fluid velocity in the
X; direction, at ri, due to a constant distribution of sources along S;, in

the X, direction.
o Step 4:

Solve a system of 3N/2 equations,

Usur,i(tx) = Guijnéji,
for the 3N/2 unknowns, aj with &;; = a,0,;, 42 = Ar2,; = Gy2j, Gj3 = @y 5.
o Step 5:

Compute entries for matrices G,q;i(r), (2 3N/2 by 3 matrix), Gpii(r), (a 3N/2
by 1 matrix), and Gry;i(r) (an 3N/2 by 1 matrix) using stokeslets, image

stokeslets and “w” sources.

Compute velocity, pressure, and torque using a;,

Uir) = Guj(r)a;
P(r) = Gpu(r)as

T, = Gryuaj
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% \ the surface indicated by the
’ \ dashed lines is equal to the neg-
/ hemispheroid surface \ ative of the torque on the hemi-
spheroid. The solid line indi-
cates the hemispheroid.

4.5.5 The torque calculation for a hemispheroid with a plate

Because of the presence of the infinite plate, we can not use a surface surrounding the
sources to calculate the torque. However, we can calculate the torque by integrating
over the surface indicated by the dashed lines in Figure 4-15 because the torque
induced by the fluid on the surface described by the hemispheroid and the dashed
lines is equal to zero. Therefore, the torque along the dashed lines is equal to the

negative of the torque induced by the fluid on the hemispheroid.

4.5.6 Method checks

When we applied the BEMA to a full spheroid, we were able to check our method
by comparing the results to those of the known solution. Since there is no known
solution for the hemispheroid on a plate (if there were, then there would be no need
to use BEMA) we performed tests of the method at different steps. The following
lists the tests used:

1. We check that the Green’s functions, after integrating with respect to ¢’, satisfy

Stokes’ equation and conservation of mass.

2. We check that the Green’s functions, after integrating with respect to 7', satisfy

Stokes equation.

3. We check that the torque on an enclosed surface in the fluid is equal to zero.

This is true if Stokes equation is satisfied.

Assuming the fluid velocities satisfy the boundary conditions, our results are only

valid if Stokes’ equation and the conservation of mass equation are also satisfied. If
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the Green’s functions satisfy these equations, then we can be sure that our results
of the BEMA for fluid velocity and pressure are correct since our results are simply

weighted sums of these Green’s functions.

Check Green’s function after ¢’ integration

The integrals of the Green’s functions for velocity and pressure with respect to ¢’
were substituted into the conservation of mass equation and Stokes equation to check
that the integrals were done correctly and that equations are still satisfied. This
was done with Mathematica which can easily do vector Laplacians and gradients in
spheroidal coordinates. Unfortunately, the resulting equations were too complicated
to simplify, so we substituted numerical values for a few randomly chosen positions
of sources points and field points for two different hemispheroidal shapes. We found

for conservation of mass,
IV - Guil <1074|G, 4,
and for Stokes equation,
VG — pV2G;| < 1072|VG,. .,

for each point tested. é,,,,- and G,; represent the integrated Greens function for
pressure and velocity due to a source in the  direction. Since the error is at the
level of the machine precision, we conclude that the integration with respect to ¢’ was

performed correctly.

Check Green’s function after 5’ integration

To check that the numerical integration in 7’ was done correctly, we substituted into a
numerical approximation of Stokes equation, the results of the numerical integration of
the Green’s functions with respect to dy’ for the eight segments (N/ 2=8) illustrated in
Figure 4-16. The field point chosen is £ = 5.015, n = .9377/2, ¢ = 7 /4 and the shape
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Figure 4-16: The eight segments along the sur-
face over which the integration with respect to
g X n' was performed. The “x” delineates the field
point.

of hemispheroid is nearly hemispherical with ¢, = 5. Centered difference equations
were used to approximate the derivatives in Stokes equation. The segments are labeled
1-8, with 1 representing the segment at the tip of the hemispheroid and 8 representing
the segment closest to the plate. The field point is marked with an “x”. For segments
1-7, the integrated Green’s functions come close (within 5%) to satisfying Stokes
equation. For the eighth segment, we cannot determine whether Stokes equation
is satisfied because we cannot accurately estimate the derivative with the difference
approximations— there is a large change in the Laplacian and the gradient when the
spacing used in the difference calculations is changed. Since Stokes equation is fairly
well satisfied (the derivatives were approximated by finite differences—a somewhat
crude approximation that was not used anywhere in the BEMA) for the segments
where fairly accurate estimates of the derivatives are obtained, we conclude that the

numerical integrations with respect to 5’ are correct.

4.5.7 Check that the torque on a surface that encloses only

fluid is zero

If Stokes equation is satisfied, then the torque on a surface that encloses only fluid
must be zero. To test that this was so, we performed the following calculation. We
computed the torque along three different surfaces indicated by the dashed curves
in Figure 4-17. The indicated surfaces, along with the surface of the hemispheroid,
encloses only fluid. Therefore the total torque computed along the surfaces is zero.
This implies that the torque calculated for the surfaces indicated by the dashed curves
must be equal to the negative of the torque calculated along the surface of the hemi-
spheroid. We checked that the torque computed for several different surfaces in the

fluid remains the same. Figure 4-17 illustrates the enclosing surfaces as well as the
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~ £=5.01

Eo=5
Torque=-7.621

Figure 4-17: The dashed lines indicate ¢ = £;, the surfaces for which the torque was
computed. The solid line indicates the surface of the hemispheroid, ¢ = € = 5. The
sum of the torques computed for surfaces indicated by solid and dashed lines is zero
since the surfaces enclose fluid. Three different surfaces in the fluid were chosen. The
torque for the three dashed surfaces must be the same and must be equal to the
negative of the torque for the hemispheroidal surface.

torques for a nearly hemispherical shape. We see that the difference in torque is less
than .3%. The errors derive from the discretization and the polynomial fit used in
the torque calulation (see Section 4.4.5).

Table 4.5.7 illustrates the results for Figure 4-17 as well as the results for a thin,
prolate hemispheroid, {, = .5. ror the thin, prolate hemispheroid, the differences

were less than .1%.
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torque | N1 /2 | No/2 | ¢

-7.621 8 8 5.01
-7.644 8 100 | 6.00
-7.626 8 100 | 7.00
-7.632 8 200 | 7.00
-4.050 | 16 8 .801
-4.053 16 25 .60
-4.053 | 16 50 .70

| en| enf or| | enf |

Table 4.2: The torque computed along surfaces for different hemispheroid shapes.
N1/2 denotes the number of elements along the hemispheroidal contour. N, /2 are

the number of elements used along the plate. A polynomial fit of the torque/n was
used to perform the integration along the contours.
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4.6 Validation of low frequency solution for hemi-
spheroid on a plate

In this section, we will describe the results—the source weightings, the error in surface
velocity, the pressure along the surface, and the torque for hemispheroids of three
different shapes that represent the extremum of hemispheroidal shapes—a nearly
hemispherical hemispheroid (top panel of Figure 4-18), a thin, prolate hemispheroid
(middle panel of Figure 4-18), and a wide, flat, oblate hemispheroid (lower panel of
Figure 4-18).

4.6.1 'Translational motion—a nearly hemispherical hemi-
spheroid

The results for a nearly hemispherical hemispheroid (top panel of Figure 4-18) in
translational motion are illustrated in the top panels of Figure 4-19-Figure 4-22.
The normalized source weightings, G0, = azo/(1Us), @210 = @21/(pUs), and dz9, =
az2/(1Uyp), are illustrated in the top panels of Figure 4-19. We see that the weightings
appear to converge to their final values for small N/2— the weightings for N/2 = 4
are within 5% of the weightings for N/2 = 32.

