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Abstract Existing and emerging methods in compu-
tational mechanics are rarely validated against prob-
lems with an unknown outcome. For this reason, Sandia
National Laboratories, in partnership with US National
Science Foundation and Naval Surface Warfare Center
Carderock Division, launched a computational chal-
lenge in mid-summer, 2012. Researchers and engineers
were invited to predict crack initiation and propaga-
tion in a simple but novel geometry fabricated from
a common off-the-shelf commercial engineering alloy.
The goal of this international Sandia Fracture Chal-
lenge was to benchmark the capabilities for the pre-
diction of deformation and damage evolution associ-
ated with ductile tearing in structural metals, including
physics models, computational methods, and numer-
ical implementations currently available in the com-
putational fracture community. Thirteen teams partici-
pated, reporting blind predictions for the outcome of the
Challenge. The simulations and experiments were per-
formed independently and kept confidential. The meth-
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ods for fracture prediction taken by the thirteen teams
ranged from very simple engineering calculations to
complicated multiscale simulations. The wide variation
in modeling results showed a striking lack of consis-
tency across research groups in addressing problems of
ductile fracture. While some methods were more suc-
cessful than others, it is clear that the problem of ductile
fracture prediction continues to be challenging. Spe-
cific areas of deficiency have been identified through
this effort. Also, the effort has underscored the need for
additional blind prediction-based assessments.
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6 B. L. Boyce et al.

1 Introduction

Fracture of structural metals has been a pervasive engi-
neering concern, dating back to the origins of met-
allurgy itself. There are numerous examples where
structural metal failure has altered the course of
human history, including notable examples such as the
catastrophic failure of Liberty ships in World War II,
and the failure of tin coat buttons which some believe
halted the advance of Napoleon’s army into Russia
in 1812. Modern engineering design against structural
fracture is historically attributed to contributions by C.
E. Inglis in the 1910s (Inglis 1913), A. A. Griffith in
the 1920s (Griffith 1921) and G. R. Irwin in the 1950s
(Irwin 1958). Today, most engineering classes on fail-
ure of structural materials focus on concepts around
linear elastic fracture mechanics (Williams 1957) and
elastoplastic fracture mechanics (Rice and Rosengren
1968; Rice 1967). However, courses and textbooks in
fracture may foster misconceptions that fracture sce-
narios are all predictable and can be prevented using
LEFM and EPFM tools. This is not the case. There
are many realistic engineering circumstances where
the fracture community’s collective knowledge-base
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can only provide “ball-park” estimates for the criti-
cal conditions that cause fracture. The purpose of the
Sandia Fracture Challenge was to assess the fracture
community’s current capabilities for predicting fail-
ure of a ductile structural metal. In this assessment,
13 computational teams representing academic, indus-
try, and research labs reported blind predictions for
a tearing scenario. While round-robin style computa-
tional assessments of ductile fracture have been per-
formed previously, e.g. Bernauer and Brocks (2002),
some important features of the present study were (1)
the test geometry was heretofore unknown and signif-
icantly distinct from most existing test geometries, (2)
the modeling teams all reported predictions that were
blind to each other’s predictions and to the experimen-
tal outcome, (3) the teams were not given any instruc-
tions about what modeling approach was to be used,
(4) details provided regarding the test geometry and
material property data was commensurate with infor-
mation that may be available in a typical ‘real-world’
engineering scenario, and (5) the teams were given the
opportunity to bound their predictions, but were not
instructed as to how to do so.

While many of the basic concepts in fracture are
now over 50 years old, there has been a contin-
ued effort in the development of innovative meth-
ods to predict fracture behavior, especially in the
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The Sandia Fracture Challenge 7

numerical methodologies for predicting fracture in
complex geometries, loading, and boundary condi-
tions. Meshless computational methods, automated
adaptive remeshing algorithms, microstructurally-
informed multiscale models, and enriched/extended
finite elements are just a few of the recent advances
that have been applied to resolve longstanding issues in
the computational prediction of fracture. Despite these
advances, the evaluation of the true predictive ability of
computational methods is lacking. In the early devel-
opment of a modeling approach, developers usually
test the method against certain standards and known
cases. However, to evaluate a method’s true predic-
tive ability it is necessary to probe the method beyond
the investigator’s knowledge into problems whose out-
come is unknown a priori. The approach taken in this
work was to invent a never-seen-before scenario and
collect blind predictions made without foreknowledge
of the experimentally observed outcome. The scenario
was the prediction of the crack initiation and propa-
gation of a ductile structural stainless steel (15-5 PH)
under quasi-static room temperature test conditions in a
test specimen that possessed modest geometric simplic-
ity, but challenging fracture conditions. The specimen
geometry chosen for this study had never been stud-
ied before, either experimentally or computationally,
but possessed some important similarities to a previ-
ous scenario involving many non-uniformly arranged
interacting holes (Al-Ostaz and Jasiuk 1997; Li et al.
2000). The geometry was mechanically challenging
because (1) it contained multiple holes that could poten-
tially deflect the crack and influence the crack-tip stress
state, (2) it did not contain a pre-existing sharp crack,
(3) it was of a thickness somewhere between plane
stress dominance and plane strain dominance, and (4)
there was a competition between a tensile-dominated
and shear-dominated failure mode. There was also lim-
ited standard experimental data provided on which to
calibrate material model parameters. Tensile test data
and sharp crack Mode-I fracture data were provided,
as well as details of the material and even some limited
microstructural information. Engineering drawings for
all specimens were provided along with nominal tol-
erances. The experimental and computational results
were presented at a special symposium at the ASME
2012 International Mechanical Engineering Congress
and Exposition (IMECE) in Houston, TX on November
9-15, 2012. Another meeting was held in Albuquerque,

NM on June 18-19, 2013 in order to coordinate the writ-
ing of this manuscript.

The outline of this article is given as follows.
Section 2 is a review of the 2012 Sandia Fracture Chal-
lenge along with a detailed description of the problem.
Test setup and results from three testing labs are given
in Sect. 3. A brief summary of numerical methods pro-
vided by each of the thirteen (13) teams is given in
Sect. 4 followed by a comparison of their predictions
with the test data in Sect. 5. Finally, in Sect. 6, discus-
sion and assessment of discrepancy between predic-
tions and experiments are provided followed by a sum-
mary of the existing technology gap and future research
and development efforts needed to enhance the fidelity
of our modeling methodologies in ductile fracture. The
“Appendix” contains short descriptions of the methods
and blind prediction results of each team that partici-
pated in the Challenge. Some of the teams have pre-
sented a more complete description of their modeling
efforts in articles that are included in this special vol-
ume of the International Journal of Fracture.

2 The Challenge

2.1 Concept for a challenge scenario

In recent years, Sandia National Laboratories has con-
ducted a series of double-blind assessments of com-
putational predictions in the area of ductile failure of
structural alloys (Boyce et al. 2011). Based on these
past efforts, it was clear that the double-blind evalua-
tion methodology should be governed by some com-
mon constraints. First, this ‘toy problem’ or ‘puzzle’
should have no obvious or closed-form solution. It
should be sufficiently distinct from other standard or
known test geometries so that the outcome of the exer-
cise is unknown to the participants. The scenario should
be readily confirmed through experiments. This implies
that the sample geometry is readily manufactured with
easily measured geometric features. The manufactur-
ing process should avoid unintentional complications
such as significant residual stresses or non-negligible
surface damage. The quantities of interest, such as
forces and displacements, should be readily measur-
able with common instrumentation so that the tests can
be repeated in numerous labs in a cost effective man-
ner. The experiment should involve simple, uniaxial
loading conditions that are readily tested with common
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8 B. L. Boyce et al.

lab-scale load frames and common grips. The sample
and loading conditions should avoid unwanted modes
of deformation such as buckling. Finally, it may be
desirable for the challenge scenario to result in a sin-
gle unambiguous repeatable experimental outcome, or
as is the case for the present work, the scenario could
be near a juncture of two competing outcomes. Since
the challenge scenario involves a novel test geometry,
the repeatability of the behavior may not be apparent
until after significant experimental effort. In the present
work and similar, prior efforts at Sandia, the experi-
ments were not performed until after the computational
challenge had been issued. This approach ensured that
all participants (including the experimentalists) were
not biased by any prior knowledge of the outcome.

2.2 The 2012 Sandia Fracture Challenge scenario

The fracture challenge was advertised to potentially
interested parties through a mechanics weblog site,
imechanica.org, and through an e-mail solicitation to
many known researchers in the fracture community.
The fracture challenge was issued via these same elec-
tronic formats on May 15, 2012; with final predictions
all due on September 15, 2012, four months after the
issuance of the challenge. The initial packet of infor-
mation contained material processing and test data on
mechanical properties, the test specimen geometry, the
loading conditions, and instructions on how to report
the predictions. The degree of detail provided was
intended to be commensurate with the level of detail
that is typically available in real engineering scenarios
in industry. These details regarding the material, test
geometry/loading conditions, and quantities of interest
are described in the following three subsections.

2.2.1 Material

The alloy of interest was 15-5 PH, a precipitation hard-
ened martensitic stainless steel. This alloy was cho-
sen because it provided a useful representation of a
moderately ductile structural alloy that would likely be
unfamiliar to the participants. All test specimens were
extracted from a single plate purchased from AK Steel
(West Chester, Ohio) with a nominal thickness of 3.18
mm. The actual measured thickness was 3.124 mm. The
original material certification was provided to the par-
ticipants, and included the following chemical analysis

3 Longitudinal Tensile Samples
Metallurgy Witness
Samples for Participants

6 Fracture
Toughness
Samples

3 Longitudinal Tensile Samples
Metallurgy Witness
Samples for Participants

6 Fracture
Toughness
Samples

Fig. 1 Layout of challenge specimens as well as tensile coupons,
C(T) specimens, and metallurgical witness coupons

(in wt%): C 0.04, Mn 0.48, P 0.019, S 0.0005, Si 0.40,
Cr 15.21, Ni 4.19, Mo 0.12, Cu 3.39, Nb 0.32, Ta 0.001.

The plate was heat treated at Sandia National Labs
with the intention of producing the H1100 heat treat-
ment condition. Detailed furnace thermocouple records
were provided to the participants, showing that the plate
was heat treated at 593 ◦C(1, 100 ◦F) for 4 h followed
by an inert gas flow cooling rate similar to that of a
typical air cool. A detailed machining diagram was
provided showing the location and orientation of the
challenge test specimens as well as the tensile, com-
pact tension C(T), and metallurgical witness coupons,
as shown in Fig. 1.

The participants were also given detailed metallo-
graphic analysis of the microstructure of the marten-
sitic stainless steel, provided by Drs. Yuxiong Mao
and Mark Horstemeyer of Mississippi State University.
These images show the equiaxed grain shape and 5–
20μm grain size, occasional inclusions and longitudi-
nal segregation/banding. Examples are shown in Fig. 2.

Four tensile coupons were tested, two oriented
along the rolling direction and two oriented along the
transverse-to-rolling plate direction. All tests were con-
ducted according to ASTM E8 using the nominal geom-
etry shown in Fig. 3. Strain was measured using an
extensometer with a 25.4 mm gage length. Engineering
stress–strain curves were provided as shown in Fig. 4,
as well as the raw force-displacement data for each
tensile test. The observed strength values were ∼8 %
higher than is typically reported for the H1100 con-
dition, and were more consistent with an H1075 con-
dition. This discrepancy was noted to the participants.
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The Sandia Fracture Challenge 9

Fig. 2 Examples of (upper) the polished surface showing inclu-
sions indicated by circles, and (lower) an etched surface showing
grain structure and banding. Both examples are taken along the
longitudinal-short orientation to emphasize the features associ-
ated with rolling. Microstructural analysis was provided on all
three planes, courtesy of Drs. Yuxiong Mao and Mark Horste-
meyer of Mississippi State University

Images of the fracture surface morphology shown in
Fig. 5 were also provided to the participants.

Three fracture toughness tests were performed on
C(T) specimens (Fig. 6) extracted from the same plate
of material used for the challenge tests and the tensile

bars; due to insufficient plate thickness, these mea-
surements were not performed under plane strain con-
ditions. Force measurements were made with a load
cell and load line displacement measurements were
made with a crack opening displacement (COD) gauge
inserted on the knife-edge features in the mouth of the
C(T) specimens. The load cell capacity was 22.2 kN
and the COD gauge had a range of 5.08 mm. The as-
machined normalized notch length, taken as the ratio of
notch length, a, to specimen width, W, was a/W = 0.5.
The specimens were fatigue precracked at a load ratio
of R = Pmin/Pmax = 0.1 to a typical precrack length
of a/W ≈ 0.6, with actual measured fatigue precrack
lengths reported for each specimen. The observed force
versus COD measurements are shown in Fig. 7. This
type of data, while not valid for the determination of
plane strain toughness, could be used to calibrate model
parameters for tearing. The decision on if or how to use
all of the material property data was left to the individ-
ual participants.

2.2.2 Fracture challenge geometry and loading
condition

The Fracture Challenge specimen geometry is shown
in Fig. 8 with detailed dimensions shown in Fig. 9.
The specimen features a blunt notch, labeled ‘A’, with
a diameter of 2.54 mm and three holes, labeled ‘B’,
‘C’, and ‘D’. Holes ‘B’ and ‘C’ are of equal diam-
eter (1.78 mm), while hole ‘D’ has a larger diameter
(3.05 mm). The holes are located approximately one
plate thickness away from the tip of the blunt notch,
with the goal of generating three separate potential
localization paths.

Two pin holes were machined well away from the
notch tip for insertion of loading pins. These pin holes
provided for standard clevis grip loading in either a

Fig. 3 Tensile bar
geometry used to provide
stress–strain data for model
calibration. Dimensions are
in millimeters. Actual plate
thickness was 3.124 mm
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10 B. L. Boyce et al.

Fig. 4 Engineering
stress–strain curves for four
tensile coupons.
Longitudinal 1 and
Longitudinal 2 refer to those
oriented along the rolling
direction and Transverse 1
and Transverse 2 refer to
those oriented along the
transverse-to-rolling
direction

Fig. 5 Images of the a
fracture morphology and b
geometry of necking for the
Longitudinal 1 tensile
sample

screw or hydraulic uniaxial load frame. The partici-
pants were instructed that the sample would be loaded
at a loading rate of 0.0127 mm/s. No other details
regarding the boundary conditions were provided. It
is important to note that the primary test lab, San-
dia’s Structural Mechanical Laboratory, was also pro-
vided this same level of detail regarding how the tests
should be performed. No additional constraints were
placed on the test lab’s decision of how to apply bound-
ary conditions. Any undeclared aspects of loading that
were salient to the outcome were considered as sources
of potential uncertainty. This limited definition of the
boundary conditions bears similarity to real world engi-
neering problems, where the detailed boundary condi-
tions are rarely well defined.

2.2.3 Quantities of interest

A set of quantitative questions were posed to the partic-
ipants to facilitate comparing the analyses to the exper-

imental results. These questions were meant to evaluate
the robustness of the analysis technique in predicting
specimen fracture behavior. All challenge participants
were issued the following three questions:

(Q1) What is the force and COD displacement at
which a crack first initiates?
(Q2) The starter notch, A, holes B–D, and the back-
side edge, E are labeled in the drawing. What is the
path of crack propagation? i.e. a crack that initiated
on the backside and propagated to hole D and then
to notch A would be labeled “E–D–A”.
(Q3) If the crack does propagate to either holes B,
C, or D, at what force and COD displacement does
the crack re-initiate out of the first hole?

The crack opening displacement measurement was
defined for the participants in the following way: “A
Crack opening displacement (COD) gage will be used
to monitor load-line displacement at the point of the
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The Sandia Fracture Challenge 11

Fig. 6 Specimen geometry
for C(T) specimens.
Dimensions are in
millimeters. Actual plate
thickness was 3.124 mm

Fig. 7 Force versus COD for C(T) tests

‘knife-edge’ features, akin to fracture toughness test-
ing. Only � COD will be measured (the test will begin
with COD = 0 mm)”. Also, the condition of crack initi-
ation was defined for the participants: “For the purposes
of this challenge, crack initiation will be defined as a

crack ≥100 μm on the sidewall surface of the sample,
so as to be witnessed by in-situ microscope”.

All participants were also asked to report their
entire predicted force-COD displacement curve. Ulti-
mately, the comparison of this force-displacement
curve between experiments and the model predictions
was the most instructive quantity of interest.

3 Experimental method and results

A series of experiments were performed to observe
the natural failure process for the challenge. Ide-
ally, the experiments would provide an unambigu-
ous, repeatable observation of failure. However, mate-
rials are rarely homogeneous, machined geometries
always have dimensional variability, boundary condi-
tions rarely mimic our idealized conceptions, and the
intrinsic fracture process can be stochastic/chaotic. For

123



12 B. L. Boyce et al.

Fig. 8 Fracture challenge
specimen geometry: a
photograph displaying
critical features and b
isometric view

Fig. 9 Dimensions of fracture challenge specimen geometry in millimeters. The engineering drawings included a machining tolerance
of ±.05 mm on all dimensions. Actual plate thickness was 3.124 mm

these reasons, there is a need to repeat the experimental
observation several times. It is also beneficial to repeat
the experiments in multiple independent test labs to
show the variation of results from one experimental
setup to another. In the present work, Sandia’s Struc-
tural Mechanics Laboratory was chosen as the primary
test lab to perform ten detailed repetitions of nomi-
nally identical tests. Two other labs performed a smaller
set of experiments, intended to confirm the primary

results, or reveal lab-to-lab variation: Sandia’s Mate-
rials Mechanics Laboratory and the laboratory of Prof.
Ravi-Chandar at the University of Texas at Austin. All
three labs utilized specimens machined in one batch
from the same plate of material. The remainder of the
experimental section contains details from the experi-
ments for each of these three labs, with an emphasis on
the core set of ten observations from the Sandia Struc-
tural Mechanics Laboratory.
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The Sandia Fracture Challenge 13

Fig. 10 Measurement locations (length measurements shown as orange and thickness measurements shown in blue)

3.1 Observations from the Sandia Structural
Mechanics Lab

3.1.1 Test setup and methodology

Fabrication of all specimens occurred from the same lot
of material by the same machine shop. In anticipation of
the potential influence of small variations in the spec-
imen dimensions on the failure, many measurements
were taken of the specimens tested in both the Struc-
tural Mechanics Laboratory (specimens D1, D2, and
S1–S8) and the UT-Austin laboratory (specimens S9–
S11) prior to testing. Figure 10 identifies the locations
of each measurement.

The blue circles represent thickness measurements
taken using a 0–6.35 mm QuantuMike micrometer with
a resolution of 1.27μm and an accuracy of ±1.27μm.
The measurement surfaces of the micrometer were cir-
cular thus spanning a larger measurement area com-
pared to a point measurement. Ten thickness measure-
ments were taken of each specimen. The orange lines
represent length measurements taken with an optical
Wild M3Z stereomicroscope with a 0.254-μm reso-
lution and an accuracy of ±0.508μm. Twenty verti-
cal and thirteen horizontal length measurements were
taken. A zoomed-in view of the features B, C, and D
in Fig. 11 illustrates the diametric measures of these
holes.

Fig. 11 Diameter measurements of features B, C, and D

The measured lengths and thicknesses for specimens
D1, D2, and S1–S11 are included as Supplementary
Information for this article. Specimens D1, D2, and S1–
S8 were tested in the Sandia Structural Mechanics Lab-
oratory. Specimens S9–S11 were tested at UT-Austin.
Dimensional measurements revealed that some of the
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14 B. L. Boyce et al.

features were not manufactured within the specified tol-
erance of ±50.8 μm (detailed measurements for each
test sample are shown in Supplementary Information).
Specifically, the ratio of the vertical distance from Hole
D to the notch divided by the horizontal distance from
Hole C to the notch was below tolerance for all speci-
mens except specimens D1, S9, and S10. The potential
failure paths appear to be affected by the relative liga-
ment lengths represented by this ratio.

All tests were performed at ambient temperature on
an MTS servo-hydraulic 97.9-kN (22-kip) load frame
at a displacement rate of 12.7μm/s, controlled by the
MTS FlexTest Controller. The test setup consisted of a
simple, well-defined uniaxial load imparted on the test
specimens. The test was set up to meet the challenge
of measuring force and COD at which the crack first
initiated, to determine the crack path, and measure the
force and COD if a crack reinitiated out of a hole. Crack
initiation was defined as a crack 100μm in length on
the sidewall surface of the specimen, visible by an in-
situ microscope. For the test series, the Epsilon Tech
Corp. COD gage (Jackson, WY) was situated on the
knife-edges of the specimen and began with a reading
of 0 mm. A photograph of the actual experimental setup
is shown in Fig. 12.

