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ABSTRACT

FIRST PASSAGE PROBABILITIES FOR
A LINEAR HARMONIC OSCILLATOR

Submitted to the Department of Mechanical
Engineering on August 24, 1964 in partial
fulfillment of the requirements for the
degree of Dac tor of Sclence

This thesis is essentially devoted to numerical evaluation of
first passage probabilities for a linear harmonic oscillator driveu
by white Gaussian noise.

First passage probability Q(t) is defined as follows. Let y(t)
and ¥(t) be displacement and velocity of the oscillator at time t.
With a given initial probability distribution ((y, ¥, O) at t = O in-
side a region <42 in the phase plane (y - ¥y plane), Q(t) = probability
that (y(7), y#(7))e 2L for ogTLt , that is the proba-
bility that the oscillator will not leave (2 keiween O and t.

The regions (2 considered are (1) |y| < a, that is, first
passage through an absolute displacement level (2) y*+ y* < a* ,
Sl
that is, first passage through an envelope or energy level. ¥ is
the natural frequency of the oscillator.

The initial distributions G(y, ¥y, O) considered are
(1) G(y, ¥, 0) = $(¥y) S(3¥), that is, oscillator excited from rest and
(2) &(y, ¥, O) = stationary distribution (inside a part or whole of £1 )
for the process.

The first passage probabilities for all these cases are found to
approach an exponential distribution for sufficiently high values of t.
The initial transience is found to be of a cyclic nature, with fre-
quency of 21 .

The computational procedure is based on repetitive distributions of
probability masses according to theoretically established transition proba-
bilities for the oscillator output.

Excitations other than white Gaussian noise have also been con-
sidered.

-1i-



ACKNOWLEDGEMENTS

I wish to express my gratitude to Professor Stephen H. Crandall
for his generous assistance. I also wish to thank Professors Wilbur B.
Davenport, Jr. and Daniel B. Ray for their helpful comments and sug-
gestions. Finally I wish to thank Miss Brenda Frank for typing the

thesis under pressure.

This work was done in part at the Massachusetts Institute of
Technology Computation Center. This research was supported by Air

Force Office of Scientific Research under contract No. AF 49(638)-131L.

-1ii-



Section

TABLE OF CORTENTS

ABSTRACT

ACKNOWLEDGEMENTS

INTRODUCTION

1.1 Preliminary Background

1.2 Definition of First Passage Probabilities

GENERAL DISCUSSION OF THE PROBLEM AND THE
RUMERICAL APPROACH

2.1 Backward and Forward (Fokker-Plamck) Equatioms
2.2 Discussion of the Numerical Approach
OSCILLATOR EXCITED BY PERIODIC IMPULSES

3.1 Onre Dimensional Process

3.2 Computatiom of First Passage Probabilities
3.3 Symmetric Cases

3.4 Tests om the Computatiomsl Procedure

3.5 Results

3.5 A Modified Computatiomal Procedure

WHITE GAUSSIAN EXCITATION

4.1 Discussion of the Computational Procedure
4.2 The Computational Procedure in Detail

4.3 Tests om the Computationmal Procedure

h. b Finmal Results amd Discussion

-iv-

Page

ii

iii

14

18
23

X

35
L1

4]

54
29



TABLE OF CONTERTS (comt.)

Page
Appendix
A Am Approximate Solutiom to the First Passage
Problem 76
B A Ome Dimemsiomsl Model for the Emvelope Process 80
REFERENCES 82

BIOGRAPHICAL NOTE 83

oY=




Section 1

INTRODUCTION

1.1 Preliminary Background

oo o0 000 O 0 O

Figure 1

Consider a mass m elastically supported to & moving foundation

with viscous damping, as shown in Fig. 1.

The relative displacement y = X, - X, , satisfies the differential

equation,
””_L_Z? +C°,[1 + KY :‘mé.ix—"
dt* dit dt*
or )’ + Zxy 4 ‘61LJ = _ %o(®) (D
Where let = C ?51:_1(_
m 44l



The solution C(y, , ¥, , t), of the corresponding homogeneous

differential equation, y + 2y + ¥y = O, subject to initial conditions

Y(t=0)=yo ,&(taO)-jo ,18

Clgos%st) = yyal®+ g, hiy) (2)
whe alt) = e <t X SinBt 4 Cospt (3
e 5o (% sinp pt) )
hiy = &%F “
L0 € Smﬁf
and B == x* 5
Also 6(30190){.) = 30&&) + go k"(f) (2;)

vhere C = 2C A= dad) and hi=d4 ki)
ot ot d+

The initisl values y, , 3, at t = O, thus decay to y(t) =C(}, , % , t)
and y(t) = C(y, , ¥, , t) after time t.

One can look upon the arrangement as a linear, time invariant system
with single degree of freedom, with x(t) = -x, (t) 2s input and y(t) as

output .(Egure 2).

The unit impulse response ‘hput x[t)= —Xpl®) /1(4.-) Oukput yli)
h(T) for this system would be, a g
hr) = L &7 snpt  for T 0 Figuve 2
P

=0 :fof T<o



n(7) is the ouptut y(T ) of the system for 7T )0 , when
input x(t) is simply a unit impulse at time Ta 0.

Thus for any known input x(t),

yty) = fﬁ(¢) h(£-7)dT (Ref. 1)
and (Y = [ x(1) K1) d

If hovwever x(t) is a random process, both x(t) and y(t) cam at
best be described by a set of probability distributions.

Suppose x(t) is stationary and purely random. That is to say,
probability W(x(t))dx, of finding x(t) in the range (x, x + dx) at time
t does not change with t. Also for t; = to = t3 ceee; x(ty), x(tz2),
x(t3).... ; have no correlation vhatsoever and are independent random
variables with identical probability distributions.

For such an input x(t), it can be shown that the output y(t) 1s

temporally homogeneous, and Markoffian in y(t), y(t). That is

Prob. (Y1, Y15 Y13 Y2, J25 t25 ceees %1 5 Ty s tn-ll Yoo Yoo tn)dy, 4y,
ty {ba (g eee <8 <8,

= Prob. (¥n-1 5 Yoy s tn-l ‘ Y, s ¥ s t,)dy,dy, Markoffian (é)
property
= Prob. (yn,’ 3 y"n__, 9 tn_’ +rr ‘ yn, yn 9 th +T )dyndyn
(6)

for any T (temporal homogeneity)

The left hand side of (6) represents the conditional probability

of getting ¥, < y(+) <Y, + dy and. tjng y(tn) < 9,14y, , vhen the
values of y(t) and y(t) are given for t = t;, to «ccp, t | -
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In vwhat follows, Prob. (A, B, C ... | X, ¥, 2, ¥, ¥, t) vill

always stand for —» given that conditions A, B, C, ... are satisfied,

probability that conditions X, Y, Z be satisfied and y < y(t) S y+dy,
¥ £ ¥(t) £ ¥+ oy
The Markoffian nature of y(t) is intuitively obvious from the
physical situation, since the homogemeous solution (relations (2) and
(2')) for the system can be completely described by two initial con-
ditione y, and §, . For a more rigorous proof one must refer tc the
general theorem of Doob (Ref. 3).
\ For such a Markoffian, temporally homogeneous output y(t), caused
by a stationary, purely random excitation x(t), one can find the tran-
sition probability P(y,, ¥, | ¥, ¥, t) = Prob. <y(t =0) =y, ¥t =0)= 4,

= Prob. (3(t =17) =3, ¥t ) = | ¥ Tt 7)), RI

by noting that,

yo = s 9, t) + P (7
tyo
‘j(f) = C.(yo’go){’) + @it) (3)
to
wheve  oplt) = f’*xw) hi+-7)d7 @
yit) = (fx(fr) hit-7)dv (10)
“0

% ,%,t) andc(y, , 3 ,t) are completely determined by
Y,, 5, and t. @(t) and ¢(t) are random varisbles whose probability
distributions depend on t, h(7 ) and probability distribation W(x) of

input x(t).

b



In perticular if x(t) is white Gaussian noise with zero mean and
spectral demsity S, (or autocorrelation function R,, (7) = 27s, & (7 )) ’
it can be shown that ¢(t) and \(t) are also Gaussianly distributed.

Also

'E[(p(‘t)]: E[L}l(f)] =0

l—;ee Ref. 2 for
relations for a

t
E [cpz(f)] = 27 Sof l,,z(q’) dT linear system.
2 ’ t 2
£[y'w]= zﬁsof L2() A
0

t
E[ qrogw] = 2%s [ hi7) hr)dr

Hence from relations T axrd 8,

E[‘j’fﬂ = C(j()".jp )f) = C ,"fpoy Short
FI9] = Cordort) = C for short

5_:- = variance of y(t) = E [( yld) — E[ljl{)‘?)?':,

| ¢
= £[e¥n] = zﬁsof NEELS

-2t
= 6‘2.+ _G_f € (’Ul-i-o(?‘(oszﬁ{ — XB S;nZ’z.Jc)
‘3‘),- e
(1)
2 TS
where c = [l (12)
26\’3'2



2

& = vaviance o]f g(+) = E[(Cj{f)_g[ﬁwj)zj
= E[Lysz)j = lﬂsofthzm‘) d7

= &4 & e-z.xt (—az+o<lCoszpt +oq3$m2;3t) (13)
P?_
. 2 —
vhere & = IS (14)
2K

Also correlation coefficient

)Dt- = E[( yH-)—E[th)J) (9(%)_ E[fjlf)_]):) 6 &

_t-
= E[cv(mpl%)_'] = 275, fhm hir)ydrw
75 °
= TS bt 09

St &

This gives enough information to write down the transition proba-

bility

P(Yor5u ]y 9:t) =

- . M 2
| ;éw—«:)i 21 (4-9) (y-¢) CEN) ] (i6)
| e 2-EIL a7 44 %

2T 6, & (1- )"

l.2 Defianition of First Passage Probabilities of Interest.