We looked at normalized fluid velocity, Uitn(r) = Uye(r)/Us, at field points off the
collocation points along the surface and compared these velocities to the boundary
velocities. The field points were located at 7 = 7. 4+ 7/(4N), and ¢ = 7 /4 where 7.
represents collocation points (Figure 4-20). The errors in fluid velocity as a function
of 7 are shown in the top panels of Figure 4-21. The smallest error occurs where
variations of the weightings with 7 are smallest. This makes sense — when the source
weightings aren’t changing rapidly with 7, the approximation of a piecewise constant
source weightings is better. The error decreases as a function of N and even for
N/2 = 4, the error is small (< .009). The top left panel of Figure 4-22 indicates the
error as a function of N for 7 = n/4. Evidently, the error decreases as 1 /N°® where

2<a<3.
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Figure 4-18: Top: A nearly hemispherical hemispheroid with £, = 5. Middle: A thin,
prolate hemispheroid with {, = .1. Lower: A wide, oblate hemispheroid with ¢, = .1.
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The normalized pressure, P,(r) = P(r)/(uU,) is illustrated in the top middle panel
of Figure 4-22. Also shown is the exact solution for the pressure along the surface of
a full spheroid with no plate present. For most of the points indicated, except for the
few that are close to the plate, the pressures are nearly identical. Close to the plate,
the pressure for the hemispheroid with a plate is larger than that of a corresponding
point on the full spheroid. Farther away from the surface, the difference in pressure
becomes even greater (not shown). This makes sense. First of all, the symmetry of
the geometry of the full spheroid about the equatorial plane, and the antisymmetry
of the surface velocities about this plane, force the pressure in this plane to be zero.
For the hemispheroid with a plate, these conditions do not exist, and the pressure is
not zero at n = 7 /2. Secondly, for points close to the surface and far from the plate,
the conditions of the two problems are similar. Close to the plate, the problems are
no longer similar. The plate restricts the motion of the fluid, and causes the pressure
to be larger than the corresponding points in the fluid for a full spheroid without
a plate. Similarly, farther from the hemispheroid, the plate’s influence is larger and
therefore the pressure is larger than that of the full spheroid.

The normalized torque, T,, = T,/(1U,) as a function of N is illustrated in the
top right panel of Figure 4-22. The torque calculation has nearly converged to its
final result for N/2 = 4—the difference in the torque calculated for N/2 =4 and the

torque calculated for N/2 = 32 is less than 1%.
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Figure 4-19: The normalized source weightings, Gz0.n = Gz0/(uUs), a1 n = an/(pls)
and Gz3,n = @2/(pU,), for a nearly hemispherical hemispheroid, §, = 5 (top), a
thin prolate hemispheroid, ¢, = .1 (middle), and a wide, oblate hemispheroid, ¢, = .1
(bottom) for translational motion. The data are represented by the following symbols:
o for N/2 = 4; x for N/2 = 8; e for N/2 = 16; and + for N/2 = 32. Note the change
in scales for each plot.
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Figure 4-20: The collocation point, and the field
point used to check the fluid velocities, of an element.
The field point is 7 /(4N) away from the collocation
point.
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Figure 4-21: The magnitude of the difference between the normalized velocity at a
field point (Figure 4-20) and the normalized velocity at a collocation point along the
arc ¢ = /4 for a nearly hemispherical hemispheroid, € = 5 (top), a thin prolate
hemispheroid, £ = .1 (middle), and a wide, oblate hemispheroid, §, = .1 (bottom)
for translational motion. The data are represented by the following symbols: o for
N/2 = 4;z for Nj2 = 8; e for N/2 = 16; + for N/2 = 32; — for N/2 = 64; and = for
N/2 = 128. Note the change in ccales for each plot.
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Figure 4-22: Left panels: The error as a function of N for a nearly hemispherical
hemispheroid, £, = 5 a thin prolate hemispheroid, ¢, = .1, and a wide, oblate hemi-
spheroid, &, = .1 for translational motion, at 7 = 7 /4. z indicates the error for U, ,,
y indicates the error for Uy, z indicates the error for U, ,.

Middle panels: The normalized pressure for a nearly hemispherical hemispheroid,
& =5, a thin prolate hemispheroid, {, = .1, and a wide, oblate hemispheroid, ¢, = .1
for translational motion, on the surface at ¢ = 0. For the nearly hemispherical hemi-
spheroid, the pressure was calculated at £ = 5.01. For the thin prolate hemispheroid,
the pressure was calculated at £ = .101. For the wide, oblate hemispheroid, the pres-
sure was calculated at { = .101. The normalized pressure on the surface for a full
spheroid (solid line) in translational motion is also indicated.

Right panels: The normalized torque induced by the hemispheroid on the fluid in
translational motion for a nearly hemispherical hemispheroid, £, = 5, a thin prolate
hemispheroid, £, = .1, and a wide, oblate hemispheroid, £, = .1.

The data are represented by the following symbols: o for N/2 = 4;z for N/2 = 8; e
for N/2 = 16; + for N/2 = 32; — for N/2 = 64; and = for N/2 = 128. Note the
change in scales for each plot.

111



4.6.2 Translational motion—a thin, prolate hemispheroid

The results for a thin, prolate hemispheroid (Figure 4-18 middle) in translational
motion are illustrated in the middle panels of Figure 4-19-Figure 4-22. The middle
panels of Figure 4-19 illustrate the normalized source weightings. For this structure,
for small 7, @z0,n, and Gz2,n, vary more rapidly with n than the corresponding source
weightings for the nearly hemispherical hemisphere. Therefore, for small 5, for a given
N/2, the errors in @.0,n, and @, are larger than those of the nearly hemispherical
hemisphere. By comparing the middle panels and the top panels of Figure 4-21, we see
that the errors in surface velocities are generally larger for N/2 = 4 than those of of the
top panels. This is understandable— the source weightings vary more rapidly with 5
for the thin prolate hemispheroid than for the nearly hemispherical hemispheroid, so
the piecewise constant approximations are not as good. As a function of N , the error
at 7 = m /4 decreases as approximately as 1/N3. The pressure on the surface of the
thin, prolate hemispheroid (center panel of Figure 4-22) more closely approximates
that of the full prolate spheroid than the surface pressure of the nearly hemispherical
hemispheroid approximates that of the nearly spherical spheroid. This makes sense—
the thin, prolate hemispheroid has less surface area along the plate than the nearly
hemispherical hemispheroid, and hence the effects of the plate are less pronounced.
The torque (right, middle panel of Figure 4-22) for N/2 = 4 differs from the torque for
N/2 = 16 by about 17%, however, the difference in torque for N/2 = 8 and N /2=16
is less than .6%.

4.6.3 Translational motion—a wide, flat, oblate hemispheroid

The lower panels of Figure 4-19-Figure 4-22 illustrate the results for a wide, flat,
oblate hemispheroid (Figure 4-18 lower). The largest source term, G20, shown in the
lower panel of Figure 4-19, varies less with 7 than the corresponding @z, for both the
nearly hemispherical hemispheroid (top panel), and the thin, prolate hemispheroid
(middle panel), and hence the errors in the surface velocities, for a given N/2 (lower

panels of Figure 4-21 and lower left panel of Figure 4-22), are less than those of the
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other shapes shown in the top and middle panels. The errors decrease as 1 /N, a
smaller power of N than the errors of the previous two shapes. Since the sources are
relatively constant with 7, the error due to discretization is less significant to the total
error than in the other two examples and that is probably why the errors decrease
more slowly with N. The pressure along the surface least resembles that for a full
oblate spheroid because the surface area of the hemispheroid along the plate is largest

for the most oblate hemispheroid.
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4.6.4 Rotational motion
Discontinuity in the boundary conditions

For rotational motion, there is a discontinuity in the 2 component of the surface
velocity along the hemispheroid-plate interface, i.e., at 5 = 7/2, £ = €, the surface

velocity for the hemispheroid is given by,

U, =-0z,

and for the plate
U.=0.

The discontinuity in the boundary conditions results from the relative motion between
two rigid structures: the hemispheroid and plate. The discontinuity in surface velocity
causes the pressure as well as components of the source weightings to be infinite at
the interface. However, we will show that we can accurately calculate fluid velocity

and hydrodynamic torque despite the discontinuity.

Singularity in pressure and source weightings

Figure 4-23 and Figure 4-24 illustrate the normalized pressure and normalized source
weightings, as a function of radial distance from the singularity, for a wide, oblate
hemispheroid. The same issues arise for the prolate case, but the discontinuity is larger
for the oblate case. Therefore, we chose to examine these results for the wide, oblate
hemispheroid. The pressure approaches infinity at the points, r = r,, which are the
set of points where £ = ,, 7 = 7 /2. These set the points define the circle where the
hemispheroid and plate meet. We see that both the pressure and source weightings
decrease more slowly than 1/r, so that the singularity is integrable. Therefore the

results for the fluid velocities and the results for torque are valid.
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The torque calculation without the singularity present

No discontinuity would result if the structures were deformable. We simulated the
case in which the bottom portion of the hemispheriod deformed uniformly by having
the boundary velocity U, linearly decay to zero from some arbitrary point, n =1,
to 7 = m/2 at the plate. Figure 4-25 indicates U, along the surface. We studied the
normalized torque for velocity profiles with different 7. (Figure 4-26). To adequately
sample the portion of the surface where the velocity ramps to zero, we discretized the
surface nonuniformly— the spacing between the points for 0 < < 317/64 was equal
to w/64. The spacing between the points for 317/64 < 5 < 7/2 was equal to 7/6144.
As 1, — 7/2, the solution converges to that of the case where the discontinuity is

present, indicating that the discontinuity is not affecting the torque calculation.

