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Occluded Imaging with Time of Flight Sensors
ACHUTA KADAMBI1, HANG ZHAO1, BOXIN SHI1,2 and RAMESH RASKAR1

1MIT Media Lab, Cambridge MA,2SUTD, Singapore

We explore the question of whether phase based Time of Flight (ToF) range
cameras can be used for looking around corners and through scattering dif-
fusers. By connecting time of flight measurements with theory from array
signal processing we conclude that performance depends on two primary
factors: camera modulation frequency and the width of the specular lobe
(“shininess”) of the wall. For purely Lambertian walls, commodity time of
flight sensors achieve resolution on the order of meters between targets. For
seemingly diffuse walls, such as posterboard, the resolution is drastically
reduced, to the order of ten centimeters. In particular, we find that the re-
lationship between reflectance and resolution is nonlinear—a slight amount
of shininess can lead to a dramatic improvement in resolution. Since many
realistic scenes exhibit a slight amount of shininess we believe that off-the-
shelf ToF cameras can look around corners.

Categories and Subject Descriptors: I.2.10 [Artificial Intelligence]: Vision
and Scene Understanding—3D/Stereo scene analysis

Additional Key Words and Phrases: Time of Flight, Scattering, Computa-
tional Photography

1. INTRODUCTION

With the emergence of low cost, yet powerful Time of Flight (ToF)
range cameras (such as the new Microsoft Kinect) a question that
is raised is whether such off the shelf devices can be used to look
around corners and through diffusers.

The looking around corners problem (Figure 6a) is an important
area of study. It is a theoretically challenging problem in image for-
mation where the image sensor receives photons that scatter from
line-of-sight (LOS) objects, non-line-of-sight (NLOS) objects, and
background illumination. Separating these reflections has been a
substantial challenge. The current state of the art is the solution
from [Velten et al. 2012] where they demonstrate looking around
corners in a controlled laboratory setup. Although this result does
not use scene priors, it is dependent on ultrafast optical hardware,
which comes at a high price tag and significant limitations. Recent
work has demonstrated a solution that may drastically lower the
cost of such a system [Heide et al. 2014]. However, this solution
exploits scene-dependent priors in the reconstruction and uses cus-
tomized hardware to acquire “transient images”.

Following the problem’s introduction in [Velten et al. 2012], sev-
eral fundamental questions remain unanswered. These include:

—How high does the camera modulation frequency need to be?
We show that the camera modulation frequency has an approxi-
mately linear relationship with desired resolution.

—How “diffuse” or “shiny” does the wall have to be so we can
look around the corner? We show that the width of the specular
lobe has a nonlinear relationship to recovery.

—Do we need only amplitude or both phase and amplitude? In
practice, amplitude-only localization is susceptible to noise; we
compare the two strategies.

—Under what conditions is recovery possible? It depends on the
physical constraints and computational choices we make.

It turns out that all of these questions can be addressed through
a unified forward model that we propose in the paper. We call this
model a Virtual Sensor Array (VSA) as it connects ToF range mea-
surements with array signal processing. We recognize that poblems
such as looking around corners (also denoted as “corners” prob-
lem in the following text, for simplicity) are specialized. However,
the VSA model generalizes to handle imaging through diffusers as
well.

In summary, our key contribution is:

—A unifying theoretical framework for occluded imaging with
time of flight cameras; we use array signal processing to for-
mulate limits on recoverability and add specularity to the formu-
lation.

Secondary technical contributions:

—Demonstration of occluded imaging in the context of the corners
problem.

—Generalizing the theory to handle imaging through diffusers, and
a practical demonstration of this case.

Benefits As compared to prior art [Velten et al. 2012; Heide et al.
2014], our model is rooted in array signal processing theory. In ad-
dition, while comparison work exploits customized hardware for
“transient imaging”, our hardware uses standard data from a ToF
camera (i.e. only phase/amplitude at each pixel). A key benefit—
beyond reproducibility and low cost—is real-time acquisition. To
our knowledge this paper is the first to provide detailed bounds
on recovery for looking around corners. This may be used as a
blueprint for future camera designs.

Limitations In this paper, we propose a theoretical framework
to understand the problem. Due to the extensive customization of
transient imaging hardware, we validate our theory on off-the-shelf
devices. This has the benefit of reproducibility, low cost, and real-
time potential but a drawback in the perceived quality of results.
Specific engineering challenges include a lack of customized il-
lumination and the use of a single modulation frequency that re-
strict our demonstrations to relatively simple scenes. Nevertheless,
to validate the theory, our scenes convey important information,
such as the resolution between two objects.

2. RELATED WORK

Holography literature contains a closely related work that over-
laps with our theoretical model. Specifically, [Rivenson et al. 2013],
provide reconstruction guarantees for compressive holography us-
ing discrete spatial sampling to map a sparse set of 3D points to
intensity and phase measurements of a 2D surface. Reconstruction
guarantees are provided using the Gram matrix of a Fresnel sensing
operator. In contrast, our paper is entirely in the realm of ray-based
optics and maps intensity and phase of TOF measurements to a sur-
face.
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Time profile imaging represents an increasingly popular re-
search area where captured photons are parameterized by both
space and time. The “Femtophotography” technique by [Velten
et al. 2013] uses a laboratory grade optical setup to capture vi-
sualizations of light in flight, however the technique is expensive
(half million dollars). Recently, [Heide et al. 2013] and [Kadambi
et al. 2013] have repurposed low cost 3-D, time of flight sensors
to achieve some of the capabilities of Velten’s system. However,
beyond customized hardware, both of these techniques require the
acquisition of a time-frequency shift matrix [Heide et al. 2013; Lin
et al. 2014] or a time shift vector [Kadambi et al. 2013], which
mitigates the real-time advantage that time of flight sensors usually
enjoy. Time profile imaging has several applications, and in partic-
ular, [Velten et al. 2012] and [Heide et al. 2014] use such data to
address the corners problem. Multipath interference correction is
closely related to this paper. While this paper exploits information
in scattered light, related techniques in light transport (cf. [O’Toole
et al. 2014; Gupta et al. 2014], or time-frequency analysis [Bhan-
dari et al. 2014] correct for such interference. A light transport anal-
ysis of transient imaging can be found in [Velten et al. 2012; Wu
et al. 2014], and a comprehensive review of transient technique was
collected by [Masia 2014].

