
MIT Open Access Articles

Comparison of simulated parallel transmit body 
arrays at 3 T using excitation uniformity, global 
SAR, local SAR, and power efficiency metrics

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Guérin, Bastien; Gebhardt, Matthias; Serano, Peter et al. “Comparison of Simulated 
Parallel Transmit Body Arrays at 3 T Using Excitation Uniformity, Global SAR, Local SAR, and 
Power Efficiency Metrics.” Magnetic Resonance in Medicine 73, 3 (April 2014): 1137–1150 © 2014 
Wiley Periodicals, Inc.

As Published: http://dx.doi.org/10.1002/mrm.25243

Publisher: Wiley Blackwell

Persistent URL: http://hdl.handle.net/1721.1/110707

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110707
http://creativecommons.org/licenses/by-nc-sa/4.0/


Comparison of simulated parallel transmit body arrays at 3 T 
using excitation uniformity, global SAR, local SAR and power 
efficiency metrics

Bastien Guérin1, Matthias Gebhardt2, Peter Serano1, Elfar Adalsteinsson3,4, Michael 
Hamm2, Josef Pfeuffer2, Juergen Nistler2, and Lawrence L. Wald1,4

1Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, 
Charlestown USA

2Siemens Healthcare, Erlangen Germany

3Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 
Cambridge USA

4Harvard-MIT Division of Health Sciences Technology, Cambridge USA

Abstract

Purpose—We compare the performance of 8 parallel transmit (pTx) body arrays with up to 32 

channels and a standard birdcage design. Excitation uniformity, local SAR, global SAR and power 

metrics are analyzed in the torso at 3 T for RF-shimming and 2-spoke excitations.

Methods—We used a fast co-simulation strategy for field calculation in the presence of coupling 

between transmit channels. We designed spoke pulses using magnitude least squares (MLS) 

optimization with explicit constraint of SAR and power and compared the performance of the 

different pTx coils using the L-curve method.

Results—PTx arrays outperformed the conventional birdcage coil in all metrics except peak and 

average power efficiency. The presence of coupling exacerbated this power efficiency problem. At 

constant excitation fidelity, the pTx array with 24 channels arranged in 3 z-rows could decrease 

local SAR more than 4-fold (2-fold) for RF-shimming (2-spoke) compared to the birdcage coil for 

pulses of equal duration. Multi-row pTx coils had a marked performance advantage compared to 

single row designs, especially for coronal imaging.

Conclusion—PTx coils can simultaneously improve the excitation uniformity and reduce SAR 

compared to a birdcage coil when SAR metrics are explicitly constrained in the pulse design.
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Introduction

The degrees of freedom (DOFs) provided by parallel transmission (pTx) coils can be used to 

trade-off excitation fidelity, SAR (local and global) and power. We have shown previously 

that the optimal operating point of a pTx array, i.e. the radio-frequency (RF) pulse achieving 

the optimal trade-off between the above-mentioned quantities, can be quickly computed 

using a constrained optimization strategy that simultaneously constrain local SAR, global 

SAR, peak and average power on every channel (1). In this approach, computationally 

efficient local SAR constraint over the whole-body is achieved using a compression of the 

local SAR matrices called virtual observation points (VOPs) (2). A significant advantage of 

the VOP compression over alternative techniques including that proposed by Sbrizzi et al. 

(3) is the guarantee that the compression error always results in an overestimation of local 

SAR. This property ensures the safety of the patient by guaranteeing that the maximum 

tolerated local SAR limit is never exceeded. Design of RF pulses using a constrained 

optimization strategy as opposed to a regularized algorithm allows generating the best 

possible excitations consistent with regulatory (i.e., SAR) and system (i.e., power) limits 

without user intervention. Regularized pulse design approaches are also able to control local 

SAR (4), global SAR (5) and power (6,7) however they require manual tuning of the 

Lagrange multipliers associated to every controlled quantity. This becomes burdensome as 

the number of transmit channels increases and when controlling local SAR (e.g., 

simultaneous constraint of local and global SAR as well as power on every channel typically 

requires control of a few hundreds parameters) (8). A drawback of constrained optimization 

is that it is slower than regularized optimization because the Lagrange multipliers are solved 

for in addition to the RF pulse. However, we have shown that constrained spoke pulse 

design with more than 11 spokes (which is much greater than what is usually required) and 

more than 1,300 SAR and power constraints can be made fast enough for use in clinical 

environment using a dedicated primal-dual algorithm (i.e., <10 seconds for a single LS 

spoke pulse on an Intel i7 2.80 GHz CPU and <2 minutes for an MLS spoke pulse) (1).

Intuitively, it is clear that increasing the number of transmit channels should improve the 

ability of such a pulse design algorithm to find advantageous trade-offs between excitation 

fidelity, SAR and power. However, given the cost of high-power RF amplifiers, it is 

important to determine the incremental performance improvement brought by additional 

transmit channels under realistic power budget assumptions for specific pTx coil geometries 

and configurations. In analogy with the optimization of receive coils, the benefit of 

additional transmit channels also likely depends on the imaging application, in particular the 

region of the body being imaged and the amount of acceleration needed (9-11). Finally, we 

point out that since SAR, and more specifically local SAR, is often the limiting factor in pTx 

imaging (1,4,12-15), it is important to evaluate not only the encoding capability of pTx coils 

but also their ability to decrease, or at least maintain, SAR. A good way to characterize the 

SAR vs. excitation fidelity trade-off of a pTx array is to plot on a single graph different 

pulses achieving different trade-offs between these two quantities (L-curve). L-curves 

associated with different arrays on a single graph allow comparing their relative 

performance for a wide range of operating points. It is important not to concentrate on a 
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single operating point for each design as L-curves may cross, indicating a reversal in the 

relative performance of two coil arrays for a certain threshold value of the excitation fidelity.

