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Measurement of the B0
s → Dð�Þþ

s Dð�Þ−
s branching fractions

R. Aaij et al.*

(LHCb Collaboration)
(Received 25 February 2016; published 20 May 2016)

The branching fraction of the decay B0
s → Dð�Þþ

s Dð�Þ−
s is measured using pp collision data correspond-

ing to an integrated luminosity of 1.0 fb−1, collected using the LHCb detector at a center-of-mass energy

of 7 TeV. It is found to be BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ ¼ ð3.05� 0.10� 0.20� 0.34Þ%, where the uncertainties

are statistical, systematic, and due to the normalization channel, respectively. The branching fractions
of the individual decays corresponding to the presence of one or two D��

s are also measured. The
individual branching fractions are found to be BðB0

s → D��
s D∓

s Þ ¼ ð1.35� 0.06� 0.09� 0.15Þ%,
BðB0

s → D�þ
s D�−

s Þ ¼ ð1.27� 0.08� 0.10� 0.14Þ%. All three results are the most precise determinations
to date.

DOI: 10.1103/PhysRevD.93.092008

I. INTRODUCTION

Because of B0
s − B̄0

s oscillations, the mass and flavor
eigenstates of the B0

s system do not coincide. The B0
s

meson mass eigenstates have a relative decay width
difference ΔΓs=Γs, where ΔΓs (Γs) is the difference
(average) of the decay widths between the heavy and
light states. The relative decay width difference is one of
the key parameters of the B0

s system, and its precise
determination allows stringent tests of the flavor sector of
the standard model.

Under certain theoretical assumptions, B0
s → Dð�Þþ

s Dð�Þ−
s

decays were thought to saturate the CP-even contribution

to ΔΓs, and therefore the branching fraction of B0
s →

Dð�Þþ
s Dð�Þ−

s was used as a means of approximating ΔΓs=Γs
[1]. This approximation is now considered to be a poor one
[2], as the decay modes containing at least one D��

s have a
non-negligible CP-odd component, and other three-body
B0
s decays can contribute to the value of ΔΓs at a similar

level as B0
s → Dð�Þþ

s Dð�Þ−
s decays. A detailed discussion of

theoretical predictions of the B0
s → Dð�Þþ

s Dð�Þ−
s branching

fractions, and the predicted contribution of other modes to
the value of ΔΓs=Γs, is given in Ref. [3].
In a more general context, since the branching fraction of

B0
s → Dð�Þþ

s Dð�Þ−
s decays is one of the dominant contribu-

tions to the total inclusive b → cc̄s branching fraction, its
precise measurement is an important ingredient in model-
independent searches for physics beyond the standard
model in B meson decays [4]. The most recent

measurements are provided by the Belle [5], CDF [6],
and D0 [7] collaborations who obtain, respectively,

BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ ¼ ð4.32þ0.42þ1.04

−0.39−1.03 Þ%;

BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ ¼ ð3.38� 0.25� 0.30� 0.56Þ%;

BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ ¼ ð3.5� 1.0� 1.1Þ%:

The data used in the analysis presented in this paper
correspond to an integrated luminosity of 1.0 fb−1, col-
lected by the LHCb experiment during the 2011 run period.

The branching fraction of the full B0
s → Dð�Þþ

s Dð�Þ−
s decay

is determined relative to the B0 → Dþ
s D− decay, which has

a similar final state and a precisely measured branching
fraction. The charm daughters are reconstructed using
the Dþ

s → KþK−πþ and D− → Kþπ−π− final states.
Throughout the paper, unless stated otherwise, charge-
conjugate modes are implied and summed over. The
branching fraction ratio is determined as

BðB0
s →Dð�Þþ

s Dð�Þ−
s Þ

BðB0 →Dþ
s D−Þ ¼ fd

fs
·
ϵB

0

ϵB
0
s
·
BðD− → Kþπ−π−Þ
BðDþ

s → K−KþπþÞ ·
NB0

s

NB0

;