Two load cells were connected to the upper, station-
ary crosshead. One load cell was a 97.9-kN (22-kip)
load cell and the second load cell, referred to as an
auxiliary load cell, had a rated capacity of 8.9-kN (2-
kip). The actuator was located on the lower portion
of the frame and moved in a downward direction to
apply the required tensile load. The test specimen was
attached to two clevis fixtures with round pin holes for
metal pins. In turn, the clevises were threaded into the
load cell and actuator using threaded adapters. These
clevis fixtures were securely mounted to the load train
without rotational degrees of freedom. Only the spec-
imens were allowed to rotate through the pin joints.
Three displacement measurements were recorded. The
first was an internal LVDT monitoring the actuator
stroke. The second displacement measurement came
from an external ±5.08-mm “grip” LVDT positioned
between the clevis-pin fixtures, allowing displacement
measurements closer to the test article. This LVDT
from Macro Sensors (Pennsauken, NJ) was used for
control at a rate of 12.7μm/s. The grip LVDT was cali-
brated at time of use with a Boeckeler Digital Microm-
eter, having ±0.508-μm resolution and repeatability
within ±0.508μm. The Epsilon COD gage was cal-

Load Cell

Grip 
LVDT

PGR 
Zoom 

Camera, 
Side 1

COD Gage
Specimen

Actuator Motion

Canon  
Camera, 
Side 2

Clevis-pin 
Fixtures

Spiral washers

LED Light 
Panel

Fig. 12 Experimental test setup in the Structural Mechanics
laboratory

ibrated at the time of use with a Starret Micrometer.
The COD gage measured the displacement change in
the notch opening, having ±0.508-μm resolution and
repeatability within ±8.6μm.

Two cameras were used to capture visible cracks on
the specimen surface, each with a different field of view.
A 5-megapixel Point Grey Research (PGR) Grasshop-
per camera with a Navitar Zoom 6000 lens was used to
view one side of the specimen. This zoom lens had a
lens resolution of 102 line pairs per mm (lp/mm), and
the pixels/μm ratio ranged from 0.207 to 0.511. Images
for this camera were acquired at an approximate rate of
1 Hz. The second camera employed was a Canon EOS
Rebel T31 Digital Single Lens Relflex (DSLR) with
a macro lens focused on the opposite side of the test
specimen. This DSLR camera had a lens resolution of
36 lp/mm, and the pixels/μm ratio ranged from 0.113
to 0.124. Images for this camera were acquired at an
approximate rate of 0.25 Hz. These two cameras were
situated perpendicular to the surfaces of the specimens;
thus, they could not observe any crack initiation on the
through-thickness faces of the features. The cameras
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The Sandia Fracture Challenge 15

were both triggered by the MTS FlexTest Controller,
and the MTS FlexTest DAQ system simultaneously col-
lected the time, force, grip LVDT displacement, and
COD data corresponding to each image.

To situate all parts within the load train, the speci-
men was exercised in tension within the elastic region
between 89 N and 445 N. Although not shown in
Fig. 12, dial indicators were positioned in the test setup
to measure the lateral displacement of the upper and
lower clevises. The dial indicators measured less than
25μm of lateral displacement at maximum load.

Ten specimens were tested, each with one of three
specific orientations in the grips. The purpose for the
different specimen orientations was to assess if the
experimental setup led to a preferential loading path
rather than the specimen geometry and material prop-
erties alone. From the perspective of the PGR zoom
camera with the lower MTS actuator moving down,
the three orientations were (1) the notch on the right
with hole D above (Specimens D1, D2, S1, S2, S3, and
S7), (2) the notch on the right with hole B above (Spec-
imens S4, S5, and S6), and (3) the notch on the left with
hole D above (Specimen S8.)

After testing, the force and displacement data was
correlated with the image sequences from the two cam-
eras. While the cameras were supposed to be triggered
at periodic intervals (every 1 s for PGR, every 4 s for
DSLR), post-test analysis revealed that ∼2 % of the
images had not been captured for each camera, pre-
sumably due to ineffective triggering. Embedded image
timestamps and file timestamps were used to determine
the times of the missing images for all DSLR image
sequences and for the PGR camera sequences for spec-
imens D2 and S1–S8. The only image sequence with-
out embedded timestamps or useful file timestamps was
for the PGR camera for specimen D1; here, visual cues
such as camera motion, lighting changes, and large dis-
placements from elastic recovery due to the load drops
associated with crack formation were used to correlate
the DSLR and PGR camera images in the vicinity of
crack events only. This post-test data-image alignment
allowed for the comparison of load versus COD profile
and the visual observations of the surface cracks.

3.1.2 Test results and observations

Load versus COD profiles
Nine out of the ten specimens tested in the Struc-
tural Mechanics Laboratory exhibited crack path of

A–D–C–E, while one specimen, labeled D1, exhib-
ited a different crack path of A–C–E. Figure 13 is the
load versus COD measurement plot with the post-test
images of the ten specimens. The load versus COD
curve for D1 has a different profile than the curves for
the other nine specimens; specimen D1 had the highest
peak load and the most delayed first load drop. The
nine specimens with A–D–C–E crack path had similar
peak load values and had small variations in load for
load drops of each of the cracks, but with significant
variation in the COD measurement at the load drops.
Specimen D1 broke from A–C directly as opposed to
A–D–C for the other specimens, but the overall load
drop from A–C, regardless of crack path, is approx-
imately the same for all ten specimens from around
8.0 to 5.3 kN. The cracks from A–D and D–C occurred
in quick succession, with more overall total COD for a
similar reduction in load as compared to the A–C crack
in specimen D1. All ten specimens had a similar load
plateau after the crack propagated from either D–C or
A–C. The crack from C–E resulted in similar load ver-
sus COD profiles below 5.3 kN for all ten specimens.
There was no apparent correlation between crack path
and specimen orientation or between load versus COD
profile and specimen orientation.

Table 1 includes the peak force of each specimen, as
well as the force and COD measurements for the load
drops in the load versus COD curves associated with
each crack. These load drops corresponded to audible
cracking sounds and were defined as a slope in the
load versus COD profile of a magnitude greater than
17.5 N/μm for cracks A–C, A–D and D–C and of a
magnitude greater than 4.5 N/μm for the C–E crack,
but did not necessarily correspond to the appearance of
a crack on the surface of the specimens. The peak load
of the A–C–E crack path specimen was largest of all
the specimens at 8,746 N. The average peak load for the
A–D–C–E crack-path specimens was 8,500 N, ranging
from 8,427 to 8,627 N. The first crack from A–C for
specimen D1 occurred at a load of 8,066 N and a COD
of 3.543 mm; the first crack from A–D occurred at an
average load of 8,290 N, ranging from 8,127 to 8,416 N,
and average COD measurement of 2.424 mm, ranging
from 1.976 to 2.779 mm. The second crack from D–
C for nine specimens occurred at an average load of
6,812 N, with a range of 5,589 to 7,359 N, and an aver-
age COD measurement of 2.691 mm, with a range of
2.080 to 3.173 mm. The crack between holes C and E
from specimen D1 occurred at a COD measurement of
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Fig. 13 a Load versus
COD measurement for the
ten specimens tested in the
Structural Mechanics
laboratory with b associated
post-test images
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5.217 mm, which is close to the average COD measure-
ment for the other nine specimens of 5.330 mm, (rang-
ing from 4.853 to 5.768 mm), and slightly higher load
of 5,128 N as compared to the other nine specimens,
averaging 5,013 N (ranging from 4,962 to 5,091 N). The
range of the COD measurement for each crack in the
A–D–C–E specimens was large; the range of load for
each crack was small for A–D and C–E, but large from
D–C.

Visual observations of the crack paths on the specimen
surfaces

One part of the Challenge was the prediction of the
load and COD measurements at crack initiation of the
first and second cracks, defined as a 100-μm crack
on the surface of the specimen. The intention behind
this definition was to allow for an unambiguous cri-
terion for crack initiation, not necessarily related to a

load drop or unspecified crack length; but, this implic-
itly assumed that the cracks would initiate and grow
as a 2D crack, through the thickness. Unexpectedly,
in the experiments, subsurface cracks would initiate
at the load drop in the load-COD profile, accompa-
nied by an audible cracking noise, but nearly every
crack would not appear on the surface of the specimens
until the specimen had opened to an additional COD
of ∼0.2–0.35 mm. The cracks usually appeared on the
surface between features, not the feature edges. The
camera setup did not allow for imaging of the through-
thickness edges, but only the front and back surfaces.
Due to the image resolution of the cameras and often
shear-dominated crack paths, the cracks on the surface
were not deterministically discernible, often appearing
as dark regions on the length scale close to 100μm and
then as a clear crack on larger length scales. Videos of
the front and back surface images and corresponding
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Table 1 Summary of the peak load, load associated with the load drops, and COD measurements associated with the load drops of the
ten specimens tested in the structural mechanics laboratory

Specimen # Max force Crack path Load drops

First crack Second crack Third crack: C–E

Force COD Force COD Force COD
N N mm N mm N mm

D1 8,746 A–C–E 8,066 3.542 5,128 5.217 N/A N/A

D2 8,627 A–D–C–E 8,416 2.354 7,197 2.498 5,028 5.154

S01 8,460 A–D–C–E 8,127 2.346 6,915 2.679 5,047 5.249

S02 8,498 A–D–C–E 8,255 1.976 7,359 2.080 5,091 4.853

S03 8,565 A–D–C–E 8,353 2.619 6,999 2.876 5,056 5.257

S04 8,456 A–D–C–E 8,303 2.497 6,663 2.915 4,995 5.475

S05 8,503 A–D–C–E 8,168 2.368 5,589 2.738 4,992 5.333

S06 8,463 A–D–C–E 8,309 2.381 6,961 2.611 4,966 5.454

S07 8,502 A–D–C–E 8,386 2.492 7,059 2.652 4,975 5.430

S08 8,427 A–D–C–E 8,289 2.779 6,567 3.173 4,962 5.768

Lower bound for A–D–C–E 8,427 8,127 1.976 5,589 2.080 4,962 4.853

Average for A–D–C–E 8,500 8,290 2.424 6,812 2.691 5,013 5.330

Upper bound for A–D–C–E 8,627 8,416 2.779 7,359 3.173 5,091 5.768

Table 2 Summary of the load and COD measurements associated with the range of images for visual observation of the first surface
crack (A–C or A–D) that was greater than 100 μm for the ten specimens tested in the structural mechanics laboratory

Specimen # Crack 1 (A–C or A–D)

Load drop Image before surface
crack is present

Surface crack clearly visible Range for surface crack initiation

Load COD Time Load COD Time Load COD Time Crack length Delta load Delta COD Delta time

N mm s N mm s N mm s mm N mm s

D1 8,066 3.542 294.4 8,129 3.498 291.0 5,112 3.579 295.0 0.825 −3,017 0.080 4.0

D2 8,416 2.354 191.3 6,307 2.603 210.3 6,179 2.630 212.3 0.850 −128 0.027 2.0

S01 8,127 2.346 190.7 6,155 2.775 223.6 6,108 2.788 224.6 0.200 −47 0.013 1.0

S02 8,255 1.976 163.3 6,138 2.287 187.6 6,123 2.292 187.9 0.350 −16 0.004 0.4

S03 8,353 2.619 213.9 7,081 2.870 233.7 6,317 2.909 236.7 0.300 −764 0.040 3.1

S04 8,303 2.497 204.6 7,097 2.791 227.3 6,948 2.843 231.4 0.850 −149 0.052 4.1

S05 8,168 2.368 193.0 5,925 2.619 212.5 5,848 2.645 214.5 0.100 −76 0.026 2.0

S06 8,309 2.381 221.9 6,142 2.685 245.2 5,998 2.725 248.2 0.130 −144 0.040 3.1

S07 8,386 2.492 209.6 7,418 2.589 216.3 6,246 2.748 227.7 0.150 −1,172 0.160 11.4

S08 8,289 2.779 224.8 7,007 3.051 245.7 6,856 3.089 248.7 0.500 −150 0.038 2.9

Lower bound 8,066 1.976 163.3 5,925 2.287 187.6 5,112 2.292 187.9 0.100 −3,017 0.004 0.4

Average 8,267 2.535 210.7 6,740 2.777 229.3 6,174 2.825 232.7 0.426 −566 0.048 3.4

Upper bound 8,416 3.542 294.4 8,129 3.498 291.0 6,948 3.579 295.0 0.850 −16 0.160 11.4

123



18 B. L. Boyce et al.

load versus COD profile for the crack path of specimens
D1 and S4 are available as Supplementary Information
for this article.

Tables 2, 3 and 4 list the force and COD measure-
ments associated with the range of images where cracks
greater than 100 μm on the surface of the specimen
were clearly not present to where cracks were plainly
visible, including the length of the cracks when they
were plainly visible. The tables are separated by the
first crack (A–C or A–D), the D–C cracks of nine of
the specimens, and the C–E cracks, also listing the load
drop data and time, showing that the cracks usually
appear on the surface after the load drop. It is important
to note that the crack could appear on either surface and
did not necessarily appear on both surfaces at the same
time, highlighting the three-dimensional and stochastic
nature of the crack propagation through the specimen.
For D1, the A–C crack on the surface was apparent
in the Canon DSLR image immediately following the
load drop, though not in the image of the PGR camera
after the load drop; hence the large range in Table 2 over
which the A–C crack could have appeared on the sur-
face spans the DSLR images around the load drop. For
all other nine specimens, the first crack A–D appeared
on the surface much later than the load drop. For the
D–C and C–E cracks of the A–D–C–E crack path spec-
imens, the appearances of the cracks were after the load
drops, and at a smaller force and larger COD measure-
ments than the load drops. For specimen D1, the load
drop was within the range of images where the C–E
crack may have appeared on the surface. The appear-
ance of the C–E crack in D1 was within the range of
force and COD of the C–E crack of the other specimens.

Figure 14 shows two sequences of images from the
DSLR camera and PGR camera for the A–C crack on
the back and front of Specimen D1, respectively. In
this specimen, the interior crack nucleation event at the
load drop (8,066 N, 3.542 mm COD, 294.4 s) led to an
immediate surface crack on the back, a crack on the
front surface was not clear until several seconds later.
For both front and back camera views, the crack did
not first emerge at the edge of either notch A or hole C,
but rather on the surface in between these two features
and then propagated outward towards both features.

In specimen D1, the second cracking event (path
C–E) first appeared on the surface sometime between
t = 432.6 and 435.7 s, while the load drop (5,128 N,
5.217 mm COD) occurred before this time range at
t = 423.5 s. Hence, the surface crack appeared after the

load drop, again indicating that a subsurface crack had
initated and only later did it propagate to the surface.
Similar to the first crack in specimen D1, the crack
between C and E appeared on the surface ahead of
hole C, not starting at the edges. The crack first propa-
gated towards C on the surface before propagating back
towards E. The C–E crack behavior for specimen D1
is typical of all C–E cracks, though the precise timing
of the appearance of the crack on the surface relative
to the load drop varied, as listed in Table 4.

Figure 15 shows a sequence of images from the PGR
camera for the A–D crack in specimen S4, which had a
load drop at 8,305 N, 2.497 mm COD, and t = 204.6 s.
The visual appearance of the surface crack was more
than 27 s and ∼0.35 mm COD after the main load drop
for the subsurface crack. The crack propagated from the
area between A and D outwards towards the edges of A
and D, along a jagged path. The complete bridging of
A–D did not occur until after the second load drop that
was associated with the next subsurface crack between
holes D and C that occurred at t = 237.0 s.

The second surface crack between D and C was
also not visually observed until 30 s after the second
load drop (5,496 N, 3.292 mm COD, 267.0 s). Also,
the crack between D and C appeared on the surface
between the holes, not starting at the edges. Crack
bridging was evident during propagation between D
and C. For the crack from hole C towards the edge of
specimen S4 at E, the crack appeared on the back sur-
face at t = 456.4 s after the third load drop (t = 441.0 s),
ahead of the edge of C, and then propagated towards
C on the surface before propagating back towards E.
The crack behavior for specimen S4 was typical of the
A–D–C–E crack-path specimens.

Fracture surfaces of the two crack paths
The fracture surfaces of the two observed crack
paths are highly three-dimensional without through-
thickness uniform flat fracture, but a combination
of flat fracture, V-shear fracture, and slant fracture.
Figure 16 contains a 3D reconstruction of a set of top-
down white-light digital microscope images of the D1
fracture surfaces and surface height profiles of the A–C
crack and of the first portion of the C–E crack from
a laser scanning microscope. The A–C crack has a
flat fracture surface in the middle of that crack; this
flat fracture is slightly sloped between notch A and
hole C in the overall crack propagation direction. The
A–C crack also has the shear lips with approximately
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Table 3 Summary of the load and COD measurements associated with the range of images for visual observation of the D–C surface
crack that was greater than 100 μm

Specimen # D–C crack

Load drop Image before surface
crack is present

Surface crack clearly visible Range for surface crack
initiation

Load COD Time Load COD Time Load COD Time Crack length Delta load Delta COD Delta time

N mm s N mm s N mm s mm N mm s

D2 7,197 2.498 202.3 5,739 2.801 225.6 5,638 2.880 231.7 0.280 −101 0.078 6.1

S01 6,915 2.679 216.3 5,631 3.088 248.1 5,599 3.104 241.2 0.250 −32 0.016 −7.0

S02 7,359 2.080 171.5 5,720 2.446 200.0 5,708 2.459 201.0 0.125 −12 0.013 1.0

S03 6,999 2.876 234.1 5,781 3.064 248.9 5,730 3.103 252.0 0.300 −51 0.039 3.1

S04 6,663 2.915 237.0 5,585 3.267 265.0 5,496 3.292 267.0 0.350 −89 0.025 2.0

S05 5,589 2.738 221.7 5,518 2.790 225.7 5,500 2.803 226.7 0.100 −17 0.013 1.0

S06 6,961 2.611 239.5 5,566 2.958 266.6 5,506 2.997 269.7 0.350 −60 0.038 3.1

S07 7,059 2.652 220.9 5,639 2.980 245.4 5,568 3.033 249.5 0.225 −71 0.053 4.1

S08 6,567 3.173 255.1 5,679 3.345 268.8 5,579 3.396 272.9 0.700 −100 0.051 4.0

Lower bound 5,589 2.080 171.5 5,518 2.446 200.0 5,496 2.459 201.0 0.100 −101 0.013 −7.0

Average 6,812 2.691 222.0 5,651 2.971 243.8 5,591 3.007 245.7 0.298 −59 0.036 1.9

Upper bound 7,359 3.173 255.1 5,781 3.345 268.8 5,730 3.396 272.9 0.700 −12 0.078 6.1

Table 4 Summary of the load and COD measurements associated with the range of images for visual observation of the C–E surface
crack that was greater than 100μm

Specimen # C–E crack

Load drop Image before surface
crack is present

Surface crack clearly visible Range for surface crack initiation

Load COD Time Load COD Time Load COD Time Crack length Delta load Delta COD Delta time

N mm s N mm s N mm s mm N mm s

D1 5,128 5.217 423.5 4,493 5.341 432.6 4,233 5.384 435.7 0.750 −261 0.043 3.1

D2 5,028 5.154 411.8 4,258 5.301 423.3 4,188 5.314 424.4 1.000 −70 0.013 1.0

S01 5,047 5.249 419.3 4,345 5.439 434.2 4,194 5.466 436.3 0.800 −150 0.027 2.1

S02 5,091 4.853 391.7 4,548 5.032 405.8 4,232 5.082 409.8 0.900 −316 0.051 4.0

S03 5,056 5.257 424.1 4,327 5.479 441.5 4,279 5.492 442.5 0.750 −48 0.013 1.0

S04 4,995 5.475 441.0 4,226 5.645 454.4 4,098 5.671 456.4 0.600 −128 0.026 2.0

S05 4,992 5.333 426.5 4,369 5.449 435.6 4,275 5.464 436.7 0.900 −94 0.015 1.1

S06 4,966 5.454 465.3 4,478 5.545 472.4 4,010 5.609 477.5 0.830 −468 0.065 5.1

S07 4,975 5.430 439.2 4,614 5.515 445.7 4,269 5.572 449.8 0.300 −345 0.057 4.1

S08 4,962 5.768 460.7 4,384 5.889 470.2 4,109 5.928 473.3 0.400 −275 0.039 3.1

Lower bound 4,962 4.853 391.7 4,226 5.032 405.8 4,010 5.082 409.8 0.300 −468 0.013 1.0

Average 5,024 5.319 430.3 4,404 5.463 441.6 4,189 5.498 444.2 0.723 −216 0.035 2.7

Upper bound 5,128 5.768 465.3 4,614 5.889 472.4 4,279 5.928 477.5 1.000 −48 0.065 5.1
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(a) Inset indicates FOV (b) COD: 3.498 mm  (c) COD: 3.579 mm (d) COD: 3.784 mm
for other images Load: 8129 N Load: 5112 N Load: 5368 N 

Time: 291.0s Time: 291.0s Time: 295.0s Time: 311.1s
(Back Surface) (Back Surface) (Back Surface) (Back Surface) 

(e) COD: 3.542 mm (f) COD: 3.584 mm  (g) COD: 3.644 mm (h) COD: 3.960 mm
Load: 8090 N Load: 5146 N Load: 5764 N Load: 5329 N
Time: 294.1s Time: 295.2s Time: 300.2s Time: 324.7s
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Fig. 14 Specimen D1 images for crack A–C of back and front
surfaces: a larger field of view of the back surface at t = 291.0 s,
before the load drop, with smaller field of view indicated by
dashed white box; b inset image of the back surface, before the
load drop with no surface crack; c inset image of the back sur-
face, when a 825-μm crack is clearly visible; d inset image of the

back surface when the back surface crack has fully bridged A–C;
e same size inset image of the front surface immediately before
the load drop; f inset image of the front surface after the load drop
without a front surface crack; g inset image of the front surface
when a 735-μm crack is just discernible; and h inset image of
the front surface, when the crack fully bridged A–C

40–55◦ slopes in the y–z plane near the surfaces imaged
during in the tests and in the x–z plane at the edge of
notch A and at the edge of hole C. The C–E crack has
a triangular flat-fracture region just ahead of hole C,
and what appears to be a V-shear fracture on either
side of the flat fracture; the two sides of the V-shear
fracture are angled at an approximately 45◦ angle in
the y–z plane relative to the flat fracture. The V-shear
fracture becomes slightly steeper to 55◦ as the crack
grows, and then it transitions to a slant fracture further
from hole C and has an angle of approximately 40–
45◦ in the y–z plane. This behavior in the C–E crack
is similar in all of the specimens, except specimen S6,
which did not have a transition between the V-shear
fracture and the slant fracture, but only the flat to V-
shear fracture transition. Figure 17 has an angled view
of the crack path in specimen S4 and a direct view of the
A–D crack in specimen S4. The A–D and D–C cracks

are shear-dominated, but they are not uniform through
the thickness. These cracks slant towards the front and
back surfaces and are jagged through the thickness at
the edges of holes D and C. These fracture surfaces are
rather different than the A–C crack in specimen D1,
which has prominent shear lips far into the thickness,
surrounding the flat fracture.

