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The PDGF-BB-SOX7 axis-modulated IL-33 in
pericytes and stromal cells promotes metastasis
through tumour-associated macrophages
Yunlong Yang1,*, Patrik Andersson1,*, Kayoko Hosaka1, Yin Zhang1, Renhai Cao1, Hideki Iwamoto1, Xiaojuan Yang1,

Masaki Nakamura1, Jian Wang1, Rujie Zhuang2, Hiromasa Morikawa3, Yuan Xue1,4, Harald Braun5,6,

Rudi Beyaert5,6, Nilesh Samani7, Susumu Nakae8, Emily Hams9, Steen Dissing10, Padraic G. Fallon9, Robert Langer4 &

Yihai Cao1,7,11

Signalling molecules and pathways that mediate crosstalk between various tumour cellular

compartments in cancer metastasis remain largely unknown. We report a mechanism of the

interaction between perivascular cells and tumour-associated macrophages (TAMs) in

promoting metastasis through the IL-33–ST2-dependent pathway in xenograft mouse models

of cancer. IL-33 is the highest upregulated gene through activation of SOX7 transcription

factor in PDGF-BB-stimulated pericytes. Gain- and loss-of-function experiments validate that

IL-33 promotes metastasis through recruitment of TAMs. Pharmacological inhibition of the

IL-33–ST2 signalling by a soluble ST2 significantly inhibits TAMs and metastasis. Genetic

deletion of host IL-33 in mice also blocks PDGF-BB-induced TAM recruitment and metastasis.

These findings shed light on the role of tumour stroma in promoting metastasis and have

therapeutic implications for cancer therapy.
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C
ancer metastasis is a complex process that involves in
sophisticated interactions between malignant and host
cells1,2. Cancer cells often produce signalling molecules to

manipulate host cells in the local microenvironment to facilitate
their invasion, dissemination and metastasis. The PDGF-PDGFR
signalling often becomes activated in the tumour micro-
environment3–5 and endothelial cells in angiogenic vessels are
an important source for the production of PDGF-BB6, a
pluripotent member in the PDGF family. In epithelial cell- and
other cell-originated cancer types, PDGF-BB primarily targets
stromal fibroblasts and perivascular cells including pericytes and
vascular smooth muscle cells7. PDGF-BB stimulates the
proliferation and migration of perivascular cells through
activation of PDGFRb although interaction with PDGFRa also
occurs in fibroblasts5,7. Although it is well known that PDGF-BB
modulates vascular remodelling and maturation by recruiting
pericytes and vascular smooth muscle cells onto angiogenic
vessels, activation of these perivascular cells in the tumour
microenvironment in cancer invasion and metastasis is poorly
understood.

Tumour tissues often contain an exceptionally high number of
inflammatory cells, which significantly alter tumour growth,
angiogenesis, metastasis and drug responses8,9. Inflammatory
cytokines including GM-CSF, TNF-a, IL-1b, IL-6 and various
chemokines are actively involved in recruitment of inflammatory
cells in tumours10,11. However, our current understanding of
recruitment of tumour-associated macrophages (TAMs) and their
roles in cancer invasion and metastasis are far from complete.
IL-33 as a relatively new cytokine belongs to IL-1 family and it
can be produced by a broad range of cell types including
fibroblasts, osteoblasts, endothelial cells, epithelial cells and
adipocytes12–15. IL-33 exerts its biological functions through
binding and activation of its receptor ST2, a member in the Toll-
like receptor superfamily. IL-33 is known to regulate Th2
immune responses12. However, the role of IL-33 in tumour
inflammation and metastasis is unknown. A recent study shows
that in a mouse breast cancer model, injection of IL-33 protein
stimulates primary tumour growth and metastasis16.

In the present study, we show that IL-33 is the most
upregulated gene in PDGF-BB-stimulated pericytes and SOX7
transcription factor mediates PDGF-BB-induced IL-33 expres-
sion. Gain-of-function and loss-of-function experiments demon-
strate that pericyte- and stromal cell-derived IL-33 is a crucial
cytokine for recruitment of TAMs in the tumour microenviron-
ment. Importantly, in several human and mouse graft tumour
models, we provide compelling evidence to demonstrate that
pericyte- and stromal cell-derived IL-33-activated TAMs are
crucial for cancer metastasis. Finally, in in vivo tumour models,
we show that IL-33-activated TAMs mediate PDGF-BB-induced
cancer metastasis. These findings shed new mechanistic lights on
the crosstalk between various host cellular compartments and
PDGF-BB-stimulated pericytes in promoting cancer metastasis.
Functional blocking of the PDGF-BB-IL-33-TAM axis is an
important approach for cancer therapy.

Results
PDGF-BB-PDGFRb signalling indirectly recruits TAMs. To
investigate the role of PDGF-BB in the recruitment of TAMs, we
screened a panel of human tumour cell lines that spontaneously
express PDGF-BB. We have found that human A431 squamous
carcinoma cell line expressed a high level of endogenous PDGF-
BB protein (50 pg ml� 1) (Fig. 1a). The A431 xenograft tumour
contained a high number of Iba1þ TAMs (Fig. 1b). Interestingly,
downregulation of PDGF-BB by Pdgfb-specific shRNA, which
effectively inhibited the Pdgfb mRNA level (Supplementary

Fig. 1a), markedly ablated TAMs in tumour tissues (Fig. 1b),
suggesting that PDGF-BB was primarily responsible for TAM
recruitment in this human xenograft model. To further validate
these findings, we performed gain-of-function experiments in
which mouse Lewis lung carcinoma (LLC) and T241 fibro-
sarcoma were transfected with Pdgfb-retrovirus to stably express
PDGF-BB (Supplementary Fig. 1b and c). ShRNA knockdown of
Pdgfb significantly inhibited A431 tumour growth
(Supplementary Fig. 1d), whereas PDGF-BB expression promoted
tumour growth in T241 and LLC tumours (Supplementary Fig. 1e
and f). Notably, FACS and immunohistochemical analyses
showed that PDGF-BB-LLC and T241 tumours contained sig-
nificantly higher numbers of F4/80þ and Iba1þ TAMs as
compared with their respective vector-transfected tumours
(Fig. 1c,d). Of note, Iba1 and F4/80 double immunostaining
showed completely overlapping positive signals (Supplementary
Fig. 1g), indicating that both markers detect the total macrophage
population in tumour tissues. These findings demonstrate that
PDGF-BB recruits TAMs in human and mouse cell line-derived
graft tumour models.

To define PDGFRs that are responsible for TAM recruitment,
we used various PDGFR inhibitors. Imatinib, a pan PDGFR
tyrosine kinase inhibitor17, significantly inhibited TAM
recruitment in A431, LLC and T241 tumours (Fig. 1e),
suggesting that PDGFRs mediate PDGF-BB-induced TAM
infiltration. To distinguish PDGFRa and PDGFRb signalling in
TAM recruitment, anti-mouse PDGFRa- and PDGFRb-specific
neutralizing antibodies (PDGFR blockades) were used for the
treatment of PDGF-BBþ T241 tumours. Interestingly, PDGFRb, but
not PDGFRa, blockade, markedly inhibited PDGF-BB-induced TAM
infiltration (Fig. 1e). These findings indicate that PDGFRb is the
receptor that mediates PDGF-BB-induced TAM recruitment.

We next investigated the direct versus indirect role of PDGF-
BB in the recruitment of TAMs. Surprisingly, co-localization of
PDGFRa and PDGFRb in T241 tumours by their specific
antibodies showed that TAMs lacked PDGFR expression
(Fig. 1f), suggesting an indirect role of PDGF-BB in the
recruitment of TAMs. Consistent with this notion, PDGFRb
was primarily localized in non-TAM cells including NG2þ

pericytes and aSMAþ smooth muscle cells (SMCs)/myofibro-
blasts (Fig. 1g). These findings were further quantitatively
validated by PCR with reverse transcription (RT–PCR), quanti-
tative PCR (qPCR) and staining of various cell lines showing that
stromal fibroblasts and pericytes expressed high levels of Pdgfrb
mRNA, whereas mouse Raw macrophage-like cell line and
isolated TAMs completely lacked Pdgfrb mRNA expression
(Fig. 1h and Supplementary Fig. 1h). These findings further
support our notion that PDGF-BB recruits TAMs in various
tumour models through an indirect mechanism.

PDGF-BB induces pericyte- and fibroblast-derived IL-33. To
identify possible genes that mediate PDGF-BB-induced TAM
recruitment, we performed a genome-wide expression microarray
analysis in PDGF-BB-stimulated pericytes. Surprisingly, Il33 was
the most upregulated gene product with more than an eight-fold
increase among all the genes in the genome (Fig. 2a), and was the
top one of the upregulated inflammatory cytokines (Fig. 2b). The
PDGF-BB-induced IL-33 expression was further validated by
qPCR, which revealed more than a five-fold increase of Il33
mRNA expression (Fig. 2c). In contrast, PDGF-AA, a ligand that
only binds to PDGFRa, lacked ability to induce Il33 expression
(Fig. 2c), indicating that PDGFRb is responsible for PDGF-BB-
induced Il33 expression. In addition to pericytes, stimulation of
PDGFRbþ stromal fibroblasts with PDGF-BB also led to marked
upregulation of Il33 mRNA (Fig. 2d). We further analysed the
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IL-33 protein expression from PDGF-BB-stimulated pericytes
and stromal fibroblasts. Again, the IL-33 protein levels in PDGF-
BB-stimulated pericytes and fibroblasts were significantly higher
than those in non-stimulated cells (Supplementary Fig. 2a).

To validate these findings in vivo, we analysed IL-33 protein
expression in PDGF-BBþ T241 tumours and found a marked
increase of IL-33 expression as compared with vector tumours
(Fig. 2e). IL-33 protein expression levels in A431 tumour grafts
were markedly decreased by the Pdgfb-specific shRNA (Fig. 2e).
We provided further in vivo evidence by delivery of adenoviral
Pdgfb (Adv-Pdgfb) into tumour-free mice. Again, delivery of Adv-
Pdgfb significantly induced IL-33 expression in the hepatic tissue
(Fig. 2f). Collectively, these in vitro and in vivo findings provide
compelling evidence that PDGF-BB markedly induces IL-33
expression in PDGFRbþ perivascular cells and stromal
fibroblasts.

