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on broadcasted user locations to achieve their goals. Effec
tive coordination, however, requires trust. In order farsh
multi-robot systems to perform their tasks optimally, 8an
mitted data is often assumed to be accurate and trustwor-
thy — an assumption that is easy to break. A particularly

Guaranteeing Spoof'ReS”ient challenging attack on this assumption is the so-called iISyb
Multi-Robot Networks attack.”

In a Sybil attack a malicious agent generates (or spoofs)
a large number of false identities to gain a disproportienat
influence in the network. These attacks are notoriously easy

Stephanie GiITl - Swarun

12 . : :
Kumar = - Marlf to implement/[41] and can be detrimental to multi-robot net-
Mazumder™ - Dina works. An example of this is coverage, where an adversarial
Katabi™ - Daniela Rus client can spoof a cluster of clients in its vicinity in order

create a high local demand, in turn denying service to legit-
imate clients (Figurgl1). Although a vast body of literature
is dedicated to cybersecurity in general multi-node nekaor
(e.g., awired LAN), the same is not true for multi-robot net-
works [19,/38], leaving them largely vulnerable to attack.
This is because many characteristics unique to robotic net-
} ) X i ) X ~works make security more challenging; for example, tradi-
tion to provide W|de—rang|.ng services such as qenal sUrye| tional key passing or cryptographic authentication is cliff
lance and unmanned delivery. However, effective coordlnat-o maintain due to the highly dynamic and distributed nature

t|on'between multiple robots requires trust, mgkmg themof multi-robot teams where clients often enter and exit the
particularly vulnerable to cyber-attacks. Specificallycls network

networks can be gravely disrupted by the Sybil attack, where This paper addresses the challenge of guarding against

even a single malicious robot can spoof a large number o bil attacks in multi.robot networks. We foals on the aen
fake clients. This paper proposes a new solution to defeng” " "N muitl WOTKS. u gen-
eral class of problems where a group of server robots coordi-

against the Sybil attack, without requiring expensive twyp nate to provid m i ina the broadcasted losation
graphic key-distribution. Our core contribution is a noakel ate 1o provide some service using the broadcasted losatio
of a group of client robots. Our core contribution is a novel

gorithm implemented on commercial Wi-Fi radios that can ‘ . : .
Igorithm that analyzes the received wireless signals 1o de

“sense” spoofers using the physics of wireless signals. e et th ¢ fed client dbv ad .
derive theoretical guarantees on how this algorithm boun ectihe pr.ese‘r)c.e ofspoored clients fpawne y adversaries
e call this a “virtual spoofer sensor” as we do not use spe-

the impact of the Sybil Attack on a broad classrofilti- L
: . . cialized hardware nor encrypted key exchange, but rather a
robot problems, including locational coverage and unmenne

dell . ! . . commercial Wi-Fi card and software to implement our so-
elivery. We experimentally validate our claims using ateam™ . . . o
of AscTec quadrotor servers and iRobot Create ground sLigA!f't'qn' Our virtual sensor Ieyerages t.he rich physw;al ifo
and demonstrate spoofer detection rates 66&f. ma'uqn aIready present in wireless S|gnals. At a high Ievel.,
as wireless signals propagate, they interact with the envi-
ronment via scattering and absorption from objects along
the traversed paths. Carefully processed, these signals ca
provide a unique signature or “spatial fingerprint” for each
Multi-robot networks rely on wireless communication to en-client, measuring the power of the signal received along eac
able a wide range of tasks and applications: coverage [35, Spatial direction (Fig.]2). Unlike message contents such as
39], disaster management [6], surveillande [3], and conserieported IDs or locations which adversaries can manipulate
sus [34] to name a few. The future promises an increasingpatial fingerprints rely on physical signal interactionatt
trend in this direction, such as delivery drones which transcannot be exactly predicted 16, 30].
port goods (e.g., Amazon Prime Air | [1]) or traffic rerout-  Using these derived fingerprints, we show that a confi-
ing algorithms (e.g., Google Maps Navigation) that wilyrel dence metricp: € (0, 1) can be obtained for each client in
T > the network. We prove that these confidence metrics have a
Affiliations: “Massachusetts Institute of Technology Carnegie desirable property where legitimate clients have an exgoect
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Abstract Multi-robot networks use wireless communica-

1 Introduction

Mellon University 3|\/||T Lincoln Laboratory confidence metric close to one, while spoofed clients will
Emails:  {sgil,  dk, rug @mit.edu, swarun@cmu.edu, have an expected confidence metric close to z&enoartic-
mazumder@II.mit.edu ularly attractive feature of the confidence metsiés that it

Co-primary authors can be readily integrated into a wide variety of multi-robot
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sity of solutions to cyber-security threats in multi-rolpet-  position. Each generated, or “spawned” identity is consid-

works [19, 33, 4]. ered aspoofed clientBy spoofing multiple clients, the ma-
Unlike past work, our solution has three attributes thaticious client gains a disproportionate influence in the net

particularly suit multi-robot networks. (1) It capturesysh  work. All clients which are not spoofed are consideleit-

ical properties of wireless signals and therefore does namate clients

require distributed key management. (2) It relies on chea

commodity Wi-Fi radios, unlike hardware-based solutiat®; | ?’hreat. Model: Our threat model considers one or more ad-
51]. (3) It is robust to client mobility and power-scaling at versarial robot clients with one Wi-Fi antenna each. The ad-

tacks versaries can be mobile and scale power on a per-packet ba-

Finally, our system builds on Synthetic Aperture RadarS's- We only consider adversarial clief&dversarial clients
(SAR) to construct signal fingerprints [10]. perform the “Sybil Attack” to forge packets emulating
) non-existent clients, wherecan exceed the number of le-

gitimate clients. More formally:
2.3 Synthetic Aperture Radar (SAR)

Definition 2 (Sybil Attack) Define a network of client and
SAR has been widely used for radar imaging [10, 21] anc€Ver positions a U X, where a subsef of the clients
indoor positioning|[23} 22, 44, 113]. In contrast, this paper2'® SPoofed, such thét = S'U S. We assume that sétis
builds upon SAR to provide cyber-security to multi-robot K1OWn but knowledge of which cllent? are.spoofeo!’ (i.e.,in
networks. In doing so, it provides theoretical securityrgua ) 1S Unknown. This attack is called a “Sybil Attack.