Harvey et al. used finite element modeling (FEM) of a 16-channels 3 T body pTx coil 

loaded with a simplified human torso model to assess the impact of reducing the number of 

transmit modes on the static RF-shimming excitation fidelity and power (16). They found 

that using two transmit modes (equivalent to two channels) improved the uniformity of static 

RF-shimming by 80% compared to conventional quadrature birdcage excitations. This 

benefit came at the price of a 50% increase in power consumption however. They also found 

that increasing the number of transmit modes beyond two did not significantly improve the 

quality of RF-shimming excitations but increased power consumption even further. This 

work was limited to static RF-shimming and did not consider other performance metrics 

such as global SAR and local SAR. Furthermore, the authors used an un-regularized pulse 

design approach, which made it impossible to explore a range of operating points of the 

arrays (they plot a single operating point). Kozlov and Turner proposed a co-simulation 

strategy allowing fast simulation of coupled pTx coils (17) and used it to compare the 

performance of coils with various numbers of transmit channels in both the circumferential 

and the z-direction (18,19). Although they did find significant differences between the fields 

created by each of these arrays, they did not perform pulse design and therefore were not 

able to assess the impact of additional transmit channels on pTx performance.

Lattanzi et al. (20,21) proposed an analytical framework for the calculation of the lowest 

possible global SAR consistent with a given excitation quality for static RF-shimming. To 

do so, they constructed a basis set of electromagnetic fields in uniform spheres and used the 

elements of this basis as the “transmit channels” in a pulse design algorithm. As the rank of 

the basis set was increased (i.e., more and more modes were added to the basis), the global 

SAR vs. excitation fidelity trade-off approached the ultimate trade-off achievable by any 

coil. PTx coils with uncoupled circular loops were also analyzed. This study showed that 

increasing the number of transmit channels improves the global SAR vs. excitation fidelity 

trade-off. However, this type of analytical approach is limited to the simulation of uniform 

spheres and cannot handle local SAR. Childs et al. compared the RF power vs. excitation 

fidelity trade-off of a coil with increasing number of transmit modes (up to 8 independent 

modes) in actual patients (22). They found that increasing the number of transmit channels 

improved the ability of the coil to produce homogeneous excitations at low RF power, which 

is somewhat in contradiction with the study by Harvey et al. (16) as well as our own results. 

They did not study the dependence of local SAR with the number of channels. Finally, Tian 

et al. (23) simulated stripline pTx coils with up to 48 channels arranged in up to 3 z-rows 

and showed that these were capable of producing more uniform static RF-shimming 

excitations than a birdcage coil of similar dimension at the cost of increased power 

consumption. Although they report local SAR and global SAR for these pulses and arrays, 

they did not optimize these quantities in the pulse design process and therefore could not 

study the optimal performance of these coils with respect to these metrics.

In this work, we used a co-simulation strategy similar to that developed by Kozlov and 

Turner (17) to compute the fields produced by eight pTx arrays with up to 32 independent 

channels arranged in up to 4 rows (z-directions). Coupling between the transmit channels 
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was modeled. All designs were compared to a high-pass birdcage coil of similar dimension. 

We performed this study at 3 T in a realistic body model. We studied the capability of the 

different designs to excite uniform slices in the liver (slice-selective RF-shimming and 2-

spoke pulses) and to reduce global SAR and local SAR using the pulse design algorithm 

mentioned earlier in this section (1).

Methods

Co-simulation of coupled arrays

We simulated 8 pTx arrays shown in Fig. 1 (the notation Xr/Ycpr denotes a coil made of X 

rows or Y coils per row, which are in the z-direction). The coils were loaded with the Ansys 

body model, which contains 33 tissue classes, and were centered on the liver. All coils had a 

cylindrical geometry with the same overall dimensions (radius of 35.2 cm, length in the z-

direction of 35.0 cm, shield radius of 37.2 cm, shield length of 158 cm). The RF shield was 

modeled in these simulations. Transmit elements were 5 mm wide copper loops separated by 

gaps of 2 cm in both the circumferential and the z-directions. The loops were broken by 

tuning capacitors regularly placed along their circumference (each loops of the single-row 

arrays were broken by 8 tuning capacitors. The loops of the multi-row arrays were broken 

by 4 tuning capacitors). We also simulated a high-pass birdcage coil with 16 rungs with the 

same radius and length. The power budget available for each pTx coil simulated is indicated 

on Fig. 1. Although the total power budget (i.e., the sum of the power available on all 

channels) was not constant across coils, these represent reasonable power limits that allow 

assessment of the performance of these designs under realistic conditions.

Fig. 2 shows the flowchart of the co-simulation process. This strategy is almost the same as 

that proposed by Kozlov et al. (17). The only difference is that we compute the 

electromagnetic fields and S-matrix of the loaded coil at a single frequency (the Larmor 

frequency), as opposed to several frequencies as performed by Kozlov et al. As explained 

below, in order to display tuning curves, we extrapolated the S-matrix at the Larmor 

frequency using an analytical formula introduced by Lemdiasov et al (24) (note that the 

fields and S-parameters at the Larmor frequency were known from the HFSS simulation and 

were not modified by this extrapolation step). In the Step 1 of Fig. 2, the entire S-matrix of 

the coil/shield/body model structure as well as the fields associated with each port were 

computed at the Larmor frequency. No lumped elements were modeled in this step; instead 

all capacitors and sources were replaced by ports. In Step 2, the S-matrix was estimated over 

a 50 MHz range around the Larmor frequency by assuming a purely inductive frequency 

response (24). In Step 3, the extrapolated S-matrix was loaded in the circuit simulator and 

lumped elements and sources were re-instated on the model. In this work we simulated 

lossless lumped elements with an infinite quality factor (however copper was modeled with 

a high but finite conductivity, therefore losses in the conductive elements of the coils were 

properly modeled). Tuning/matching/decoupling capacitors were optimized in this step 

using the optimization routines of the circuit simulator as described in the next section. 

Separation of the field/S-matrix calculation from the optimization of lumped elements 

values allows fast simulation of a large number of tuning/matching/decoupling conditions. 

In Step 4, the current and voltage across the ports of the coil (including lumped elements 
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ports) were computed in the circuit simulator and were used to scale the fields computed in 

Step 1 (17). The B1+ maps and electric fields created by each transmit element were then 

computed by exciting the voltage sources in the circuit simulator one at a time (note that for 

sources with a 50 Ω internal impedance, there is a constant relationship between voltage and 

power as shown in Supplemental Figure S5. Therefore we use the terms “power source” and 

“voltage source” interchangeably). Local SAR matrices were computed at every location of 

the body model by taking the outer product of the vector of electric fields created by all 

channels with itself and scaling the result by the ratio of the conductivity and the density 

divided by two as described in Refs. (2-5,20). Compression of the local SAR matrices and 

computation of excitation pulses were performed using in house programs written in C++ 

(see next section).