ð1Þ

where fd (fs) is the fraction of B̄0 (B̄0
s ) mesons produced

in the fragmentation of a b quark, ϵB
0

=ϵB
0
s is the relative

efficiency of the B0 to the B0
s selections, BðD− →Kþπ−π−Þ

and BðDþ
s → K−KþπþÞ are the branching fractions of the

charm daughter decays, andNB0
s
=NB0 is the relative yield of

B0
s and B0 candidates.
The branching fraction of the exclusive B0

s → D�þ
s D�−

s
decay is determined in the same way, along with the
branching fraction of B0

s → D��
s D∓

s . The branching frac-
tion of the B0

s → Dþ
s D−

s decay has been previously mea-
sured by LHCb using the same data as this analysis [8], and
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is therefore not determined in this study. However, the
selection efficiency and yield in the B0

s → Dþ
s D−

s channel
are determined in this analysis, as both are needed for

the calculation of the total B0
s → Dð�Þþ

s Dð�Þ−
s selection

efficiency.

II. DETECTOR AND SIMULATION

The LHCb detector [9,10] is a single-arm forward
spectrometer covering the pseudorapidity range
2 < η < 5, designed for the study of particles containing
b or c quarks. The detector includes a high-precision
tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-
strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream of
the magnet. The tracking system provides a measurement
of momentum, p, of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to
1.0% at 200 GeV=c. The minimum distance of a track to a
primary vertex, the impact parameter, is measured with a
resolution of ð15þ 29=pTÞ μm, where pT is the compo-
nent of the momentum transverse to the beam, in GeV=c.
Different types of charged hadrons are distinguished using
information from two ring-imaging Cherenkov detectors.
Photons, electrons and hadrons are identified by a calo-
rimeter system consisting of scintillating-pad and pre-
shower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers. The event selection is performed
in two stages, with an initial online selection followed by a
tighter offline selection. The online event selection is
performed by a trigger [11], which consists of a hardware
stage, based on information from the calorimeter and muon
systems, followed by a software stage, which performs a
full event reconstruction.
In the simulation, pp collisions are generated using

PYTHIA 6 [12] with a specific LHCb configuration [13].
Decays of hadronic particles are described by EVTGEN

[14], in which final-state radiation is generated using
PHOTOS [15]. The interaction of the generated particles
with the detector, and its response, are implemented using
the GEANT4 toolkit [16] as described in Ref. [17].

III. SIGNAL SELECTION

The D�þ
s meson decays to a Dþ

s meson and either a
photon or a neutral pion ð93.5� 0.7Þ% and ð5.8� 0.7Þ%
of the time, respectively, nearly saturating the total branch-
ing fraction. The remainder of the decays are ignored in
this analysis. Neither of the neutral particles is recon-
structed in the decay chain, and the individual B0

s →
D��

s D∓
s and B0

s → D�þ
s D�−

s decays are identified through
the reconstructed invariant mass of the Dþ

s D−
s system. The

individual peaks from B0
s → D��

s ð→ D�
s γÞD∓

s and B0
s →

D��
s ð→ D�

s π
0ÞD∓

s are not resolved. Therefore the recon-
structed Dþ

s D−
s mass distribution has three separate peaks,

corresponding to decays containing zero, one, or two D��
s

particles.
At the hardware trigger stage, events are required to have

a muon with high pT or a hadron, photon or electron with
high transverse energy in the calorimeters. For hadrons, the
transverse energy threshold is 3.5 GeV. Candidate B0

s and
B0 mesons are used in the analysis if at least one of the
associated tracks is selected by the hardware trigger, or if
the event is triggered independently of the particles in the
signal decay. The software trigger considers all charged
particles with pT > 500MeV=c and constructs two-, three-,
or four-track secondary vertices which require a significant
displacement from the primary pp interaction vertices. At
least one charged particle must have a transverse momen-
tum pT > 1.7 GeV=c and be inconsistent with originating
from a primary vertex. A multivariate algorithm [18] is
used for the identification of secondary vertices consistent
with the decay of a b hadron. The selection to this point is
hereafter referred to as the initial selection.
Signal B0

s and normalization B0 → Dþ
s D− candidates are

required to satisfy a number of additional conditions in
order to be included in the final samples. Kaons and pions
are required to be identified by the particle identification
(PID) system. All Dþ