antees that are validated experimentally. These integgrate To counter the Sybil attack, this paper has two objec-
ily with performance guarantees of existing multi-robateo  tjves. First, we find a relation capturing directional signa
trollers, like the well-known robotic coverage controfi¢®, strength between a clientand a servet. We seek a map-
39] as shown in Sedfgland drone delivery controllers [24, ping F;, [0, 2] x [0,27] ~ R such that for any 3D di-
36] as described in Se¢l rection (6, ¢) defined in Fig[}, the valué}; (6, ¢) is the
Our previous work in[15] provides a theoretical and ex-power of the received signal from cliehtlong that direc-
perimental framework for using SAR in the context of cy- tion. Using this mapping, or “fingerprint”, our first problem
bersecurity for multi-agent networks, where the influencgs tg derive aconfidence metrigsvhose expectation is prov-
of spoofed nodes is considered to be a continuousfunctio:&.my bounded neat for legitimate clients and nedy for
As a result, the previous formulation would not be effec-spoofed clients. Further, we wish to find these bounds an-
tively applicable to graph-based problems that require a bigjytically from problem parameters like the signal-tosei

nary classification for the spoofed nodes. This paper estengatio of the received wireless signal. We summarize this ob-
upon our previous work by 1) deriving theoretical results fo jective as Problem 1 below:

multi-robot problems that require optimization over a drap . )
2) giving explicit treatment to the unmanned delivery prob_Pr.?]ltalez 1 (Srp%O;rerrgetﬁCt:??;et Fi be t:z setr\(jf frls?ger-
lem as an example in the graph-based class space, and 5 s measured from all clients < [c] and servers <

presenting an experimental framework for binary classifica[m] in the nellght.)orhood/,\/i, of client if Here, a n.elgh--
tion of spoofed nodes using Wi-Fi fingerprints. borhood of clienti, V;, are all agents that can receive Wi-

Fi transmissions sent by client Using F;, derive a con-

fidence metricv; (F;) € (0,1) and a thresholdy;(c2) >

3 Problem Statement 0 whereo? represents error variances such as the signal-
to-noise ratio that are assumed to be given. kind) to

This paper focuses on problems where the knowledge dfave the provable property of differentiating spoofedrike

agent positions facilitates some collaborative task. Bpec whereby spoofed clients are bounded below this threshold,

cally, it assumes two groups of agents, “clients” requiringi.e., E[a;] < w, and legitimate clients are bounded above
some type of location-based service such as coverage fhis threshold®[a;] > 1 — w.

goods delivery and “servers” whose positions are optimized
in order to provide the service to its clients. lRt= {p, .. .,
p.} denote the client positions ®®. Let X := {x1,..., 2}

Our second objective is to apply our spoofer detection
method as weights that can bound the influence of spoofers

be the positions of the serverslit¥ and the notatiofin] = ! The case of adversarial server robots is left for future wairk
{1,...,m} denote their indices. We consider the case wheréough many of the concepts in the current paper are exterisithis
a subset of the clients; c P (with s := |S|) are “spoofed”  ¢ase as well.

2 Detecting if a client is spoofed becomes easier given more servers
communicating with (i.e., a larger neighborhoaty’;). But even with
L . . . . a single server, this determination can be made. A theateteEatment
Definition 1 (Spoofed Client)A single malicious client may o this point is given in Sedj5 and experimental result§d) use as

generate multiple unique identities, each with a fabri¢ate little as one server.

clients.
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in multi-robot problemsSpecifically, we consider the well- =z, i.e., a star graph whereis the inner vertex. Note that we
known coverage problem inl[5, 139]. We show that by inte-consider the case for one server and several clients where th
grating the confidence metric from Problem 1, we can anagoal of the server is to serve each client, by iterativelkpic
Iytically bound the error in performance caused by spoofedhg up its package at the depot locatioand transporting it
clients in the network. We consider the coverage problento the client’s locatiop € P.

where an importance function is defined over an environ- et the path cost for each edde () — R be the Eu-
ment and where the positions of the clients correspond telidean distance of that edge @. We wish to show that
peaks in the importance function. Here, servers positiemth an indicator function/,,, defined over they; from Prob-
selves to maximize their proximity to these peaks, to imdem[d can be used as a decision variable to select a subset
prove their coverage over clientrobotsClf = {«7,...,2;,} of clients P* ¢ P to be serviced by the delivery vehicle.

is the set of server positions optimized by the coverage corfFhe resulting subset of clienf®* has the property that the
troller with zero spoofers, we wish to guarantee that servegxpected path length computed over this subset of clients,
positions optimized with spoofers prese@,_, is “close” [ = Zp,ep* d(p;,x), is the saméo within a computable

to Cy. We state this second objective more specifically apound as the expected path length computed over only le-
Problem 2 below: gitimate clientsLiegit = >, < p\ 5 d(pi, ). In other words,

we wish to find a set of problem parametgr&nd a bound

Problem 2 (Sybil-resilience in Multi-Robot Coverage)Con-
such that E[L] — E[Liegit]| < §(P).

sider a locational coverage problem where an importanc@(P)
functionp(q) > 0 is defined over an environmegt C R?

andg € Q. Specifically, consider an importance function
that can be decomposed into terms(q), depending on

each client's position, € [c] (for example, each client posi- 4 Fingerprints to Detect Malicious Clients

tion corresponds to a peak), i.e(g) = p1(q)+. ..+ pc(q).

Let Cy = {z%,...,2%,} be the set of server positions re- Here we construct ingerprint a directional signal strength
turned by an optimization of(¢) over X, where there are profile for a communicating server-client pair. Our choice
zero spoofed clients in the network. Under a Sybil attadk, leof signal fingerprints have many desirable properties that
Cy. = {x1,...,x,} be the set of server positions returnedenable us to derive a robust spoof-detection metric: they
by an optimization of anx-modifiedimportance function 1) capture directional information of the transmitted signal
p(q) = a1pi(q) + ... + acpc(q) where the importance source and thus are well-suited for flagging falsely regbrte
weight termsw; satisfy the bounds stated in Problem 1. Weclient positions2) can be obtained for a single server-client
wish to find ane(P) > 0 such that the sef'y, is within  pair, unlike location estimation techniques such as tridag

a distance:(P) to Cy. Cy, is within a distance:(P) to  tion which require multiple servers to coordinadgcannot

Cy if Vx € Oy, there exists a unique € Cy where be manipulated by the client, since the occurrence of each
dist(z,y) < €(P). Here,P is a set of problem parameters signal path is due to environment reflectioAlare applica-
that we wish to find. ble in complex multipath environments where a transmitted
signal is scattered off of walls and objects; since these sca
Fered signals manifest themselves as measurable peaks in
the fingerprint, complex multipath contributes signifidgant

to fingerprint uniqueness.