The transition probability (16) is the most general information one
could find regarding the random motion of a harmonic oscillator subject
to white Gaussian excitation. The first passage probabilities we are
about to define should therefore be uniquely determined by tiie tran-

sition probability (16) for the process.

-6-




Two first passage probabilities of interest are
() Qa (Y555, |£) = Fob-(yo=y,, [y <o, g@=3,| jy(m| <a
for 07 <F)

() @ (4,9 ) = Fob-(y=y,, y0-9,,

F L) o™
—'Z'Sz-
"f)u-/ o \< ’iJ\< + )

2 Lg%l = -2 Qulsdlt) ma (g 5[0

Q (Efw‘:fo“) then ,[ ’jo joft)df 01'-)[ Yo r 1) dt repre-
sents the probability of leaving the region of interest (i.e.[y| <& or

ljo'f"ﬂv v

37‘4- \'jzz < vY* respectively) for the first time between t and t + dt.

The applications of above first passage probabilities would be mu-
merous. A variety of mechanical (and electrical) systems approximately
behave like a damped oscillator, subject to random excitation. The
probability q, would be useful in designing for the safe maximum dis-
placement (or current) or other quantities which are dependent on dis-
placement, such as stress, strain, etc. Q,  would similarly be useful
when one is concermed about total energy in the system. The quantity
[ 'jzlf) + ‘.12{*)/37.] /2 is called the envelope of the process y(t) and
is a measure of total energy in the oscillator.

We are specially interested in ohtaining Q 6 and Q, for y, = 0,

jro = O. 'This would correspond to an oscillator being excited from rest.




Section 2

GENERAL DISCUSSION OF THE PROBLFM AND THE NUMERICAL APPROACH

2.1 Backward apd Forward (Fokker-Planck) Equations

Here we shall describe the differential equations satisfied by the
transition and first passage probabilities.

For this purpose we define a general first passage probability as
follows.

Let ) be a region in the phase plane (i.e. y, y plane) for the

process (see +igure 3).

Then Vo’%lf) Prob. (\j(o) Yo ‘j( %) =Y s
(LJO’EID)éﬂ’(V(T) Vf))éﬂ
‘for oL f)

il

For (Y, , (2 = ‘Q'a Y]l <eo

For @r, _Qz_QVE 3+71<Y‘7’
/]

Further, we define the probability K{ljo , ‘:';o | Ys Y ‘f‘) d_-j 4y

(‘j(’l’) ‘1(’1‘))6 2

= Prob-(y(o) Yo, Y=Y, (o1 9,)€ L2

for 0T E, Sf"/’*>

Note that

Q400 % |1) ﬂ (9059 [ 428, F ) dydy



phase ’Dlane

> Y

Figure 3

Since y(t) is Markoffian in y and y, we have

R('jo,';jo j,lj,t): ﬁﬁ(‘jo,f]o %Jj];rf) IZ(%7j|}b‘a‘j,‘l”T)inzlj’
<2
for o<T <t (1)

:mw&wﬁm‘w\&(w@a&%i SmESE s et e s e e e

This is just Chapman-Kolomogrov identity extended to a process Markoffian

in two parameters y and y. In particulay
R (4090 |9 9,%) = Jff R gy [y 95 04) Ry, 3, +-04)dycky (18
ol

For small At it is reasonable to use the approximation,

R(pito | 49 ,80) ~ Plyorgo |49 ,0¢), the

transition probabllity for the process.

-9-



Thus

R0 3ol9:3.8) = [[ Plsesdol 3 48) Rlnoil g, 4-28) dydh 09
L2

Similarly we have

13(%1%1%9'*) :JTR(%'% |71’91:+'Af> P(%’?n {‘j’.j)A*)‘ijl‘kjl (20)
0

From these integral relations it is possible to derive differential

equations for Q and R (Ref. 3, 5).

Relation (19) ylelds,

(2

0N =g, 0@ _..(zaqo+\j)aw 4 2X¥ ¥
By
jo

ot

11
I~ |w

] [

where Q stands for Q(y, , ¥, I t). This is the backward equation
for Q(y, , ¥, , t) (:backward, because it is in terms of the initial

parameters Yy, , Y ] .
Relation (20) ylelds,

oR

e

ot

)
C-

? )4 F 5t 0 R ;
+59[(20\\j+25‘j) RJ-,-Zo& G‘_b_ﬂ__z (22)

\ALNY)
‘417@



where R stands for R(y, , ¥, | ¥, ¥, t). This is the forvard (or

Fokker-Planck) equation for R(y, , ¥, l Y, ¥, t) [forvard , because
it is in terms of the final parameters y and y ] .
The transition probability (Y, , §, | ¥, ¥, t) also satisfies
these forward and backward differential equations. Their derivation
18 along the same lines. In fact, one way to determine P(y, , ¥, ‘ Y, ¥, t)
(which we found (relation 16) in section 1 through a systems appraoch) is

to solve the Fokker-Planck equation (22) for P with initial condition
P<tjo’3o \ 9> v/ ’O) = S(“J"jo) S(;f"\jo)
and boundary conditions

P(yo,%'y,g,{:)-—?o as y—=1teo

One way to obtain the first passage probabilities Q and R would be
to solve the differential equations (21) and (22) with appropriate
initial and boundary conditions. This method has, in fact, been success-
fully employed for stochastic processes Markoffian in one parameter
(Ref. 6, 7). However, oscillator output is Markoffian in two para-
meters, y and y. To illustrate the kind of difficulty one experiences
with boundary conditions, let us consider first passage probabilities

Qand R for (2 = Y<a, a po.



Fig. 4 shows the boundary of J2,
y = a in the phase plane. KNote that /;ﬁ_\\
in the upper half plame (¥ > 0) all
oscillator paths must necessarily travel % 8

v,

( U/
in the direction of increasing y, simi- //
larly in the lower half plane they mst N

travel towards decreasing y. A possible

path from (0, O) is shown in Fig. k.

Figure L4

Ay, » ¥ l t) satisfies differential equation (21) . Initial con-

dition is of course

QY5> % |D) = | (23)

This is because (¥, , ¥, )& (2 - Referring to Fig. 4, it is
fairly clear that a path in (2 which has y > 0 and is very close to the
boundary y = a, is bound to leave (2 in a short time. Thus the boun-
dary condition along AB is,

lim. Q(.jo)%/f) =0 fov Yo DO (29

ljo——'>a..

However, nothing much can be sald about the boundary condition

along BC, except that

fim. Q(yo’%“’—) F o0 fov Yo <0

'jo-+a.

-12-
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Very possibly the conditions (23) and (24) are sufficient to
ensure a unique solution for Q(y, , Y, ’ t). But no one has yet
succeeded in solving this problem.

Similarly R(Y, , J, | ¥, ¥, t) satisfies differential equation (22).

Initial condition is,

R (%% |4,9,0) = &(4-40) S(4-%) 25)

Again referring to Fig. 4, it is intuitively obvious that no path
originating from inside (2 can reach line BC without leaving ()

(through AB). Thus the boundary condition along BC is,

[im. R(%,%Inj,(j,{-) = 0 for \j(O (26)

y——-?"

Integrating (22) over /2. , one easily gets
gatj Q(\jo’(jo‘{) Z‘S\‘f/[gia_’a(ﬁo'%!l%*%*” J'j (2D
o)

Since in general, Q(y, , ¥, l t) cannot be constant in time (it

decreases with t),

lim.  R{y, 4, [y, 9.4) F#0 for g o

y->a.

Again the same remarks apply for the solutiom of R(y, , ¥, , Y, ¥, t)e
Even the mmerical solution of didferential equations (21) emd (22)

is not poseible since the boundary conditions cannot be fully prescribed.

-13-
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2.2 Discussion of the Numerical Approach

Now we return to the integral relation (20) (which in fact is the
source of the Fokker-Planck equation 22).

Let initial probability distribution inside (2 at t = O be

G(Y’ ?) 0)'
G(y, ¥, 0\ydy = Prob. (y < ¥(0) € y+ 4y, ¥ <¥(0) L ¥+ 4y)
We define the probabilities G(y, y, t) and Q(t) as follows.

6&(y, ¥, t) &y a7 = Prob. (At t = O, (¥(0), $(0) 1s distributed
in (1 according to distribution G(y, 7, O) l (y("l‘), i(fr’))e__(l for
0L Tt 539 t)

and Q(t) = YYG(Y: ¥, t) dy d¥
= Prob_:n.@t t =0, (y(O), jr(o)) is distributed in {2
according to distribution G(y, ¥, O) ' (y( Y, ¥ T )) € (2 for 0 LT < t>

It 1s clear that,

6y, ¥, t) = ffe(%’ Y% 0) R(Yc, ’ &a Y, ¥, t) dy, djro (2%
R
Using relation (20), we have,
G’(y) 5’) t) = J}\ G(y' F) i' ] t - At) p(ylp i'l y, &, At) dy" dj' (ZQ)
£

Now we start from t = O and examine the process at t = At, 2 A%,

3 At and so on. For t = N At, relation (29) yields



a(y, ¥, N at) = {f(}(}';, V1, (B - 1) At) P(y1s %2 ' Y, ¥, At)dy ay
ol : (30)

For the Kernel P(yy, N1 , ¥, ¥, At) in 0 , let us assume eigen

values f > f, >|§ ----- -, and corresponding eigen functions H, (y>9),
H2 (9,9) y Ha (4,9)------, such 1hat
B H () = ([ H (%) Plgo 19> 90 08) dp (30
t=h2,3-----
(Ref 9)
the
Note that, argument Ot in P(¥y, 1 | ¥y, ¥, At) is taken to be a
§ constant rather than a variable.
&N‘” Further we assume that
/ w0
| Gi(4:9:0) = Z G Hly9) (32)
L=

where Ci are some constant.

