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The passive states of a quantum system minimize the average energy among all the states with a given spectrum.
We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise
from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that
the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output
generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum
of ρ. Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated
by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], where the same result
is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality
property can fail already in a two-level system, where the best input is a coherent superposition of the two energy
eigenstates.

DOI: 10.1103/PhysRevA.93.062328

I. INTRODUCTION

The passive states [1,2] of a quantum system are the states
diagonal in the eigenbasis of the Hamiltonian, with eigenvalues
decreasing as the energy increases. They minimize the average
energy among all the states with a given spectrum, and hence
no work can be extracted from them on average with unitary
operations [3]. For this reason they play a key role in the
recently emerging field of quantum thermodynamics (see [4,5]
for a review).

Majorization [6] is the order relation between quantum
states induced by random unitary operations, i.e., a state σ̂ is
majorized by a state ρ̂ iff σ̂ can be obtained applying random
unitaries to ρ̂. Majorization theory is ubiquitous in quantum
information. Its very definition suggests applications in quan-
tum thermodynamics [5,7,8], where the goal is determining
the set of final states that can be obtained from a given initial
state with a given set of operations. In the context of quantum
entanglement, it also determines whether it is possible to
convert a given bipartite pure state into another given pure state
by means of local operations and classical communication
[9,10]. More in the spirit of this paper, majorization has
proven to be crucial in the longstanding problem of the
determination of the classical communication capacity of
quantum gauge-covariant bosonic Gaussian channels [11], and
the consequent proof of the optimality of Gaussian states for
the information encoding. Indeed, a turning point has been the
proof of a majorization property: The output of any of these
channels generated by any input state is majorized by the
output generated by the vacuum [12,13] (see also [14] for a
review). This fundamental result has been extended and linked
to the notion of passive states in Ref. [15], where it is proved
that these states optimize the output of any one-mode quantum
Gaussian channel, in the sense that the output generated by a
passive state majorizes the output generated by any other state
with the same spectrum. Moreover, the same channels preserve
the majorization relation when applied to passive states [16].

In this paper we extend the result of Ref. [15] to a large class
of lossy quantum channels. Lossy quantum channels arise from

a weak interaction of the quantum system of interest with a
large Markovian bath in its zero-temperature (i.e., ground)
state. We prove that passive states are the optimal inputs
of these channels. Indeed, we prove that the output �(ρ̂)
generated by any input state ρ̂ majorizes the output �(ρ̂↓)
generated by the passive input state ρ̂↓ with the same spectrum
of ρ̂. Then, �(ρ̂) can be obtained applying a random unitary
operation to �(ρ̂↓), and it is more noisy than �(ρ̂↓). Moreover,
�(ρ̂↓) is still passive, i.e., the channel maps passive states into
passive states.

In the context of quantum thermodynamics, this result puts
strong constraints on the possible spectrum of the output of
lossy channels. It can then be useful to determine which output
states can be obtained from an input state with a given spectrum
in a resource theory with the lossy channel among the allowed
operations. The Gaussian analog of our result has been crucial
for proving that Gaussian input states minimize the output
entropy of the one-mode Gaussian quantum attenuator for
fixed input entropy [17]. Our result can find applications in the
proof of similar entropic inequalities on the output states of
lossy channels in the same spirit of the quantum entropy power
inequalities of [18–21], and then determine their classical
capacity.

Our result applies to all the interactions of a quantum system
with a heat bath such that the reduced system dynamics can
be modeled by a master equation [22,23] and the following
hypotheses are satisfied.

(1) The Hamiltonian of the system is nondegenerate.
(2) The system-bath interaction Hamiltonian couples only

consecutive eigenstates of the Hamiltonian of the system alone.
(3) If the system starts in its maximally mixed state, its

reduced state remains passive.
(4) The bath starts in its ground (i.e., zero-temperature)

state.
The first assumption is satisfied by a large class of quantum

systems, and it is usually taken for granted in both quantum
thermodynamics and quantum statistical mechanics [24]. The
second assumption is also satisfied by a large class of quantum
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systems. The third assumption means that the interaction
cannot generate population inversion if the system is initialized
in the infinite-temperature state, as it is for most physical
systems. The fourth assumption is, for example, satisfied by the
interaction of a quantum system with an optical bath at room
temperature. Indeed, �ω � kBT for ω in the optical range and
T ≈ 300 K, hence the state of the bath at room temperature is
indistinguishable from the vacuum.

These assumptions turn out to be necessary. Indeed, drop-
ping any of them it is possible to find explicit counterexamples
for which passive inputs are not optimal choices for output
majorization.

