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a b s t r a c t 

This article considers the stochastic modeling of vehicular network flows, including the an- 

alytical approximation of joint queue-length distributions. The article presents two main 

methodological contributions. First, it proposes a tractable network model for finite space 

capacity Markovian queueing networks. This methodology decomposes a general topology 

queueing network into a set of overlapping subnetworks and approximates the transient 

joint queue-length distribution of each subnetwork. The subnetwork overlap allows to ap- 

proximate stochastic dependencies across multiple subnetworks with a complexity that is 

linear in the number of subnetworks. Additionally, the network model maintains mutually 

consistent overlapping subnetwork distributions. Second, a stochastic network link trans- 

mission model (SLTM) is formulated that builds on the proposed queueing network de- 

composition and on the stochastic single-link model of Osorio and Flötteröd (2015). The 

SLTM represents each direction of a road and each road intersection as one queueing 

subnetwork. Three experiments are presented. First, the analytical approximations of the 

queueing-theoretical model are validated against simulation-based estimates. An experi- 

ment with intricate traffic dynamics and multi-modal joint distributions is studied. The 

analytical model captures most dependency structure and approximates well the simu- 

lated network dynamics and joint distributions. Even for the considered simple network, 

which consists of only eight links, the proposed subnetwork decomposition yields signif- 

icant gains in computational efficiency: It uses less than 0.0025% of the memory that is 

required by the use of a full network model. Second and third, the proposed SLTM is illus- 

trated with a linear test network adopted from the literature and a more general topology 

network containing a diverge node and a merge node. Time-dependent probabilistic per- 

formance measures (occupancy uncertainty bands, spillback probabilities) are presented 

and discussed. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

This article develops a stochastic network link transmission model (SLTM). Given stochastic network inflows, outflows,

and between-link flow transitions, the model (i) describes the state distribution of each link, comprising the joint distribu-

tion of the up- and downstream boundary conditions modulating its in- and outflows and (ii) approximates the joint state

distribution of multiple links that exchange stochastic dynamic flows. 
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The network model builds upon an existing model of the transient (i.e. time-dependent) joint distribution of a single

homogeneous link’s up- and downstream boundary conditions ( Osorio and Flötteröd, 2015 ). This link model is a queueing-

theoretical stochastic reformulation of the link transmission model (LTM) of Yperman et al. (2006) , which constitutes an

operational formulation of Newell’s simplified theory of (deterministic) kinematic waves ( Newell, 1993 ). The LTM has re-

ceived recent attention as a computationally efficient network loading model ( Himpe et al., 2016; Raadsen et al., 2016 ). The

link model of Osorio and Flötteröd (2015) captures the stochastic flow dynamics within a link through a system of four

finite space capacity queues with lagged flows. 

The present article contributes to the fields of analytical transient finite capacity queueing network modeling and of

vehicular traffic flow modeling. 

First, it formulates an analytical tractable approximation of transient joint queue-length distributions in Markovian finite

space capacity queueing networks. It does so by decomposing a queueing network topology into a set of overlapping, non-

disjoint subnetworks. This decomposition allows to address the curse of dimensionality. A tractable analytical approximation

of the transient joint queue-length distribution of each subnetwork is proposed. It is proven that for queues that belong to

multiple subnetworks, the model maintains consistent marginal distributions of the common queues. 

Second, this queueing approximation is used to formulate the SLTM. The starting point of this effort is the stochastic

single-link model of Osorio and Flötteröd (2015) . A network of such links induces a network topology of all queues contained

in these links. The queueing theoretical subnetwork decomposition is applied to the resulting queueing network, where (i)

all queues within a link constitute one subnetwork and (ii) all queues being adjacent to a node (intersection in the road

network) constitute one subnetwork. The queue overlap of link and node subnetworks is the key ingredient enabling the

approximation of network-wide stochastic dependencies. 

The remainder of this introduction summarizes the state-of-the-art in the two relevant fields of queueing theory and

vehicular traffic flow modeling. Section 2 then presents the new queueing network model. It is formulated in Section 2.1 and

experimentally validated in Section 2.2 . This queueing network model is then used in Section 3 to formulate the proposed

network SLTM. The model is formulated in Section 3.1 , its numerical solution is discussed in Section 3.2 , and its concrete

specification and dynamics are illustrated in Section 3.3 . Section 4 summarizes the main findings of this work and identifies

several important future research topics. 

Queueing network analysis 

Consistently with queueing-theoretical terminology, the notion of “capacity” refers to “space capacity” throughout this

section. The use of finite capacity queues allows to set an upper bound on the queue-size. This accounts for finite physical

space capacity and the possible occurrence of spillback into upstream queues. Finite capacity queueing theory does, however,

not concern itself with the geometry of the queueing system, it merely considers the number of spaces available in the

system and the number of “jobs” (here, vehicles) currently located therein. 

The analytical modeling of queueing networks has mostly focused on the stationary analysis of systems with infinite

capacity queues, and more specifically on product-form networks as described in the seminal papers of Jackson (1957, 1963) ;

Baskett et al. (1975) . Infinite capacity is a strong assumption for a variety of space-constrained congested networks because

it neglects important between-queue dependencies, which are in particular due to blocking phenomena and suggest a non-

product form joint distribution. Works such as Odoni and Roth (1983) highlight the importance of carrying out a transient

analysis and the inadequacy of using stationary metrics to approximate transients. 

For Markovian finite capacity queueing networks (FCQNs), the stationary joint queue-length distribution can be obtained

by solving the global balance equations ( Stewart, 20 0 0 ). Other exact numerical methods have been proposed for simple

Markovian FCQNs, e.g. with two or three queues in tandem topologies ( Grassmann and Derkic, 20 0 0; Akyildiz and von

Brand, 1994; Balsamo and Donatiello, 1989; Langaris and Conolly, 1984; Latouche and Neuts, 1980; Konheim and Reiser,

1978; 1976 ). 

For non-product form networks, a major challenge in approximating the joint distribution is its dimensionality. Thus,

the most common analytical approach remains that of approximating stationary marginal distributions. Osorio and Bier-

laire (2009) provide a review of decomposition techniques that reduce the dimensionality (and hence the computational

complexity) by approximating lower-dimensional marginals. The scalable family of aggregation-disaggregation techniques

describes the state of the network aggregately (in terms of a reduced state space), while ensuring consistency with disag-

gregate marginals (e.g. Schweitzer, 1991 ). A tractable instance of this family for urban transportation networks is given by

Osorio and Wang (2017) . 

Transient techniques have received less attention; this is arguably due to the analytical complexity involved in their

analysis. Reviews of transient analysis of queueing models are provided by Kaczynski et al. (2012) ; Griffiths et al. (2008) .

For Markovian FCQNs, the transient joint queue-length distribution can be obtained by solving a system of linear first-

order ordinary differential equations (ODEs). Closed-form expressions are, to the best of our knowledge, limited to a single

M/M/1/K queue ( Morse, 1958; Sharma and Gupta, 1982 ) or a single M/M/2/K queue ( Sharma and Shobha, 1988 ). Numerous

exact numerical techniques have been developed (for reviews, see Stewart, 1994; 2009 ). Although the formulation of the

problem as a system of ODEs allows for a variety of numerical ODE techniques to be used, dimensionality remains a major

challenge. 
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Transient decomposition techniques have typically assumed infinite capacity queues (e.g. McCalla and Whitt, 2002; Whitt,

1999; Peterson et al., 1995a; Odoni and Roth, 1983 ). Transient decomposition methods for FCQNs have received little atten-

tion due to the complexity of providing a tractable analytical description of the temporal between-queue dependencies. A

transient and tractable aggregation-disaggregation technique is given by Osorio and Yamani (2017) . Overall, there is cur-

rently a lack of analytical transient techniques for Markovian FCQNs that account for spatial-temporal dependencies, and

even more a lack of tractable techniques. This article presents a tractable analytical approximation model of transient mul-

tivariate queue-length distributions within a Markovian FCQN. 

Vehicular traffic network analysis 

The proposed general-purpose queueing-theoretic model is used to formulate a stochastic network model for road traffic

that is rooted in mainstream deterministic traffic flow theory. In the broader field of transportation (all modes considered),

few queueing-theoretical analytical probabilistic and transient techniques have been developed; see Heidemann (2001) ;

Peterson et al. (1995b) for a single queue and Osorio et al. (2011) ; Osorio and Flötteröd (2015) ; Gupta (2011) ; Peterson

et al. (1995a ); Odoni and Roth (1983) for networks of queues. 

The kinematic wave model (KWM; Lighthill and Witham, 1955; Richards, 1956 ) is still the mainstay of analytical traffic

flow modeling; the previously discussed LTM is consistent with the KWM. Osorio and Flötteröd (2015) propose, in further

development of Osorio et al. (2011) , a queueing-theoretical stochastic reformulation of the LTM for a single link. Their model

captures stochastic link in- and outflows and the resulting stochastic vehicle distribution. Other stochastic link models rely

on stochastic cell-transmision models that require a cell-discretization of the link ( Boel and Mihaylova, 2006; Sumalee et al.,

2011; Jabari and Liu, 2012 ). 

The so far existing literature on stochastic Newell-type models considers homogeneous road segments but no network

topologies. This is the case for the queueing-theoretical model of Osorio and Flötteröd (2015) , for the class of stochastic

solutions to the KWM with a stochastic initial density profile discussed by Laval and Chilukuri (2014) , as well as for the

stochastic instances of Newell’s three-detector problem formulated by Laval et al. (2012) and Deng et al. (2013) . The present

article contributes by embedding the stochastic link model of Osorio and Flötteröd (2015) in a network topology. 

The existing KWM-consistent node (i.e. intersection) models, which are necessary to model network flows, are deter-

ministic, meaning that they represent (dynamic) space-time average conditions but no additional stochastic information

(e.g., Daganzo, 1995b; Lebacque, 1996; Lebacque and Khoshyaran, 2005; Tampere et al., 2011; Flötteröd and Rohde, 2011;

Corthout et al., 2012; Smits et al., 2015 ). The present article develops an SLTM for networks that accommodates many pos-

sible stochastic instances of such node models and illustrates this capability through the specification of concrete linear,

diverge, and merge node models within the SLTM framework. 

In the kinetic approach to stochastic traffic flow modeling, a probabilistic description of individual-vehicle interactions

is adopted. This model is then solved in the form of dynamic equations for mean values and variances of aggregate traffic

characteristics (e.g. Tampere et al., 2003 ). Operational constraints often lead to the simplifying assumption that the states

of interacting vehicles are stochastically independent. Nelson and Kumar (2006) discuss the implications of omitting such

dependencies. Kinetic models appear as of now too complex to account for realistic dependency structures in non-trivial

networks ( Helbing, 2001 ). Such dependencies are captured in the model of the present article. 

2. Queueing network model 

This section presents the queueing theoretical foundation of the proposed road network SLTM. Section 2.1 formulates the

queueing network model, and Section 2.2 presents a simulation-based validation. The material of this section constitutes a

stand-alone queueing network model. However, all concrete modeling choices and approximations made serve the purpose

of facilitating the development of a road network SLTM in the subsequent Section 3 . 

2.1. Model formulation 

2.1.1. Full network dynamics and subnetwork decomposition 

Consider a network of queues in an arbitrary topology. The queueing network is represented by an undirected and con-

nected graph G (V, E ) , where the vertex set V represents the queues and the edge set E is such that two queues are con-

nected with an undirected edge if there exists an event that depends on or changes the state of these two queues jointly.

The notions of “vertex” and “queue” will often be used interchangeably; “vertex” will be preferred when emphasizing topo- 

logical aspects, and “queue” will be used when referring to queueing processes. 

A network of Markovian queues is considered. Each queue has a single server and finite space capacity. The state space

associated to a vertex/queue set W is defined as 

N (W) = ×
i ∈W 

{ 0 , 1 , . . . , � i } (1) 

where � i is the space capacity of queue i and × is the Cartesian product; the resulting set N (W) contains all possible state

combinations of all queues in W . Denoting by N = N (τ ) the random vector of all queue states in the network at real-valued
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time τ , with the possible realizations of N being elements of N (V) , the dynamics of the joint distribution of N are guided

by the following linear system of differential equations ( Reibman, 1991 ): 

d 

dτ
P (N = y ) = 

∑ 

x ∈ N (V) 

t y x P (N = x ) (2)

where d 
dτ

P is the time derivative of P , both x = (x i ) and y = (y i ) are elements of N (V) , and t 
y 
x is the transition rate from

state x into state y . 