To further validate the pericytes and stromal cells as the major
source of IL-33 production in in vivo tumours, we isolated
different cell types from the tumour microenvironment. We
confirmed that the PDGFRbþ cell population including stromal
fibroblasts and perivascular cells were the important cells for the
production of IL-33 in response to PDGF-BB (Fig. 2g).
Furthermore, NG2þ pericytes in PDGF-BB tumours produced
high levels of IL-33 as compared with those isolated from the
vector control tumours (Fig. 2g). In contrast, CD31þ vascular
endothelial cells did not significantly contribute to PDGF-BB-
induced IL-33 expression in tumours since IL-33 levels in PDGF-
BB positive population was not increased (Fig. 2g). Similarly,
tumour cells produced negligible levels of IL-33 in PDGF-BB-
positive and -negative tumour cells, which remained unchanged.
Taken together, these findings demonstrate that pericytes and
tumour stromal cells are the primary source of IL-33 in the
tumour microenvironment.

We treated PDGF-BB-stimulated pericytes with PDGFRa and
PDGFRb blockades to monitor IL-33 expression in vitro.
PDGFRb, but not PDGFRa, specific blockade significantly
inhibited PDGF-BB-induced IL-33 expression in pericytes
(Fig. 2h). The combination of PDGFRb and PDGFRa blockades
did not produce any additive effects. Similar to PDGFRb
blockade, imatinib also produced a markedly inhibitory effect
on IL-33 expression (Fig. 2h). Likewise, PDGFRb blockade also
significantly inhibited PDGF-BB-induced IL-33 expression in
stromal fibroblasts (Supplementary Fig. 2b).

Role of PDGF-BB signalling pathways in IL-33 production.
Signalling pathway analysis showed that PDGF-BB induced
activation of PDGFRb by phosphorylation (Fig. 3a) and IL-33 has
no impact on activation of PDGFRb in pericytes. In concordance
with the activation of PDGFRb, downstream signalling compo-
nents including MAP kinase (Erk) and Akt also became activated
in PDGF-BB-stimulated pericytes (Fig. 3b). Signalling network
analysis from cBioPortal18 showed that Akt and MAPK were
correlated with PDGF-BB expression (Supplementary Fig. 3a).
Consistently, MAPK and Akt-specific inhibitors significantly and
effectively inhibited Il33 mRNA expression levels in PDGF-BB-
stimulated pericytes (Fig. 3c and Supplementary Fig. 3b). These
findings show that PDGF-BB induces IL-33 expression in
pericytes through activation of the PDGFRb signalling pathway.

SOX7 mediates PDGF-BB-induced IL-33 expression. We next
investigated potential mechanisms by which PDGF-BB induces
IL-33 expression in PDGFRbþ pericytes and fibroblasts. Gen-
ome-wide microarray analysis of PDGF-BB-stimulated pericytes
revealed that SOX7 was the most upregulated transcription factor
(about six-fold; Fig. 3d), which was ranked as the top three most

upregulated gene products in the genome (Fig. 2a and
Supplementary Fig. 3c). The qPCR analysis further validated the
increased expression level of Sox7 mRNA in PDGF-BB-stimu-
lated pericytes (Fig. 3e). Notably, PDGFRb-specific blockade
significantly attenuated PDGF-BB-stimulated expression of Sox7,
whereas PDGFRa-specific blockade had no effect on Sox7 mRNA
expression (Fig. 3e). These findings suggest that PDGFRb
potentially mediates PDGF-BB-induced Sox7 expression.

To decipher the functional relation between SOX7 and IL-33
expression, PDGF-BB-stimulated pericytes were treated with
Sox7-siRNA. Knockdown of SOX7 significantly impaired PDGF-
BB-induced IL-33 expression (Fig. 3f), which was correlated to
the knockdown efficiency (Supplementary Fig. 3d). Similarly,
Sox7-siRNA knockdown also markedly reduced IL-33 production
in PDGF-BB-stimulated stromal fibroblasts (Supplementary
Fig. 3e). To provide further supportive evidence of transcriptional
regulation of IL-33 expression by SOX7, we analysed mouse
sequences of the IL-33 promoter region and discovered a
canonical SOX7-binding SRY box and five non-canonical binding
sites (Fig. 3g). Chromatin immunoprecipitation (ChIP) assay
using the Il33 promoter fragment containing the canonical
binding site demonstrated that SOX7 directly bound to the Il33
promoter (Fig. 3h). However, it is possible that the non-canonical
SOX7 binding sites might also mediate direct binding of SOX7.
These data show that PDGF-BB induces IL-33 expression
through the PDGFRb-SOX7 signalling pathway.

Signalling mechanisms of IL-33-induced Raw cell migration. As
IL-33 was the most upregulated cytokine in PDGF-BB-stimulated
pericytes, we investigated its functional impact on macrophages.
FACS and RT–PCR analyses showed that Raw macrophage-like
cell line expressed ST2 receptor that mediates biological functions
of IL-33 (Fig. 4a). As a negative control, stromal fibroblasts lacked
a detectable level of ST2 expression (Fig. 4a). Knowing that
macrophages expressed ST2 receptor, we studied the functional
impact of IL-33 on macrophages. Recombinant IL-33 stimulated
Raw cell migration in a dose-dependent manner (Fig. 4b,c). In
addition, IL-33 induced activated morphological changes of Raw
cells that manifested an elongated cell shape (Fig. 4d). Impor-
tantly, the St2-siRNA knockdown significantly ablated the IL-33-
induced Raw cell migration and morphological changes
(Fig. 4c,d). To validate the biological effects of pericyte-derived
IL-33 in modulation of macrophage activities in vitro, PDGF-BB-
stimulated and non-stimulated pericytes were co-cultured with
Raw cells. In this co-culture assay, PDGF-BB-stimulated pericytes
induced elongated Raw cell morphological changes, which was
neutralized by a soluble ST2 receptor (Fig. 4e). Similarly, PDGF-
BB-primed pericytes also attract Raw cell motility in a co-culture
system (Fig. 4f).

Consistent with the above-mentioned biological functions, IL-
33 stimulation of Raw cells induced marked activation of MAPK,
which became hyper-phosphorylated (Fig. 4g). In addition, IL-33
stimulated phosphorylation of p38 that is known in the regulation
of cellular actin reorganization and cell morphological changes19

(Fig. 4g). Notably, IL-33 stimulation led to potent activation of
IkBa, which became highly phosphorylated (Fig. 4g). However,
Akt levels in IL-33-stimulated and non-stimulated cells remained
unchanged (Supplementary Fig. 4a). To functionally link the ST2
receptor and IL-33-activated intracellular signalling components,
we used the St2-siRNA knockdown technique. IL-33-induced
MAPK, p38 and IkBa phosphorylation in Raw cells were largely
inhibited by the St2-specific siRNA (Fig. 4h), indicating that IL-33
induces the ST2-dependent activation of these intracellular
signalling components in macrophages. In contrast to IL-33,
PDGF-BB lacked abilities to activate MAPK, p38 and IkBa,
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supporting the conclusion that PDGF-BB does not directly act on
macrophages.

To define the biological functions of the IL-33-ST2-activated
downstream signalling molecules, we treated the IL-33-stimulated
Raw cells with various inhibitors that blocked the activation of a

specific signalling component. As expected, the MAPK, p38 and
IkBa inhibitors20–22 effectively blocked IL-33-stimulated
phosphorylation of these intracellular signalling molecules
(Supplementary Fig. 4b). Treatment with a known MAPK
inhibitor (U0126) completely abolished IL-33-induced Raw cell
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migration and cell shape changes (Fig. 4i,j). These findings
reconcile with the known functions of MAPK signalling.
Similarly, p38 inhibitor also effectively inhibited IL-33-induced
migration and cell shape changes of Raw cells (Fig. 4i,j). The
treatment of IL-33-stimulated Raw cells with an NF-kB inhibitor
also significantly attenuated IL-33-induced Raw cell migration
and cell shape changes (Fig. 4i,j). These findings demonstrate that
IL-33 displays direct effects on Raw cell migration and activation
through MAPK, p38 and IkBa signalling pathways.

IL-33 increases TAMs in tumours. We performed in vivo gain-
of-function experiments that allowed studying the effect of IL-33
on tumour growth, TAM recruitment and tumour invasion and
metastasis. Genetic propagation of T241 tumours with IL-33 by
lentiviral approach led to overexpression of IL-33 protein in
tumour tissues (Fig. 5a). Despite a high level of IL-33 expression,
IL-33-overexpressing tumours grew at similar rates in vitro and
in vivo as vector-transfected control tumours (Supplementary
Fig. 5a and b). However, FACS analysis showed that the number
of F4/80þ TAMs in IL-33-tumours was markedly increased as
compared with that of vector control tumours (Fig. 5b).

To further define the TAM phenotypes in tumours, we
implanted IL-33 positive tumours in wt and St2� /� knockout
mice23 and isolated TAMs from these tumours. The isolated
primary TAMs from wt and St2� /� backgrounds were subjected
to genome-wide affymetrix analysis. Intriguingly, classical M2
markers including Cd206 (Mrc1), Cd163, Pdl2 (Pdcd1lg2), Ccr3,
Arg1 and many others were all markedly downregulated in TAMs
isolated from the St2� /� background as compared with those
isolated from tumours grown in wt mice (Fig. 5c and
Supplementary Fig. 5c).

We further investigated subpopulations of TAMs using M2
markers by FACS analysis in vector- and IL-33- overexpressed
tumours. For defining the M2 population of macrophages, three
independent cell surface markers including CD206, CCR3 and
PDL2 were used in our FACS analysis. Altogether, three
independent analyses show that F4/80þCD206þ , F4/80þ

CCR3þ and F4/80þPDL2þ M2 subpopulations of macrophages
were significantly increased (Supplementary Fig. 5d–f). However,
the F4/80þCD206� subpopulation was also significantly
increased.