The manuscript is organized as follows. In Sec. II we briefly
recall some basic facts about majorization and the notion of
passive states. The main result of the paper is instead presented
in Sec. III where we first define in a rigorous way the class of
lossy maps we are interested in and then proceed with a formal
proof the optimality for passive states. Section IV is instead
devoted to counterexamples. In particular in Sec. IV A we
show that for the two-mode bosonic Gaussian quantum-limited
attenuator, whose associated Hamiltonian is degenerate, no
majorization relations can be ascribed to the passive states. In
Sec. IV B instead a counterexample is provided for a two-qubit
lossy map with two different choices of the Hamiltonian. In
Sec. IV B 1 the Hamiltonian is nondegenerate, but the process
involves quantum jumps of more than one energy step. In
Sec. IV B 2 only quantum jumps of one energy step are
allowed, but the Hamiltonian becomes degenerate. In Sec. IV C
we analyze the case of a map where the bath temperature
is not zero. We show that the optimal input states are a
pure coherent superposition of the Hamiltonian eigenstates,
hence nonpassive. Conclusions and comments are presented
in Sec. V while technical derivations are presented in the
appendixes.

II. MAJORIZATION

Majorization is a concept that gives a precise meaning
to the proposition “the quantum state ρ̂ (or the probability
distribution p) is less disordered than the quantum state σ̂ (or
the probability distribution q)”. The interested reader can find
more details in the dedicated book [6].

Let us start with the definition for probability distributions.
Definition 2.1 (Majorization). Let p and q be two discrete

probability distributions on a set of d ∈ N elements with

p1 � . . . � pd, q1 � . . . � qd. (2.1)

We say that p majorizes q, or p � q, iff

n∑
i=1

pi �
n∑

i=1

qi ∀ n = 1, . . . ,d. (2.2)

Definition 2.1 can be easily extended to quantum states.
Definition 2.2. Let ρ̂ and σ̂ be quantum states acting

on Cd with eigenvalues p1 � . . . � pd and q1 � . . . � qd ,
respectively. We say that ρ̂ majorizes σ̂ , or ρ̂ � σ̂ , iff p � q.

From an operational point of view, and for the applications
in quantum information and quantum thermodynamics, it is
useful to express majorization as the order relation induced by
random unitary operations (see Sec. II.C of [25]).

Theorem 2.3. Given two quantum states ρ̂ and σ̂ , the
following conditions are equivalent.

(1) ρ̂ � σ̂ ;
(2) For any convex function f : [0,1] → R,

Tr f (ρ̂) � Tr f (σ̂ ). (2.3)

Taking f (x) = x ln x and f (x) = xp, p > 1, (2.3) implies
that the von Neumann and all the Rényi entropies [26] of
ρ̂ are lower than the corresponding ones of σ̂ ;

(3) σ̂ can be obtained applying to ρ̂ random unitary
operators, i.e., there exist n ∈ N, a probability distribution
p on {1, . . . ,n} and a family of unitary operators {Û1, . . . ,Ûn}
such that

σ̂ =
n∑

i=1

pi Ûi ρ̂ Û
†
i . (2.4)

A. Passive states

We consider a d-dimensional quantum system with nonde-
generate Hamiltonian,

Ĥ =
d∑

i=1

Ei |i〉〈i|, 〈i|j 〉 = δij , E1 < . . . < Ed. (2.5)

A self-adjoint operator is passive [1,2] if it is diagonal in the
eigenbasis of the Hamiltonian and its eigenvalues decrease as
the energy increases.

Definition 2.4 (Passive rearrangement). Let X̂ be a self-
adjoint operator with eigenvalues x1 � . . . � xd . We define
its passive rearrangement as

X̂↓ :=
d∑

i=1

xi |i〉〈i|, (2.6)

where {|i〉}i=1,...,n is the eigenbasis of the Hamiltonian (2.5).
Of course, X̂ = X̂↓ for any passive operator.

Remark 2.5. The passive rearrangement is unitarily invari-
ant, i.e.,

(Û X̂ Û †)↓ = X̂↓, (2.7)

for any self-adjoint operator X̂ and any unitary operator Û .
Remark 2.6. The passive rearrangement of any rank-n

projector �̂n is the projector onto the first n energy eigenstates:

�̂↓
n =

n∑
i=1

|i〉〈i|. (2.8)

Remark 2.7. It is easy to show that passive quantum states
minimize the average energy among all the states with a given
spectrum, i.e.,

Tr[Ĥ Û ρ̂ Û †] � Tr[Ĥ ρ̂↓] ∀ Û unitary. (2.9)

III. OPTIMALITY OF PASSIVE STATES FOR LOSSY
CHANNELS

The most general master equation that induces a completely
positive Markovian dynamics is [22,23]

d

dt
ρ̂(t) = L(ρ̂(t)), (3.1)
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where the generator L has the Lindblad form,

L(ρ̂) = −i[ĤLS, ρ̂] +
α0∑

α=1

(
L̂α ρ̂ L̂†

α − 1

2
{L̂†

αL̂α, ρ̂}
)

,

(3.2)

where α0 ∈ N. This dynamics arises from a weak interaction
with a large Markovian bath in the rotating-wave approxima-
tion [22,23]. In this case, ĤLS commutes with the Hamiltonian
Ĥ , i.e., ĤLS only shifts the energies of Ĥ :

ĤLS =
d∑

i=1

δEi |i〉〈i|. (3.3)

As anticipated in the introduction, we suppose that the bath
starts in its ground state and that the interaction Hamiltonian
V̂SB couples only neighboring energy levels of the system:

V̂SB =
d∑

i=1

|i〉S〈i| ⊗ V̂ B
i +

d−1∑
i=1

(|i〉S〈i + 1| ⊗ ŴB
i + H.c.