The unit of a transition rate is time −1 . Conservation of probability mass (the probabilities of being in any possible state

must sum up to one) is established by defining the departure rates 

t x x = −
∑ 

y ∈ N (V) , y � = x 
t y x , (3)

which captures the effect that state x leading to state y reduces the probability of remaining in state x correspondingly. 

Moving from one state to another is associated with the occurrence of an event. For each event, the inter-event times are

assumed to be independent exponential random variables with rate parameters that may change over time, i.e. t 
y 
x = t 

y 
x (τ )

in (2) . All transition rates are exogenous. 

The model (2) becomes computationally intractable for non-trivial networks since the dimension of the state space N (V)

is exponential in the number of queues, cf. (1) . This work hence proposes a decomposition technique that approximates

the transient queue-length distributions of overlapping subnetworks. These distributions can then be used to approximate

properties of the high-dimensional joint distribution P ( N ). 

Definition 1. Denote by a subnetwork S any non-empty set of vertices, and let a subnetwork decomposition S (G ) of a given

graph G be any choice of subnetworks such that each vertex is contained in either one or two subnetworks. Let V(S) be the

set of vertices contained in subnetwork S . 

The subnetwork neighborhood of any subnetwork S is defined as 

∂S = { T ∈ S (G ) | T � = S, V(T ) ∩ V(S) � = ∅} . (4)

The vertex neighborhood of any vertex set W ⊂ V is defined as 

∂W = 

( ⋃ 

T ∈ S (G ): V (T ) ∩W � = ∅ 
V(T ) 

) 

\W . (5)

The vertex neighborhood of a subnetwork S ∈ S (G ) is written as ∂V(S) . 

In words: The subnetwork neighborhood of a given subnetwork consists of all other subnetworks that have at least one

common vertex with the given subnetwork. The vertex neighborhood of a given vertex set consists of the vertices of all

subnetworks that contain at least one element of the given vertex set. 

Definition 2. A subnetwork decomposition S (G ) is called triangle-free if for all S ∈ S (G ) and T 1 , T 2 ∈ ∂S one has [ V(T 1 ) ∩
V (T 2 )] \V (S) = ∅ . 

The triangle-free definition excludes subnetwork configurations where subnetwork S overlaps with subnetworks T 1 and

T 2 , and T 1 and T 2 overlap with each other outside of S . 

As a general convention, the subset of elements of x ∈ N (V) that is also contained in the state space N (W ) , W ⊂ V , is

written as x W 

. 

Definition 3. A network G and a corresponding subnetwork decomposition S (G ) and transition rate matrix t are said to

allow for instantaneous local transitions only if the following holds for all x , y ∈ N (V) : 

t y x � = 0 ⇒ ∃ S ∈ S (G ) : t y x = t 
y V(S) , z 
x V(S) , z 

∀ z ∈ N (V \V (S)) . (6)

Allowing for instantaneous local transitions only means that every event (and corresponding network state change) can be

inscribed in a subnetwork, in that (i) this change only affects states within that subnetwork and (ii) is independent of states

outside of that subnetwork. 

The following developments hinge on the availability of a triangle-free subnetwork decomposition that allows for instan-

taneous local transitions only. For the purpose of devising the SLTM, this decomposition will emerge naturally, as described

in Section 3 . 

Algorithm 1 provides a blueprint for the decomposition of a general network. Step 1 creates a finite set of subnetworks.

Step 2 reduces the number of subnetworks by discarding or merging them. The algorithm terminates at the latest when

only one subnetwork comprising the full original network is left because this constitutes a valid triangle-free subnetwork

decomposition that allows for local transitions only. 

Further elaboration on how a concrete instance of Algorithm 1 could look is omitted in the present article because (i) this

is not necessary for developing the SLTM and (ii) it would depend on how one wishes to balance computational efficiency
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Algorithm 1 Decomposition of a general queueing network. 

1. For every event that depends on or affects one or more queues, create one subnetwork containing all of the correspond- 

ing vertices. 

2. Repeat one or several of the following steps until a triangle-free subnetwork decomposition is obtained that allows for 

instantaneous local transitions only. 

• Discard subnetworks that are fully contained in other subnetworks. 
• If several subnetworks form a triangle, merge two or more of them until the resulting configuration is triangle-free. 
• If a vertex is contained in more than two subnetworks, merge two or more of these subnetworks until the vertex is 

contained in at most two subnetworks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(resulting from small subnetworks that approximate the joint distribution of only a few queues) and approximation qual-

ity (resulting from large subnetworks that capture the joint distribution of many queues) in a concrete queueing network

configuration. 

2.1.2. Subnetwork dynamics 

In this section, a tractable approximation is derived for the dynamics of any subnetwork S ∈ S (G ) , i.e. of d 
dτ

P (N V(S) ) . For

this, the vectors x , y ∈ N (V) in (2) are split into their components representing the states of queues in V(S) , in its neighbor-

hood ∂V(S) , and in the remaining network V\ [ V(S) ∪ ∂V(S)] . Specifically, x = (m , r , v ) and y = (n , s , w ) with m , n ∈ N (V(S))

and r , s ∈ N (∂V(S)) and v , w ∈ N (V \ [ V (S) ∪ ∂V(S)]) . Substituting this in (2) and summing both sides of this equation over

all (s , w ) ∈ N (V \V (S)) yields 

d 

dτ
P (N V(S) = n ) = 

∑ 

s , w 

∑ 

m , r , v 

t n , s , w 

m , r , v P (N = (m , r , v )) (7) 

where here and in the following, a summation of the form 

∑ 

z ∈ N (W) (·) with W ⊂ V is abbreviated as �z ( · ) and the concrete

definition of z is provided in the context. 

To guide the eye, summations over multiple arguments are here and in the following split into (at least) one sum over all

final states and one sum over all initial states of a considered transition. Using P (N = (m , r , v )) = P (N V \V (S) = (r , v ) | N V(S) =
m ) P (N V(S) = m ) , (7) is rearranged into 

d 

dτ
P (N V(S) = n ) = 

∑ 

m 

[ ∑ 

s , w 

∑ 

r , v 

t n , s , w 

m , r , v P (N V \V (S) = ( r , v ) | N V(S) = m ) 

] 

P (N V(S) = m ) , (8) 

where the term in square brackets functions like a state-dependent transition rate from subnetwork state m to subnetwork

state n . This – so far exact – expression is the basis for the proposed queueing network decomposition model. 

Definition 4. For a given (G, S (G ) , t) that allow for instantaneous local transitions only, the local transition rates of any

vertex set W ⊂ V are defined as follows, assuming (m , r ) , (n , s ) ∈ N (W) × N (∂W) : 

t n , s m , r (W) = 

{ 

t n , s , v m , r , v if m � = n with v ∈ N (V\ (W ∪ ∂W)) arbitrary 

−∑ 

a ∈ N (W) , a � = m 

∑ 

b ∈ N (∂W) t 
a , b 
m , r (W) if (m , r ) = (n , s ) 

0 otherwise. 

(9) 

The first row of (9) expresses state transitions that involve queues in W independently of the states of queues that are

neither in W nor its neighborhood ∂W . This is feasible because (i) according to (5) , W ∪ ∂W comprises the queues of all

subnetworks into which events in W could possibly be inscribed and (ii) Definition 3 ensures that the states of queues in

V \ (W ∪ ∂W ) do not affect events in W . The second row of (9) ensures a proper transition rate matrix specific to W, in that

it defines its main diagonal elements as a function of the rates of departure from the corresponding states, cf. (3) . The third

row excludes from consideration all events that do not affect queues in W . 

Proposition 1. Let (G, S (G ) , t) allow for instantaneous local transitions only. Let W ⊂ V and (m , r ) , (n , s ) ∈ N (W) × N (∂W) .

Then, the time derivative of the state distribution of W can be expressed as a function of only the distribution of W , ∂W and of

the corresponding local transition rates (9) : 

d 

dτ
P (N W 

= n ) = 

∑ 

s 

∑ 

m , r 

t n , s m , r (W) P (N W,∂W 

= (m , r )) . (10) 

Proof. See Appendix 1 . 

This means that one can compute the instantaneous temporal change of the state distribution of a queue set W by only

looking at these queues and their neighbors in ∂W, without considering the state of any other queue in the network. 
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This last, exact result is now taken as the starting point for devising a decomposition scheme where the joint queue

dynamics of a full network are approximated through many overlapping subnetworks. This requires a formulation where

the state of a given subnetwork can be updated without having to condition on the full network state – otherwise, one

would be back solving the full model (8) . Definition 4 delivers half the solution to this problem because it yields the local

(i.e. not network-wide) transition rates needed to define the exact subnetwork dynamics in Proposition 1 . However, this

proposition also uses the joint distribution of all queues in the considered subnetwork and its neighborhood. This joint

distribution is in the present decomposition scheme not exactly represented but needs to be approximately recovered from

the involved subnetwork distributions. 

Letting S ∈ S (G ) , with S (G ) being triangle-free, the central approximation of the proposed model consists of the fol-

lowing two steps: 

P (N ∂V(S) | N V(S) ) ≈
∏ 

T ∈ ∂S 

P (N V (T ) \V (S) | N V(S) ) (11)

≈
∏ 

T ∈ ∂S 

P (N V (T ) \V (S) | N V (T ) ∩V (S) ) . (12)

The first expression (11) approximates the conditional distribution P (N ∂V(S) | N V(S) ) of queue states adjacent to subnet-

work S given queue states within S through a factorization over all subnetworks T in the neighborhood of S . Since the

subnetworks entering this product have by Definition 2 no mutual overlap, this expression can be interpreted as the ex-

act consequence of assuming for all T ∈ ∂S conditional independence between their respective N V (T ) \V (S) given N V(S) . The

proposed model is Markovian along the time line, but this does not imply that the resulting joint state distributions are

Markovian along paths in the network, as is illustrated with a simple example immediately below in Section 2.1.3 . 

The second approximation (12) then considers N V (T ) \V (S) to be independent of the states in S that are not in T conditional

on the states that are in S and in T . The subsequent Section 2.1.3 also illustrates that this is not an inherent model property

but an approximation. The resulting formula (12) is operational because each of its factors can be computed from the state

distribution P (N V(T ) ) of the corresponding subnetwork T alone. 

The proposed network model can now be stated. It assumes a triangle-free subnetwork decomposition S (G ) to be given

that allows for instantaneous local transitions only. The model defines an approximate distribution �S (N V(S) ) of the stochas-

tic state vector N V(S) of every subnetwork S ∈ S (G ) . It combines the exact local dynamics (10) with the approximation (12) .

Letting (m , r ) , (n , s ) ∈ N (V(S)) × N (∂V(S)) , it reads as follows: 

d 

dτ
�S (N V(S) = n ) = 

∑ 

m 

[ ∑ 

r , s 

t n , s m , r (V(S))�S (N ∂V(S) = r | N V(S) = m ) 

] 

�S (N V(S) = m ) (13)

�S (N ∂V(S) = r | N V(S) = m ) = 

∏ 

T ∈ ∂S 

�T (N V (T ) \V (S) = r V (T ) \V (S) | N V (T ) ∩V (S) = m V (T ) ∩V (S) ) . (14)

Eq. (13) is the approximation model’s counterpart of the exact model (8) , with �S being an approximation of the exact

queue state distribution of subnetwork S . Differently from (8) , the term in square brackets now only involves local transition

rates and an approximation �S of the states of subnetworks in the neighborhood of S given the state of S . The definition of

� is given in (14) . It makes the same approximations as (12) , only that its right-hand side evaluates approximate subnetwork

distributions �. 

Proposition 2. Let (G, S (G ) , t) be triangle-free and allow for instantaneous local transitions only. Consider the two subnetworks

S, T ∈ S (G ) with S � = T and W = V(S) ∩ V(T ) � = ∅ . Let �S and �T be probability distributions over N (V(S)) and N (V(T )) ,

respectively. Then, the model (13) , (14) has the following property: 

�S (N W 

) = �T (N W 

) ⇒ 

d 

dτ
�S (N W 

) = 

d 

dτ
�T (N W 

) (15)

where N W 

∈ N (W) . That is, if any two subnetwork distributions have identical marginals for their common set of queues at some

point in time, the marginals will remain identical at all other points in time. 

Proof. See Appendix A.2 . 