3.2 Confirmation observations from Sandia’s
Materials Mechanics Lab

The purpose of a second independent test lab was to
confirm the reproducibility of the primary experimen-
tal observations from the Structural Mechanics Lab,
described in the previous section. For this reason, only
three tests were performed, and the focus was on mea-
suring the force-COD response of the challenge speci-
men to confirm the results of the structural mechanics
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Fig. 15 Specimen S4
Images for Crack A–D: a
larger field of view with
smaller field of view
indicated by dashed white
box; b inset image just
before load drop; c inset
image after load drop
without any visible surface
crack; d inset image just
before the surface crack
appears in the dark region in
between A and D; e inset
image when a 560-μm
crack appeared; and f inset
image when the crack fully
bridged notch A and hole D
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lab. Both labs were blind of the other labs measurement
approach, to avoid bias in methodology.

The Sandia Materials Mechanics lab utilized a 100-
kN MTS servo-hydraulic load frame with standard cle-
vis grips and a 22-kN load cell. The COD gage was
a 0 to 5.08-mm displacement gage calibrated against
a micrometer-based calibrator at the time of use. The
most significant difference between the two labs was
that the Materials Mechanics lab utilized a universal
joint between the upper grip and the load cell to par-
tially compensate for minor misalignments. A single
universal joint was deemed sufficient because of the
additional rotational degrees of freedom afforded by
the clevis pins. However, the Materials Mechanics lab
did not utilize extra LVDTs to monitor in-test rotations
as had been used by the Structural Mechanics lab.

The core comparison between the primary results
of the Structural Mechanics Lab and the confirma-
tion results of the Materials Mechanics lab is shown in
Fig. 18. Note that the Materials Mechanics lab selec-
tion of a 5.08-mm range COD gage limited observation

of the final stages of crack propagation. The load drop
associated with crack initiation out of hole C was not
captured due to the limitations of the COD gage used
by this lab. Otherwise the two labs demonstrated strik-
ingly comparable results. While 9 of the 10 tests from
the Structural Mechanics lab failed along path A–D–
C–E, 2 of the 3 tests failed in this same manner in the
Materials Mechanics lab. The remaining 2 tests (one
from each lab) failed along path A–C–E.

3.3 Further observations from the University of Texas

The University of Texas volunteered to perform addi-
tional tests that were not blind either to the test results
from the Sandia Structural Mechanics Laboratory or
to the predictions of all the teams. In fact, this group
was motivated by the fact that two different failure
paths were observed in the tests thereby implying non-
uniqueness of the results. The additional observation
that a rigid coupling had been used by the Sandia Struc-
tural Mechanics Lab in connecting the specimen to

123



22 B. L. Boyce et al.

Fig. 16 Fracture surface of
specimen D1 with A–C–E
crack path from left to right:
crack path is three
dimensional through the
thickness; (Top) complete
fracture surface of both
halves of the specimen,
where hole B is located in
the upper half and hole D is
located in the lower half of
this image (image taken by a
Keyence VHX-1000 digital
microscope with 3D image
stitching); (bottom left) A–C
crack surface with height
profiles (image constructed
from a Zeiss LSM700 laser
scanning microscope with
5X objective and 0.5 zoom
factor); (bottom right) First
portion of the C–E crack
surface with height profiles
(image constructed from the
Zeiss LSM700)
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Fig. 17 Fracture surface of
specimen S4 with
A–D–C–E crack path:
(larger image) Oblique view
of crack path; (inset image)
through-thickness view of
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Fig. 18 Comparison of force-displacement curves measured by
the two Sandia mechanical testing labs. The Materials Mechanics
lab COD data is truncated at 5 mm due to sensor limitations

the test frame was used to postulate that there might
have been loading imperfections that may result in
nonunique response of nominally the same specimens.
Therefore experiments were performed on three addi-
tional specimens S9–S11 at the University of Texas.
These samples were obtained from the same sheet as
the remaining specimens that were tested by the two
Sandia groups and therefore are nominally the same
material, with the same heat-treatment conditions.

The University of Texas experiments utilized a 100-
kN Instron electromechanical load frame, with a 100-
kN load cell. The crosshead rate was maintained at
12.7μm/s, the same rate used by the Sandia Struc-
tural Mechanics Laboratory. Two universal joints were
placed, one each at the upper and lower grips in order
to minimize the effect of loading misalignments. With
two joints, the specimen can reorient itself to align
with the load with a minimum of loading imperfec-
tions. In addition, the clevis holes where the pin con-
nects the specimen to the loading frame were made to
have a flat portion in order to permit large rotations that
would arise in the pins; this is in accordance with the
ASTM guidelines for fracture testing. Instead of using
COD gages to measure the displacements of the loading
points, a full-field three-dimensional image correlation
(3D-DIC) method was used to determine the displace-
ments over the entire specimen. Details of the experi-
mental methods, sensitivity resolution, and results are
described by Gross and Ravi-Chandar (2013).

The main comparison between the primary results
of the University of Texas results and the results of the
Sandia Structural Mechanics Laboratory is shown in

Fig. 19 Comparison of the load-crack opening displacement
curves measured in the University of Texas tests (red lines) with
the data obtained from the Sandia Structural Mechanics Labo-
ratory tests (grey lines). The COD in the UT tests was obtained
from 3D DIC measurements rather than clip gages

Fig. 19, through the load-COD plot. The COD was
determined through post-processing of the 3D-DIC
data. The load-COD variation falls within the trends
identified by the two Sandia groups. Two of the three
samples (S09 and S10) failed along the path A–C–E
while the third sample (S11) failed along A–D–C–E.
Failure occurred abruptly with two audible ‘pops’ for
specimen S11 and with an initial audible ‘pop’ and then
a somewhat more gradual growth of the crack for spec-
imens S09 and S10. It was also noted that in specimen
S11, hole A was significantly misaligned with respect
to the flat portion of the notch and made the ligament A–
D smaller in this specimen than in the other two. These
results suggest that while loading misalignments may
be one contributing factor to the crack path selection,
geometric imperfections may also play a significant
role; these aspects are examined further in Sect. 6.1.3 in
the present article, and through additional simulations
by Gross and Ravi-Chandar (2013).

4 Brief team-by-team synopsis of modeling method

The following is a brief overview of the team-by-
team modeling approaches; see “Appendix” for more
detailed descriptions of each team’s approach and their
respective references. Also, several teams contributed
optional companion full-length articles within this Spe-
cial Issue. The majority of teams used finite element
methods with the exception of one team using Peridy-
namics, another using the Reproducing Kernel Parti-
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cle Method, and one using the Material Point Method.
Most also used fully three-dimensional models for the
geometry with the exception of one team which used
shell elements. The methods were calibrated with either
the uniaxial tension test alone or the combination of
uniaxial and compact tension tests. All of the teams
used plasticity models with various modifications to
capture failure.

Team 1 used a standard von Mises plasticity model
for metals with user-prescribed hardening as a function
of equivalent plastic strain. In addition to conventional
plasticity, this model has an empirical tearing parame-
ter for crack initiation and growth. The model was cali-
brated based on simulations of the uniaxial tension and
compact tension experiments.

Team 2 used a plasticity model with scalar dam-
age. A unique feature of this model is that with depen-
dence on the invariants I1, J2, and J3 this model
can distinguish between pressure-dominated and shear-
dominated failure. Damage rate depends on plastic
strain rate and a reference strain which depends on the
three stress invariants. This model was calibrated by
simulating the uniaxial tension test only.

Team 3 used Hill’s anisotropy for the plasticity
model, with power-law hardening and a modified
version of the Johnson-Cook strain-to-failure model.
When the material failure criterion of equivalent plastic
strain reaching a critical level was met, element stiff-
ness was reduced to zero. Two of the three parameters
for this model were calibrated with the tensile and com-
pact tension test data. The final parameter requires a
measurement of the failure strain at low triaxiality, and
since this was not available it was simply estimated
based on past experience.

Team 4 used the Reproducing Kernel Particle
Method which is a mesh-free method with displace-
ment enrichments for the crack surface and crack tip.
A conventional J2 plasticity model was used and cal-
ibrated based on the uniaxial tension experiment. The
maximum principal tensile strain is used as the crack
initiation and propagation criterion.

Team 5 used plasticity with damage based on a
classical Gurson–Tvergaard–Needleman (GTN) frac-
ture model. Failure is modeled based on a void nucle-
ation and growth criterion. This model was calibrated
using both the uniaxial and compact tension data.

Team 6 developed a two-scale plasticity model,
using Multiresolution Continuum Theory, in which
the macro-scale is based on a Gurson type yield sur-

face which is coupled to a modified Fleck–Hutchinson
model at the micro-scale. The micro-scale consid-
ered both plastic and gradient-plastic mechanisms.
An intrinsic length scale captures the inhomogeneous
deformation between micro-voids. This model was cal-
ibrated based on the tensile test data.

Team 7 took three separate approaches using both
Abaqus and FRANC3D software: a damage mechan-
ics approach in Abaqus/Explicit, a cohesive zone
approach in Abaqus/Standard with the PPR model,
and an explicit geometric crack growth approach in
FRANC3D. The given tensile (stress–strain), fracture
toughness, and necking data were used to calibrate
each model’s requisite material parameters to give three
separate predictions of crack growth in the challenge
specimen.

Team 8 used the Material Point Method instead of
a finite element model. A plasticity model was used
combined with the evolution of decohesion based on
a discontinuous bifurcation analysis. The model para-
meters were obtained from simulations of the uniaxial
and compact tension experiments.

Team 9 did not use finite elements and instead
used Non-local Peridynamic Theory. This method nat-
urally enables crack initiation and growth without
an external failure criterion and without remeshing.
The yield stretch in the plasticity model is calibrated
against the tensile test data, and the critical stretch for
material failure is calibrated against compact tension
test.

Team 10 used an extended finite element (XFEM)
method for shell element within Abaqus’ framework
(XSHELL). A plane strain core approach has been
developed to capture the thickness constraint induced
stress triaxility and its effect on the ductile fracture in
the vicinity of the crack tip. A mesh independent kine-
matic description of crack initiation and propagation is
accomplished through an elementwise crack insertion
with cohesive injection once its accumulative plastic
strain reaches a critical value.

Team 11 used a Shear Modified Gurson (SM-G)
plasticity model. The model was calibrated with a sim-
ulation of the uniaxial tension test and a comparison of
the predicted reduction of area on the fracture surface
with the experiment.

Team 12 used a von Mises plasticity model with
user-prescribed hardening and non-linear elasticity. For
one approach, failure was modeled using a cohesive
surface model with an exponential potential for mixed

123



The Sandia Fracture Challenge 25

mode crack propagation with cohesive surfaces placed
along expected crack paths. A second approach used a
damage model with damage dependent on the hydro-
static stress.

Team 13 used a von Mises plasticity model with
a three-parameter Modified Mohr-Coulomb fracture
model. With this failure model the strain to failure
is based on stress triaxiality and the normalized Lode
angle. Model parameters were calibrated based on the
uniaxial tension test only.

5 Comparison of predictions and experiments

5.1 Comparison of Scalar Quantities of Interest and
Crack Path

In real-world engineering scenarios, modeling is often
used to predict scalar performance metrics such as the
maximum allowable service load that a component can
support or how far the component can be deformed
before it will form a crack. Motivated by this, the chal-
lenge scenario specified certain scalar metrics to be
reported. The teams were asked to predict the force
and COD when a crack first initated, and then when a
crack later reinitated from a second feature. The teams
were given instructions to report single scalar values
for their expected outcome and were also offered the
opportunity to bound their predictions with lower and
upper limits. This offered teams the possibility of per-
forming uncertainty analyses.

The challenge problem statement specified that a
100 μm surface crack was the defining characteristic
for crack initiation. As described in the Experimental
section, the audible crack nucleation event and asso-
ciated load drop preceded the emergence of a visible
surface crack, in some cases by several seconds, sug-
gesting that the crack initiation event occurred entirely
subsurface. There was significant quantitative variabil-
ity in the experimental assessment of the emergence
of the visual crack. In hindsight, the load drop would
have been a metric that was easier to define and mea-
sure. Moreover, the teams may have not had the fidelity
to distinguish between the nucleation event and the
100 μm surface crack. For this reason, the experimen-
tal results presented in this section include both types
of observations.

Table 5 provides a numerical comparison of the
experimentally observed values from the Sandia Solid
Mechanics lab to each of the 13 team predictions. The
experimental results include 9 observations of path A–
D–C–E and a single result for path A–C–E. The single
observation from the Sandia Solid Mechanics lab of
fracture path A–C–E, occurred for sample D1. Of all
manufactured specimens, this particular sample, D1,
had actual dimensions closest to the nominal dimen-
sions of the challenge geometry, shown in Fig. 9. In fact,
only sample D1 was within the requested ±50.8μm
machining tolerance for the placement of holes C and
D relative to notch A. Samples S09 and S10, tested in
the UT-Austin lab, were out of specified machining tol-
erance but had ratios of A–D to A–C ligament lengths
closest to the nominal geometry. Samples S09 and S10
also followed crack path A–C–E. The other ten samples
followed crack path A–D–C–E. The A–D–C–E crack
path selection may be due, at least in part, to geometric
deviations from the nominal dimensions. Material vari-
ability may also play a role in crack path selection, as
well as its obvious role in causing scatter in the forces
and displacements required for crack initiation. Based
on the current experimental observations, it is not rea-
sonable to eliminate the possibility that some subset of
geometries manufactured within machining tolerances
may still fail along path A–D–C–E.

Figure 20 provides a graphical representation of the
comparison between computational predictions and the
experimentally observed range of force and displace-
ment values. This graph deviates slightly from the num-
bers reported in Table 5 in that the figure also includes
the non-blind experimental data from the UT-Austin
lab. The UT-Austin lab provided two additional obser-
vations of specimens that failed by the A–C–E crack
path. These combined three observations help to set a
more realistic range for the experimental scatter asso-
ciated with the A–C–E crack path. Due to the differ-
ences in experimental results regarding the crack path
selected, it may be more useful to compare predictions
for crack path A–D–C–E to the experimental scatter for
samples that followed crack path A–D–C–E, and like-
wise compare predictions of A–C–E to observations of
A–C–E. For this purpose, both the experimental ranges
and numerical predictions were color-coded in Fig. 20:
red for crack path A–D–C–E and blue for crack path
A–C–E.
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Fig. 20 Comparison of blind predictions to the experimental
range of combined observations from the Sandia Solid Mechan-
ics lab and the UT-Austin lab. Red points and lines correspond
to observations and predictions of path A–D–C–E, whereas blue
points and lines correspond to observations and predictions of

path A–C–E. Data points represent the blind predictions for the
expected outcome of the challenge and vertical bars represent
each teams’ bounds on their predictions. The range of experimen-
tally observed values are bounded by upper and lower horizontal
lines

5.2 Comparison of force-COD curves

While the scalar metrics discussed in the previous
section may provide the most realistic representa-
tion of common engineering problems, the force-
displacement curve may provide the most insight into
the efficacy of the various modeling approaches. Each

team was asked to report their best prediction for
the force-displacement behavior. The blind predic-
tions for force-displacement behavior are compared
to the experimentally observed force-displacement
curves in Fig. 21. A detailed discussion compar-
ing predictions to experiments is contained in the
Sect. 6.

123



The Sandia Fracture Challenge 27

Table 5 Comparison of blind predictions to the experimental values observed by the Sandia Solid Mechanics lab

Experimental results separate out the two different crack paths: 9 occurrences of path A–D–C–E and 1 occurrence of path A–C–E.
Green colored numbers highlight the most successful predictions. For path A–D–C–E, the predictions were colored green when the
expected value fell within the experimental range of the 9 observations. For path A–C–E, the predictions were colored green when they
fell within ±10 % of the values for the single observation

6 Discussion

The goal of the present study was to evaluate ductile
fracture prediction methods under pseudo-real-world
conditions, replicating the conditions that are typical in
an engineering environment. The challenge was open
to the public so that a large number of participant teams
would help represent the breadth of state-of-the-art
capabilities across the mechanics community. As a col-
lective effort, this body of work can be used to draw
general conclusions about the fidelity of failure predic-
tion, and the specific topic areas that require further
investment.

6.1 Assessing agreement and discrepancy between
predictions and experiments

6.1.1 Generic categorization of potential sources
of discrepancy

Several sources of uncertainty and variability have
been identified and categorized (Kennedy and O’Hagan
2001):

Parameter uncertainty—setting an input variable to a
value that does not reflect nature.
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Fig. 21 Comparison of
force-COD predictions
(colors) to experimental
observations (gray lines).
The solid gray lines
represent the 10
experimental observations
from the Sandia Structural
Mechanics lab, and the
dashed gray lines represent
3 non-blind experimental
observations from the
UT-Austin group. Path
A–D–C–E experimental
results are shown in lighter
gray and the teams that
predicted this path are
underlined. Path A–C–E are
shown in darker gray lines,
and the corresponding team
numbers are not underlined

Structural uncertainty/model inadequacy—the form of
the governing constitutive equations are inaccurate.
Residual variability—additional variability in a natural
process that is not captured within the fidelity of the
model.
Parametric variability—allowing a parameter to ‘float’
due to insufficient knowledge of its true value(s).
Experimental uncertainty/observation error—calibrat-
ion based on experiments that do not correctly reflect
nature, or incorrectly represent the desired scenario.
Algorithmic/numerical/code uncertainty—improper
numerical implementation of algorithms.

Systematic isolation and evaluation of each source
of discrepancy is time-consuming and not routinely
performed. The teams were each given the opportu-
nity to bound their predictions. Most often, when teams
did bound their predictions, they focused on paramet-
ric variability. They typically performed a sensitivity
analysis on certain parameters that were deemed to be
inadequately estimated based on the provided mate-
rial property information. The modeling approaches
taken were largely deterministic: calibration was typi-

cally done to average material property behavior, and
the observed material property scatter was rarely taken
into account. Also, no team systematically varied the
dimensions of the geometric specimen features across
the allowable machining tolerance ranges in the blind
predictions. This sort of dimensional tolerance analysis
was only performed after the conclusion of the blind
phase of the predictions in an attempt to understand
why certain specimens would ‘choose’ a particular
crack path.

It is worth noting that the range of modeling meth-
ods used by the 13 teams represent differing levels of
maturity. For example, the use of a Gurson model (Gur-
son 1977) within a finite element framework has seen
many decades of prior development, and the teams that
chose such an approach may benefit from the matu-
rity of the technique and vast available literature from
which to draw additional insight that can be brought to
bear on the Challenge. In contrast, numerical methods
such as Peridynamics have only recently emerged, and
the proper application of these techniques to problems
in ductile fracture has not been fully explored.
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6.1.2 An assessment of the crack path ambiguity

An important ambiguity that arose from this challenge
was in the observed crack path. In the experiments per-
formed at three independent laboratories on the same
nominal geometry, fabricated from the same sheet, the
failure exhibited two different paths: A–C–E and A–D–
C–E. There are at least three different approaches that
one might adopt in interpreting these experiments prior
to embarking on a comparison with the blind predic-
tions. The first approach is purely statistical: nine out
of the ten specimens tested as the primary data for this
Challenge followed the path A–D–C–E, and therefore,
statistically the path A–D–C–E is a higher probabil-
ity event. In the absence of any additional information,
one might be forced to act on such a proposition. How-
ever, this does not examine or consider causation; in the
present example, additional information is available,
both within the experimental results and the underlying
theoretical framework within which these experiments
were performed and interpreted, that allows additional
considerations. The second approach is to take an engi-
neering point of view: both solutions (paths A–C–E
and A–D–C–E) were in fact realized in experiments,
and could therefore be acceptable engineering solu-
tions to nominally the same problem. If decisions are
to be made concerning the reliability of the structure,
a conservative approach can be established by using
the lower bounds from the measurements for both the
load-carrying capacity and the load-line displacement.
Such decisions are commonly made in numerous engi-
neering applications. However, they are not predictive
since, once again, the underlying causation—why does
the failure follow one path or the other—is not under-
stood or examined closely. The third approach, and one
that is perhaps the most difficult, but also the most sat-
isfying, is to probe the problem further to determine
the underlying reasons for the multiple solutions to the
problem. It should also be noted that the distinction
between these two paths is important, because the A–D
fracture was shear dominated whereas the A–C fracture
was tensile dominated. Shear versus tensile fracture is
a known difficulty in computational predictions, and a
phenomenological topic that has been of recent inter-
est. For this reason, it was important to delve into the
crack path ambiguity in more detail.