IL-33-primed macrophages promote metastasis. One of the
important characteristics of M2 macrophages is tumour promo-
tion through various processes like metastasis. Since our study
indicated increased tumour metastasis linked to IL-33, we
investigated further the link between IL-33-induced TAMs and
tumour metastasis. TAMs have been described to facilitate

tumour cell invasion, intravasation and dissemination1,24. To
functionally link IL-33-primed TAMs with cancer invasion, we
performed in vitro matrigel cancer invasion experiments in which
tumour cells and macrophages were co-embedded in matrigel as
spheroids. IL-33-treated and non-treated macrophages were
mixed with GFPþ LLC tumour cells and spreading of GFPþ

cells was quantitatively measured. IL-33-stimulated macrophages,
but not non-stimulated cells significantly promoted cancer cell
invasion in this in vitro invasion assay (Fig. 5d). These findings
show that IL-33-primed macrophages promote cancer cell
invasion and possibly metastasis.

We next analysed circulating tumour cells (CTCs) in IL-33 and
vector tumour-bearing mice. Interestingly, a significantly higher
number of CTCs were found in IL-33-tumour-bearing mice as
compared with vector tumour-bearing mice (Fig. 5e). To provide
further evidence of IL-33-induced metastasis, we developed an
independent metastasis model in which luciferase-expressing
primary tumours were implanted in the liver of each mouse.
Although no differences of primary tumour growth were
observed (Fig. 5f), a higher number of IL-33-tumour-bearing
mice developed luciferaseþ pulmonary metastasis as compared
with the vector control group (Fig. 5g). These findings were
consistent with increased CTCs in IL-33-tumour-bearing mice
and showed that IL-33 induced tumour cell intravasation and
metastasis without affecting primary tumour growth.

The IL-33-ST2-TAM axis-dependent metastasis. To mechan-
istically link TAMs and cancer metastasis of IL-33-tumours, we
used clodronate liposomes25 as macrophage-ablating agent to
deplete TAMs. Expectedly, clodronate effectively ablated TAM
numbers in both vector and IL-33-tumours (Fig. 6a). In contrast,
the treatment of tumour-bearing mice with the control liposome
did not significantly affect macrophage numbers in IL-33
tumours as compared with controls. Approximately 50% of
IL-33 tumour-bearing mice possessed visible pulmonary
metastatic nodules on the surface of their lungs at week 6 after
removal of primary tumours (Fig. 6b). Conversely, the vector
tumour control group had a lower rate of pulmonary metastasis.
The lung metastatic lesions were validated by detection of red
fluorescent protein (RFP; Fig. 6b). The depletion of TAMs by
clodronate markedly decreased the metastatic incidences in the
lungs of IL-33 tumour-bearing mice, whereas the low metastatic
rate in vector-tumour bearing mice remained unchanged. These
findings show that IL-33-promoted pulmonary metastasis is
dependent on TAMs and the low metastatic incidence in control
tumour-bearing mice might be mediated through a TAM-
independent mechanism.

To further investigate the TAM-mediated metastatic potentials,
we used a zebrafish metastasis model26–28 that allowed detection

Figure 1 | PDGF-BB induces PDGFRb-dependent macrophage recruitment in tumour cell line grafts tumours of human and mouse origin. (a) Expression

levels of PDGF-BB in conditioned medium of various human tumour cell lines (n¼ 3 samples per group). (b) Iba1þ macrophages (red) in human scrambled

shRNA-A431 and Pdgfb shRNA-A431 squamous carcinomas cell line grafts. Arrowheads indicate tumour-infiltrating macrophages. Scale bar, 50 mm. Iba1þ

TAMs were quantified as areas (n¼ 8 random fields per group). (c) Upper panels: FACS analysis of F4/80þ TAMs in vector-T241 and PDGF-BB-T241

fibrosarcoma cell line grafts and quantification of percentages of F4/80þ macrophages (n¼ 6 samples per group). Lower panels: quantification of F4/80þ

TAMs of immunohistochemical micrographs (n¼8 random fields per group). (d) Iba1þ macrophages (red) in vector-T241 and PDGF-BB-T241, and vector-

and PDGF-BB-LLC tumours. The tumour cells express GFP (green). Arrowheads indicate tumour-infiltrated macrophages. Scale bar, 50 mm. Iba1þ TAMs

were quantified as areas (n¼8 random fields per group). (e) Iba1þ macrophages (green) in vehicle- or imatinib-treated A431 and PDGF-BB-LLC tumours,

and in vehicle-, imatinib-, anti-PDGFRa- or anti-PDGFRb-treated PDGF-BB-T241 tumours. Tissue sections were counter-stained with DAPI (blue).

Arrowheads indicate tumour-infiltrated macrophages. Scale bar, 50mm. Iba1þ TAMs were quantified from eight random fields per group. (f) PDGFRb
(green) and F4/80 (red), or PDGFRa (green) and F4/80 (red) double immunostaining of A431, PDGF-BB-T241 and PDGF-BB-LLC tumours. White

arrowheads indicate F4/80þ macrophages and yellow arrowheads point to PDGFRaþ or PDGFRbþ cells. Scale bar, 25 mm. (g) aSMA (green) and

PDGFRb (red), or NG2 (green) and PDGFRb (red) double immunostaining of vector- and PDGF-BB-T241 tumours. Arrowheads indicate double-positive

signals (yellow). Scale bar, 25mm. (h) RT–PCR and qPCR analyses of Pdgfrb in various cell types. Beta-actin was used as a standard loading (mean±s.e.m.,

NS, not significant, Student’s t-test).
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of the interactions between malignant cells and macrophages at
the single-cell level. This zebrafish metastasis model also permits
kinetic monitoring of tumour cell invasion and metastasis in the

living fish body. Moreover, the availability of certain genetic
strains such as transgenic Fli1:EGFP zebrafish29,30 allows us
to study the event of tumour cell intravasation with or without
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Figure 2 | PDGF-BB-PDGFRb-signalling induces IL-33 expression. (a) Heatmap of top 10 most upregulated and downregulated genes by genome-wide

expression profiling of PDGF-BB-stimulated lung pericytes cultured in vitro. (b) Heatmap of top 10 most upregulated and downregulated inflammation-

related signalling molecules by genome-wide expression profiling of PDGF-BB-stimulated lung pericytes cultured in vitro. (c) qPCR quantification of Il33

mRNA expression levels in PDGF-AA- or PDGF-BB-stimulated lung pericytes cultured in vitro. (PC; n¼ 6 samples per group). NS, not significant. (d) qPCR

quantification of Il33 mRNA expression levels in PDGF-BB-stimulated bone marrow stromal fibroblasts cultured in vitro (SF; n¼ 6 samples per group).

(e) Quantification of mouse IL-33 protein levels of vector- and PDGF-BB-T241 tumours, and scrambled and Pdgfb shRNA-transfected A431 tumours (n¼6

samples per group). (f) qPCR quantification of Il33 mRNA of Adv-Gfp- and Adv-Pdgfb-infected liver tissues (n¼ 6 samples per group). Adv-Gfp-infected

hepatocytes were visualized by a fluorescent microscope. (g) qPCR quantification of Il33 mRNA expression levels in CD31þ , PDGFRbþ and NG2þ cell

populations isolated from vector and PDGF-BB T241 tumours (n¼6 samples per group). Vector and PDGF-BB T241 tumour cells served as controls.

(h) qPCR analysis of Il33 mRNA of vehicle-, anti-PDGFRa-, anti-PDGFRb- or imatinib-treated PDGF-BB-stimulated or non-stimulated lung pericytes

cultured in vitro. (PC; n¼ 6 samples per group; mean±s.e.m., NS, not significant, Student’s t-test).
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co-injection of macrophages. Interestingly, the implantation of
IL-33 tumour cells alone in the perivitelline space did not
significantly display high dissemination (Supplementary Fig. 6a
and b). However, co-implantation of IL-33 tumour cells and
macrophages resulted in massive tumour cell dissemination from
the primary sites and distal metastasis. Interestingly, a substantial
number of IL-33 metastatic tumour cells in distal regions of the

zebrafish body including the head and truck regions were coupled
with co-injected macrophages, suggesting that tumour cells
hijacked IL-33 stimulated macrophages for intravasation and
dissemination. The injected macrophages in vector control
tumours also significantly, albeit modestly, promoted tumour
cell dissemination (Supplementary Fig. 6a and b). In another
experimental setting, macrophages were stimulated with IL-33
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Figure 3 | SOX7 transcription factor mediates the PDGF-BB-PDGFRb-induced IL-33 expression. (a) Western immunoblotting analysis of

phosphorylation of PDGFRb of vehicle-, PDGF-BB- and IL-33-treated lung pericytes cultured in vitro. Beta-actin indicates loading levels. (b) Western

immunoblotting analysis of Erk phosphorylation, Akt phosphorylation of vehicle-, PDGF-BB- and IL-33-treated pericytes. Beta-actin indicates loading levels.

(c) qPCR analysis of Il33 mRNA of vehicle-, U0126- or Akti-1/2-treated PDGF-BB-stimulated or non-stimulated lung pericytes cultured in vitro. (PC; n¼6

samples per group). NS, not significant. (d) Heatmap profiling of transcription factor gene expression of vehicle- and PDGF-BB-stimulated lung pericytes

cultured in vitro. (e) qPCR analysis of Sox7 mRNA expression levels of anti-PDGFRa- or anti-PDGFRb-treated lung pericytes that received PDGF-BB-

stimulation (n¼ 6 samples per group). Vehicle-treated pericytes served as controls (n¼6 samples per group). NS, not significant; PC, pericyte. (f) qPCR

analysis of Il33 mRNA expression levels of vehicle- or PDGF-BB-stimulated lung pericytes that were transfected with scrambled or Sox7 siRNA (n¼6

samples per group). PC, pericyte. (g) Schematic diagram of IL-33 expression in pericytes regulated by the PDGF-BB-PDGFRb signalling through SOX7

transcriptional regulation. PDGF-BB-activated PDGFRb induces SOX7 that targets the SRY boxes located in the Il33 promoter. (h) ChIP assay of SOX7

binding to the Il33 gene promoter. Non-immune IgG and Il33 coding region served as controls (n¼ 6 samples per group) (mean±s.e.m., NS, not significant,

Student’s t-test). Full-gel images for a,b are shown in Supplementary Fig. 9.
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protein in vitro before implantation with tumour cells in vivo.
Again, the IL-33-educated macrophages significantly increased
tumour cell invasion in this zebrafish model (Supplementary
Fig. 6c and d), indicating that IL-33-activated macrophages play a
critical role in cancer metastasis.