Any field solver can be used in Step 1 and any circuit simulator can be used in Step 3 of this 

co-simulation process. In this work, we use the High Frequency Structural Simulator (HFSS, 

Ansys, Canonsburg PA) as the field solver and Advanced Design System (ADS, Agilent, 

Santa Clara CA) as the circuit simulator. HFSS is a finite element modeling (FEM) solver 

that allows computation of the entire S-matrix as well as all fields associated with all ports 

in a single simulation run (in contrast, finite difference time domain, or FDTD, requires N 

simulations to estimate the S-matrix of a coil with N ports). This leads to a significant 

reduction in computation time when simulating RF coils with many ports. Another 

advantage of FEM solvers over FDTD is that they allow simulating a great variety of spatial 

scales without significant computational penalty. This is crucial in the simulation of RF coils 

used in MRI since these are commensurate with the human torso but are made of a very thin 

strips of copper of thickness <10 um (in FDTD, computation time is inversely related to the 

smallest discretization length. This essentially prohibits simulation of thin copper strips, 

which must therefore be approximated by elements of thickness >1mm). FEM solvers like 

HFSS require much more memory than FDTD solvers however. For example, simulation of 

the 1r/4cpr design, which contained 40 ports, took 7 hours using 32 processors (Intel Xeon 

X7560 2.27 GHz) and required 90 GB of memory. Simulation of the 3r/8cpr design, which 

contains 208 ports, took 46 hours and required 181 GB of memory (see Supplemental Figure 

S1 for more details on the memory requirement and convergence of the HFSS simulations).

Optimization of the tuning/matching/decoupling capacitors (Fig. 2, Step 3) was performed 

after the field/S-matrix computation step (Fig. 2, Step 1) in the circuit simulator. Coils were 

tuned to 123.2 MHz and matched to better than -30 dB by optimization of the tuning and 

matching capacitors using the gradient routine of ADS. This process took only a few 

seconds. Adjustment of the decoupling capacitors was more difficult however. We found 

that a good initial guess for the value of these capacitors is essential to ensure that gradient-

based optimization routines converge to an acceptable decoupling of the entire coil (we 

attempted decoupling any pair of coils to better than -15 dB). This is due to the fact that the 

decoupling problem is non-convex and gradient-based optimization algorithms only 

guarantee convergence to a local minimum. We computed the initial guess of decoupling 

capacitors by decoupling only two loops of the array. This was performed by first isolating a 

loop of the model and tuning and matching it to 123.2 MHz and -30 dB (loops can be 

electrically removed from the model by setting their tuning capacitors to very small values 

which prevents current from flowing continuously on the copper strip). A nearest-neighbor 
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loop was then added to the model, causing a split in the S11 resonance of the first loop. The 

two peaks of the split S11 resonance were finally merged into a single peak by manual 

adjustment of the decoupling capacitors between the two loops and the value of the 

decoupling capacitors were refined further using the gradient optimization routine. Each 

array was also studied in an ideally decoupled configuration, which is only possible in 

simulation by electrically isolating each loop of the model. The cost function used for 

tuning, matching and decoupling with the gradient routine of ADS was the sum of the 

square of the difference between the target and achieved S-parameters values.

SAR and power constrained pulse design

We designed slice-selective RF-shimming (1 spoke) and 2-spoke pulses for imaging of the 

liver area in the transverse and coronal plane (all imaging planes passed though the 

isocenter). The target excitation was a flat distribution with a flip-angle of 40 degrees. The 

arms of the body model were excluded from the optimization mask, which followed the 

outer contour of the body, but were included in the SAR calculation. The objective function 

minimized by the pulse design algorithm was a magnitude least squares term (MLS) that did 

not penalize the phase of the magnetization profile (25). When designing 2-spoke pulses, we 

placed the first spoke at the origin of excitation k-space and the second spoke at (kx=3, 

ky=-3, kz=0) in units of [1/m] (the torso is approximately a cylinder of diameter 30 cm, thus 

full field-of-view Fourier imaging requires sampling at a spatial frequency of 1/0.3≈3 [1/

m]). For both RF-shimming and 2-spoke pulses, the basic pulse waveform was a 3-lobe (4 

zero-crossings) Hamming apodized sinc profile of 0.8 ms duration. We designed the same 

pulses with the birdcage coil as well as an additional sinc pulse of 1.6 ms duration to allow 

an equal pulse-length comparison with the 2-spokes excitations. Slice thickness was 5 mm 

for all pulses.

We computed pTx spokes pulses with explicit constraint for local SAR, global SAR, peak 

and average power on all channels using a fast primal-dual algorithm (1). Local SAR was 

constrained in the whole-body in a computationally efficient manner using the virtual 

observation points (VOP) compression algorithm of local SAR matrices (2). The VOP 

algorithm is applied after 10 g averaging the local SAR matrices; therefore the VOPs also 

reflect the 10 g averaging process. Ten grams averaging was performed by growing 

concentric cubes of tissues around the voxel of interest until a region of mass 10 g was 

achieved. Voxels not belonging to the model (i.e., air) were excluded from the averaging 

region (2). We define the following power quantities:

[1]

where c is a channel index, i is a time index and N is the total number of time points in the 

RF pulse (including the imaging gradients and data acquisition module, therefore this term 
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accounts for the duty-cycle of the RF pulse). Vc(t) is the source voltage time course for 

channel c. The quantities a), b), c) and d) are the instantaneous power, peak power on 

channel c, average power on channel c and total forward power, respectively. Electrically, 

the voltage source and the load form a voltage divider with R1=50 Ω (internal resistance of 

the source) and R2 equal to the input impedance of the load. When the load is matched to 

the source, R1=R2=50 Ω, so that the voltage across the load is half of the source nominal 

voltage (this, plus the fact that we use amplitude and not RMS voltage quantities, explains 

the factor of 8 between voltage and power in Eq. [1] – for more details see the Supplemental 

Figure S5). We used the same power metrics (defined in Eq. [1]) to characterize the power 

consumption of the capacitively and ideally decoupled arrays.