Non-line-of-sight target localization is a classic inverse problem
that has been studied in a variety of domains. A prominent example
is multi-path radar system. For example in [Sen and Nehorai 2011],
a Doppler radar system is equipped with spatial diversity (i.e. de-
tectors at different spatial locations) to allow the system to obtain
multiple “looks” of a target and resolve NLOS objects in motion.
In [Sume et al. 2011], they demonstrate a radar system designed to
track sources around a corner. In [Adib et al. 2014], radio waves
are used to track humans: however, this technique works for NLOS
only when the medium is transparent to radio waves, and makes
the limiting assumption that the target is in motion. Optically lo-
calizing a source is challenging as diffuse scattering needs to be
taken into account. Within computational imaging, various tech-
niques have used indirect reflections to infer various scene prop-
erties [Reshetouski and Ihrke 2013; Reshetouski et al. 2011; Naik
et al. 2011].

Phased array source localization can be described as follows:
given phase and amplitude measurements from multiple sensors
located near a source signal, how can we localize the source?
The computational technique of choice may depend on whether
the source is in the near or far field. The classic technique is
time shifted beamforming which was introduced in [Carter 1981].
Holography methods have also been used for decades to achieve
near-field acoustic source localization [Maynard et al. 1985]. In
discrete approaches, such as [Malioutov et al. 2005] and [Cevher
et al. 2008], a coordinate grid system of N voxels is drawn in the
search space. Assuming that K targets are located on grid, and
since K � N , by coupling grid source localization with sparse
priors, it is possible to resolve very closely spaced sources. More
recent work in signal processing often leverages model-based al-
gorithms to enhance recovery [Boufounos et al. 2011; Hegde et al.
2014].

Sparse approximation refers to the problem of estimating sparse
vector that satisfies a linear system of equations. Concretely, given
a measurement vector y and a dictionary matrix D, the goal is
to solve for x where y = Dx and x is known to be sparse. To
solve the linear system and enforce sparsity on x, popular solutions
include iterative approaches that use an `1 regularization penalty
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Fig. 1: The corners problem is increasing in popularity as the solution be-
comes within reach. The solution by Velten et al. is “impulse” based, using
a very small wavelength to achieve high resolution. We explore the space of
amplitude modulated, continuous wave cameras which achieve a resolution
that depends on the modulation frequency and shininess (γ in radians) of
the wall. In this paper we derive a parametric bound for target resolution.

or greedy techniques that require multiple projections. Examples
of the former include LASSO [Tibshirani 1996] and Basis Pursuit
[Chen et al. 2001], while examples of the latter include the match-
ing pursuits originally introduced in [Mallat and Zhang 1993]. An-
other key aspect is how to select the dictionary matrix D, such
that the problem is well posed. In [Elad 2010], sparse recovery can
be guaranteed when columns of D have a sufficiently small inner
product, or more concretely, a low mutual coherence.

3. TIME OF FLIGHT LOCALIZATION

We begin by recasting time of flight 3-D imaging into the realm of
array signal processing.

Time of Flight imaging We use the term time of flight
(ToF) to refer to the time it takes for photons to travel through a
medium. Although there are several devices to measure ToF, we
restrict subsequent technical discussion to amplitude modulated
continuous wave (AMCW) time of flight cameras.

To obtain depth, a light source strobes in a periodic pattern and
photons are captured with a lock-in CMOS sensor. The carrier sig-
nal is the optical signal and the modulation envelope is the strob-
ing pattern with modulation frequency fM. The phase difference
between the received and emitted modulation codes, ϕM, encodes
the propagation distance via the following linear relation:

z =
cϕM

2πfM
, c ≈ 3× 108 m/s. (1)

Here, z is the propagation (in meters) of the optical path. A com-
mon value of fM is 30 MHz, which corresponds to a λ of 10 meters.
The camera also measures the amplitude of the reflected light, de-
noted as A. In summary, a ToF camera is unique in that the pair of
phase and amplitude is measured at each pixel.

Source localization The 2-D source localization problem is
as follows. Consider a set of M sensors spaced evenly on a
horizontal axis, u. There are K transmitting sources located on
the 2-D space parametrized by u and w axis. Denote the sig-
nal time delay from k-th source to m-th sensor as τk,m. Then,
in frequency domain, the m-th sensor receives Ym(2πfM) =
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Fig. 2: Recasting time of flight cameras into a (virtual) sensor array. (a) Mapping out the transport paths from a light source to coordinates
(u, v) on the wall. The wall serves as a virtual sensor array (VSA). By taking a picture of the virtual sensor we obtain the measurement
model. The goal of Section 4.1 is to extract L(u, v) from the ToF camera measurements. (b) Given such measurements, a reasonable next
step is to use backprojection to localize the source. This second step connects to lensless transient imaging, as introduced in [Wu et al. 2014].