s and D− candidates must have
an invariant mass within �30 MeV=c2 of their known
values [19]. Signal B0

s candidates are required to have a
reconstructed mass in the range 4750–5800 MeV=c2,
whereas B0 candidates must have a mass in the range
5050–5500 MeV=c2. After these requirements are applied
there are still contributions from other b -hadron decays
into final states with two charm particles. The decays
Λ0
b → Λþ

c ð→ pK−πþÞD−
s , where the p is misidentified as a

Kþ, and B0 → Dþ
s D−ð→ Kþπ−π−Þ, where a π− is mis-

identified as a K−, result in background contamination in
the signal channel, while the decay B0

s → Dþ
s D−

s contrib-
utes to the background in the normalization channel if the
Kþ in Dþ

s → KþK−πþ is misidentified as a πþ. As these
backgrounds accumulate in reconstructed mass close to the
signal peaks, candidates consistent with any one of these
background decay hypotheses are rejected in the selection
by applying a veto based on the invariant mass of the
candidate under the alternative particle type hypotheses.
Candidate Dþ

s mesons are vetoed if they have a
reconstructed mass in the range 2271–2301 MeV=c2

when the Kþ candidate is assumed to be a proton, or a
mass in the range 1835–1905 MeV=c2 when the Kþ
candidate is assigned the πþ mass. Candidate D− mesons
are vetoed if they have a reconstructed mass in the range
1950–1990 MeV=c2 when a π− candidate is assigned the
kaon mass. In a simulated sample of B0 → Dþ

s D− decays,

17.7% of the events meet all of the B0
s → Dð�Þþ

s Dð�Þ−
s
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selection criteria before the D� veto is applied. After the
veto, only 0.05% of the simulated B0 → Dþ

s D− sample still

pass the full B0
s → Dð�Þþ

s Dð�Þ−
s selection. The decay B0 →

Dþ
s D−

s and three-body B� → Dþ
ðsÞD

−
ðsÞh

� decays, where h

is either a kaon or pion, are examined as other potential
background sources, but are all disregarded because of
either a small selection efficiency or small branching
fraction relative to the signal channels.
In order to further improve the purity of the signal and

normalization samples, a boosted decision tree (BDT)
classifier is used to distinguish real B0

ðsÞ decays from

combinatorial background [20]. The BDT is trained using
the AdaBoost algorithm [21] to distinguish simulated B0

s
signal decays from background candidates obtained from
mass sidebands in the data. Background candidates must
contain a B0

s candidate with a mass greater than
5600 MeV=c2 and two D�

s candidates with masses less
than 1930 MeV=c2 or greater than 2010 MeV=c2. The set
of 14 variables used as input to the BDT exploits the
topology of the B0

s decay chain and includes the transverse
momentum of the B0

s candidate and of the two D�
s

daughters, as well as the product of the absolute transverse
momenta of the pions and kaons produced in the decay of
each D�

s . The decay times of the two D�
s candidates with

respect to the primary vertex and variables related to the
consistency of the B0

s and of the two D�
s to come from the

primary vertex are also used. The optimal BDT requirement

is chosen to maximize the value of Ns=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns þ Nb
p

, where
Ns is the total number of signal candidates matching any of

the three exclusive decays in B0
s → Dð�Þþ

s Dð�Þ−
s and Nb is

the total number of combinatorial background events as
taken from the fit. The same BDT classifier and selection
criteria are also applied to the normalization sample.
The efficiencies of the selection criteria in both the signal

and normalization channels are listed in Table I. The
efficiencies of the backgroundvetoes, trigger, reconstruction,
and BDT selection are determined using simulated
signal samples. The efficiencies of identifying Kþ and πþ
mesons are determined using a calibration data sample of
D�þ → D0ð→ K−πþÞπþ decays, with kinematic quantities
reweighted to match those of the signal candidates. The
efficiency of the PID selection is found to be ð82.4� 0.2Þ%
for signal B0

s decays and ð84.2� 0.1Þ% for B0 decays. The

efficiency of the full B0
s → Dð�Þþ

s Dð�Þ−
s decay is determined

by calculating a weighted average of the individual signal
channels, with weights given by the relative yields in data.
The relative efficiencies of the B0 decay to the three
individual channels and the full decay are given in Table II.