To encircle the functional loop between the PDGF-BB-
PDGFRb and IL-33-ST2 signalling pathways in the TAM-
associated cancer invasion and metastasis, we took both
pharmacological and genetic approaches to execute the IL-33
loss-of-function experiments in PDGF-BB tumours. For
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pharmacological blocking of IL-33 functions, we treated PDGF-
BB and vector tumour-bearing mice with a soluble ST2 receptor,
which have been used to effectively block IL-33 functions in other
experimental settings31. Notably, treatment of PDGF-BB tumours
with the soluble ST2 completely blocked the PDGF-BB-elevated
Iba1þ TAMs that returned to the vehicle-treated control level
(Fig. 6c). Similarly, PDGF-BB-expressing LLC tumours grown in
Il33� /� mice also showed significantly decreased infiltration of
TAMs that reached to a similar level of vector tumour grown in
wt mice (Fig. 6c). Furthermore, similar reduction of TAMs in
PDGF-BB tumours was also seen in St2� /� deficient mice
(Fig. 6c). Collectively, these data show that the IL-33–ST2
signalling pathway mediates PDGF-BB-recruited TAMs in the
tumour microenvironment.

Consistent with reduction of TAMs, treatment of PDGF-BB
tumours with the soluble ST2 blocked PDGF-BB-promoted
pulmonary metastasis (Fig. 6d). To further validate these findings,
we studied PDGF-BB-promoted cancer metastasis in Il33� /�

mice32. Primary PDGF-BB tumour growth was not altered in wt
and Il33� /� mice (Supplementary Fig. 6e). However, PDGF-BB
tumour-bearing Il33� /� mice showed attenuated metastasis as
compared with PDGF-BB tumour-bearing wt mice (Fig. 6d). The
presence of pulmonary metastatic lesions was further validated by
GFP positivity. These findings provide compelling evidence that
the IL-33–ST2 signalling pathway mediates PDGF-BB-triggered
cancer metastasis.

Endogenous IL-33 recruits TAMs and promotes metastasis. To
relate our findings to pathophysiological relevance, we analysed
IL-33 expression levels in various tumour tissues. We found that
the Panc02 pancreatic xenograft tumour expressed endogenous
IL-33 at a high level (46,000 pg ml� 1) as compared with other
tumour types (Fig. 7a). Surprisingly, the analysis of IL-33
expression in cultured Panc02 cells in vitro showed only a modest
expression level (o500 pg ml� 1), although this level was higher
than other cultured tumour cells (Fig. 7a). High expression of IL-
33 in vivo tumour tissues but not in vitro cultured Panc02 tumour
cells indicated that host cellular components in tumour tissues
contributed to IL-33 expression. We therefore analysed tumour
tissues and found that Panc02 tumour tissues contained an
extremely high proportion of the stromal component that con-
stituted the majority of the tumour tissues (Fig. 7b). In contrast,
other tumour tissues including those of T241 fibrosarcoma and
LLC lung cancer possessed only little stromal components
(Fig. 7b). These findings are in general agreements with pan-
creatic cancers that contain high stromal cellular components,
which are correlated with an invasive phenotype33.

We localized PDGFRb expression in various tumour xeno-
grafts and found that the Panc02 tumour expressed PDGFRb at a

high level as compared with other tumour types (Fig. 7b).
Moreover, PDGFRb expression was restricted to stromal
fibroblast components and Panc02 tumour cells in vitro have
barely detectable levels of PDGFRb expression (Supplementary
Fig. 7a), supporting the non-tumour cell expression of PDGFRb.
Phosphorylation analysis showed that a substantial proportion of
PDGFRb molecules were phosphorylated in Panc02 tumour
tissue (Fig. 7c). PDGF-BB is a known and potent ligand for the
activation of PDGFRb34. However, PDGF-BB was barely
detectable in Panc02 tumour cells (Supplementary Fig. 7b),
suggesting an alternative mechanism for the PDGFRb activation,
probably through a receptor autophosphorylation mechanism
owing to the formation of receptor dimers or oligomers35–37.
Consistent with the mouse IL-33 fibrosarcoma model, Panc02
tumours also contained an exceptionally high number of TAMs
as compared with other tumour types (Fig. 7b), validating the
causational relation between IL-33 and TAM recruitment.

In a subcutaneous xenograft model, Panc02 tumour-bearing
mice manifested haematogenous metastasis in several organs
including lung and liver (Fig. 7d). Notably, liver metastasis was
the dominant route for Panc02 tumour spreading, whereas
pulmonary metastatic nodules were occasionally
detectable (Fig. 7d). These findings demonstrate that the Panc02
pancreatic tumour is a highly invasive and metastatic cancer type.

TAM-dependent metastasis of high IL-33 tumours. To define
the causational relation between TAMs and Panc02 metastasis,
Panc02 tumour-bearing mice were treated with clodronate lipo-
somes to deplete TAMs. Expectedly, clodronate treatment sig-
nificantly ablated the total number of TAMs in Panc02 tumour
tissues (Fig. 7e). Similarly, Panc02 tumours grown in Il33� /�

mice contained a significantly less number of TAMs as compared
with those tumours grown in wt mice as measured by immu-
nohistochemistry and FACS (Fig. 7e and Supplementary Fig. 7c).
Consistently, significant reduction of IL-33 expression in Panc02
tumours was detected in Il33� /� mice (Supplementary Fig. 7d),
supporting the fact that host cellular components are main sources
of IL-33 production. Importantly, both pulmonary and liver
metastases were markedly inhibited in clodronate-treated and
Il33� /� deficient tumour-bearing mice (Fig. 7f). Finally, multiple
data set network analyses of human tissues from Genemania38

showed that expression of Pdgfrb and Il33 are positively co-
localized (Supplementary Fig. 7e), supporting the existence of a
regulatory pathway in humans as seen in mice. These data further
strengthen our conclusions that IL-33-induced TAMs are largely
responsible for metastasis.

We next analysed gene expression profiles of isolated TAMs
from Panc02 tumours grown in wt and St2� /� mice.
Interestingly, Cd206 (Mrc1) was among the top 10 downregulated

Figure 4 | IL-33 stimulates Raw cell migration through activation of the ST2-intracellular signalling pathways. (a) Left panels: FACS analysis of

F4/80þST2þ mouse Raw macrophage cell line (n¼6 samples per group). Non-immune IgG served as a negative control. Right panel: St2 mRNA

expression in macrophages and stromal fibroblasts. (b) Dose-dependent stimulation of Raw cell migration by IL-33 (n¼ 6 samples per group). Vehicle-

treated macrophages served as controls. (c) Inhibition of IL-33-induced Raw cell migration by a siRNA specifically targeting St2 (n¼ 6 samples per group).

Scrambled siRNA serves as a control. (d) Inhibition of IL-33-induced morphological changes of Raw cells by a siRNA specifically targeting St2. Scrambled

siRNA serves as a control. Arrowheads indicate filopodia sprouts of the IL-33-activated macrophages. Scale bar, 50mm. (e) Cell morphologies of Raw cells

co-cultured 48 h with PDGF-BB- or buffer-stimulated lung pericytes. F4/80 were shown in green (yellow overlapped with phalloidin red). Soluble ST2 was

added to block IL-33 function (200 ng ml� 1). PC, pericyte. Scale bar, 50mm. Arrowheads indicate filopodia sprouts of the IL-33-activated macrophages.

Recombinant IL-33-stimulated mouse Raw cells served as a positive control. (f) Migration of Raw cells co-cultured with PDGF-BB- or buffer-stimulated lung

pericytes in the presence of a soluble ST2 or vehicle (n¼6 samples per group). (g) IL-33 induces phosphorylation of MAPK and p38 at 10 min, and IkBa at

5 min in mouse Raw cells. Beta-actin indicates the loading level in each lane. (h) SiRNA specifically targeting St2 inhibited IL-33-induced phosphorylation of

MAPK, p38 and IkBa in Raw cells. Beta-actin indicates the loading level in each lane. (i) Inhibition of IL-33-induced mouse Raw cell migration by MAPK, p38

and IkBa specific inhibitors (n¼6 samples per group). Vehicle-treated cells served as controls. (j) Inhibition of IL-33-induced Raw cell shape changes by

MAPK, p38 and IkBa specific inhibitors (n¼ 6 samples per group). Vehicle-treated cells served as controls. Arrowheads indicate filopodia sprouts of the IL-33-

activated Raw cells. Scale bar, 50mm (mean±s.e.m., Student’s t-test). Full-gel images for g,h are shown in Supplementary Fig. 9.
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Figure 5 | IL-33 induces infiltration of M2-like TAMs and metastasis. (a) IL-33 expression levels in vector- and IL-33-T241 tumour xenografts (n¼ 6

samples per group). (b) FACS analysis of the total F4/80þ macrophages in vector- and IL-33-T241 tumour tissues (n¼ 5 samples per group). (c) Heatmap

of M1 and M2 related genes by genome-wide expression profiling of F4/80þ cells isolated from Panc02 tumour grafts implanted in wt and St2� /� mice

(n¼ 3 samples per group). (d) In vitro matrigel invasion of GFPþ LLC tumours in the presence of IL-33 or vehicle-stimulated macrophages (n¼6 samples

per group). Arrowheads point to spread GFPþ tumour cells. Scale bar, 100mm. (e) FACS analysis and quantification of RFPþ circulating tumour cells in the

peripheral blood of vector- and IL-33-T241 tumour-bearing mice (n¼ 5 samples per group) at the time point of the average tumour size of 1.5 cm3.