To compare the performance of different pTx designs, we designed MLS spoke pulses 

subject to fixed power constraints (these are indicated on Fig. 1) but by varying the local 

SAR constraint. The global SAR constraint was fixed to the Federal Drug Administration 

(FDA) tolerated whole-body value of 4 W/kg (26). The set of pulses associated with 

different local SAR limits define an L-curve showing the optimal trade-off between 

excitation fidelity and local SAR. In this work, excitation fidelity was defined as the root 

mean square error between the achieved and target flip-angle maps, and was expressed as a 

percentage of the target flip-angle (this quantity is computed within the optimization mask 

that does not include the arms). We report the excitation fidelity, local SAR (computed 

using the original local SAR matrices averaged over 10 g, not the compressed representation 

via VOPs), global SAR, peak and average power of every pulse. SAR and average power 

values were computed assuming a 10% duty-cycle (this choice of the duty-cycle 

corresponds to relatively fast pulses. Slow pulses with long TRs can have duty-cycles well 

below 1%, in which case SAR is rarely a limitation). The MLS pulse design problem is non-

convex, which can lead to L-curves that do not vary smoothly (“jumps” in SAR and/or 

excitation fidelity performance can occur because of convergence of the design algorithm to 

different local minima). In order to minimize this effect that could potentially make it 

difficult to compare the L-curves of different coils, L-curves were computed by initializing 

the pulse design algorithm with the pulse computed previously.

Results

Extrapolation of the admittance matrix

We assessed the accuracy of the inductive extrapolation of the admittance matrix by 

comparing the extrapolated S-parameters to the actual S-parameters computed with HFSS in 

a 50 MHz window centered at the Larmor frequency (123.2 MHz) for the 8 channels pTx 

coil 1r/8cpr. The average difference between the extrapolated and the actual reflection 

coefficients (S11) was 0.014 dB. The average difference between the extrapolated and the 

actual transmission coefficients (S21) was 0.185 dB. When plotted on the same graphs, the 

reference and extrapolated transmission and reflection S-parameters were essentially 

undistinguishable.
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Importance of decoupling

Matching was better than -30 dB for all coils (the real part of the input impedances were 

49.6±2.1 Ω in average for all ports and coils and the imaginary parts were 0.3±2.0 Ω). Fig. 1 

shows that the designs 1r/4cpr, 1r/8cpr, 1r/16cpr and 2r/4cpr could be well decoupled by 

adjustment of the decoupling capacitors placed between nearest neighbors using ADS. Our 

decoupling strategy failed however for the other designs (these showed residual coupling of 

-5 dB or worst). This indicates two possible problems. First, there is no guarantee that our 

decoupling procedure, despite our efforts to initialize it properly, converged to the global 

optimum. Second, it is not clear that this decoupling problem (decoupling the entire array by 

decoupling the nearest-neighbors) admits a solution for coils with more than 16 coils per 

row and/or more than 2 rows. This is because as the number of coils increases, the number 

of pair of coils to decouple increases quadratically whereas the number of decoupling 

degrees of freedom (DOFs) increases linearly. Ideally, for perfect decoupling of the arrays, a 

capacitor should be placed between any two coils. This and more sophisticated types of 

decoupling strategies are being explored (27-30) but in this work we used the more common 

approach consisting in placing decoupling capacitors only between nearest neighbors. Thus 

the designs 1r/4cpr, 1r/8cpr, 1r/16cpr and 2r/4cpr were studied in both their capacitively 

ideally decoupled configurations and the designs 1r/24cpr, 2r/8cpr, 3r/8cpr and 4r/8cpr 

designs were studied only as ideally decoupled.

Also shown in Fig. 1 is the cumulative sum of the singular values (SVs) of the B1+ maps 

created by each coil in a volume of interest containing the torso but excluding the arms. The 

cumulative sum of the SVs was computed by stacking the B1+ maps of each coil in a matrix 

of size N×C (N is the number of pixels, C is the number of channels), plotting the 

cumulative sum of the SVs of this matrix and normalizing the result setting the first SV of 

each coil to 1 (31). If the B1+ maps created by the loops of a pTx array were non-

overlapping, the cumulative sum of the normalized SVs would be equal to the number of 

transmit channels. Instead, there is significant overlap between the excitations created by the 

different channels and the sum of the relative SVs is smaller than the channel count. For the 

designs 1r/16cpr and 1r/24cpr, the cumulative distribution of SVs plateaus, indicating that 

using more than ∼12 channels in a single row did not significantly increase the encoding 

capability of the array. Instead, it seemed beneficial to distribute additional channels beyond 

the first 12 in the z-direction (i.e., multi-row arrays). This was confirmed by the pulse design 

trade-offs shown in Figs. 5-8. Another interesting remark is that residual coupling between 

transmit elements almost always decreased the rank of the B1+ basis set created the coil 

(this is true for all designs except 2r/4cpr). This is likely due to the fact that coupling tends 

to make the B1+ profiles “more similar”.

Fig. 3 shows SAR, power and excitation fidelity trade-offs for slice-selective RF-shimming 

with the designs 1r/8cpr and 2r/8cpr, both capacitively decoupled and ideally decoupled. 

The design 1r/8cpr could be well decoupled by adjustment of the decoupling capacitors 

whereas the array 2r/8cpr could not (see Fig. 1). The presence of relatively large residual 

coupling in the 2r/8cpr array increased the power consumption compared to its ideally 

decoupled counterpart. Because the power available on each channel was limited (to 8 kW 

peak and 800 W average), this essentially restricted the regions of the local SAR/global 
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SAR/excitation fidelity space accessible to the coupled array. In contrast, good decoupling 

of the 1r/8cpr design lead to a performance close to ideal both in term of SAR (global and 

local) and power. Supplemental Figure S6 shows similar L-curves for 2-spoke pulses.

Performance comparison of pTx coils

Fig. 4 shows transmit efficiencies and local SAR to global SAR ratios for the birdcage coil 

and the pTx coils driven in their uniform birdcage mode. The transmit efficiency is the 

average B1+ created by each array in a volume of interest corresponding to the torso of the 

body model but excluding the arms. The birdcage coil had the greatest transmit efficiency 

and the smallest local to global SAR ratio. These results show that birdcage coils outperform 

pTx coils in exciting birdcage modes and pTx coils should be driven using optimized RF 

pulses that make full use of their additional degrees-of-freedom. It is interesting to note that 

small residual coupling did not necessarily result in a smaller transmit efficiency of the 

uniform birdcage mode (small residual coupling reduced the transmit efficiency for 1r/8cpr 

and 2r/4cpr but not for 1r/4cpr and 1r/16cpr). Indeed, complex spatial interferences between 

the magnetic fields created by the channels of a pTx coil make it difficult to predict the net 

resulting strength of the uniform birdcage mode B1+ (coupling affects the shape of the fields 

associated with every channels, which may or may not result in constructive interferences 

boosting the total B1+). However, strong coupling between the transmit channels always 

resulted in power loss and therefore decreased the transmit efficiency significantly (e.g., 2r/

8cpr).