IV. SIGNAL AND BACKGROUND SHAPES

The B0
s and B0 yields in the signal channels and the

normalization mode are extracted by performing a three-
dimensional extended unbinned maximum likelihood fit to
the mass distributions of the B0

ðsÞ meson and the two charm

daughters.
In order to determine the yields for the individual signal

peaks, the B0
s candidate mass distribution in each channel is

modeled using simulated signal events. The B0
s → Dþ

s D−
s

peak is parametrized as the sum of a Crystal Ball function
[22] and a Gaussian function. The tail parameters of the
Crystal Ball function, the ratio of the width of its Gaussian
core to the width of the Gaussian function, and the relative
weight of each function in the full distribution, are taken

TABLE I. Efficiencies of the various selection criteria for the three individual channels of B0
s → Dð�Þþ

s Dð�Þ−
s , and for B0 → Dþ

s D−.
Each efficiency is presented relative to the previous cut and measured using simulated events, except for the PID efficiency which is
obtained from data. The Dþ

s veto was only applied to the normalization mode, B0 → Dþ
s D−.

Selection efficiency (%)

Selection B0
s → Dþ

s D−
s B0

s → D��
s D∓

s B0
s → D�þ

s D�−
s B0 → Dþ

s D−

Reconstruction 0.1184� 0.0003 0.1127� 0.0005 0.1061� 0.0005 0.1071� 0.0002
Initial selection 1.362� 0.008 1.250� 0.010 1.100� 0.010 1.416� 0.009
Mass requirements 89.4� 0.6 87.8� 1.0 88.3� 1.0 88.5� 0.6
BDT 97.9� 0.7 96.6� 1.1 96.7� 1.1 97.6� 0.7
Dþ veto 48.7� 0.5 50.3� 0.8 48.9� 0.8 68.7� 0.6
Dþ

s veto — — — 64.8� 0.7
Λþ
c veto 96.3� 1.0 96.3� 1.6 95.9� 1.6 98.2� 0.8

Trig. requirement 96.6� 0.7 96.7� 1.1 96.6� 1.1 96.8� 0.7
PID requirements 82.4� 0.2 82.4� 0.2 82.4� 0.2 84.2� 0.1
Total 0.0527� 0.0067 0.0460� 0.0095 0.0372� 0.0081 0.0467� 0.0060

TABLE II. Efficiency of the normalization channel B0 →
Dþ

s D− relative to the signal decays.

Channel ϵB
0

=ϵB
0
s

B0
s → Dþ

s D−
s 0.89� 0.02

B0
s → D��

s D∓
s 1.02� 0.03

B0
s → D�þ

s D�−
s 1.26� 0.03

B0
s → Dð�Þþ

s Dð�Þ−
s 1.06� 0.02
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from simulation. The mean and width of the Gaussian core
are allowed to float. The two D�

s distributions are also
parametrized using this model, with all shape parameters
fixed to the values found in simulation.
Because of the kinematic differences between theD�þ

s →
Dþ

s γ and D�þ
s → Dþ

s π
0 decays, the peak of the B0

s →
D��

s D∓
s mass distribution is parametrized by a superposition

of two Gaussian functions. The individual mean values,
the ratio of the widths, and the fraction of each Gaussian
function in the full distribution are fixed to values taken
from simulation. The peak corresponding to B0

s → D�þ
s D�−

s
decays is modeled using a single Gaussian function, with
the mean fixed to the value found from simulated events.
There is also a component in the fit to describe thepresence

of background decays of the form B0
s → Dþ

sJD
−
s , where the

Dþ
sJ can be either aDs1ð2460Þþ or aDs0ð2317Þþ meson that

decays to a Dþ
s along with some combination of photons

and neutral or charged pions. As some decay products are
missed, this background is present only at the low mass
region of the signal distribution. The shape of the distribution
is determined by fitting to B0

s → Ds1ð2460ÞþD−
s simulated

events, as the contribution from Ds1ð2460Þþ is currently
the best understood among the Dþ