Proposition 2 states a key feature of the proposed decomposition approach: The model (13), (14) maintains mutually

consistent overlapping subnetwork distributions, without any need to introduce supplementary distributional adjustments

or constraints. 

2.1.3. Illustration of the adopted approximations 

The sole purpose of this section is to illustrate the approximations made in (11) and (12) ; no additional modeling con-

cepts are introduced. 

The queueing network displayed in Fig. 1 is considered. It consists of three queues 1, 2, 3 in tandem, with each queue

having a (for simplicity unitless) flow capacity of μ = 1 and a space capacity of � = 1 . Jobs arrive to queue 1 at rate γ = 1
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Fig. 1. Tandem network. 

Table 1 

Transition rates in tandem network. 

to n 1 0 0 0 0 1 1 1 1 

from n 2 0 0 1 1 0 0 1 1 

n 1 n 2 n 3 0 1 0 1 0 1 0 1 

0 0 0 −1 γ = 1 

0 0 1 δ = 1 −2 γ = 1 

0 1 0 μ = 1 −2 γ = 1 

0 1 1 δ = 1 −2 γ = 1 

1 0 0 μ = 1 −1 

1 0 1 μ = 1 δ = 1 −2 

1 1 0 μ = 1 −1 

1 1 1 δ = 1 −1 

Table 2 

Stationary state distribution and derived quantitites. 

n 1 n 2 n 3 π ( n 1 , n 2 , n 3 ) π ( n 1 , n 3 | n 2 ) π ( n 1 | n 2 ) · π ( n 3 | n 2 ) π ( n 3 | n 1 , n 2 ) π ( n 3 | n 2 ) 
0 0 0 0.0714 0.1428 0.1632 0.5 0.5714 

0 0 1 0.0714 0.1428 0.1224 0.5 0.4286 

0 1 0 0.1429 0.2858 0.3062 0.6668 0.7144 

0 1 1 0.0714 0.1428 0.1224 0.3332 0.2856 

1 0 0 0.2143 0.4286 0.4082 0.5999 0.5714 

1 0 1 0.1429 0.2858 0.3062 0.4001 0.4286 

1 1 0 0.2143 0.4286 0.4082 0.7501 0.7144 

1 1 1 0.0714 0.1428 0.1632 0.2499 0.2856 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and leave from queue 3 at rate δ = 1 . The transition rate matrix between the eight binary states of this system is displayed

in Table 1 . The dashed lines in Fig. 1 circumscribe two subnetworks; this decomposition is triangle-free ( Definition 2 ) and

allows for local transitions only ( Definition 3 ). 

The stationary state of this system is subsequently analyzed; this keeps the presentation simple yet suffices to clarify the

points of interest. Denoting Table 1 ’s transition rate matrix by T and stacking the stationary probability of every network

state into a column vector π, the stationary state distribution is defined by the system 

T T π = 0 (16) 

1 

T π = 1 (17) 

where 0 and 1 are all-zero resp. all-one column vectors of suitable dimension and superscript T denotes the transpose.

Solving this system yields the state probabilities π ( n 1 , n 2 , n 3 ) displayed in the fourth column of Table 2 . The remaining

columns of this table are all derived from these values by summing out dimensions and/or conditioning. 

The fifth and sixth column compare the exact joint distribution π ( n 1 , n 3 | n 2 ) of queues 1 and 3 given queue 2 to an

expression π ( n 1 | n 2 ) · π ( n 3 | n 2 ) that would be equivalent if the outer queues 1 and 3 were conditionally independent given

the middle queue 2. The table reveals that this is not the case, illustrating that the conditioning of adjacent subnetworks on

a given intermediate subnetwork in (11) is an approximation. 

Similarly, the two last columns compare the full conditional distribution π ( n 3 | n 1 , n 2 ) of queue 3 on all other queues to

the result of conditioning it only on its adjacent queue 2, i.e. to π ( n 3 | n 2 ). Different numbers are obtained, illustrating that

the incomplete conditioning in (12) is an approximation. 

2.2. Model validation 

The purpose of the experiments presented here is to investigate the capability of the proposed approximation model (13),

(14) to capture uni- and multivariate queue state distributions in a network with intricate dynamics. The analytical approxi-

mations are compared to estimates obtained from an event-based queueing network simulator that generates realizations of

network state trajectories according to the exact model (2) . Statistics are computed from 10 7 replications of the simulation.
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Fig. 2. Decomposition of example network. 

Table 3 

Transition rates in test network. 

description final state y rate t y x condition 

arrival to 1 x 1 + 1 γ 1 x 1 < � 1 

arrival to 2 x 2 + 1 γ 2 x 2 < � 2 

departure from 3 x 3 − 1 μ3 x 3 > 0 

departure from 4 x 4 − 1 μ4 x 4 > 0 

transition from 1 to 5 x 1 − 1 , x 5 + 1 p 15 μ1 x 1 > 0, x 5 < � 5 , x 6 < � 6 

transition from 1 to 6 x 1 − 1 , x 6 + 1 p 16 μ1 x 1 > 0, x 5 < � 5 , x 6 < � 6 

transition from 2 to 7 x 2 − 1 , x 7 + 1 p 27 μ2 x 2 > 0, x 7 < � 7 , x 8 < � 8 

transition from 2 to 8 x 2 − 1 , x 8 + 1 p 28 μ2 x 2 > 0, x 7 < � 7 , x 8 < � 8 

transition from 5 to 3 x 5 − 1 , x 3 + 1 μ5 x 5 > 0 , x 3 < � 3 , x 8 = 0 

transition from 8 to 3 x 8 − 1 , x 3 + 1 μ8 x 8 > 0, x 3 < � 3 

transition from 7 to 4 x 7 − 1 , x 4 + 1 μ7 x 7 > 0 , x 4 < � 4 , x 6 = 0 

transition from 6 to 4 x 6 − 1 , x 4 + 1 μ6 x 6 > 0, x 4 < � 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A road traffic scenario is considered, using the road network shown in Fig. 2 (a) where vertices represent intersections and

edges represent road segments. This network could describe an arterial consisting of one westbound road (road segments

2,8,3) and one eastbound road (segments 1,6,4), between which U-turns are enabled by road segments 5 and 7. All roads

are directed (as indicated by the arrows) and have a single lane. Following Osorio (2010 , Chap. 4), this road network is now

modeled through a queueing network by (i) representing each link by a single server queue with finite space capacity � ,

independent and exponentially distributed service times, external network arrivals that constitute a Poisson process, and (ii)

representing each possible turning move in every road intersection by a corresponding edge in the queueing network. The

resulting queueing network becomes the line graph of the road network ( Balakrishnan, 1997 ). It is shown in Fig. 2 (b). The

circles represent queues. Two queues are connected by a solid line if there exists a network state transition that depends on

both queues or affects both queues. These state transitions and the subnetwork decomposition (dashed) are detailed further

below. 

This queueing representation of a road network leads to a simplistic representation of real road traffic dynamics because

it only captures delay caused by congestion but neglects the finite speed at which traffic states at different coordinates

propagate (in the form of kinematic waves) along the link. These deficiencies will be removed in the SLTM road network

model presented in Section 3 . The present case study merely aims at illustrating the previously developed queueing network

model. 

The non-zero and non-diagonal transition rates of this system are given in Table 3 . The first column describes the differ-

ent possible events. The second column indicates those elements of the state vector that have changed after the correspond-

ing event, assuming an initial state x = (x i ) . The third column gives the transition rate, and the fourth column indicates the

condition under which the transition is feasible. The symbols γ , μ, and � represent exogenous arrival rates, queue service
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Fig. 3. Stable stationary congestion patterns. Thick lines indicate the presence of traffic (either flowing or spilling back). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rates, and queue space capacities, respectively. In addition, p ij represents the transition probability from upstream queue i

into downstream queue j . The diagonal transition rates, i.e. the rates of departure from each state, can be obtained through

(3) , as explained in Section 2.1.1 . 

Vehicles enter the network by joining queue 1 or 2, and they leave the network through queue 3 or 4. From queue 1, they

can either go straight into queue 6 or initiate a U-turn by entering queue 5. Either turn is only allowed if both downstream

queues are non-full. This mimics spillback effects in road networks, where vehicles attempting to enter a full road block the

traffic on the intersection upstream of that road. Vehicles continuing straight into queue 6 leave the network through queue

4. U-turning vehicles leave the network through queue 3. A transition from queue 5 to queue 3 is only allowed if there is

no vehicle in queue 8. This mimics a prioritized road intersection where the merging traffic (from queue 5) yields to the

through traffic (from queue 8). A symmetric logic applies to vehicles entering through queue 2. 

The concrete parameters used are as follows, with all rates and flow capacities being given in vehicles per second. The

space capacity of all queues is � i = 10 vehicles, i = 1 . . . 8 . Vehicles enter the network (with losses, meaning that vehicles

that cannot enter due to spillback are discarded) at a rate of γ1 = γ2 = 1 . 25 into queue 1 and 2. They continue straight

with probability p 16 = p 28 = 2 / 3 and perform a U-turn with probability p 15 = p 27 = 1 / 3 . The queue service rates within

the network are μ1 = μ2 = μ5 = μ6 = μ7 = μ8 = 10 , which is on average sufficient to serve the demand. The outgoing

queues 3 and 4, however, constitute bottlenecks with a low service rate of μ3 = μ4 = 1 each. Since the overall demand

( γ1 + γ2 = 2 . 5 ) exceeds the overall network exit flow capacity ( μ3 + μ4 = 2 ), congestion arises at the exit bottlenecks and

spreads throughout the network. 

The symmetric configuration of this network leads to complex congestion patterns. This can be clarified by analyzing

the network first under the assumption that all queues are deterministic. In this setting, the service time of queue i would

no longer be exponentially distributed but be deterministic and equal to 1/ μi . Under this assumption, the network has two

stable stationary congestion patterns, which are shown in Fig. 3 . In the first case, there is an unhindered flow from queue

1 through queue 6 to queue 4. Because of this, departures from queues 7 are held back, which in turn blocks queue 2. In

consequence, there also is no straight flow from queue 2 through queue 8 to queue 3, meaning that U-turns from queue

1 through queue 5 into queue 3 are unhindered. The second case is symmetric to the first one, only that queue 2 sends

unhindered and queue 1 is held back. Returning to the stochastic perspective (with exponentially distributed service times),

one hence can expect a symmetric, bi-modal distribution of network states. 

Given Table 3 , the stochastic traffic flow dynamics on this network can be evaluated using (2) . In order to tackle the

exponential complexity of this network model, the queueing network is decomposed into the four subnetworks indicated

by dashed lines in Fig. 2 (b). These subnetworks are subsequently labeled according to the queues they comprise as 156, 278,

358, and 467. Inspecting the overlap of the dashed subnetworks in Fig. 2 (b) reveals that this subnetwork decomposition is

triangle-free ( Definition 2 ). Noting further that the queues referred to in every single row of Table 3 can be inscribed in a sin-

gle subnetwork leads to the observation that this configuration allows for instantaneous local transitions only ( Definition 3 ).

All necessary prerequisites to deploy the subnetwork decomposition model (13), (14) are hence satisfied. 
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Fig. 4. Queue-length expectations and standard deviations [vehicles] over time [s]. 

 

 

 

 

 

The details of this subnetwork decomposition, in particular the evaluation of the local transition rates specified in

Definition 4 , are omitted here to avoid redundancies with Section 3.1 , which provides this information when defining the

full SLTM. 

The initially empty system is simulated for 250 seconds. Fig. 4 shows the mean values (column 1) and standard devi-

ations (column 2) of the number of vehicles in each queue over time. Due to the symmetry of the experiment, each row

corresponds to two queues. The following observations can be made. 

• The analytical model captures very well the transient dynamics of the system, both in terms of queue-length expectations

and standard deviations. 
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• The analytical model also approximates with good precision the stationary expected queue-lengths and their standard

deviations. 

Proposition 2 ensures the mutual consistency of subnetwork distributions at overlapping queues, but it does not ensure

their network-wide consistency in terms of an underlying full joint distribution; neither does it provide a recipe for approx-

imating the joint distribution of two queues that are not elements of the same subnetwork. An approximation scheme is

subsequently used, where the joint distribution of two queues is approximated by (i) identifying a sequence of overlapping

subnetworks with the first (last) subnetwork in this sequence containing the first (second) queue of interest and then (ii)

summing out the states of all other queues contained in this subnetwork sequence. This computation uses only the in-

stantaneous subnetwork distributions �, which are readily available from solving the system of differential equations (13),

(14) forwards through time. 