Fig. 4 also shows that small residual coupling could have a significant influence on the local 

to global SAR ratio. Supplemental Figure S7 shows that the maximum SAR hotspot of the 

birdcage modes of the coils occurred at the same location whether the arrays were ideally or 

capacitively decoupled configurations, except for 2r/4cpr. For this array, small residual 

coupling moved the SAR hotspot from the armpit (ideal decoupling) to the elbow 

(capacitive decoupling). This new location of the hotspot (elbow) corresponds to the 

junction between the two rows of this coil, where even relatively small residual coupling can 

cause the distant coils to create non-negligible electric fields.

Figs. 5 shows trade-offs between local SAR, global SAR, peak and average power and 

excitation fidelity for slice-selective RF-shimming in the transverse plane. PTx coils with 

increasing number of transmit channels could create high quality excitations at lower local 

and global SAR than the birdcage coil (Fig. 9a). Increasing the number of transmit channels 

also allowed creation of more uniform excitations at a given SAR (Fig. 10a). For the same 

pulse length and same excitation fidelity, the designs 1r/4cpr, 1r/8cpr, 1r/16cpr, 1r/24cpr, 2r/

4cpr, 2r/8cpr, 3r/8cpr and 4r/8cpr could reduce local SAR by 30%, 70%, 74%, 75%, 62%, 

75%, 81% and 82%, respectively, compared to the birdcage coil. The 3r/8cpr design was 

able to reduce local SAR from 14.1 W/kg to less than 2.5 W/kg, a dramatic reduction that 

could potentially allow a 5.6-fold reduction in TR or a similar increase in the number of 

slices at constant acquisition time if local SAR is the only limit to reduction of the sequence 

duration. This improvement in the SAR vs. excitation fidelity performance came at the price 

of a large increase in power consumption however. At constant excitation fidelity, the total 

average power consumed by the designs 1r/4cpr, 1r/8cpr, 1r/16cpr, 1r/24cpr, 2r/4cpr, 2r/
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8cpr, 3r/8cpr and 4r/8cpr, in this order, were 2.4, 3.9, 9.9, 10.5, 4.5, 4.6, 5.9 and 10.3 times 

greater than that of the birdcage coil. The fact that more power was needed to reduce local 

SAR and global SAR can seem counterintuitive. Part of this confusion stems from our 

definition of power. The total forward power defined in Eq. [1] does not reflect the power 

actually absorbed by the load because this metric is computed without consideration of the 

phase relationship between the waveforms played on different channels. Instead, this 

quantity represents an upper bound of the power actually transmitted to the load. It is 

interesting to note that the 1r/24cpr design did not perform better than 1r/16cpr. This is 

partly due the fact that the additional channels of the 1r/24cpr design did not significantly 

increase the pTx DOFs as shown in Fig. 1. Also, it is evident from its peak power vs. 

excitation fidelity L-curve that this design was strongly power limited. This is partially due 

to the fact that the smaller loops of the 1r/24cpr design have a lower B1+ penetration in the 

body than the loops of the 1r/16cpr design and therefore need to be driven with more power 

(this is reflected in the B1+ transmit profiles shown in Supplemental Figure S3). The white 

bar graphs on the right side of the flip-angle maps of Fig. 9 indicate that local SAR and peak 

power were the limiting constraints (note that this result is specific to the target flip-angle 

used and the duty-cycle and the specific shape of the slice-selective sinc pulse simulated).

Figs. 6 and 10 show that using two spokes allowed the pulse design algorithm to improve 

excitation uniformity and lower SAR compared with RF-shimming. Note that the duty-cycle 

of all pulses is constant in this study (10%) so that the 2-spoke pulse length was twice the 

duration of the RF-shimming pulse. If the RF-shimming pulse length was increased 2-fold to 

match that of the 2-spoke excitation, this would lower SAR 4-fold and would achieve a 

lower SAR than that of the spoke excitation for most operating points. However, the 2-spoke 

pulses would still produce more uniform excitations.

When comparing the arrays driven by 2-spoke pulses, we calculated three different pulses 

for the birdcage coil: (i) RF-shimming with a pulse duration equal to that of a single spoke 

sub-pulse; (ii) RF-shimming with a pulse duration equal to the duration of the 2-spoke pulse; 

(iii) 2-spoke pulses as designed on the pTx arrays. All pTx coils except 1r/4cpr beat the 

birdcage coil pulses both in term of SAR and excitation fidelity for both RF-shimming and 

2-spoke excitations. The best excitations in terms of homogeneity vs. SAR trade-off were 

obtained using 2-spoke MLS pulses played on pTx arrays with multiple rows of at least 8 

channels per row.

Figs. 7 and 8 show similar SAR/power/excitation fidelity trade-offs for imaging in the 

coronal plane. The results are similar: Increasing the number of transmit channels improved 

the ability of the pulse design algorithm to find favorable SAR vs. excitation fidelity trade-

offs. This came at the price of increased power consumption however. Unlike in transverse 

imaging, there was a clearer distinction in performance between single row arrays and those 

with multiple rows stacked in the z direction. Supplemental Figures S8 and S9 show flip-

angle maps (at constant local SAR) and SAR maximum intensity projection maps (at 

constant excitation fidelity) corresponding to the RF-shimming and 2-spoke pulses shown in 

Figs. 7 and 8.
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Discussion

We have analyzed the performance of pTx coils with up to 32 channels arranged in up to 4 

rows in the z-directions using excitation fidelity, local SAR, global SAR, peak and average 

power as performance metrics. Our simulations show that pTx coils with increasing number 

of channels can create more uniform excitations than a birdcage coil of similar dimensions 

at much lower local SAR and global SAR. The “price to pay” for such performance 

improvement is an increase in power consumption by the pTx coils. These results are in 

agreement with the work of Lattanzi et al (20,21) and extend their conclusions to non-

uniform body models and more realistic coil models operating under limited power budget. 

In a separate work, they also showed improving RF shimming in both axial and coronal 

planes with increased number of channels in multi-row geometries (32).