U, M a2
0 n
Figure 4-25: U, /(O) for the wide,
oblate hemispheroid along the
contour ¢ = 7 /4 with no discon-
tinuity.
-.707
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4.6.5 Rotational motion—a nearly hemispherical hemispheroid

The results for rotational motion are shown in Figure 4-27-Figure 4-29. For the nearly
hemispherical hemispheroid, the normalized weightings, &, (top middle panel of
Figure 4-27) and &,z (top right panel of Figure 4-27) approach infinity near the
bottom of the hemispheroid, = 7/2. As N increases, the errors in velocity decrease
(top panels of Figure 4-28). The errors in U,, (Figure 4-28 top right panel) are
largest and increase dramatically as 7 — 7/2. Near the plate, the errors decrease
more slowly with N,

For a full sphere, the pressure on the surface due to rotational motion is zero. For
the nearly hemispherical hemispheroid with a plate, the pressure along the surface
away from the plate is negative and small in magnitude (top middle panel of Fig-
ure 4-29). It decreases until 7 =~ 27 /5, and then starts to increase. Because of the
discontinuity in the surface velocities at the plate, the pressure approaches infinity as
n — = /2. The torque (top right panel Figure 4-29) converges more slowly than the
torque for translational motion (top right panel Figure 4-22). For rotational motion,
the torque is within 1% of its final result for N/2 = 32 while for translational motion,
the torque is within 1% of its final result for N/2 = 4. The normalized torque for rota-
tional mction is nearly five times that of translational motion, because, for rotational
motion, more fluid is being forced in a direction perpendicular to the plate. We see
that for oblate hemispheroids (Figure 4-29 and Figure 4-22 bottom right panels) this
effect is much more pronounced since over most of the surface the rotational motion
for a wide, oblate hemispheroid is mainly in the % direction. For the thin prolate
hemispheroid the normalized torque for rotational motion (Figure 4-29 middle right
panel) is nearly the same as that of translation motion (Figure 4-22 middle right
panel), because, over most of the surface, the rotational motion is mainly in the x

direction.
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Figure 4-27: The normalized source weightings, G;0,0 = Gz0/(1©), 4,1 = [(1©)
and @z2n = d.2/(uO) for a nearly hemispherical hemispheroid & =5, (top), a thin
prolate hemispheroid, ¢, = .1 (middle), and a wide, oblate hemispheroid, ¢, = .1
(bottom) for rotational motion. The data are represented by the following symbols:
o for N/2 = 4;z for N/2 = 8; o for N/2 = 16; + for N/2 = 32; — for N/2 = 64; and
= for N/2 = 128. Note the change in scales for each plot.
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Figure 4-28: The error for each velocity component, i.e., the magnitude of the differ-
ence between the normalized results and the normalized boundary conditions along
the arc, ¢ = 7 /4 for a nearly hemispherical hemispheroid, £, = 5 (top), a thin prolate
hemispheroid, £, = .1 (middle), and a wide, oblate hemispheroid, ¢, = .1 (bottom)
for rotational motion. The data are represented by the following symbols: o for
N/2 = 4;z for N/2 = 8; e for N/2 = 16; + for N/2 = 32; — for N/2 = 64; and = for
N/2 = 128. Note the change in scales for each plot.
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Figure 4-29: Left panels: The error as a function of N for a nearly hemispherical
hemispheroid, §, = 5, a thin prolate hemispheroid, £, = .1, and a wide, oblate
hemispheroid, ¢, = .1 for rotational motion, at 7 = 7 /4. z indicates the error for
Uz,n, y indicates the error for Uy, z indicates the error for U, ,,.

Middle panels: The normalized pressure for a nearly hemispherical hemispheroid, ¢, =
5, a thin prolate hemispheroid, £, = .1, and a wide, oblate hemispheroid, ¢, = .1 for
rotational motion, on the surface at ¢ = 0. For the nearly hemispherical hemispheroid,
the pressure was calculated at £ = 5.01. For the thin prolate hemispheroid, the
pressure was calculated at £ = .101. For the wide, oblate hemispheroid, the pressure
was calculated at ¢ = .101.

Right panels: The normalized torque induced by the hemispheroid on the fluid in
rotational motion for a nearly hemispherical hemispheroid, £, = 5, a thin prolate
hemispheroid, ¢, = .1, and a wide, oblate hemispheroid, £, = .1.

The data are represented by the following symbols: o for N/2 = 4;z for N/2 = 8; e
for N/2 = 16; + for N/2 = 32; — for N/2 = 64; and = for N/2 = 128. Note the
change in scales for each plot.
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4.6.6 Rotational motion—a thin, prolate hemispheroid, and

a wide, oblate hemispheroid

The results for the prolate hemispheroid for rotational motion are the most similar to
those of translational motion because for a thin, prolate hemispheroid, over most of
the surface, the rotational motion is translational, that is, in the % direction. As we
would expect, since the discontinuity is smallest for the thin, prolate hemispheroid,
the increase in source weightings (Figure 4-27 middle panels) and pressure (Figure 4-
29 center panel) as 7 — /2 are the least pronounced of all the shapes. In contrast,
for the wide, oblate hemispheroid, the increase source weightings (Figure 4-27 bottom
panels) and pressure (Figure 4-29 bottom center panel) as 7 — 7/2 are the largest.
The errors for a given N for the wide, oblate hemispheroid (Figure 4-29 bottom
left panel) are larger than those of other shapes because the discontinuity in surface
velocity is the largest. The errors in velocity at = 7/4 decrease as 1/N® for the
thin prolate shape (Figure 4-29 middle left panel) but decrease as 1/N for the wide
oblate shape (Figure 4-29 bottom left panel) probably because of the difficulty in
representing the large discontinuity in surface velocity. The torque for the wide oblate
hemispheroid (Figure 4-29 bottom right panel) also requires a large N to converge to
its final value. The magnitude of this torque is also largest because the wide, oblate
hemispheroid is forcing the most fluid into the stationary plate.

As in translational motion, the pressure along the surface of the wide, oblate
hemispheroid (Figure 4-29 bottom center panel) is the least like that of the wide,
oblate spheroid, while the pressure along the surface of the thin prolate hemispheroid
is close to that of the thin, prolate spheroid (Figure 4-29 center panel) . For all
shapes, the pressures for translational motion for hemispheroids with a plate are
closer to those of full spheroids than those of rotational motion indicating that the

plate has a greater effect for rotational motion than for translational motion.
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4.6.7 Conclusion

We have studied the results for three extrema of hemispheroidal shapes for transla-
tional and rotational motion. We found that as N increases, the errors in surface
velocity decrease, and the errors for rotational motion are larger than those of trans-
lational motion for the same shape. This is due to the discontinuity in the surface
velocity for rotational motion, which results in source weightings and pressure that
approach infinity at the discontinuity. However, we demonstrated that the pressures
and source weightings approach infinity as 1/(r*) with « < 1, so that the singularities
are integrable and valid results for the fluid velocity, pressure (away from the discon-
tinuity), and torque were obtained. We also compare the pressures along the surface
to those of full spheroids of the same shape. We found that the pressures for the
thin, prolate hemispheroids are closer to those of the full spheroids than the pressures
for the other shapes because the surface area of the hemispheroid-plate interface is
the smallest. The differences in pressures between the hemispheroids and the full
spheroids were greater for rotational motion than for translational motion because
the effect of the plate is more pronounced for rotational motion.

We also studied the hydrodynamic torque induced by the motion of the hemi-
spheroid. The torque for rotational motion required a larger N to converge to its
final value due to the discontinuity in the surface velocities. We found that for all

shapes the torque converges to within 3% of its value for N/2 = 32.



4.7 The effect of shape in the limit of low fre-
quencies

Since we have checked our numerical results, we are now ready to determine the
effect of shape on the hydrodynamic pressure, velocity and torque in the limit of low
frequencies for the hemispheroid model. Dimensional analysis and the exact solutions
for full spheroids will allow us to understand the important shape quantities that affect

the hydrodynamics.