sJ decays. It is found to be
wellmodeled by anArgus function [23], all shape parameters
for which are fixed to the values found in simulation.
The combinatorial background shape in the B0

s candidate
mass distribution is parametrized by a second-order poly-
nomial, and the model is validated with candidates passing
a wrong-sign version of the selection. The wrong-sign
selection is identical to the signal selection but instead
looks for events containing two Dþ

s mesons. The param-
eters of the combinatorial background distribution are
allowed to float in the full fit to data, and are found to
be compatible with the values obtained from the fit to the
wrong-sign sample. The combinatorial background shape
in the D�

s distribution is determined using events taken
from the high-mass sideband region of the B0

s distribution,
and is found to be consistent with a first-order polynomial.
The impact of adding a small Gaussian contribution to
account for the presence of real D�

s mesons in the
combinatorial background was found to be minimal, with
the observed deviations from the nominal signal yields
being smaller than the statistical uncertainty in each case.
The B0 distribution is modeled using the same para-

metrization as for the full B0
s distribution, with one

exception. The peak where either the Dþ
s or D− comes

from the decay of an excited state is modeled by a
superposition of three Gaussian functions, rather than the
two-Gaussian model used in the B0

s case, to account for
the difference in distributions fromD�þ

s andD�− decays, as
the D�− decay contains a π0 in the final state more
frequently than D�þ

s decays. There is also a small con-
tribution from the decay B0

s → D−
s Dþ, which is modeled

with the same distribution as for the signal B0
s candidates.

V. FIT RESULTS

The fit to the signal data samples is shown in Fig. 1,
where the triple peaked structure of the full decay is clearly
visible. The yields for the individual signal channels and

the two backgrounds are given in Table III. The total B0
s →

Dð�Þþ
s Dð�Þ−

s yield is the sum of the individual signal channel
yields, with the uncertainty calculated using the correlation
coefficients between the individual yields, and is found to
be 2230� 63. The full fit to the data sample for the
normalization mode is shown in Fig. 2, and the yields are
given in Table IV. Almost all B0 → D��

s D�∓ decays are
reconstructed with a mass lower than the 5050 MeV=c2

mass cut imposed on the B0 candidates. There is thus a
relatively small yield from this channel. Only the main
B0 → Dþ

s D− peak is used for normalization purposes.

VI. SYSTEMATIC UNCERTAINTIES

A number of systematic uncertainties affect the measure-
ments of the ratios of branching fractions; the sources and
magnitudes of these uncertainties are summarized inTableV.
The dominant source of uncertainty for two of the three
branching fractions comes from the b fragmentation fraction
ratio,fs=fd ¼ 0.259� 0.015 [24]. Part of the uncertainty on
this ratio is due to the ratio of the charm branching fractions
BðDþ

s → KþK−πþÞ=BðD− → Kþπ−π−Þ ¼ 0.594� 0.020

]2 Mass [MeV/c-
s D+

sD

5000 5500

2
C

an
di

da
te

s 
/2

5 
M

eV
/c

0

50
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150

200

250 LHCb
-
s D+

s D→0
sB

-
s D*+

s D→0
sB

*-
s D*+

s D→0
sB

 Background-
s D+

sJ D→0
sB

Comb. Background

Data

Fit

FIG. 1. Invariant mass distribution of the B0
s → Dð�Þþ

s Dð�Þ−
s

candidates. Also shown is the fit function and the individual
components of the fit model.

TABLE III. The yields extracted from the fit to the B0
s →

Dð�Þþ
s Dð�Þ−

s candidate sample.

Decay Mode Yield

B0
s → Dþ

s D−
s 412� 23

B0
s → D��

s D∓
s 1032� 39

B0
s → D��

s D�∓
s 786� 48

Combinatorial background 1342� 47
B0
s → Dsð2460Þ�D∓

s 432� 42
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[24], the inverse of which is used in the measurements
presented in this paper, as shown in Eq. (1). With the two
values from Ref. [24], the part of the uncertainty on fs=fd
due to the charm branching fractions cancels, leading
to a total uncertainty for the product fd=fs × BðD− →
Kþπ−π−Þ=BðDþ