∑K
k=1Akexp (−j2πfMτk,m). Substitution using z = cτk,m and

Equation 1 yields: Ym(2πfM) =
∑K
k=1Akexp

(
−jϕMk,m

)
. The

superscript M on ϕ emphasizes that this is the phase associated
with modulation frequency fM, i.e., for a fixed z, ϕI 6= ϕJ for
I 6= J . As most of the analysis is concerned with narrowband sce-
narios, we drop the superscript. Therefore, the observation model
is written as:

~y , [Y1 (2πfM) , . . . , YM (2πfM)]T

=
[∑K

k=1
Ak exp

(
−jϕk,1

)
, . . . ,

∑K

k=1
Ak exp

(
−jϕk,M

)]T
,

(2)

where ~y is anM -dimensional measurement vector defined over the
complex field. We summarize the key intuition: each entry of ~y
represents the measured amplitude and phase at a single sensor.

4. VIRTUAL SENSOR ARRAY FOR
RECONSTRUCTION

Recall that a sensor array is an array of M sensors each measuring
phase and amplitude. A virtual sensor array (VSA) probes the idea
of turning ordinary surfaces into a sensor array. Consider the toy
problem in Figure 2a: a point source emitter is hidden around the
corner and the goal is to recover its location and amplitude from
VSA measurements. Taken together, Sections 4.1 and 4.2 introduce
the virtual sensor array in the context of this toy problem, following
which Sections 4.3 and 4.4 generalize the model to broader scenes.

4.1 Virtual Sensor Array

In a time of flight camera, intensities are parameterized both spa-
tially and temporally as

c(u, v, t) = A (u, v) sin (2πfMt+ ϕ (u, v)) + ζ (u, v) , (3)

where c(u, v, t) is the correlation waveform with amplitude
A(u, v) and phase ϕ(u, v). The quantity ζ(u, v) is an offset term
that represents ambient lighting. Note that ζ(u, v), ϕ(u, v), and
A(u, v) are not parameterized in time — we assume these quanti-
ties are constant over a short integration time. Then, the amplitude
and phase can be expressed as a measurement phasor

M(u, v)
∆
= AM(u, v)e

jϕM(u,v), (4)

where the addition of subscript M to amplitude and phase links the
two quantities with the phasor M. Note that the DC offset from
Equation 3 is not captured in the phasor notation of Equation 4.
This is perfectly fine, as the offset is not useful (it is uncontrolled,
ambient light).

Consider the case in Figure 2a, where a single omni-directional
point source emits rays of light onto a wall. Localizing the source
is trivial when the wall is mirrored, which allows the point source
to be observed directly by the camera. This section is concerned
with the more general scenario of localizing the point source when
the wall is modeled as a Lambertian surface. The key insight is to
represent the wall itself as a virtual, lensless imaging sensor in the
(u, v) plane. We are interested in obtaining this “lensless image”
formed on the virtual sensor.

Using ray optics we begin by analyzing the complex domain
light transport of a unit amplitude strobing signal. As illustrated in
Figure 2a, the transport phasor from source to wall is represented
as L(u, v, θ), where u and v are the coordinates of the wall that the
ray strikes at an angle of θ to the normal. Therefore, the phasor that
models transport from light source to the diffuse wall is written as

L(u, v) =
cos θ

ϕL(u, v)
2︸ ︷︷ ︸

AmplitudeDecay

ejϕL(u,v). (5)

Here, note that L is parametrized by only u and v because, assum-
ing the geometry in Figure 2a, the angle θ is a function of (u, v).
The amplitude of the transport phasor is designed to represent an
amplitude decay term. A similar transport phasor can be formulated
from rays emitted from the wall to the camera. As illustrated in Fig-
ure 2a, an outgoing ray makes an angle ψ with the normal vector
of the wall. The corresponding phase is ϕC(u, v). Therefore, the
transport phasor is

C(u, v, ψ) = ρ (u, v)
cosψ

ϕC(u, v)
2︸ ︷︷ ︸

AmplitudeDecay

ejϕC(u,v), (6)

where now ρ(u, v) represents the Lambertian albedo of the wall at
coordinates (u, v). Using the two transport phasors as well as the
original amplitude of the strobing signal, A0, the combined phasor
transport from source to camera is a phasor multiplication:

M (u, v, ψ) = A0L (u, v)C (u, v, ψ) . (7)
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Fig. 3: Generalizing the toy problem from Figure 2a; (a) point reflectors can
be thought of as emitters; and (b) over the voxel grid, the blue surfaces can
be thought of as multiple point reflectors (green).

Since the camera is perfectly focused on the wall, Equation 7 can
be written as

M (u, v) = A0L (u, v)

∫
C (u, v, ψ) dψ, (8)

where the emitting angle has been integrated out. Embedded within
Equation 8 is the phasor L(u, v), which is the projection of the
source onto the wall or the virtual imaging plane. If this phasor
could be isolated, then these measurements could be used to for-
mulate a phased array, source localization problem. Because the
forward problem is phasor multiplication, it is simple to isolate
L(u, v) as

L (u, v) =

(
1

A0

)(
M (u, v)

C (u, v)

)
. (9)

Although C(u, v) is an unknown, simply computing a depth map
of the wall provides the phase ϕC. Using just ϕC and unit amplitude
as a proxy for C(u, v) we obtain

L̂ (u, v) =

(
1

A0

)(
M (u, v)

ejϕC(u,v)

)
=

(
cos θ

ϕL(u, v)
2

∫
ρ (u, v)

cosψ

ϕC(u, v)
2 dψ

)
ejϕL(u,v)

= ÂL (u, v) e
jϕ̂L(u,v).

(10)

Here, L̂(u, v) is an estimate of L(u, v) with the correct phase and
different amplitude. In order to treat the amplitude as a uniform
difference in scaling (across all array elements), we assume that the
reflectance profile is uniform, i.e., ρ(u, v) is the same for all u and
v. In summary, the key measurements are ϕ̂L(u, v) and ÂL(u, v).
These represent the projection of phases and amplitudes of the light
source onto the virtual sensor which can be used in the context of
source localization.