Then from (30), (31) and (32), it is clear that

= N
G(uj,ﬂ»NAt) = ,LZ ﬁ G HL(%‘)) (33
and @ (Nat) = gbiﬁN (34)
weee D= G [ H (459 dsds &9
e



Defining Al = -(.UZT_M)- In f (36)

where ¥ is the natural frequency of the oscillator, we have

ATt
T | (37)

Q“:) = z D 6—
(=]

Unless the region () consists of the entire phase plave, each ﬁ {1
and each A; >0 , thus
-N Lt
fim. @)= De T (33)

t—co

), being the smallest exponential factor (or | being the largest eigen

value) .
The numerical method chosen for evaluation of Q(t) (for a particular

() and G(y, ¥, ©) 18 to calculate G(y, ¥, NAt) for N =1, 2, 3 ===,
by numerical integration of relation (30). The region {1 of the phase
plene is divided into rectangular elements of size Ay, Ajr for this
purpose. The computation is continued until the asymptotic exponential
behavior indicated by relation (38) is approached. Thbus in addition

to the dominant solution (38) one gets full transient behavior (37),

through individual values of Dp, D3,--- and A, y Ay, -== can not be
found.

A slightly different way of looking at the process of numerical
integration of (30) is to comsider probability masses distributed

initially at t = O according to the distribution G{y, ¥, O) among

-16-



the rectangular elements of the region £2 of the phase plane. One
keeps on distributing these masses after each At, according to the
transition probability P(yys h ' ¥, ¥, t), agreeing to "losge" any
masses which leave the region (2 .

To elucidate the computational procedure and to gain some in-
sight into the behavior, convergence and accuracy of the solutions,
an excitation much simpler than white Jaussian noise 1is considered

in the next section.



Section 3

OSCILLATOR EXCTTED BY PERIODIC IMPULSES

- 3.1 One Dimensioml Process.

Consider the harmonic oscillator being excited by a noise x(t)
vhich consists of a series of periodic impulses, the time between
two consecutive impulses being _;—r (vhere BZ:-' 7). let
each impulse be an independent random variable, the area A under it
being Gaussianly distributed.

AZ
Thms p(a) = | € Z&° (29
V2TT 63

It is obvious that autocorrelation R,y (t) of x(t) = 0, for
't 0 {since all impulses are independent with zero mean) .

To find R, (0) we consider a process v(t) obtained by replacing
each impulse in x(t) with a rectangular pulse of height H and duration
dt at the same time, such that the area Hdt under each rectangular
pulse in v(t) = area A under the corresponding impulse in x(t).

It is clear that the height H of any pulse will be Gaussianly
distributed with probability density g(H) say,

where g(H) dH = Prob. (H £ height of a pulse < H + aH)

= Prob. (Fat  area under the pulse < (H + &) dt)

= Prob. (Hdt § area A under the corresponding impulse
in process x(t) X (H + dK)dt)

= P(A = HAt) dHdt

-18-




Thms g(B) = l € 2zg?* d4 [use velation 39 -(oy PJ
57

Also probability of finding a rectangular Pulae in process v(t) at any
time t = dt/% and probability of not finding any pulse at time

t=1 -(dt/_g,)

gece  E[V®)] = (’—AVE)(O)J,it_fH‘g(H)AH
P T 4
Bdt T e—ﬁﬁg dHdt [ t Hdt ]
= =2 6,° dH u =u
n Lo V2Tl 64 o i
— Bdt fw u*r e_fb—;? du

g vzfr‘ﬁ*’*w T e

:f‘_éﬁz
T dt

As the height H of each reactangular pulse ia v(t) tends to o0 ,

vhile its duration dt —>= O, such taht Hdt = constant for each pulse,

process v(t) —>— process x(t)

Hence R, (0) = x (%)

= lim. Vz(f) = lim. _L‘zz_ (400.)
H— oo dt >0 T dt

dt o
Hdt = constant



and as mentioned previously,
R yx(t) = 0 for t +0 4ok
Combining (LOa) and (LOD) we get, '

R,,(t) = _?T__ 6:' Y0, @)

Thus x(t) is white noise with its non-zero (impulse) values
Ggussianly distributed.

X(+) T‘ﬁ T‘bz t3 (b4 ts -
| ! + ¢ +
r‘_ﬁ—%‘*f—*: :
| > ! | f
(. [ I i |

‘j(‘t) ! ! | l {/"_'

=T Y "
| | >
] | | |
r\ ‘ | l
) //_l \ i-\ ! ] /l\

A

discrete process

- ]

Ko
L
~
_—_ - = =
-
W

) '
' +t
4
Figure 5

Now each x(t) impulse with area A under it simultaneously gives
rise to velocity ¥ = A as the output from the oscillator (see Fig. 5).

. ~T . . L=
Noting that C(y, . ¥, , l;_) ==Y e B,and C(Yor%, %):_%e B

-20-



(see relations (2) and (2')) , it 18 cleer that 1f the oscillator was
excited from rest (however far back in the past), the random changes

in y vill always occur at intervals of 1. , at times vhen y = O

(Fig. 5). Hence the first passage problems related to _f)_aE ([y[ <a)
or to .!1,,’5(‘14-‘1 <Y) can be described in terms of
first passage problems for [/ p = ( 19 <,b)

Also, the critical values of y occur at instants (t,, ts, t3, UREE
in Fig. 5)vhen j is subject to random changes. In between these in-
stantes (which are Ep- apart) U] just decays to smaller values
according to relation (2'). Hence to consider the first passage
prob’].eh for _ka O‘_’” < b) , We only need consider a process ¥(%)
vhich is discrete in time and records values of y(t) only at times

ty, %2, t, ... (Fig. 5), the random change at each instant being

3
included in the observation for the same instant, as illustrated in

Fig. 5.
From now on y(t) would denote this discrete process.
Transition probability and (discrete) autocorrelation for y(t): -
-Tixh T
If y(0) = Vo , 1t decays to (—-l) \j, e B attime t= & (n =0, I,Z,--—).
Also at each interveinign instant t = _T;B'I’. (M-‘= ',L.----,n) , there is

an independent random contribution &r to the velocity and
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Calling —€ g = K we get,
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determinate random
Camponent Com po nents

Since all the random components are independent and Gaussian with

zero mean, ¥, 1s Gaussian too.

And E[vnj = Y K"

WI')C re K:.—-—e-% (43)

.. the transition probability

@4)



and the stationary probability distribution

-
Py) = lim. Plyply,t=Tn) = | e 552
n—=0 B VZT &
vhere stationary variance & = lim. 5’;2
N—-oo0
&
o

L2 In
The autocorrelation Rj 11 ({‘-7 WB_""> is clearly = G * K !

3.2 Computation of First Passage Probabilities.

Nov suppose we want to compute the first peassage probability Q(t)
for this process y(t). Q(t) is defined as follows,

Q(t) = Prob. (At t = 0,y(0) is distributed in () according to
initial distribution G(y, O) l WT)e 2 for 0 L TX t)

Ve take _2 = || {as ,a>0 ; and G(y, 0), the initial
distribution at t = 0, = &(¥).

Analogous to relation (30) for the two dimensional process; here

we bave At =T and
P
6(7} ) J\G(‘_‘/.,(Nl)r) P(H'LJ,Z)Aj,

From relations (42) and (44), the unit step transition probability

Ply |y, T ) —Q%Q

A

:b

“s)

(47)

(4g)

Q)

(



Now we divide the region (2 =—as Yy gas

into 2M+ 1 equal elements each of length Ay s -}_Z‘ML:?_ (see Fig. 6).

The middle points of thege elements have coordinates 0, + Ay, + 24y, ...

+ M Ay.
e
!j:(M-f_}'_)Ay
= ag X
Y= mAy —f—

\__—____—:,‘nj :(mAg) K

¥ 97-"”4"}——1%"% this area.
- —g, = P(m[— l’.'.) —+
g==(M+L)ay_|
= _—as < T — I S -
P B
Figure 6

We shall consider the Probability masses in these elements to be
concentrated at their middle points. Under this assumption we compute

the unit step transition matrix
Nag+09/2
P(MI')) = f P('jl = h’lAj ’ y 5 ” )d‘j R (b—’)

n Ay A‘f/l

-2



using relation (50) for the integrand and performing the mumerical
M integration with the use of the parabolic formala.

Starting with the initial distribution G(y, 0) similarly concen-
trated as impulses at the middle points of the elements, we compute

successives G's according to the relation
m=M
G (nog, NL) = > G(meg 6L ) Plmlr)
m=-pM

This is just discrete counterpart of relation (49). At every
step Q ( N]T/P) is obtained by merely summing up G(n Ay, %r. )
over {2 . Also the probability f(!éT!_ ) of leaving () at the Nth

———

step is obtained as

2

f(am) = @(wo1)—Q ()

One also computes

PnT) = G (N/p)
e Q (~N-DT/e)

As reagoned out in Seetion 2 (relations 34 to 38), 1lim. F(Nlr) :ﬁ
N -0 [

the largest eigen value of P(m|[n). Thus the computations are con-
tinued until f(%) approaches the constant value ﬁ .

Analogous to relation (36), we define the exporential factor -/\, as

A, = —lnf

-25-

(52)

> 3)

©s)



Thus the asymptotic expression for Q(t) becomes,

- MNB ¢
Qi) = De T (56)
vhere -t = _T.'—- > Z;T_T. y ~—————-
P B
The factor D, is found as
:D, = ’{m. Q (NTT/B) (5—7)

N [P(n/p)]"

3.3 Symmetric Cases.
" As long a8 G(J, 0) is an even function of y and () is symmetric
about y = O, one can take advantage of the symmetry of the problem and
perform the computations in only half of (2 . Thus one proceeds as
follovs,

(1) Consider only M + 1 elements of length Ay (see Fig. 6),
bhaving their middle points at y = 0, Ay, 24y, ..., MAy.