Fig. 2 b reveals a circular arrangement of the subnetworks, meaning that for each pair of queues there are two sequences

of subnetworks one can traverse to connect them: one clockwise, and one counter-clockwise. Consider, for example, the two-

dimensional joint distribution of queue 1 and 2. In counter-clockwise direction, this joint is approximated by considering

subnetworks 156, 467, and 278 only: 

P 1(67)2 (N 1 = x 1 , N 2 = x 2 ) 

= 

∑ 

x 6 

∑ 

x 7 

�156 (N 1 = x 1 | N 6 = x 6 )�467 (N 6 = x 6 | N 7 = x 7 )�278 (N 2 = x 2 , N 7 = x 7 ) (18) 

where the subscript 1(67)2 indicates that the joint of 1 and 2 is computed by summing out states along the path 67.

Similarly, the computation in clockwise direction through subnetworks 156, 358, 278 yields 

P 1(58)2 (N 1 = x 1 , N 2 = x 2 ) 

= 

∑ 

x 5 

∑ 

x 8 

�156 (N 1 = x 1 | N 5 = x 5 )�358 (N 5 = x 5 | N 8 = x 8 )�278 (N 2 = x 2 , N 8 = x 8 ) . (19) 

In the following, the analytical approximation of any two-dimensional joint distribution is computed along the shorter of

the two possible paths. The symmetry of the considered example ensures that for all queue pairs that are connected by two

paths of equal length the joint distributions along both paths are identical. 

Figs. 5–8 show all two-dimensional stationary joint distributions of the given system. The first column visualizes the

bivariate joint estimated via simulation. The second column shows the corresponding analytical approximation. Every row

shows the joint distribution for one or two pairs of queues, where the queue indices of the pair(s) are given within paren-

thesis. The state of the first queue in each pair is plotted along the x-axis, and the state of the second queue is plotted along

the y-axis. When two queue pairs are indicated in a row, these two pairs have an identical joint distribution because of the

experiment’s symmetry. 

The simulation-based joint distributions, which constitute the ground truth to be approximated by the analytical model,

are given some interpretation first. All of these distributions are multi-modal, with most of their probability mass concen-

trated at extreme state configurations where at least one queue is either empty or full. This corresponds well to the intuition

of a system that oscillates between the two congestion patterns given in Fig. 3 . Indeed, most probability peaks match one

of these patterns, with the remaining probability mass being distributed along states that correspond to transitions between

these patterns. An example configuration is selected to clarify this. 

Consider the last row (queues 1 and 5) in Fig. 5 . In congestion pattern (a) of Fig. 3 , both queues carry unhindered flow

and hence low occupancy, corresponding to the probability peak around coordinates (0, 0). In pattern (b), congestion spills

back across both queues, resulting in high occupancies and the corresponding probability peak around coordinates (10, 10).

The remaining probability mass is distributed over states that are visited when transitioning between these extremes. A

related phenomenon can be found in the second row (queues 1 and 7) of Fig. 6 : now, congestion pattern (a) implies low

occupancy on queue 1 and high occupancy on queue 7 and a corresponding probability peak around coordinates (0, 10),

whereas congestion pattern (b) leads to high occupancy on queue 1, low occupancy on queue 7, and a probability peak

around coordinates (10, 0). The symmetric and opposite behavior of queues 5 and 7 in these two examples matches the

second row of Fig. 8 : Congestion pattern (a) implies that queue 5 is almost always uncongested and queue 7 is almost

always congested, while pattern (b) implies the opposite. 

Comparing now the analytical model predictions to their simulation-based counterparts, the following qualitative obser- 

vations can be made. 

• The analytical model captures very well the absence of probability mass in the center of all histograms. 
• The analytical model reproduces the probability peak patterns with overall good precision. However, some under-

estimations (e.g. for P (N 3 = 10 , N 4 = 0) and P (N 3 = 0 , N 4 = 10) in Fig. 6 ) and over-estimations (e.g. for P (N 5 = 0 , N 7 = 0)

and P (N 5 = 10 , N 7 = 10) in Fig. 8 ) remain. 

A quantitative perspective on this comparison is adopted in Table 4 , which gives summary statistics computed from the

distributions of Figs. 5–8 . The first column indicates the considered queue pairs. The second column states how many queues

separate the elements of each pair along their computation path. The third column shows the Kullback–Leibler divergence
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Fig. 5. Bivariate queue-length distributions. 

 

 

 

 

 

 

 

( Kullback and Leibler, 1951 ) between simulated distribution and analytical approximation, which is computed as follows: 

D KL (P ‖ Q ) = 

∑ 

i 

log 2 

(
P (i ) 

Q(i ) 

)
P (i ) (20)

where P ( i ) is the probability of state i according to the simulation model and Q ( i ) is the corresponding analytical approxi-

mation. The fourth and fifth column provide reference values that put column three into perspective. Column four contains

the Kullback–Leibler divergence D LK (P ‖ marginals ) between the simulation model and an approximation that is obtained

by multiplying its respective one-dimensional marginals, which are estimated via simulation. The fifth column shows the

Kullback–Leibler divergence D LK (P ‖ uniform ) between the simulation model and a uniform approximation. The following

observations can be made. 

• The analytical model clearly outperforms the uniform approximation, meaning that it provides useful information beyond

the completely uninformed case. 
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Fig. 6. Bivariate queue-length distributions. 

 

 

 

 

 

 

 

• The analytical model also outperforms the marginal-based approximation on average for all distances, meaning that the

analytical model captures relevant dependency information. 
• The marginal-based approximation improves as the distance gets larger. This is consistent with the traffic modeling in-

tuition that queue dependencies decrease with spatial distance. 
• The performance of the analytical model exhibits the sharpest reduction in quality when going from distance 0 to dis-

tance 1. This is plausible because for a pair of queues with distance 0 there exists a subnetwork that contains joint

distributional information for both queues. 

For each queue pair, the detailed statistics display overall the same trends; the only exception to this rule are queues

3 and 4 (second last row), for which the marginal approximation performs better than the proposed model. An inspection

of the corresponding distribution plots in the last row of Fig. 6 suggests that the performance of the approximation model

suffers from an imperfect approximation of the two probability peaks at (10, 0) and (0, 10). 
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Fig. 7. Bivariate queue-length distributions. 

 

 

 

 

 

 

 

Overall, these experiments demonstrate that the proposed approximation model captures most dependency structure in

a fairly ill-behaved test case that is characterized by a complex multi-modal joint distribution. The approximation model is

computed using four subnetwork approximations, with each subnetwork consisting of 3 queues. Given a space capacity of 10

vehicles per queue, this implies an overall memory requirement of 4 × 11 3 = 5324 numbers. Given the full state space size of

11 8 = 214 ′ 358 ′ 881 , this means a reduction down to less than 0.0025 percent. The following section puts this approximation

model into concrete use for the development of a network SLTM. 

3. Road network model 

This section deploys the previously developed queueing network model to specify a SLTM for vehicular road network

traffic. The model is developed in Section 3.1 , its numerical solution is discussed in Section 3.2 , and experimental illustra-

tions are given in Section 3.3 . 
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Fig. 8. Bivariate queue-length distributions. 

 

 

 

 

 

 

3.1. Model formulation 

This work relies on the link model of Osorio and Flötteröd (2015) , which realistically captures stochastic kinematic waves

within a link. It is briefly reviewed in Section 3.1.1 . For a detailed description of the derivation of the model, the reader is re-

ferred to Osorio and Flötteröd (2015) . Sections 3.1.2 and 3.1.3 explain how the previously developed queueing network model

can be used to consistently combine these link models into a linear and a general-topology network model, respectively. 

3.1.1. Link model 

The notation used here differs slightly from that in Osorio and Flötteröd (2015) . 

The link model considers an isolated link (i.e., a road segment) with a triangular density-flow fundamental diagram.

Stochasticity is modeled in the arrival process to the upstream end of the link and the departure process from its down-

stream end. The model is parametrized by the link’s free flow velocity, backward wave speed, flow capacity, jam density and
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Table 4 

Summary statistics of bivariate joint approximation. 

queues distance D KL (P ‖ Q ) D LK (P ‖ marginals ) D LK (P ‖ uniform ) 

(1,5), (2,7) 0 0.055355 0.717129 3.422993 

(1,6), (2,8) 0 0.125268 0.507955 2.796826 

(4,6), (3,8) 0 0.095745 0.4 4 4516 2.674944 

(4,7), (3,5) 0 0.091756 0.735241 3.383012 

(5,6), (7,8) 0 0.183747 0.483327 2.839028 

(5,8), (6,7) 0 0.036427 0.540676 2.898564 

average 0 0.0980 0.5715 3.0026 

(1,3), (2,4) 1 0.116154 0.275907 2.855589 

(1,4), (2,3) 1 0.418250 0.583807 3.164398 

(1,7), (2,5) 1 0.284186 0.503341 3.209555 

(1,8), (2,6) 1 0.072494 0.381984 2.673042 

(4,5), (3,7) 1 0.410486 0.56 86 81 3.216102 

(4,8), (3,6) 1 0.258929 0.317868 2.550483 

(5,7) 1 0.528989 0.764812 3.537857 

(6,8) 1 0.140685 0.328179 2.269074 

average 1 0.2788 0.4656 2.9345 

(1,2) 2 0.142101 0.223988 2.863277 

(3,4) 2 0.359835 0.309076 2.830315 

average 2 0.2510 0.2665 2.8468 

Fig. 9. Link composed of four queues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

length. It is a continuous-space discrete-time model that uses four finite (space) capacity Markovian queues to describe the

boundary conditions the link provides to both its upstream and its downstream interface (a node in a network context). 

The downstream queue DQ contains the number of vehicles that are ready to leave the link, constituting the boundary

condition the link provides to its downstream node. The lagged inflow queue LI contains the total number of vehicles that

have entered the link but, due to the finite link traversal speed, do not yet affect its downstream boundary condition. The

sum of LI and DQ can hence be interpreted as the sum of “vehicles moving on the link” and “vehicles queueing at the

downstream end of the link”, yielding the total number of vehicles on the link. 

The number of vehicles contained in the upstream queue UQ is such that the remaining space available in this queue

represents the space available for vehicles entering the link, constituting the boundary condition it provides to its upstream

node. The lagged outflow queue LO keeps track of how many vehicles have left the link but, due to the finite backward wave

speed, do not yet affect its upstream boundary condition. This means that LO does not contain vehicles but what could be

called “vehicle departure events” or “spaces about to become available upstream”. The interplay of UQ and LO is such that

UQ may contain more vehicles than what the link physically contains (because the effect of vehicles having recently left the

link is not yet observable at its upstream and), in which case LO keeps track of this surplus. 

Fig. 9 illustrates the configuration of these queues within a link. Using k as the discrete time index, k fwd (resp. k bwd ) is

the number of time steps it takes a forward (resp. backward) kinematic wave to traverse the link. The link’s in- and outflow

rates are denoted by q in and q out , respectively. 

The total number of vehicles in the link can be either expressed as the sum of vehicles in DQ plus those in LI (having

entered the link but not yet entered DQ) or as those in UQ minus those in LO (having left the link but not yet been taken

out of UQ). Denoting by the italic symbols DQ ( LO , UQ , LI ) the stochastic number of vehicles in DQ (LO, UQ, LI), one hence

has 

DQ + LI = UQ − LO. (21)

This linear dependence implies that the state of the link can be expressed by any three out of these four queues. Since the

selection of which queue to leave out is arbitrary and would create the notational overhead of expressing one queue state
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Table 5 

Transition rates between queues DQ, LO, UQ, LI. Only changed 

final states are indicated. 

initial state m final state n rate t n m (k ) condition 

dq , lo , uq , li uq + 1 , li + 1 γ ( k ) uq < � 

-”- li − 1 , dq + 1 μLI ( li ; k ) li > 0 

-”- dq − 1 , lo + 1 δ( k ) dq > 0 

-”- lo − 1 , uq − 1 μLO ( lo ; k ) lo > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

through the remaining three, the state of the link model is in the following expressed through all four queues, keeping the

linear dependence (21) in mind. 

