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Abstract This paper presents a search for the pair produc-
tion of top squarks in events with a single isolated elec-
tron or muon, jets, large missing transverse momentum, and
large transverse mass. The data sample corresponds to an
integrated luminosity of 19.5 fb−1 of pp collisions collected
in 2012 by the CMS experiment at the LHC at a center-of-
mass energy of

√
s = 8 TeV. No significant excess in data

is observed above the expectation from standard model pro-
cesses. The results are interpreted in the context of super-
symmetric models with pair production of top squarks that
decay either to a top quark and a neutralino or to a bottom
quark and a chargino. For small mass values of the light-
est supersymmetric particle, top-squark mass values up to
around 650 GeV are excluded.

1 Introduction

The standard model (SM) has been extremely successful at
describing particle physics phenomena. However, it suffers
from such shortcomings as the hierarchy problem, where
fine-tuned cancellations of large quantum corrections are re-
quired in order for the Higgs boson to have a mass at the
electroweak symmetry breaking scale of order 100 GeV [1–
6]. Supersymmetry (SUSY) is a popular extension of the SM
that postulates the existence of a superpartner for every SM
particle, with the same quantum numbers but differing by
one half-unit of spin. SUSY potentially provides a “natu-
ral”, i.e., not fine-tuned, solution to the hierarchy problem
through the cancellations of the quadratic divergences of the
top-quark and top-squark loops. In addition, it provides a
connection to cosmology, with the lightest supersymmetric
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particle (LSP), if neutral and stable, serving as a dark matter
candidate in R-parity conserving SUSY models.

This paper describes a search for the pair production of
top squarks using the full dataset collected at

√
s = 8 TeV by

the Compact Muon Solenoid (CMS) experiment [7] at the
Large Hadron Collider (LHC) during 2012, corresponding
to an integrated luminosity of 19.5 fb−1. This search is mo-
tivated by the consideration that relatively light top squarks,
with masses below around 1 TeV, are necessary if SUSY is
to be the natural solution to the hierarchy problem [8–12].
These constraints are especially relevant given the recent
discovery of a particle that closely resembles a Higgs boson,
with a mass of ∼125 GeV [13–15]. Searches for top-squark
pair production have also been performed by the ATLAS
Collaboration at the LHC in several final states [16–20], and
by the CDF [21] and D0 [22] Collaborations at the Teva-
tron.

The search presented here focuses on two decay modes
of the top squark (˜t):˜t → tχ̃0

1 and˜t → bχ̃+. These modes
are expected to have large branching fractions if kinemati-
cally allowed. Here t and b are the top and bottom quarks,
and the neutralinos (χ̃0) and charginos (χ̃±) are the mass
eigenstates formed by the linear combination of the gaug-
inos and higgsinos, which are the fermionic superpartners
of the gauge and Higgs bosons, respectively. The charginos
are unstable and may subsequently decay into neutralinos
and W bosons, leading to the following processes of in-
terest: pp →˜t˜t∗ → tt̄χ̃0

1 χ̃0
1 → bbW+W−χ̃0

1 χ̃0
1 and pp →

˜t˜t∗ → bbχ̃+
1 χ̃−

1 → bbW+W−χ̃0
1 χ̃0

1 , as displayed in Fig. 1.
The lightest neutralino χ̃0

1 is considered to be the stable LSP,
which escapes without detection.

The analysis is based on events where one of the W
bosons decays leptonically and the other hadronically. This
results in one isolated lepton and four jets, two of which
originate from b quarks. The two neutralinos and the neu-
trino from the W decay can result in large missing transverse
momentum (Emiss

T ).
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Fig. 1 Diagram for top-squark pair production for (a) the
˜t → tχ̃0

1 → bWχ̃0
1 decay mode and (b) the˜t → bχ̃+ → bWχ̃0

1 decay
mode

The largest backgrounds in this search arise from events
with a top-antitop (tt̄) quark pair where one top quark de-
cays hadronically and the other leptonically, and from events
with a W boson produced in association with jets (W+ jets).
These backgrounds, like the signal, contain a single lep-
tonically decaying W boson. The transverse mass, defined
as MT ≡

√
2Emiss

T p�
T(1 − cos(�φ)), where p�

T is the trans-
verse momentum of the lepton and �φ is the difference in
azimuthal angles between the lepton and Emiss