Nine of the ten specimens tested in the Structural
Mechanics Laboratory followed crack path A–D–C–
E, with only one specimen following path A–C–E.

The load-COD profiles for the nine A–D–C–E crack-
path specimens were similar, particularly in the char-
acteristic features of the load drop with incremental
COD. The magnitudes of load drop for propagating the
crack to hole C were similar, regardless of whether the
crack followed path A–D–C or went directly along path
A–C, although the crack for path A–C occurred at sig-
nificantly higher COD values. The conditions for crack
re-initiation out of hole C were similar, regardless of
whether the crack had followed path A–D–C–E or A–
C–E. Two other labs performed these experiments, one
blind set performed in the Sandia Materials Mechanics
Laboratory before the predictions were returned and
one set performed in Ravi-Chandar’s laboratory at the
University of Texas at Austin after the predictions had
been reported. These two labs only tested a small popu-
lation of samples (3 each), yet both labs observed sam-
ples failing along both crack paths.

There are three different potential experimental
imperfections that are the focus of discussions regard-
ing crack path selection: (1) material inhomogeneities
such as the observed banding, (2) load train alignment
issues, and (3) specimen geometry deviations off of
the nominal dimensions. While each of these could
bear relevance, the effect of inhomogeneities has been
reduced by using the same sheet of material for all
specimens, and by specifying geometric feature sizes
that were over an order of magnitude larger than the
length scale of the sparsest inhomogeneity (spacing
between bands). Tests performed at the different labs
with different types of loading arrangements indicated
similar trends in the failure paths, implying that the
imperfections in the loading boundary condition may
not be the primary determinant of path selection. This
leaves the third source—geometric imperfections as
the main suspected determinant of failure path selec-
tion. In this regard, an important quantitative correla-
tion was found between the variations in the measured
sample dimensions and the observed crack path. An
obvious geometric feature of potential relevance to the
crack path was the ligament distance between notch
A and hole D; additionally, the ratio of the vertical
distance between the notch edge A and hole D to the
horizontal distance between the notch tip and hole C
may reveal why the crack would prefer a given crack
path. Table 6 lists relevant pre-test specimen geometry
measurements based on the lengths labeled in Fig. 10,
with the dimensions exceeding the prescribed tolerance
of ±0.0508 mm highlighted. The notch width (V10)
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is larger than the drawing tolerance for nearly all of
the specimens; this led to a smaller vertical ligament
distance between the notch edge A and hole D, given
by V12-(V9+V10), for the majority of the specimens
and for all but one of the specimens with crack path
A–D–C–E. The horizontal ligament distance between
the notch tip and hole C, given by H4-(H-C)-H5, was
within tolerance; thus, hole C was located within toler-
ance for all of the specimens. The ratio of the vertical
ligament between the notch edge A and hole D to the
horizontal ligament distance between the notch tip and
hole C is supposed to be two-thirds, but most speci-
mens had a smaller ratio. Specimens with crack path
A–C–E had a percent error in this ratio from −1.3 to
+1.9 %, while specimens with crack path A–D–C–E
had a percent error in this ratio of −5.4 to −2.2 %. In
other words, the specimens where the ligament between
A and D was significantly smaller than specified (rel-
ative to the length of the ligament between A and C)
tended to fail along A–D–C–E. This exploration of the
imperfections appears to indicate a systematic prefer-
ence for one path to the other depending on the nature
of the imperfections, and hence points not to a bifurca-
tion, but to two solutions that are in close proximity.

6.1.3 Overview of agreement between predictions and
experiments

As was the intention of this endeavor, the challenge sce-
nario offered a problem in the area of ductile fracture
that was not trivial to predict. In spite of the somewhat
simplistic geometry, the common loading conditions,
and the wealth of material property information pro-
vided, there was a wide range of predictions reported.
While there was a wide range of experimental observa-
tions, there was a much broader band of computational
predictions.

Most of the teams had elements of success in their
prediction. From the perspective of crack path, all
teams correctly predicted one of the two experimentally
observed crack paths: A–C–E, or A–D–C–E. Elasticity,
yielding, and work hardening regimes were predictable
for a majority of the groups. The force-displacement
curve in Fig. 21, seemed to show reasonable qualitative
agreement for most of the groups, at least through the
initial crack initiation load drop. For both crack path
A–D–C–E and path A–C–E, nearly all of the teams
were able to predict the force for first crack initiation
within experimental scatter. Yet only a few teams were

able to predict the COD value for first crack initia-
tion. Force was much easier to predict that COD value
for two reasons: (1) in the vicinity of first crack initia-
tion, the force-displacement curve was nearly horizon-
tal, and the force value was insensitive to the precise
point of crack initiation whereas COD was highly sen-
sitive, (2) there was a wide range of experimentally
observed force values: the force value dropped rapidly
as a result of the first crack initiation, leading to broad
experimental scatter in the force value at which a visual
crack was detected.

The second cracking event, either out of hole D for
path A–D–C–E, or hole C for path A–C–E, was more
difficult to predict quantitatively. Based on Fig. 20, only
seven teams were able to predict the force at second
crack initiation within the experimental error bounds
associated with that predicted crack path. Only one
team was able to predict the COD value for second
crack initiation within experimental bounds for the pre-
dicted crack path.

Did any team get the entire challenge completely
correct? While Team 2 was the only team that had pre-
dictions of the scalar quantities of interest (QoI’s) that
were consistently within the experimental scatter (see
Table 5), Team 2 was not able to maintain good agree-
ment with the experimental load-COD curve across all
cracking events. Specifically, Team 2 did not predict
the broad plateau in load at ∼5,500 N (COD ∼4-6 mm)
prior to crack initiation from hole C. This plateau was
observed to be nearly identical for both experimen-
tally observed crack paths, and Team 3 (who predicted
crack path A–C–E) was able to predict the load-COD
curve correctly through the end of the plateau in load.
However, Team 3 did not predict the COD at which
the second crack is initiated within the experimental
scatter. Although Team 3 did not perform as well as
Team 2 in answering the scalar metrics that are rep-
resentative of engineering analyses, they predicted the
load-COD response within experimental scatter over
the widest range of COD. Crack initiation from hole C
(as inferred from the final load drop) was difficult for
all of the teams to predict. This, after all, was the final
significant mechanical event, and the teams had to get
all previous elasticity, yielding, work hardening, neck-
ing, crack initiation, and crack propagation correct to
finally predict the correct loads and displacements at
which a crack would emerge from hole C.

The challenge approach presented in this work pro-
vides a reasonable benchmark of state-of-the-art in duc-
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tile fracture prediction, at least within the capabilities
represented by the 13 participant teams. However, the
approach is limited in its ability to single out the precise
strengths and weaknesses of different approaches. The
approach intends to mimic that of a real-world engi-
neering scenario, where the challenge does not isolate
specific sources of error. Only a subsequent analysis by
the participants can identify the specific elements that
caused poor predictivity. Likewise, the approach may
be insensitive to certain sources of prediction error that
would become problematic in other scenarios. More-
over, the challenge scenario only assesses predictivity
within the scope of the challenge problem: quasi-static
room temperature deformation and fracture of a struc-
tural alloy with moderate ductility. For example, the
results of this challenge do not speak to the ability of
modeling methods to address problems in the area of
dynamic fracture, coupled thermomechanical fracture,
environmentally-accelerated fracture, etc.

6.2 Future needs for improving predictivity
of computational models in the area
of ductile fracture

6.2.1 Constitutive modeling

Computational models are dependent on the mater-
ial characterization experiments that are used to cal-
ibrate the constitutive model(s). While there are many
handbooks and databases for material property data,
these databases often only include rudimentary prop-
erty information such as yield strength and ultimate
tensile strength. Even full stress–strain data is some-
times difficult to obtain. In some cases, even when
stress–stain curves are available, crucial details of the
tensile geometry are lacking. Mode-I plane strain frac-
ture toughness data is sometimes available, and to a
lesser extent, plane strain JI C data is available, espe-
cially for alloys used in high-reliability structures such
as nuclear reactors and aerostructures. However, the
extension of sharp-crack plane strain fracture tough-
ness values to realistic engineering structures is not
always straightforward, as demonstrated in the current
Challenge. For these reasons, computational efforts
always require material property experiments. While
these experiments are both costly and time consum-
ing, there is no substitute: fracture properties in struc-
tural metals can not be obtained from first principles

calculations. More efficient methods to gather a suf-
ficient amount of material property information from
a minimum number of experiments is needed. What
is the minimum number of calibration tests that are
needed for a model? Can emerging experimental tech-
niques, such as digital image correlation, provide a
richer material property dataset from fewer tests with
which to populate model calibration?

One of the difficulties in predicting the Sandia Frac-
ture Challenge was the lack of sufficient material prop-
erty data to calibrate constitutive models for failure.
The Challenge intentionally provided only material
property data that would typically be available in a
structural analysis for engineering problems. While
extensive data was provided for tensile behavior and
sharp-crack fracture toughness behavior, many predic-
tion teams would have benefited from more detailed
experimental measurements (such as details of 3-
dimensional deformation during necking in the uniaxial
tensile experiment, and crack extension data from the
fracture tests), and more importantly from additional
information regarding the shear deformation and shear
failure behavior of the material. Currently, the fracture
mechanics community lacks a widely-accepted crite-
rion for failure. Moreover, the mechanics community
lacks a widely-accepted, standardized test method to
evaluate shear deformation and failure. There are sev-
eral experimental methods that have been proposed
for this problem, including the Iosopescu geometry
(ASTM D5379), V-notched rail shear (ASTM D7078),
the Butterfly geometry (Dunand and Mohr 2011), and
punch geometry (ASTM D732). In addition, some
sheet forming experiments such as mandrel forming
involve extensive shear deformation, but are not loaded
in pure shear. While these methods each have utility, the
lack of shear material property data likely stems from
a lack of standardization for shear test methods. Early
modeling methods for ductile failure of metals, such
as the Gurson method (Gurson 1977), did not take into
account low triaxiality shear failure as a distinct mode
of failure.

Another deficiency that some teams revealed was
the lack of a material model that captured microstruc-
ture and macrostructure of the material. Microstruc-
ture includes aspects such as grain size, grain bound-
ary arrangements, precipitate content, crystallographic
texture etc., and macrostructure includes aspects such
as macroscopic anisotropy (i.e. plate anisotropy), and
inhomogeneous banding of the microstructure
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(stringers of precipitates). While optical micrographs
were provided of the grain structure, none of the
teams used this information in their modeling method.
Multi-scale computational methods that incorporate
the effects of microstructure are under development
by a number of research groups (Allison et al. 2011;
Horstemeyer 2012; McDowell 2010; Emery et al.
2009). However, these models remain largely develop-
mental, in part due to the challenges of mapping mea-
surable properties to model parameters. Explicit repre-
sentation of microstructure is computationally expen-
sive and data management is cumbersome. Techniques
are needed to connect advances in homogenization the-
ory with characterization of micro structural detail in
order to develop continuum-scale constitutive and fail-
ure models in a rational way.

6.2.2 Failure modeling

The current challenge highlighted the lack of a widely-
accepted criterion for the onset of failure (e.g. void
nucleation). Some teams merely used critical strain,
some teams used a more complex tearing parameter,
and yet others used a modified Gurson model. Teams
2 and 3 reported predictions that were among the most
successful, yet their failure models differed signifi-
cantly: Team 2 used a recently developed pressure-
dependent damage model that can distinguish shear-
and tensile-contributions to failure, whereas Team 3
used equivalent plastic strain. These differences expose
a lack of maturity or consensus with regard to fail-
ure models. While detailed mechanics models exist
for void growth and coalescence, there is little agree-
ment on the micro-scale conditions for void nucleation.
Failure is generally thought to initiate at pre-existing
defects, voids or inclusions; and by that rationale some
of the most widely accepted mechanics models require
that materials contain some seed volume fraction of
voids or pre-existing inclusions. Early reviews of this
topic (Goods and Brown 1979), suggested that void
nucleation can occur not only at inclusions or second-
phase particles, but also at grain boundaries which serve
as sites for dislocation pile-up. High-purity single crys-
talline metals fail by a void nucleation process that is
similar (or identical) to the failure process observed
in many ductile metals. Deformation-induced subgrain
structure may facilitate the nucleation of voids (Boyce
et al. 2012). There is clearly a need for continued
investigation regarding the critical conditions that lead

to void nucleation, especially in the absence of pre-
existing defects or hard particle interfaces. Most likely,
emerging models for accurate prediction of void nucle-
ation will need to be multiscale to capture details of
the evolving microstructure while also capturing the
macroscale boundary conditions.

6.2.3 Computational methods

There was a striking inconsistency in each of the
teams approach to uncertainty quantification (UQ). All
groups were asked to report not only the expected value
for the forces and displacements at fracture, but they
were also asked to report lower and upper bounds for
these values. Some groups reported only determinis-
tic predictions, and other teams reported large uncer-
tainty bands, even larger than the significant experi-
mental scatter. While UQ is a vibrant research area
(Oberkampf and Roy 2010), the current effort demon-
strates that UQ is far from mature, at least in the con-
text of ductile fracture prediction. There are several
possible explanations from the inconsistency in UQ
methods. Most importantly, because this was essen-
tially a volunteer effort on the part of participants, the
time needed for detailed UQ analysis was not available.
To make UQ a reality, the mechanics community will
have to rely not only on improved probabilistic meth-
ods, but also on computationally efficient models so
that multiple scenarios can be studied in a time- and
cost-effective manner. In addition, there is very little
guidance or standardization to improve consistency in
performing UQ analysis. Moreover, there is similarly
little guidance on the appropriate number of calibra-
tion experiments needed to quantify material variabil-
ity.

A difficulty discussed among teams was the chal-
lenge of scalability. Ductile fracture is known to be a
scale-sensitive problem. For this reason, lab-scale test
coupons, such as those used in the present study may
not represent fracture behavior in large-scale structure
such as ships or buildings. Real world applications span
many orders of magnitude in size, from micro- and
nano-electronics to civil structures. However, exper-
imental testing and standardization in fracture, such
as ASTM E399, focus on lab-scale test specimens,
with little guidance to scaling for other engineering
scales. Even the Sandia Fracture Challenge geome-
try itself evaluates fracture modeling only at the lab
scale—the material property coupons were of a sim-
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ilar scale to the challenge geometry, and would be
relevant to structures where the dimension of criti-
cal features in on the scale of a few millimeters. In
many large-scale or geometrically complex engineer-
ing structures, there is a limit to the number of ele-
ments that are computationally practical. The Chal-
lenge specimen was small and simple enough that the
teams could expend a large number of elements in the
features of concern. Team 3 appears to have used the
largest number of elements in the prediction: 2 million
elements were used to predict the Challenge. Because
of this, team 3 was only able to run a small number of
simulations to bound their predictions. In many engi-
neering scenarios, the analyst must carefully trade-off
computational cost with spatial and geometric accu-
racy. For example, in some large scale welded struc-
tures, even the geometric details of the weld must be
ignored or homogenized for computational practical-
ity.

With regard to scale, a pervasive problem in frac-
ture prediction is mesh-size sensitivity and model reg-
ularization. It is interesting to note that none of the
teams performed a mesh-convergence study on their
predictions. Some groups used an extremely fine mesh,
and other groups selected a similar mesh size for the
material property calibration coupons and the Chal-
lenge specimen. The physical mechanisms of fracture
possess several intrinsic length scales governing phys-
ical phenomena (dislocation core size, grain size, plas-
tic zone size, shear band spacing, etc), but conven-
tional continuum analysis is a scale-invariant approach.
This challenge of incorporating length-scale depen-
dence into continuum methods has been studied exten-
sively for many years, e.g. Chen et al. (2000), Gao and
Huang (2003), Needleman (2000). However, there is
yet to be a consistent method for incorporating length-
scale effects in fracture. One technique employed by
some prediction teams to mitigate mesh dependency
was to calibrate the material property tests with the
same mesh scale as was used to predict the Challenge
scenario. Other techniques like cohesive zones, peri-
dynamics, and extended finite elements provide alter-
native methods to manage dissipation by incorporating
additional knowledge of an intrinsic scale. It is possi-
ble that the regularization technique itself might depend
on the type of fracture problem that is being addressed.
The difficulties associated with regularization continue
to impede predictivity.

6.3 Recommendations for future challenge scenarios

6.3.1 Specific topical areas in deformation and
fracture where blind assessment is needed

A single Challenge such as the present study only
provides limited insight into the predictivity of duc-
tile failure. The efficacy or deficiency of a particular
team’s modeling approach should not be overstated
based on this single Challenge effort. Instead, addi-
tional Challenges will help illuminate methods that
consistently produce the most reasonable predictions.
A limitation to the blind fracture challenge as it was
issued in the current study, was the difficulty in isolat-
ing individual sources of error. Prediction errors can
stem from inadequate physics models, poor numerical
methods, improper boundary conditions, and several
other sources already discussed. A prediction that does
not match experimental observations may stem from
any one of these errors, and isolation requires subse-
quent studies. A future challenge could be issued to
isolate specific effects, such as mesh dependency.

The Challenge presented in the current work only
examines one narrow aspect of failure predictivity.
The Challenge represents monotonic tearing failure of
millimeter-scale geometric features under slow, quasi-
static loading conditions in a plate that is in between
plane stress and plane strain conditions, for a material
that possesses low work hardening and modest ductil-
ity. The current Challenge does not necessarily reflect
predicitivity in other scenarios. For example, dynamic
crack propagation was not addressed in the current
challenge. The instantaneous load drop and audible
pop associated with a crack forming between notch
A and hole D was at first a dynamic crack propaga-
tion event, but the crack became stable even before it
had propagated to the visible sidewall surfaces. A dif-
ferent Challenge could be devised to more carefully
interrogate the prediction of dynamic crack propaga-
tion, and the transition between stable and dynamic
propagation. Or, even a switch to a more brittle mater-
ial with the same challenge geometry might provide a
better investigation of dynamic crack propagation pre-
diction. The current study focused only on the general
material class of ductile metals, but fracture prediction
is a challenge for other material classes as well (com-
posites, hierarchical materials, foams and porous mate-
rials, metallic glasses, graded materials, etc.) and those
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other material classes could benefit from a similar blind
assessment.

There are several other conditions that would be
interesting to evaluate using such a blind assessment
technique such as, (1) high temperature or low tem-
perature fracture crossing a ductile-to-brittle transition,
(2) dynamic fracture, such as under quasi-adiabatic
conditions, impact loading, etc., (3) fracture of a
microstructurally-sensitive or intentionally defected
material such as aluminum alloys where failure initi-
ates at precipitate phase boundaries, (4) fracture predic-
tion of a complex large-scale structure where lab-scale
material properties must be extrapolated to the length
scale of the challenge structure, such as emulating pre-
diction of fracture in an airplane wing.

In addition, a future challenge could intentionally
explore methods for uncertainty quantification. Such
a challenge would require statistical details provided
regarding the variability in a manufacturing process or
observed variability in material.

6.3.2 Guidance for execution of a future challenge

The present work revealed several pitfalls in the execu-
tion of a blind assessment in the area of solid mechan-
ics. These ‘lessons learned’ can help foster better Chal-
lenge exercises in the future. For example, there was a
significant issue raised by the manufacture of speci-
mens that were not only deviating from the nominal
sample dimension, but also deviated slightly beyond
the allowable manufacturing tolerances. While none of
the groups used the dimensional tolerances in their ini-
tial blind predictions, the subsequent analysis of experi-
mental data and discrepancies with computational pre-
dictions revealed that the out-of-tolerance specimens
could have emphasized a crack path solution that was
not the same as the crack path associated with nominal
dimensions. In the future, the actual test articles could
be manufactured before the beginning of the challenge
and the as-measured dimensions of the actual articles
could be provided to the prediction teams. This would
be especially useful for an exercise evaluating uncer-
tainty quantification methodologies. In addition, a sec-
ond deficiency in the current exercise was the selec-
tion of a scalar metric for prediction that was not eas-
ily measured. Specifically, the initial blind challenge
called on the teams to predict the onset of crack initia-
tion as defined by a 100-μm visible surface crack. This
was not only difficult to observe experimentally, but the

conditions were vastly different from those of the initial
crack formation event, which was better evidenced by
an audible signal and a distinct load drop. If more tests
had been performed prior to the issuance of the Chal-
lenge, then the ambiguities raised by this problem may
have been avoided. The additional advantage to running
a series of experiments before the issuance of a chal-
lenge is that the repeatability of the measurements can
be confirmed. In the present experiments, the observa-
tion of the two crack paths would have been discovered
before the onset of the Challenge, and might have led
to a modification of the test geometry so that only one
crack path was preferred. A concern of performing the
experiments before the issuance of the challenge lies in
keeping the results confidential so that the prediction
teams are blind and unbiased.

The current blind assessment methodology did not
constrain the analysts to a particular method. Instead,
the participant teams could utilize whatever method-
ologies within their capabilities that they deemed
appropriate. In this way, the current Challenge repli-
cated a pseudo-real-world engineering problem. How-
ever, in this approach, the isolation of specific sources
of discrepancy between model and experiments can be
difficult. There are many areas where discrepancies can
arise, such as improper calibration to material proper-
ties, improper constitutive models, or numerical algo-
rithm computational errors, to name a few. A sensitivity
analysis performed after the comparison to experiments
can help to isolate the most important sources of error.