(11) Assign the initial distribution G(y, O) as

G(MAy B O) = fmmjg(z;\j;/;) cl\j on m=12,---- M
mA-'j—A-'j/;_
sy 59
:'—’Z—-Ag/g(am) dy for m=o



(111) Compute the unit step transition matrix

(i) = Pl + P(m[=r) o o
l<n<M (59)

— P(mln) for oMM ,n=0

where P(m |n) 1s given by relation (51)

(iv) Iterate according to

M
Glooy M) = 2 Gty 00T ) B, (o) (69

(v) Finally

M
Q(m%) = Zé G (n sy, N_g_) 1)

3.h Tests on the Computational Procedure.
One could say vith confidence that progressively better results

would be obtained as the size Ay of the elements of (2 is decreased

or as the number of elements for a fixed .2 15 increased.
The nondimensional factor 4, defined as the vatio of the size Aaj

to the standard deviation of the uait step transition probability,

seems to be the best way of indicating this size effect.

d = Ay _— 2aé - _2a (62)
A (@MtD ez oMt 1) (1-k2) 12
sssuming 2M+ 1 divisions 1n (2 = [y { a&



for _2 ‘:‘[\:,”<3é- , G(\‘j,o): S(V) and X = ool ,

Fig. 7 shows variation in A and D, with this size factor d. The vari-
ation is quite small in the neighborhood of 4 = 0.25.

To further check the validity of the computational procedure, the
probability distributions actually obtained were compared with those
from relation (44). With reference to relation (kk4), we chose j, = O,
n = 60 and %f. = 0,01. The step by step iteration was limited to a
region _() = l\jl K5¢ , with 6(¥, 0) = S(¥) of course, and
d = 0.5. The two distributions compared very favorably. For °(7 = 0.01,

6 =1, €, =4.005 from relation (42). S, obtained from iter-
ation was = L.OLL.

The seme test was repeated with the transition matrix P (ml n)
computed on a slightly different basis. Instead of assuming the proba-
bility masses to be concentrated at the middle points of the ele-
mental lengths Ay, they were assumed to be uniformly distributed

over each Ay. In that case the unit step transition matrix Pl(ni l n)
wvould be given by
/ g, = mAy+ by/s g;nﬁ‘\"-g-[)"j/')_ ~
Pi(mln) = X’g-f P(a 195 T) 44 (63)
MOy =BIf2 nay—sy
Practically no change was observed between the two tests. %o

/
obtained with this modified P(m|n) was = 4.081.
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3.5 Results.

All the results given here were obtained with the use of the originel
transition metrix P (m [n) (evaluated from relation 51).

Fig. 8 shovs Q(!\_IBLT) , f(f\é_”) and F(Ngl) foy 2 = |g)<26
G(y, 0) = stationary distribution (45) imside (2 , % = 0.01 and
d = 0.25.

ﬁ is found %o be = 0.99433 (hence A = - lnﬁ = 0.00568), and
D, = 0.9343 as compared to Q(0) = 0.9545 (Note that Q(0) = %Di ).

Thus the exponential approximation

-ANB
QexFH—) - Q(o) € 'ﬁt

—'____yz MNPt
_ 0 = | P
- l:fa Vs € JV:I € m ? (64-)

is quite fair in this case.

Qe):p (N%) and ﬁxP(N—g‘) = q)exfa ((N’Dl;‘)— QexF(NTg)

are also shown in Fig. 8.

Fig. 9 shows similar results with G(¥, 0) = >(§)-

Here [, 1s again = 0.99433 and A, = 0.00568. This is only to be
expected since the transition matrix P (m|n) is common to both the
cases. However, now D; = 1.0834 as compared to Q(0) = 1.

In addition to

— AP ~NB ¢ _
Qop (0 = Qe "7 = € 'T (65
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Fig. 9 also shows the hyperexponential approximation

-MNEt * -—/\*
@hjp('&) = De ' + D, e Z_T%t

* *
Dy and 32 are determined from the conditions

QAW’ (0) = !
fy

() = =2 @(m,u)! =0

Jp oo

Thus one gets

*

DZ = |- D

A=~ AD
I-D,

The following values of D, and A vere computed for L2 = ly|<Las,

@(g,0) =5(y), ,; =00l apdd=0.25

pA

a )\l Dy Ne s
0.5 0.1697 1.19 0.1922
1.0 0453 x 20 1.1876 0.0746
2.0 0.568 x 10-2 1.083L 0.0419
3.0 0.506 % 10 1.0141 0.0455
5.0 0.440 x 10- nearly 1 0.1182

6¢)

(67)

&%)
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2

Variation of A with "a" is of the order of e-a/l , as seen by
the values of A./e—eiz'_ . D; becomes quite close to 1 for a 2 3
Flg. 10 shows the variation of A /e‘%_a—- end D, with "a".

It becomes very hard to get any meaningful results for a ) 5.
This is because one computes ﬁ rather than )\, directly. Since a
digital computer cannot give an accuracy of more than 9 significant
digits for single precision arithmetic, it is possible to compute ﬁ
only if it is less than 0.999999999. Even at a = 5, ,2((: 0.44 x 10-6
or ﬁ = 0.999999560 and this takes up nearly all the nine significant

digits.

3.6 A Modified Computational Procedure.

with & =00/ , d a 0.25, the number of elements of length

/]
Ay=ds, 1in the region [Y| { 46  is given by

M+ = 2a -~ {29 (See velation 62)
d (1—x*)¥ |

If adventage is taken of the symmetry of the problem, the size of
p 2

the tramsition matrix 5, (mf”) is (M + 1) or 4225. Now if one
were to consider a similar problem for the two dimensional oscillator
ouptut (y(t) s &'(t)) , the equivalent region () would be an area in
the phase plane with roughly (2M+ 1)2 rectanguler elements of size

2
Ay, Ay. Symmetry would ensble consideration of only (M + 1)

L
elements, with the resulting transition matrix of size (M+1) or

6
nearly 17.8 x 10 . This is well beyond the capacity of a digital



computer (IBM 7094 has a total capacity of 32,768 storage locations out
of which at least 4,000 locations have to be utilized to store the pro-
gramme and various routines).
With a view towards making similar computations possible for the
two dimensional case, following modification of the present method
vas considered.
First of all one mist note that the unit step transition probability
P (9, | 9»1;—) (relation 50) involves decay of the process from initial
value ¥, to a mean value Y, = ¥1k, about vhich it 1s normally dis-
tributed vith variance 65 . Since 99.98% of the area under a normal
distribution lies within +4 standard deviations, the same percentage
of a probability mass at y, would be distributed (after one step of the
process) within g consecutive elements of length Ay. (Note that d = é&% )
Secondly, let each element of length 4y be divided imto s equal
divisions of length Os, such that SA; =4y . Consider the element
Ay with its middle point at y = n Ay (Fig. 11).

Let its s subdivisions of length £\ be denoted

-T- 7{‘
by nl, n2, n3, ---, ns, as shown in Fig. 11, ns x
-
coordinates of their middle points being de- ¥
noted by ¥y , Yoz s ---» Jns respectively. ]
Let nu and nv be two such subdivisions sym- 7T
Y:“Aﬂ”“F Ay
metrically placed with respect to the middle 4+
. ) n3
point y = n Ay, that is u + v =8 + 1. 1
n2
ni
L x
Figure 11



Because of the symmetry of the normal distribution it is clear that
a (u.,r) = B (v,—r) (651)

and Fo (W 1) = B (us 1) (7o)

where E\. (M, l’) is defined as

2
—(9= %)
a(u,r> = E_W—’?A—e ——Z—.?A"-i’_()\j (71)

W(n+r)

vhere u = 1, 2 ---, 8; n and I are any integers and (n + Y) represents

an element of length Ay with its middle point at y = (n + r) 2F.

Thus if the (reflected) mean value , = K| m Ay (m=0,1,2,-- M)
is approximated to the nearest point in the collection Y (n =0,1,2, --- M,
u=1 2, --- 8) and further if the probability mass at y = m Ay is dis-

tributed after one step within -g consecutive elements (of length Ay)

around the approximated mean, the totel number of storage locations re-
quired in the computer to carry out the computation would be considerasbly
reduced.
Thus the modified procedure would be as follows,
(1) Decide on .;L ,d, a (so that _() = (4] <aé )
and s.
(11) Determine the nearest integer (2M+ 1) which best satisfies
relation (62). Get dep 5 the effective d from the same re-

lation. Then Ay = def (wvith 64 = 1, a convenient normalization).



(111) Determine the nearest imteger z —~ 2‘_}_ , the number of ele-
of

ments of length Ay within 4 standard deviations of the unit step

transition probability.

(iv) Compute the probability areas

“( Y- %u.)
Po(u"r) — JHV'Z—-T’G?\— € 25';\7' Juy
W(r) (72)
u=z L 2,-----'5s
r=o0,0,2,---.7
v :.(M+3A9_-,'
This is just relation (T71l) with n = O. T
(v) Set up two arrays A(m), B(m) each of 1
size (M + 1 + 22) as shown in Fig. 12. ‘ —-—~:;-—-—-—"j:aé‘
Assign the initial distribution G(¥; O) V:MAT*‘_‘:_
in array A according to relation (58). 1
(vi) set the whole array B = O. :E
Do the following for m = O, |
l, 2, ---, M. For each m approximate :
the mean |K| mAy to the nearest Y, 1
then distribute the probability mass at —:—
A(zg) in the army B as follows, 9=A9_—E ___f
lj:o_ _"—'—49
T “f
(
=26}
Array A or B



B(n+ r) = A(m) fg(u.,Y)

FOY =0/,2,---=-7

(73)
B(n-r) = Alm) Bu,)

'{OY r:l,Z, ————— Z

(vii) Discard the probability masses in B(m) for m > M + 1. Add
up the probability mass B(-m) to B(m) and set B(-m) = 0, form = 1, 2, ---,Z.