s → KþK−πþÞ of 4.7%.
The fit model used for the yield extraction is validated

using pseudoexperiments and is found to be unbiased. The
uncertainty due to the imperfect knowledge of the shape of
the full mass distribution is investigated by measuring the
yields using alternative models for each of the peaks. The
Dþ

s D−
s peak is modeled with an Apollonios function [25] or

a Cruijff function [26], theD��
s D∓

s peak is modeled using a
single Gaussian function, and the D�þ

s D�−
s peak is modeled

using a combination of two Gaussian functions. The B0 →

Dð�Þ�
s Dð�Þ∓ fit model uncertainty is assessed by modeling

the B0 → D−
s Dþ peak with both an Apollonios function

and a Cruijff function. In all cases, the systematic uncer-
tainty is taken to be the RMS deviation of the sets of yields
with respect to the nominal yields found using the standard
fits. The B0 → D−

s Dþ uncertainty is added in quadrature
to the signal channel uncertainties, leading to a systematic
uncertainty of 3.4% for the D��

s D∓
s branching fraction

ratio, 2.2% for the D�þ
s D�−

s branching fraction ratio, and

2.2% for the total B0
s → Dð�Þþ

s Dð�Þ−
s branching fraction

ratio.
The uncertainty on the combinatorial background yield

is determined by considering the differences when instead
fitting this background with an exponential function, and is
of the order of 1.5% for all of the branching fraction ratios.
The dominant uncertainty for the B0

s → D�þ
s D�−

s decay
channel results from the lack of knowledge of the B0

s →
Dþ

sJD
−
s background decays. The shape of this background

overlaps mostly with the B0
s → D�þ

s D�−
s signal decays, and

therefore the systematic uncertainty due to this background
shape is much larger for this channel (5.0%) than for the
other two exclusive branching fractions (0.2%–0.4%). The
uncertainty is measured by repeating the fit with the cutoff
point of the Argus function varied from 5050 MeV=c2 to
5200 MeV=c2, where the upper limit is chosen in order to
account for the presence of decays containing Ds0ð2317Þþ
mesons. The changes to the yields from the values found in
the nominal fit are calculated in each case. The systematic
uncertainty in each channel is then assigned as the RMS of
the full set of deviations. The uncertainty on the overall
branching fraction ratio is also determined in this way, and
is found to be 1.9%.
The uncertainties on the overall efficiencies due to the

limited size of the simulated samples are calculated
individually for each channel. For the total measurement,

BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ, a weighted average of the individual

uncertainties is used, with weights proportional to the final

]2 Mass [MeV/c-D+
sD

5100 5200 5300 5400 5500

2
C

an
di

da
te

s 
/6

 M
eV

/c

0

100

200

300

400

500

600

-D+
s D→0B

+
sD

-*
/D-D+*

s D→0B
-*D+*

s D→0B
-D+

s D→0
sB

Comb. Background
Data
Fit

LHCb

FIG. 2. Invariant mass distribution of the B0 → Dð�Þ�
s Dð�Þ∓

candidates. Also shown is the fit function and the individual
components of the fit model.

TABLE IV. The yields extracted from the fit to the B0 →

Dð�Þ�
s Dð�Þ∓ candidate sample.

Decay Mode Yield

B0 → Dþ
s D− 3636� 64

B0 → D�þ
s D−=D�−Dþ

s 3579� 110

B0 → D�þ
s D�− 166� 86

B0
s → D�

s D∓ 85� 13

Combinatorial background 1542� 56

TABLE V. Systematic uncertainties, in % of the relevant branching fraction ratio, for the B0
s → Dð�Þþ

s Dð�Þ−
s

branching fraction ratios.