Let k be the current time step index, h the duration of a time step, and � the space capacity of the link (and of each

single queue it contains). Denoting by dq , lo , uq , li concrete realizations of DQ , LO , UQ , LI that comply with (21) , Table 5

enumerates the rates at which transitions between these queue states occur, with -”- meaning “the same entry as in the

row immediately above”. The first (resp. second) column of Table 5 represent the initial (resp. final) state, with unchanged

queue states being not repeated in the second column. The third column represents the correspoding transition rate; note

that this rate is time-dependent, as described below. The fourth column represents the condition on the initial state under

which this transition can take place. 

• The first row of the table describes arrivals to the link. They occur with rate γ ( k ) and may enter the link as long as uq

< � , i.e. they may enter as long as the number of vehicles in UQ is below the space capacity � . 
• The second row describes flow transmissions from LI to DQ . They are transmitted with rate 

μLI (l i ; k ) = 

l i 

h 

· q in (k − k fwd ) ∑ k fwd 

j=1 q 
in (k − j) 

, (22) 

and this can occur as long as LI is nonempty ( li > 0). This expression combines two ingredients. First, it evaluates

lagged link inflows. This captures the finite propagation speed of kinematic forward waves. Second, it conditions on

the concrete realization li of the number of vehicles in the LI queue. In combination, this allows to keep track of the

concrete distribution of flow having entered LI in past time steps. Observing that the expected state of LI represents the

accumulation of the link inflows during the last k fwd time steps, i.e. E { LI(k ) } = h 
∑ k fwd 

j=1 q in (k − j) , it follows from (22) that

E { μLI (LI; k ) } = q in (k − k fwd ) . 
• Row three describes departures from the link, which occur at rate δ( k ) as long as DQ is nonempty. 
• The last row describes how lagged link exits affect UQ, i.e. how a space becomes available at the upstream end of the

link. This is not modeled as a flow transmission but by a joint reduction of LO and UQ. It occurs at rate 

μLO (l o; k ) = 

l o 

h 

· q out (k − k bwd ) ∑ k bwd 

j=1 q 
out (k − j) 

. (23) 

The interpretation of this equation is symmetric to that of (22) , only that one now aims at capturing kinematic backward

waves. One has E { μLO (LO ; k ) } = q out (k − k bwd ) . 

Some intuition for how this specification relates to the LTM of Yperman et al. (2006) is subsequently developed. Link

boundary conditions are updated in Yperman et al. (2006) according to formulae that involve (i) differences of instanta-

neous cumulative link inflows and time-lagged cumulative link outflows to capture the upstream boundary conditions of

a link, and (ii) differences of time-lagged cumulative link inflows and instantaneous cumulative link outflows to capture

the downstream boundary conditions of a link. The number of vehicles in UQ and in DQ of the present model represent

stochastic versions of each of these differences, which are computed by feeding stochastic link in- and outflows with suit-

able time lags into these queues. Osorio and Flötteröd (2015) further demonstrate that introducing the supplementary LI

and LO queues allows to derive the joint distribution of the link’s up- and downstream conditions. 

This completes the summary of the single-link model of Osorio and Flötteröd (2015) . 

3.1.2. Linear network model 

To connect multiple link models into a network topology, one needs to add a node (i.e., intersection) model that describes

how vehicles arriving at the end of a link and intending to continue their travel into a certain downstream link move across

the corresponding link boundaries. 

This means that vehicles can enter a link now in two different ways: from outside of the network or from an upstream

link within the network. Similarly, they can leave a link either to outside of the network or to a downstream link within the

network. Where exactly along a link network entries and exits occur is a matter of specification; the convention adopted

here is that vehicles are inserted into the network at the upstream end of a link and that they are taken out of the network

at the downstream end of a link. Geometrically, the entrance and exit locations hence coincide with the link’s up- and

downstream node, even though entrances and exits are defined in a link-specific manner. 
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Fig. 10. Queue composition of two-link tandem network. 

Table 6 

Exact transition rates in tandem network. Only changed new states are shown. The time index is here and 

in the following tables omitted for better readability. Subscripts refer to the link containing the respective 

queue. 

initial state x new state y rate t y x condition 

dq 1 , lo 1 , uq 1 , li 1 ; dq 2 , lo 2 , uq 2 , li 2 uq 1 + 1 , li 1 + 1 γ 1 uq 1 < � 1 

-”- li 1 − 1 , dq 1 + 1 μLI ( li 1 ) li 1 > 0 

-”- dq 1 − 1 , lo 1 + 1 δ1 dq 1 > 0 

-”- lo 1 − 1 , uq 1 − 1 μLO ( lo 1 ) lo 1 > 0 

-”- dq 1 − 1 , lo 1 + 1 , uq 2 + 1 , li 2 + 1 μ12 dq 1 > 0, uq 2 < � 2 

-”- uq 2 + 1 , li 2 + 1 γ 2 uq 2 < � 2 

-”- li 2 − 1 , dq 2 + 1 μLI ( li 2 ) li 2 > 0 

-”- dq 2 − 1 , lo 2 + 1 δ2 dq 2 > 0 

-”- lo 2 − 1 , uq 2 − 1 μLO ( lo 2 ) lo 2 > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given that the previously reviewed link model is rooted in a queueing theoretical specification, the interactions between

adjacent links across a node are also specified at the level of the involved queues. The model structure is illustrated in

Fig. 10 for a tandem configuration of two links (i.e. unidirectional roads) that are connected by a node (i.e. an intersection).

Each link (upstream: link 1, downstream: link 2, both drawn as dashed rectangles) contains the four queues DQ, LO, UQ, LI

that define its internal stochastic flow dynamics as reviewed in Section 3.1.1 . These queues are drawn as solid circles. 

The solid lines connecting the queues illustrate how they interact: Two queues are connected by a solid line if there exists

a network state transition that depends on both queues or affects both queues. Table 6 displays all transitions needed in this

network in order to create SLTM dynamics. The first and last block of four rows describes, now in a network context, the

four types of within-link events already discussed in the explanation of Table 5 . The single row in the middle block defines

how the two links are joined into a network: Vehicles move at a node- and link-specific rate μ12 across the node given that

there are vehicles available upstream to be moved ( dq 1 > 0) and that there is space available downstream to receive these

vehicles ( uq 2 < � 2 ). This movement affects the upstream link in that it has the same effect as a single-link departure, and

it affects the downstream link in that it has the same effect as a single-link arrival, with the essential difference that these

two events now occur jointly. 

This node model adds stochasticity and finite vehicle size in a natural way to the well-known KWM interface logic

( Daganzo, 1994; Lebacque, 1996 ), which is deterministic and applies to a continuum vehicle flow. To clarify this, a result for

the link model of Osorio and Flötteröd (2015) is recalled. They derive the following expressions for the sending flow rate

S at which flow can leave a link and the receiving flow rate R at which flow can enter a link during a given short time

interval of duration h , with μ being the link’s flow capacity: 

S = min { DQ/h, μ} (24)

R = min { (� − UQ ) /h, μ} . (25)

In the limiting case of h → 0, this becomes 

S = μ · 1 (DQ > 0) (26)

R = μ · 1 (UQ < � ) (27)

with 1 ( ·) being the indicator function. Concatenating now an upstream link 1 and a downstream link 2 with respective flow

capacity μ1 and μ2 and deploying the usual KWM interface logic, the stochastic flow is given by 

Q 12 = min { S 1 , R 2 } . (28)
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Table 7 

Local transition rates for subnetworks in 2-link tandem network. 

initial state ( m , r ) final state ( n , s ) rate t n , s m , r condition 

link 1 ( m ) node ( r ) link 1 ( n ) node ( s ) 

dq 1 , lo 1 , uq 1 , li 1 uq 2 , li 2 uq 1 + 1 , li 1 + 1 γ 1 uq 1 < � 1 

-”- -”- li 1 − 1 , dq 1 + 1 μLI ( li 1 ) li 1 > 0 

-”- -”- dq 1 − 1 , lo 1 + 1 δ1 dq 1 > 0 

-”- -”- lo 1 − 1 , uq 1 − 1 μLO ( lo 1 ) lo 1 > 0 

-”- -”- dq 1 − 1 , lo 1 + 1 uq 2 + 1 , li 2 + 1 μ12 dq 1 > 0, uq 2 < � 2 

node ( m ) link 1, link 2 ( r ) node ( n ) link 1, link 2 ( s ) 

dq 1 , lo 1 , uq 2 , li 2 uq 1 , li 1 , dq 2 , lo 2 dq 1 + 1 li 1 − 1 μLI ( li 1 ) li 1 > 0 

-”- -”- dq 1 − 1 , lo 1 + 1 δ1 dq 1 > 0 

-”- -”- lo 1 − 1 uq 1 − 1 μLO ( lo 1 ) lo 1 > 0 

-”- -”- dq 1 − 1 , lo 1 + 1 , uq 2 + 1 , li 2 + 1 μ12 dq 1 > 0, uq 2 < � 2 

-”- -”- uq 2 + 1 , li 2 + 1 γ 2 uq 2 < � 2 

-”- -”- li 2 − 1 dq 2 + 1 μLI ( li 2 ) li 2 > 0 

-”- -”- uq 2 − 1 lo 2 − 1 μLO ( lo 2 ) lo 2 > 0 

link 2 ( m ) node ( r ) link 2 ( n ) node ( s ) 

dq 2 , lo 2 , uq 2 , li 2 dq 1 , lo 1 uq 2 + 1 , li 2 + 1 γ 2 uq 2 < � 2 

-”- -”- li 2 − 1 , dq 2 + 1 μLI ( li 2 ) li 2 > 0 

-”- -”- dq 2 − 1 , lo 2 + 1 δ2 dq 2 > 0 

-”- -”- lo 2 − 1 , uq 2 − 1 μLO ( lo 2 ) lo 2 > 0 

-”- -”- uq 2 + 1 , li 2 + 1 dq 1 − 1 , lo 1 + 1 μ12 dq 1 > 0, uq 2 < � 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting (26) and (27) and noting that the resulting expression is zero unless both involved indicators are one yields 

Q 12 = min { μ1 , μ2 } · 1 (DQ 1 > 0) · 1 (UQ 2 < � 2 ) . (29) 

⇒ E { Q 12 } = min { μ1 , μ2 } · Pr (DQ 1 > 0 , UQ 2 < � 2 ) (30) 

where the subscripts 1 and 2 refer to the respective links and μ12 = min { μ1 , μ2 } can now be identified as the interface

flow capacity. The expected interface flow (30) coincides with the expected node transition rate in Table 6 . 

Given Table 6 , the stochastic traffic flow dynamics on this network can be evaluated using (2) . In order to tackle the

exponential complexity of this equation, a suitable subnetwork decomposition is needed. This subnetwork decomposition

is indicated in Fig. 10 by the three regions circumscribed by dashed lines: two link subnetworks and one node subnetwork .

Inspecting Fig. 10 reveals that this subnetwork decomposition is triangle-free ( Definition 2 ). Further, all queues refered to in

every single line of Table 6 can be inscribed in a single subnetwork (the first block of rows into the subnetwork of link 1,

the second block into the node subnetwork, and the last block into the subnetwork of link 2), leading to the conclusion

that this specification allows for instantaneous local transitions only ( Definition 3 ). All necessary prerequisites to deploy the

subnetwork decomposition model (13), (14) are hence satisfied. 

The local transition rates ( Definition 4 ) necessary to evaluate (13) are given in Table 7 . The first and second column

contain the initial state of the considered subnetwork and its neighborhood. The third and fourth column show the corre-

sponding states arising after the transition. Empty fields mean that the corresponding subnetwork state is not changed by

the respective transition. Column five displays the rate at which this transition occurs, given that the condition in column

six is fulfilled. The rows are as follows. 