The material property data that was provided to the
teams is an important factor in their predictive success.
The current challenge attempted to replicate pseudo-
real-world engineering conditions by providing mate-
rial property data that was commensurate with typi-
cal engineering scenarios, based on ASTM standard
test methods. In many real engineering scenarios, even
less material information is available. For example, in
the current Challenge multiple full tensile engineer-
ing stress–strain curves provided for both the longi-
tudinal and transverse plate directions, as well as the
dimensions of the tensile bar, and shape of the post-
fracture neck, were provided for ease of calibration
to a material constitutive model. Often, in real engi-
neering scenarios, details such as the tensile dimen-
sions are not available, and this lack of information
can cause problems in constitutive calibration. A future
challenge could even explore how engineers and ana-
lysts approach problems with less material information
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or different material information, and how they use this
lack of information to drive uncertainty quantification.

The results of this Challenge also bring out some per-
tinent questions related to the development of the Quan-
tities of Interest (QoI’s). The selection of appropriate
QoI’s is extremely important in interpreting the exper-
iments and simulations. Typical engineering practice
is to reduce the complexity of the problem by reduc-
ing the results of experiments and simulations to a few
scalar metrics with which higher level decisions could
be made. In this spirit, the current challenge posed
a few scalar QoI’s: the load and COD at the onset
of the first and second failure as well as the path of
the crack. Difficulties associated with identifying the
onset of failure and ambiguities in crack path selec-
tion have already been discussed. These difficulties
suggest that while the QoI’s may be set a priori, one
must be aware of their potential limitations and have in
place procedures for generating alternate QoI’s a pos-
teriori. In this regard, it might be useful to introduce
conditional QoI’s; for example, in the present chal-
lenge, considering that there are four distinct phases
in the response—elastic, elastic-plastic, localization,
and failure—conditional QoI’s that present ‘go–no-go’
decision points along the response could be postulated:

• First, was the elastic stiffness of the structure cap-
tured correctly by the model?

• If yes, then, was the prediction of the stable plastic
response up to the limit load within acceptable range
of the experiments?

• If yes, then, was the onset of any localization pre-
dicted correctly?

• Finally, were the original QoI’s based on the onset
of first and second failure predicted correctly?

The reason for positing the ‘go – no-go’ decision
points is that there are some aspects of modeling that
are well-established and that any new model that is
unable to capture the more elementary features of the
response may not provide reliable predictions of more
complicated, and less well-established features of the
response. The advantage of this procedure is that while
simple scalar measures could be used at higher level
decision-making, the validation of the scalar QoI’s
must pass through a much greater detailed assessment
at a lower-level.

One final aspect of the comparison of the experi-
ments and predictions involves quantitative measures
of comparison. In the present study, a rudimentary sta-

tistical comparison is made by comparing the range of
the upper and lower bound predictions to the scatter in
the experimentally measured response. More sophisti-
cated measures based on Bayesian statistics have been
developed in recent years to handle verification, valida-
tion and uncertainty quantification. Future challenges
should consider implementing such measures to per-
form quantitative comparison.

7 Summary and conclusions

Sandia proposed a double blind fracture challenge to
the international engineering community and thirteen
teams submitted blind computational results, represent-
ing contributions from 22 institutions. The intent was
to assess the predictive accuracy of current methods.
It is clear that this blind assessment effort has helped
make each of the modeling teams more acutely aware
of some of the weaknesses of their methods. Many of
these weaknesses are discussed in detail in the Appen-
dices, and as a result of the present effort, many of
the teams are working to address these weaknesses.
One surprising source of error that became apparent
through an honest evaluation of the capabilities was
‘operator’ error, such as misinterpreting the desired
prediction quantities, misreporting the results, or mak-
ing dubious assumptions. It appears that these mistakes
can overwhelm any predictivity (or errors in numer-
ics/physics/co) that may be present in the models. Even
transcription errors can present real hurdles to report-
ing accurate predictions. These ‘simple’ mistakes are
often quickly discounted after the fact. Yet they can
have a quantitatively large effect on blind predictivity.

One common theme that appears to affect all of the
modeling methods is the availability of calibration data
on the particular alloy of interest. The current effort was
restricted to readily available data, which included ten-
sile and fracture test data. All of the methods would
benefit from more extensive calibration data beyond
traditional material property tests. For example, a suite
of test geometries spanning different degrees of stress
concentrations, stress state, mode mixity, post-necking
behavior, etc. could be useful to calibrate models prior
to using them on an ‘unknown’ problem. There already
appear to be early discussions regarding the develop-
ment of such a test suite. Nevertheless, it is important
to remember that reliance on such a test suite would
mean that each alloy of interest would require extensive
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experimental evaluation prior to modeling. At a time
when high-throughput experimentation, data manage-
ment, data mining, and exascale computing are becom-
ing commonplace in other fields, it is important that the
structural failure prediction community also develops
new approaches to take advantage of these emerging
capabilities.

In addition, there were several other known but unre-
solved issues in fracture prediction that were high-
lighted by the Challenge exercise: (1) in this spe-
cific Challenge, geometric uncertainties were shown
to have a huge impact on crack path predictions, (2)
mesh convergent methods remain an open issue, (3)
effects of microstructure may be important but were
not included by any of the teams, (4) improved phys-
ical descriptions of fracture are necessary to reduce
dependence on empirical material testing, (5) there
is a trade-off or balance that is necessary between
physical realism and computational efficiency. This list
only highlights those issues in fracture prediction that
were brought to light by this particular Sandia Frac-
ture Challenge. There are other known gaps in fail-
ure prediction, such as the need for microstructurally-
informed models, which were not elucidated by the
present exercise, but may be exposed by future chal-
lenges.
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8 Appendix: Additional details on modeling
approaches and results

8.1 Team 1

Team Members: M. Neilsen, K. Dion, E. Fang, A. Kacz-
marowski, E.Karasz; Sandia National Laboratories,
New Mexico, USA

Predictions for the 2012 Sandia Fracture Challenge
were generated using a transient-dynamic finite ele-
ment code with a Multilinear Elastic Plastic Failure
(MLEPF) model developed at Sandia (Wellman 2012).
This model is a conventional, rate-independent, von-
Mises plasticity model for metals with user prescribed
hardening as a function of equivalent plastic strain. In
addition to conventional plasticity, this model has an
empirical criterion for crack initiation and growth. Fail-
ure initiates when the tearing parameter, tp, given by
the following equation reaches a critical level

tp =
∫ 〈

2σmax

3(σmax − σm)

〉4
dεp (1)

where σmax is the maximum principal stress, σm is the
mean stress, εp is the equivalent plastic strain and the
Macaulay bracket, 〈•〉, indicates that the tearing para-
meter will only increase if the argument within the
brackets is positive. After material failure is initiated,
material strength is linearly reduced to zero over an
increment of strain, the critical crack opening strain,
in the crack opening direction and elements with no
strength left are removed from the mesh.

The first step in these analyses was to obtain mate-
rial parameters for the MLEPF model by simulating
the uniaxial tension and fracture toughness experi-
ments that were reported by the organizers of the San-
dia Fracture Challenge. The initial part of the stress–
strain curve can be captured from the reported stress
strain behavior prior to necking. To capture the mea-
sured response after necking, the uniaxial tension test
was simulated and points in the post-localization hard-
ening regime were modified and simulations repeated
until the predicted engineering stress versus engineer-
ing strain curve matched the experiment (Fig. 22). The
critical tearing parameter was then selected such that
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Fig. 22 Simulation of
uniaxial tension
experiments to obtain
material model parameters.
Upper right images show
contours of tearing
parameter at two different
times. Lower right images
compare experimental and
predicted reduction of area
on fracture plane

Fig. 23 Simulation of the
challenge geometry with the
MLEPF model. Images on
right show extent of
cracking for three different
crack opening
displacements

the bar would tear at the last recorded point in the exper-
iment when the load dropped. There was some variation
in engineering strain associated with final load drop so
values of 0.90 and 1.50 were chosen for the critical tear-
ing parameter (Fig. 22). The fracture toughness test was
modeled, and the critical crack opening strain was cal-
ibrated to 0.3 to bring the predicted load displacement
curve close to the reported load displacement curve.

Finally, the challenge geometry was simulated using
a finite element model with 125,916 elements and 12
elements through the thickness of the plate. The ele-
ment size used in the challenge simulation was chosen
to be close to the element size (0.25 mm edge length)
used in the prior simulations of the uniaxial tension and
fracture toughness tests. The challenge simulation ran

in ∼20,000 s on 120 processors. This model captured
the initial load plateau and drop to a lower plateau due
to tearing between the notch and Hole C (Fig. 23). For
the simulation with a critical tearing parameter of 1.50,
a crack is predicted to first appear in Hole C at a crack
opening displacement (COD) of 3.100 mm and force
of 8,017 N. Crack re-initialization is predicted on the
opposite side of Hole C at a COD of 3.481 mm and force
of 5,410 N. Unfortunately the force and COD numbers
originally submitted for entry into Table 5 and Fig. 20
were incorrect. At the peak force of 9,007 N recorded in
Table 5, for the Sandia Team, Team 1, a crack is initiated
in the ligament between Holes C and A, but a surface
crack does not appear on the surface of Hole C until
the load has dropped to 8,017 N. The COD numbers
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recorded in Table 5 for Team 1 were times in seconds
in the transient dynamic simulations when the cracks
appeared and not the COD in inches.

The MLEPF model predicts crack re-initialization
and continued load drop much earlier than was observed
in the experiments (Fig. 23). The A–C–E crack path
predicted by this model matches only one of the ten
experimental results and most experiments exhibited
an A–D–C–E crack path. However, it was later found
that many of the specimens deviated from the design
geometry that the model was based on; thus, it would
be interesting to rerun these simulations with some as-
manufactured geometries to see if the MLEPF would
predict the A–D–C–E crack path with the deviated
geometries. Finally, the MLEPF model tends to pre-
dict a crack oriented perpendicular to the front face
and a close examination of the experimental results
reveals a crack that tends to form at an angle through the
thickness of the plate. The coarseness or texture of the
mesh used in these simulations may have prevented this
model from capturing cracking at an angle through the
thickness. We do not know if mesh refinement would
improve predictions with this model. Also, since the
model dissipates energy based on a user-prescribed crit-
ical crack opening strain, the energy dissipated by crack
growth with this model is expected to be mesh size
dependent. Modifications to reduce mesh size and tex-
ture dependence are currently being investigated. Addi-
tional information about predictions with the MLEPF
model can be found in a companion paper published in
this same special issue by Neilsen et al.

8.2 Team 2

Team Member: L. Xue; Schlumberger, Sugar Land,
Texas

8.2.1 Approach to ductile fracture prediction

There are mainly two approaches to model dam-
age plasticity of ductile materials: the micromechan-
ical approach and the macroscopic approach. The
micromechanical approach characterizes the damage
of the material by some micro scale quantities, typ-
ically including void nucleation, growth, shearing
and coalescence, for example, the Gurson–Tvergaard–
Needleman–Xue model (Xue 2006, 2008). Microme-
chanical models usually require a large number of

material parameters whose calibration is not trivial. On
the other hand, macroscopic approaches avoid the over-
burdens of the details of microstructures and their inter-
action and, rather, aim at the overall measurable change
of the mechanical response of the damaged material.
In comparison of the two, the microscopic approach
is a long shot due to the added difficulties to quantify
the intermediate micro quantities and, furthermore, the
modeling of the interactions between micro scale enti-
ties are still vague. On the contrary, the macroscopic
approach is more straightforward—the reduction of
ductility and the strength are quantified explicitly.

Ductile plates often fail in one of these two compet-
ing modes. In order to capture the pressure dependence
and the Lode angle (or J3) dependence of the ductile
fracture, the underlying damage accumulation of the
two competing modes have to be properly modeled. It
has become clear that the conventional I1-J2 models
is inadequate in capturing three dimensional fracture
patterns. Only recently, with the introduction of I1-
J2-J3 models, the capturing of the damage evolution
in three dimensional loadings became possible (Xue
2007, 2009; Xue and Wierzbicki 2009).

8.2.2 Fracture prediction with damage plasticity mode

The fracture strain envelope for ductile materials is usu-
ally non-linear. For instance, damage plasticity model
proposed by Xue (2007) requires four parameters to
depict the three-dimensional surface. Xue (2009) pro-
posed a simplified Tresca type of fracture envelope
in the stress space and developed an empirical rela-
tionship between the size of fracture envelope and the
slope of pressure dependence by analyzing the Bridg-
man’s experimental data. Using a Swift relationship
to fit the matrix material stress–strain curve, the Xue
(2009) model can be described by the following set of
expressions:

σM = σ y0

(
1 + εp

ε0

)n

, (2)

εf = ε0

⎧⎨
⎩
(

σ f0

σ y0

)1/n
[(

1 + kpp
) √

3
2cosθL

]1/n

− 1

⎫⎬
⎭
(3)

Ḋ = m
(

εf

εp

)m−1 ε̇p

εf
(4)

σ eq =
(

1 − Dβ
)

σM (5)
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where p is the pressure and θL is the Lode angle
of the current stress state. σy0, ε0 and n are three
Swift parameters to describe the relationship the matrix
stress σM and plastic strain εp. They were fit from
the simple tension test results. εf describes the frac-
ture stress envelope by two parameters—a reference
fracture stress σf0 (or equivalently a reference fracture

strain εf0 = ε0

[(
σf0
σy0

)1/n − 1

]
) and a pressure sensi-

tivity parameter kp. The two fracture stress envelope
parameters can be related by an empirical expression
given by Eq. (28) in Xue (2009), which is kp = n

σy0εf0
.

And D is the damage which describes the deterioration
of the material. From early studies, the two exponent
parameters describing the damage accumulations and
weakening, i.e. m and β are about 2.0 for many metals,
which are adopted in the present case.

8.2.3 Calibration of material parameters

The simple tension coupon test by Sandia National Lab
was first simulated using the Xue (2009) model. From
the stress–strain curve given, it is clear that this stainless
steel is less ductile than DH-36. The calibrated εf0 for
DH-36 is about 2.5 (Xue et al. 2010a). Hence, the search
for the reference fracture strain εf0 is narrowed down
to below 2.5, i.e. to the left hand side of DH-36 on the
log-log plot of the pressure sensitivity and the fracture
strain (Fig. 24a). After several numerical tests, the εf0

value appears to be around 2.0. The plastic strain at
fracture and the load-displacement curve is shown in
Fig. 24b, c.

8.2.4 Simulation results with damage plasticity model

Eight-node brick elements with one-point integration
are used in the simulation. Twenty element are used
through the thickness and the in-plane element size
is about the same as in the thickness direction in the
area of interest. With the calibrated material parame-
ter εf0 = 2.0, simulation of the three hole specimen is
carried out. The predicted crack path is A–D–C–E as
shown in Fig. 25a, which is observed in most physical
experiments as reported by the Sandia team. The pre-
dicted modes of all the three segments of the crack path
agrees with experiments: (a) both show in-plane mode
II shear in A–D segment; (b) both show in-plane mode
II shear in D–C segment; (c) both show out-of-plane
mixed I/III shear mode or a “V” shaped double shear

lip for C–E segment. The load-displacement prediction
also matches experimental results very well except the
plateau before final load drop is a little short.

Further parametric study reveals that the two com-
peting modes: A–C–E and A–D–C–E are indeed very
close to each other, although A–C–D–E appears to be
the dominant mode. With little increase in the frac-
ture strain, the A–D–C–E model can change to A–C–E
mode. Not much change in the critical forces at the ini-
tiation of the first segment and the second segment of
fracture is observed, but the initial CTOD increased by
a third when the reference fracture strain of the mate-
rial is increased from 2.0 to 2.2. Five strains (εf0 =
2.0, 2.1, 2.2, 2.3 and 2.5) were adopted in the simula-
tion and their respective results are plotted in Fig. 25b.
The two thick blue lines are the load-displacement
curves for εf0 = 2.0 and 2.1, which show A–D–C–
E paths. With increased fracture strains εf0 = 2.2, 2.3
or 2.5, the fracture path changes to A–C–E and their
load-displacement curves are shown in thick red lines.

8.2.5 Conclusions

In this double-blind study, the damage-plasticity model
with stress-based fracture envelop (Xue 2009) is used in
the prediction. The fracture path and the overall load-
displacement features are predicted very well. More-
over, it is the simplest possible method with only one
parameter to calibrate besides the true stress–strain
curve. This is mainly attributed to two aspects of the
model: (a) the I1-J2-J3 nature of ductile fracture is
correctly characterized by this simple model; (b) the
empirical relationship eliminates the cumbersome of
material calibration for multiple parameters and pro-
vides a quick assessment with reasonable accuracy
to characterize the mechanical behavior of the mate-
rial. These advantages are demonstrated by numerical
results of the crack propagation in the three-hole spec-
imen.

8.3 Team 3

Team Members: A. J. Gross, A. Ghahremaninezhad and
K. Ravi-Chandar; The University of Texas

In some recent work we have identified that, for a
class of ductile materials, plastic deformation proceeds
without intervening damage until very large strain lev-
els; this is confirmed through observations and mea-
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Fig. 24 Numerical
calibration of material
parameters using the tensile
coupon test. a search range
of reference fracture strain
εf0, b strain contours of test
coupon after break; c the
experimental (blue
solid-line) and numerical
(red dot line) results of the
load-displacement curves

surements of deformation at multiple scales, from the
macroscopic to the level of the grains (Ghahrema-
ninezhad and Ravi-Chandar 2012, 2013; Haltom et al.
2013). The upshot of these investigations is twofold:
first, it is essential that the plastic response of the mate-

rial be calibrated to much larger strain levels than is
usually achieved in a standard tensile test. Second, the
mechanisms of final failure—void nucleation, growth
and coalescence—occur within a highly localized zone
in the plastically deformed material, and only at the
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Fig. 25 Left experimental and numerical results of the post-
mortem specimen. Right load-displacement curves for five dif-
ferent fracture strains of the material. Thick blue line indicates a

A–D–C–E path; thick red lines indicates A–C–E path and thin
lines indicate experimental results

very end of the material’s ability to withstand deforma-
tion. Thus, final failure may be implemented numeri-
cally by a simple damage criterion such as element
deletion. However, it is necessary to perform a careful
evaluation of the plastic strain levels at which damage
may initiate under multiaxial loading. We have adopted
this approach in formulating the simulation of the chal-
lenge problem.

The plastic constitutive properties of 15-5 PH stain-
less steel in the H1075 condition are modeled by the
flow theory of plasticity with isotropic hardening. The
slight anisotropy in yield observed from tensile tests
in the longitudinal and transverse directions of the
sheet is included with Hill’s 1948 yield criterion; in the
absence of data corresponding to the thickness direc-
tion, normal anisotropy is assumed. It is evident that
uniaxial tensile test results cannot be used to deter-
mine the stress–strain behavior beyond a logarithmic
strain of ∼6 % because of the inhomogeneity of the
deformation that occurs beyond the Considère strain.
Therefore, we proceed as follows: the material behav-
ior is assumed to be well-described by a general power
law model: σ = C1 + C2 (C3 + ε p)C4 . The coeffi-
cients of the power law are then found through itera-
tive finite element simulations of the tensile test with
different trial coefficients and a nonlinear optimization
scheme to minimize the squared-error between the net
load in the experiment and each simulation. The final
result is an accurate simulation of the tensile speci-

men’s global response, and an estimate of the stress–
strain behavior determined far beyond the Considère
strain.

Damage of the material is modeled by a modified
version of the Johnson-Cook failure model: ε f = D1+
D2 exp (D3σ

∗), where σ ∗ is the stress triaxiality. When
an element in the FEM simulations meets the above
damage initiation criterion, as implemented through
the cumulative damage approach within ABAQUS, its
stiffness is set to zero. The three coefficients of this
model need to be calibrated but only two restrictions
can be placed on the coefficients from the experimen-
tal results. The first is obtained from the tensile test
simulation and the nominal strain at rupture from the
experiments, providing an estimate of the failure strain
at moderate triaxiality. The second is obtained from
matching the global load-displacement response of the
compact tension specimen test, providing an estimate
of the failure strain at high triaxiality. A mesh size of
31.75 μm was used in this simulation in regions where
failure occurs; this dimension was maintained in the
challenge simulation. One degree of freedom is left
unconstrained in the failure model with no experimen-
tal result available for calibration. An approximation
is made for failure at low triaxialities based on prior
knowledge of other materials to complete the model
(see companion article by Gross and Ravi-Chandar in
this special issue) for details of calibration of this fail-
ure model).
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Fig. 26 Equivalent plastic
strain development in the
midplane. a COD =
0.33 mm, b COD =
3.66 mm, c COD =
3.71 mm, d COD =
6.75 mm e The load-COD
variation for Experiment
D-1 compared the results of
the blind prediction with
crack path A–C–E

The challenge geometry is simulated with an
ABAQUS/Explicit FEM model. Mass scaling is used to
increase the stable time step to make a quasi-static sim-
ulation feasible on a desktop computer. A uniform and
highly refined mesh is used in the vicinity of the holes
A–B–C–D in regions of anticipated strain localization.
The smallest mesh dimension was about 31.75μm,
providing a high spatial resolution in the simulation.
Eight-noded linear elements with reduced integration
and hourglass control were used. A total of 2.25 million
elements with seven million degrees of freedom were
used; computations were performed in a Linux machine
utilizing seven cores and typically required about 280 h
of CPU time. Loading is applied by prescribing a zero
displacement at the bottom loading pin and a quadratic
displacement rate at the top loading pin location. The
results are shown in Fig. 26, where the load-COD varia-
tion is shown along with selected deformed shapes. Ini-
tially, the equivalent plastic strain accumulates rapidly
in the ligament A–D, up to a magnitude of 0.4. Strain
accumulation halts in ligament A–D when the limit
load of 8.6 kN (1935 lbf) is reached, at a crack opening
displacement (COD) of 2.33 mm (0.092 in). Thereafter
localization occurs in the ligament A–C , thus leading to

its eventual failure. The failure of this ligament occurs
over a small increase of COD in the simulation, raising
the possibility of a dynamic event in the experiment.
Due to the artificially increased mass, the simulation
cannot capture dynamic events correctly. Therefore,
this simulation does not provide a confident predic-
tion just after the fracture of ligament A–C begins. The
integrity of the simulation resumes shortly thereafter
(at a COD increment of 263 μm (0.0104 in) after first
initiation), and shows a nearly constant load maintained
over a large range of COD. On this load plateau, defor-
mation is localizing on the surface of hole C , in the
large ligament C–E . The final fracture is then initiated
just off the surface of hole C and is accompanied by a
rapid drop in load. With continued loading, the crack
propagates towards the back edge of the specimen until
the simulation is stopped. Therefore, the crack is pre-
dicted to propagate on path A–C–E . The expected load
and COD for first initiation were reported just prior to
first element failure on ligament A–C . This was chosen
instead of the 100 μm surface crack criterion, which
was used as the lower bound, because failure of lig-
ament A–C–E was predicted to be dynamic. It was
assumed that the experimental setup would be inca-
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pable of tracking fast crack growth. The expected load
and COD for second initiation was reported just before
a surface crack 100 μm in length was visible in the
simulation. The upper bounds for second initiation
were reported prior to first element failure on ligament
C–E .