4.7.1 Dimensional Analysis

Even without solving the equations of motion for the hemispheroid on a plate, we can
gain understanding of the effect of size of the hemispheroid on the hydrodynamics by
using dimensional analysis. To use dimensional analysis we need to understand how
the dimensions of the problem are determined. In Section 2.1.5, we found that Stokes
equation can be used to describe conservation of momentum. The only parameter
in Stokes equation is g, with dimensions, mass/(length-time). From the geometry
of the problem, the only parameter with dimensions is L, the focal length of the
hemispheroid, with dimensions of length. Although the shape depends on &,, this
factor is dimensionless and so we cannot use it in our dimensional analysis. For
translational motion, we determined that, in the limit of low frequencies, the variables
that determine the hydrodyuamics are proportional to \/W This quantity has
dimensions, 1/length. The boundary conditions for translational motion are given by
Equations 4.23-4.25. In these equations the only quantity with dimensions is Uy, with
dimensions, length/time. From Equation 2.8, U, always is multiplied by \/j—wp_/;,
and the dimensions of the product is 1/time. Since g, \/MUM and L, are the
parameters that determine the dimensions, we can express the fluid velocity, pressure

and torque for translational motion as

U(r,&,) = U’(r,so)\/’%m,
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P(l‘,f‘,) = Pl(r7fa)ltvj_‘;_puba
T = T LLur,

where U'(r,¢,), p'(r,&), and T,(&,) represent dimensionless variables.? Note that
these combinations of the parameters are unique—no other combination will give the
correct dimensions for velocity, pressure, and torque.

For rotational motion, the hydrodynamic variables are proportional to jw with
dimensions 1/time. The only quantity with dimensions in the boundary conditions
(Equations 2.18-2.19) is © which has dimensions of radians. Therefore, for rotational

motion, the hydodynamic variables can be expressed as

U(r,&) = U'(r,&,)jwOL,
P(r,&) = P'(r,&)pujwo,
Ty(&) = Ty'(fa);l.ijL:".

From this analysis, for both translation and rotation, we see that the velocity is
proportional to L, the pressure is independent of L, and the torque is proportional
to L°. To determine the correct £, dependence, we will have to study the results of
the BEMA. However, dimensional analysis also tells us that the hydrodynamics for
a hemispheroid whose surface is described by ¢ = €, for any L can be determined
from the results for a hemispheroid with the same aspect ratio and a particular L,
by simply scaling by the appropriate power of L. So we see, dimensional analysis not
only gave us information about the effects of shape, but also simplified the analysis,

by reducing the number of numerical simulations that need to be performed.

2Note that U(r, &,) is only a portion of the fluid velocity, but it is only this portion that determines
pressure and torque (See Section 4.5.1).

124



§o=4

Figure 4-30: The pressure
prolate £o on the surface for transla-

tional motion, with ¢ = 0

for N/2 = 16. The symbols

represent the results for a
oblate £o hemispheroid, and the solid
lines represent the results
for a full spheroid.

Normalized pressure

4.7.2 Hydrodynamic pressure

With dimensional analysis, we found that the pressure is independent of L and so
we know that the pressure on the surface of a hemispheroid is independent of size.
We also know that the pressure must have a cosq dependence. However, we have
yet to determine the dependence of the pressure on 7, and £,; we will determine this

dependence in this section.

Translational motion

The normalized pressure on the surface for translational motion is illustrated in Fig-
ure 4-30. Results for a full spheroid are almost the same for points away from the
plate (n < 37/8) but are different near the plate. From symmetry, the pressure at
n = 7 /2 for a full spheroid must be zero. For a hemispheroid, the pressure is non-zero
along the plate.

For most shapes the pressure increases and then decreases as 7 increases from
zero to 7 /2. The increase is sharpest for the most prolate shapes, because the prolate
shapes have large surface gradients near the tip. For shapes that are very oblate, the
pressure is largest away from the tip and close to 7 = 7 /2 where the surface gradient
is largest. At 7 = 7 /2, where the pressure for full spheroids is zero, the oblate shapes
of the hemispheroid have the largest pressures. This indicates that the plate has a

more profound effect as the shape becomes more oblate.
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Figure 4-31: The pressure
on the surface for rota-
tional motion, with ¢ = 0.
The symbols represent the
results for a hemispheroid,
and the solid lines repre-
sent the results for a full
spheroid.

Normalized pressure

——— Figure 4-32: The pressure on the
-10 b T,\/ n surface for an oblate shape, ¢, =
.2, for rotational motion, with
-20 o=2 g = 0. The “” represent the
-30 results for a hemispheroid, and
. the solid line represents the re-

sults for a full spheroid.

Normalized pressure

-40
-50

Rotational motion

For rotational motion, the pressure on the surface is shown in Figure 4-31. For prolate
shapes, the normalized pressure resembles that of translational motion. The reason
for this is clear. Recall that for translational motion, the velocity of the surface is
proportional to zX. For rotational motion, the surface velocity is proportional to
zX — z2. For prolate shapes, the velocity —z2 is small, so that the large motions are
in X only. For oblate shapes, zX is small, so that the velocity is dominated by —z%,
and the pressure on the surface, at ¢ = 0, is negative.

The effect of the plate is more pronounced in rotational motion than in transla-
tional motion, especially for more oblate shapes. This is because the plate directly
obstructs the flow in —2, which results in an increase in the hydrodynamic pressure.
Figure 4-32 illustrates the surface pressure for a wide, oblate hemispheroid, (¢, = .2).

In Figure 4-32, the pressure next to the plate is large and positive. This is true
of all shapes, and is a consequence of the discontinuity in the surface velocity at the

plate as was discussed in Section 4.6.4.
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Hydrodynamic pressure far from the surface

To understand how the pressure decays far from the surface, we will first study how
the Green’s functions for pressure decay far from the surface. Let us represent the

Green’s functions for pressure as a Taylor series in r, the radial distance,

Gpi(r) = i a,r ",

n=1

Gpi(r) expresses a series representation of the Green’s function for the hemispheroid on
a plate, Equation 4.28. Since the pressure is a weighted sum of the Green’s functions
for pressure, the decay in pressure with r can not have any terms that are not present
in the Green’s function. However, the weightings of the Green’s functions can be such
that there are cancellations of some terms so that not all the terms present in the
Green’s functions need be present in the actual pressure.

Each term of the stokeslet, given by Equation 4.4, decays as 1/r? for large r.
However, if we expand the Green’s functions of the hemispheroid with a plate (Equa-
tion 4.28) in a Taylor series in r as r — oo, we find, for sources in % and ¥, the lowest
order term of the series is 1/r3. There is no 1/r? term because each component of the
vector Green’s function contains a stokeslet minus an image stokeslet, and the 1/r?
term was cancelled. For the sources in Z the lowest order term is 1/7. Since the %
sources are weighted by cos¢’, a cancellation of the 1/r® term occurs by the sum of
the sources at ¢’ = q; and ¢' = ¢, + 7, where q; represents an angle between 0 and 7.

The pressure as a function of r for different hemispheroidal shapes is illustrated
in Figure 4-33 and Figure 4-34. We see that the pressure decays at least as fast as
1/r2 as predicted by the Green’s functions. For translational motion, the pressure is
actually decaying close to 1/r*, and it might be that the weightings cancel the 1/r3
term. For a full spheroid (not shown), the pressure decays as 1/r3, as can be seen by

expanding the exact solution as r — oo.
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Figure 4-33: The
pressure for transla-
tional motion as a
function of r for ¢ =
0, and n = n/4. The
results are illustrated
for three shapes, pro-
late, £, = .1 (small
dots), nearly hemi-
spherical (middle-size

dots), and
oblate, § = .1 (large
dots).

Figure 4-34: The pressure
for rotational motion as a
function of r for ¢ = 0,
and » = /4. The re-
sults are illustrated for three
shapes, prolate, ¢ = .1
(small dots), nearly hemi-
spherical (middle-size dots),
and oblate, ¢, = .1 (large
dots).



4.7.3 Fluid velocity
Translational motion

We demonstrated in Section 2.2.5, that the fluid velocity for translational motion can

be expressed as the sum of three terms,

U(r) = Upk + ‘/%Uu(r) + Uy /%z:‘c.

The first two terms derive from the series expansion in \/m, and the third term is
due to a translation of the coordinate system. Since only the \/?Uu(r) contributes
to the pressure and torque, we will examine this component more closely to explore
the effect of shape on the hydrodynamics.