• The first block of rows describes all events affecting the subnetwork of link 1. This means that the rates t n , s m , r given here

correspond to t n , s m , r (V( subnetwork of link 1 )) in (13) . This subnetwork overlaps with that of the node; its neighborhood

queues are hence UQ 2 and LI 2 (i.e. the queues of the node subnetwork that are not already contained in the link 1

subnetwork). The rows in this block describe, from top to bottom: 

– arrival from outside of the network to link 1; 

– advancement of a vehicle from LI 1 into DQ 1 ; 

– a vehicle leaving link 1 out of the network; 

– a “vehicle departure event” leaving LO 1 and releasing a space in UQ 1 ; 

– a vehicle leaving link 1 and continuing into link 2. 
• The second block of rows describes all events affecting the node subnetwork. This means that the rates t n , s m , r given here

correspond to t n , s m , r (V( node subnetwork )) in (13) . This subnetwork overlaps with those of both links; its neighborhood

queues are hence UQ 1 and LI 1 (the queues of the link 1 subnetwork that are not already contained in the node network),

and DQ 2 and LO 2 (the queues of the link 2 subnetwork that are not already contained in the node network). The rows

in this block describe, from top to bottom: 

– advancement of a vehicle from LI into DQ ; 
1 1 
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– departure out of the network from the downstream end of link 1; 

– a “vehicle departure event” leaving LO 1 and releasing a space in UQ 1 ; 

– a vehicle leaving link 1 and continuing into link 2; 

– arrival from outside of the network to link 2; 

– advancement of a vehicle from LI 2 into DQ 2 ; 

– a “vehicle departure event” leaving LO 2 and releasing a space in UQ 2 . 
• The third block of rows describes all events affecting the subnetwork of link 2. This means that the rates t n , s m , r given here

correspond to t n , s m , r (V( subnetwork of link 2 )) in (13) . This subnetwork overlaps with that of the node; its neighborhood

queues are hence DQ 1 and LO 1 . The rows in this block describe the same type of events for link 2 as the rows in the

first block for link 1. 

One observes that events affecting more than one subnetwork are repeated in the definition of the local transition rates

of each involved subnetwork. This consequence of Definition 4 reflects the fact that subnetworks may overlap and is essen-

tial for capturing stochastic dependency between subnetworks. 

This completes the specification of the proposed network SLTM for a two-link tandem network. To use this framework

for the modeling of general road network topologies, the following is necessary. 

1. Every road direction is represented by a four-queue link model. One link subnetwork is defined for every link. 

2. One node subnetwork is defined for every road intersection. It comprises DQ and LO of all upstream (ingoing) links and

UQ, LI of all downstream (outgoing) links of that node. 

3. Concrete transition rates are defined for each node subnetwork. These rates model the concrete intersection under con-

sideration. 

Items 1 and 2 imply that every sequence of overlapping subnetworks alternates between link subnetworks and node

subnetworks . This means that all subnetworks adjacent to a node subnetwork are link subnetworks , and vice versa. As a

consequence, the resulting subnetwork structure is triangle-free . Item 3 requires to specify a stochastic node model that,

for a general network, may allow for an arbitrary number of in- and outgoing links. The SLTM framework is flexible with

respect to the concrete node model specification. An example diverge and merge node model are subsequently developed. 

3.1.3. General network model 

Every node specification must allow for instantaneous local transitions only ( Definition 3 ). This requirement is automati-

cally satisfied if the flows across a node depend only on the corresponding boundary conditions of the adjacent links, as in

standard KWM theory. 

In an node with more than one up- or downstream link, every vehicle moving across that node comes from one par-

ticular upstream link or moves towards one particular downstream link. Given finite vehicle sizes, crossing the node takes

finite time, and the information of where a vehicle comes from or where it goes does not change while the vehicle ad-

vances. Capturing this information in the SLTM would require to introduce corresponding state variables because the model

is Markovian along the time-line. The subsequently presented merge and diverge model aim at simplicity and approximate

node flows without such a state space expansion. 

Let I and J be the number of the node’s in- and outgoing links. As a general convention, ingoing (upstream) links are

indexed by the symbol i , outgoing (downstream) links by symbol j , and the symbol l is used when up- or downstream

information does not play a role or when a secondary index is necessary. 

General diverge 

A general diverge node has I = 1 upstream links and J > 1 downstream links. The turning probability from the unique

upstream link i into downstream link j is denoted by p ij . Conservation of turning fractions (meaning here that the ratios of

transition rates are equal to the corresponding turning probability ratios, cf. Tampere et al. (2011) ) is ensured by declaring

the diverge as blocked (i.e. unable to transmit any flow) whenever the UQ of a downstream link j with p ij > 0 is full.

(Relaxing this condition, i.e. sending flow into a non-full downstream link while another downstream link is full would

require the aforementioned state space extension to keep track of the destination link of vehicles queueing upstream.) 

Concrete transition rates are adopted from the broadly used diverge model of Daganzo (1995a ), in that the node flow

is maximized subject to the following constraints: The outflow from upstream link i does not exceed its flow capacity μi ;

the inflow to every downstream link j does not exceed its flow capacity μj ; turning fractions are preserved. Given that

the diverge is not blocked, the flow rate from upstream then becomes min { μi , min { l downstream } { μl 
p il 

}} , which is distributed

according to the turning probabilities p ij into the respective downstream links. This model follows from the same derivation

as given in Daganzo (1995a) , only that the SLTM’s discrete vehicle representation implies that the rate at which an upstream

link can send (resp. a downstream link can receive) is either zero (if there is no vehicle resp. space available) or the link’s

flow capacity μ (if there is at least one vehicle resp. space available). 

General merge 

A general merge node has I > 1 upstream links and J = 1 downstream links. The flow capacity between upstream link i

and the unique downstream link j is min { μi , μ j } , meaning that the expected transition time of a single vehicle from i to j is
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Table 8 

Transition rates from upstream link i to downstream link j across different node types. 

node type transition rate condition 

straight min { μi , μj } dq i > 0 and uq j < � j 

diverge p i j min 

{
μi , min 

{ l downstr. } 

{ 
μl 
p il 

} }
dq i > 0 and ∀ l downstr.: (uq l < � l or p il = 0) 

merge αi 

( ∑ 

{ l upstr. with dq l > 0 } 

αl 

min { μl , μ j } 

) −1 

dq i > 0 and uq j < � j 

Table 9 

Transition table for general network topologies. 

event type 

initial 

components of 

m ; r final components of n ; s rate t n , s m , r (V(S)) condition 

link l subnetwork S 

departure dq l , lo l ; − dq l − 1 , lo l + 1 ; − δl dq l > 0 

arrival uq l , li l ; − uq l + 1 , li l + 1 ; − γ l uq l < � l 

lagged inflow dq l , li l ; − dq l + 1 , li l − 1 ; − μLI 
l 
(li l ) → (22) li l > 0 

lagged outflow lo l , uq l ; − lo l − 1 , uq l − 1 ; − μLO 
l 

(lo l ) → (23) lo l > 0 

transition from upstream link i uq l , li l ; dq i , lo i uq l + 1 , li l + 1 ; dq i − 1 , lo i + 1 → Table 8 → Table 8 

transition to downstream link j dq l , lo l ; uq j , li j dq l − 1 , lo l + 1 ; uq j + 1 , li j + 1 → Table 8 → Table 8 

node subnetwork S 

departure from upstr. link i dq i , lo i ; − dq i − 1 , lo i + 1 ; − δi dq i > 0 

arrival to downstr link j uq j , li j ; − uq j + 1 , li j + 1 ; − γ j uq j < � j 

transition from link i to link j dq i , lo i , uq j , li j ; − dq i − 1 , lo i + 1 , uq j + 1 , li j + 1 ; − → Table 8 → Table 8 

lagged inflow in upstr. link i dq i ; li i dq i + 1 ; li i − 1 μLI 
i 
(li i ) → (22) li i > 0 

lagged outflow in upstr. link i lo i ; uq i lo i − 1 ; uq i − 1 μLO 
i 

(lo i ) → (23) lo i > 0 

lagged inflow in downstr. link j li j ; dq j li j − 1 ; dq j + 1 μLI 
j 
(li j ) → (22) li j > 0 

lagged outflow in downstr. link j uq j ; lo j uq j − 1 ; lo j − 1 μLO 
j 

(lo j ) → (23) lo j > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 / min { μi , μ j } . Every upstream link i receives a strictly positive priority parameter αi that guides the way in which possible

competition for downstream capacity is resolved. Letting the set C = { i upstream: dq i > 0 } contain all upstream links that

currently compete for downstream capacity, the probability that link i ∈ C wins this competition is set to αi / �j ∈ C αj . 

The probability that a vehicle currently moving across the node comes from upstream link i ∈ C is approximated by the

probability αi / �l ∈ C αl that a vehicle from this link would win an instantaneous competition. The expected time it takes

the currently advancing vehicle, regardless of where it comes from, to move across the node is hence approximated by∑ 

i ∈ C 
αi ∑ 

l∈ C αl 
· 1 

min { μi ,μ j } . Inverting this expression yields the total flow rate 
∑ 

l∈ C 
αl ∑ 

i ∈ C αi / min { μi ,μ j } = 

∑ 

i ∈ C 
αi ∑ 

l∈ C αl / min { μl ,μ j } . The 

last expression results from exchanging the l and i summation indices; the purpose of this is merely to subsequently follow

the convention that i refers to an upstream link. Given that there is space available downstream, i.e. uq j < � j the resulting

flow transmission rate between upstream link i ∈ C and downstream link j is then set to the corresponding addend in the

last sum, i.e. to 
αi ∑ 

l∈ C αl / min { μl ,μ j } . 
Table 8 summarizes the transition rates across the different types of nodes discussed in this article. The transition rates

necessary to specify a full network SLTM that contains these nodes in arbitrary topology is given in Table 9 . The presentation

avoids redundancies and is hence somewhat more compact than in the earlier tables. It consists of two blocks of rows, the

first one defining the transition rates for a link subnetwork and the second one defining the transition rates for a node

subnetwork. The first column of Table 9 indicates the type of considered transition. The notation of the following columns

is such that they can be immediately inserted into the general subnetwork dynamics (13), (14) , which require defining the

transition rates t n , s m , r (V(S)) for each subnetwork S with m , n ∈ N (V(S)) being states of subnetwork S and r , s ∈ N (∂V(S)))

being states of its neighborhood. Specifically, the second column indicates those components of the initial state m , r that

change during the transition. The third column indicates those components of the final state n , s that have changed during

the transition. Column four shows the rate t n , s m , r (V(S)) at which the transition takes place, given that the condition in column

five is satisfied. For brevity, some entires in column four and five refer back to Table 8 . The following specifications are given

for a link subnetwork. 

• The first four rows of the first block refer to events that are fully contained in the link subnetwork: departures out of

the network, arrivals from outside of the network, transitions from LI to DQ, transitions from LO to UQ. 
• Row five (resp. six) of the first block indicates what happens when a vehicle enters (resp. leaves) the considered link from

an upstream link i (resp. to a downstream link j ). Here, states in the neighborhood of the considered link subnetwork are

also changed; these states refer to downstream boundary conditions of the sending upstream link i (resp. to upstream

boundary conditions of the receiving downstream link j ). 

The following specifications are given for a node subnetwork. 
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• The first three rows of the second block refer to events that are fully contained in the node subnetwork: departure out

of the network from an upstream link (which only affects the downstream boundary conditions of that link, which are

part of the node subnetwork), arrival to the network in a downstream link (which only affects the upstream boundary

conditions of that link, which are part of the node subnetwork), and a transition from an up- to a downstream link

(which also only affects those parts of the involved links that are part of the node subnetwork). 
• Rows four and five of the second block refer to transitions from LI to DQ and from LO to UQ in an upstream link of the

node. Since UQ and LI of that link are not part of the node subnetwork, the corresponding subnetwork neighborhood

states are also changed. 
• The last two rows of the second block describe the same transition types as in the previous item, but now in a down-

stream link of the node. Symmetrically to the previous case, since that link’s DQ and LO are not contained in the node

subnetwork, the corresponding subnetwork neighborhood states are also changed. 

This completes the specification of all network SLTM elements. The full network model and its numerical solution are

presented in the following section. 

3.2. Continuous-time network model and numerical solution 

The LTM of Yperman et al. (2006) is, as well as its stochastic counterpart ( Osorio and Flötteröd, 2015 ), specified in

discrete time. The queueing subnetwork dynamics (13), (14) on which the network SLTM of the present article builds are,

however, specified in continuous time. 

Consistency between these two time representations is subsequently established by reformulating the stochastic LTM of

Osorio and Flötteröd (2015) in continous time. For this, it is recalled that the network SLTM requires to insert the transition

rates of Tables 8 and 9 into the continous-time subnetwork dynamics (13), (14) . An overall continuous-time formulation

hence results if all involved transition rates are defined in continuous time. The only dependencies on a discrete time for-

mulation that can be identified refer to μLI ( li ) and μLO ( lo ) in Table 9 , which hence are reformulated in continous time. 