4.2 Reconstruction
The problem has now been abstracted to 3-D source localization
with a 2-D array of sensors, parameterized by (u, v). Each virtual
sensor element gives phase and amplitude measurement ϕ̂L(u, v)

and ÂL(u, v). The target is a point source whose real-world lo-
cation is parameterized in 3-D spatial coordinates (X,Y,Z). Our
goal is to find the points (û, v̂, ŵ) which correspond to the target
coordinates with respect to the wall and camera sensor.

Without loss of generality we will consider 2-D source localiza-
tion using a 1-D slice of measurements, i.e., to obtain (û, ŵ) by
using sensor measurements only along the horizontal u-axis. The
measurement vector is of the form

~y =
[
L̂ (u1) L̂ (u2) · · · L̂ (uM )

]>
. (11)

Following a parallel technique in holography [Rivenson et al.
2013], the search space is discretized to a grid of voxels (see Fig-
ure 3b). This allows standard source localization algorithms to be
used [Cevher et al. 2008], whereby the set

G = {ti | i = 1, . . . ,N ; ti = [ui, wi]} (12)

denotes the set of N possible grid points. There are R possible
locations on the u-axis and Q possible locations on the w-axis,
such that N = RQ. The set

T = {ti | i = 1, . . . ,K; ti = [ui, wi]} (13)

describes a set of K targets that are located on the voxel grid. We
assume for now that the targets are located on-grid and that K �
N . The task is to find out which voxels contain a target. Concretely,
we define

~x =
[
x1 x2 · · · xN

]> (14)

where each entry of ~x ∈ CN is the weight of confidence that the
target is at that voxel. The connection to sparsity is apparent: targets
will lie on K grid locations and the vector ~x is therefore sparse. To
complete the model we must formulate the dictionary matrix D.
Define the operator

S (u,w) : (u,w)→ CM , (15)

which takes as input a potential target location and generates the ex-
pected measurements along the sensor array. Define the dictionary
as

D =
[
S (u1, w1) S (u2, w1) · · · S (uR, wQ)

]
, (16)

where the columns of D have unit norm. In the backprojection
problem it is expected that the observed measurement ~y can be rep-
resented by K columns of D, such that

~y= D~x s.t. ‖~x‖0 = K. (17)

This is the key objective function from which we want to recover
~x. To attack this objective function directly, sparse solvers are used.
In cases where sparse solvers are not appropriate, e.g., if a good
estimate for K is not available, then the standard option in signal
processing is to use beamforming:

~̂x = DH~y. (18)

Intuitively, the beamforming equation provides a crude estimate of
source location by computing an inner product of the measured sig-
nal with each dictionary atom. Therefore, entries of ~̂x with a large
magnitude indicate possible source locations under the beamform-
ing model and K does not need to be known. These are the two
variants that a practitioner needs to consider for the VSA problem;
a list of standard solvers and objective functions for this problem
can be found in Table I.

4.3 Generalizing the Model

While the toy problem allows clean derivations, it does not accu-
rately address the goal of imaging around the corner. In particular,
the toy problem includes the following simplifications:

—The occluded scene consists of only emitters.
—Targets are on grid.
—The occluded scene is composed of discrete points.
—The light source is not on the same side as the camera.
—The reflectance of the wall is Lambertian.
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Fig. 4: If sufficient light is measured, comparable quality of reconstruction is observed whether the light source is on the (a) camera side or
(b) object side (magenta arrow shows direction of light propagation). For both conditions, reconstructions are shown with beamforming and
a sparse solver, CoSaMP. Recovery is governed by two primary noise effects: (1) photon shot noise and (2) the inherent noise introduced
from the reconstruction. When a system is reconstruction-noise limited, reconstruction quality is governed almost exclusively by mutual
coherence. (not-shown) If the source is not very bright, then signal-attenuating effects, such as the extra indirect bounces in (a) wrt. (b), start
to limit noise more than the reconstruction-noise. Refer to the supplement for details on the noise model used for this simulation.

Emitters to reflectors Recall that the goal of the toy problem
in Figure 2a was to localize an active light source around the cor-
ner. Of course this is not a realistic scenario: it is unlikely that the
hidden object is an active light source. Figure 3a illustrates a more
common scenario of localizing point reflector(s) are around the cor-
ner. To solve this problem the position of the light source must be
known a priori. Then the path to each possible voxel location is
known and a valid dictionary for the space can be constructed. We
must mention that the reflectors do not have to be Lambertian. More
precisely, the directionality of the object is equivalent to having a
directional array, which actually facilitates recovery (see Section
5).

On-grid to off-grid To this point we have assumed that point tar-
gets, e.g., a point reflector or point source, lies on a search voxel.
In realistic scenarios points are not guaranteed to lie on-grid and
“off-grid” localization must be performed. Fortunately, the source
localization community has developed powerful tools to address
this very scenario. Approaches are in the style of iterative multires-
olution methods which upsample the dictionary [Malioutov et al.
2005] or Continuous Basis Pursuit which interpolates the dictio-
nary [Ekanadham et al. 2011].

Points to surfaces As illustrated in Figure 3b, the object of in-
terest is usually a continuous surface. In this case, the object can
be modelled as many closely spaced point emitters. In this case,
the recovered surface would be a convolution of the surface with
the beampattern of the single point source. This would allow us to
recover a blurred version of the occluded surface, where the degree
of blur depends on the width of the beampattern of a single point
source.

Illumination position The goal is to build a camera that can look
around corners without any gadgets in the line-of-sight. Therefore
it is desirable to have the source on the same side as the camera.
Achieving this turns out to be an engineering challenge as opposed
to a theoretical one. Following from Figure 3a, as long as the posi-
tion of the light source is known—whether it is next to the camera
or not—a dictionary can be constructed for the space. The engi-
neering challenges are:

—Saturation from an area source. ToF cameras are designed to il-
luminate an area, and thus if an area source is aimed at a wall the
direct reflections will saturate the sensor.