(viii) Nov B(m), m =0, 1, 2, ---, M, represents G(m Ay, 1| ). To
obtain G(n Ay, % ) one goes back to step (vi), and repeatef everything
with A and B interchanged.

Of course at every step Q(NELT) = ngo G (”‘A‘J ’ N?")
For %<_=o.01,d=o.25,a=3ands.—.h;2M+1=97,andz=16

and total number of constants P, (u,r ) = SZ = 64. Hence total pumber

of storage locations required are

=2(M+ 1+ 2Z) + 82 = 226

-3
The exponential factor /\, for this case was found to be = 0.539 x 10 .

This is in good agreement with corresponding result from the criginal pro-
cedure (0.541 x 10-3), which by the way required 2({M + 1) + (M + ZI.)2 = 2499
storage locations.

The purpose of providing an extra margin of Z elements on each end
of arrays A and B is to avoid cumbersome and time consuming logic re-
quired to contimaously check whether in relations (73), l+r > M (1in
vhich case probability masses leave () ) and whether (-r <o (in

vhich case probability masses have to be '"reflected" back to the posi-



tive half of £2).

Before passing on to the case of white Gaussian excitation, a brief
mention must be made of computations made with excitation to the oscil-
lator consisting of more than 2 (8 or 16 say) periodic Gaussian im-
pulses per cycle. In that case the output <y(t), j(t)) would be
tvo dimensional. The computational procedure was quite similar to one
described in the next sectiom. The diltributionsG(y, Y, t) inside the
two dimensional region (2 were bowever found to be unsatisfactory in
the y - direction, presumably because the impulses in the excitation
vould cause direct random changes only in velocity y. Thus the approxi-
mate locating of mean positions (¥, , ¥, ) &t every step involved large
errors in the y - direction. Surprisingly though, the exponential
factors .A, computed by this procedure turned out to be in fairly good

agreement with subsequent results with white Gaussian excitation.



Section 4

WHITE GAUSSIAN EXCITATION

4.1 The Discussion of the Computational Procedure.

For white Gaussian excitation the traunsition probability is
given by relation (16). This is bivariate Gaussian distribution
with positive cross-correlation between the two random variables
Yy and y.
Reglons () of interest are (1) |y| < as , that is, first
passage through an absolute displacement barrier and (1i)
'jz+ ﬂz/yl <0L20“2 , that is, first passage through an energy (or
envelope) level. " and & are the stationary mean square
values of y(t) and y(t) respectively (relations 12 and 1k4).
To make the computations feasible for (2 = |Y| <Ac, 12 has
to be bounded in the direction of ¥ as well. These bound;,lg{ {aé&
can be chosen such that A 2~ 24 . TIn that case, probability of
approaching y - boundaries is much smaller tham the probability of
approaching y - boundaries. Further,if the oscillator output approaches an
absolute velocity of &S, probability that the absolute displacement |y|
exceeds A within a short time would be very high.
For envelope boundary of course the region (. is already finite.
The first passage probabllities are again computed by distribution
of probability masses in () after each time element At. For example
At= T/4% would correspond to 8 iterations per natural cycle

of th oscillator. For convenience we shall write 7T instead of At.

-1



2 .2
The variances & > O and cross-correlation coefficient ﬁr for

the unit step transition probability P (Ljo s Yo [ Yy ’f) are
given by relations (11), (13) and (15) respectively.

The region (2 under consideration is divided iamto rectangular
elements of size Ay, Ay. For example, for 0 = O‘jl <as, [Y] <5Cs">
there are ZM+ 1 divisions im the y - direction and 2M+ 1 elements in

the y - direction, so that

Ay—,- Zas (74)
21+

Ag = 2as (75)
M+

The center points of these rectangular elements have the coordi-

pates (n Ay, nAy),n =0, +1, + 2, --=, i!;'n=0, +1, + 2, ---, ii'

Analogous to relation (62), the size factors here are defined as

J &y (2MtD & (7e)
aL} = 8y - 24¢ (77)
S (ZFHJ)O';r

Now consider the unit step transition probability,

Py ]y.g,7)=

2 . 0O
: [(g-cz _2fe oy —C)+<%é;f’} (79)

T | & wh

[
2T & (-6 %

-42-



The mean position (E‘[ﬂ’ Ef"j]) = (C, ¢) vhere C and C are given
by relations (2) and (2').

For an elliptic region r' defined as

(‘d'C) _ 2P ooy ) 4 9= <R2j gl
[ﬁf")[ 5116'7';(9 )(‘ﬂ )+ 5';1]\ 7()

the probability volume

’ : : - R/,
ﬁ Plgor o[ gr 92 7) dydy = 1= e 7" (82
K
This integration can be performed by a transformation to coordinates
Y,0 vhere
Ycos§ = ’ 4-C 4 _—-_C :(
2C+f)]% L e 4
Ysing — | [ y-C _ y-C :{
[20-F)]% = 2

Further let all tke elemental lengths Ay and Ay be subdivided
into s and 5 equal divisions of lengths A  dnrd Az respectively, such
that SO = Alj , S As’ = A9 . Consider the rectangular
element Aj Aj with its center point having the coordinates (nA.j , N Aj)

43-



Let its 88 rectangular subdivisions (each of area A;As) be denoted as

_ _ e o2 1ae S e centve point of the element hds
on 11, om 12, oull;ma’ ’ faardina'les(néyfﬁA‘j) men
nfi 28; ---; ===, nA 8l, ---, BD B _
285 5 s ma 81, ) D 08, &8 hh Sl |nn s2 nn sS
shovn in Fig. 13, the coordinates of
the centerpoint of subdivision nn uu
- )
being denoted by ( Y., 5 Yz )~ X A4
Let on uu and nn vv be two such 7 21 |im 22 nF 2S
rectangular subelements, sym-
nnl | nni2 nn IS
metrically placed with respect
to the center point ( hAy)FlA"j ) —< A‘ﬂ >
of their parent element, that is,
fiqure 13

U+ Vv=s+1l,u+v=28+ 1,

Because of the symmetry of the bivariate Gaussian distribution about

its mean, it is clear that

and En,'rﬁ ((/L,_L:L,' Y,?) = Pn,ﬁ Cuvai L€ ?) ) <83)



R.5 (‘*’as”’7>= .’ '
2T 6 & (-7 %

— | (i‘ynu) ZF o Y-
He S [ o) - 2 (9=Y0) (¥ au)+_v._] dod
WQ(n+v, A+Y) (84)

{/(.: [,2’ —_—";S

a': ,)2!———‘—‘;§

U, U, v,y are in+e?evs and aO(n—Hf, r'w?)

represents a rectangular element of area Ay Ay with its cemter point
having coordinates ( (1) Ay , (R47) Afi)-

For all the cases considered the region (. and the initial proba-
bility distribution in (2, (i(4,9,0) are symetric with respect to
the origin (0, O) of the phase plame. The vhole problem, therefore,
possesses the same symmetry. Hence it is neceseary to comnsider only
half of (2 , say the half for which y 0.

For computations the probability masses in rectangular elements

Ay Ay are agsumed to be concentrated as impulses at their center

points. After each time step oy , each of thgle probability masses
is distributed in the half of the region () (for which y >, 0) according
to the transition probability (79), its mean position (C, C) being approxi-
mated to the nearest point in the collection ( jm{ ’ 9'611 ), n=1 2, ---,

u; —i = l’ 2’ -9 ﬁ;

-ks-
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us=1l, 2, ---83 U = 1, 2, ---%; and its distribution being restricted
2
%o the elliptic region | (see relation 80). For R = 15.2 im Te-

lation (81), 99.95 of the probability mass will be distiibuted within M.

4.2 The Computational Procedure in Detail.

The detailed computatiomsl procedure for () = (Hl Las ,[Y] <5Cé’>
is as follovs,

(1) Decide o X , T, d, , d (see relatioms 76, TT),

z YUy
s, S, asd R. For example let ‘i;. = 0.0k , T= % , dy=065,dg =052,5=5=4
“d R = 3.)+.
(11) Compute ©Op . 6} and ﬁr For the values specified above,

6 = 0147s &y = o3ll4e, o= 0%8172.

/
Grephically plot the boundary of the elliptical region M 5

r1/= | ‘: /2,2 Zf(’ (94 ./20{2] R7-7 )
= Eo—m g4 =26 (f4,) (9dy) + 9y | < J &)
[1s obtained from the veglon |  (relation 80) by first shifting
the center (C,C) to (0, O) and then substituting y = y'4y, ¥ = ¥’ AY.
For the values specified, the region P’(,Pw 9/7/ 0) is shown in
Fig. 14. The rectangular elements in the same figure are of the size
1,1. Element mumber O is centered around the origin (0, O). The
dotted lines enclose any extra area covered by the boundary of F’ if
the whole region M is shifted around,such that its center cam occupy
any possible position :Ln element number O. The outermost boundary made
up of straight segments determines the necessary arrangement of rectangular
elements of size 1,1 which are required to completely enclose the ellipti-

'/
cal regica M with its center anywhere in element mumber 0. These
’ -hé-
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elements are suitably numbered as shown. Ilet this arrangement of
elements be denoted by [ g . Because of the symmetry of the situation,

M for §’o will be symmetric (vith respect to the origin) to its
positive counterpart.