(f) Bioluminescent imaging of tumour-bearing mice implanted in livers with luciferaseþ vector- and IL-33-T241 tumours. Arrowheads point to luciferaseþ

tumours. Quantifications of bioluminescence signals and liver weights (n¼ 5 samples per group). NS, not significant. (g) Bioluminescent imaging of lungs

of luciferaseþ vector- and IL-33-T241 tumour-bearing mice. Arrowheads point to luciferaseþ metastatic nodules. Quantifications of luciferaseþ

pulmonary metastases (n¼ 8 animals per group; mean±s.e.m., NS, not significant, Student’s t-test).
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genes, indicating loss of the M2 phenotype of macrophages in
St2� /� TAMs (Supplementary Fig. 8a). Macrophage metastasis-
related genes including matrix-degradation proteases, angiogenic
factors and direct tumour invasion effectors were analysed39.
Interestingly, among 56 metastasis-related gene products, many
matrix metalloproteinases (MMPs) including Mmp2, Mmp9,
Mmp11, Mmp15, Mmp19 and Mmp28 are among the top 10
downregulated genes in St2� /� TAMs (Fig. 8a). These findings
suggest that TAMs possibly promote cancer invasion through the
production of MMPs. In addition, we also performed genome-
wide gene expression analysis of cytokines, chemokines and their
receptors. However, both upregulation and downregulation of
these cytokines were found (Fig. 8b). Notably, Ccl2 expression
was not altered between St2þ /þ and St2� /� TAMs. Similarly,
Ccl2 expression is not decreased in Panc02 tumours implanted in
St2� /� and Il33� /� mice compared with those in wt mice as
validated by qPCR (Supplementary Fig. 8b). Also, chemokine
receptors were not among top regulated genes between St2þ /þ

and St2� /� TAMs. These data suggest that the CCL2-CCR
signalling is less likely involved in mediating TAM-induced
metastasis in our model system. However, we cannot completely
exclude the possibility of involvement of chemokines and their
receptors in recruiting TAMs.

Discussion
The current work was initiated by our original surprising finding
that PDGF-BB-expressing tumours contained a high number of
TAMs that lacked PDGFR expression. We therefore asked a
crucial mechanistic question: Through what mechanism does
PDGF-BB recruit macrophages? The fact that monocytes and
macrophages lack detectable PDGFR expression implies the
existence of an indirect mechanism that underlies macrophage
recruitment by PDGF-BB in the tumour microenvironment.
To uncover this indirect mechanism, we first analysed
possible receptor types that mediate PDGF-BB-induced
TAM recruitment and demonstrated that PDGFRb, but
PDGFRa, is the crucial receptor mediating PDGF-BB-recruited
TAMs. PDGFRb is primarily expressed in perivascular cells and
stromal fibroblasts as epithelial LLC cancer cells completely lack
PDGFRb expression7. Thus, perivascular cells and stromal
fibroblasts should be the primary cell types responsible for
TAM recruitment.

Pericytes as the main perivascular cell type often exist in tumour
microvasculatures5,7,40 and their functions in tumour growth,
invasion and metastasis are largely unknown. Coverage of
microvessels with pericytes increases maturation and stability of
tumour vessels that would potentially support tumour growth41.
Conversely, pericyte coverage of tumour vessels may prevent
intravasation of tumour cells into the circulation and thus
decreases metastatic potentials42. Therefore, mechanisms of
tumour vasculature-associated pericytes in tumour growth and
metastasis may be complex and somehow paradoxical. In general,
molecular mechanisms of pericyte-derived signalling molecules in
modulation of the tumour microenvironment are overlooked in
the field of cancer research. To date, most studies focus on
characterization of signalling molecules that affect pericyte
proliferation, migration and morphological changes41. Unlike
most other studies, we have taken a genome-wide approach to
define pericyte-derived signalling molecules that affect behaviour
and functions of other cellular components in the tumour
microenvironment. One of the most striking discoveries of our
present study is that IL-33 is the most upregulated gene product in
the whole genome of PDGF-BB-stimulated pericytes. This is an
unexpected discovery because PDGF-BB is known to stimulate
pericyte proliferation and migration. Thus, gene products involving

in cell division, motility and cytoskeleton reorganization would be
expected to be within the top-listed genes of PDGF-BB-stimulated
pericytes. Further, the PDGF-BB-induced IL-33 expression is also
observed in stromal fibroblasts, indicating the existence of a
generally regulatory mechanism of the PDGF-BB-PDGFRb-IL-33
axis. In contrast to pericytes and stromal fibroblasts, vascular
endothelial cells isolated from PDGF-BB-positive tumours did not
show elevated expression levels of IL-33. However, endothelial cells
have been described as the major cellular source of IL-33 in
chronically inflamed tissues under other pathological conditions
such as rheumatoid arthritis and Crohn’s disease43. Perhaps, the
cellular sources of IL-33 are different under different
pathophysiological conditions. We provide mechanistic data to
demonstrate that the PDGF-BB-PDGFRb signalling pathway
modulates the IL-33 promoter activity through the SOX7-
mediated transcriptional regulation. This seems to be a
generalized regulatory mechanism existing in PDGFRbþ cells.
The exceptionally high level of IL-33 in PDGF-BB-stimulated
pericytes suggests the existence of a novel functional pathway since
IL-33 is a relatively newly identified cytokine. Despite its known
functions in the regulation of immune responses12,14,23,32, the role
of IL-33 on monocytes/macrophages is relatively unexplored.
Particularly, the IL-33-triggered signalling in the tumour
microenvironment in relation to inflammation-associated tumour
invasion is unknown.

We showed that monocytes and macrophages express ST2
receptor, which becomes activated in response to IL-33 stimulation.
The interaction between IL-33 and ST2 is functionally meaningful as
downstream signalling components such as MAP kinase become
activated, leading to macrophage migration. IL-33-induced migratory
effect could be important for the recruitment of TAMs in tumours
from peripheral tissues such as those in surrounding tissues and
peripheral blood. TAMs showed a M2-like phenotype characterized
by expression of Cd206 (Mrc1), Cd163, Pdl2 (Pdcd1lg2), Chi3i3, Arg1,
as well as tumour-promoting molecules involved in invasion and
metastasis like MMPs.

The next question is what IL-33-stimulated TAMs do for
tumour growth and invasion. To address this important
functional issue, we have taken both gain-of-function and loss-
of-function approaches. Overexpression of IL-33 in tumours has
no impact on primary tumour growth. However, IL-33 triggers
extensive haematogenous metastasis, which is dependent on
TAMs. These findings are in general agreement with TAM
functions, especially the CD206þ M2 macrophages44 that
facilitate tumour invasion and metastasis. Although TAMs
might affect several steps of the metastatic cascade, the IL-33-
stimulated TAMs are likely to increase intravasation of tumour
cells into the circulation. At this early stage of metastasis, TAMs
may guide tumour cells to transmigrate through the vessel wall by
interacting with the endothelial cells. Again, this is another
example how tumour cells manipulate various host cells for
invasion and metastasis. In contrast to our findings, a recent
study shows that systemic injection of IL-33 stimulates primary
tumour growth and metastasis in a mouse tumour model16. At
this time of writing, the difference between our findings and this
study is unclear. It is plausible that systemic delivery of IL-33
protein in mice as shown in that study could elicit a broad
immune response that favour tumour growth. Consequently, IL-
33-accelerated tumour growth rates are also coupled to increased
metastasis. Thus, in that study, it is unclear whether IL-33-
associated metastasis is owing to large tumour sizes or other
mechanisms. Two published studies also show that IL-33 exhibits
antitumour activity through modulation of cytolytic T cells and
NK cells45,46. In addition, ‘alarmin’ IL-33 may also act as an
immunoadjuvant to inhibit tumour growth47. Although these
findings are primarily focused on the effect of IL-33 on primary
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tumour growth, our data show that IL-33 promotes metastasis
through a distinct mechanism by which metastasis occurs
through a primary tumour size-independent mechanism.

Taken together, our present work not only defines a novel
mechanistic pathway of host cells in the tumour microenvironment

that controls cancer metastasis, but also indicates that TAMs are
the primary cell types that governs the metastatic process (Fig. 8c).
Targeting the PDGF-BB-PDGFRb-IL-33–ST2 signalling axis in the
stromal compartment would provide a novel therapeutic option for
the treatment of cancer and metastasis.
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Methods
Cell culture. PDGF-BB- and vector-transfected T241 fibrosarcoma and LLC stable
cell lines were established by a Murine Stem Cell Virus (MSCV) vector containing
enhanced green fluorescent protein (GFP). The human A431 epidemoid carcinoma
cell line was kindly provided by Dr Keiko Funa from the Gothenburg University,
Sweden. The shRNA-Pdgfb-containing lentivirus (HSH012856, GeneCopoeia) was
amplified in 293 T cells. The infected EGFPþ A431 cells were sorted by FACS and
shRNA efficiency was detected by qPCR. Murine pancreatic cancer cell line Panc02
was kindly provided by Dr Maximilian Schnurr from University of Munich,
Germany. The S17 stromal cells were cultured in a Minimum Essential Medium
Alpha Medium supplemented with 10% fetal bovine serum (FBS)48. Mouse
monocyte/macrophage RAW 264.7 cell line was kindly provided by Dr Martin
Rottenberg from the Karolinska Institutet, Sweden. FACS sorting was used to
isolate primary NG2þ pericytes (NG2 antibody: Catalogue (Cat.) No. AB5320,
Millipore) from mouse healthy lung tissues and F4/80þ TAMs (F4/80 antibody:
Cat No.123122, Biolegend) from mouse tumours. All other cell lines were grown
and maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% FBS. All the cell lines were not authenticated after purchase or transferred
from other laboratories. We routinely tested mycoplasma contaminations in all our
cell lines and they were negative.