Source B0
s → D��

s D∓
s B0

s → D�þ
s D�−

s B0
s → Dð�Þþ

s Dð�Þ−
s

fd=fs ×
BðD−→Kþπ−π−Þ
BðDþ

s →KþK−πþÞ
4.7 4.7 4.7

Fit model 3.4 2.2 2.2
Comb. background 1.2 1.9 1.5
Dþ

sJ background 0.4 5.0 1.9
Simulation statistics 1.9 2.1 1.9
PID efficiency 1.4 1.8 1.5
Trigger efficiency 1.5 1.5 1.5
Total 6.6 8.1 6.4
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yield values obtained from data. These uncertainties on the
efficiencies are then propagated to the branching fraction
ratios.
There is a systematic uncertainty arising from the

calculation of the efficiencies of the PID cuts. The
calibration of the data samples is performed in bins of
momentum and pseudorapidity, which results in an uncer-
tainty on the calculated efficiencies owing to the finite size
of the D�þ → D0πþ calibration samples and the binning
scheme used. The uncertainty resulting from the calibration
sample size and binning scheme is determined by redoing
the calibration using different binning schemes. Another
systematic uncertainty is due to the presence of a small
combinatorial background component in the samples that
are used to determine the PID efficiencies. The systematic
uncertainty due to this contamination is estimated by
comparing the efficiencies found in data to those found
when calibrating simulated signal events. The total uncer-
tainties due to the PID efficiency calculation for the three
branching fraction ratios presented in this paper are shown

in Table V. The value for B0
s → Dð�Þþ

s Dð�Þ−
s is again the

weighted average of the contributing channels, with the
uncertainty for the Dþ

s D−
s contribution being 1.1%.

The uncertainty of 1.5% from the trigger response is
assessed by considering variations in the response between
data and simulation. The individual uncertainties are
combined in quadrature to give the total relative systematic
uncertainties for each measurement given in Table V.

VII. SUMMARY AND DISCUSSION

Inserting the measured yields and relative efficiencies
into Eq. (1), along with the fs=fd and BðD− →
Kþπ−π−Þ=BðDþ

s → KþK−πþÞ values taken from [24],
gives

BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ

BðB0 → Dþ
s D−Þ ¼ 4.24� 0.14ðstatÞ � 0.27ðsystÞ;

BðB0
s → D��

s D∓
s Þ

BðB0 → Dþ
s D−Þ ¼ 1.88� 0.08ðstatÞ � 0.12ðsystÞ;

BðB0
s → D�þ

s D�−
s Þ

BðB0 → Dþ
s D−Þ ¼ 1.76� 0.11ðstatÞ � 0.14ðsystÞ:

Using the current world average measurement of the
B0 → Dþ

s D− branching fraction of ð7.2�0.8Þ×10−3 [19],
gives

BðB0
s → Dð�Þþ

s Dð�Þ−
s Þ ¼ ð3.05� 0.10� 0.20� 0.34Þ%;

BðB0
s → D��

s D∓
s Þ ¼ ð1.35� 0.06� 0.09� 0.15Þ%;

BðB0
s → D�þ

s D�−
s Þ ¼ ð1.27� 0.08� 0.10� 0.14Þ%;

where the uncertainties are statistical, systematic, and due
to the branching fraction of the normalization channel,
respectively.

Figure 3 shows the LHCbmeasurement of the total B0
s →

Dð�Þþ
s Dð�Þ−

s branching fraction, along with the previous
measurements by Belle [5], CDF [6], and D0 [7], the
average of these previous measurements as calculated by
HFAG [27], and the theoretical value from Ref. [3].
The theoretical prediction is for a decay time t ¼ 0, while
the measurements integrate over the B0

s meson lifetime; the
correction factor for mixing is known [28], but has not been
applied. The LHCb result is consistent with all previous
measurements and calculations, and is the most precise
determination to date. In addition, the LHCb measurements
of the individual B0

s → D��
s D∓

s and B0
s → D�þ

s D�−
s branch-

ing fractions are consistent with, and more precise than, all
previous measurements.
Using this measurement of the branching fraction of

B0
s → Dð�Þþ

s Dð�Þ−
s decays to calculate ΔΓs=Γs as detailed

in Ref. [1] gives a value approximately half as large as
the most recent HFAG determination [27], suggesting

that indeed B0
s → Dð�Þþ

s Dð�Þ−
s decays do not saturate the

CP-even modes [2]. The measurements presented in this
analysis will be useful in improving the understanding of
hadronization effects in B0

s decays via the b → cc̄s quark
transition, and in determining a precise value of the
inclusive branching fraction of these b → cc̄s decays.
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