)
.

(3.4)

Here the V̂ B
i are generic self-adjoint operators, while the

ŴB
i are completely generic operators. In the rotating-wave

approximation only the transitions that conserve the energy
associated with the noninteracting Hamiltonian are allowed. If
the bath is in its ground state, it cannot transfer energy to the
system, and only the transitions that decrease its energy are
possible. Then, each Lindblad operator L̂α can induce either
dephasing in the energy eigenbasis:

L̂α =
d∑

i=1

aα
i |i〉〈i|, aα

i ∈ C, α = 1, . . . , α0, (3.5)

or decay toward the ground state with quantum jumps of one
energy level:

L̂α =
d−1∑
i=1

bα
i |i〉〈i + 1|, bα

i ∈ C, α = 1, . . . , α0. (3.6)

It is easy to show that, if ρ̂ is diagonal in the energy
eigenbasis, also L(ρ̂) is diagonal in the same basis, hence
etL(ρ̂) remains diagonal for any t .

As anticipated in the introduction, we also suppose that the
quantum channel etL(ρ̂) sends the maximally mixed state into
a passive state. As a consequence, the generator L maps the
identity into a passive operator (see Sec. A 1).

To see explicitly how this last condition translates on the
coefficients bα

i , we compute

L(Î) =
d∑

i=1

(∑
α

(∣∣bα
i

∣∣2 − ∣∣bα
i−1

∣∣2))|i〉〈i|, (3.7)

where for simplicity we have set bα
0 = bα

d = 0, and the operator
is passive iff the function,

ri :=
∑

α

∣∣bα
i

∣∣2
, i = 0, . . . , d, (3.8)

is concave in i.
The main result of this paper is that passive states optimize

the output of the quantum channel generated by any dissipator

of the form (3.2) satisfying (3.3) and with Lindblad operators
of the form (3.5) or (3.6) such that the function (3.8) is concave.
We will prove that the output etL(ρ̂) generated by any input
state ρ̂ majorizes the output etL(ρ̂↓) generated by the passive
state ρ̂↓ with the same spectrum of ρ̂, i.e., for any t � 0,

etL(ρ̂) ≺ etL(ρ̂↓). (3.9)

We can substitute ρ̂ → Û ρ̂ Û † into (3.9), with Û a unitary
operator. We get that for any quantum state ρ̂ and any unitary
operator Û ,

etL(Û ρ̂ Û †) ≺ etL(ρ̂↓), (3.10)

where we have used Remark 2.5. Moreover, for any t � 0
the state etL(ρ̂↓) is still passive, i.e., the quantum channel etL

preserves the set of passive states. The proof closely follows
[15], and is contained in the next section.

A. Proof of the main result

Let us define

ρ̂(t) = etL(ρ̂). (3.11)

The quantum states with nondegenerate spectrum are dense
in the set of all quantum states. Besides, the spectrum is a
continuous function of the operator, and any linear map is
continuous. Then, without loss of generality we can suppose
that ρ̂ has nondegenerate spectrum. Let p1(t) � . . . � pd (t)
be the eigenvalues of ρ̂(t), and let

sn(t) =
n∑

i=1

pi(t), n = 1, . . . , d. (3.12)

Let instead

p
↓
i (t) = 〈i|etL(ρ̂↓)|i〉, i = 1, . . . , d (3.13)

be the eigenvalues of etL(ρ̂↓), and

s↓
n (t) =

n∑
i=1

p
↓
i (t), n = 1, . . . , d. (3.14)

Notice that p(0) = p↓(0) and then s(0) = s↓(0), where

p(t) = [p1(t), . . . ,pd (t)], (3.15)

s(t) = [s1(t), . . . ,sd (t)]. (3.16)

The proof comes from the following.
Lemma 3.1. The spectrum of ρ̂(t) can be degenerate at most

in isolated points.
Proof. See Sec. A 2 in the appendix. �
Lemma 3.2. s(t) is continuous in t , and for any t � 0 such

that ρ̂(t) has nondegenerate spectrum it satisfies

d

dt
sn(t) � λn(sn+1(t) − sn(t)), n = 1, . . . , d − 1, (3.17)

where

λn = Tr[�̂↓
n L(Î)] � 0. (3.18)

Proof. See Sec. A 3 in the appendix. �
Lemma 3.3. If s(t) is continuous in t and satisfies (3.17),

then sn(t) � s
↓
n (t) for any t � 0 and n = 1, . . . , d .