Chromatin immunoprecipitation assay. Mouse primary pericytes were used for
the ChIP assay, which was performed according to the manufacturer’s standard
protocol using an EZ-ChIP kit (Cat. No. 17-371, Millipore). In brief, the cells were
fixed with 4% paraformaldehyde (PFA) before sonication with an agarose-blocking
buffer, followed by incubation overnight with 2.5 mg of a non-immune sheep IgG
(Cat. No. 12-515, Millipore) or an anti-SOX7 antibody49 (kindly provided by
Dr Valerie Kouskoff, Cancer Research UK Manchester Institute, United Kingdom)
per immunoprecipitation reaction. To quantitatively analyse relative levels of
precipitated chromatin, quantitative PCR was used with primers directed against
specific fragments of interested genes. The SRY-box containing promoter fragment
of mIL-33 was amplified using the following primers: forward 50-TGCAAGAAGG
CAAATGCTAC-30 ; and reverse 50-ATAGCTGACCTGCCTCCCTAC-30 . To
amplify a control fragment lacking the SRY-box consensus sequence within the
coding region of IL-33, the following primers were used: Forward 50-CACTGATCT
GGAAACTCGCAAC-30 ; and reverse 50-TTATAGCCTGGTCCTTCATCTC-30 .
Fragment amplification in total input was used to adjust the enriched values after
immunoprecipitation.

Animals. All animal studies were approved by the North Stockholm Animal
Ethical Committee. Female C57BL/6 and immunodeficient CB17/Icr-Prkdcscid/
IcrCrl (SCID) mice were provided by the breeding unit of the animal facility of
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Swe-
den. The C57BL/6-Il33� /� mice were generated by Dr Susumu Nakae (University
of Tokyo, Japan). The C57BL/6-T1/ST2� /� mice were generated as described23.
Zebrafish of the Tg(fli1:EGFP)y1 (ZFIN, Eugene) was used for metastasis assay as
described29,30.

Xenograft tumour models and metastasis. Female 4- to 8-week-old C57/B6 or
SCID mice were used. For most experiments, 1� 106 cells per 0.1 ml tumour cells
were subcutaneously injected into the middle region of the dorsal back of each
mouse. In a subset of experiments, tumour cells were stably transfected with a
luciferase-expressing lentiviral vector. After creating an incision 0.5� 106 cells per
0.03 ml tumour cells were injected into the left liver lobe of each mouse. After
tumour cell implantation, the incision was sutured. For subcutaneous tumour
implantation experiments, the tumour size was measured every other day using a
caliper and the tumour volumes were calculated by a standard formula:
Volume¼ Length�Width�Width� 0.52 (ref. 50). For liver tumour
implantation, the tumour sizes were monitored with an IVIS Spectrum CT system
(PerkinElmer). Briefly, tumour-bearing mice were injected with D-luciferin

(150 mg kg� 1, PerkinElmer). Luminescence positive signals were detected by IVIS
Spectrum CT system after 10–20 min injection (PerkinElmer). Subcutaneous pri-
mary tumours were surgically removed at the approximate size of 1.5 cm3. The
mice were observed for 4–6 weeks for development of metastases. Once the mice
were killed, the organs including liver and lungs were removed and surface
metastases were photographed. Metastatic lesions were detected by haematoxylin
and eosin (H&E) histological analysis and fluorescent microscopy.

Drug treatment. For depletion of macrophages, 100ml control or clodronate
liposomes (dichloromethylene bisphosphonate; ClodronateLiposomes, The Nether-
lands) were intravenously injected every 4 days starting from 3 days before tumour
implantation and continued until primary tumour removal. The mice were kept for
an additional 4–6 weeks for the detection of metastases. For IL-33 neutralization
in vivo, tumour-bearing mice were daily treated by subcutaneous injection with
phosphate-buffered saline (PBS) or a soluble ST2 (sST2, 0.1 mg per mouse)31 starting
from 1 day before tumour cell injection. After surgical removal of primary tumours,
the treatment was terminated and the mice continued for metastasis experiments.
For specifically neutralizing PDGFRs, an anti-PDGFRa (PDGFRa blockade, IH3,
ImClone Inc.) or an anti-PDGFRb (PDGFRb blockade 2C5, ImClone Inc.) was
intraperitoneally injected (0.8 mg per mouse) twice per week for 2 weeks. The
tumours were collected for further experimentation. For imatinib (LC Laboratories,
Woburn, MA, USA) treatment, the mice were orally administrated with imatinib
(50 mg kg� 1 daily). For metastasis experiments, imatinib treatment was terminated
after primary tumour removal and the experiments were continued for 4–6 weeks. A
lethal dose of CO2 was used to kill the animals.

Whole-mount staining. The whole-mount protocols in our laboratory were
used25,51,52. Briefly, fresh tumour tissues were fixed with 4% PFA at 4 �C overnight
and the fixed tissues were cut into small pieces and digested with proteinase K
(20 mM) in a Tris buffer, permeabilized with 100% methanol, washed and blocked
overnight with 3% milk in 0.3% Triton X-100 in PBS. Primary antibodies against
Iba1 (rabbit, Cat. No. 019-19741, WAKO), F4/80 (Rat, Cat. No. MCA497G, AbD
Serotec), F4/80 (Rabbit, Cat. No. NBP2-12506, Novus Biologicals) and Ki67 (Rat,
Cat. No. 14-5698-82, eBioscience) were incubated overnight at 4 �C, followed by
washing, blocking with 3% milk and incubation with fluorescent-conjugated
secondary antibodies for 2 h at room temperature. Additional washing was
performed before mounting. The stained tissues were mounted with Vectashield
mounting medium (Cat. No. H-1000, Vector Laboratories). Fluorescent signals
were examined with a confocal microscope (Zeiss LSM510 Confocal, or Nikon C1
Confocal microscope) and quantitative analysis was performed with a Photoshop
(CS5) software.

Affymetrix gene-array analysis. The primary pericytes isolated from the lung
tissues were treated with or without 100 ng ml� 1 human PDGF-BB for 5 days and
RNA samples were prepared using an RNAeasy kit (Qiagen) and hybridized using
Affymetrix 1.0 ST Gene arrays. The sample preparation and analysis method for
microarrays of PDGF-BB-treated pericytes is described as follows53. Triplicates of
each sample were used for gene expression analysis. Normalization and analysis for
differentially expressed genes are performed using robust multi-array analysis and
significance analysis of microarrays (SAM) via R statistical software packages, oligo
and samr. Heatmaps were presented for up- and downregulation of gene
expression using the Multiple Experiment Viewer system (version 4.7). Survival
data and gene expression data of uterine carcinosarcoma patients and kidney renal
papillary cell carcinoma patients from The Cancer Genome Atlas (TCGA) is
analysed for IL-33-high (above mean) and IL-33-low (below mean) groups. For
breast cancer, the top 25% IL-33-high and lowest 25% IL-33-low groups were
analysed. The statistical difference was analysed using Kaplan–Meier survival
method followed by log-rank test.

Figure 6 | IL-33 mediates PDGF-BB-stimulated cancer metastasis through a TAM-dependent mechanism. (a) Clodronate effectively inhibited Iba1þ

macrophage infiltration (green) in IL-33-T241 tumours. Tumour cells were labelled with RFP (red). Arrowheads indicate TAMs. Quantification of Iba1þ

macrophage in clodronate-treated and non-treated vector- and IL-33-T241 tumours (n¼ 8 random fields per group). (b) Lung metastasis in clodronate-

treated and non-treated vector- and IL-33-T241 tumour-bearing mice. Arrowheads indicate lung surface metastatic nodules. Dashed line marks the border

between the RFPþ metastatic nodule and surrounding lung tissues. T, tumour. Quantification of percentage of animals with pulmonary metastasis on the

surface of lungs (n¼ 10–16 mice per group). (c) Detection of Iba1þ macrophages (red) and tumour cells (green) in vehicle- and soluble ST2-treated PDGF-

BB-T241 tumours implanted in wt mice. Iba1þ macrophages (red) were also detected in PDGF-BB-T241 tumours implanted in St2� /� mice. Vector-T241

tumour serves as a control. The detection of Iba1þ macrophages (red) and tumour cells (green) in PDGF-BB-LLC tumours implanted in wt and Il33� /�

mice. Vector-LLC tumour serves as a control. Arrowheads indicate Iba1þ macrophages. Quantification of Iba1þ macrophages (n¼8 random fields per

group). (d) Pulmonary metastasis in vehicle- and soluble ST2-treated PDGF-BB-T241 tumour-bearing mice. Pulmonary metastasis in PDGF-BB-LLC

tumour-bearing wt and Il33� /� mice. Metastases were detected by gross examination of lung surface, fluorescent detection for GFPþ signals and

histological staining with H&E. Arrowheads indicate lung and liver surface metastases in tumour-bearing mice. Dashed lines encircle the borders between

tumour nodules and surrounding tissues. T, tumour. Quantification of lung surface metastases in tumour-bearing mice (n¼8–10 mice per group;

mean±s.e.m., NS, not significant, Student’s t-test).
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Stable expression of IL-33 in tumour cell lines. The full-length complementary
DNA (cDNA) sequence coding human IL-33 was cloned into an expression vector,
pLVX-IRES-tdTomato Vector (Cat. No. 631238, Clontech). Briefly, 293 T cells

were transfected with the vector containing the cDNA sequence coding for human
IL-33 using a Lenti-X HTX Packaging System (Clontech). Murine T241 fibro-
sarcoma cells were cultured with the filtered viral supernatants overnight. RFPþ
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cells were sorted by FACS and the IL-33 expression level was quantified by an
ELISA (enzyme-linked immunosorbent assay) assay.