Overall, the prediction from this modeling effort has
very good agreement with the experimental results for
specimen D1 which followed the crack path A–C–E .
Specifically, the following quantities show excellent
agreement between the simulation and experiment: the
load-COD variation prior to the onset of localization,
the limit load, plateau load beyond failure of the liga-
ment A–C , and the rate at which load drops after both
failures are initiated. The COD of second initiation is
the weakest part of the prediction. We attribute this
shortcoming to the fact that the triaxiality at the initi-
ation site is much lower than any experimental result
used to calibrate the failure model and consequently
falling outside the region where the failure model is best
matched to the material. The other issue for discussion
is the predominant development of the fracture path
A–D–C–E in the experiments. Additional experiments
were performed on specimens provided by Sandia from
the same stock as the challenge samples. The results
from these and additional simulations, demonstrating
that the same material model can be used to predict
both experimentally observed crack paths by includ-
ing proper geometric defects, are reported in another
article (see Gross and Ravi-Chandar 2013).

8.4 Team 4

Team Members: S. P. Lin1, S.W. Chi2, J. S. Chen1,
E. Yreux1, M. Rüter1; 1: Civil and Environmental
Engineering Department University of California, Los
Angeles (UCLA); 2: Civil and Materials Engineering
Department University of Illinois at Chicago

8.4.1 Approach

We introduce a Reproducing Kernel Particle Method
(RKPM) (Liu et al. 1995; Chen et al. 1996) with crack
surface-tip discontinuity enrichment (Moes et al. 1999;
Krysl and Belytschko 1997) for fracture mechanics
based numerical simulation of the fracture challenge
problem. Under this framework, the approximation of

the displacement field is constructed as follows:

uh =
∑

I∈N/(Ncut ∪ Ntip)

�I (x) dI

+
∑

J∈Ncut

∑
i=1,2

Hi (x) �J (x) aJ

+
∑

K∈Ntip

∑
i=1,2

fi (x) �K (x) bK (6)

where �I (x) is the reproducing kernel shape func-
tion of degree one, Hi (x) and fi (x) are the Heavi-
side functions and the crack-tip visibility based discon-
tinuous functions, respectively (Krysl and Belytschko
1997), Ncut are the enriched nodes with the crack
surface cutting through their supports, Ntip are the
near-tip enriched nodes, dI , aJ and bK are the nodal
coefficients, and N is the total node set. The enrich-
ment functions are designed such that the enriched
shape functions preserve the partition-of-unity prop-
erty: H1 (x) + H2 (x) = 1, f1 (x) + f2 (x) = 1. Since
the partition of unity property is preserved, the nodal
masses remain constant while other generalized enrich-
ment schemes result in inconsistent nodal masses (the
enriched nodes may have different units from non-
enriched nodes and the nodal masses change as the
crack propagates). As the discretization changes along
with crack propagation, new bases for the approxi-
mation fields will be introduced. The coefficients of
the new bases can be easily determined by imposing
the conservation laws of linear momentum and kinetic
energy on the enriched nodes. Consequently, the com-
putational complexity can be reduced. The material
under consideration is modeled by J2 elastoplasticity
with the following hardening rule:

H(ē p) = 0, K (ē p) = Y
[
1 + αē p + β

(
ē p)2]0.1

(7)

where H and K are the kinematic and isotropic harden-
ing parameters, respectively, ē p is the effective plastic
strain, and Y is the yield stress.

8.4.2 Calibration of material model and failure
parameters

From the tensile failure experimental data provided
by Sandia shown in Fig. 27, the nominal stress–strain
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Fig. 27 Nominal stress–strain of tensile failure test

curve exhibits a noticeable change in slope after 0.08
nominal strain (point A) and ruptures at nominal strain
of 0.16 (point B). The change in slope in Fig. 27 is
primarily caused by the necking effect (see the numer-
ical simulation in the inset of Fig. 27) and the evo-
lution in the material hardening. We used the tensile
test data to characterize the yield stress Y = 0.99 GPa
and the hardening parameters α = 8.6 and β = 122.
We assumed that the tensile failure is the dominant
mode in the fracture challenge problem and adopted the
maximum principle tensile strain εcr as the crack ini-
tiation and propagation criterion. We further assumed
that the micro-cracks could initiate anywhere in the
softening region up to the rupture point in Fig. 27
(from A to B). To determine the appropriate crack
initiation threshold strain value, several local maxi-
mum principal tensile strains in the softening region
(from A to B in Fig. 27) in the numerical tensile
tests, corresponding to values from 0.246 and 1.106,
respectively, were selected to study their effects on
the predicted load-displacement behavior. In the tran-
sient crack propagation simulation, the crack propaga-
tion speed plays an important role and typically can
be estimated by J-integral-based empirical laws in lin-
ear elastic fracture mechanics (Freund 1972). However,
due to the strong ductility and the local irregularity of
the geometry due to existence of holes in the spec-
imen, it is difficult to perform the J-integral without
interference from the three holes near the notch. There-
fore, we numerically estimated the crack propagation
speed through modeling the fracture toughness test as
shown in Fig. 28, along with the guideline from an
analytical and empirical investigation (Freund 1972,
1979) which identified that in the case of non-branching

Fig. 28 Numerical simulations of fracture toughness test

crack propagations, the crack propagation speed is
much lower than the Rayleigh wave (RW) speed. The
results suggest that by prescribing the crack propa-
gation speed as 0.02 % of the Rayleigh wave speed,
it yields the best agreement with the experimental
data.

8.4.3 Modeling fracture challenge problem

A Lagrangian reproducing kernel formulation (Chen et
al. 1996) with extrinsic enrichment scheme described
in Eq. (6) was employed to model the fracture chal-
lenge problem. The RKPM discretization contained a
total of 94,176 particles where 4 particles were used in
the thickness direction. The mean nodal distance near
the fracture zone is 0.2 mm, which is consistent with
that being used in the fracture toughness modeling. As
reported in the main body of this article, the blind pre-
dictions were not in good agreement with the exper-
imental observations. This was due to the underesti-
mation of the crack initiation threshold strain where
a nominal strain 0.08 at the beginning of the soften-
ing region was chosen in the blind test, in addition to
an inconsistent employment of nominal strain measure
in experimental data and the local maximum princi-
pal tensile strain measure for εcr used in computation,
causing premature crack formation. In the post-blind
tests, it is assumed that the micro-cracks could initi-
ate anywhere in the softening region up to the rupture
point in Fig. 27 as discussed above in Sect. 8.4.2, and
the numerical results associated with various εcr values
within the softening region are compared with experi-
mental load-COD curves as shown in Fig. 29a. For εcr
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Fig. 29 The force-COD
curves and failure patterns
of the fracture challenge
problem. a Comparison of
force-COD curves. b
Failure patterns with
different thresholds

less than 0.423, the crack path A–D–C–E as shown in
Fig. 29b agrees well with the experimental observation.
Three crack initiation points marked as A–D, C–D, and
C–E in Fig. 29a are associated with crack paths from
A to D, from C to D, and from C to E, respectively.
As εcr becomes larger than 0.462, the crack path of
A–C–E is observed as shown in Fig. 29, and this pat-
tern of crack propagation has also been observed in the
experiment.

8.4.4 Conclusions and remarks

The high sensitivity of crack initiation strains on the
crack path and the corresponding Force-COD behav-
ior as shown in the numerical experiment in Fig. 29
call for a multiscale verification and validation effort
to identify crack initiation characteristics for enhanced
reliability in the simulation of material defects and fail-
ures.

8.5 Team 5

Team members: D. Qian1, Z. Zhou1, S. Bhamare2;
1: University of Texas at Dallas; 2: University of
Cincinnati

8.5.1 Simulation methodology

We have employed the commercial FEM code LS-
DYNA incorporating the Gurson–Tvergaard–Need-
leman (GTN) model (Gurson 1977; Tvergaard and
Needleman 1984) for the Sandia Fracture Challenge
problem. Both geometric and material nonlinearities
are considered in the simulation approach.

8.5.2 Material model

The GTN model takes into account the important link
between macro- and micro-scale evolutions of damage.
In GTN model, the yield condition is given by

	 = σ 2
eq

σ 2
Y

+2q1 f ∗ cosh

(
3q2σm

2σY

)
− 1 − (q1 f ∗)2 = 0

(8)

in which σeq is the von Mises equivalent stress, σY is the
yield stress, q1 and q2 are material parameters for mod-
eling low void volume fractions, σm is the mean stress.
Here f ∗( f ) is a function of the void volume fraction f
and represents the modified damage parameter, given
as

f ∗( f ) =
{

f f ≤ fc

fc + 1/q1− fc
fF − fc

( f − fc) f > fc
(9)

fF is the final void volume fraction at failure and fc

is critical void volume fraction corresponding to void
coalescence.

8.5.3 Failure initiation and growth criteria

Material failure occurs when the void volume fraction
f exceeds fF . The evolution of f consists of two con-
tributions: void nucleation and growth which are given
as

ḟ = ḟG + ḟN (10)

ḟN = Aε̇
p
eq = ε̇

p
eq fN

SN
√

2π
exp

⎧⎨
⎩−1

2

(
ε

p
eq − EN

SN

)2
⎫⎬
⎭
(11)

ḟG = (1 − f ) ε̇
p
kk (12)

where the void nucleation depends exclusively on
effective plastic strain ε

p
eq , while the void growth is
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Fig. 30 a Uniaxial tension
test simulations. b Fracture
toughness test simulations

controlled by plastic volume strain ε
p
kk . SN , EN and

fN are parameters for the Gaussian distribution that is
assumed for the void nucleation rate.

8.5.4 Calibration of material model and failure
parameters

In our simulations, the yield stress σY in Eq. (8) as
a function of plastic strain is obtained from the uni-
axial tension test data provided by the experimental
group. The initial GTN model parameters of steels
are based on refs (Bauvineau et al. 1996; Decamp et
al. 1997; Siegmund et al. 1998; Schmitt et al. 1997;
Skallerud and Zhang 1997; Benseddiq and Imad 2008).
q1 = 1.5, q2 = 1, EN = 0.3, SN = 0.1, f0 ≈ 0 and
fF ≈ 0.2 are the standard material parameters for steel.
fN is in the range of 0.002-0.02, and fc is in the range
of 0.004-0.06. Initial simulation indicates that the most
sensitive parameters for crack initiation and propaga-
tion are fN and fc, in which fN controls the nucleation
rate, while fc is the critical value of void coalescence.

We first calibrate the GTN parameters based on the
simulations of uniaxial tension test. From a series of
simulations, two sets of parameters are determined as
the lower bound (LB) and upper bound (UB), which are
employed in the subsequent simulations. The LB para-
meter set ( fN = 0.002, fc = 0.004) predicts faster
void nucleation and propagation rates, while the UB
( fN = 0.002, fc = 0.008) gives slower rates. The
stress–strain response of uniaxial tension from simula-
tions and experiments are plotted in Fig. 30a, in which
UB yields better fit to experimental data on uniaxial ten-
sion. Another source for calibrating the material model
is the fracture toughness test data, as shown in Fig. 30b.
It can be seen that the agreement between the simu-
lated force-COD curves and the experimental data is
not as good as in the case of uniaxial tension. Based

on the assumption that less uncertainty is involved in
designing the uniaxial tension experiment, no further
adjustment was made to the calibrated parameter sets.

8.5.5 Modeling details for the fracture challenge
specimen

The FEM model for the fracture challenge problem
is shown in Fig. 31a. The model is set up based on
the standard drawing of the specimen without con-
sidering any variations in the actual geometry. The
FEM discretization contains 171,825 8-noded brick
elements and 190,528 nodes, and the characteristic
element size in the critical region near the notch tip
is 0.05 mm × 0.05 mm × 0.21 mm. The loading pins
are directly modeled through contact algorithm. The
bottom pin is fixed and the top pin is displaced verti-
cally at 0.0127 mm/s. Frictionless contacts are assumed
between the pins and the sample. Dynamic simulation
with a mass scaling time step of 0.001s is performed,
and element deletion is used to simulate the crack prop-
agation, once the void volume fraction reaches fF .

8.5.6 Predictions of the fracture challenge specimen

The typical A–C–E crack path from simulations is
illustrated in Fig. 31b, and the force-COD responses
are compared in Fig. 31c. From the simulation, we
find that crack always nucleates in the subsurface and
propagates to the inner surface of the holes in sec-
onds. By averaging the results based on UB and LB
parameters, several critical force and COD values are
obtained. The force associated with first visible crack is
7,380 N (1659 lbf) compared to measurement of 5,996–
7,469 N (1348–1679 lbf), and the corresponding COD
is 4.7 mm (0.185 inch) compared to measurement of
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Fig. 31 a FEM model for the fracture challenge problem. b A–C–E crack path from simulation with UB. c Force-COD curves from
the simulation

2.235–3.480 mm (0.088–0.137 inch). The force associ-
ated with second visible crack is 5,725 N (1287 lbf).

8.5.7 Comments on methods and results

The force values obtained from simulations are in good
agreement with experimental data. However, the COD
values show a large discrepancy. In addition, majority
of the experiments yield the crack path of A–D–C–E as
opposed to A–C–E. These disagreements are thought
to be caused by two important factors: First of all, the
GTN parameter sets calibrated based on tensile test
underestimate the void nucleation/growth rates, as evi-
denced by the comparison with the compact tension
test data. This is further confirmed by the observation
that the crack path will switch from A–C–E to A–D–
C–E with reduced COD values if the GTN parameters
are adjusted to give faster void nucleation and propa-
gation rates. Secondly, the crack path is observed to be
quite sensitive to the geometric variations that are not
considered in the simulation. Additional simulations
indicate that a switch from A–C–E to A–D–C–E can
take place if hole D is moved towards notch A along the
line of centers connecting notch A and hole D. Details
on these studies will be described in a separate paper.

8.6 Team 6

Team Members: D. T. O’Connor1, S. Tang2, K. I.
Elkhodary3, J. Zhao1; 1: Department of Mechanical
Engineering, Northwestern University, Evanston, IL.;

2: Materials Science and Engineering, Chongqing Uni-
versity; 3: Department of Mechanical Engineering, The
American University in Cairo.

8.6.1 Approach

For this challenge we employed the Multiresolution
Continuum Theory (Vernerey et al. 2007; McVeigh and
Liu 2010), which assumes N embedded length scales,
to be able to model the multiple scale fracture behavior
of the Sandia Fracture Challenge compact tension spec-
imens. In this case, two scales are assumed to account
for the ductile behavior at the coarse scale and micro-
void formation at the micron-scale.

8.6.2 Simulation methodology

In the Multiresolution Continuum Theory (MCT) a rate
formulation for multiscale microstructural mechanics
is assumed. Linear superposition of multiple deforma-
tion rates, which evolve due to N imbedded microstruc-
tural length scales, is considered. Micro-stress and
micro-double-stress are introduced for each imbedded
scale to penalize resulting inhomogeneity of deforma-
tion. The corresponding internal power density is,

pint = σ 0 : L0+
N∑

n=1

(
sn : (Ln − L0) + ssn

...∇Ln

)

(13)

where σ 0 is the Cauchy stress conjugate to a coarse-
scale velocity gradient L0 and Ln is the nth inhomo-
geneous deformation rate evolving in a sub-volume Vn
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of a material point V0, i.e. Vn ⊂ V0, due to a micro-
mechanism of the nth length scale. Conjugate penalty
stresses are defined by volume averages,

sn ≡ 1

Vn

∫

Vn

σ n
pdV , ssn≡ 1

Vn

∫

Vn

σ n
p ⊗ yndV (14)

where σ n
p is a penalty stress and yn is a local position

vector. To solve for sn and ssn an additive elastic-plastic
decomposition of the deformation rate Dn and its gra-
dient ∇Dn is assumed,

Dn = De
n + Dp

n , ∇Dn = ∇De
n + ∇Dp

n . (15)

The corresponding objective stress rate and double
stress rate may be computed from the elastic part of
the rate of deformation using a generalized Hooke’s
law such that,

∇
sn ≡ Cn : (De

n − De
0

)
,

∇
ssn ≡ CCn

...∇De
n (16)

where Cn is the elasticity tensor characterizing the
properties of the microstructure of the nth sub-volume,
and CCn is a sixth-order elastic tensor, typically com-
puted from

CCn = 1

Vn

∫

Vn

yn ⊗ Cn ⊗ yndV. (17)

To compute the objective stress rate of Eq. (16), it is
required to calculate the plastic deformation rate Dp

n

and its gradient ∇Dp
n , which will be subtracted from

the total rate according to Eq. (15). Typically, plastic
potentialsφn, φφn and an associative flow rule is used,

Dp
n − Dp

0 = λ
∂φn

∂sn
, ∇Dp

n = λ
∂φφn

∂ssn
(18)

where λ is a plastic multiplier. The yield surfacesφn and
φφn are of a pre-defined form so that only parameter-
fitting from RVE results are needed (McVeigh and Liu
2008).

In this paper, two scales are assumed: coarse-scale
ductile behavior and an imbedded micron-scale to
account for micro-voiding. For the coarse scale, a
Gurson-type yield surface is used,

φ0 =
(
σ eq σ̄−1

)2 + 2q1 f cosh(
3

2
q2σ m σ̄−1)

−(1 + q2
1 f ) = 0 (19)

where σeq is the von Mises stress, σ̄ is the flow
stress, which evolves according to the power law

σ = σ y0

(
1 + ε pε−1

0

)n
, where σ y0 is the yielding

Table 7 Parameters used in MCT constitutive models

Modified Gurson Modified Fleck–Hutchinson

f0 0.001 a
√

18

kw 6 l 1e−5 m

σy0 1.0038E9 Pa σ H
y 2.51E6 Pa

ε0 0.00516

E 1.944E11 Pa

ν 0.33

n 0.08

q1, q2 1.5, 1.0

stress, ε p is the equivalent plastic strain, and ε0

the yielding strain. Continuing from Eq. (19), σm

is the mean stress, and q1, and q2 are constants.
The void volume fraction, f , evolves by ḟ = (1 −
f )D p

kk + kω f w(σ)Si j D p
i j (σ

e)−1, where w(σ) = 1 −(
27J3(2σ 3

e )−1
)2

, S is the deviatoric stress, and kω is
a constant. For the imbedded micron-scale behavior,
which results from micro-void interactions, the poten-
tials for plastic and gradient-plastic mechanisms are
coupled, and a single surface is used,

φ1 ≡ φφ1 = σ H
e − σ H

y = 0, where σ H
e

=
√

3

2
sdev

i j sdev
i j +

(a

l

)2
ssdev

i jk ssdev
i jk (20)

Equation (20) is a modified Fleck–Hutchinson model
(Fleck and Hutchinson 1993), where a is a fitting para-
meter, l is the length scale of inhomogeneous deforma-
tion between micro-voids, and σ H

y is the strength by
which a material resists the onset of inhomogeneous
deformation.

8.6.3 Modeling details for the challenge specimen

Before any full-scale analysis could be performed
the appropriate parameters for the constitutive mod-
els (Modified Gurson and Fleck–Hutchinson) needed
to be determined. This was done utilizing the data pro-
vided by the Sandia Fracture Challenge team at Sandia
National Labs that included the material properties (AK
Steel 15-5 PH H1075), tensile specimen geometry, and
tensile test stress–strain data. The values for the para-
meters in the constitutive model that were found to best
represent the tensile test stress–strain curve through
failure can be seen in Table 7.

With the calculated parameters for the constitu-
tive models found, the larger compact tension spec-
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Fig. 32 Mesh of compact tension specimen

Fig. 33 Plot of equivalent plastic strain and crack path

imen was simulated next. First, using the geometry
provided by the Sandia Fracture Challenge team, the
compact tension specimen was meshed with approx-
imately 140,000 elements and the results are seen in
Fig. 32. The MCT simulation was performed using
an LSDYNA user-element, with 8 nodes, full integra-
tion, and 6 extra degrees of freedom for the micro-
deformation rate. During the simulation the bottom

Fig. 34 Force (N) versus COD (mm) during the simulation and
experiment of the compact tension specimen

hole was held fixed while the top hole was pulled at
a velocity of 2 m/s. The result of the simulation can be
seen in Fig. 33, which shows a contour plot of equiva-
lent plastic strain.