Proof. See Sec. A 4 in the appendix. �

062328-3



DE PALMA, MARI, LLOYD, AND GIOVANNETTI PHYSICAL REVIEW A 93, 062328 (2016)

Lemma 3.3 implies that for any t � 0 the quantum channel
etL preserves the set of passive states. Indeed, let us choose
the initial state ρ̂ already passive. Then, sn(t) is the sum of
the n largest eigenvalues of etL(ρ̂). Recalling that etL(ρ̂) is
diagonal in the Hamiltonian eigenbasis, s

↓
n (t) is the sum of

the eigenvalues corresponding to the first n eigenstates of
the Hamiltonian |1〉, . . . , |n〉, so that s

↓
n (t) � sn(t). However,

Lemma 3.3 implies sn(t) = s
↓
n (t) for n = 1, . . . , d, then

pn(t) = p
↓
n (t) and etL(ρ̂) preserves the set of passive states

for any t .
Then, for the definition of majorization and Lemma 3.3

again,

etL(ρ̂) ≺ etL(ρ̂↓), (3.19)

for any ρ̂, and the passive states are the optimal inputs for the
channel.

IV. COUNTEREXAMPLES

The maximally mixed state is passive. Then, if we want
the channel to preserve the set of passive states, it must
send the maximally mixed state into a passive state, and
this hypothesis is necessary. Also the hypotheses of the
nondegenerate Hamiltonian, quantum jumps of only one
energy step, and zero temperature are necessary. Indeed, for
each of them we present a counterexample violating only that
hypothesis and for which Eq. (3.9) does not hold.

A. Gaussian attenuator with degenerate Hamiltonian

The hypothesis of the nondegenerate Hamiltonian is
necessary for the optimality of passive states. Indeed, in
this section we provide an explicit counterexample with
degenerate Hamiltonian: the two-mode bosonic Gaussian
quantum-limited attenuator [26,27].

Let us fix N � 5, and let HN be the span of the first
N + 1 Fock states {|0〉, . . . ,|N〉} of the Hilbert space of the
harmonic oscillator. Let us consider the restriction to HN of
the Hamiltonian of the harmonic oscillator,

Ĥ =
N∑

i=1

i |i〉〈i|, 〈i|j 〉 = δij , (4.1)

and the Lindbladian,

L(ρ̂) = â ρ̂ â† − 1
2 {â†â, ρ̂}, (4.2)

where â is the ladder operator,

â =
N∑

i=1

√
i |i − 1〉〈i|. (4.3)

The quantum-limited attenuator maps HN into itself [15],
and its restriction to HN is the channel etL generated by the
Lindbladian (4.2). In Ref. [15] it is proven that this quantum
channel preserves the set of passive states, and they are its
optimal inputs in the sense of Eq. (3.9). Here we will show
that this last property does no more hold for the restriction to
HN ⊗ HN of the two-mode attenuator,

Et := etL ⊗ etL. (4.4)

The Hamiltonian is

Ĥ2 = Ĥ ⊗ Î + Î ⊗ Ĥ =
N∑

i,j=0

(i + j )|i,j 〉〈i,j |. (4.5)

In general there is more than one couple of indices (i,j )
with a given sum. Then, Ĥ2 is degenerate. However, the two
Lindblad operators â ⊗ Î and Î ⊗ â can still induce only jumps
between a given energy level and the immediately lower one,
and there are no ambiguities in the definition of the passive
rearrangement of quantum states with the same degeneracies
of the Hamiltonian. Consider, for example,

ρ̂ = 1

6

∑
i+j�2

|i,j 〉〈i,j |, Tr[Ĥ2 ρ̂] = 4

3
. (4.6)

It is easy to show that it minimizes the average energy among
the states with the same spectrum, i.e., it is passive. Moreover,
there are no other states with the same spectrum and the
same average energy, i.e., its passive rearrangement is unique.
Consider, instead,

σ̂ = 1

6

5∑
i=0

|0,i〉〈0,i|, Tr[Ĥ2 σ̂ ] = 5

2
, (4.7)

that has the same spectrum of ρ̂, but it has a higher average
energy and it is not passive. The three largest eigenvalues of
Et (ρ̂) are associated with the eigenvectors |0,0〉, |0,1〉, and
|1,0〉, and their sum is

s3(t) = 1 − e−2t

2
. (4.8)

On the other side, the three largest eigenvalues of Et (σ̂ ) are
associated with the eigenvectors |0,0〉, |0,1〉, and |0,2〉, and
their sum is

s̃3(t) = 1 − e−3t 5 − 6e−t + 2e−2t

2
. (4.9)