T directions,
has a kinematic endpoint MT < MW for these backgrounds,
where MW is the W boson mass. For signal events, the pres-
ence of LSPs in the final state allows MT to exceed MW.
Hence we search for an excess of events with large MT. The
dominant background with large MT arises from the “dilep-
ton tt̄” channel, i.e., tt̄ events where both W bosons decay
leptonically but with one of the leptons not identified. In
these events the presence of two neutrinos can lead to large
values of Emiss

T and MT.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid, 13 m in length and 6 m in diameter, which pro-
vides an axial magnetic field of 3.8 T. Within the field vol-
ume are several particle detection systems. Charged-particle
trajectories are measured with silicon pixel and strip track-
ers, covering 0 ≤ φ < 2π in azimuth and |η| < 2.5 in pseu-
dorapidity, where η ≡ − ln[tan(θ/2)] and θ is the polar an-
gle of the trajectory of the particle with respect to the coun-
terclockwise proton beam direction. A lead-tungstate crystal
electromagnetic calorimeter and a brass/scintillator hadron
calorimeter surround the tracking volume, providing en-
ergy measurements of electrons, photons, and hadronic jets.
Muons are identified and measured in gas-ionization detec-
tors embedded in the steel flux return yoke of the solenoid.
The CMS detector is nearly hermetic, allowing momen-
tum balance measurements in the plane transverse to the
beam direction. A two-tier trigger system selects pp colli-
sion events of interest for use in physics analyses. A more
detailed description of the CMS detector can be found else-
where [7].

3 Signal and background Monte Carlo simulation

Simulated samples of SM processes are generated using
the POWHEG [23], MC@NLO [24, 25], and MADGRAPH

5.1.3.30 [26] Monte Carlo (MC) event generator programs
with the CT10 [27] (POWHEG), CTEQ6M [28] (MC@NLO),
and CTEQ6L1 [28] (MADGRAPH) parton distribution func-
tions. The reference sample for tt̄ events is generated with
POWHEG, while the MADGRAPH and MC@NLO genera-
tors are used for crosschecks and validations. All SM pro-
cesses are normalized to cross section calculations valid
to next-to-next-to-leading order (NNLO) [29] or approxi-
mate NNLO [30] when available, and otherwise to next-to-
leading order (NLO) [24, 25, 31–34].

For the signal events, the production of top-squark pairs
is generated with MADGRAPH, including up to two addi-
tional partons at the matrix element level. The decays of
the top squarks are generated with PYTHIA [35] assuming
100 % branching fraction for either ˜t → tχ̃0

1 or ˜t → bχ̃+.
A grid of signal events is generated as a function of the
top-squark and neutralino masses in 25 GeVsteps. We also
consider scenarios with off-shell top quarks (for ˜t → tχ̃0

1 )
and off-shell W bosons (for˜t → bχ̃+ followed by χ̃+

1 →
W+χ̃0

1 ). For the˜t → bχ̃+ decay mode, the chargino mass
is specified by a third parameter x defined as mχ̃±

1
= x ·

m̃t + (1 − x) · mχ̃0
1
. We consider three mass spectra, namely

x = 0.25, 0.50, and 0.75. The lowest top squark mass that
we consider is m̃t = 100 GeV for˜t → tχ̃0

1 , and m̃t = 200
(225, 150) GeV for˜t → bχ̃+ with x = 0.25 (0.50, 0.75).

The polarizations of the final- and intermediate-state par-
ticles (top quarks in the˜t → tχ̃0

1 scenario, and charginos and
W bosons in the˜t → bχ̃+ case) are model dependent and are
non-trivial functions of the top-squark, chargino, and neu-
tralino mixing matrices [36, 37]. The SUSY MC events are
generated without polarization. The effect of this choice on
the final result is discussed in Sect. 9. Expected signal event
rates are normalized to cross sections calculated at NLO in
the strong coupling constant, including the resummation of
soft gluon emission at next-to-leading-logarithmic accuracy
(NLO + NLL) [38–43].