Intracellular signalling inhibition and immunoblotting. Pericytes and macro-
phages were starved in 2% FBS-DMEM overnight, followed by pre-treatment with

selective inhibitors against MEK1/2 (U0126, Cat. No. 1144, Tocris Bioscience), p38
(SB203580, Cat. No. 1202, Tocris Bioscience), IkBa (Withaferin A, Cat. No. 2816,
Tocris Bioscience) or AKT1/2 (AKTi-1/2, Cat. No. ab142088, Abcam) for 1 h
before stimulation with either IL-33 or PDGF-BB (50 ng ml� 1) for 10 min or 24 h,
and the cell lysates were collected for protein or RNA analyses.
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Figure 8 | Genome-wide profiling of wt and St2� /� TAMs and survival correlation of IL-33 expression in grafted tumours. (a) Heatmap of top 10

metastasis-related genes by genome-wide expression profiling of F4/80þ cells isolated from Panc02 tumours implanted in wt and St2� /� mice (n¼ 3

samples per group). (b) Heatmap of top 10 up- and top 10 down-most cytokines, chemokines and their receptor genes by genome-wide expression

profiling of F4/80þ cells isolated from Panc02 tumours implanted in wt and St2� /� mice (n¼ 3 samples per group). (c) Schematic diagram shows in

pericytes and stromal fibroblasts the PDGF-BB-PDGFRb-IL-33-ST2 axis-recruited macrophages in switching a noninvasive tumour to a highly invasive

tumour.

Figure 7 | IL-33-recruited macrophages mediate cancer metastasis in a pancreatic tumour model. (a) ELISA detection of IL-33 protein expression levels

in various xenograft tumour tissues and in cultured tumour cell lines (n¼ 6 samples per group). PDGF-BB-stimulated and non-stimulated pericytes served

as positive controls. (b) Immunostaining of PDGFRbþ signals and Iba1þ macrophages in T241, LLC and Panc02 tumours. Upper two panels were counter-

stained with H&E, or PDGFRb and haematoxylin. Lower middle panels were double stained with DAPI (blue). Black and white arrowheads point to

PDGFRbþ signals. Red arrowheads indicate Iba1þ macrophages. Quantification of PDGFRbþ signals and Iba1þ macrophages (n¼ 8 random fields per

group). NS, not significant. (c) Immunoblotting detection of total and phosphorylated PDGFRb in Panc02 tumour tissues. Vector- and PDGF-BB-T241 or -

LLC tumour tissues were used as controls. (d) Pulmonary and hepatic metastasis in wt T241-, LLC- and Panc02-tumour-bearing mice. Metastases were

detected by gross examination of lung surface and liver surface, and histological staining with H&E. Arrowheads indicate lung and liver surface metastases

in Panc02 tumour-bearing mice. Dashed lines encircle the borders between tumour nodules and surrounding tissues. T, tumour. Quantification of lung and

liver surface metastases in tumour-bearing mice (n¼ 8–10 mice per group). (e) Detection of Iba1þ macrophages (red) and tumour cells (green) in

clodronate- and vehicle-treated Panc02-GFPþ tumours implanted in wt mice. Iba1þ macrophages (red) were also detected in Panc02-GFPþ tumours

implanted in Il33� /� mice. Wild type of mice serves as a control. Arrowheads indicate Iba1þ macrophages. Quantification of Iba1þ macrophages

(n¼8 random fields per group). (f) Pulmonary and hepatic metastasis in clodronate- and vehicle-treated Panc02-GFPþ tumour-bearing mice, and wt or

Il33� /� mice with Panc02-GFPþ implantation. Metastases were detected by gross examination of lung surface and liver surface, and histological staining

with H&E. Arrowheads indicate lung and liver surface metastases in tumour-bearing mice. Dashed lines encircle the borders between tumour nodules

and surrounding tissues. T, tumour. Quantification of lung and liver surface metastases in tumour-bearing mice (n¼ 8–10 mice per group; mean±s.e.m.,

NS, not significant, Student’s t-test). Full-gel images for c are shown in Supplementary Fig. 9.
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The fraction of total cell lysate protein was prepared using a Triton X-100-based
cell lysis buffer containing a cocktail of proteinase (Cat. No. 8340, Sigma) and
phosphatase inhibitors (Cat. No. 5870, Cell Signaling). For protein separation, a
standard molecular weight marker (Cat. No. 26616, Thermo Scientific) and an
equal amount of protein from each sample were loaded on a SDS–PAGE
(polyacrylamide gel electrophoresis) gel (Cat. No. NP0321/NP0323, Life
Technologies), followed by transferring onto a nitrocellulose membrane (Cat. No.
88018, Thermo Scientific), which was subsequently blocked with 5% BSA (Cat. No.
A7030-100MG, Sigma) for 30 min. Incubation with a specific primary antibody
followed by an anti-mouse secondary antibody conjugated with IRDye 680RD
(LI-COR, Lincoln, NE, USA; 1:15,000) or an anti-rabbit secondary antibody
conjugated with IRDye 800CW (LI-COR, Lincoln, NE, USA; 1:15,000). Target
proteins were detected using an Odyssey CLx system (LI-COR). Beta-actin was
used as a control for all blots. The primary and secondary antibodies include: a
mouse anti-mouse b-actin (Cat. No. 3700, Cell Signaling), a rabbit anti-mouse
AKT (Cat. No. 9272, Cell Signaling), a mouse anti-mouse Phospho-AKT (Cat. No.
4051, Cell Signaling), a rabbit anti-mouse ERK (Cat. No. 4695, Cell Signaling), a
rabbit anti-mouse Phospho-ERK (Cat. No. 9101, Cell Signaling), a rabbit anti-
mouse IkBa (Cat. No. 4812, Cell Signaling), a rabbit anti-mouse Phospho-IkBa
(Cat. No. 2859, Cell Signaling), a rabbit anti-mouse p38 (Cat. No. 9212, Cell
Signaling) and a rabbit anti-mouse Phospho-p38 (Cat. No. 4631, Cell Signaling).
Full-gel images are shown in Supplementary Figs 9 and 10.

Phalloidin staining. Subconfluent monolayers of cells grown on cover slips were
fixed with 4% PFA in PBS, followed by permeabilization with 0.1% Triton X-100.
Cover glasses were inverted onto a drop of the fluorescent (TRITC) phalloidin
conjugate (Cat. No. P1951, Sigma) in PBS and were incubated for 40 min at room
temperature. The mounting of cover glasses onto slides was done using the
Vectashield mounting medium containing DAPI (Cat. No. H-1200, Vector
Laboratories).

Co-culture. Macrophages were starved in 2% FBS overnight and seeded on cov-
erslips. Prior to co-culture, pericytes were stimulated with PDGF-BB (50 ng ml� 1)
for 24 h. An equal number of pericytes and macrophages (1� 104 cells ml� 1) were
co-seeded in each well of a 24-well plate. Macrophages stimulated with recombi-
nant IL-33 (50 ng ml� 1) were served as a positive control. A soluble ST2 protein
(200 ng ml� 1) was added to block IL-33 function. Co-cultures were kept at 37 �C
for 24 h before fixation with 4% PFA, permeabilization with 0.1% Triton X-100 in
PBS, staining with a rabbit anti-mouse F4/80 antibody (Cat. No. NBP2-12506,
Novus Biologicals), followed by incubation with a Alexa Fluor 488-labelled donkey
anti-rabbit conjugated secondary antibody (Cat. No. A21206, Invitrogen). The cells
were subsequently stained with TRITC-conjugated Phalloidin (50 mg ml� 1.
Cat. No. P1951, Sigma) and mounted with a Vectashield mounting medium
containing DAPI (Cat. No. H-1200, Vector Laboratories) to visualize cell nuclei.
Morphology was examined under a fluorescent microscope (Nikon Eclipse C1)
at � 20 magnification.

Matrigel invasion assay. GFP-labelled LLC tumour cells (1� 104 cells ml� 1)
were mixed with an equal number of macrophages and seeded onto low adhesion
96-well plates with rounded bottom (Nunc low cell binding MicroWell plate. Cat.
No. Z721093-8EA, Sigma). Mixed cells were co-cultured for 24 h. Spheres were
stimulated with 50 ng ml� 1 IL-33 and mixed with growth factor reduced matrigel
matrix (Cat. No. 354230, Corning) on ice before seeding into a 96-well plate. Bright
field pictures were taken immediately after matrigel solidification (time point 0 h)
using a light microscope. Spheres were subsequently incubated for 36 h before
imaging (Nikon Eclipse C1) to distinguish GFP-labelled tumour cells. Matrigel-
invading cells were manually counted using Photoshop software.

RNAi experiments. Monolayers of cells cultured to about 70% confluency were
subjected for siRNA transfection using the protocol as recommended by the
manufacturer (Dharmacon). The following siRNAs (Dharmacon) were used: ON-
TARGETplus SMARTpool siRNA against Sox7 (Cat. No. L-044294-01-0005), Il1rl1
(Cat. No. L-040418-01-0005) against St2, and scrambled control (Cat. No.
D-001810-01-20). For transfection, siRNA at a final concentration of 25 nM with
the DharmaFECT transfection reagent 1 (Cat. No. T-2001-02, Thermo Scientific)
was used. The qPCR analysis was used to quantify the expression levels of siRNA-
targeted genes.

Chemotaxis assays. A modified Boyden chamber protocol was used to measure
cell migration. Nitrocellulose membrane with the pore size of 8 mm was coated with
1% gelatine. The IL-33 chemo attractant at 50 ng ml� 1 was diluted in medium and
added to lower chambers. Typically, the cells were pre-incubated for 1 h with
inhibitors before seeding to upper wells (3� 104 per well). Cell-containing
chambers were incubated at 37 �C for 4 h. The cells were fixed with 100%
methanol, followed by staining with Giemsa dye (Cat. No. GS500-500 ML, Sigma).
The cells facing the upper chamber were stripped and the cell numbers facing the
lower chambers were counted under a light microscope (Nikon eclipse, TS100). At
least six samples per group were used for quantification and statistical analyses.