8.6.4 Blind predictions of the fracture challenge
specimen

We found that the crack travels along the path A–D–C–
E as labeled in Fig. 33, which corresponds to the crack
path observed during the experiment. Subsequently, we
also measured the force and crack opening displace-
ment (COD). The force for the force-COD curve during
the simulation was calculated by measuring the internal
forces around the surface of the top hole.

Although the peak value for force in our simulation
was off, the simulation results for the force when frac-
ture initiates compared well with experiment but the
subsequent behavior after initial fracture did not com-
pare very well. We found that when we compared with
the experiment of specimen 2, as seen in Fig. 34, at the
onset of fracture our measured force of 9,190 N was
11 % higher and our measured COD of 1.11 mm was
43 % lower than the experimental values.

8.6.5 Comments on methods and results

The method used here, Multiresolution Continuum
Theory, which is based on power equivalence, was
capable of a good prediction of the force at initial
fracture. The maximum force, however, was over-
predicted, while strain was correspondingly under-
predicted, especially during the crack propagation
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phase along path D–C–E. As a result, the predicted
area under the force-displacement curve (toughness) is
comparable to experiment for the crack initiation phase.
Discrepancies in the initial loading portion of the curve,
and the over-prediction of the maximum force, may
be attributed to the fast loading rate. The loading rate
used here was much faster than the quasi-static rate of
the experiments and future work will include investi-
gation into quasi-static models in an attempt to better
match the experimental results. We are currently work-
ing on better constitutive modeling approaches to over-
come the difficulty in load/displacement ratios. Fur-
thermore, as element deletion was used in this model,
it is expected that the thickness of the elements deleted
was too coarse to yield convergent predictions and that
their removal may have created stress concentration
sites that diminished the strain at failure. Further study
of crack-surface generation methods, e.g. XFEM, will
thus be explored.

8.7 Team 7

Team Members: J. Hochhalter1, A. Cerrone2, A. R.
Ingraffea2, P. Wawrzynek2, B. Carter2, J. Emery3, M.
Veilleux3; 1: NASA LaRC; 2: Cornell University; 3:
Sandia National Laboratories, Albuquerque, NM.

8.7.1 Approaches

Porous metal plasticity
A void-growth plasticity model (Gurson 1977) was
used to model both the bulk behavior of the specimen
as well as failure. In this model, the elastic response is
restricted to the linear elastic isotropic condition while
hardening is isotropic with a yield condition given by
Tvergaard (1981). Damage is the product of void coa-
lescence; when a critical void fraction has been met at
a material point, it loses all capacity to carry stress.

Cohesive zone modeling
In a second approach, a potential-based cohesive-zone
model was employed to model fracture in the chal-
lenge specimen. The PPR cohesive model (Park et al.
2009) was chosen as it gives the user relative free-
dom in defining the shape of the normal and tangential
traction-separation laws; the PPR model accepts differ-
ent cohesive strengths, fracture energies, and softening
behaviors for each. It was assigned to a single layer of
cohesive elements spanning the A–C–E crack path, an

intrinsic approach in which the crack path is enforced
a priori by the user.

Geometrically explicit, elasto-plastic crack growth
In a third approach, FRANC3D was coupled with
Abaqus/Standard to grow a geometrically explicit
crack in the elasto-plastic challenge specimen. Crack
initiation was determined from the porous metal plas-
ticity model, and the COD growth criterion was cal-
ibrated from the provided experimental data. The 3D
crack evolved based on the maximum tensile stress cri-
terion. The procedure is summarized below:

1. Load the uncracked model until a 100 μm-sized
element was completely damaged at the notch root.

2. Insert an initial crack in the location of the damaged
element and remesh.

3. Map the state-dependent variables from the uncrac-
ked configuration to the cracked configuration.

4. Reapply load to the cracked model until the critical
COD is reached.

5. Grow the crack and remesh.
6. Map the state-dependent variables from the previ-

ous cracked configuration to the new cracked con-
figuration.

7. Repeat steps 4-6 until failure.

8.7.2 Material parameters

Parameters for the porous metal plasticity (damage)
modeling approach were first calibrated using the
provided tensile-experiment data. The tensile speci-
men geometry model was generated in Abaqus/CAE,
meshed with 200μm-sized tetrahedral elements, and
simulated using Abaqus/Explicit (explicit solver) as
it more accurately captured the softening stage of
the material response near failure than did Abaqus/
Standard (implicit solver). The calibration of the mate-
rial parameters was separated into two stages. In the
first stage, several sets of material parameters were
identified that reproduced the measured stress–strain
behavior of the material. The sets of material para-
meters that most accurately reproduced the reduction
in cross-sectional area observed during the tensile test
were kept. In the second stage, the fracture toughness
specimen geometry model was generated, meshed, and
simulated using the same tools and mesh size as with
the tensile specimens. The set of material parameters
that best reproduced the measured force versus opening
were then used to model the fracture challenge speci-
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Fig. 35 Two different mesh
refinement levels, from
which two different crack
paths were predicted by the
porous metal plasticity
model

E-C-D-AE-C-A

men. In a similar manner, the parameters for the cohe-
sive model were also calibrated from the given fracture
toughness test data. Lastly, the critical COD parame-
ters were also calibrated using the measured fracture
toughness data. In this case, it was observed that a rising
COD versus crack length was necessary to accurately
reproduce the observed behavior.

8.7.3 Mesh refinement/sensitivity

Most of the efforts to model the fracture challenge
specimen were spent on the porous metal plasticity
approach since it appeared to provide the most promis-
ing results in the short amount of time provided. Since
the material parameters were calibrated using a 200
μm-sized tetrahedral elements, the same mesh charac-
teristics were used near the notch root of the fracture

challenge specimen model. The simulated crack path
was found to be mesh-sensitive; depending on the mesh
refinement level beyond the notch, the predicted crack
path was either A–D–C–E or A–C–E, Fig. 35. In each
case shown in Fig. 35, the element size along the notch
is the same, but the coarsening away from the notch
is much higher in the case on the right, and this was
enough to cause a change in the predicted crack path.
In general, it was observed that as the model became
populated entirely with 200 μm-sized elements, the
predicted path was consistently A–C–E.

8.7.4 Blind predictions

The porous metal plasticity simulations of the chal-
lenge specimen fracture were run with Abaqus/Explicit.
The porous metal plasticity model reproduced accu-
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Fig. 36 Load versus COD for experimental lower and upper
bounds, damage mechanics analyses, cohesive zone analysis, and
geometrically explicit crack growth with FRANC3D

rately the peak load carrying capacity of the speci-
men and the opening at which it occurred and qual-
itatively reproduced experimental load versus COD.
However, it failed to capture the sharp drops in load-
bearing capacity observed during the experiment and
illustrated in Fig. 36. It is also noteworthy that for the
“to spec” geometry, the model predicted A–C–E crack
growth, which is consistent with the only experimen-
tal “to spec” crack path. Moreover, for the S5 geom-
etry, a configuration exhibiting the largest deviations
from spec, the porous metal plasticity model predicted
A–D–C–E crack growth, which is consistent for all of
the experimental “not to spec” crack paths.

With regards to the cohesive zone effort, simulations
were conducted in Abaqus/Standard. The bulk mater-
ial was assigned an elasto-plastic model with a user-
defined hardening law. The PPR was exposed in a 12-
noded triangular UEL. As with the void-growth plas-
ticity model, the sharp drops in load-bearing capacity
were not captured by the cohesive zone model, Fig. 36.
Both approaches’ shortcomings motivate the need to
model cracks in the specimen explicitly.

Load versus COD for geometrically explicit elasto-
plastic crack growth is given in Fig. 36. It is noted that
this approach is able to capture the aforementioned
sharp drop in load-bearing capacity; however, these
simulations are preliminary in that the critical COD was
scaled back to prevent large amounts of crack tip blunt-
ing, which caused poor element quality upon remesh-
ing. On-going simulations with mesh smoothing should
provide more accurate predictions.

8.8 Team 8

Team Members: P. Yang1, Y. Gan2, X. Zhang1, Z.
Chen3,4; 1: Department of Engineering Mechanics,
Tsinghua University, Beijing 100084, China; 2: Depart-
ment of Engineering Mechanics, Zhejiang University,
Hangzhou 310027, China, 3: Department of Civil
and Environmental Engineering, University of Mis-
souri, Columbia, MO 65211, USA; 4: Department of
Engineering Mechanics, Dalian University of Technol-
ogy, Dalian 116024, China

8.8.1 Approach

A combined elastoplasticity and decohesion model is
used with the Material Pont Method (MPM) for the
Sandia Fracture Challenge 2012 problem. Before the
critical strength is reached, von Mises plasticity with
a linear hardening rule models the inelastic material
behavior. Based on the previous work (Chen 1996;
Chen et al. 2005), the computational efficiency of deco-
hesion modeling is improved by prescribing the criti-
cal normal and tangential decohesion strengths directly,
without performing discontinuous bifurcation analysis
in each time step, to predict the post-peak response with
a single-processor personal computer. The MPM (Chen
et al. 2002; Sulsky et al. 1994) is employed to sim-
ulate the three-dimensional evolution of failure from
microcracking to macrocracking without the need for
remeshing.

8.8.2 Model calibration

Based on the SNL data, Poisson’s ratio of 0.3, elasticity
modulus of 195 GPa and yield strength of 1,100 MPa
are used for the material model, while the tangent mod-
ulus for the von Mises linear hardening rule is deter-
mined with the uniaxial tensile test to be 1,150 MPa.
Local Mode I failure is considered so that the decohe-
sion model is active if the normal decohesion strength
of 3,000 MPa is reached. The linear decohesion rela-
tion is adopted with the reference decohesion value of
2x10−7 m for the given MPM discretization. Since an
explicit time integrator is used in the three-dimensional
MPM code, the loading rate of 5 m/s, instead of
0.0127 mm/s as used in the experiment, is chosen to
save the computational time for the blind prediction
exercise. As compared with the uniaxial tensile test
data, the use of the above model parameter values and
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Fig. 37 Model calibration with the uniaxial tensile test and dif-
ferent loading rates

loading rate yields the reasonable constitutive response,
as shown in Fig. 37 below.

8.8.3 Simulation procedure

A direct displacement control is used as the boundary
condition with the loading rate of 5 m/s, which results
in the oscillation of data due to the wave reflection in the
finite specimen domain and to the use of explicit time
integration without artificial damping. The MPM with
a multi-level grid is adopted for the simulation, with a
fine background grid (level 1) being used around the
holes and a coarse grid (level 0) away from the holes.
The cubic cell size in level 1 and level 0 is 0.25 and
0.50 mm, respectively. The number of material points
in each cubic cell is 8 for both levels 1 and 0. The
onset and evolution of failure from microcracking to
macrocracking are predicted by the constitutive model
and failure criterion, and could be simulated with the
MPM code without remeshing or element erosion.

8.8.4 Mesh refinement

The MPM background cell size is corresponding to
the reference decohesion value, which is related to the
characteristic size of decohesion zone. Hence, no con-
vergence study is required (Fig. 38).

8.8.5 Blind predictions

8.8.6 Concluding remarks

Due to the time limit, the constitutive model was cali-
brated only against the uniaxial tensile test so that the

simulated post-peak response with a fixed failure mode
is not satisfactory. As reported in the corresponding
paper of the special issue, there is a transition between
different failure modes along the cracking path, which
depends on the stress distribution around the path due
to the nonlocal nature of failure evolution. Based on a
parametric study and available test data, the proposed
model-based simulation procedure could be calibrated,
without fixing the local failure mode, to predict the
essential feature of the observed cracking response. The
numerical oscillation with the explicit code appears to
be large as compared with the experimental observation
so that the implicit MPM code might be an alternative
choice.

8.9 Team 9

Team Members: E. Madenci and B. Kilic; University
of Arizona

8.9.1 Simulation methodology

The PeriDynamic (PD) theory was employed to simu-
late the deformation, crack initiation and crack propa-
gation. The PD theory is concerned with the physics of
a material body at a point that interacts with all points
within its range. The peridynamic formulation starts
with the equation of motion reformulated in integral
form as Silling (2000)

ρ
∂2u x, t

∂t2 =
∫

�
dVx ′ f u x, t , u′ x′, t, x, x′, t+b(x, t)

(21)

in which x is the material point within the domain �, u
is the displacement vector field, b is a prescribed body-
force density field, ρ is mass density in the reference
configuration, f is a response function whose value is
the force vector per unit volume squared that the mate-
rial at point x′ exerts on the material at point x, and t
designates time.

8.9.2 Failure initiation and growth criteria

The bond stretch, s, is defined in terms of relative posi-
tion (ξ = x′ − x) and relative displacement (η =
u′ − u) as s = (|ξ + η| − |ξ|)/|ξ|. When the stretch
between two points exceeds the specified critical (fail-
ure) stretch, the interaction between these material

123



The Sandia Fracture Challenge 55

Fig. 38 Submitted simulation results

points is terminated. The local damage at a point is the
ratio of amount of broken interactions to total amount
of interactions. The response function, which governs
how the material points interact, contains the neces-
sary constitutive information for the material. For an
isotropic material, PD response function can be writ-
ten as

f
(
u, u′, x, x′, t

) = ξ + η

|ξ + η| H(s − s0) [c f (s) + ν ṡ]

(22)

in which H(s − s0) is the Heaviside step function,
s0 is the critical stretch, c is given in terms of bulk
modulus κ and the horizon radius, δ as Silling (2000)
c = 18κ/(πδ4). The critical stretch value can be
obtained through an inverse approach by simulating
fracture experiments. The specific form of f (s) is spec-

ified as

f (s) = 6

πδ4 g(s) (23)

The bond stretch rate, ṡ, is the time derivative of bond
stretch, and ν is the viscous damping coefficient.

8.9.3 Material model

The strain hardening behavior in PD theory can be
achieved by defining each PD interaction as an elastic-
perfectly plastic material (Macek and Silling 2007).
Because all interactions do not result in yielding at the
same time, the overall behavior of the material exhibits
strain hardening. The function, g(s) in Eq. (23) can be
expressed as

g(s) =
⎧⎨
⎩

CsY , if s > s∗ + sY

C(s − s∗), if s > s∗ − sY

CsY , if s < s∗ − sY

(24)
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Fig. 39 Comparison of PD simulation and measured a stress–strain, and b fracture data

where sY represents the yield stretch and s∗ represents
the permanent stretch as a result of loading and unload-
ing. Therefore, the value of the yield stretch, sY can
be obtained by using the stress–strain response of the
material in an inverse manner.

8.9.4 Calibration of parameters for material model
and failure

With the initial guess for sY , the uniaxial tensile test
of the material is simulated by computing the applied
force and the displacement field; leading to the compu-
tation of stress and strain. The simulation (case 1–4) is
repeated with a different sY value until it matches with
the data. Comparison of simulations to stress–strain
relations data is shown in Fig. 39a. In a similar man-
ner, the critical stretch value, s0 is determined through
an inverse approach by simulating the compact ten-
sion tests. The simulation is repeated (cases 1–3) with
a different s0 value until it matches with the force—
crack opening displacement (COD) data as shown in
Fig. 39b.

8.9.5 Modeling the fracture challenge specimen

While the blind predictions reported in the main body
of the text did not show good agreement with the exper-
imental results, post-blind analysis was able to better
replicate the experiments. After determining the yield
stretch, sY and the critical stretch, s0, the PD simulation

of the challenge problem under the assumption of per-
fectly aligned grips and with nominal geometric dimen-
sions. The loading is applied through displacement
constraints. The specimen was discretized with hexa-
hedron regions with edge length of ∼0.63 mm based
on a preliminary mesh convergence study. Also, adap-
tive dynamic relaxation technique is employed for time
integration. The horizon was specified as 1.5621 mm.

The PD simulation led to the crack growth path of
A–C–E, and maximum force of 7,495 N. The PD pre-
diction of the crack growth in the challenge specimen
is shown in Fig. 40a. As shown in Fig. 40b, the COD is
1.9 mm at first crack initiation, and the force and COD
for subsequent crack initiation from a hole are 5,294 N
and 2.85 mm.

8.9.6 Remarks

The PD simulation can be further refined by eliminat-
ing the possible sources of error due to discretization
(refinement of grid), adaptive dynamic relaxation for
time integration, and the plastic deformation model.
The effect of geometric parameters and misalignment
in loading can also be included, and possibly capture
the propagation of path of A–D–C–E.

8.10 Team 10

Team Members: T. Zhang, E. Fang, P. Liu, and J. Lua;
Global Engineering and Materials, Inc.
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Fig. 40 PD simulation of a crack propagation path and b force versus COD in the challenge specimen

8.10.1 Summary of XSHELL methodology

We have used the XSHELL toolkit developed in-house
to predict the fracture pattern and its associated load-
deflection curve for the 2012 Sandia Fracture Chal-
lenge problem. Given the limitation of the plane stress
approximation in the XSHELL modeling approach, a
plane strain core approach has been developed to cap-
ture the thickness constraint induced stress triaxility
and its effect on the ductile fracture in the vicinity of
the crack tip. A rational mixture of plane strain and
plane stress plasticity model was implemented via a
calibration at the coupon level to evaluate the geom-
etry dependent constraint. A mesh independent kine-
matic description of crack initiation and propagation is
accomplished through an elementwise crack insertion
with cohesive injection once its accumulative plastic
strain reaches a critical value.

XSHELL is an extended finite element based toolkit
for Abaqus, which is developed for dynamic failure
prediction of a thin walled shell structure. Key solution
modules in XSHELL consist of kinematic represen-
tation of a cracked shell via its phantom paired ele-
ments, crack initiation prediction using a triaxility and
Lode angle dependent failure criterion, mesh indepen-
dent crack insertion through a shell element, cohesive
injection for characterization of the energy dissipation
during crack growth, and a customized Abaqus CAE
for display of the fractured pattern and its associated
load displacement curve.

To capture the thickness dependent constraint on the
ductile fracture, a plane strain core model was imple-
mented within the XSHELL framework. Considering
a plane strain core element with its plane strain portion
of α and the remaining plane stress portion of (1-α),
the resulting internal force (IF) including the change of
the thickness associated with the plane stress portion
can be determined by

IF = Āe

n∑
i=1

BT {(1 − α) σp−σ (1 + ε33) + ασp−ε

}
ti

(25)

where Āe is the in-plane area of the element, B is the
strain displacement matrix, α is the composition of the
plane strain portion of the plane strain core element and
ti is the layer thickness of the i th integration point in the
through the thickness direction before the deformation.
Term (1+ε33) in Eq. (25) is introduced here to account
for the thickness shrinkage. σp−σ and σp−ε represent
the plane stress and plane strain stress components of
the corresponding layer in the plane strain core element.

8.10.2 Calibration of material model and failure
parameters

To explore the applicability of XSHELL prediction of
a 3D structure, a nonlinear stress strain behavior is cal-
ibrated first from the experimental force displacement
curve of the simple tension coupon tested by Sandia
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Fig. 41 a Force-displace-
ment curve comparison
between finite element
prediction and experimental
testing data; b calibration
simulation for the compact
specimen

Fig. 42 A summary of XSHELL model for the Sandia challenge
problem

National Lab using XSHELL. As shown in Fig. 41a,
material softening behavior cannot be captured fully
due to the incapability of XSHELL in characterization
of the necking behavior. The load and crack opening
displacement (P-COD) curve for the compact speci-
men with a/W of 13.82 was used next to determine
the geometry dependent plane strain core parameters.
The plane strain composition parameter α and its steady
state failure strain (εp) were determined together from
the best matching of XSHELL prediction with the
P-COD curve of the compact specimen as shown in
Fig. 41b. The determined α and the steady state fail-
ure strain εp are 0.04 and 0.25, respectively. The plane
strain core band width used in the calibration model
is set to be twice of the plate thickness. The deviation
shown in Fig. 41b is attributed to the blunt notch repre-
sentation of a sharp crack in the XSHELL simulation
model.

8.10.3 Application of XSHELL Model for the 2012
Sandia Fracture Challenge problem

After determination of both the stress strain behav-
ior and the plane strain core parameters, an XSHELL

model for the Sandia challenge problem was devel-
oped next. Given the location of the notch and holes in
the Sandia challenge problem, a user-defined XSHELL
zone denoted by the red box in Fig. 42 is used with the
plane strain core option invoked. All the elements out-
side the red box are Abaqus’ shell elements. The result-
ing total numbers of Abaqus and XSHELL elements are
6354 and 2748, respectively. The loading pin is simu-
lated using Multi-point constraints in Abaqus. In order
to capture the crack initiation (crack size ≥ 0.1 mm ),
the element sizes at the critical region are around
0.06 mm × 0.07 mm .

As shown in Fig. 42, the predicted failure sequence
is given by the crack initiation at Point A followed
by its growth to Hole D and a new crack initiation at
Hole C followed by its growth to Hole D. Finally, a
horizontal crack initiated at Hole C is propagated to the
edge (Point E) of the specimen resulting in a complete
failure. The predicted COD value at the instant of the
first crack initiation is smaller than the test value, the
simulated load is 7,139 N which is slightly higher than
the average value 6,761 N for the occurrence of the first
visible crack. A comparison of the fractured pattern
and the force-crack opening displacement (COD) curve
with the corresponding test data is given in Fig. 43.