—Very little light comes back: light has to bounce off the wall twice
and the object once before returning to the camera.

A solution to the first problem is to use a collimated beam, either
from a laser or by blocking the area source. A solution to the latter
problem is to use a more powerful light source than what is stock
on time of flight cameras. The simulation shown in Figure 4 verifies
that the VSA model holds when the illumination is on the same side
as the occluder. Refer to the figure caption for details.

Shininess of the wall and reflectors An interesting link between
computer graphics and array signal processing exists between the
bidirectional reflectance distribution function (BRDF) and antenna
directionality. In the signal processing community, when sensors
show directional preference (as opposed to being omnidirectional),
resolving targets within the aperture becomes much easier. Indeed,
in the corners problem the directionality of the reflectance is criti-
cal. Consider two opposing cases: (i) the wall is a mirror and thus
the BRDF has strong directional preference, and (ii) the wall is
purely diffuse corresponding to a constant BRDF. This confirms
the physical intuition where we expect high resolvability of targets
with specular BRDFs (e.g. mirrors) and low resolvability with dif-
fuse BRDFs. We must also mention that the directionality of the
VSA (determined by the BRDF of the wall) is dual to the direc-
tionality of the reflectors. Practitioners should note that to generate
D, an estimate of the BRDF should be obtained for optimal results.
Sections 5 and 6 probe further into the reflectivity of the wall (i.e.
shininess).

4.4 Imaging through Diffusers

To this point we have proposed the VSA model and shown its util-
ity for looking around corners. We now show that it can also be
used to image through diffuse media. Specifically, we consider a
transmissive toy problem: localization of a source through a dif-
fuser, shown in Figure 5. Here, the key idea is that the scattered
paths are deflected and thus have a fraction longer time duration to
some of the sensors.

Note that the problem is almost identical to the looking around
corners problem in Figure 2a. In the corners problem, the virtual
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BTDF

Virtual Sensor Array (VSA)

Light 
SourceToF Camera

Fig. 5: The virtual sensor array model generalizes to handle scattering dif-
fusers as well. In this context the virtual sensors are located on the visible
surface of the diffuser.

sensor array was the wall itself. In the diffuser problem the virtual
sensor array is the visible surface of the diffuser. Similar parallels
exist for light transport analysis. Since the corners problem is us-
ing reflected measurements, the BRDF controls the directionality
of sensors. In contrast, since the diffuser problem uses transmis-
sion measurements, sensor directionality is determined by the bidi-
rectional transmittance distribution function (BTDF). Recall that
the trivial case for the corners problem was a mirror, which has
a peaked BRDF. The analogous trivial case for the diffuser prob-
lems occurs for a clear object, which has a peaked BTDF. We can
therefore address the corresponding questions for the transmissive
system, such as “how opaque or clear does the diffuser have to be”?

In crux, Equations 1 to 18 all apply to the case of imaging
through diffusers.

5. ANALYSIS OF RECOVERABILITY

In this section we provide numerical guarantees to quantify when
the VSA model can recover the occluded image and when it can’t.
To provide guarantees, parallel work in holography [Rivenson et al.
2013] proposes the use of mutual coherence as a key metric. Using
our notation, we write the mutual coherence µ(D) as:

µ(D) = maxGij , G =
∣∣DHD

∣∣ , i 6= j, (19)

where ‖Dn‖2 = 1 for n = 1, . . . ,N . Intuitively, the mutual coher-
ence computes the similarity between the columns of D. For robust
recovery, it is important to reduce the coherence, which is achieved
through the choice of physical parameters. In the following para-
graph we show that the specularity of the wall has an inverse re-
lationship to the FWHM, and since all our functions are Gaussian,
the relationship holds for mutual coherence, providing us a bound
on target resolution. For more details on using mutual coherence to
provide reconstruction guarantees we refer to the reader to [Riven-
son et al. 2013] and our supplementary material.

Recovery guarantees for specular surfaces: When the wall is
non-Lambertian, the virtual sensors are no longer omnidirectional.
To model the directionality of virtual sensors, we first define the
beampattern as a row of the Gramian matrix G.1 Like in optics, the
FWHM of the beampattern specifies how far apart two targets must
be to resolve both of them. As one can imagine, this has been ex-
plored in array signal processing. For instance, in [Van Trees 2004]
a derivation is provided for the FWHM of omnidirectional sensors,
which takes the form of the familiar Rayleigh limit:

FWHM∠ = arcsin (λ/D) , (20)

1Equivalently, beampattern is a column of G since G is Hermitian.

where D is the diameter of the sensor array (in meters) and
FWHM∠ is the angular resolution (in radians). This equation pro-
vides the resolution to which targets can be resolved. A 300 MHz
camera has a λ of approximately 1 meter and typically our virtual
sensor array is about D = 1 meter wide. Then, for omnidirectional
sensors, the resolution to which one can distinguish targets is ap-
proximately 1 meter, which is poor. Fortunately, if the virtual sen-
sors were directional (e.g. if the wall is shiny), then the resolution
limit improves.