It is then easy to see that for

e−t < 1 − 1√
2
, (4.10)

i.e.,

t > ln(2 +
√

2) := t0, (4.11)

we have

s3(t) < s̃3(t), (4.12)

i.e., the passive state ρ̂ is not the optimal input. Let p1(t)
and p̃1(t) be the largest eigenvalues of Et (ρ̂) and Et (σ̂ ),
respectively. They are both associated with the eigenvector
|0,0〉, and

p1(t) = 6 − 8e−t + 3e−2t

6
, (4.13)

p̃1(t) = (2 − e−t )(3 − 3e−t + e−2t )(1 − e−t + e−2t )

6
. (4.14)

For any t > 0,

p1(t) > p̃1(t), (4.15)

so that σ̂ is not the optimal input, and for t > t0 no majorization
relation holds between Et (ρ̂) and Et (σ̂ ).
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B. Two-qubit lossy channel

We consider a quantum lossy channel acting on the quantum
system of two qubits with two possible choices for the
Hamiltonian, and we show that passive states are not the
optimal inputs in the sense of (3.9). In one case (Sec. IV B 1)
the Hamiltonian is nondegenerate, but the channel involves
quantum jumps of more than one energy step. In the other case
(Sec. IV B 2), only quantum jumps of one energy step are
allowed, but the Hamiltonian becomes degenerate.

Let us consider the Hilbert space of two distinguishable
spins with the Hamiltonian,

Ĥ = E1 |1〉〈1| ⊗ Î + E2 Î ⊗ |1〉〈1|. (4.16)

We notice that Ĥ is not symmetric under the exchange of the
two spins, i.e., the spins are different, though the same Hilbert
space C2 is associated with both of them. Let us suppose that

0 < E2 � E1, (4.17)

so that the eigenvectors of Ĥ are, in order of increasing energy,

Ĥ |0,0〉 = 0, Ĥ |0,1〉 = E2|0,1〉,
(4.18)

Ĥ |1,0〉 = E1|1,0〉, Ĥ |1,1〉 = (E1 + E2)|1,1〉,
with the only possible degeneracy between |0,1〉 and |1,0〉 if
E1 = E2.

Let L be the generator of the form (3.2) with the two
Lindblad operators,

L̂1 = |0,0〉〈1,0|, L̂2 = |0,0〉〈0,1| +
√

2 |0,1〉〈1,1|,
(4.19)

and let

Et = etL, t � 0, (4.20)

be the associated quantum channel.

1. Jumps of more than one energy step

If E2 < E1 the Hamiltonian (4.16) is nondegenerate, but
the Lindblad operator L̂2 can induce a transition from |1,1〉 to
|0,1〉, that are not consecutive eigenstates.

For simplicity, we parametrize a state diagonal in the
Hamiltonian eigenbasis with

ρ̂ =
1∑

i,j=0

pij |i,j 〉〈i,j |. (4.21)

First, let

ρ̂(0)(t) = Et

(
Î

4

)
(4.22)

be the output of the channel applied to the maximally mixed
state. Then, we can compute

p
(0)
00 (t) = 1 − e−t + e−2t

4
,

p
(0)
01 (t) = e−t 3 − 2e−t

4
, (4.23)

p
(0)
10 (t) = e−t

4
, p

(0)
11 (t) = e−2t

4
.

It is easy to check that, for any t > 0,

p
(0)
00 (t) > p

(0)
01 (t) > p

(0)
10 (t) > p

(0)
11 (t), (4.24)

so that ρ̂(0)(t) is passive, and the channel Et satisfies the
hypothesis of Lemma A.1. Let us instead compare

ρ̂(1)(t) = Et

( |0,0〉〈0,0| + |0,1〉〈0,1| + |1,0〉〈1,0|
3

)
, (4.25)

ρ̂(2)(t) = Et

( |0,0〉〈0,0| + |0,1〉〈0,1| + |1,1〉〈1,1|
3

)
. (4.26)

It is easy to see that ρ̂(1)(0) is passive, while ρ̂(2)(0) is not,
and they have the same spectrum. Moreover, there are no other
states with the same spectrum and the same average energy of
ρ̂(1)(0), i.e., its passive rearrangement is unique. We can now
compute

p
(1)
00 (t) = 1 − 2

3
e−t , p

(2)
00 (t) = 1 − e−t + e−2t

3
,

p
(1)
01 (t) = e−t

3
, p

(2)
01 (t) = e−t

(
1 − 2

3
e−t

)
,

(4.27)

p
(1)
10 (t) = e−t

3
, p

(2)
10 (t) = 0,

p
(1)
11 (t) = 0, p

(2)
11 (t) = e−2t

3
.

It is easy to see that for any t > 0,

p
(1)
00 (t) >p

(1)
01 (t) = p

(1)
10 (t),

(4.28)
p

(2)
00 (t) >p

(2)
01 (t) > p

(2)
11 (t),

so that ρ̂(1)(t) remains always passive. However, on one hand,

p
(1)
00 (t) > p

(2)
00 (t), (4.29)

but on the other hand,

p
(1)
00 (t) + p

(1)
01 (t) < p

(2)
00 (t) + p

(2)
01 (t), (4.30)

so that no majorization relation can exist between ρ̂(1)(t) and
ρ̂(2)(t).