Intuitively, solutions to Problem 2 guarantee that under
Sybil attack, all server positions computed usingramodified
coverage controller are within a computable distan@®)

from their optimal positions (i.e., in the absence of spogjfe , . . :
Sec. {6 derives a closed-form far(P) and shows the set We construct fingerprints using wireless chanigzom-

P of problem parameters to be the number of spoofers thBlex numbers measurable on any wireless device character-
footprint of the environment covered, and signal noise. izing the attenuation in power and the phase rotation that si

Finally, ProbleniB below shows that theweights can nals experience as they propaggte over Fhe air. These chan-
be used to derive discrete decision variables for selectingeIS also capture the fact that wireless signals are sedtter

what clients to service, for example, in a drone delivery-con .y”the enwrc;r(;r?fent, ?rr'\;'r]r:?’[f; tth res)cglver over (plmgg'
text. Here, the goal is to bound the difference between thga y) several different paths [43]. Fil 3 is an example

resulting expected path length and the expected path Iengﬁ?hematIC of %V\:welgs's S|g||'1al tr?versmg frotm a ﬂ:e_m tObOt
in the optimal case of no spoofed clients. For consistenc;}o a Server robot arriving along two separate patns. one at-

we will refer to the delivery drone as a “server” throughout. tenuated direct path.A() 'and one reflegted o0°. If t.he
server robot had a directional antenna, it could obtainla ful

Problem 3 (Sybil-resilience in Drone Delivery)Consider 3D profile of power of the received signal (i.¢2/?) along

the graph? = (V, E') where verticed” = P U x are client  everyspatial direction. We use such a 3-D profile as a “spa-
and depot position® andx respectively, and edges € £ tial fingerprint” that can help distinguish between diffiere
connect the vertex of every cliept € P to the depot vertex clients.
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Symbol Meaning

(a) m,c, s No. of servers, clients, spoofers
Pi, Ty Position of client: / serverl
Fi, k Fingerprint ofi atl, k peaks
hy; M x 1 channel ratios of to 1

f(;u,02) | PDF of normal distribution
g( ;Nvoj) min(]-? \/27Tf(33;,u'70'2))
K

60" Constant {((v/2 + /1) /)2
o a0° l a;, Bi confidence, honesty metric of
Yij Similarity metric of clienti, j
“ Direction (deg) SNR Signal-to-noise ratio
RSSI Received Signal Strength

Fig. 3: Example Signal Fingerprint: (a) A Fig. 4: 3-D Angles: The figure depicts th¢ ‘fé U% Vazlrlarzlce in peak shifts af’;
server ) receives a cliente) signal on 2 notation for the azimuthal angl¢ and po- 96:%¢ 999 plus mea§uremept error
paths: direct along0° attenuated by an obdar angled for the direct path from a groung Cvz,Cv, | Coverage centroid of optimal, ou
stacle (shaded) and reflected by a wall aloctient (e) to aerial server robotx) in 3 di- system; erroe within

60°. (b) is a corresponding fingerprint: peakiensions. More generally, the set of all an(2),p(¢) | Footprint, Mass function
heights at40° and 60° correspond to theirgles between clientand servei are denoted Fig. 5: Table of Most Common Notations
relative attenuations. as®;;, ©;; respectively.

=

Unfortunately directional antennas are composed of large Constructing a Client Confidence Metric

arrays of many antennas that are too bulky for small ag-.. . , - S .
ile robot platforms. Luckily, a well-known technique calle Given a client fingerprint (¢, ¢) for each client relative

Synthetic Aperture Radar [10] (SAR) can be used to emup a robotic servet, we wish to generate a confidence met-

late such an antenna using a commodity Wi-Fi radio. Its ke /e i € [0’ 1] that approache]s for Iegmmate clients, and
. : i . .~ ~1) otherwise. We achieve this by definiag as the product
idea is to use small local robotic motion, such as spinning .

. : . . two terms; and~;; that go to0 if a client reports a fal-
in-place, to obtain multiple snapshots of the wireless ehan_... . o ij 9 : . P .
. L sified location or has the same fingerprint as another client
nel that are then processed like a directional array of anten. . . . .
respectively. In particulag; is termed théhonestymetric

nas. SAR can be implemented using a well-studied signa(l ; o o
processing algorithm called MUSIC [18] to obtain spatialanCI s the likelihood (EqL{2)) that clientis indeed along

. ) its reported directiorig;;, 0;;) with respect to each server
fingerprints at each server robot. S . : S

in its neighborhood. The second tery is the similarity

Mathematically, we obtain a spatial fingerprint for eachmetric - the likelihood that client's fingerprint as seen by

wireless link between a serveand clienti as a matrixti :  serverl is not unique compared to that of a different clignt
R xR — R. For each spatial path representedta®) (see  of server. Finally, a; is the product of 1)3; and 2)(1 —~;)
Fig.[4), Fi; maps to a scalar value representing the signayyer allj + 4, which compares clients fingerprint with all
power received along that path. More formally: other clients in its neighborhood and approachésclient

i's profile is not unique. Therefore if either the honesty term

or similarity term goes td), the confidence metria; for
Fu(,0) = 1/|Eign(ﬁilﬁgl)e¢flwil(¢,9)|2 (1) clienti also approaches zero.

a; = B; [J(1 = ;) where,3; = [] £(iis at(¢i, 0:)| Fa)

Whereh; is a vector of the ratio of wireless channel shap- el IEN;
shots between two antennas mounted on the body of the Yij = H L(i spoofsj| Fy;, Fj;) (2)
serverl and ;(¢,0) = 2~ cos(¢ — By)sin(d — I'y), A IEN;

is the wavelength of the signal andis the dlstance' be- Here, £(-) denotes an event likelihoogp, 0.,) is the re-
tween the antennal;, I'; are the server's angular orienta- yoted direction of client with respect to server and the
tion, Eig,, (-) are noise eigenvectors)" is conjugate trans- neighborhoodV; are servers communicating with clieint
pose. We denote the number of signal eigenvectors, equal E’efining Honesty and Similarity Metrics: The honesty
the number of paths, by. metric 3; and similarity metricy;; are derived using peak
While our above formulation is derived from MUSIIC [18] Jocations in client fingerprints. In practice however, peak
it varies in one important way: while MUSIC uses a single-may have slight shifts owing to noise. Thus, any comparison
antenna channel snapsthgt, we use the channelratig, =  between peak locations must permit some variance due to
h1,,/ha,, between two antennas. This modification provideghese shifts. Fortunately, noise in wireless environmesuts
resilience to intentional power scaling by the sender sincbe modeled closely as additive white-Gaussian [43]. As the
scaling his transmit power byyields ameasuredratio; =  following lemma shows, this results in peak shifts that are
xh1,,/(xhz, ); a value unaffected by power scaling. also Gaussian, meaning that their variance is easy to model
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and account for. More formally, the lemma states that shift®efinition 4 (v;;) Let (¥, 0;;) and(®;;, ©;;) denote the
are normally distributed with zero mean and well-definedset of local maxima, ordered by non-decreasing angle val-
variance, based on the wireless medium'’s signal-to-naise r ues, in fingerprints; and F;;. We definev;; for client

tio (SNR): relative to clientj as:

Lemma 1 Let Af;, Ag; denote the error between the az-
imuthal and polar angle of the uncorrelate# path of a
(potentially multipath) source and the corresponding &sg|

of the (local) maximum in the fingerprift(¢, 6), over sev- . oy -

eral uniformly gathered packets (i.e., SAR snapshots) fo.Whereg('f“’a ) is from Def|n|t|on.[3, and the factor of 2