To assess the performance of different transmit coils, we used a co-simulation strategy 

allowing simulation of coupled arrays and fast optimization of tuning, matching and 

decoupling capacitors (17). Pulses were designed using a constrained optimization algorithm 

that we recently developed which allows design of magnitude least squares (MLS) pulses 

with the best possible flip-angle distribution consistent with the main regulatory (i.e., local 

and global SAR) and system limits (i.e., peak and average power on every channel). By 

varying the local SAR constraint limit and keeping all other constraints constant, we were 

able to compare the performance of the different pTx coils and the birdcage coil for a range 

of operating points in term of local SAR, global SAR, peak and average power and 

excitation fidelity while assuming a realistic power budget. A limitation of this study is that 

the locations of the spokes were fixed for all coils. This is potentially a confounding effect 

as our specific choice of the spoke locations may be more or less optimal for different coils. 

Ideally, spoke locations (when using two spokes and more) should be optimized for every 

coil in order to compare their true optimal performance. Optimization of the spoke locations 

is still a subject of active research however and in this work we chose to use a simpler 

design strategy with fixed spoke locations.

We attempted decoupling the coils simulated by adjustment of capacitors placed between 

nearest neighbors (capacitive decoupling). We found that optimization of these decoupling 

capacitors, which is non-convex, was challenging and that a good solution could only be 

obtained using a gradient-based optimizer algorithm by proper initialization of the 

decoupling capacitor values. We computed this initial guess by decoupling only two loops 

of the models. Even using this strategy, we were not able to decouple the designs 1r/24cpr, 

2r/8cpr, 3r/8cpr and 4r/8cpr. A better strategy, which we did not evaluate, may consist in 

decoupling nearest-neighbors within the same row using capacitors and in decoupling 

adjacent rows by overlap as studied by Gilbert et al. (33). There are also indications that 

inductive decoupling may be more efficient that capacitive decoupling in decoupling multi-

row arrays (19,34). Additionally, we found that the close proximity of the shield to the RF 

coil (2.2 cm gap in this work) significantly increased coupling between the transmit 

channels as the shield essentially acts as additional loops strongly coupled to the pTx 

channels. Other, more advanced decoupling strategies are being investigated that show 

promises in solving this problem (29,30), but we did not investigate those in this work. In 

order to evaluate pTx coils with multiple rows and many channels even when those could 
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not be well decoupled by adjustment of nearest neighbor capacitors, we studied these arrays 

in their ideally decoupled configurations.

We found that the main impact of the presence of residual coupling between transmit 

channels was an important increase in the power consumption of the arrays. With limited 

input power, the SAR vs. excitation fidelity performance of coupled arrays worsened 

because they reached their peak and average power limits more quickly than if they were 

well decoupled. Analysis of the singular values of the B1+ maps of coupled and ideally 

decoupled pTx coils also revealed that coupling between the transmit channels decreased the 

encoding capability of the array. These two phenomenon are likely related as the loss of pTx 

DOFs due to coupling caused the spoke pulse design problem, which is already highly 

underdetermined, to be less well conditioned. This, in turn, likely caused the pulse design 

algorithm to seek high-power pulses that decreased the excitation error and SAR only 

marginally. In actual coils, the power transmitted from one channel to another due to 

coupling can be absorbed via circulators that protect the RF power amplifiers from power 

“going upstream” (this power is lost for excitation). These observations are in agreement 

with simulation results by Kozlov and al. showing that SAR and the power consumption of 

pTx arrays depends significantly on their tuning, matching and decoupling conditions (35). 

Note that substantial residual coupling at the level seen in the 2r/8cpr design had significant 

impact on SAR (Figs. 3 and 4) but that small residual coupling (design 1r/8cpr, Fig. 3) did 

not worsen the SAR vs. excitation error tradeoff significantly.

Another conclusion of this work is that birdcage coils largely outperform pTx coils when 

these are driven in their uniform birdcage mode. This suggests that if pTx arrays are 

employed, their excitation DOFs should be exploited using optimized pulses. We point out 

that this result could be specific to the loop coils investigated in this work and may not 

generalize to all pTx geometries. For example, degenerate birdcage pTx coils (36) driven in 

their uniform birdcage mode may be expected to more closely resemble birdcage coils. This 

paper was limited to the evaluation of loop coil arrays. Because of gaps present between 

transmit loops in the designs simulated in this work, which are not present in a birdcage coil, 

the transmit efficiencies of the pTx coils driven in their birdcage mode differed from the 

efficiency of the birdcage coil. Other designs, such as TEM and striplines coils may perform 

differently and may be preferable for high field imaging. We also found that the local to 

global SAR ratio, which is widely used to characterize the SAR distribution of birdcage 

coils, is an unstable metric for pTx coils driven in their birdcage mode. This metric could 

vary greatly under small perturbations of the coupling and loading conditions. This is 

especially true for multi-row arrays where local SAR hotspots are more easily formed at the 

junction between two rows (Fig. 4 and Supplemental Figure S7). Again, this indicates that 

pTx coils should be driven using optimized pulses with explicit constraints for SAR.

An important conclusion of this work is that increasing the number of transmit channels 

improved the ability of the pulse design algorithm to create uniform magnitude excitations at 

low local and global SAR. Note that local SAR and global SAR must be constrained in the 

pulse design process for these results to hold. If unconstrained, it is in fact likely that the 

local and global SAR produced by pTx coils become greater than those created by a 

birdcage coil. This result is in agreement with the work of Lattanzi et al. (20,21) but is 
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somewhat at odds with the study of Harvey et al. (16), which found that increasing the 

number of transmit modes beyond two increased power consumption significantly but not 

the excitation uniformity. This is likely due to the fact that they used an un-regularized pulse 

design strategy in which power was allowed to increase rapidly and that they did not control 

or report SAR.

The improved SAR vs. excitation fidelity of pTx coils compared to the birdcage coil came at 

the price of an increase in power consumption. As noted in the Results sections, the fact that 

more power is needed to reduce SAR can seem counterintuitive and stems from our 

definition of power (1). The total forward power defined in Eq. [1] does not reflect the 

power actually absorbed by the load. This metric is computed without consideration of the 

phase between the waveforms played on the different channels and therefore represents an 

upper bound of the power actually absorbed by the load. Additionally, coil losses due to the 

finite conductivity of copper are included in the total forward power but not in the power 

absorbed by the load. Depending on the drive configuration, electric fields interfere 

destructively in the conductive sample (resulting in low SAR) while still requiring 

significant current in the conductive coil elements, which results in significant coil losses. 