2. Degenerate Hamiltonian

If E1 = E2, the eigenstates |0,1〉 and |1,0〉 of the Hamil-
tonian (4.16) become degenerate, but both L̂1 and L̂2 induce
only transitions between consecutive energy levels.

We use the parametrization (4.21) as before. Let ρ̂(0)(t) be
the output of the channel applied to the maximally mixed
state as in (4.22). Since the generator L is the same of
Sec. IV B 1, the probabilities p

(0)
ij (t), i,j = 0,1, are still given

by (4.23). Equation (4.24) still holds for any t > 0, so that
ρ̂(0)(t) is passive, and the channel Et satisfies the hypothesis of
Lemma A.1.

Let us instead compare ρ̂(1)(t) and ρ̂(2)(t) defined as in
(4.25) and (4.26), respectively. The state ρ̂(1)(0) is passive,
while ρ̂(2)(0) is not, and they have the same spectrum.
Moreover, there are no other states with the same spectrum
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and the same average energy of ρ̂(1)(0), i.e., its passive
rearrangement is unique. The probabilities p

(1)
ij (t) and p

(2)
ij (t),

i,j = 0,1, are still given by (4.27). Equation (4.28) still holds
for any t > 0, and ρ̂(1)(t) remains always passive. However,
on one hand,

p
(1)
00 (t) > p

(2)
00 (t), (4.31)

but on the other hand,

p
(1)
00 (t) + p

(1)
01 (t) < p

(2)
00 (t) + p

(2)
01 (t), (4.32)

so that no majorization relation can exist between ρ̂(1)(t) and
ρ̂(2)(t).

C. Optimal states for a finite-temperature two-level system
are nonclassical

In this section we show that at finite temperature, already
for a two-level system the optimal states are no more passive,
and include coherent superpositions of the energy eigenstates.

An intuitive explanation is that a dissipator with only
energy-raising Lindblad operators keeps fixed the maximum-
energy eigenstate, that is, hence optimal for the generated
channel. Then, it is natural to expect that the optimal pure state
in the presence of both energy-lowering and energy-raising
Lindblad operators will interpolate between the ground and
the maximum energy state, and will hence be a coherent
superposition of different eigenstates of the Hamiltonian.

The simplest example is a two-level system with Hamilto-
nian,

Ĥ = 1

2
E0 σ̂z = E0

2
|1〉〈1| − E0

2
|0〉〈0|, E0 > 0, (4.33)

undergoing the quantum optical master equation [23], describ-
ing the weak coupling with a thermal bath of one mode of
bosonic excitations in the rotating-wave approximation. This
is the simplest extension of the evolutions considered in the
previous section to an interaction with a finite-temperature
bath.

Its generator is

L(ρ̂) = γ0(N + 1)
(
σ̂− ρ̂ σ̂+ − 1

2 {σ̂+σ̂−, ρ̂})
+ γ0N

(
σ̂+ ρ̂ σ̂− − 1

2 {σ̂−σ̂+, ρ̂}), (4.34)

where

σ̂± = σ̂x ± iσ̂y

2
(4.35)

are the ladder operators, γ0 > 0 is the coupling strength, and
N > 0 is the average number of photons or phonons in the
bosonic mode of the bath coupled to the system. Notice also
that for N = 0 the process becomes a lossy map fulfilling the
condition discussed at the beginning of Sec. III.

We will now show that, for the quantum channel associated
to the master equation (4.34), the output generated by a certain
coherent superposition of the two energy eigenstates majorizes
the output generated by any other state.

It is convenient to use the Bloch representation,

ρ̂ = Î + x σ̂x + y σ̂y + z σ̂z

2
, x2 + y2 + z2 � 1. (4.36)

The master equation (4.34) induces the differential equations,

dx

dt
= −γ

2
x,

dy

dt
= −γ

2
y,

dz

dt
= −γ (z − z∞), (4.37)

where

γ = γ0(2N + 1) and z∞ = − 1

2N + 1
. (4.38)

The solution of (4.37) is

x(t) = e− γ

2 t x0, y(t) = e− γ

2 t y0,
(4.39)

z(t) = z∞ + e−γ t (z0 − z∞),

and its asymptotic state is the canonical state with inverse
temperature β,

ρ̂∞ = e
βE0

2 |0〉〈0| + e− βE0
2 |1〉〈1|

2 cosh βE0

2

, (4.40)

satisfying

z∞ = − tanh
β E0

2
. (4.41)

Since the density matrix of a two-level system has only two
eigenvalues, the purity is a sufficient criterion for majorization,
i.e., for any two quantum states ρ̂ and σ̂ ,