6 € (10°,80°). ThenAd; and A¢, are normally distributed in the variance accounts for computing the difference of two
with a mear0, and expected varianee; andog: normally distributed values. =

o =05 =9\*/(8Mm*r’ SN R) ()

vij = ] 9(6i = 65:0,203) [] 9(6: — 6;;0,205) (5)

¢i€Pi1,P; €D 0;€0;,,0;,€0;

Defining the Confidence Metric: We notice that EqriL]1Z] 4

Where,\ is the wavelength.of the signal, SNR is the signal—a_“w[3 fully dgfiqeai for each glient‘. In summary, the an'
to-noise ratio in the network M is the number of packets fidence metric is computed in three steps: (1) Obtain the

per-rotation, and- is the distance between the antennas. ~ client fingerprint using SAR on wireless signal snapshots.
(2) Measure the variance of peak locations of these client

The above lemma follows from well-known Cramer'RaOfingerprints using their Signal-to-Noise Ratio. (3) Congut
bounds |[31; 12, 11] shown previously for linear antennane similarity and honesty metrics using their above defi-
movements in SAR [ [42] but readily extensible to circularpjtions to obtain the confidence metric. Algoritfiin 1 below
rotations (proof in supplementary text [14ote that from  symmarizes the steps to constragtfor a given client;.
Equation[[B) the relationship between the antenna distancghe computational complexity of obtaining the confidence
r and the resolution of the resulting fingerprinbecomes  metric for each client depends on the number of servets
apparent. The larger the distance between two mounted agnd clients: in the neighborhoodV; of i as shown in Algo-
tennas used in the channel ratio (Equatldn (1)), the smallgjihm ], and for each client-server pair, the dominant com-
the error variance and thus the finer the resolution of the ﬁ”plexity is in computing the fingerprintwhich can be done us-

gerprint ing the well-known MUSIC algorithm i@ (M log(d)) where
Using this lemma, we can define the honesty meffic is the desired fingerprint resolution.

as the likelihood that the client is at its reported location

subject to this Gaussian error and additional measurement

error in reported locations. Algorithm 1 Algorithm to Compute Client Confidence Metric

s ) _ b Input: Ratio of Channelk; and SNR
Definition 3 (3;) Let ¢, andfr, denote the closest max ~ Output. Confidence Metriay, for client

imum in £ (¢,0) to (¢a, 0a). We denotes? andoj as > Step (1): Measure fingerprints for client
the variances in angles‘i ando?, plus any variance due  for/=1,...,mdo

to measurement error of reported locations that can be cali- ~ for ¢ € {0°,...,360°};6 € {0°,...,90°} do
brated from device hardware. We defifigfor clienti as: demd Fi(¢,0) using measureh; (Eqn.[1)
end 1or

> Step (2): Measure variances in peak locations using SNR
04 =05 = Apply Lemmdl SNR
. . > Step (3): Find honesty, similarity and confidence metric
Whereg(z; i, 0?) = min(1, V27 f (; 1, 0?))is a normal- 5 — Apply Defn.3 usings?, o2, peaks ofFy;
ized Gaussian PDF(z; i, 0%) with meany and variance for j ={1,...,¢}\ {i} do
o2, O 7vi; = Apply Defn.[4 usings7, o3, peaks offy;, Fj;
end for
In practice, reported client locations are subject to mea- ** = Bill2:(1 = i)
surement errors due to position sensor inaccuracies. ®ur de
inition of 3; above accounts for this by using the effective
variancess? and43 that are the sum of the variance in an- ~ We now present our main result that solves Problem 1
gles,o? ando?, in addition to the variances due to measure4n the problem statement (Sef3). The following theorem
ment error. says the expected’s of legitimate nodes approadhwhile
Using Lemma&lL we define the similarity metsig as the those of spoofers approaéh allowing us to discern them

likelihood that two client fingerprints share identical gga  Under well-defined assumptions: (A.1) The signal paths are
independent. (A.2) Errors in azimuth and polar angles are

3 For clarity, we drop dependence @ri for SNR, o ando independent. (A.3) The clients transmit enough packets to

Bi=[To(6u = 6r.;:0,62) x g0 — 0r,30,63) (4 enafor
l
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emulate a large antenna array (in practize;~ 30 packets By assumptions A.1-A.3, we can apply these bounds to
per seconcﬁ. write the expectation of the honesty metficas a product

_ _ _ of those of the independent variables:
Theorem 1 Consider a network with: servers and clients.

A new clienti either: 1) spoofss clients reporting a ran-  E[Bspoof] = HE[g(u;O,&i)]E[g(u;O,c}g)] < {\/6’95’4)%}
dom location, potentially scaling power, or; 2) is a unifdym l

randomly located legitimate client. Let o0 ¢, (vegit b the E[Biegit) = HE[Q(V; 0, &i)]E[g(V; 0,62)]>1— méeby
confidence metrics in either case. Assume that the client ob- ]

tains its signals from servers alorigpaths (where the num-
ber of pathst is defined by Eqrifl] in Sec§4)). Under A.1-

m

Applying a similar argument, the similarity metricis:

A.3, the expected,poof, egit are bounded by: k
. EYspoof] = H E[f(v;0, QUi)f(l/; 0,202)] > 1 — 2mkogoy
E[aspoof] S |:\/ &0&¢H:| [2mk090¢,]s p=1

mk mk

k
Eltegit]) > 1 — cmbgb4 [\/20904K] (6) ENiegit] = H Elg(u;0, 202)9(11;0,203)] < [V/20904K]
p=1

2 “ N .
Wherer; = ((ﬁ +V/)/7)", 00, 9, 60, 54 are the vari- Combining the above equations, we prove Egn. 6. O
ances defined in Lemnla 1 that depend on signal-to-noise . . -
) . . A natural question one might ask is if the above lemma
ratio (the latter include measurement error in reported lo- , . : ;
i holds in general environments, where its assumptions A.1-
cations). A.3 may be too stringent. Our extensive experimental result

Proof Sketch: To give some intuition on why the theorem N Sec.[9 show that our bounds enapproximately pre-
holds, we provide a brief proof sketch (proof in supplemendict performance in general environments. Further, §&d.
tary text [14]). To begin with, notice from their definitions shows that result.s.from an anechoic chamber, wh|ch_emulate
that both the honesty metrié; and confidence metrig;; free—lspace condmong where the lemma’s assumptions can
inspect peaks in fingerpring; (Lemma_l). For the honesty be directly enforced, tightly follow the bounds of Le.m-ma 1
metric 3; of a legitimate node, this peak location should be N Sum, one can adopt the above lemma to distinguish
normally distributed (subject to noise, measurement prrof2dversarial nodes from legitimate nodes, purely based on
around the reported location. For a spoofer that reports-a ra HOWever, an interesting alternative is to incorporateli-
dom location, the peak location is uniformly distributed. A "éctly into multi-robot controliers to give provable sewi
similar (but inverse) argument holds fey;. Hence, we sim- guarantgeg to Iegltlmatg nodes..The next section show how
ply need to show is that the definitions 8f and~; which ~ % rgadlly integrates with robotic coverage controllers, in
are both products of the forg(X) can be bounded in ex- Particular.
pectation ifX is uniform or normally distributed.