We now derive the FWHM for a directional sensor system (such
as a specular wall). Let γ∠ denote the FWHM of the directional
response function of an individual virtual sensor, with units in ra-
dians. In the corners problem, the directional response function is
the BRDF of the wall. Therefore, we use simplifications from com-
puter graphics [Ramamoorthi and Hanrahan 2001; Han et al. 2007]
to approximate the specular lobe of the BRDF by a Gaussian. From
Chapter 3, of [Van Trees 2004], the FWHM for a directional sensor
system is a composite of the omnidirectional FWHM (Equation 20)
with the FWHM of the individual sensor response (γ∠). Following
this recipe, we obtain the FWHM for the directional system:

FWHM∠ = arcsin
((
λγ∠

)
/
(
λ+Dγ∠

))
. (21)

As a sanity check, it can be verified that if the sensor is omnidirec-
tional, then Equation 21 simplifies to Equation 20.2. One can also
verify that a low value of γ∠, i.e., a specular BRDF, corresponds
to a narrower FWHM for the system. We arrived at Equation 21
using angular quantities for FWHM, but in this paper, we are also
interested in spatial resolution of two targets (i.e. how many meters
apart do they have to be). The relation between angular resolution
and spatial resolution is written as

FWHM` = dFWHM∠, (22)

where d is the depth of the object from the array (in meters). We
use the superscripts to denote the units of a scalar variable: ` for
length (meters), ∠ for angular quantities in radians, and ◦ to denote
angular quantities in degrees.

General recovery guarantees based on rank and span constraints:
General guarantees can be obtained using rank and span con-
straints. For example, D needs to have sufficient linear indepen-
dence to uniquely recover sources. This can be expressed as a
rank-constraint, where rank(D) − 2 encodes an upper bound on
the dimensionality of the convex hull of targets (cf. pages 81-97
of [Gower 1985]). A complementary, span constraint characterizes
appropriate arrangements of virtual sensors (e.g., the wall geome-
try) that avoid degenerate solutions. Using the general frameworks
of rank, span, and mutual coherence, the supplemental material ex-
plores how other parameters—beyond specularity—influence re-
construction. This includes gridding, modulation frequency, aper-
ture size, non-planar walls, and choice of reconstruction algorithm.

6. RESULTS

For all experiments, the time of flight camera used is the Mesa
Swissranger SR4050 lock-in module. It can be purchased directly
from MESA Imaging 3 in Zurich, Switzerland. This time of flight
camera has a decoupled light source and operates at a modulation
frequency of 30 MHz.

2Specifically, lim
γ∠→∞

(
λγ∠

)
/
(
λ+Dγ∠

)
= λ/D

3http://www.mesa-imaging.ch/
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ToF camera

Wall

(Moving) Reflector

30 MHz  LED

Occluder

(a) Moving object around the corner (b) Video of object (c) Object tracking

Fig. 6: Localizing a moving target in real-time. (a) The ping pong ball is outside the line of sight of the camera and moves horizontally. The
camera measures backscattered reflections from the wall. (b) A conventional video of the object in motion. Here, three frames of the video
are shown at times 0, 1 and 2 seconds where the ball position is 30, 40, and 50 cm. (c) Our technique is able to find the location of the target
in real time. Please see supplementary video.

Occluded Scene Reconstruction

Fig. 7: Imaging around the corner. (left) We use the same scene from Figure
6a but replace the moving ping pong ball with a “T” shaped object. (right)
Using pseudoinverse beamforming, we are able to recover the hidden im-
age. The height represents confidence in a given voxel.

For the corners setup, white ping pong balls were chosen as re-
flected point targets as they are close to pure Lambertian objects.
The ping pong balls are placed at a depth of 1 meter away from
the wall; this allows us to easily convert from angular coordinates
(degrees) to spatial coordinates (centimeters). In this section, dif-
fuse posterboard material is used for the wall. The wall dimensions
are approximately 2m by 1m and a patch of pixels that span 50cm
by 50cm is used to form the observation vector. The main setup is
shown in Figure 6a. Because the light source is an area source it
cannot be placed on the same side as the camera; this would lead to
saturation.

6.1 Qualitative Results

Real-time occluded imaging As illustrated in Figure 6, a single
point reflector is occluded from the camera’s line-of-sight. The re-
flector is placed in motion and can be localized in real-time using
the backprojection algorithm. The supplement includes a video of
this demonstration.
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Fig. 8: Extending the problem to handle localization through diffusers. The
scene is shown at the bottom left, where the ping pong ball and camera are
on opposite sides of a bulk diffuser, i.e., milky water in a tank. In (a) only
a few drops of milk are added. In (b) the water is very milky. Note that
the balls are more sharply localized in the highly scattering scenario when
sparse priors are used.

Imaging around the corner In Figure 7 we replace the moving
ping pong ball from the real-time result with a small, “T shaped
object” that is outside the line of sight.4 By using pseudoinverse
beamforming we are able to recover the image shown on the right.
The wall is a posterboard, which has a BRDF similar to that of

4The size of the object is 20 by 20 centimeters
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paper. To keep the framework scene-independent, priors are not
placed on the reconstruction—implementing total variation or edge
constraints would improve the reconstruction for some scenes.

Imaging through scattering media In Section 4.4, the VSA
model has been analytically shown to generalize to the diffuser
problem. Here, an experimental result is demonstrated in Figure
8 for imaging through scattering media. We place a tank of milky
water in between the camera and two ping pong balls. For this prob-
lem the BTDF is the dual of BRDF, which allows us to use the same
computation that was used in the corner experiments.

First we add relatively little milk and show that it is possible to
localize the ball (Figure 8a). Then we add a much greater quan-
tity of milk and show it is still possible to localize the ball (Figure
8b). Of course, in the latter case the coherence is much greater, and
therefore the two peaks are not distinctly separated. To distinctly
separate the peaks, a scene-dependent prior, such as sparsity can be
used (Figure 8b). Imaging through scattering media is such a well
established area that we must emphasize that our results are very
preliminary results that need to be compared against other methods
(e.g. structured light, phase conjugation, etc.). However, these ex-
periments are sufficient to show the generality of the VSA model.

6.2 Quantitative Assessment

In this section we will perform real and simulated experiments to
quantify the conditions for successful recovery.