Zebrafish metastasis model. Fertilized zebrafish (Danio rerio) eggs were incu-
bated at 28 �C in Danieau’s solution and cultivated under standard laboratory
conditions. Zebrafish embryos at 24 h post fertilization were incubated with water
containing 0.2 mM 1-phenyl-2-thio-urea (Sigma) to prevent pigmentation. At 48 h
post fertilization, zebrafish embryos were dechorionated by a pair of sharp tip
forceps and anaesthetized with 0.04 mg ml� 1 of tricaine (MS-222, Sigma).
Anaesthetized embryos were transferred onto an agarose gel mode for micro-
injection. The tumour cells and macrophages were labelled in vitro with 2 g ml� 1

of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI, Sigma,
USA) and Vybrant DiD cell-labelling solution (DiD, Life Technologies, USA),
respectively. The tumour cells (300–500 cells) were resuspended in 5 nl serum-free
DMEM (Hyclone) were injected into the perivitelline space of each embryo using
an Eppendorf microinjector (FemtoJet 5247, Eppendorf and Manipulator MM33-
Right, Märzhäuser Wetziar). Non-filamentous borosilicate glass capillary needles
were used for microinjection (1.0 mm in diameter, World Precision Instruments,
Inc.). After injection, the fish embryos were immediately transferred into aquarium
water containing 0.2 mM 1-phenyl-2-thio-urea. The injected embryos were kept at
28 �C and were examined at day 4 for monitoring tumour growth and invasion
using a fluorescent microscope (Nikon Eclipse C1).

ELISA assay. Tissue and in vitro cell samples lysed with a lysis buffer (Cat. No.
3228, Sigma), followed by 20-min centrifugation to remove cellular debris. Plasma
samples were obtained from whole blood processed by collection into anti-coa-
gulant-containing plasma tubes followed by 15-min centrifugation. Conditional
media were collected at 48 or 72 h of confluent monolayer cells and were cen-
trifuged to remove cellular debris before use. Four different assays were performed
according to manufacturer’s protocol to detect hPDGF-BB (Cat. No. DY220, R&D
Systems), mPDGF-BB (Cat. No. MBB00, R&D Systems), mIL-33 (Cat. No. M3300,
R&D Systems) or hIL-33 (Cat. No. 435907, BioLegend). Optimal standard curves
were applied to individual assays and the absorbance values were detected at
450 nm using a microplate reader.

qPCR and RT–PCR analyses. A QIAzol-based protocol was used for the extrac-
tion of RNAs from tissue samples. Briefly, a QIAzol lysis reagent (Cat. No. 79306,
Qiagen) was added to small pieces of tissues followed by homogenization. The
samples were incubated on ice for 15 min before adding chloroform and thor-
oughly mixed by vortex followed by 20 min centrifugation. RNA-containing
supernatants were mixed with 100% ethanol and subsequently applied to a RNA
extraction column provided in the RNA extraction kit (Cat. No. K0732, Thermo
Scientific). All the procedures were performed according to the manufacturer’s
instruction. For RNA extraction from cells, a 2-mercaptoethanol (Cat. No. 3148,
Sigma)-containing buffer was applied to lysed cells. Total RNA concentrations
were measured with a nanodrop (Thermo Scientific) and an equal amount of RNA
from each sample was used for cDNA synthesis using a RevertAid cDNA synthesis
kit (Cat. No. K1632, Thermo Scientific). The cDNAs were subsequently used for
qPCR with SYBR Green (Cat. No. 4367659, Life Technologies) using a StepOne-
Plus detectable system (Applied Biosystems); or the RT–PCR analysis with
DreamTaq (Thermo Scientific) amplification in a thermal cycler (Cat. No. 2720,
Applied Biosystems). The amplified products were separated on a GelRed (Cat. No.
41003, Biotium)-supplemented agarose gels and were detected in a Gel Doc XRþ

(Bio-Rad). The reactions and PCR cycles were performed according to standard
protocols recommended for SYBR Green and DreamTaq. All the qPCR data were
presented as relative quantification and Gapdh was used as an internal control. Beta
actin was used as loading control for RT–PCR analysis. The primers used in our
experiments were shown as follows: mGapdh forward: 50-CCAGCAAGGA-
CACTGAGCAA-30 , mGapdh reverse: 50-GGGATGGAAATTGTGAGGGA-30

mIl33 forward: 50-ATGGGAAGAAGCTCATGCTG-30 , mIl33 reverse: 50-
CCGACGACTTTTTCTGAAGG-30 ; mSox7 forward: 50-GACACCTTGGAT-
CAGCTAAGCC-30 , mSox7 reverse: 50-CCTCCAGCTCTATGACACACTG-30 ;
mSt2 forward: 50-ATTCAGGGGACCATCAAGTG-30 , mSt2 reverse: 50-
CGTCTTGGAGGCTCTTTCTG-30 ; mbactin forward:50-AGGCCCAGAGCAA-
GAGAGG-30, mbactin reverse:50-TACATGGCTGGGGTGTTGAA-30 , hPdgfrb
forward: 50-GAGATGCTGAGTGACCACTC-30, hPdgfrb reverse: 50-
CGAATGGTCACCCGAGTTTG-30 ; hGapdh forward: 50-CATTTCCTGGTAT-
GACAACGA-30 , hGapdh reverse: 50-GTCTACATGGCAACTGTGAG-30 .

Immunohistochemistry. The PFA-fixed tumour tissues were embedded in par-
affin, cut to 5-mm-thick sections using a microtome, and transferred onto glass
slides. After baking, the slides were processed through serial steps to deparaffinize
in Tissue-Clear (Cat. No. 1466, Sakura) and rehydrate tissues in 99–95–70%
ethanol. For cryosection staining, tissue slides were fixed with acetone (Cat. No.
32201, Sigma). Rehydrated tissues were washed in PBS, boiled in a unmasking
solution and subsequently blocked with 4% serum before incubation overnight at
4 �C with primary antibodies against F4/80 (Rabbit, Cat. No. NBP2-12506, Novus
Biologicals), Iba1 (rabbit, Cat. No. 019-19741, WAKO), PDGFRa (Rat, Cat. No.
14-1401-82, eBioscience), PDGFRb (Rat, Cat. No. 14-1402-81, eBioscience), NG2
(Rabbit, Cat. No. AB5320, Millipore) or aSMA (mouse, Cat. No. M0851, DAKO).
The tissue slides were incubated for 30 min with fluorescent-labelled secondary
antibodies including: an Alexa Fluor 555-labelled goat anti-rat antibody (Cat. No.
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A21434, Invitrogen); an Alexa Fluor 488-labelled donkey anti-mouse (Cat. No.
A21202, Invitrogen); and an Alexa Fluor 488-labelled donkey anti-rabbit
(Cat. No. A21206, Invitrogen) antibody. The slides were thoroughly washed and
mounted with Vectashield containing DAPI. The positive signals were analysed
under a fluorescence microscope (Zeiss LSM510 Confocal, or Nikon C1 Confocal
microscope).

H&E staining. The paraffin-embedded tumour and healthy tissues were cut into 5-
mm-thick sections and mounted onto glass slides, which were deparaffinized in
Tissue-Clear (Cat. No. 1466, Sakura) and rehydrated in 99–95–70% ethanol. The
tissue slides were stained with haematoxylin and counterstained with eosin before
being dehydrated with 95–99% ethanol and mounted with PERTEX (Cat. No.
00801, HistoLab). The stained tissues were analysed under a light microscope
(Nikon Eclipse TS100).

FACS analysis. At the tumour size of approximately 1.5 cm3, fresh blood was
intracardiacally collected using a heparinized syringe immediately after the mice
were killed. About 2.5 ml of a red blood cell lysis buffer (Cat. No. 00-4333-57,
eBioscience) was added to 250ml of fresh blood from each mouse. After 3 min
incubation, the lysis reaction was stopped by the addition of 10 ml PBS. After
centrifugation, the cell pellets were resuspended in 1% PFA–PBS. The cell samples
were analysed by FACS (BD). Healthy mouse blood and RFPþ tumour cells were
used as controls. For TAMs analysis, freshly dissected subcutaneous tumour tissues
were collected, followed by immediately cutting into small pieces and digested with
0.15% collagenases I and II at 37 �C for 60 min. The single-cell suspension was
prepared by a 0.40-mm filter. The cells were stained for 45 min on ice with primary
antibodies. An Alexa Fluor 647 anti-mouse F4/80 antibody (Cat. No. 123122,
BioLegend), a PE anti-mouse CD206 antibody (Cat. No. 141705, BioLegend), a
FITC-labelled anti-mouse CCR3 antibody (Cat. No. 144509, BioLegend), an anti-
mouse PDL2 antibody (Cat. No. 107202, BioLegend) and an anti-mouse ST2
antibody (Cat. No. 145301, BioLegend) were used as primary antibodies. An Alexa
Fluor 555 anti-rat antibody (Cat. No. A21434, Invitrogen) and an Alexa Fluor 488
anti-rat antibody (Cat. No. A21208, Invitrogen) were used as secondary antibodies.
For Ki67 and CTC analysis, before primary antibody staining, the cells were per-
meabilized with 0.3% Triton X-100 in PBS for 10 min. The stained cells were
analysed by FACScan (BD) or MoFlo XTD (Beckman Coulter).

Adenovirus. An adenovirus-GFP (Adv-Gfp, 1� 109 PFU) and an adenovirus
vector expressing PDGF-BB (Adv-Pdgfb, 1� 108 PFU) were intravenously injected
into each of the immunodeficient SCID mice on day 0 or day 3. The mice were
killed at day 14 after virus injection. The mouse livers were used for immuno-
histochemistry and qPCR analyses.

Statistical analysis. The sample sizes were carefully chosen for each experiment
on the basis of pilot experiment examinations and sufficient statistic powers. For all
animal studies, at least eight animals per group were used to ensure the adequate
power. The animals were excluded from the analysis if they did not meet the pre-
established criteria of the Karolinska Institute Template. In all animal experiments,
the experimental animals were randomly and blindly divided into each group to
receive various treatments. A standard two-tailed Student’s t-test was used for all
the statistical analyses. All the sample sizes were appropriate for assumption of
normal distribution and variance was similar between the compared groups. The
statistical values of Po0.05, Po0.01 and Po0.001 were considered statistically
significant. The values of mean determinants are presented as ±s.e.m.
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