As in Chapter 3, let us examine the ratio of Uy n(r)/Uss,q(r) on the surface as a
function of &, for oblate and prolate hemispheroids. Recall that Uy, ,(r) represents
the component of the fluid velocity in the direction that goes over the hemispheroid,
and Uy, q(r) represents the component of the fluid velocity in the direction that goes
around the hemispheroid. A plot of Uy, (r)/Uyq(r) for different shapes is illustrated
in Figure 4-35. Two features are evident— the magnitude of the ratio decreases from
tip to base, and the magnitude of the ratio increases as the shapes change from
prolate to oblate. These features match with our intuition and our results in the high
frequency limit. Fluid is more likely to go over the hemispheroid near the tip because
the distance the fluid must travel to go over the hemispheroid increases from tip to
base. As the shape of the hemispheroid widens, more fluid goes over the hemispheroid

since the distance the fluid must travel to go around increases.

Rotational motion

The velocity for rotational motion is given by

U(I’) = ijl (!‘),
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Figure 4-35: The ratio

Usen(r)/Utee(r), with ¢ = n /4 for
translational motion. The dashed
line indicates the ratio for a hemi-

sphere.

/f\ P

&=2 prolate &=5 prolate or oblate £=2 oblate

Figure 4-36: The velocity field next to the surface for ¢ = 37/4 and ¢ = Tx /4 for
three different shapes. The hemispheroids are not shown.

Sy
'f/ull%l%i%

where Uj(r) is described in Section 2.2.5. The effect of shape on the velocity field
near the surface can easily be seen in Figure 4-36 which shows part of the velocity field
for three shapes— thin prolate, hemispherical, and wide oblate. For the thin, prolate
hemispheroid, fluid flows mainly in %. For the wide oblate hemispheroid, fluid flows
mainly in 2. The fluid flow pattern of the hemisphere is on between that of the
other two shapes so we see that more fluid goes over the hemispheroid as the shape
widens. A plot of Uy 4(r)/Us,(r) for rotational motion is illustrated in Figure 4-37,
and the feature we observed in Figure 4-36 is obvious here too— the magnitude of the
ratio, Uy (r)/Us4(r) increases as the shape widens. This is because the component

of surface velocity in 7 direction increases as the shape widens.
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Magnitude of the fluid velocity far from the surface

We obtain the dependence of the magnitude of the fluid velocity on r, far from
the surface from the Green’s functions for velocity just as we did for pressure in
Section 4.7.2. The Green’s functions are given by Equation 4.27. If these Green'’s
functions are expanded in a Taylor series as 7 — oo we find that the fluid velocity due
to sources in £ and § have a 1/r? dependence and that fluid velocity due to sources
in 2 have a 1/r® dependence, so that the velocity decays at least as fast as 1/r2.
Figure 4-38 for translational motion and Figure 4-39 for rotational motion illustrates
the fluid velocity as a function of r, and we see that the velocity decays almost as
1/72, except for the case of the wide oblate hemispheroid in rotational motion, where,
far from the hemispheroid, we have relatively small velocities and there are significant

numerical errors in the velocity calculations.
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Figure 4-38: The
pressure for trans-
lational motion as
a function of r for
q=1m7/4, and n =
n/4. The results
are illustrated for
three shapes, pro-
late, £, = .1 (small
dots) , nearly hemi-
spherical
(middle-size dots),
and oblate, £, = .1
(large dots).

Figure 4-39: The
pressure for rota-
tional motion as a
function of r for
q=rm/4, and =
n/4. The results
are illustrated for
three shapes, pro-
late, €&, = .1 (small
dots), nearly hemi-
spherical
(middle-size dots),
and oblate, £, = .1
(large dots).



4.7.4 Hydrodynamic torque

From dimensional analysis, we see that the torque for either translational or rotational
motion varies as L® (Section 4.7.1). Since both height and width are proportional
to L, this implies that the torque becomes infinitely large as the dimensions of the
hemispheroid become infinitely large. However, we see that if we factor out from
the torque expressions terms that are proportional to L3, the resulting expression for
hydrodynamic torque remains fairly constant over most of the range of hemispheroidal
shapes (Figure 4-40). For translational motion, we find that it we divide the torque
expression by height cubed, then, except for the extrema in shapes, the resulting
torque varies by less than an order of magnitude (right panel of Figure 4-40), This
is equivalent to saying that the torque for hemispheroids of the same height varies
by less than an order of magnitude for all but the extrema in shapes. The range of
hemispheroidal shapes with constant /. are seen in Figure 3-3.

For rotational motion, to keep the range of values of the resulting torque expression
minimal we divided the torque by h? for prolate hemispheroids,and we divided by hw?
for oblate hemispheroids. The normalized torque for rotational motion is illustrated
in the right panel of Figure 4-40. The corresponding range of shapes is depicted in
Figure 4-41. Even with these normalizations, the range of normalized torque is larger
than that of translational motion, and larger than that of full spheroids, because the
plate affects wider hemispheroids more than thinner hemispheroids.

For translational motion, for thin prolate hemispheroids, the torque for the hemi-
spheroid with a plate is half that of a full spheroid because for the plate has little
effect on the hydrodynamics for thin prolate hemispheroids, and the surface area of
a hemispheriod is half that of a full spheriod. As the shape becomes wider, the plate
has more influence on the hydrodynamics along the surface of the hemispheroid, and
the torque becomes larger than half that of a full spheriod, and exceeds that of a
full spheriod for oblate shapes. For rotational motion, we see the same trends, but
the effect of the plate is more pronounced. Since the difference in torque for a full
spheroid and a hemispheroid with the same shape factor is less than a factor of two,

the analytic solutions for a full spheroid found in the appendix to this chapter can be
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Figure 4-40: Left panel: The normalized, hydrodynamic torque for translational mo-
tion, Tyyn = Tty /(VjwppUsh®). Right panel: The normalized, hydrodynamic torque
for rotational motion, Ty = T,,/(jwOuQ), where Q = h? for prolate shapes and
Q@ = hw? for oblate shapes. For both panels, p indicates prolate hemispheroids, o
indicates oblate hemispheroids, and the solid lines indicate full spheroids, both oblate

and prolate.
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Figure 4-41: The range of shapes for
which the torque is calculated in the
left panel of Figure 4-40. The prolate
hemispheroids have the same height
and the oblate hemispheroids have the
same volume.

used as approximations to the torque for the hemispheroid on a plate.

4.7.5 Conclusion

From dimensional analysis, we found that the hydrodynamic pressure was indepen-

dent of the size of the hemispheroid. For translational motion, for most points along

the surface, the pressure for thin hemispheroids was larger than the pressure for wider

hemispheroids. The effect of the plate on the surface pressure was small except for

points near the plate, and for most points on the surface, the exact solution for a

full spheroid was a very good approximation for the pressure for the hemispheroid

on a plate. Near = 7/2, the plate had more influence, and had a larger effect on

the surface pressure for wider shapes. For rotational motion, for most points along

the surface, the pressure is positve for prolate hemispheroids, and negative for oblate

hemispheroids. The magnitude of the pressure increases as the shape becomes more
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eccentric. The effect of the plate was larger than in translational motion, especially
for wider hemispheroids and the solution for a full spheroid was a poor approximation
for wide hemispheroids. Far from the surface, the pressure decreased at least as fast
as 1/r3.

We found that shape influences fluid velocity at low frequencies. As in high
frequencies, more fluid flowed over the hemispheroid and less around the hemispheroid
as the shape widened. This was true for both translational and rotational motion.
Far from the surface, the magnitude of the velocity decreased as 1/r2.

We determined from dimensional analysis that the torque is proportional to the
cube of the focal length. We found for translational motion that if we normalize torque
by the cube of the height, the torque for nearly the full range of shapes varied by less
than an order of magnitude. For prolate hemispheroids, the change in normalized
torque with £, was small-less than a factor of two when the &, increases from .1 to
:6. For rotational motion, we normalized by A* for prolate hemispheroids and by hw?
for oblate hemispheroids. The resulting normalized torque varied more with €, than
that of translational motion, because the influence of the plate increased more as the
width increased. Nonetheless, for nearly all shapes, for either mode of motion, the
torque for a full spheroid differs from the torque of a hemispheroid with a plate by
less than a factor of two, and can be used as an approximation for the torque of a

hemispheroid on a plate.
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4.8 Appendix

4.8.1 Analytic solutions

The analytic solutions are derived from (Chwang and Wu, 1975). For a full spheroid
moving with a constant velocity, Us, in the % direction the fluid velocity can be

expressed as

1 1 L +L
U(r) = ——(—axBl o— aa:z(—-—-—)—az(zx+yy)Ba o+V(ﬂm( R,— Z = Ry+Byy))),

r=yai+y? Ri=\Jz+ D7+, Ro= [z = L) +12,

with the function B, .(z,y,2) defined as

B = 108%2‘:'%%, By = Ry — Ry + 2B, ,

Bsp=% %f‘ Z—L), B3y = (% R )+ZBso,
Bm,n = f,n"_-; (R;"- 9 +'(I;Tl-)-'!‘) + ::1:12 Bm-2,n.-—2 + ZBm,n.—l fOI‘ n Z 21

With e = 1/ cosh &, and L. = log(7%£), the constants a and § are defined as

a = 2075 = 2U,e*[2e + (32 — 1)L,] L.