To this end, consider two random variablesndr which
are respectively uniform and normally distributed between

and2r with mearD and variance. Let'S = v20(In )°®,  This section describes how our spoof detection method from
the value at which the minimization in(x) is triggered.  sec g5 integrates with well-known coverage controllers from [5,
Elg(v)] andE[g(u)] are as follows: 39,140]. The area coverage problem deals with positioning

s —S server robots to minimize their Euclidean distance to cer-
Elg(v)] = / f(x;0,0%)dx + \/8_7r/ [f (2;0;0%)]dz tain areas of interest in the environment. These areas are

75 ;O determined by an importance functipfly) that is defined

> / f(x;0,02)d;v = erf <—) >1—o0 (7) overthe environmen® C R3 of size L(Q). For our cov-

-5 V2 erage problem, the peaks of the importance are determined

Where erf-) is the well known Error function and using PY client positionsP, e.9.,p(q, P) = pi(a) + ... + pe(q)

1—erf(z) < e Similarly, we can evaluat&[u(n)] as: Whgrepi(q) quantifieg the influence of cliers position on
the importance function. Usingl[5,/39,/40], server robot po-

6 Threat-Resistant Locational Coverage

S -5
Elg(u)] = / 2id:v + 2\/27r/ %f(x; 0; 0%)dx sitions optimizing coverage ove(q, P) will minimize their
-5 <7 —2m o7 distance to clients.
< s + L (1 — erf(i)) < ok (8) To acco'unt for spoqfed clients, we modi.fy the impor-
T V2m o2 tance functiorp(q, P) using thea; for each clienti € [¢]

4 This is a mild requirement sin@s—30 packets can be transmitted thatis computed by Algorithil 1. E.g., we can multiply each

in tens of milliseconds, even at the lowest data rate of 6Mbg92.11n  client-terminp(q, P) by its corresponding confidence weight:
Wi-Fi. p(q, P)o = a1p1(q)+. . .+acpc(q). Given the properties of
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i " @ legitimate client
®. legitimate client is the maximal effect that the presence of spoofed clients
can have on the importance function. Intuitively, all spebf

clients have a weight ofit maximume and all legitimate

Cluster of clients have a reduced weight af minimumb. Using this
spoofed clients observation we can bound the influence of the spoofed clients
‘ e ® ® ° on computed server control inputs (see Elg. 6). Specifically
@ legitimate client .‘. recall from [5] that the position control for each server is:
u; = —2My (Cy — a), whereMy = [, p(q)dg, Cy =

Fig. 6: Coverage guarantee’An e ball around the ground-truth cen- ML fv qp(q)dq andV is the Voronoi partition for server
tr0id, Cvi e, 1S ShOWN in green. Theorelh 2 findsP) so that server  efinad as all pointg € Q with dist(q, ;) < dist(q, z,)
positions remain in this ball in the presence of spoofechtdie . . T 9
whereg # [. Using the importance function from above we
these weights derived in Theoréin 1, ie; is bounded near ¢gp writeCy,, = 1+ (aCy, + bCy, ) whereCy, is the
zero for a spoofed client and near one for a legitimate glienicomponent of the céntroid computed over spoofed nodes
the effect of multiplication by they's is that terms corre- gnqg Cy, is the component of the centroid computed over
sponding to spoofed clients will be bounded to a small valugegitimate nodes and/y, is defined shortly. We rewrite
(see FigLB); providing resilience to the spoofing attack. ¢, as a perturbation of the centroid over legitimate nodes
For simplicity, we assume the importance functign)  ascy, = Cy, + v||e| wherev is an arbitrary unit vec-
is static (from[5]) andv’s from Algorithm[1 are computed tor and the magnitude of can be as large as the length
once, at the beginning of the coverage algorithm. We notgf the operative environmetit] < D(Q). Let the total
that our approach readily extends to the adaptive caseljn [3thass bel’ = My, + My, . We can write a similar ex-
40] when the importance function (and location of clients)pression for the masa/y, using the bounds, and b as

change, by having the service robots exchange their learnegf;, — 7 + (¢ — b) My, . Substituting these expressions
importance function. This in turn can trigger a re-caldolat ;. Cv. and simplifying givessy, — Cvytbvllel  ~qm.

of o values. bining thi onwith th N bT““;b)lMVL N,
We now show that computed server positions are im- ning this expression wi € server controlinput:
pacted by spoofers to within a closed-form bound, that deq; = k ( [(a +b)Cy, —pi] +blle||v) 9)

pends on problem parameters like signal-to-noise ratie- Th

oreni2 below solves Problem 2 of our problem statement (gigerek = —2(b7 + aMy, ). If (a +b) = 1, this control
input drives the server robéto a neighborhood of size=

blle| < bD(Q) centered around the centroid, defined
Theorem 2 Let X' be a set of server robot positions and gver the legitimate clients. So if:

P = S U S be a set of client positions whefgis the set of

spoofed client positions, arfiis the set of legitimate clients. b = max { [/ Ga4k|" [2mkogos]’, cmdgdy| /2090¢n]mk}
The identities of the clients being spoofed is assumed un- ]

known. Let{ay, ..., a.} be a set of confidence weights sat- from Theoreni ]l Equatiofi}6), then:

isfying Theorerfil1 and assume a known importance function= max {[\/mn]m[zmkgggqs]ﬂ cmé'gé'(z,[\/ml%]mk} D(Q)
p(q, P) = p1(q) + ... + pc(q) thatis defined over the envi-

ronmentQ C R? of sizeD(Q). DefineCy = {7, ..., 2%} then we havéa + b) = 1 as desired, proving the lemnia.

to be the set of server positions optimized gver, 5), ie.,
where there are zero spoofed clients arid, to be the set
of server positions optimized ovetq, P)o = aip1(q) +
-+ acpe(q) where there is at least one spoofed client, i.e.,The previous section describes an application sbm Sec-

7 Threat-Resistant Drone Delivery

IS| > 1. 1f {a1,...,a.} satisfy Theoreril1, we have that tion[3 as continuous weights to bound the influence of adver-
Vx € Cy, there exists a uniqug € Cy, where in the ex- sarial clients. While this approach is useful for problerhs o
pected case dit, y) < e(m, s, 04,00, k) a continuous nature like coverage, other problems in cbntro