Nonetheless, we retain our simple definition of total forward power as our main power 

metric because it is an important quantity used to characterize the power limits of RF 

amplifiers.

In this study, we evaluated the impact of coil placement not only around the patient 

circumference but also in the z-direction. Examination of the singular values of the B1+ 

maps created by coils with single and multiple z-rows indicate that there is little advantage 

in using more than 12 coils per row of the design studied. Instead, placing additional 

channels in the z-direction seemed to maximize the encoding capability of the array. 

Analysis of the trade-offs between SAR, power and excitation fidelity confirmed this trend, 

especially for non-axial slices: Multi-row designs with 8 coils per row performed 

consistently better than single-row designs with the same total number of channels. This 

performance improvement was most pronounced for coronal imaging. It is likely that off-

center axial slices would also benefit from the additional pTx DOFs in the z-direction 

provided by coils with multiple rows. This conclusion is in agreement with a recent study by 

Tian et al (23) who observed in simulations that pTx coils with multiple z-rows produce 

more uniform RF-shimming excitations that birdcage coils and single-row pTx coils, 

especially for non-axial slices. Our work extends this result to multiple spoke pulses and to a 

wide range of operating points of the arrays corresponding to different global and local SAR 

levels. In other words, multi-row arrays do not only improve the excitation fidelity, they also 

have a better ability to reduce both global and local SAR than single-row coils. Lattanzi et al 

also studied the performance of multi-row pTx coils for body imaging (uniform cylinder) 

but did not compare their performance to that of single-row designs (32). Nonetheless, they 

also found that increasing the number of transmit channels improved the ability of the pulse 

design algorithm to produce uniform RF-shimming excitations.

Although the coils simulated in this work were only evaluated as transmit arrays, they can 

also be used for reception of the MR signal. Lattanzi et al. (37) have studied the SNR of 

coils with a similar geometry than those modeled in this work (i.e., cylindrical geometry, 
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several staggered loops in the z-direction) and have shown that these allow approximating 

the ideal current pattern corresponding to the “ultimate SNR” quite well as the number of 

elements increases. This indicates that these RF structures, which are general and allow 

imaging of any region of the body, may be efficient for reception as well as for transmission.

Finally, we point out that it is essential to evaluate the performance of pTx coils under 

realistic power budget constraints. This point is illustrated by the better performance of the 

2r/8cpr design over the 3r/8cpr and 4r/8cpr designs for MLS RF-shimming in the coronal 

direction (Fig. 7) despite the smaller number of channels of the former coil. Analysis of the 

value of the Lagrange multipliers indicates that, although the three designs reached their 

respective maximum power constraints, the 3r/8cpr and 4r/8cpr designs were “more power 

constrained” than 2r/8cpr. Indeed, the maximum Lagrange multipliers associated to the peak 

power constraints were 0.72, 6.17 and 6.17 for the 2r/8cpr, 3r/8cpr and 4r/8cpr designs, 

respectively. We remind the reader that the unit of a Lagrange multiplier λ is such that the 

product λf, where f is the constraint function (here peak power expressed in Watts), has the 

same unit as the cost function. Therefore a Lagrange multiplier indicates the “cost” of 

enforcing a constraint (strictly speaking, the Lagrange multiplier is, at the optimal solution, 

the derivative of the cost function with respect to the constraint). Thus, for this particular 

imaging situation, raising the peak power limit improve the excitation quality for all designs 

but this improvement would be 8.5 times more pronounced for the 3r/8cpr and 4r/8cpr 

designs than for the 2r/8cpr design. This observation underscores the need for designing pTx 

pulses while constraining simultaneously SAR and power. This could not be done in the 

studies of Harvey et al. (16), Lattanzi et al. (20,21), Child et al. (22) and Tian et al. (23) 

because these authors used regularized pulse design strategies that made it difficult to 

control several quantities at once.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
PTx coils simulated. The notation Xr/Ycpr indicates a coil made of X rows of Y coils per 

row (total number of channels is X×Y). The maximum peak power available on each 

channel is indicated next to every coil. The maximum average power available on each 

channel is 10 times smaller than the maximum peak power. The designs 1r/4cpr, 1r/8cpr, 1r/

16cpr and 2r/4cpr could be decoupled by adjustment of decoupling capacitors placed 

between nearest neighbors (capacitive decoupling). For these coils, the coupling matrix is 

shown (0 denotes perfect decoupling, 1 denotes perfect coupling). The diagonal elements are 

equal to 1. Other designs could not be well decoupled by our nearest neighbors decoupling 

capacitor adjustment algorithm. These designs (with no coupling matrix shown), were 

simulated as perfectly decoupled (ideal decoupling). Note that the designs which could be 

decoupled were also evaluated as ideally decoupled. The other subplot shown is the 

cumulative sum of the singular values for the B1+ maps of each coil in the torso (excluding 

the arms). Red bars correspond to the B1+ maps of the coils ideally decoupled in simulation. 

Blue bars correspond to the arrays decoupled using capacitors. In general, the presence of 

residual coupling decreased the rank of the B1+ basis set created by the coils. Using more 

than 16 channels per row did not increase significantly the rank of the B1+ basis set. 

Additional channels beyond the first 16 should be instead distributed axially (z-direction).

Guérin et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Flow chart of the co-simulation of coupled arrays. In step 2, the admittance matrix Y is 

extrapolated around the Larmor frequency using the assumption that the capacitor-less 

structure is purely inductive. This allows generating S-parameters in a range of frequencies 

while only having to simulate the coil at the Larmor frequency (thus reducing computation 

time).
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Fig. 3. 
MLS RF-shimming L-curves for the 1r/8cpr (capacitive and ideal decoupling) and 2r/8cpr 

(capacitive and ideal decoupling) designs in a transverse slice at isocenter. The local SAR 

limit was varied. Peak power was constrained to 8 kW/channel and average power to 800 

W/channel for both coils. Global SAR was constrained to be below 4 W/kg. The 1r/8cpr 

design could be well decoupled using decoupling capacitors placed between nearest 

neighbors, therefore there is little difference between the power consumption and the local 

and global SAR created by this coil and its ideally decoupled counterpart. In contrast, the 2r/

8cpr design was not well decoupled using capacitors placed between nearest neighbors, 

likely because the staggered transmit channels in different rows are close to each other but 

are not connected by a decoupling capacitor and can therefore not be efficiently decoupled. 