1-e?2

The pressure is expressed as

P() = (it - T2hy,

For the full spheroid with surface velocity equal to Qz%, the velocity is expressed
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as
U(r) = 02z((241+As)2+2(2%+y§) Bs 1] +72[2% By ~ 22 A3)+46,V [z (L* B3 1 — B3 3)],
with

Ay = 2B3; — Bag, A3 = L?Bsg — B3,
Y2 = Q[—2e + (1 + €?)L,]™!
oy = e?y[—2e + (1 — €?) Lc][2e(2€? — 3) + 3(1 — €?) L] ™!
B2 = az(1 ~ €?)/(4€?)

The pressure is expressed as

L 2 _ 2 !
P(r) = 02/ 2(L% - 2%)3z(z — 2 Zdz'.
Lty (z )

The torque for this case is described by

-32 .
= -3—7ryL372y.

For the full spheroid with surface velocity equal to —Qz#, the velocity is expressed as
U(I‘) = 03.'17[(2/11+A3)2+2(.’L‘5{+1]$’)B3’1]+‘)’3[2$€BLI-2$A3]+4,B3V[$(L2B3,1—B3,3)],
with

73 =1 — €?)[~2e + (1 + €?)L,]?
a3 = 2e’y3[—2e + L.|[2¢(2e? — 3) 4+ 3(1 — €2)L,]?

Bs = as(l — €%)/(4¢?)

137



The pressure is expressed as

L 2__ . n !
P(r) = 03/ 2(L% — 2*)3z(z — = ).dz'.
=L [z2 4 y? + (2 — 21)2"

The torque for this case is described by

-32
T = T37r;tL373$1.

The exact solutions for oblate spheroids can be derived from the solutions for

prolate spheroids by letting cosh ¢, — jsinh¢,, and L — — JL.

4.8.2 Proof that the torque exerted by fluid on a surround-

ing surface is zero

We can represent the equation for Stokes flow in tensor form, i.e.,

oT:;
oz, =0, (4.29)
where
alL' 8u,~
Tij = —pbij + u(52 + 7).
J J (61'1 ax:’)

Using the divergence theorem and Equation 4.29, we can show that the force exerted

by the fluid on a surrounding surface is zero, i.e.,

dv =0.

oT;
)

Zj

F= [ Tnds = [

The torque exerted by the fluid on a surrounding surface can be represented as

T=/Seijk$kaln1dSa (4.30)
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where ¢;;; is the well known “completely antisymmetric tensor”,

1 ifi5k = 123, 312, 231
€k =4 —1 ifijk =213, 132, 321

0 otherwise.

The divergence theorem can be applied to Equation 4.30 so that

0
T=/Se,-jkijkmldS=A6ijk%($kal)dV

Since
0 0T Oz ;
Eijka_xl(ijkl) = €ikTjo 92 + 6Uka10 2
and
Oz;
fz,kaza—xl =0,

using Equation 4.29, we see that the torque exerted by the fluid on a surrounding

surface is zero, i.e.,

= [ o 0Tk g,
T_/Ve,]k SV =0

4.8.3 The use of Fourier analysis to derive the ¢' depen-

dence of f;(r')

We express ff;c:(r') in a Fourier series given by 4.15. Equation 4.4, the pressure

stokeslet, can be expressed in prolate spheroidal coordinates as

(e1(€,n) cos g — 1 (€', 7')(cos ¢” cos ¢ — sin ¢" sin q))
3 y
\/a(fa 1, E” 77’) - b(€1 7, E’v 77’) cos q”
(c1(&,7m) sin g — ¢ (€', 7")(cos ¢” sin ¢ + sin ¢” cos q))
3
Val&,n,&\n') = b(€,n, €, 7") cos ¢"
d(¢,n,€',n')
3
\/a(f, 1, fl, 77’) - b(é" 1, §,a 77') Cos q”

Gpz(&m, 4,8 ,0',¢') =

GP!I(€7 77’ Q7 517 77,7 ql) =

Gp:(&,1,9,¢,7',¢") =
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where

"

q q' -q,
a(€,n,€,n') = L*cos®n +sinh?¢) + L”*(cos® 7’ + sinh? &) -

2L L' cosncosn’ cosh € cosh ¢,
b(&,n,&,n') = 2LL'sinysing’sinh¢sinhé’,
ci(é,7) = Lsinh{sing,
d(é,m,¢',9") = Lcoshécosn— L' cosh ¢ cosy'.

By substituting Equation 4.15 into Equation 4.6, the expressions for the pressure due

to impulses in the z, y and z directions can be written as,

" N g 2 Ny T
Pz(r)=.[) hl(f,ﬂ)dﬂ_[J h2(€7’7)dq pz(f,ﬂ,‘l,f,ﬂﬂ)x

3 (Gsi(n") cos(iq’) + buj (') sin(iq')), (4.34)

‘=0

g 2m
Py() = [ € ndn’ [ ha€,n)da'Gpul€ 10, €' 4%

S (s () cos(i’) + bus () sin(iq')), (4.35)

Jj=0

L d 2r
P.(r)= [ h(&,7)dn' |  hao(€,7')dq'Gra(€,n,9,€ 0", 4') %
(] 0

3 (@s5 (1) cos(ig’) + bus (') sin(iq')), (4.36)

3=0

with Gpz(€,7,9,€57',4), Gpy (&1, 0,€', 7', ¢), and Gy (€, 7,9, €', 7', ¢') given by Equa-
tions 4.31-4.33, and h,(¢',7’) and hy(¢',7'), the metric coefficients for prolate spheroidal

coordinates,

hi(€,n') = L'\/sin?y +sinh® ¢,
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ha(€',n') = L'siny’sinhé’.

With ¢’ = ¢"+¢, cosq’ = cos ¢" cos g—sin ¢” sin ¢, and sin ¢’ = sin q" cos g+ cos q"sing,

Equations 4.34-4.36 can be expressed as,

L 27
Pu(r) = [ ma(€on)dn’ [ hal€',w)dg"Gpe(€,m, 0, €0, q)) x

o0
2_(@z5(n")(cos jq" cos jq — sin jq" sin jig) + baj(n')(sin jg" cos jq + cos j¢" sin jg)),
j=0

g 2T
Py(r) = /0 hy(€',7")dn’ /0 ha(€',7")dq"Gpy(€,1,4,€' 7', ') x
e o]
2 _(@y;(n")(cos jq" cos jq — sin jq" sin jq) + by;(n")(sin jq" cos jq + cos jq" sin jq)),
i=0

" ] [ ’ 2= '] ! " ! 1 7
1”z(r)=/0 hx(f,v)dnj{) ho(&',n")dq" Gy (€,n,9,€ 17, ¢') x

i(&z:'(ﬂ')(COSJ'Q" cos jq — sin jq" sin jq) + b.;(n’)(sin jg" cos g + cos jq" sin jq)),
7=0
Since ¢’ is integrated over a full period of 27, the integration can equally be performed
over a full period in ¢”.

By substituting Equations 4.31-4.33 into the above expressions for P,(r), P,(r),
and P,(r) and performing the integrations over a full period of ", we can determine
which terms will give only a cos ¢ dependence. Note that odd functions of q" inte-
grate to zero. One possible term is the @.o(7’) term. Two other possible terms are
@:2(n") cos 2¢' and byz(n')sin2q’ if @:2(n") = by2(7'). The only other term possible is

@z1(n') cosq'. Therefore, frie(n’',q') can be expressed as,

friez(n',4") = @z0(n") + @z2(n") cos 2¢’, (4.37)
f!ict.y(ﬂ,’ q’) = 622(7”) sin 2q,’ (438)
ffict,z(ﬂ” ql) = azl (7”) Cos q,' (439)
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Equations 4.37-4.39 are consistent with those found elsewhere (Haber, 1995), and
also give the correct ¢ dependence of the velocities expressed in Equations 4.12-4.14.
To facilitate the analytic integration in ¢’, we will use equivalent representions of

Equations 4.37-4.39, given in Equation 4.16-Equation 4.18.