—— s o m require a more discrete approach. For example, in delivery
= V 2mk , V2 FrD(Q - - .
cT e {[ Go0pr]" [2mhooael”, emoboly2000k] } ( )problems a decision must be made whether to visit a client

andm, s, 04,04,k are problem parameters as in Theo- site or not since traversing a path some fraction of its lengt
rem[]. is equivalent to not visiting the client site at all. In other
words, it is an inherently binary decision problem. This-sec
tion shows how thex weights from Sectiofl5 can be used
as aclassifierto select a subset of clients to be serviced,
as in a drone delivery context. The drone delivery prob-
p(¢, P)o = a(p1(q) + ...+ ps(q)) + b(pss1(q) + ... + pe(q))lem is described in Problef 3. The result below shows that

Proof: We make an important observation thlo;| <
a if client ¢ is a spoofed node, anB[a;] > b otherwise;
hence:
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the total path length traversed in the drone delivery probthe expected total path length of the delivery drone as:
lem is impacted by the presence of spoofed nodes to within

a closed-form bound, that depends on problem parametefSL] = E[ Y _ I, dist(p;, z)] (15)
like signal-to-noise ratio. pi€P

= > B[l ]dist(p;, z) (16)
Theorem 3 Let z be the server robot position ang = pi€P
SUS be a set of client positions wheskis the set of spoofed — Z Eloy]dist(p;, z) (using Eqn[IH) (17)
client positions, andS is the set of legitimate clients. The picP
identities of the clients being spoofed is assumed unknown.

— Z Ela;]dist(p;, z) + Z Eloy)dist(p;, z) (18)

Let{a1,...,a.} be a set of confidence weights satisfying
pi€S pLES

Theorenfl and environment siZ¥ Q). There exists a de-
cision thresholdl" > 0 such that the indicator function de- Recall from Theorerfl1 afd 2 that we can bou(d;] as
fined as:

Elaispoos] < €/D(Q)  Elaiiegic] > 1 —¢/D(Q)

_ {1 o >T Where
0 otherwise € = max {[\/&9&¢n]m[2mkgga¢]s, MG oG g /2090¢n]mk} D(Q)
for each clienti € {1,...,c}, can be derived to determine APPlying the above bounds to Eqn]18, we have:
whether client will be serviced by the delivery drone, i.e., .
I.. = 1. Using this indicator function we define the total ~ Z£] < Z dist(p;, z) + Z dist(pr,
path length covered by the server tobe= }" Lo, dist(p;, z). pi€S ) s
Let Licgit = 3,5 dist(p;, x) be the total path length cov- < E[Ljegit] + |S|e
ered by the server in the optimal case of no spoofed nodes.
Then the difference in expectations is bounded such that: £[L] > Z (1 - m) dist(p;, ) + Z 0
pi€S pES
|E[L] ~ E[Liegi)| < maz(15], |S)bD(Q) (10) > BlLicgic] = |5e
= maz(|S],|5])e (11)  combining the above two equations, we conclude that:

wheree = bD(Q), b = max {[\/6904k]™[2mkogos]* IBIL] = BlLicgu]| < max(|S],15])e

M9y /209(7(;5/@]’”’“}, andm, s, 04,00,k are problem \ynich proves the theorem. 0
parameters as in Theordm 1.

Proof: Foreachclient € 1,...,¢, let us denote: 8 General Multi-Robot Control Problems
1 a;>T The above §ections demonstrate two modalities of integrat-
I, = , ing the confidence metrie to secure multi-robot controllers:
{0 otherwise either as a continuous per-agent weight, or as a means to

classify agents as legitimate or spoofed. Thedrem 2 and The-

WhereT is a constant chosen so that: orem[3 show theoretical bounds on the influence of adver-
saries to controllers in the coverage and unmanned delivery
contexts. Further, empirical results in S8l demonstrate

Elai] / Plai > 1) 12)  thata performs well when applied both in continuous and

discrete settings. However, it is natural to ask which o§éhe
two modes ought be applied to secure any given multi-robot
= Ella,] (14) problem of interest, beyond coverage and unmanned deliv-
ery. In this regard, we make the following observations:
The last equation holds from the fact that is an indicator ~ Applying « as continuous weights: For many control ob-
function for the eventy; > T'. Note that here we show the jectives, the contribution of each agent to the total optani
existence of such &, but we do not find an analytical value tion function is naturally expressed as a continuous quan-
for T'. In Sectio® however, we show the empirical perfor-tity. In these contexts, a natural modality to integratés
mance of the median threshdltl= 0.5. We can then write to incorporate it as a per-agent weight that directly reduce

= P(a; > T) (using Mean Value Theorem)  (13)
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- o perform a single spin to simultaneously measure the finger-
" ) prints of all clients in our experimental setup (Step 1 of Al-
Fig. 7: .Hardware gorithm[1).Our clients were ten iRobot Create robots, each
Server . eyaluatlon: De- equipped with Asus EEPC netbooks and single-antenna Wi-
Ea ; picts an  example Fi cards. An adversarial client forged multiple identiti®s
e Yo - rqbqt networ_k spawning multiple packets containing different idensitjep
¥ within our experi- to 75% of the total number of legitimate clients in the sys-
Malicious Client @@ mental setup with tem), and could use a different transmit power for each iden-

-
Legitimate ™

Clients

> /“. a quadrotor server tity. The adversary advertised identities by modifying the
@[ ) : : ’. and several mobile Wi-Fi MAC field, a common technique for faking multiple
> spoofed clients - clients identities ]
Evaluation: We evaluate our system in two environments:
1) An indoor multipath-rich environment with walls and ob-
stacles equipped with a Vicon motion capture system to aid
quadrotor navigatior2) An anechoic chamber to emulate a
free-space setting that is particularly challenging tosys-

) tem. We estimated the average theoretical expected sthndar
Fig. 8. SErver  geviation to besy, o of 0.7°. This was calculated using
platform: Our  Equation[®) from Lemm@1 with = 5.4cm, » = 20cm and
aerial _SEIVEIS 4 worst case number of packets and SNR baihg- 20 and
measure signal fin- 14,5 respectivelyWe note that our chosen antenna spac-
gerprints for each g of - — 90 ¢ is small enough to accommodate on a
clientusing the two 4 yadrotor but still able to provide a high spatial resoltio
antennas shown. v | emmal and as shown in our experimental results on

the angular resolution of our confidence metric (SECT,

the contributions of spoofed clients to the optimizationdu F|g.|2!1]).After including the standard dew_atlon in reported
Jocation, based on the known errors of &licon-basedo-

tion. Doing so has two key advantages: (1) It enables prov- lization f K this i dth b
able bounds in expectation on the influence of spoofers ggaization framework, this increased the averages, by

: N . . 2°. We compare our system against a baseline that uses a
the multi-robot objective (akin to Theordrh 2). (2) Per-gtie . . . .
weighting limits the extent to which spoofed clients can in_Recelved Signal Strength (RSSI) comparison (akIELb [37).