Let (2Z+ 1) and (2Z + 1) represent the maximum number of
elements spanned by the whole of | ” (including its half for § <0)
in y' and j' directions respectively. Also let total number of elements
1tn "7 be denoted by 2J + 1. For Fig. 1k, 2Z+ 1 = 13, 2Z+ 1 = 15,
and 27 + 1 = 111.

Let the coordinates of the center point of element number J be de-
noted by (kj > '}E)- ). Also let element number O be subdivided into
sé rectangular subdivisions in exactly the same way as shown in Fig. 13,
the coordinates of the center point of subidivision oo uu being denoted

by (yolw ’ yo/a ). Then it ies easy to see that

P/(u.,a;}) = ko (LL’ w; k} , E})

vhere the right hand side is given by relation (84) ard the left hand

side is defined as

Pl(w.a.))

X

2T (- i)

ff -~ [ o )ey — 2@(v'-véu)(sr’—aéa)éjég+(9’—%£u)df]dg’da’
(j) (86)



u=1,2, --- 8

u

1,2, --=.8
j=0,1,2, === J
W(j ) = rectangular element number J(of size 1,1) in r,
(111) Now the computations can be performed with a singlé computer
programme for any general values of a and a.

With given values of a and a, determine the smallest integer
(2M+ 1) vhich best satisfies relation (76), then determine d,q o
the effective dy from the same relation. Similarly determine 2M+ 1
and d"jef . This procedure ensures that dye{ ) 4y, d.jreF o 4.

(iv) Compute probability volumes P’(u,ﬁ.j) given by relation (86)
(with effective values Qg and dj[’F ), using parabolic rule for numeri-
cal integration.

With dy. x djef _, dy dy, one is assured that the actual proba-

_p2
bility volume enclosed in the vhole of I is > I—¢€ K72
(v) Compute the effective probability volumes
Plu,a,j) = P/(wa.)) fu(wi) (%7)
I _
where a4 (u, ) = Plut,0) +2 2 Plu,, j) (38)
=1

-—

Thus the probebilities P'(WT,j)are normalized to P(Wi,j) so

that their sum over r”/ = 1.

, S &
Also compute — Z_i/u(u,a) (89)
0=

(vi) Set up 2 two-dimensional arrays A(m,m), B(m,m) each of size

(M+ 1+ %, 2M+ 1 + 4Z) as shown in Fig. 15.
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In each of these arrays, an element (m, m) corresponds to a rec-
tangular element of size Ay, Ay with its center having the coordinates
(m Ay, @ 4y).

(vii) Aseign the initial distribution G(y, ¥, O) in array A as

follows

. )

mMby+8y/2 MbY+BY/2
A(m, =) :( G(Y, 4,9 oy dy

mby —8Y2 WAy - DY/

)Cov’ I{mgM
MM KM Qo)

Byfa mAY+DY)2
= £ Gi(y1950) dydy

=48y TmAy-0y/2

{or =0

_M’\<m\<M

(viii) Set the whole array B = O.
Do the following for m = O, 1, 2, --- M; @ = -M, ---1, 0, 1, ---M
(total of (M + 1)(2M+1) times)

Compute the mean position of (m Ay, m Ay) after time T from




relations (2) and (2'). Let this mean position be denoted by Um with
coordinates ( C,, Ay Cp 89 ).

If Vo, liee in the kalf of (2 for which y < O (i.e. (,,<0),
"reflect" 7, across the origin to position 7j,, wvith coordinates
(" Cn 89y —C5 A‘ﬂ)

(or Ve

With reference to Fig. 15, if U, o lies to the right of lime CD
(1.., C,, > M+ 2 + 1/2) or if 2}, 1lies above line AB or below line
EF (i.e., ICF\ , > M+Z+i/2 ), discard the contribution of the probability
mass at position A(m, m)

Othervise, approximste point V., (or V., ) to the nearest point
in the collection (¥,, » ¥rx )3 O < K M, ML DN 1 u (s,
1 {8 8. (see Fig. 13).

Distribute the probability mass at A(m, m) in the array B as follows,

B(neki» ith) =Amm) Plwi,))

-For j:O,I,Z,————T (q‘)
Blomtj » 5K ) = A ™) P(s-urs-7,))
for j=h2,----7

Here P(u,u, J) is given by relations (86), (87) and (k] , _li-) )
are the coordinates of the center point of element number j in the region F”.
All the (2T+ 1) equations indicated by relation (91) are written out
in full in the computer programme with numerical values of kj » Ej
(determined from the region [’ Y , previously established independently

of the programme) inserte? in them. This was found to be the most



efficient way of comductimg the computatioms. For this highly repetitive
part of distributimg the probability masses ia r , the programme has
20 decisiom-making logic. (A series of similar equatioms, like those
im relatiom (91) cam be writtem im a FORFRAN programe as & combination
of DO LOOPS. However this would implicitly imvolve extra decision making
locig om the part of the computer.)
(ix) Discard the probability comtributioms im Array B which lie
outside the fegiol‘ GHJK (Fig. 15), taat is, for vhich m > M or lx—l} > M.
Add up the probability B(-m, &) to the probsbilitiy B(m, -m) amd
set B(m,m) =0, ferm=l, 2, --=, Z; B = M, ---, -1, 0, 1, ---, M.
(x) Now the arrey B(m, m), m=0, 1, ---, M; m =0, + 1, ---, +M;
represents the probability distributiom G(m Ay, Ay, T ) in (2 .
To obtaim G(m Ay, ® Ay, 27 ), ome repeats from step (vit) with A
and B interchanged.

At every step,

R
Q) = 2 > 2 Glmby, Aag,N1) (92)

mz= :_F,

o
3|

fvr)

@ (n-97) — @ () (33)

and  f(NT) = Q(N'T‘)/Q ((N-D7) (44)

Computations are comtimued umtil f (N7) approaches a comstamt value.

-53-



Defining,

N—- a0
A= —T [nf
(L)

and D, = lim Q(NT)
N—eo [ f(ne) "

the asymptotic expression for Q(t) becomes

RE) = D chLt

4,3 Tests on the Computational Procedure.

The test case chosen was as follovs,
% =oof, O = (Yl <as yl<ze),
G(V;?,O) = g(\j) S(‘j)

(a) Por T=TL , a=15,&=3, dy= 065, dy= 052
4%
end s =3 = 4, Fig. 16 shows variation of the expomential factor A
with (1 -.u), the volume under unit step traneition probability
1/

which lies outside the region n’ (see relation 89). All subse-
quent tests are performed with 1 —=0.0001 to 0.0002.

(B) Variation of A, with @ is shown below for & = 1.5, 1 =AM

= 0.0001 and all other input parameters as im test (A).

-5h-
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‘
%

o 2

L 0.11716
5 0.11688
6 0.11642

(C) Fora=1.5,8 =3, 8 =3 = L4, Fig. (16) shows variation of
A, with the size factor dy dy (effective values) and with the time
element T . Variation of )\, wvith dy dy is of the same nature as

that in Fig. 7 for one dimensional process. There is a large vari-

ation in A betweem T= ZTT? (4 iteratioms/cycle) and T= %
(8 iterations/cycle). The variation reduces sharply between T= ng
and T=1 . A (and hence the probability of leaving _2 )

3
increases as T decreases. This can be easily explained. The nu-

merical iteration after every time step 7 , corresponds to examining
the random oscillator output afber each time interval T . By doing
this one entirely misses all the cases where oscillator leaves _(2
and comes back in, all within time T between two consecutive obser-
vations. Thus the probability of "catching" exits from (2 decreases
as T increases. .
Fig. 17 shows how im the phase plane the
mean positiom (C, () (see relations 2 and 2') / (‘

of am oscillator path originating at (y, , ¥, )

decays ultimately to (0, 0). It is quite clear

that if (y, , %, ) lies im the region ,;\

|7
1 Envelope

-7 boundaYtj

P
2, . However if (y, , ¥ ) lies in the e Displacerment |

boundaries
region -QJ)E (I‘:N <Jo) , (at least for -Fiqure (7
-56-

_QE = (*jz‘r"j_z <a7'), (C, €) will always lie in
Ul



some positione (y, , ¥, ),like the one showm in Fig. 17) (¢,C) may very
well leave (2 and be back im sgain. Thus one might say that the proba-
bility of having a first passage and re-entry within a small time T 18
higher for (2 tham for ~2r . Hence the size of the time element 7

in computations should imtroduce lesser error in the first passage
probability for (2 ¢ than in the first passage probability for {2y .

(D) Final check om the computational procedure vas to compare the
probability distributions obtained from nmumerical iteration, with those
from relation (16). For this test 9_?;- = 0.08, T = } , dy = 0.65,
dy = 0.52, 8 = 8 = 4, 1 — AL = 0.0002.

The iteration vas limited to a region (2 -:-( Yy + i; (e )%)
and G(3, ¥, 0) = $(¥) (7). The envelope region wvas apiroximted by
a suitable collection of rectangular elements of size Ay, Oy es
ghown im Fig. 18. The computational procedure for the envelope
bourdary was along exactly the same lines as the one detsailed out
previously for the displacement boundaries. The iterated distribution
obtaimed after 5 natural cycles (that is after LO jterations) was com-
pared with the theoretical distrdbution (16). From relatioms (11), (13) : X
amd (15), for t = 5 x %ﬂ » 6f = 0,996805 &= 0.99%675 , ﬂ = 0.1075 x 0 .
The corresponding averages from the computed distribution were S = 1.008s5

-2
& =1007T6& f{ =0.121 x 10 . The actual distributions ob-

tained are comparzd im Fig. 18. For this comparison the theoretical
distribution (16) was also imtegrated on ractangular elemeamts of size

Ay 0§ eand assumed to be im the form of impulses at the centers of

these elements.
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k.4 The Fimal Results and Discussiom.