4.8.4 Torque due to fluid velocity, zx

The torque due to shear on the hemispheroid can be expressed as
T, = /S (zFs - zF,)dS,

with F;, as
Fr = ﬂ(‘é;; + 5z,

For U = 2%, F; = pn, and F, = un,. In prolate spheroidal coordinates, n, =

sinh £ cos n/\/sin112£ +sin?7, and n, = cosh ¢ sin 7) cos q/\/sinh2£ + sin?7, and inte-

grating around the hemispheroidal surface,

3 e 312, 2 ‘2 2
T, = / / dndquL” sinh® &, sin 7 cosh £,(cos® n — sin® 5 cos? q)
o Jo

= 0.
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Chapter 5

Conclusions

5.1 Introduction

In this section, we will first study the frequency response of the hair bundle sensitivity
transfer function H,(f) = ©/U, as a function of shape and size. We will also compare
our results to those obtained in a previous 2-D study (Freeman and Weiss, 1990a).
We will see that the 2-D flap best represents the hydrodynamics of an infinitesmally
thin prolate hemispheroid although, for low frequencies, the 2-D flap model can not
predict the spacing between sensitivity curves for hair bundles with different heights.
We will discuss differences in the sizes of hair bundles of vestibular organs and audi-
tory organs, and how these differences can be qualitatively predicted by our results.
Lastly, we will use our hair bundle model in a broader model of ear physiology that
includes the effects of the middle ear and quantitatively compare our predictions of
the low frequency and high frequency regions of sensitivity curves to experimental

measurements.
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5.2 Comparison of low and high frequency solu-
tion

5.2.1 The sensitivity transfer function H,(f) = ©/U,

A linear network that represents both mechanical and hydrodynamic torques on the
body is illustrated in Figure 2-3. We will assume the mass of the hair bundle is
zero—for asymptotically low frequencies this assumption makes sense since the terms
in the transfer function due to the inertia approach zero as f — 0. We will discuss the
effects of the inertia of the hemispheroid at high frequencies in the next section, but
we will see that for the anatomically relevant shapes, the effects of inertia are small.

With this approximation, the transfer function H,(f) = ©/U, given by Equation 2.7

is equal to
Hu(f) = ©/Uy = ——2 (5.1)
ST + j(en f) 2, '
where
T,
Hb - Ub’

T,
ZT = -.*,
i(27£)©
and C is the hinge compliance. In the limit of low frequencies, Equation 5.1 can be

expressed as

Hu(f) = ©/U, = C\[5(27 f) puh®Tin(&,), (5.2)

where T, (¢,) is illustrated in Figure 4-40. In the limit of high frequencies, Equa-
tion 5.1 is given by
_L

Tr
Ub/—— (5.3)

i(27f)©°
From Equation 3.26, Equation 3.27, Equation 3.28, Equation 3.29, we can approxi-

H,(f) =0/U,

mate Equation 5.3 for all shapes as

2.3h

H,(f)=0/U, = @)

(5.4)
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H,(f) for both low and high frequencies is illustrated in the top panels of Figure 5-1
for prolate, oblate, and hemispherical shapes for a fixed height. We see that as the
shape changes from prolate to hemispherical the frequency at which the asymptotes
cross first slightly decreases and then greatly increases. As the shape changes from
oblate to hemispherical, the frequency at which the asymptotes cross increases greatly.
This large increase in crossover frequency as the shape approaches hemispherical
results from the large increase in H,(f) for high frequencies; as the shape approaches
hemispherical, for fixed height, L approaches zero so that the high frequency H,(f)
approaches infinity (Equation 5.4). Figure 5-2 illustrates, for a prolate hemispheroid,
the high-frequency and low-frequency H,(f) for three different heights. We see that
as the height increases, the cross-over frequency decreases because the low-frequency
H,(f) increases while the high-frequency H,(f) decreases. We also observe that

height has a much larger effect on H,(f) for low frequencies than high frequencies.

5.3 Effects of inertia at high frequencies

For high frequencies, the effects of the inertia of the hemispheroid can be important.
If the mass of the hemispheroid is assumed to be nonzero, we can express H,(f) for

high frequencies as

Tl 4 j(2n f)3hM
T34 — (2 f)*E (sinh? €, + cosh? &) M

H.(f) =

where M is the mass of the hemispheroid. The term (2 f )?L?/5(sinh? &, +cosh? £,) M

represents the moment of inertia of the hemispheroid, i.e.,
L2
j(27rf)®p/s r2dV = j(27rf)€)?(sinh2 €, + cosh? £,) M.

The term (j(27 f)3h/8)M represents the effects of the accelerating reference frame;
the angular momentum due to the accelerating reference frame is equal to the product

of the center of mass (3%/8 for hemispheroids) and the linear momentum.
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Figure 5-1: Frequency responses for bodies of equal height but different shapes.

Top panels: massless bodies of equal height but different shapes. Bottom panels:
neutrally bouyant bodies of equal height but different shapes, M = p%ﬂ'hw2 for the
hemispheroids, and M, = ph? for the 2-D flap.
For all panels, h = 10pm, and C = 4.95%10"®*rad/N —m. The compliance was chosen
so that the massless hemispheroid, £, = .1, has a cross-over frequency of 4 ¥ 7z, Also

shown are the results for the 2-D flap, with C, = C * 10~%rad/N.

Left panels: H,(f) for both low and high frequencies prolate hemispheroids, £, = .1

€, = .4, and a nearly hemispherical hemispheroid, ¢, = 5.

,

Right panels: H,(f) for both low and high frequencies oblate hemispheroids, £, = .2,

€, = .6, and a nearly hemispherical hemispheroid, £, = 5.
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Let us estimate the effects of inertia by comparing massless and neutrally bouyant
bodies. Let the mass density of the hemispheroid be equal to p, the mass density of
the fluid, so that M = p2hrw? ( 27 hw? is the volume of the hemispheroid). The effect
of the inertia can be seen in Figure 5-3. For prolate, and oblate shapes, (¢, < .6),
the effects of the inertia of the hemispheroid are minimal. As the shape becomes
hemispherical, the inertia of the hemispheroid dominates H,(f). These results can
also be seen by comparing the bottom panels of Figure 5-1, which illustrate H,(f) for
M= ,o%whw2 to the top panels of Figure 5-1 which illustrate H,(f) for M =0. The
largest difference in these curves occurs for the shapes that approach hemispherical.

Since hair bundles are more often eccentric in shape, the effects of the inertia are

small, and we will assume it to be zero for the rest of this chapter.

9.4 Comparison to 2-D study

To compare our results to those of (Freeman and Weiss, 1990a), we will first study

the ratio, H,/Z, because this parameter has the same dimensions in both 3-D and
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2-D. For low frequencies,
(27
Hb/Zr = (an/zrn) l"(ﬂ—f)p (5.5)

for prolate hemispheroids and

Hb/Zr = (an/Zrn)(g)zv ](2::f)p

for oblate. H,, and Z,, are proportional to the curves of Figure 4-40, and their ratio
is unity for the infinitemally thin prolate hemispheroid, and close to 1/3 for shapes
that range from hemispheres to wide oblate hemispheroids. Figure 5-4 (left fourth
panel from bottom) illustrates this ratio.

For low frequencies, for 2-D (Freeman and Weiss, 1990a),

H/2, = |23 e. (5.6)

7

Since, for the infinitesmally thin prolate hemispheroid, Equation 5.5 is equal to
Equation 5.6, the hydrodynamics of an infinitesmally thin prolate hemispheroid most
resembles that of a 2-D flap for low frequencies.

We can also compare our results with the 2-D sensitivity transfer function H,(f),

H,(f) = C.3.954k%/5(27 f)pp, (5.7)

where C; is a 2-D compliance. Note that in 2-D, H,(f) is proportional to A2, whereas
in 3-D, H,(f) is proportional to h3, so we see that the 2-D analysis can not adequately
model the shape dependence of H,(f). We can roughly compare Equation 5.2 with
Equation 5.7, by approximating C, by the compliance multiplied by the approximate
spacing between hair bundles in a row (~ IOﬁm) so that C, = C x10~%rad = N
(Freeman and Weiss, 1990a). Equation 5.7 is plotted in Figure 5-1 and we see that,
even with this rough comparison, the 2-D flap represents the hydrodynamics of a

prolate hemispheroid.
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For high frequencies, in 3-D, H,/Z, can be approximated as

2.3h
Hy/Z, = I
and for 2-D, this ratio is represented by
2.1
Hb/Zr —_— T-

Although these ratios can not be equivalent for any hemispheroidal shape, they are
closest (within 10 %) for the infinitesmally thin prolate hemispheroid. Also, H,(f)
of the 2-D model is closest to that of the infinitesmally thin prolate hemispheroid.
H,(f) for high frequencies for the 2-D flap is given by

2.1
hj2r f)’

Hu(f) =

and is plotted in Figure 5-1 (top panels).