The coupled coil consumed more power than its ideally decoupled counterpart, which 

limited its ability to create quality excitations at low local and global SAR.
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Fig. 4. 
a: Transmit efficiencies in nT/V of the pTx coils driven in their uniform birdcage mode. 

Also shown is the transmit efficiency of the birdcage coil. b: Local to global SAR ratios of 

the birdcage coil and the pTx coils driven in their uniform birdcage modes.
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Fig. 5. 
MLS RF-shimming L-curves for all pTx coils in a transverse slice at isocenter (all coils in 

the ideally decoupled condition). The local SAR limit was varied. The average power and 

peak power limits were set to the values indicated in Fig. 1 (different coils have different 

input power limits). The global SAR limit was set to 4 W/kg for all coils. These L-curves 

show that pTx coils could create more uniform excitations at lower local and global SAR 

than a birdcage coil of the same dimension. This improvement in the SAR vs excitation 

fidelity trade-off required an increase in input power however. Increasing the number of 

transmit channels improved the SAR vs excitation fidelity trade-off but also increased power 

consumption.
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Fig. 6. 
MLS 2-spoke L-curves for all pTx coils in a transverse slice at isocenter (all coils in the 

ideally decoupled condition). The local SAR limit was varied. The average power and peak 

power limits were set to the values indicated in Fig. 1. The global SAR limit was set to 4 

W/kg for all coils. The “BC coil, 1 spoke” dot corresponds to driving the birdcage coil with 

an RF pulse of the same duration a single spoke sub-pulses (short pulse). The “BC coil, 1 

spoke, matched pulse length” corresponds to driving the birdcage coil with an RF pulse with 

duration equal to the total duration of the 2-spoke pulse played on the pTx arrays (longer 

pulse). Finally, the “BC coil, 2 spokes” L-curve was obtained by designing 2-spoke pulses 

for the birdcage coil and varying the local SAR limit exactly as performed on the pTx 

arrays.
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Fig. 7. 
MLS RF-shimming L-curves for all pTx coils in a coronal slice at isocenter (all coils in the 

ideally decoupled condition). The local SAR limit was varied. The average power and peak 

power limits were set to the values indicated in Fig. 1 (different coils have different input 

power limits). The global SAR limit was set to 4 W/kg for all coils. Like for transverse 

imaging, the additional degrees-of-freedom of pTx coils could be used to create more 

uniform excitations than a birdcage coil as well as to reduce both local SAR and global 

SAR. This improvement in the SAR vs excitation fidelity trade-off came at the price of an 

increase in power consumption. Increasing the number of transmit channels improved the 

SAR vs excitation fidelity trade-off but also increased power consumption. For imaging in 

the coronal plane, a clear performance gain is visible for pTx arrays with multiple coils in 

the z-direction.
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Fig. 8. 
MLS 2-spoke L-curves for all pTx coils in a coronal slice at isocenter (all coils in the ideally 

decoupled condition). The local SAR limit was varied. The average power and peak power 

limits were set to the values indicated in Fig. 1. The global SAR limit was set to 4 W/kg for 

all coils. The “BC coil, 1 spoke” dot corresponds to driving the birdcage coil with an RF 

pulse of the same duration than a single spoke sub-pulse (short pulse). The “BC coil, 1 

spoke, matched pulse length” corresponds to driving the birdcage coil with an RF pulse with 

duration equal to the total duration of the 2-spoke pulse played on the pTx arrays (longer 

pulse). Finally, the “BC coil, 2 spokes” L-curve was obtained by designing 2-spoke pulses 

on the birdcage coil and varying the local SAR limit exactly as performed on the pTx arrays. 

PTx coils were able to create almost perfect excitations (see Supplemental Figure S8) at 

significantly lower local SAR than the birdcage coil (Supplemental Figure S9). This 

improvement in the SAR vs excitation fidelity trade-off came at the price of increased power 

consumption. Increasing the number of transmit channels improved the SAR vs excitation 

fidelity trade-off but also increased power consumption. Like for RF-shimming in the 

coronal direction, important performance gains in the SAR vs excitation fidelity trade-off 

were made by distributing transmit channels in the z-direction in addition to around the 

circumference of the patient's torso.
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Fig. 9. 
MLS flip-angle maps for imaging of a transverse slice at isocenter passing through the liver 

(all coils in the ideally decoupled condition). a: RF-shimming results for all pTx arrays. b: 

2-spoke results. These maps are single data points from Fig. 5 and 6 and correspond to a 

local SAR limit of 8 W/kg (FDA limit) – except for the birdcage coil which has a local SAR 

of 14.1 W/kg for RF-shimming. The white bar graphs on the right of each flip-angle map 

indicate how far the local SAR (“L”), global SAR (“G”), peak power (“M”) and average 

power (“A”) constraints are from their respective limits. The three numbers shown below 

each flip-angle map are the RMSE (in percent of the target flip-angle, here 40°), mean flip-

angle and standard deviation of the flip-angle map. For RF-shimming, 1r/4cpr was the only 

design to be so strongly power limited that it could not achieve the target flip-angle while 

respecting the 8 W/kg local SAR limit. Other designs were also peak power limited (and 

local SAR limited) but achieved the desired mean flip-angle.
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Fig. 10. 
Maximum intensity projection of the SAR maps created by the different pTx designs for 

excitation of a transverse slice at isocenter passing through the liver (all coils in the ideally 

decoupled condition). a: RF-shimming pulses. b: 2-spoke pulses. These maps are detailed 

data for pulses shown in Fig. 5 and 6 and correspond to a constant excitation error of 19%. 

The two numbers below each SAR map are the local SAR and global SAR expressed in 

W/kg. The color maps are split in two (grey below 8 W/kg and color above 8 W/kg) to better 

visualize the SAR hotspots that are above the FDA local SAR limit of 8 W/kg. These results 

illustrate the important reduction of local SAR and global SAR (at constant excitation error) 

that can be achieved when increasing the channel count from 1 (birdcage coil) to 32 (4r/

8cpr). Note that such SAR reductions were achieved by designing pulses that were explicitly 

controlled for local and global SAR.
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