For this, the lagged inflow rate (22) is written as 

μLI (li ; kh ) = li · q in (kh − k fwd h ) ∑ k fwd 

j=1 h · q in (kh − jh ) 
, (31)

with the main difference to (22) being that the discrete time index k is here replaced by discrete points kh with distance h

in continuous time. The denominator of this expression can be interpreted as a Riemann sum over a time-continuous inflow

profile q in ( τ ) in the time interval [ τ − τ fwd , τ ] with τ = kh and τ fwd = k fwd h . One obtains 

lim 

h → 0 
μLI (li ; τ ) = li · q in (τ − τ fwd ) ∫ τ fwd 

�=0 q 
in (τ − �) d� 

(32)

and, by symmetrical operations, 

lim 

h → 0 
μLO (li ; τ ) = lo · q out (τ − τ bwd ) ∫ τ bwd 

�=0 q out (τ − �) d� 

. (33)

The result is an overall time-continuous model, which consists of the system of differential equations (13) , (14) , using

the transition rates from Tables 8 and 9 in conjunction with (32) , (33) instead of their discrete-time counterparts (22) , (23) .

The present article uses a basic Euler scheme to solve this model. Note that the corresponding time discretization again

means approximating (32) , (33) by (22) , (23) . Algorithm 2 summarizes the model building and solution process. 

3.3. Model validation 

3.3.1. Linear network model 

An experiment presented in Sumalee et al. (2011) is adopted using the proposed model. The considered network con-

sists of two unidirectional roads in tandem, the upstream road (link 1) having four lanes and being 300 meters long and

the downstream road (link 2) having three lanes and being 100 meters long. Both links have triangular density-flow funda-

mental diagrams with maximum speeds of 60 km/h and backward wave speeds of -20 km/h. The upstream link has a jam

density (summing over all four lanes) of 600 veh/km, a resulting space capacity of 180 vehicles and a resulting flow capac-

ity of 90 0 0 veh/h; the downstream link has a jam density (summing over all three lanes) of 400 veh/km, a resulting space

capacity of 40 vehicles and a resulting flow capacity of 60 0 0 veh/h. The interface between the two links hence constitutes

a bottleneck. 

Vehicles arrive to the upstream end of link 1 at a rate of 

γ1 (k ) = 

{
30 0 0 veh/h if hk < 250 s 
80 0 0 veh/h if hk ≥ 250 s 

(34)
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Algorithm 2 Network SLTM construction and simulation logic. 

1. Construct the network representation. 

(a) Build one link subnetwork per direction of a homogeneous road segment. 

i. The subnetwork consists of one UQ, one LI, one DQ and one LO. 

ii. Set the space capacity � of all queues to the road segment’s space capacity. 

iii. Set the forward lag τ fwd to the road segments free-flow travel time. 

iv. Set the backward lag τ bwd to the traversal time of a kinematic backward wave. 

v. Set the arrival rate γ and departure rate δ from/to outside of the network. 

(b) Build one node subnetwork per interface between two or more homogeneous road segments. 

i. The subnetwork consists of 
• one DQ, one LO per upstream road segment and 

• one UQ, one LI per downstream road segment, 

with all queueing parameters being taken over from the respective link subnetworks. 

ii. If diverge node, set turning probabilities { p i j } . 
iii. If merge node, set inflow priorities { αi } . 

2. Initialize solver and model. 

• Set a simulation time step size h . 
• Set initial subnetwork distributions � that are consistent across overlapping subnetworks. To start with an empty 

network, set the probability mass of all subnetwork distributions � to the state representing all-empty queues. 

3. For k = 0 , 1 , 2 , . . . , iterate. 

(a) Set the current model time to τ = kh . 

(b) Update time-dependent network parameters. 

• For link subnetworks: flow capacities μ(τ ) ; arrival and departure rates γ (τ ) and δ(τ ) . 
• For node subnetworks: turning probabilities { p i j (τ ) } and inflow priorities { αi (τ ) } . 

(c) Obtain node transition rates from Table 8 . 

(d) Obtain within-link transition rates from (22) , (23) . 

(e) Obtain subnetwork transition rates from Table 9 . 

(f) Compuate subnetwork state distributions �(τ + h ) by applying the Euler scheme to the system (13) , (14) , using cur- 

rent subnetwork transition rates and state distributions �(τ ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with k being the time step index and h being the time step length (0.1 seconds in the present example). Vehicles leave

from the downstream end of link 2 at a departure rate of δ2 = 60 0 0 veh/h . This tandem network can be represented by the

proposed model as illustrated in Fig. 10 , using the subnetwork transition rates of Table 7 , with the flow capacity μ12 of the

intermediate node being set to the minimum of its up- and downstream links flow capacity, i.e. to 60 0 0 veh/h. 

The original experiment of Sumalee et al. (2011) analyses a stochastic cell transmission model. It (i) represents the up-

stream link by three individual cells and (ii) models stochasticity in the supply parameters maximum speed, backward wave

speed, and jam density. Differently from this, the analysis presented here (i) represents the links without any cell discretiza-

tion and (ii) models stochasticity in the network arrivals, inter-link transitions, and network departures. The comparability

of these case studies is therewith limited; the primary objective of the present study is to illustrate the proposed model.

The results are shown in Fig. 11 a to 11 c. 

The solid lines in Fig. 11 a and b show the expected total number E{ N 1 } and E{ N 2 } of vehicles in link 1 and 2, respectively,

over simulation time. ( N is computed as the sum of LI and DQ , cf. (21) .) The dashed lines indicate the ± one standard

deviation band around these means. 

The dynamics of the (distribution of the) number N 1 of vehicles on link 1 are as follows. During the first 250 seconds, the

average network inflow is below the bottleneck flow capacity, leading to free-flow conditions. Once the bottleneck activates,

spillback arises and the number of vehicles on link 1 increases. The variance of the number of vehicles grows with their ex-

pected number. Before the bottleneck activates, the ratio of VAR{ N 1 }/E{ N 1 } reaches a value of around 1.1. After the bottleneck

has activated and stationary overcritical conditions have been attained, a ratio of VAR{ N 1 }/E{ N 1 } ≈ 0.63 is attained. 

Link 2 experiences undercritial conditions until the bottleneck at its upstream end activates; VAR{ N 2 }/E{ N 2 } reaches up

to this point in time a value of about 1.2. After activation of the bottleneck, one observes an overshoot in the expectation

of N 2 before the link reaches marginally critical conditions (inflow rate equals outflow capacity), still with VAR{ N 2 }/E{ N 2 }

≈ 1.2. It can be ascertained that this overshoot is neither a numerical artifact nor a consequence of the way in which

the subnetwork decomposition approximates network-wide dependencies; this phenomenon has been confirmed through 

Monte-Carlo experiments with the same system. 

To identify the mechanisms that underly this phenomenon, recall that the expected value of the stochastic flow Q 12 

through the bottleneck between link 1 and 2 is given by 

E { Q 12 } = μ12 Pr (DQ 1 > 0 , UQ 2 < � 2 ) . (35) 
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Fig. 11. Bottleneck experiment. 

 

 

 

 

 

 

This means that there is in terms of expected bottleneck throughput no crisp difference between under- and overcritical

conditions at the interface: Even in free-flow conditions the downstream conditions Pr (UQ 2 < � 2 ) take effect, and even in

congested conditions the upstream conditions Pr (DQ 1 > 0) play a role. This phenomenon is not in contradiction to what

one would expect based on the invariance principle ( Lebacque and Khoshyaran, 2005 ) 1 because (35) merely represents

a dependence of expected flows on the probability of different boundary conditions in a stochastic model, whereas the

invariance principle applies to the dependence of deterministic flows on deterministic boundary conditions. Indeed, as long
1 Informally, the invariance principle states that the flow through an interface must (i) in uncongested conditions not be sensitive to small changes in 

the downstream boundary conditions and (ii) in congested conditions not be sensitive to small changes in the upstream boundary conditions. 



204 G. Flötteröd, C. Osorio / Transportation Research Part B 102 (2017) 180–209 

Fig. 12. Test network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as a flow transmission is possible at all (at least one upstream vehicle and one downstream space), the SLTM prescribes a

transmission rate that is independent of how many upstream vehicles or downstream spaces are available, cf. Table 8 . 

Letting Q 

in (τ ) , Q 

out (τ ) and N ( τ ) be the stochastic inflow, outflow, and total number of vehicles in an initially empty

link, one further has 

N(t) = 

∫ t 

�=0 

[
Q 

in (�) − Q 

out (�) 
]
d� (36) 

⇒ E { N(t) } = 

∫ t 

�=0 

[
E { Q 

in (�) } − E { Q 

out (�) } ]d�, (37) 

meaning that an overshoot in the expected flow can also be expected to be visible in the expected number of vehicles on the

link, as observed in Fig. 11 b. 

The transient situation at the bottleneck after the demand increase at time 250 s is subsequently of interest; this in-

creased inflow reaches the bottleneck at time 268 s. At this time, a large amount of vehicles has just arrived upstream of

the bottleneck, while downstream there still is a lot of space. In a deterministic KWM, the bottleneck would now activate

and as of then allow for a constant flow rate equal to its flow capacity μ12 . The stochastic model, on the other hand, al-

lows overcritical conditions in link 2 to arise with a certain probability, meaning that the state of link 2 affects the expected

bottleneck flow throughout. This is illustrated in Fig. 11 c, which shows the probability Pr (DQ 1 > 0 , UQ 2 < � 2 ) as well as

its marginals Pr (DQ 1 > 0) (representing upstream congestion) and Pr (UQ 2 < � 2 ) (representing downstream space) over the

time interval of interest. From second 268 to approximately second 288, Pr (DQ 1 > 0 , UQ 2 < � 2 ) (and hence E{ Q 12 }) over-

shoots compared to its subsequent stationary value. This region is underlaid with a light gray rectangle. At the beginning of

this time interval, one has Pr (DQ 1 > 0 , UQ 2 < � 2 ) ≈ Pr (DQ 1 > 0) , representing under-critical conditions. Around second 278,

Pr (UQ 2 < � 2 ) starts dominating the bottleneck flow, meaning that overcritical conditions arise. But at this time, the over-

shoot of Pr (DQ 1 > 0 , UQ 2 < � 2 ) has already reached its maximum value. Revisiting Fig. 11 b, where the same time interval is

underlaid in light gray, one observes that the overshoot in link 2’s expected number of vehicles reaches its maximum when

the overshoot in Pr (DQ 1 > 0 , UQ 2 < � 2 ) has ceased (at around second 288), which is sensible given that N 2 results from a

time integration of Q 12 . 

The conclusions to be drawn from this experiment are nontrivial. The network SLTM, which approximates the full state

space of the tandem network under consideration, reveals damped oscillations in the expected network states. These oscil-

lations can be traced back to the blending of under- and overcritical traffic states in the computation of expected flows. It

is noteworthy that the same type of oscillations has been observed in the stochastic cell transmission model ( Zhong et al.,

2013 ), where similar explanations (blending of uncer- and overcritical conditions) have been given. It appears sensible to

draw the conclusion that analyzing time-dependent mean values as if they were realizations can lead to counter-intuitive

results. The proposed network SLTM enables a much richer analysis, which is yet to be fully explored. 

3.3.2. General network model 

This experiment illustrates the concrete diverge and merge node models of Section 3.1.3 through the network shown in

Fig. 12 . It consists of four uni-directinal links. All links have a backwards wave speed of 20 km/h. The double-lined (resp.

single-lined) links have a maximum velocity of 60 km/h (resp. 30 km/h). Assuming a jam density of 140 veh/km, this yields

a flow capacity of 2100 veh/h (resp. 1680 veh/h). This setting could represent an arterial bypass around a low-speed village

center. 

The resulting forward time lag on all links is 15 s; the backward time lag is 45 s on the high-capacity links and (rounded

down to full seconds) 22 s on the low-capacity link. The space capacities of the double-lined (resp. single-lined) links

are 35 veh (resp. 17 veh, rounded down). The diverge turning probabilities are 50/50, this is behaviorally compatible with

the observation that the free-flow travel times are identical on either routes. The merge priorities are proportional to the

respective link capacities, meaning that the priority of link 2b is 1.25 times the priority of link 2a. 

A constant inflow of 20 0 0 veh/h starts entering at the upstream node of the initially empty network at time zero. The

system is simulated with 0.1 s time steps until it reaches near-stationary conditions after 400 seconds. (Plotting on longer

time scales would merely compress the interesting transients.) 