fluence the controller in the worst-case. Ro?)dmar[l): Wek c?ndulgé f(:ur cIaslgestof e?%erlments:t(.:;)) :;/“:[
Applying « to decision-based problems: Unfortunately, fnr?r enchmar idor::allti a ?hoi::jC '?n n(i/?rn Inrinﬁf m&% 0
many problems do not allow for a continuous weighting ee-spacea uitipa oorenvironments ( )-

since their objectives are inherently discrete decisioms o(2) Experiments applying this confidence metric to quar-

each agentin the network (e.g., unmanned delivery). Irethesantlne adversaries (Se§.). Application of our system

. . o . to secure against Sybil attacks: (3) the coverage problem
casesg can still be used to derive an indicator function that } .
classifies agents as legitimate or spoofed. This modality st (Sec.§2.3); (4) the drone delivery problem (S¢B.4).
allows for obtaining bounds in expectation on the influence
of spoofers (akin to Theoref 3). However, by the sheer nag 1 Microbenchmarks on the Confidence Metric
ture of these problems, false positives or negatives have a
greater impact on the objective function in the worst-case. This experiment studies the correctness of our system's con
fidence metriev. Recall from theory irff5 thata’s measured
by a server robot distinguish between unique clients based
9 Experimental Results on their diverse physical directions and the presence of mul
tipath reflections. Thus, a free-space environment (i.igh, w
This section describes our results from an experiment&l evano multipath) is particularly challenging to our system.
uation of our theoretical claim8Ve implemented two aerial Method: To approximate free-space, we measureglues
servers on AscTec Hummingbird quadrotors. Each serven a radio-frequency anechoic chamber (figl 12(a)) which
(Fig.[8) was comprised of an AscTec Atomboard onboardattenuates reflected paths by ab60t B, for a legitimate
computer and tw@dBi antennas, spaceicm apart, at- and malicious client from one server robot 12 m awafe
tached to an Intel 5300 Wi-Fi card which estimates the wirealso introduced a metallic reflector in this controllediseitt
less channels from each client to each antennavia the &02.14 measure the contribution of multipath &0 Next, in a
CSl tool m’]. We note that each aerial server only needs td0 m x 8 m indoor room (a typical multipath case), we mea-

AscTec
Hummingbird
Quadrotor
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Fig. 9: Experimental Evaluation of «: (a) In an anechoic chambekig. 10:Co-Aligned Clients: We vary the angle between a legitimate
approximating our assumptions A.1-A &l « largely agrees with the-and malicious client, relative to a single server (as shawfig.[12(b)),

ory. (b) In a typical multipath environment, experimengdults closely and plot« in (a) an anechoic chamber and (b) an indoor environment.
follow theoretical predictions. Data shows that = 0.5 is a good The minimumg needed to distinguish between clients is only:3&jn
threshold value. freespace, (b)° in multipath settings.

Spoofer Attack
[ | 50% of Network
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Fig. 11:Experimental Results for Sybil Attack in Multi-Agent Cover age Depicts the total distance of converged quadrotor seresitipns
(white x) to two legitimate clients ¢ ) and six spoofed clientse(). We consider: (a) an insecure system where each spootst cleates a false
peak in the importance function, (b) a ground truth imparéafunction, and (c) our system where applyingveights from Algorithnill recovers
the true importance function. (d) Depicts a ground-trutbt emmputed with respect to legitimate clients as Sybil sadigamically enter the
network. Our system (red dotted line) performs near-ogdtewan when spoofed clients comprise more than twice thear&tw

sureda’s from one server for up to ten legitimate clients andmate client as the angle of separatignjncreases frond®
ten spoofed clients. to 20° relative to the server robot (Fig112(b)). Figl 10 de-
picts the measured values for the legitimate and spoofed
clients. In the anechoic chamber @tclose to0°, the fin-
gerprints of the legitimate and adversarial nodes are-virtu
ally identical: each has precisely one peakoat Conse-
quently, o for the legitimate node is much below indi-
cating that the legitimate client is believed to be adversar
ial (i.e., the term(1 — ) in « approaches zero in Eda. 2).
However« for the legitimate client quickly approachéesat
only ¢ = 3° in the anechoic chamber. In faet, is virtu-
ally identical tol beyond10°, indicating that a single server
robot can distinguish between closely aligned legitimat a
Fig. 12:Microbenchmarks on o : (a) An anechoic chamber simu- adversarial clients even in free-space. To evaluate the ef-
lating freespace. (b) We measurevhile varying the angle between a fects of multipath on thev values of coaligned clients in
legitimate and malicious client, relative to the roboticvee. a controlled manner, we positioned a small metallic reflec-
tor several meters away from the two clients and server in
Results: In Fig.[d, the values of in the anechoic cham- the anechoic chamber when= 0°. Fig.[I3 demonstrates
ber tightly follow our theoretical bounds in Theor&in 1. As that the the additional reflected signal paths stronglyrdisa
expected, our results in indoor multipath environments exbiguate thex values for coaligned clients. Specifically, the
hibit a larger variance but follow the trend suggested byterm (1 — ~) in Eqn.[2 approaches zero only for the ad-
theory. Further, we stress our confidence metric by isolatversary. Fig[ZIOb depicts the larger separationvofalues
ing the case of colinearity in both environments. We confor coaligned clients in a typical indoor setting compared
sider a spoofing adversary initially co-aligned with a legit

adversary

-~

weel

server robot

(a) Chamber (b) ¢
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5 - 0.68025
$ SinglePah £ % |0 1 Our System RSSI
N b o TPR | FPR | TPR | FPR
% e -0.1671 Static | 96.3 | 3.0 | 81.5| 9.1
i Mobile | 96.3 | 6.1 | 852 | 6.1
ez 09769 AmW | 1000| 3.0 | 741 27.3
ﬂg\Reﬂector 0
S SIS
x”—\h 1 Table 1: Summarized classification performance:True
P P2 x‘xx’ﬁr: 0.04624

positive rates (TPR) and false positive rates (FPR) for-clas
sifying clients as spoofed, when< 0.5 in our system, and

Fig. 13: Anechoic chamb [tipath: Wi fi f- . L S
g necholc chamber mutipa o nesse 1or 8 Shoo with a2 d B minimum dissimilarity for RSSI.