Thus we see that for all frequencies, a 2-D model best approximates the hydro-
dynamics of an infinitesmally thin prolate hemispheroid. Figure 5-4 summarizes the
results of this section. The first column indicates the results (H,, Z,, Hy/Z,, O/Us)
for low frequencies and the second column summarizes the same results for high

frequencies. 2-D results are also indicated.

5.5 Comparison of hair bundles in auditory or-
gans and vestibular organs

Equation 5.2 can be used to give insight into the difference in hair bundle height of hair
cells in vestibular organs and auditory organs. Hair cells in auditory organs operate
over a frequency range between 20 and 20,000 Hz, and have hair bundles with heights
that range from .8 to 30 gm. Hair cells in vestibular organs operate at frequencies
that are often much less than 1 Hz. For low frequencies, H,(f) (Equation 5.2) is
extremely sensitive to hair bundle height; it is proportional to \/fh3. If we let the
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Figure 5-4: Summary of results

150




-y
Q.
w - B
%, 80 - =
s . i
~ 60 — —
T i i Figure 5-5: Neural sensitivity curves for
o 40 - N five neurons.
8 Nerve Fiber
8 - Iso-Rate o
& 20 - L

A 1 10

Frequency (kHz)

hair bundle height increase by one order of magnitude, then to keep H,(f) constant,
the frequency must decrease by six orders of magnitude. Hair bundles heights of
vestibular organs can be one order of magnitude larger, and are often two orders of
magnitude larger, than those of auditory organs. This increase in height is needed so

that the hair bundles of vestibular organs can operate at low frequencies.

5.6 Neural tuning curves

The iso-DC voltage contour of a neural tuning curve, PY>(f) describes the magnitude
of the pressure applied at the tympanic membrane that results in a threshold rate
of nerve fiber firings. Figure 5-5 illustrates neural sensitivity curves for five neurons
from the cochlea of the alligator lizard. These neural sensitivity curves, which were
obtained from neurons that innervate the free-standing region of the basilar papilla,
are believed to result from the effects of the middle ear, the effects of the hair bundle
motion, and perhaps the transduction process (Weiss and Leong, 1985). Our aim in

this section is to compare a predicted sensitivity curve to a measured one.

151



wl e vl

Hm (IR | L3 11
-]
1= |
1 He-1ase® Ho-050" " \ [ . .
Figure 5-6: Measurements of the middle ear
transfer function.
0: mean data N
43 solid: 0 di/dee |
] [

l‘ LR R R | 1 LRI EL] |

Ki 1 10
Frequency (kHz)

5.6.1 The model

PY(f) was modelled in (Weiss and Leong, 1985) as

o K(V)
AT ARG AGATL (5:8)

where Hp(f) is the middle ear transfer function, which relates pressure at the tym-

panic membrane to basilar membrane velocity,
Us
Hm (f) - PT ‘
H.(f) is an additional lowpass filter,

K,
H.(f) = eI

The source of this additional lowpass filter is unknown but may come from the trans-
duction process (Weiss and Leong, 1985).

Measurements of the middle ear transfer function are illustrated in Figure 5-6 from
(Rosowski et al., 1985). For low frequencies (< 1000Hz), we have modelled H.(f)
by the curve 1.5(f/1000)%2. For high frequencies (> 4000 H z), Hnx(f) is modelled by
by the curve 9.5(f/1000)~3/2,

In the limit of low frequencies, we substitute Equation 5.2 into Equation 5.8 to
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obtain

K(V,)
1.5(f/1000)*5C\/2r fpuh3Ty,.(€,)K,’

and, in the limit of high frequencies, we substitute Equation 5.3 so that Equation 5.8

PY(f) = (5.9)

can be expressed as

Vor o K (Vo)(2m £)2L?(f/1000)*°
P = 7.2.3h9 5K,

(5.10)

We chose to compute Equation 5.9 and Equation 5.10 for hair bundles of the same
shape. Results from the free-standing region of the basillar papilla of alligator lizard
(Mulroy and Williams, 1987) indicate that the membrane surface area of the hair
bundles are proportional to height which would imply that the square of the width of
the hair bundle is proportional to its height. Since the height changes by a factor of
three, the width changes by a factor of 1.7, which suggests that the shape changes but
not by very much. Moreover, in the bobtail lizard, it is known that as the height in-
creases, the number of hairs increase (Koppl, 1988) which also suggest that for lizards,
the shape of the hair bundle is more or less fixed. Equation 5.9 and Equation 5.10
are plotted for hair bundles of the same shape on top of the neural sensitivity curves
in Figure 5-7. We let f, = TCL’Ti,(¢,), and K, = 3.29103K,/(CTin(,))s0 as to
best match the curve tuned to 4 kHz. Although the heights of the hair bundles to
which the nerve fibers synapse are unknown, the chosen values are physiologically
plausible (Mulroy, 1974). Note that for the chosen values of f, and K, these curves
are independent of K,, C, T;n(¢,), and L, and only depend on height.

The match between the model and the data is striking. The model does very
well at predicting the spacing between the curves for low frequencies, and predicts
that the spacing between the curves at high frequencies will be less. Note that the
2-D model can not predict the spacing between curves at low frequencies— if we set
the parameters of the 2-D model so that, for A = 10um, it matches the curve most
sensitive to 4 kHz (and the 3-D model), then, for 2 = 52um, the 2-D model matches
the lowest sensitivity curve; the 3-D model matches the lowest sensitivity curve with

the more physiologically relevant height of 30 um.
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Figure 5-7: Neural sensitivity curves and
plots of Equation 5.9 and Equation 5.10 for
hemispheroids of the same shape with val-
ues chosen to best match the data.
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If the width remained fixed the shape would change, and hemispheroids with
h > 10um would be more prolate than the hemispheroids with A = 10gm. For
a fixed shape, we know from dimensional analysis that the normalized torque (the
torque divided by the height cubed) for hemispheroids of all heights remains the
same. For a fixed width, the normalized torque decreases as the shape becomes more
prolate (see Figure 4-40). This implies that taller hair bundles would be needed
to achieve the required spacing between tuning curves. For example, if we chose
h = Lcosh§, = 10um to match the curve which is most sensitive at 4 kHz and if
we chose w = Lsinh §, = 2.3um for each curve, then a hemispheroid with & = 36pm
would match the lowest sensitivity curve in Figure 5-7.

If we let the square of the width scale with height so that taller hair bundles are
somewhat more prolate than shorter hair bundles, and if we assume a physiological
relevent width of w = 2.3um for the highest curve with A = 10um, then the lowest
curve would be obtained with a height of 32um, which is close to the 30um result we

obtained for hemispheroids of the same height.

5.7 Summary

We compared the results of the 2-D flap model to our 3-D hemispheroid model.
For low and high frequencies, the 2-D flap represented the hydrodynamics of an

infinitesmally thin prolate hemispheroid. However, for low frequencies, the 2-D flap
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model, cannot predict the spacing between neural sensitivity curves at low frequencies
since for 2-D, H,(f) o h*\/f whereas for 3-D, H,(f) « h3\/F.

We studied the effects of inertia on the hair bundle transfer function H,(f). We
found that for eccentric shapes, the effects were small, but increased as the shape
became hemispherical. Since hair bundles are not hemispherical in shape, we believe
the effects of inertia on hair bundle motion are not significant.

We determined that for hemispheroids of the same shape, for low frequencies,
H,(f) o< h*\/, and for high frequencies, H,(f) o 1/(kf). The effect of width on
H,(f) is much less important than the effect of height for low and high frequencies.

The low frequency results qualitatively predicted the difference in height between
hair bundles in vestibular organs and those of auditory organs. Two hemispheroids
whose heights differ by one order of magnitude, will have frequency responses that
differ by six orders of magnitude. Hair cells in vestibular organs can operate in
frequencies that are six orders of magnitude lower than those of auditory organs, and
the heights of hair bundles in vestibular organs can be one order of magnitude large
than those of auditory organs.

Our results also predicted the characteristics of neural sensitivity curves of the
free-standing region of the basilar papilla of the alligator lizard. For low frequencies,
there is a large increase in sensitivity when the hair bundle height is increased; for
high frequencies the influence of height is much less. With realistic values of hair
bundle sizes, an excellent match between the neural sensitivity curves of four neurons
and our model was obtained. These results suggest that it is the change in hair bundle
height that accounts for the differences in frequency responses in hair cells for low

and high frequencies.
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