6.2.1 Quantitative Physical Experiments.

Directionality of the virtual sensor array Creating a camera that
can look around corners requires an understanding of the material
properties of the virtual sensor array. To form the wall for the cor-
ners problem we collect four materials in increasing order of specu-
larity: (i) posterboard; (ii) photo paper; (iii) metal; and (iv) a mirror.
Figure 11 illustrates the measured directionality of the first three
materials (we assume the mirror has a delta function for directional-
ity).5 In Table II, we list quantitative reflectance parameters, where
ρs and α measure the specular intensity and surface roughness, as
defined in the Ward BRDF model [Ward 1992].6 We draw specific
attention to γ` and the FWHM` in centimeters, which factors into
the bounds we derived in Equation 22. We must also mention that
the BRDF of the wall needs to be known to generate the forward
operator D.

Resolving multiple point sources Our end goal is to image
around the corner; therefore, a critical performance metric is how
close two point reflectors can be localized (without relying on spar-
sity assumptions). As this is a material dependent property, Figure
12 illustrates localization of two point sources for different mate-
rials. For the posterboard (Figure 12a) using pseudoinverse back-
projection we are able to localize the two point sources that are
10 centimeters apart. We then plot the beampattern, which is one
row of the Gram matrix G. Note how, because the beampattern is
very wide, the Gram matrix is very coherent. Figures 12b, 12c and
12d show results for the photo paper, metal, and mirrored objects.
Observe that the beampattern narrows as the material changes from
the posterboard to the mirror. In particular, for the mirror, the beam-

5The Ward lobe is rendered with the BRDF Explorer
(http://www.disneyanimation.com/technology/brdf.html).
6The directionality of the sensor is determined by the BRDF of the surface.
Details on measuring and fiting the directionality are in the supplement.

pattern is a Dirac and the mutual coherence reaches the minimum
value of 0.

Define the minimum resolvable distance as the minimum sep-
aration between two ping pong balls that can be detected. In our
experimental results we found that for the posterboard it was 10
cm, for the photo paper 3 cm, and for the metal 2 cm.

A practical implication of this result is that even when using the
relatively diffuse posterboard it is possible to obtain an image of
the object around the corner (if the objects are large enough). For
a fixed reflectance, using our theory, it is clear that increasing the
modulation frequency scales linearly with expected resolution.

What is angular response like in the wild? If the virtual sensor
array was omnidirectional, recovery of ~x is challenging and—in the
context of phased array processing—not possible with today’s time
of flight cameras. If the Lambertian assumption can be relaxed then
the technique would be more readily applicable today. We use the
Mitsubishi Electric Research Labs (MERL) BRDF database [Ma-
tusik et al. 2003] to evaluate the directionality of various real ma-
terials. We use the fitted Ward parameters in [Ngan et al. 2005] to
calculate FWHM

◦
and FWHM` in the same manner as Table II.

The results of all 100 BRDFs are shown in Figure 13. From this we
can conclude that:

—Highly specular materials (like metals) have a very small
FWHM` and thus high localization (about 2cm).

—Materials with a dominant specular lobe (relative to the diffuse
lobe) have a reasonably small FWHM` and acceptable localiza-
tion (about 5cm).

It is interesting to note that 38 of the 100 materials in the database
could produce a beamforming resolution of smaller than 10cm and
29 materials can make it smaller than 5cm. We can therefore ex-
pect beamforming to be feasible for many real-world materials,
and, from our empirical study, the resolution could improve by an
order of magnitude using more sophisticated solvers.

6.2.2 Quantitative Simulated Experiments.
All simulated results are performed on the array shown in Fig-

ure 10. Sensors are spaced along the u-axis and two targets exist at
(0.2, 0.5) and (0.8, 0.5) meters. The width of the array, i.e., aper-
ture size, is fixed to D = 1 meter.

Coherence and physical parameters Earlier we were able to an-
alytically connect mutual coherence to physical parameters of the
array system. We focus our results on three such claims:

—γ vs coherence;
—fM vs coherence; and
—grid spacing vs coherence.

Simply looking at the form of Equation 21 it is evident that γ
has a nonlinear relationship to coherence. Our simulated results are
consistent with the derived form (Figure 10b). In particular, note
the critical region of the curve where γ∠ is small and Equation 21
approximately reduces to a linear form.

Superresolution via sparsity A great deal of research in sig-
nal processing centers around techniques for solving linear inverse
problems. Here, we probe this idea by using a simulated array
where the expected FWHM of the beampattern is approximately
2 meters. Since simple beamforming cannot resolve targets that are
spaced closer than 2 meters apart, the interesting question that fol-
lows, is whether using more sophisticated solvers will allow for
better resolution.
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Table I. : Different solvers for reconstruction and their objective functions.

Backprojection Solvers Objective Formulation

Classic Beamforming ~̂x = DH~y

Pseudoinverse ~̂x = argmin
~x

‖D~x− ~y‖22

CoSaMP ~̂x = argmin
~x

‖x‖0 s.t. ~y= D~x

Basis Pursuit Denoising ~̂x = argmin
~x

‖x‖1 s.t. ‖D~x− ~y‖
2
2 ≤ ε

Figure 9 compares the four techniques shown in Table I. Both
CoSaMP and Basis Pursuit Denoising are solvers that enforce spar-
sity on ~x. However, the former is a greedy algorithm while the latter
is a convex relaxation. For a well defined optimization program, a
convex relaxation is guaranteed to find the correct solution. No such
guarantees exist for greedy methods, and therefore the latter are
considered superior for recovery.7 Our results are consistent with

7Greedy methods are not without merit; they are simpler and well suited
for model-based approaches.