ing client coaligned with a legitimate clienp (= 0°) in the anechoic
chamber before and after adding a reflector to introduceipadit. The
increased separation afand lower standard deviation (shown as bars)
is depicted on the right. 9.3 Application to Multi-Agent Coverage

to free-space. As expe(_:te_d, multipath r_eflec'.[ions fromSNaIIWe implement the multi-agent coverage problem from 5],
and obstacles clearly distinguish spoofing clients fronitleg \yhere a team of aerial servers position themselves to min-

imate clients even af = 0°. imize their distance to client robots at reported positions
pisi € [c]. We use an importance functipiig, P) = p1(q)+
...+ pc(q) defined in Secf@ where each client term is a
Gaussian-shaped functign(q) = exp(—3(q — p;)*(q —
In this experiment, we measure our system’s classificatioft:)) (Fig.[11B). Ana-modified importance function is im-
performance on legitimate and spoofed clients, in the pregllemented ag(q, P)a = a1p1(q) + ... + acpc(q) Where
ence of static, mobile, and power-scaling adversaries.  thea terms are computed using Algorithih 1 (Fig. 1L1c).
Method: This experiment was performed in the multipath-Method. This experiment was performed in the multipath-
rich indoor testbed with walls and obstacles. Each run contich indoor testbed. For each experiment we randomly place
sisted of one quadrotor server and randomly positionedislie three clientsinan 8 m x 10 m room with two AscTec quadro-
— either ten legitimate clients, or nine legitimate clientstor servers. Fid._11(a)-(c) shows one client-server togplo
and an adversary reporting two to nine additional spoofedhere an adversary spoofs six Sybil clients. Upon conver-
clients. Each Sybil attack was performed under three modagence, we measure the distance of each server from an opti-
ities: (1) a stationary attacker with a fixed transmissiongp Mal location in 3 scenariod) a naive system with no secu-
(2) a mobile attacker (random-walk and linear movementsity, 2) an oracle which discards Sybil clieraspriori, and
and (3) an attacker scaling the per-packet power by a dif3) our system.
ferent amount for each spoofed client, from 1 to 31 mw.Results: Fig.[I1(a)-(c) depicts the converged locations for a
We compare our system to a baseline RSSI classifier usingG@ndidate topology in the above three scenarios. We observe
thresholded minimum dissimilarity, a technique previgus| that by incorporatingx weights in our controller, our sys-
applied in static networks [87,45]. Measured signal-tiseo  tem approximates an oracle’s performance.[Figl 11d demon-
ratios for clients ranged fror dB to 25 dB. In our sys-  Strates the ability of our system to bound the service cost to
tem, quadrotor servers performed classification by ap9|y|n near optimal even as additional Spoofers enter the network
a threshold using the measuredalues for each client. (comprising up ta300%).
Results: In Fig.[I4, we measure true-positives against falseAggregate ResultsAcross multiple topologies and 12 runs,
positives collected over multiple network topologiesptes ~ for a system with no security the maximum distance from
ing in the well-known Receiver Operating Characteristicseach quadrotor to an oracle solution is on average 8:77
(ROC) curves|[8]. Our theoretical results in $éc 7 indicate(Stdev: 0.86). In contrast, our system achieves af.Q@dev:
that & measurements are suitable for use in a threshold.02) average distance from an oracle solution.
ing classification context. Empirically, Fifil 9 shows that a
threshold ofa < 0.5 performs well to classify clients as
spoofed. TablE]1 summarizes our performance results wheéh4 Application to Unmanned Delivery
using this threshold for each of the three attack modalities
compared to RSSI-based classification whetel® thresh- ~ This experiment applies our Sybil attack detection alganit
olded minimum dissimilarity performed best. in the context of unmanned delivery. Specifically, we con-
In particular, our classifier is robust to power-scalingigybsider a delivery quadrotor that iteratively visits mulélient
attacks (Where RSSI performs poorly) since we use the rdocations from a depot to deliver packages, for instance de-
tio of wireless channels in computiag(Sec.§4). Our client livering relief material in a disaster area. An adversar@aler-
classifier exhibits consistent performance in both poveatisg Scaling client spawning multiple non-existent client loca
and mobile scenarios with a TRR96% and FPRx 4%. tions could readily disrupt such a system, drawing the de-

9.2 Performance of Sybil Attack Detection
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Fig. 14:Receiver Operating Characteristics We measure ROC curves for adversaries which (a) are stia}iscale power
differently while spoofing different clients; and (c) are Ioile. We compare the performance of our system against ditase
using received signal power.
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Fig. 15:Path of Delivery Robot Depicts sample trajectories of a delivery robot iterdyiwésiting a reported client location
and returning to a depot among two legitimate clients andduersary spoofing six clients, for: (a) a naive system with
no security; (b) a baseline classifier based on receivedbpwer; and (c) our system. (d) Depicts the mean and stdndar
deviation of total trajectory lengths across ten scenarios

livery robot away to service regions where no clients eximum trajectory length for the quadrotor to visit all 8 clien
ist. We study the effectiveness of our system in guardingicross our topologies is 41.78m.
against such attacks and compare it against the RSSI base-

line (Sec.49.2).

Method: Multiple heuristics exist for approximating opti-

mal solutions to unmanned delivery problems which min-

imize distance, payload, or fuel usagel[24, 36]. We use Results: Fig.[I8(a)-(c) depicts candidate trajectories of the
simple distance metric — the shortest quadrotor flight patiyuadrotor in the three scenarios: (1) A naive system with-
which visits all client locations iteratively, returning the  out cyber-security; (2) The RSSI-baseline; (3) Our system.
depot each time — and deploy a system that uses our bjn the RSSI baseline, the quadrotor compares the received
nary classifier based on signal fingerprints to filter malisio power per packet for each client, but misclassifies a subset
clients. We compare our results both against a baseline clagf the spoofed clients as legitimate (owing to noise), tesul
sifier based on RSSI as well as a naive system which visng in the quadrotor traveling a mean path length of 20.92
its every reported client location. We repeat the experimenm_ |n contrast, our system benefits from the large margin
across ten randomly chosen topologies. Eig. 15(a) depictsgt separation when classifying clients using theivalue
candidate topology where two legitimate clients reporirthe (as in Sec§8.2), with the quadrotor’s resultant mean path
positionsp; andp, to a quadrotor beginning its delivery |ength of 12.05 m performing close to an oracle system’s

route at locatiorr, while a malicious client at position; re-  ground truth trajectory length of 10.91 m across topologies
ports six (inclusive) false client locations. The average-m (see Fig[TIb(d)).
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10 Conclusion 7.

In this paper, we develop a new system to guard against
the Sybil attack in multi-robot networks. We derive theeret
ical guarantees on the performance of our system, which are
validated experimentally. While this paper has focused on
coverage and unmanned delivery, our approach can be ready.
ily extended to secure other multi-robot controllers agiin
Sybil attacks, e.gapplications within the Vehicle Routing ¢
Problem|[24], 36], in search-and-rescue tasks [26], andin fo
mation controll[46]. We note for future work that our method

of detecting spoofed clients is applicable to servers af wel
since they also communicate wirelessly. Additionally, iehi

this paper addresses Sybil attacks in which spoofed clients
assume unique identities, our approach generalizes to deq
fense against replay attacks [9) 32] where adversaries imq
itate existing legitimate clients in the networlSince our
approach is based on the fundamental physics of wireless
signals, we believe that it also applies to other Wi-Fi based
security issues in robot swarms such as packet path valida-

tion [28] and detecting packet injection attacks to name g,

few.
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