8.10.4 Concluding remarks

Based on the exercise of the XSHELL toolkit for
the ductile fracture prediction of the Sandia challenge
problem, we can draw the following conclusions:

1. Despite the use of a simplified 2D shell with a 9000-
element model, both the failure sequence and the
ductile fracture path have been correctly simulated.

2. The force-COD curve predicted by the XSHELL
toolkit has a discrepancy in comparison with the
test data. This is mainly attributed to the use of

123



The Sandia Fracture Challenge 59

Fig. 43 Comparison of XSHELL predictions with Sandia’s test data

a. a constant failure strain criterion that is inde-
pendent of the triaxility and Lode angle;

b. an assumption of the same geometry depen-
dence of α for the compact specimen as the
challenge problem;

c. use of XSHELL Model without iterative fitting
process to get the stress strain curve from uni-
axial tensile testing data; and

d. use of through-the-thickness cracking without
slanting in XSHELL modeling.

A refined analysis along with a parametric study of
plane strain core parameters was performed after this
blind analysis.

8.11 Team 11

Team Members: K. Nahshon, M. Miraglia, J. Cruce, R.
DeFrese, E. T. Moyer; Naval Surface Warfare Center
Carderock Division

8.11.1 Introduction

Blind analyses of the Sandia Fracture Challenge (SFC)
coupon were performed using a conventional non-

linear explicit Finite Element (FE) approach along with
a porous plasticity model. The Shear Modified Gur-
son (SM-G) model described in Nahshon and Hutchin-
son (2008) was utilized along with the calibration
approach outlined by Xue et al. (2010b). The SM-G
model is based on the Gurson porous plasticity model
(Gurson 1977) with an additional term in the void evo-
lution description to account for damage development
under shear-dominated loading conditions. In contrast
to other prediction approaches, this approach is highly
mature from a numerical point of view. Hence, the pri-
mary focus here is on the careful calibration of model
parameters from provided test data.

8.11.2 Numerical approach

Prior to performing predictions of the SFC coupon, the
SM-G model was calibrated to uniaxial tensile test data.
Below, a brief description of the SM-G model is pro-
vided, followed by a description of the model calibra-
tion process.

Shear-modified Gurson model
The yield surface of the SM-G model is taken as the

original Gurson yield surface (Gurson 1977) along with
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Fig. 44 Derived matrix hardening behavior σM = σM
(
εP

M

)
(left) and experimental profiles of uniaxial tension test fracture surface

along with numerical results (right)

the additional fitting terms and void coalescence and
failure parameters developed by Tvergaard and Needle-
man (1984):

F
(
σe, σm, f ∗) =

(
σe

σM

)2

+ 2q1 f ∗cosh

(
3q2σm

2σM

)

−
(

1 + q3 f ∗2
)

(26)

where σe and σM are the effective stress of the bulk,
porous material, and the undamaged matrix material,
respectively, and σm is the mean stress of the bulk mate-
rial. The term f ∗ is equal to the current void volume
fraction, f , until it reaches a critical value for void
coalescence, fc. Once reached, the voids grow at an
increased rate as a result of coalescence until the void
volume fraction at failure is reached.

The development of voids is given by:

ḟ = (1 − f )D p
kk + kω f ω(σ)

si j D p
i j

σe
(27)

where DP
i j is the plastic strain-rate tensor. The invariant

measure ω, which is equal to zero for all axisymmetric
stress states and unity for all stress states described by
a combination of pure shear and hydrostatic tension, is
given by:

ω (σ) = 1 −
(

27J3

2σ 3
e

)2

(28)

where J3 is the third invariant of the stress deviator ten-
sor. The second term in Eq. (27), which accounts for the
evolution of voids under shear dominated stress states,
is the only modification the SM-G model makes to the
Gurson model. The use of the SM-G model requires the
fitting of two parameters, namely the initial void vol-

Table 8 Extended Gurson model parameters used in numerical
simulations

E (GPa) ν q1 q2 q3 f0 fc f f kω

195 0.3 1.5 1.0 2.25 0.005 0.15 0.25 2.5

ume fraction, and kω. In addition, the uniaxial stress–
strain behavior of the matrix material is required.

The SM-G model was previously implemented as
a VUMAT user-material in the ABAQUS (ABAQUS/
6.12 Manual 2012) code as described in Nahshon
and Xue (2009). Here, all calculations presented were
performed using the SIERRA/SM (formerly SIERRA
Presto) FE code developed by Sandia National Labs
utilizing the built-in VUMAT capability.

Calibration of SM-G model from tensile test data
Simulations of uniaxial tension tests were performed

to obtain the necessary constitutive description of the
steel of interest, namely the full uniaxial true stress–
strain behavior prior to damage and the initial void
volume fraction. These calculations were performed in
two phases. First, calibration of the matrix hardening
curve to uniaxial tension response was conducted using
standard J2 plasticity. Second, calculations including
damage were carried out in order to determine the ini-
tial value of void volume fraction. Utilizing the curve
shown in Fig. 44, along with an initial void volume
fraction of 0.005, it was found that the entire engineer-
ing stress–strain curve and final deformed shape were
closely reproduced. As no shear-dominated test data
was provided, it was assumed that kω = 2.5, consistent
with other ductile steels. A full list of model parameters
is provided in Table 8.

123



The Sandia Fracture Challenge 61

Fig. 45 Finite element mesh of fracture challenge specimen and predicted (blue) and experimental (gray) force versus crack opening
displacement curve

Table 9 Summary of experimental results and numerical predictions of fracture challenge tests

First crack,
force (kN)

First crack,
COD (mm)

Second crack,
force (kN)

Second crack,
COD (mm)

Crack path

Experimental 8.04–8.37 1.94–3.55 4.89–5.74 4.98–5.14 A–C–E/A–D–C–Ea

Numerical 8.53 2.83 5.96 4.46 C–A–E

Error (%) 1–5 −20 to 46 −19 to 22 −13 to −10

a Order not reported, i.e. A–C–E not differentiated from C–A–E

8.11.3 Simulation of fracture challenge specimen

A finite element model of the Fracture Challenge spec-
imen was developed using the constitutive parame-
ters and hardening curve developed from the tensile
test simulations along with the mesh illustrated in
Fig. 45. The mesh consisted of 626,424 solid first-order
eight-noded hexahedral elements with a nominal mesh
size of 25 × 100 × 100 μm in the refined region and
500 ×500 ×100 μm in the coarse region. The element
size in the refined region was maintained at the same
size as the tensile coupon mesh presented earlier to
avoid mesh size effects. Note that prior to determining
the mesh region for refinement, calculations without
the most refined region were performed to determine
the localization path.

The predicted load-COD curve from the numerical
simulations is shown in Fig. 45 along with the experi-
mentally measured curves from all tests. The load is
reproduced quite closely through peak load and the
rapid drop in load associated with initial cracking is
well within the experimental bounds. However, the sub-
sequent load plateau is somewhat high and the drop

in load associated with subsequent crack propagation
occurs at a lower COD as compared to experimentally
observed results. The predicted crack path is ‘C–A–
E’ which is one of the paths observed in testing. Full
comparison of numerical and experimental values at
key points in the load-COD curve is shown in Table 9.

The selected approach was successful in predicting
the load-COD response, within experimental bounds,
but was not able to predict the ‘A–D–C–E’ localization
path. While the SM-G model is able to predict shear-
dominated fracture, no data on the shear-driven fracture
of the selected alloy was available, thus introducing
uncertainty to the model calibration. It is anticipated
that, when correctly calibrated, and the effect of geo-
metric and machining tolerances included, further sim-
ulations will indicate an ‘A–D–C–E’ localization path.
An important caveat of this approach, as discussed in
Xue et al. (2010b), is that the advantages of robust-
ness and pedigree are balanced by the need for highly
refined discretization on a sub-millimeter scale. Even
with powerful computational resources, this limits pre-
dictions to the component and subassembly level where
such fine discretization can be performed.
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8.12 Team 12

Team Members: S. Brinckmann1and Lukas Quinkert2;
1: Max-Planck Institut für Eisenforschung, Düsseldorf,
Germany; 2: Chair of Industrial and Automotive Drive-
trains, Ruhr-University Bochum, Germany.

The numerical model for ductile failure of the given
specimen was divided into two modular parts. Having
a modular structure, both parts could be used indepen-
dently in other studies.

The first module is a conventional isotropic elastic—
isotropic plastic material description with von Mises
yielding and subsequent hardening, which readily
exists in ABAQUS. A non-linear elastic material model
was employed to mirror the experimental results of the
uniaxial tension sample. The non-linear elastic mate-
rial response was implemented as user property, that
depends on the von Mises stress. The von Mises stress
was chosen as dependent parameter because plastic-
ity similarly depends on it. An alternative method,
dependence on the hydrostatic stress, was rejected for
the discrepancy with the plastic description although
that method yielded similar global results (i.e. simi-
lar force-displacement curve) in the uniaxial tension
loading condition. The elastic E0, E1, ν and plastic
(i.e. flow curve) material parameters were inversely
identified, i.e. fitted, with the use of a Java pro-
gram that uses Abaqus to evaluate each material prop-
erty configuration. For each material configuration the
global force-displacement curve is numerically deter-
mined and compared with the experimental data. The
material parameters are optimized such, as to mini-
mize the difference between numerical and experimen-
tal curves.

The second module simulates metal separation.
Generally, metal separation depends on the mode mix-
ity between the three fracture modes. The mode mix-
ity enters the fracture models as coupling parame-
ter between normal and tangential direction. From
the provided scanning electron microscopy images,
the failure surface exhibited isotropic dimples with
no preferred orientation and with no apparent shear-
ing. Therefore, it was concluded that this material
fractures by void initiation, spherical void growth,
void coalescence which was assumed to arise from
a large hydrostatic stress in 3D or a large first prin-
ciple stress in 2D. It should be noted however, that
the von Mises stress determines the evolution of
plasticity.

Two alternative simulation methods were utilized to
investigate the influence of each method. The cohesive
surface approach uses additional elements which are
placed along the expected crack path. These elements
have initially zero thickness and the long corners of
the element are opposite to each other. As the nor-
mal stresses increase the thickness of these elements
increases and the cohesive elements simulate the open-
ing of the crack. Similarly, an increasing shear stresses
on the element leads to an increase in mode II opening.
Rose et al. (1981) gave a universal binding energy rela-
tion for normal separation which is based on quantum
mechanical simulations of metals. The present imple-
mentation uses the exponential potential according to
Xu and Needleman (1994), which is based on the Rose
et al. (1981) potential:

	 = 	n − 	nexp

(
−�n

δn

)[(
1 − r + �n

δn

)
1 − q

r − 1

−
(

q + r − q

r − 1

�n

δn

)
exp

�2
t

δ2
t

]
(29)

where the potential is denoted with 	. The normal and
tangential tractions tn and tt are the spacial derivatives
of the potential in the respective directions. The capital

 denote the current opening and the lower-case δ the
characteristic separation in the respective directions.
The coupling parameters q and r relate the normal and
the tangential separation. The strength of the cohesive
zone in the normal and tangential direction—which are
defined by the 	n, δn and r—and the corresponding
characteristic separations are material dependent prop-
erties. This cohesive surface law was implemented in a
2D plain strain formulation (Roe and Siegmund 2003).

An automatic crack path identification algorithm
was implemented, which consists of the following
steps:

1. evaluation of the maximal principal stress, and
determination whether the threshold is fulfilled

2. evaluation of the normal direction to the maximal
principle stress

3. move the nodal points of the crack tip adjacent mesh
to align an element boundary to the evaluated direc-
tion. Ensure during this step that the topology of the
elements remains physical, i.e. the elements remain
convex and non-overlapping.

4. separate the identified element boundary and insert
a cohesive element into the mesh

5. restart the simulation from time t = 0
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Fig. 46 a The force-displacement curves for both fracture mod-
els (cohesive zones (CZ), damage model) are given in SI units.
The stiffness adjusted result for the cohesive surface model is

added. b The von Mises stress distribution is given for the dam-
age model with a medium element size distribution. The stress
distribution is superimposed by the damage distribution SDV1

Since the algorithm restarts after each successive cohe-
sive surface insertion, a mapping of the state variables,
i.e. equivalent plastic strain, can be avoided. The details
of this algorithm are given in a forthcoming publica-
tion.

The second metal separation model uses a first order
damage law; the material stiffness decreases linearly
as damage accumulates. In the present implementation
damage accumulation is based on the hydrostatic stress
and not on the von Mises stress to decouple metal sep-
aration from plasticity, which is intrinsically based on
the von Mises stress. The damage D is defined as

D = (p−pmin)/(pmax − pmin) (30)

where pmin and pmax are the hydrostatic pressures at
which damage accumulation initiates and completes,
respectively. This time independent equation is aug-
mented by an effective damage equation

Deff = (D − Dn−1)dt/dt0 + Dn−1 (31)

where Dn−1 is the effective damage of the previous
time step, dt is the current time step duration and dt0

is a reference duration. As such, the effective damage
ensures that a longer duration leads to an increased
damage, i.e. it takes into account the viscous type of
void growth. Attention was paid to prevent unphysical
damage evolution: material healing was prevented. It
should be noted that the implemented damage model
uses the three dimensional stress state. As such this

3D model, predicts the damage initiation in the inte-
rior of a tensile specimen and the subsequent growth to
the outside. The final phase of tensile bar failure is not
well captured by the present model because it does not
reproduce the experimentally observed bank develop-
ment.

For the CT specimen, we compared the simulation
results of the cohesive surface model, i.e. first frac-
ture model, and the damage model, i.e. second fracture
model. For both material models the fracture proper-
ties were manually optimized such as to reproduce the
experimental load-displacement curve. Since the cohe-
sive element approach adds elements of finite stiffness,
this stiffness reduces the global stiffness which leads to
a lower load-displacement curve during elastic loading.

For the sample that was used in the challenge, both
models predicted a similar load at failure, as shown
in Fig. 46a. However, the cohesive surface model pre-
dicted a substantially smaller displacement at failure
than the damage model. We assume, that this differ-
ence is due to the difference in damage representation:
according to the cohesive surface model, damage is
localized in infinitely narrow band in the undeformed
configuration; contrary the damage model assumes that
damage is spread across multiple elements. Both mod-
els also differed in the site of first rupture. The hydro-
static failure mechanism of the damage model leads
initially to crack initiation in the ligament between the
holes. Final rupture however occurs first in the ligament
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between hole C and the backside E. Concluding the
comparison of the fracture models, the damage spread-
ing leads to a larger fracture toughness in the damage
model. Since the microscopy images revealed a large
amount of void growth which is better represented by
the damage model, the predictions of the damage model
were used in the challenge. The damage model exhibits
a small element size effect: the finer mesh results in a
lower load and displacement at failure.

8.13 Team 13

Team Members: K. Pack, M. Luo, T. Wierzbicki; Impact
and Crashworthiness Lab, Massachusetts Institute of
Technology, Cambridge, MA, USA

8.13.1 Plasticity modeling

The plastic behavior of a metallic material is fully
described by a yield function, hardening curve, and
flow rule. Based on the negligible change in the engi-
neering stress–strain curve between longitudinal and
transverse directions provided by Sandia, we adopted
the von-Mises isotropic yield function and obtained
the true stress–strain curve up to the necking point
from the data on longitudinal specimen #2. Since the
fracture occurs after considerable necking, the inverse
method was employed in order to identify the optimized
true stress–strain curve in the post necking region. The
stress–strain curve after necking was adjusted such that
the engineering stress–strain curve predicted from the
numerical simulation showed a good agreement with
the one found in the experiment. A fine mesh of 0.15
mm was used at the critical region to capture the dif-
fuse and localized necking. These optimized piecewise
linear data were applied to subsequent finite element
(FE) analysis. Isotropic hardening with the associated
flow rule was assumed in light of the monotonically
increasing loading program.

8.13.2 Fracture modeling and calibration

MIT team used the three-parameter Modified Mohr-
Coulomb (MMC) fracture model developed by Bai and
Wierzbicki (2010). The backbone of this model is the
function in the form of Eq. 32, which describes the
equivalent strain to fracture ε̄ f for a proportional load-

Fig. 47 3D fracture surface of the full MMC model

ing as a function of the stress triaxiality η and the nor-
malized Lode angle θ̄ .
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The model has three parameters of c1, c2, and c3 to
be determined from tests, thus requiring at least three
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Fig. 48 Verification of the calibrated model in terms of the engi-
neering stress–strain curve and the cross sectional shape after
fracture
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Fig. 49 Distribution of
damage indicator around
holes in four stages of
deformation
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Fig. 50 Comparison of the force-COD curve between experi-
ment and simulation

experiments for calibration. In the special case where
c1 = 0 and c3 = 1, the model reduces to the maxi-
mum shear stress criterion. To fully exploit the accu-
racy and predictive power of the MMC model, dense
experimental programs covering a wide range of stress

states are recommended, such as the ones shown in
Beese et al. (2010) and Luo and Wierzbicki (2010).
In addition, MIT team makes use of the inverse cal-
ibration (or so-called hybrid experimental-numerical)
procedure that requires FE simulation of each test. This
procedure is explained in detail in Dunand and Mohr
(2010) and Luo et al. (2012). Sandia provided us with
the result of the uniaxial tension and toughness tests. FE
simulation of the toughness test with the pre-existing
sharp crack introduces a very strong mesh dependency.
Therefore, toughness tests were not used by MIT team
for the model calibration. Two approaches were taken
in this research. We first considered the maximum shear
stress model with only one parameter to be found from
the test. The stress state inside of the neck of the dog-
bone specimen is not proportional (see Fig. 47). Hence,
an incremental damage rule is needed in conjunction
with the Eq. (32). It is assumed that fracture initiates
when the function in Eq. (33) reaches unity.

D =
ε̄ f∫

0

d ε̄p

ε�
f (η, θ̄)

(33)
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Table 10 Quantitative comparison between simulation and experiment

Max. force (kN) Crack path First crack Second crack

Force (kN) COD (mm) Force (kN) COD (mm)

Simulation

Max. shear 8.807 A–C–E 8.119 3.904 5.452 5.920

+0.7090 % −0.3681 % +12.35 % +4.404 % +14.97 %

MMC 8. 807 A–C–E 8.065 3.906 5.405 6.371

+0.7090 % −1.031 % +12.40 % +3.504 % +23.73 %

Experiment

Spe_D1 8.745 A–C–E 8.149 3.475 5.222 5.149

To identify the unknown parameter, c2, a MATLAB-
base optimization routine was built such that the dam-
age value calculated with the history of η, θ̄ , and ε̄p

(equivalent plastic strain), which are extracted at the
critical element from FE simulation up to the experi-
mentally determined average displacement to fracture,
is enforced to be one.

For the full three-parameter MMC model, two para-
meters c1 and c3 were estimated based on our experi-
ence in testing and calibrating many similar materials,
and c2 was determined using a similar procedure as
described above. Figure 47 represents the constructed
3D fracture surface, and the black line indicates the
history of stress parameters of the critical point in the
dog-bone specimen up to fracture.

The calibrated model was verified by showing that
the engineering stress–strain curve and the cross-
sectional shape in the neck region after fracture were
accurately predicted as shown in Fig. 48.

8.13.3 Blind fracture simulation for Sandia compact
tension specimen

As for the FE model, reduced-integration eight-node
3D elements (type C3D8R of the Abaqus element
library) of the same size as the one used in the cal-
ibration procedure were built up around the starter
notch and three holes to minimize the mesh size effect.
Twenty elements made up the whole thickness and the
total number of elements was approximately 120,000.
Two pins were considered to be rigid, and the sur-
face to surface contact with zero friction coefficient
was applied between the pins and the specimen. Fixed
mass scaling of 108 was employed to reduce compu-
tation time with the confirmation of negligible ratio of

kinetic energy to internal energy for whole model, and
the element deletion technique was used with the user
subroutine (VUMAT) of Abaqus/Explicit.

As illustrated in Fig. 49, the full MMC model pre-
dicted that the first crack initiates between the starter
notch A and hole C, and after the ligament separates
completely, another crack develops at the surface of
hole C and propagates to the backside edge E.

Figure 50 represents the comparison of the force-
COD curves from the MMC simulation (red line) and
the experiments. We only presented the experimental
results with the same crack path as ours. As summarized
in Table 10, the maximum force and forces at the first
and second crack initiation were accurately predicted.
The COD at the first crack initiation was slightly over-
predicted due to the over-adjusted stress–strain curve
after necking although it was defined as the COD at
which the first element was killed on the mid-plane, not
on the surface. The COD at the second crack initiation
was over-predicted as well partially due to the predicted
stable crack growth during the first crack propagation
(load drops with a gentle slope). A subsequent study
on the mesh size effect revealed that the finer mesh is,
the faster crack propagates, leading to the faster load
drop. The result is discussed in detail in the full version
paper. Blue line in Fig. 50 represents the simulation
result using the maximum shear stress criterion. This
criterion predicts better the second phase of the crack
propagation, but worse the first phase.

8.13.4 Conclusion

Plasticity and fracture modeling based on only one
calibration test already led to a reasonably acceptable
prediction. However, more than one test is required to
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improve the plasticity and fracture model. Also, early
shear localization and A–D–C–E crack path could be
predicted by introducing the concept of ‘pre-damage’.
This is also described in the full version paper.
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