ρ̂ ≺ σ̂ iff Tr ρ̂2 � Tr σ̂ 2. (4.42)

We recall that in the Bloch representation (4.36),

Tr ρ̂2 = 1 + x2 + y2 + z2

2
. (4.43)

We have then

Trρ̂(t)2 = 1 + e−γ t
(
x2

0 + y2
0 + z2

0

)
2

+ 1 − e−γ t

2

(
z2
∞ − e−γ t (z0 − z∞)2

)
. (4.44)

The right-hand side of (4.44) is maximized by

x2
0 + y2

0 = 1 − z2
∞ and z0 = z∞, (4.45)

i.e., when the initial state is a pure coherent superposition of
the energy eigenstates |0〉 and |1〉 with the same average energy
of the asymptotic state:

|ψ〉 = eiϕ0

√
1 − z∞

2
|0〉 + eiϕ1

√
1 + z∞

2
|1〉, (4.46)

where ϕ0 and ϕ1 are arbitrary real phases.

V. CONCLUSIONS

In this paper we have extended the proof of the optimality
of passive states of Ref. [15] to a large class of lossy channels,
showing that they preserve the set of passive states, that are
the optimal inputs in the sense that the output generated
by a passive state majorizes the output generated by any
other state with the same spectrum. Then, thanks to the
equivalent definition of majorization in terms of random
unitary operations (2.4), the output generated by a passive
state minimizes any concave functional among the outputs
generated by any unitary equivalent state. Since the class of
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concave functionals includes the von Neumann and all the
Rényi entropies, the solution to any entropic optimization
problem has to be found among passive states. This result
can then lead to entropic inequalities on the output of a
lossy channel, and can be crucial in the determination of its
information capacity. Moreover, in the context of quantum
thermodynamics this result can be useful to determine which
quantum states can be obtained from an initial state with a
given spectrum in a resource theory with lossy channels among
the allowed operations.

The optimality of passive states crucially depends on the
assumptions of nondegeneracy of the Hamiltonian, quantum
jumps of only one energy step, and zero temperature. Indeed,
the two-mode bosonic Gaussian quantum-limited attenuator
provides a counterexample with degenerate Hamiltonian.
Moreover, two-qubit systems can provide counterexamples
both with degenerate Hamiltonian or with quantum jumps of
more than one energy step. Finally, at finite temperature this
optimality property fails already for a two-level system, where
the best input is a coherent superposition of the two energy
eigenstates. This shows that even the quantum channels that
naturally arise from a weak interaction with a thermal bath can
have a very complex entropic behavior, and that coherence can
play a crucial role in the optimal encoding of information.

APPENDIX: AUXILIARY LEMMATA

1. Passivity of the evolved maximally mixed state

Lemma A.1. Let L be a Lindblad generator such that for
any t � 0 the operator etL(Î) is passive. Then, also L(Î) is
passive.

Proof. Recalling the Hamiltonian eigenbasis (2.5), for any
t � 0 it must hold,

etL(Î) =
d∑

i=1

ci(t) |i〉〈i|, (A1)

with

c1(t) � . . . � cd (t), c1(0) = . . . cd (0) = 1, (A2)

and each ci(t) is an analytic function of t . It follows that

c′
1(0) � . . . � c′

d (0). (A3)

However, we also have

L(Î) = d

dt
etL(Î)

∣∣∣∣
t=0

=
d∑

i=1

c′
i(0) |i〉〈i|, (A4)

hence the thesis. �

2. Proof of Lemma 3.1

The matrix elements of the operator etL(ρ̂) are analytic
functions of t . The spectrum of ρ̂(t) is degenerate iff the
function,

φ(t) =
∏
i �=j

(pi(t) − pj (t)), (A5)

vanishes. This function is a symmetric polynomial in the
eigenvalues of ρ̂(t) = etL(ρ̂). Then, for the fundamental
theorem of symmetric polynomials (see, e.g., Theorem 3 in

Chapter 7 of [28]), φ(t) can be written as a polynomial in the
elementary symmetric polynomials in the eigenvalues of ρ̂(t).
However, these polynomials coincide with the coefficients
of the characteristic polynomial of ρ̂(t), that are in turn
polynomials in its matrix elements. It follows that φ(t) can
be written as a polynomial in the matrix elements of the
operator ρ̂(t). Since each of these matrix elements is an
analytic function of t , also φ(t) is analytic. Since by hypothesis
the spectrum of ρ̂(0) is nondegenerate, φ cannot be identically
zero, and its zeros are isolated points.