Table 1 shows the final results obtaimed. For all these results
T= I—U . Unfortumately it was foumd to be quite umecomomical to perform
more than 8 iterations per cycle. The expomential factors )\, given
below, therefore may be looked upon as lower bounds to the correct values.
The differemce is expected to be of the order of 5% for the emvelope

boundaries and 109 for the displacement boundaries.

TABLE 1

For all the results given below ’I":Z_:_T.K , 8=8=U4, 14  0.0002,
dy (effective) = 0.65 to 0.7, dy (effective)= G.5 to 0.7 and a =~ 2a.
D represents () = ( jy] {a6), that is, first passage through
symmetric displacement barriers.
2 2 2 2
E vrepresents (L = (y + %_ < a 6 ), that is, first passage
through 'an evelope barrier.
GL represents G(y, ¥, 0) = &(y) 5(3), that is, the
oscillator is initially at rest.
G2 represents G(y, ¥, O) = stationary distribution inside
whole of ()
G3 represents G(y, ¥, O) = stationary distribution inside a square

portion of 2 ; [y| s, |y L as

Q(0) = ffG(%‘j:o)"tldj , and 1s givem to aid comparisom with D,. The
ed

asymptotic expressiom for the first passage probability Q(t) is given by
Q) = D& Mt



No. % Regiom 2 G(y, ¥%0) & >\1 D, Q(0) }\u//e_%.E
1 0.08 D Gl 1 0.4678 1.3588 1 0.767
2 " " " 1.5  0.1835 1.2588 1 0.565
3 " " " 2 0.69L\6x1.0.1 1.1487 1 0.512
L " " " 2.5 0.2319x10-1 1.0696 1 0.528
5 v v 3 o0.63ox10 . 10281 1 0.57k
6 " " " 4 0.2181x10-3 1.0011 1 0.653
7 0.08 E Gl 1 0.7010 1.3365 1 1.271
8 " " " 1.5 0.2720 1.2749 1 0.839
9 " " " 2 0.1106 1.1853 1 0.816
10 " " " 2.5 o.3966x10-l 1.0976 1 0.903
1 " v 3 0.mBa0  1.033 1 1.085
122 " " © 4 0.5981a0 ~ 1.008 1  1.780
13 0.0 D Gl 1 0.3035 1.4127 1 0.499
1k " " " 1.5 0,1148 1.2892 1 0.35%
15 " " " 2 o.M+79x10-l 1.1782 1 0.331
16 " " " 2.5 0.1553x10-1 1.0851 1 0.354
17 " " " 3 O.hl&92x10-2 1.0319 1 0.L40k4
18 " " " 4 0.180x10-3 1.0019 1 0.537
19 0.01 D G3 1 0.107k 0.3843  0.4534 0.177
20 " " " 2 0.1.51;5;:10-l 0.8400 0.9081 0.11k
21 " " " 3 0.1780x1c_>;2 0.9882 0.9946 0.160
22 0.01 D G3 L 0.828x10 1 1 0.2UT
23 0.01 E G2 1 0.1310 0.3345 0.3951 0.216
2 v » 2 0.101x10  0.802] 0.8656 0.140
25 " " " 0.21+50x10-2 0.9819 0.9890 0.220
% " " " L OolllexlO-a 0.9997 0.9997 O0.417




Figures (19) amd (20) shov results ‘mumber 5 amd 11, Sh?wn im these

figures are Q(NT ),
fine) = ® ((N-)1)— @ (N,
and. f‘—’(Nq‘) = Q(NT)/Q((N-I)T)

Also showm are the expomeatial amd the hyperexpomemtial approximatioms

- - AT+
@exP (1) = Qe A"%t —e

Sy v —A Yt
and Q’UPH): De Tt De

* *
Dy and A 2 are determimed from the comditioms

Q/ (O) = Q) = 1

)yP

ot thﬂ) ) t=0

These approximatioms are plotted as

_/\ll\l_
QQXP (N'f) - € 4

7(exP (N'l’) = Qf’xp ((N*')T) - QQxF (NT}

x M
Qhﬂp(NT) :DI € 4+ Df ¢ '

| Z

N

frgp (N9 = @y (0-07) = @, (N1)
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Figure 20

White Gaussian excitation. Computed first passage probabilities,

exponential and hyper - exponential approximations.
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There is & marked cyclic fluctuatiom im the first passage proba-
bility {(N7T) im Fig. 19. The frequemcy of fluctuatiom is twice the
matural frequemcy ¢ of the oscillator. Note that the region (2 for
this result is of the type D(displacememt barriers). With referemce
to Fig. 17 it 1s easy to see that am oscillator path startiag from
(% , ¥ ) would bave a relatively high probability of leavimg the
regiom _(2 = (H[ <0L6') , whemever its meam positiom (C, C) approaches
or crosses the boumdaries y — fas amd this happems with the frequeamcy
of 2¥ . Similarly the path would have a relatively low probability of
leaving <2 if (C,C) is well imside (2

Simce for a path startimg from imside of am eavelope regioa ) y
the mean positioa (C, C) can mever leave () , the cyclic fluctuatiom
im the first passage probability for am emvelopz barrier should be com-
paratively less. This is imdeed so, as seea im Fig. 20 (for the em-
velope boumdary). Whatever small cyclic fluctuatiom im -F (NT) 18
observed,is due to the fact that for small T , the tramsitiom proba-
viutty Py, 9 | Y 4,7)  is umsymetric. For example ia Fig. 21

A /4

two oscillator paths startiag

AT~ = )

from positioms A amd A; im the N /n
o 2 2 Y
region {2 = ( 4o+ ‘1/‘0’1<a5>, ‘ /M

/ L//

have the meam positioms M amd M, /

after ’T":-Z,ﬂ? . The ellipti- ..

ur\d ]
cal regioms [ amd ﬂ around M {Ba Y

ojC_Q

N\

amd M, are of exactly the same

shape and size, amd emclose areas o

of the phase plame im vhich paths Fﬂ ure 21
!




from A amd A, will most likely emd up after T (say with probability
0.99). Yet [ amd [, are quite differemtly oriemted with respect
to the boumdery of 0

For all the cases where G(y, ¥, 0) = 5(y) $(§), the first
passage probability f£(t) starts from O, attaims a maximum value amd
thea approaches expomeatial behavior shortly, as already illustrated
in Figures 19 amd 20. The time required by f(t) to sttaim a maximum
value imcresses as the size of the regiom L2 (of type E or D) im-
cresses, and as the dampimg factor % decreases. This is because both
these factors (imcrease im ) or decrease inm 2;. ) imcresse the time
required by the oscillator (vhich imitially has zero emergy, simce
6(y, ¥, 0) = S(¥ S (5r)) to attaim high emough displacements or
emergies to cross {2 . This shift im the maximm of f(t) is illus-
trated im Figures 22 amd 23,

Fig. 22 shows results mumber 4 amd 16 (see table 1). For both
thege cages _() = OW <2"5‘€> and G(y, ¥y, 0) = S(y) 5(y). The
damping factors % hovever are differeat.

Fig. 23 shows results mumber 1, 3, 5, and 6. For all these cases

% = 0.08 e2d G(y, ¥, 0) = 5(y) S(J). The parameter’s’, indicating
the size of () = (]9[ <6k6') , 18 differeat for each case.

Fig. 24 shows result aumber 20. The imitial statiomary distributiom
inside the square of size A6 was comsidered so that Q(t) amd f£(t) may
converge towards their expomeatial forms more rapidly.

In additiom to Q(NT ) amd (N7 )

P(nD) = Q(”"’%Q (-7) (105)
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White Gaussian excitation. Computed first passage probabilities.
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White Gaussian excitation. Computed first passage probabiiities
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White Gaussian excitation. Computed first passage probabilities

and exponential approximations.
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is also shown.

F(NT) wes comsidered im place of (NT) = CWN"‘)/Q ((N-D7), because
this emabled somevhat more accurate determimatiom of the expomemtial
factor )‘l . Sinmce ?(NT) is the ratio of two values of Q(t)
separated by half a cycle, it shows practically mo cyclic fluctu-
ation (a8 compared to P(NT) 1ia Fig. 19). Also showm im Fig. 24

are the expomeatial approximations

!

—A
Ry N1) =R (0) e 7

{eXP (NT) = QQXP ((N‘D T) — QexP (NT)

The imitial decrease im Q(N7) (ud corresponding high imitisl
values of f( NT )) is due to the fact that the imitial distributionm
G(y, ¥, O) im this case is quite well spread im (2 . As a result,
there sre alvays some oscillator paths with high emough emergies im-
itially to leave () withim a very short time.

Fig. 25 shows result mumber 24 for the correspomdimg eavelope
boumdary. The imitial distributiom imside the whole eavelope regiom

is statiomary. Agaim Q(NT ), £(N7 ),?( NT ), QexP (NT ) amd

-Fexp( N7 ) are showa.

Fig. 26 shows variatiom of /\, with X and the size of the
- 6[/ - 68—/2—
1 region () . Simce varistiom of A, with'a is of the order of €
i z
- Q
the plot shows variatiom of /\, / e —;: rather than that of )\, .
D imdicates values of )\, for the displacement barriers amd E indi-

cates those for the emvelope barriers (as im table 1). The straight
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Figure 26
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lime C imdicates values of AT sccording to Cramdell's approximate theory,
curve MC imdicates a modificatiom of it (see Appemdix A). This modified
solutiom MC is suggested with the hope of explaimimg the similar dowm-
ward tremd of computed values of Ah/e—%; for low values of a. Curves
M demote values of A, receatly compuated by William D. Mark. His
complete results have mot beem published yet, those preseated iam Fig.

26 were commmicated persomally. A rough idea of his approach may be
gleaned from Appemdix B.