Table II. : Quantitative parameters extracted from Figure 11 and Equation
21. ρs and α represent specular intensity and surface roughness from the
Ward BRDF model. γ

◦
and γ` represent the FWHM of the angular re-

sponse of virtual sensor, in radians and cm. Finally, FWHM
◦

and FWHM`,
correspond to the minimum width of the beampattern in radians and cm.

Material ρs α γ
◦

γ` FWHM
◦

FWHM`

Posterboard 238 0.17 32.87 0.59 35.0 0.61
Photo Paper 2 0.01 2.02 0.03 1.72 0.03
Metal 1 0.002 0.93 0.01 0.57 0.01

this intuition. As illustrated in Figure 9 we observe that both beam-
forming and the pseudoinverse are unable to resolve the targets,
CoSaMP converges to a poor solution, and Basis Pursuit Denoising
is able to superresolve the targets.

7. DISCUSSION

Do we approach the bounds? A natural question is whether the
bounds we have proposed are meaningful in practice. We will re-
strict ourselves to the bound provided in Equation 21 as this is the
most general bound: it is invariant to any model assumptions on D
or ~x. Another way to describe Equation 21 is that it provides a lower
bound for the width of the beampattern. In the last column of Table
II we list the computed bound based upon the acquired direction-
ality of the materials. The width of the experimental beampatterns
collected for different materials (Figure 12) approaches, but does
not violate the bound. Any discrepancy from the bound is due to
experimental error either in the measurements of γ∠ used to cal-
culate the bound or in obtaining the beampattern.8 In practice, the
bound is perhaps useful when comparing materials with distinct
properties. For example, the slack in the bound for the photo paper
is about 2 cm, but the difference in beampattern width between the
photo paper and posterboard is about 60 cm.

We must also mention that the bound provided in Equation 21
guarantees success when using the most basic solver (i.e. ~̂x =
DH~y). Empirically we observe that we can often obtain a reso-
lution close to an order of magnitude better using a stronger solver,
such as the pseudoinverse. For example, in Figure 12a although the
beampattern is approximately 1 meter wide, we are able to resolve
targets 10 cm apart. There are many ways to derive sharper guar-

8Errors inherent to ToF 3-D depth estimation can disrupt calibration be-
tween the VSA and camera.
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Fig. 12: How close can we resolve two point sources around the corner without using any prior assumptions? Consistent with the text,
it depends on the material properties of the wall. Across each row the images represent: (i) a photograph of the wall, (ii) psuedoinverse
backprojection (D†~y), (iii) the beampattern, and (iv) the matrix G. Note that as expected, for specular objects, G is sharply diagonal and
algebraically incoherent, while for more diffuse objects the Gram matrix is more coherent.
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Fig. 13: Relating shininess with resolution. FWHM` and FWHM
◦

calculated from all 100 materials in the MERL BRDF database. The
material names are sorted according to the FWHM values in ascending order. Rendered spheres of selected materials are also displayed.
Green lines indicate the regime where resolution becomes ill-defined due to the physical nature of wave equations. Equivalently, it is the
region for which Equation 21 yields complex values.

antees on recovery based on sparsity, priors, rank constraints, and
more; however, such guarantees require specific model assump-
tions and in-depth calculations. Moreover, the current guarantees,
for example, in model based sparse approximation are still not fully
understood within the signal processing community.

What are current limitations of time of flight technology? As-
sessing the limits of current time of flight cameras has been of sig-
nificant interest in the last few years. Today’s time of flight cameras
can be counted on to have a modulation frequency of at least 30
MHz, or λ = 10 meters. First we will consider a scenario where
the wall is omnidirectional. The bound in Equation 20 is ill-defined
since λ/D > 1.9

We now consider a second case where we assume the wall is
a posterboard, i.e., γ = 0.59 meters (see Table II). Then, from
Equation 21 the lower bound on resolution between two targets is
55 cm if simple beamforming was used as the reconstruction tech-
nique. Fortunately the modulation frequency continues to increase
with each product cycle. Fusing computation with newer technol-
ogy will facilitate much more capable systems for occluded imag-
ing.

Comparisons to existing solutions for looking-around-corners:
As described in Sections 1 and 2, there are two solutions for looking
around corners that have been proposed [Velten et al. 2012; Heide
et al. 2014]. Both of these solutions utilize insights from ”‘tran-
sient imaging”’, which in the former is optically complicated, and
in the latter computationally involved. Then, additional computa-
tion is performed on the transient imaging data. This means that
both techniques cannot capture scenes in real-time. In this paper,
we see two comparative benefits of our simpler framework: (i) we

9It is ill-defined numerically because the argument for the arcsin is greater
than one. It is also physically ill defined due to the wavelength being greater
than the aperture size, resulting in an isotropic beampattern.

are able to show a real-time scene capture and (ii) we are able to
provide bounds on recovery.

Future work This paper has proposed a unifying framework for
occluded imaging via off the shelf, unmodified time of flight cam-
eras. The next step is to apply the theory to a heavily customized
ToF camera.

Although we have made the connection between concepts such
as time of flight and scattering, this paper only shows that the vir-
tual sensor array model is valid for localization through scattering.
Future work would go into depth into what is a classic problem in
optics and would also provide comparisons to known techniques,
such as structured light and phase conjugation.

Conclusion In summary, we reveal the link between looking
around corners and phased array processing. We have proposed
the first model for occluded imaging with standard time of flight
cameras. Such cameras are increasing in popularity, both for their
applications to 3-D imaging as well as novelty in computational
photography applications.

Looking around the corner is a complex problem with many vari-
ables. We conclude that today’s time of flight cameras are able to
image around the corner with low spatial resolution by exploiting
the property that standard walls are not purely Lambertian. We hope
that this paper is a step toward having commodity cameras that can
look around corners.
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