3. Proof of Lemma 3.2

The matrix elements of the operator etL(ρ̂) are analytic
(and hence continuous and differentiable) functions of t . Then
for Weyl’s perturbation theorem p(t) is continuous in t , and
also s(t) is continuous (see, e.g., Corollary III.2.6 and the
discussion at the beginning of Chapter VI of [29]). Let ρ̂(t0)
have nondegenerate spectrum. Then, ρ̂(t) has nondegenerate
spectrum for any t in a suitable neighborhood of t0. In this
neighborhood, we can diagonalize ρ̂(t) with

ρ̂(t) =
d∑

i=1

pi(t)|ψi(t)〉〈ψi(t)|, (A6)

where the eigenvalues in decreasing order pi(t) are differen-
tiable functions of t (see Theorem 6.3.12 of [30]). We then
have

d

dt
pi(t) = 〈ψi(t)|L(ρ̂(t))|ψi(t)〉, i = 1, . . . ,d, (A7)

and

d

dt
sn(t) = Tr[�̂n(t) L(ρ̂(t))], (A8)

where

�̂n(t) =
n∑

i=1

|ψi(t)〉〈ψi(t)|. (A9)

We can write

ρ̂(t) =
d∑

n=1

dn(t) �̂n(t), (A10)

where

dn(t) = pn(t) − pn+1(t) � 0, (A11)

and for simplicity we have set pd+1(t) = 0, so that

d

dt
sn(t) =

d∑
k=1

dk(t) Tr[�̂n(t) L(�̂k(t))]. (A12)

We have now

Tr[�̂n(t) L(�̂k(t))]

=
∑

α

Tr[�̂n(t) L̂α �̂k(t) L̂†
α − �̂k∧n(t) L̂†

αL̂α], (A13)

where k ∧ n = min(k,n) and we have used

�̂n(t) �̂k(t) = �̂k(t) �̂n(t) = �̂k∧n(t). (A14)
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(1) Let us suppose n � k. Using that �̂n(t) � Î in the first
term of (A13), we get

Tr[�̂n(t) L(�̂k(t))] � 0. (A15)

On the other hand, recalling the structure of the Lindblad
operators (3.5) and (3.6), for any α the support of L̂α �̂

↓
k L̂†

α

is contained into the support of �̂
↓
k , and hence into the one of

�̂
↓
n , and we have also

Tr[�̂↓
n L(�̂↓

k )] = 0. (A16)

(2) Let us now suppose k > n. Using that �̂k(t) � Î in the
first term of (A13), we get

Tr[�̂n(t) L(�̂k(t))] � Tr[�̂n(t) L(Î)]

� Tr[�̂↓
n L(Î)] = λn, (A17)

where in the last step we have used Ky Fan’s maximum
principle (Lemma A.2) and the passivity of L(Î). On the other
hand, from (3.5) and (3.6) the support of L̂†

α �̂
↓
n L̂α is contained

into the support of �̂
↓
n+1, and hence into the one of �̂

↓
k , and

we have also

Tr[�̂↓
n L(�̂↓

k )] = λn. (A18)

Plugging (A15) and (A17) into (A12), we get

d

dt
sn(t) � λn pn+1(t) = λn(sn+1(t) − sn(t)). (A19)

From (A16) and (A18) we get instead

d

dt
s↓
n (t) = λn p

↓
n+1(t) = λn(s↓

n+1(t) − s↓
n (t)). (A20)

See Lemma A.3 for the positivity of the coefficients λn.

4. Proof of Lemma 3.3

Since the quantum channel etL is trace preserving, we have

sd (t) = Trρ̂(t) = 1 = s
↓
d (t). (A21)

We will use induction on n in the reverse order: suppose to
have proved

sn+1(t) � s
↓
n+1(t). (A22)

Since λn � 0 for Lemma A.3, we have from (3.17)

d

dt
sn(t) � λn(s↓

n+1(t) − sn(t)), (A23)

while
d

dt
s↓
n (t) = λn(s↓

n+1(t) − s↓
n (t)). (A24)

Defining

fn(t) = s↓
n (t) − sn(t), (A25)

we have fn(0) = 0, and

d

dt
fn(t) � −λn fn(t). (A26)

This can be rewritten as

e−λnt
d

dt
(eλntfn(t)) � 0, (A27)

and implies

fn(t) � 0. (A28)

5. Ky Fan’s maximum principle

Lemma A.2 (Ky Fan’s maximum principle). Let X̂ be a
self-adjoint operator with eigenvalues x1 � . . . � xd , and let
P̂ be a projector of rank n. Then

Tr[P̂ X̂] �
n∑

i=1

xi. (A29)

Proof. See [29,31] or [15]. �

6. Proof of Lemma A.3

Lemma A.3. λn � 0 for n = 1, . . . , d.
Proof. For Ky Fan’s maximum principle (Lemma A.2), for

any unitary Û ,

λn = Tr[�̂↓
n L(Î)] � Tr[Û �̂↓

n Û † L(Î)]. (A30)

The thesis easily follows taking the average over the Haar
measure μ of the right-hand side of (A30), since∫

Û † L(Î)Ûdμ(Û ) = Î

d
Tr[L(Î)] = 0. (A31)
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