Figs. 13 a-d display the relative occupancy (ratio of the expected number of vehicles on a link over the respective link’s

space capacity) on all links; one standard deviation bands are also provided. Link 1 reacts with the previously discussed

damped oscillations to the abrupt increase in arrival rate at time zero. Indeed, as also observed by ( Zhong et al., 2013 ),

oscillating expected values appear to be triggered by rapid changes in link boundary conditions. 
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Fig. 13. Results in network experiment. 

 

 

 

 

 

Focusing in this experiment on the network effects, the two parallel links 2a and 2b are considered next in Fig. 13 c

and d. Their upstream diverge allocates to either link the same inflow; their downstream merge gives a higher priority to

link 2b. The consequence of more yielding vehicles on link 2a is an increased probability of this link spilling back and hence

reducing the throughput of its upstream diverge. This is illustrated in Fig. 13 e, which displays, on a logarithmic ordinate,

the probability of the following events: 

• DQ 1 > 0 , UQ 2 a = � 2 a , UQ 2 b < � 2 b , meaning that a potential flow transmission from link 1 to link 2b is blocked back by

link 2a. 
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• DQ 1 > 0 , UQ 2 a < � 2 a , UQ 2 b = � 2 b , meaning that a potential flow transmission from link 1 to link 2a is blocked back by

link 2b. 

It is noteworthy that these are joint events involving both the up- and the downstream links of the diverge node. The

possibility of spillback at the diverge means that it functions as a bottleneck, which can be read out of Fig. 13 a and b, where

one observes congestion on the ingoing link 1 is higher than on the outgoing link 3. 

In brief summary, this experiment demonstrates that the proposed SLTM is capable of modeling sensible dynamic and

stochastic flow patterns in general network topologies. 

4. Summary and outlook 

This article presents a new stochastic dynamic model of vehicular network flows. The model is rooted in finite capacity

queueing theory in that all flows and road (boundary) states at the road network level are represented by transition rates

and queue states in an underlying queueing network. The result is a stochastic link transmission model (SLTM) for networks.

To capture stochastic dependencies between queues, a new analytical approximation of the transient joint queue-length

distributions in finite capacity Markovian networks is introduced. The approach is based on a network decomposition into

overlapping subnetworks. The temporal derivative of the joint queue-length distribution of a given subnetwork is computed

exclusively from (i) the joint distribution of that subnetwork and (ii) the joint distributions of all subnetworks that overlap

with it. The decomposition approach is proven to be self-consistent in the sense that if any two subnetwork distributions

have identical marginals for their common set of queues at some point in time, then these marginals remain identical across

all other times. 

When a given road network is mapped onto such a queueing network, every direction of a road and every intersection

is mapped onto its own link respectively node subnetwork. Each link is represented by the four-queue system introduced

by Osorio and Flötteröd (2015) ; this captures stochastic kinematic waves within the link as well as a joint distribution of

the corresponding up- and downstream link boundary conditions. The node subnetworks comprise all queues defining the

downstream boundary conditions of their ingoing links and all queues defining the upstream boundary conditions of their

outgoing links. 

The proposed model is validated in two stages. First, the accuracy of the analytical approximations at the queueing

network level are validated versus simulation-based estimates. For this, a queueing network with complex dynamics that

lead to multi-modal joint queue-length distributions is considered. A comparison in terms of transient expectations and

standard deviations and all stationary bivariate queue-length distributions leads to the conclusion that the proposed model

provides an accurate approximation of both the dynamics and the dependence structure. Second, the modeling of a road

network is illustrated for a two-road tandem network and a more general network topology comprising a diverge and a

merge node. 

This modeling framework is operational and provides rich opportunities for future work. Five examples are given below. 

Although the approximation model ensures mutual consistency of subnetwork distributions for their common queues, it

does not guarantee the existence of an underlying joint distribution of which all subnetwork distributions are marginals. It

is an open question if and how such consistency can be achieved. One may settle instead for an approximation error bound,

which is yet to be established. Of more practical interest is the question of how to evaluate the network-wide dependencies

captured by the model: Even if the proposed model approximates such a distribution, its computational advantage would

be lost if an evaluation of this distribution would again require a complete state space enumeration. 

The computational complexity of the proposed model scales linearly with the number of involved subnetworks. The

state space of a single subnetwork comprises, however, still all possible state combinations of all queues contained in that

subnetwork. For instance, the state space of a link subnetwork with space capacity � is in the order of � 3 (all four queues

in the subnetwork have space capacity � but are linearly dependent). The need to model long road segments or complex

intersections with many in- and/or outgoing links motivates the further investigation of state space reduction techniques,

such as the aggregation/disaggregation approach of Osorio and Yamani (2017) . 

The present article presents concrete linear, diverge and merge node specifications in order to demonstrate the SLTM’s

capability of modeling network traffic. These nodel models could be advanced by, for instance, the formulation of a general-

topology node model (with an arbitrary number of in- and outgoing links) or the introduction of additional state variables

that memorize the destination of individual vehicles queueing at or passing over the node. 

In its present form, the model assumes transition rates to be exogenously given. In a network assignment context, where

travelers choose routes and possibly departure times, turning and possibly also network arrival and departure rates become

endogenous. Differently but related, a multi-commodity network assignment would require to model these rates per com-

modity. This relevant extension of the model could start out from Zhang et al. (2017) , where a fixed and finite route choice

set is considered, along with an analytical probabilistic route choice model, yet in a stationary setting. When considering

dynamic network flows, Chabini (2001) provides an operational approach that iteratively attains consistency between link

travel times and travel behavioral parameters. Another interesting, and yet to be explored, formulation would allow for

en-route dynamic route choices. 

The SLTM predicts the effect of stochasticity in network inflows, outflows, and between-link flow transitions. It does, in

its present form, not predict the effect of stochasticity in, for instance, space capacities and speed limits (or, more general,
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wave speeds). Neither does the present article attempt to relate the stochastic SLTM model parameters to driving behavioral

parameters, such as gap acceptance or reaction times. Further developing the SLTM in these directions would not only yield

a richer model but also enable the development of measurement equations that would support the calibration of (stochastic)

model parameters from real data. 
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Appendix A. Proofs 

A1. Proof of Proposition 1 

Starting out from (7) with (m , r , v ) , (n , s , w ) ∈ N (W) × N (∂W) × N (V\ [ W ∪ ∂W]) , one has 

d 

dτ
P (N W 

= n ) = 

∑ 

s , w 

∑ 

m , r , v 

t n , s , w 

m , r , v P (N = (m , r , v )) (A.1)

= 

∑ 

s , w 

[ ∑ 

(m , r , v ) � =(n , s , w ) 

t n , s , w 

m , r , v P (N = (m , r , v )) + t n , s , w 

n , s , w 

P (N = (n , s , w )) 

] 

(A.2)

= 

∑ 

s , w 

∑ 

(m , r , v ) � =(n , s , w ) 

[
t n , s , w 

m , r , v P (N = (m , r , v )) − t m , r , v 
n , s , w 

P (N = (n , s , w )) 
]
, (A.3)

where the second term in the last row results from the definition of the main diagonal elements of a transition rate matrix.

The addends in this expression are separated in two disjoint groups, a first group where m = n and a second group where

m � = n . For the first group ( m = n ), one has ∑ 

s , w 

∑ 

(r , v ) � =(s , w ) 

[
t n , s , w 

n , r , v P (N = (n , r , v )) − t n , r , v n , s , w 

P (N = (n , s , w )) 
]

(A.4)

= 

∑ 

s , w 

[ ( ∑ 

r , v 

t n , s , w 

n , r , v P (N = (n , r , v )) − t n , s , w 

n , s , w 

P (N = (n , s , w )) 

) 

. . . 

−
( ∑ 

r , v 

t n , r , v n , s , w 

P (N = (n , s , w )) − t n , s , w 

n , s , w 

P (N = (n , s , w )) 

) ] 

(A.5)

= 

∑ 

s , w 

∑ 

r , v 

[
t n , s , w 

n , r , v P (N = (n , r , v )) − t n , r , v n , s , w 

P (N = (n , s , w )) 
]
, (A.6)

which is zero due to the symmetry of the double sum. Hence, only the second group with m � = n needs to be considered: 

d 

dτ
P (N W 

= n ) = 

∑ 

s , w 

∑ 

m � = n 

∑ 

r , v 

[
t n , s , w 

m , r , v P (N = (m , r , v )) − t m , r , v 
n , s , w 

P (N = (n , s , w )) 
]
. (A.7)

Definition 3 ensures that (i) transition rates with m � = n (both in N (W) ) and v � = w (both in N (V \ [ W ∪ ∂W ]) ) are zero

and that (ii) nonzero transition rates with m � = n are independent of the concrete value of v = w . Accounting for this and

inserting (9) yields 

d 

dτ
P (N W 

= n ) = 

∑ 

s , w 

∑ 

m � = n 

∑ 

r 

[
t n , s , w 

m , r , w 

P (N = (m , r , w )) − t m , r , w 

n , s , w 

P (N = (n , s , w )) 
]

(A.8)

= 

∑ 

s , w 

∑ 

m � = n 

∑ 

r 

[
t n , s m , r (W) P (N = (m , r , w )) − t m , r 

n , s (W) P (N = (n , s , w )) 
]

(A.9)

= 

∑ 

s 

∑ 

m � = n 

∑ 

r 

[
t n , s m , r (W) P (N W,∂W 

= (m , r )) − t m , r 
n , s (W) P (N W,∂W 

= (n , s )) 
]
. (A.10)

http://dx.doi.org/10.13039/100000001
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Substituting the main diagonal element of the local transition rate matrix defined in the second row of (9) , one obtains 

d 

dτ
P (N W 

= n ) = 

∑ 

s 

[ ∑ 

m � = n 

∑ 

r 

t n , s m , r (W) P (N W,∂W 

= (m , r )) + t n , s n , s (W) P (N W,∂W 

= (n , s )) 

] 

. (A.11) 

Adding 
∑ 

s 

∑ 

r � = s t 
n , s 
n , r (W) P (n , r ) = 0 , where the third row of (9) ensures that all transition rates in this term are zero, yields 

d 

dτ
P (N W 

= n ) = 

∑ 

s 

[ ∑ 

m � = n 

∑ 

r 

t n , s m , r (W) P (N W,∂W 

= (m , r )) + 

∑ 

r 

t n , s n , r (W) P (N W,∂W 

= (n , r )) 

] 

(A.12) 

= 

∑ 

s 

∑ 

m , r 

t n , s m , r (W) P (N W,∂W 

= (m , r )) , (A.13) 

which coincides with (10) . �

A2. Proof of Proposition 2 

Consider the subnetwork S ∈ S (G ) and cut out the region G 

′ = S ∪ ∂S from the full network G . Note that V(G 

′ ) =
V(S) ∪ ∂V(S) . The subnetwork decomposition being triangle-free ensures that �S (N ∂V(S) | N V(S) )�S (N V(S) ) is a probability

distribution over N (V(S)) × N (∂V(S)) . Definition 1 ensures that W = V(S) ∩ V(T ) overlaps with no subnetworks other than

S and T , which implies ∂W = [ V(S) ∪ V(T )] \W ⊂ V(S) ∪ ∂V(S) . Letting (m , r ) , (n , s ) ∈ N (W) × N (∂W) , Proposition 1 hence

allows to write 

d 

dτ
�S (N W 

= n ) = 

∑ 

s 

∑ 

m , r 

t n , s m , r (W)�S (N V(T ) \W 

= r V(T ) \W 

| N W 

= m ) . . . 

�S (N V(S) = (m , r V(S) \W 

)) . (A.14) 

Substituting (14) leads to 

d 

dτ
�S (N W 

= n ) = 

∑ 

s 

∑ 

m , r 

t n , s m , r (W)�T (N V(T ) \W 

= r V(T ) \W 

| N W 

= m ) . . . 

�S (N V(S) = (m , r V(S) \W 

)) . (A.15) 

Symmetric operations starting out from subnetwork T (cutting out T ∪ ∂T ⊂ G , using Proposition 1 to express d 
dτ

�T (N W 

= n ) )

result in 

d 

dτ
�T (N W 

= n ) = 

∑ 

s 

∑ 

m , r 

t n , s m , r (W)�S (N V(S) \W 

= r V(S) \W 

| N W 

= m ) . . . 

�T (N V(T ) = (m , r V(T ) \W 

)) . (A.16) 

The equality of �S (N W 

) and �T (N W 

) implies that the right-hand sides of (A.15) and (A.16) are equal, which establishes the

resulting equality of d 
dτ

�S (N W 

) and 

d 
dτ

�T (N W 

) . �
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