From Fig. 26 it is clear that all computed solutioms for the dis-
placement boumdaries temd towards Cramdall's solutiom C as a’ imcreases.
Hovever ome camnot say whether the correct values of ,A| for displacement
barriers would merge with C or settle dowam below it. As explaimed im
Appemdix A, these values sbhould always be less tham Cramdall's solutioms C
(or the modified solutiom MC for small values of'a). -

Finally Fig. 27 shows varietiom of factor D; with 2%. and'a. These e
do mot seem to very too mach with %? or the type of boumdary for {2 .
As mentiomed earlier, for distributiom Gl(%hnt is, 6{y, ¥, 0) = &(¥) o (ii)
%gg = 0. Thus factors D, for this distributiom are > 1. For
dist;i;gtions G2 and G3, because of the sharp imitial decrease ia Q(t),
factors Dy are 1. For &} 3, Dy = 1, thus the expozertisal
approximatiom QeXP(t) = Q(O)e‘/\“%f is imdeed quite good.

It may be imstructive to mote that the above results for white
Gaussian excitation show the same gemeral tremds as those for ome di-
memsional model discussed im Section 3, though the specific values for

the two cases are quite differeat.
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Lastly we discuss the possibility of determiming the first passage
probabilities for still lower values of the dampimg factor _‘% (of the
order of 0.001). Umfortumately the iterative methcd preseated here is
quite umable to cope with such extreme cases. Both the computimg time
and the necessary storage capacity moumt famtastically as E?. de-
creases or“n”increales« However with this appraoch we have beem able
to show that the multiplyimg factors D, are roughly imvariamt with %%
and further that D, =~ 1 for A 2>3. Thus to get a fair estimate
of the first passage probabilities for lower values of %% , ome omly
needs to kmov the expomemtial factor A, correspondiag to domimant
eigen value ﬁ.

M. Kac (Ref. 5) has foumd a variatiomal formula for determimiag
the meam first passage time for leavimg the regiom (2 = (9,>0) ,
given that ome imitially starts with the statiomary distributiom imn (2 .
This approach cam be extemded to apply for ({2 = (f‘jl <as ) . The
kmowledge of the meam first passage time would emable a fairly good
estimate of A, baged om & suitable expomential or hyperexponemtial
approximation imvolvieg kmown velues of Dj-

A second possibility arises from the fact that the exponential
factors A, for corresponding displacement amd envelope bourdaries,

_QD = (M <a6‘> and —QE = (‘17"* "42/252 <§3€l) respectively, approach
each other (for same size ') as the damping factor 2% decreases.
This cam be seen in Fig. 26 where the vertical separation between
solutions E, M and D is lesser for %% = 0,01 than for %% = 0,08.

This behavior cam be easily explaimed. The random oscillator
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process becomes more amd more correlated as damping decreases. For low
enough values of < , the process would trace out almost circular
paths ( tjz + HL/z;z: conskm’f) in the phase plame, with circular
frequencies very closely distributed around the matural frequency. 1.4
of the oscillator.
Thus the first passage probability for amy arbitrary regiom ok
would be effectively determined by the largest emvelope region _Q{
that cam be fitted imside. 2 . I
As imdicated im Appemdix B, the eavelope process r(t) = (lf'(f) + ‘jj_?)z
can be described as & temporally discrete ome-dimensiomal Markoffianm ?
process, for t = ﬂ;_T y=0,1, 2 ...
This simpler model has beem used by W.D. Mark. As explaimed
earlier, the effect of examimimg the process after relatively large time
intervals ‘T:% would be to decrease )\. . However the extemt of this
error would decrease with dampimg factor X . For a highly correlated

J
oscilletor process, the probability of leavimg amnd re-emtering amn eavel-

ope region withinm ’fz.g , would be quite small.
As a result, for X £0.01, Mark's estimates of )\, for emvelope
14 _
barriers would apply equally well to the correspondimg displacement

barriers.
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Appemdix A

An Approximate Solutiom to the First Passage Problem

An approximate solution for the first passage probability Q(t)
for £ = (}W <c'\s'>

butiom inside () , was foumd by Crandall amd Mark (Ref. 8).

, aad G(y, ¥, O) = stationary distri-

The statiomary probability distributiom W (y, ¥) for the

oscillator output is obtaimed as lim. P(% A , Y; ¥, t) (relatiom 16),

+ o0

Thus ,
. . (L9t
Wiy9) = 1 2(?2*?;7) (06
2T 65
where = E’["ILJ = lim "-'/:L : E;SA ('07)
SIc-h'Ormrj + 5e0 70(?5*
and &= E[ljl = lim. 6_;2-:_— lss =86 (10%)
5‘}-%'“0")6\77 + a9 2
From Rice's formula (Ref. 4), expected rate of crossimgs of level
Y=as with y > 0 is givem by
+ I /s
V., = fg W(QC,‘])Ay = | 6 ¢ 7* (/09)
A 2T €
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Similarly the expected rate of crossimg of level Y=-Gs with <o

is given by

V= L & g% (110)

Makimg the approximatiom that the eveat E = (crossimg the level
Y = A6 with ¥ > O or the level y = —A6 with < 0) 48 purely ramdom
in time, with average rate of occurremce V), = Vot t \é,: ; Ome gets
a Poissom distribution , F (+) =%_7'5)n g Vat , for the probability
of n events E occurrimg im time t.r"Neglecting small mumber of paths.
origimating from outside (2 at time t = O, ome gets

Q(t) = probability of mo evemt E im time t

since
_ Ry _a®
A AR AR e L e (1
m s 1
- ANt
ome gets , RI) = e T (112)
2
With A':E a/z
o/

Thus the straight lime C im Fig. 26 represeamts the solutiom A, -e .
If the time betweem eveats £ be demoted by ramdom variable L; L,

the mean value of [ 1is clearly = .3;'
o

Thus a slightly differemt way of derivimg relstiom (112) would be

to assume that f(t) = — Q1) y is expomential and the mean first
ot

passsge time is L .



to

thus £
1

—t — Vat
T =€ as before.

However if imstead of assuming meam first passage time to be equal

—

L , ome assumes it to be equal to g, where g is the ramdom

variable represemtimg that portiom of [ vhich lies inside 2

(see Fig. 28),
one getl » {- j_—m— /\' 4}/"’\\
fy- L5 a N
9 L |
! |
It is quite clear that I |
70— —
q =kl ] !
: - ,
| | |
|
where H:_M-_% : \/l —4
<= [ty )y PR
ol
Qa. 2z
-Y72
=2 f e 4y 1) Foure 23
.
Thus f£(t) = 1 e kt
KT
-t — Vat -A 3+
or Q=€ Kkl e &k =e T
-G~ 4
with A= & T 114)
K
This i3 the modified solutiom amd the curve MC ia Fig. 26 represents



N = € (11s)

These solutions (C amd MC) cam be expected to predict higher first
passage probabilities (that is higher values of A, ) tham the correct
values because mo accoumt is takem of amy correlatiom betwesem com-
secutive crossimgs of levels y = + A6 . This correlation (which is
quite stromg for low values of %‘- ) temds to clump these crossimgs to-
gether im time. The aversge separation (im time) betweem such clumps

is of course comsiderably larger tham L , thus resultimg imn a smaller
A
The curves MC amd C (for high emough values of ‘a) provide upper
boumrds for )\, » omly for displacement barriers. As séem im Fig. 26, —
)\, for the envelope boumdary ( ljz' + "j"/?jz <c\?'6'7' ) can easily

exceed & 7 .
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Amndix B

A Ome Dimemsiomal Model for the Eavelope Process
AY/y

Comsider a radially symmetric
Probability distributiom G(r, 0)

at time t = O, in a circular

element of radius r amd width dr

in the phase plame (y, y/¥ ) or

(r, ©) where y = r cos 9, % = sim ©.

(see Fig. 29)

After time t = _g- s 8a osclllator
path startimg fwom positiom (r, , 6, ) Ff}“"e 219
would have its meam positdom at poimt M,

diametrically opposite to (r, , 6o ) amd
—TTex

at a radius of H € B (see relatioms 2, 2'). Its distributiom
around meam M will be totally symmetric with respect to y amd % , with
zero cross-correlatioan. This is imdicated im Fig. 29 by circular regiom
around M. Arguimg for all positioms im the circular rimg, it folliows
that the resultimg distributiom st time t = ]BI would be radially sym-
metric too, say G(r,lg_ ).

Thus as lomg as ome starts with a radially symmetric distributioa
at t = 0, and examimes the process at t = nl sa=1,2,3, ..., One
obtaims a ome-dimemsiomal process r(t) [ instead of two dimemsiomal
<r(t) , 9(1:))]1 . I{ cam be showm that the tramsitiom probability

P(Yo Y, Qg) for this process is givea by,



n
Ple |1 er) = ¢ e Io(—"——";_t'ﬁ )
(11§)
where 6 = 6 (1-k")
s = TS (r’ela4ian Iz)
2<%
- T
k = e B
amd I,(x) is the modified Bessel fumctiom of the first kimd amd zero
order,
ToC) = |+ 22 2% 1:3-§----(n-D) (17)

h=2,4,6,-1*! 2:4-6---n

The tramsitiox probability (116) is obtaimed by tramsformiang relatiom
(16) (for t = AT ) to polar coordimates amd imtegratimg it with
respect to the uﬁuhr coordimate 6 from O to 27 . It cam be showa
that the process defimed by (116) is Markoffiam.

W.D. Mark has solved the first passage problem for eavelope
boundaries,essentially using the above ome dimeasiomal model. His

findings will be published shortly.

o+

—a(t
On substitutiag l'f'tlg 2+t and K=-¢€ n in relation

(116), ome obtaims the tramsitiom probability for a temporally comtimuous
Markoffism process r(t). This process has beem discussed im Referemces

(10) amd (12).
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