For both signal and background events, multiple proton-
proton interactions in the same or nearby bunch crossings
(pileup) are simulated using PYTHIA and superimposed on
the hard collision. The simulation of the detector response to
SUSY signal events is performed using the CMS fast simu-
lation package [44], whereas almost all SM samples are sim-
ulated using a GEANT4-based [45] model of the CMS detec-
tor. The exceptions are the MADGRAPH tt̄ samples used to
study the sensitivity of estimated backgrounds to the details
of the generator settings; these samples are processed with
the fast simulation. The two simulation methods provide
consistent results for the acceptances of processes of interest
to this analysis. The simulated events are reconstructed and
analyzed with the same software used to process the data.
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4 Event selection

4.1 Object definition and event preselection

The data used for this search were collected using high trans-
verse momentum (pT), isolated, single-electron and single-
muon triggers with pT thresholds of 27 and 24 GeV, respec-
tively. The electron (muon) trigger efficiency, as measured
with a sample of Z → �� events, varies between 85 % and
97 % (80 % and 95 %), depending on the η and pT of the
leptons. Data collected with high-pT double-lepton triggers
(ee, eμ, or μμ, with pT thresholds of 17 GeV for one lep-
ton and 8 GeV for the other) are used for studies of dilepton
control regions.

Events are required to have an electron (muon) with
pT > 30 (25) GeV. Electrons are required to lie in the bar-
rel region of the electromagnetic calorimeter (|η| < 1.4442),
while muons are considered up to |η| = 2.1. Electron candi-
dates are reconstructed starting from a cluster of energy de-
posits in the electromagnetic calorimeter. The cluster is then
matched to a reconstructed track. The electron selection is
based on the shower shape, track-cluster matching, and con-
sistency between the cluster energy and the track momen-
tum [46]. Muon candidates are reconstructed by performing
a global fit that requires consistent hit patterns in the tracker
and the muon system [47].

The particle flow (PF) method [48] is used to recon-
struct final-state particles. Leptons are required to be iso-
lated from other activity in the event. A measure of lep-
ton isolation is the scalar sum (psum

T ) of the pT of all PF
particles, excluding the lepton itself, within a cone of ra-
dius �R ≡

√
(�η)2 + (�φ)2 = 0.3, where �η (�φ) is the

difference in η (φ) between the lepton and the PF particle
at the primary interaction vertex. The average contribution
of particles from pileup interactions is estimated and sub-
tracted from the psum

T quantity. The isolation requirement
is psum

T < min(5 GeV,0.15 · pT
�). Typical lepton identi-

fication and isolation efficiencies, measured in samples of
Z → �� events, are 84 % for electrons and 91 % for muons,
with variations at the level of a few percent depending on
pT and η.

To reduce the background from tt̄ events in which both W
bosons decay leptonically (denoted as tt̄ → �� in the follow-
ing), events are rejected if they contain evidence for an ad-
ditional lepton. Specifically, we reject events with a second
isolated lepton of pT > 5 GeV, identified with requirements
that are considerably looser than for the primary lepton. We
also reject events with an isolated track of pT > 10 GeV
with opposite sign with respect to the primary lepton, as
well as events with a jet of pT > 20 GeV consistent with the
hadronic decay of a τ lepton [49]. The isolation algorithm
used at this stage differs slightly from the one used in the

selection of primary leptons: the cone has radius �R = 0.4,
the psum

T variable is constructed using charged PF particles
only, and the isolation requirement is psum

T < α · pT, where
pT is the transverse momentum of the track (lepton) and
α = 0.1 (0.2), for tracks (leptons).

The PF particles are clustered to form jets using the anti-
kT clustering algorithm [50] with a distance parameter of
0.5, as implemented in the FASTJET package [51, 52]. The
contribution to the jet energy from pileup is estimated on
an event-by-event basis using the jet area method described
in Ref. [53], and is subtracted from the overall jet pT. Jets
from pileup interactions are suppressed using a multivariate
discriminant based on the multiplicity of objects clustered
in the jet, the topology of the jet shape, and the impact pa-
rameters of the charged tracks with respect to the primary
interaction vertex. The jets must be separated from the lep-
ton by �R > 0.4 in order to resolve overlaps.

Selected events are required to contain at least four jets
with pT > 30 GeV and |η| < 2.4. At least one of these jets
must be consistent with containing the decay of a heavy-
flavor hadron, as identified using the medium operating
point of the combined secondary vertex bottom-quark (b-
quark) tagging algorithm (CSVM) [54]. We refer to such
jets as “b-tagged jets”. The efficiency of this algorithm for
bottom-quark jets in the pT range 30–400 GeV varies be-
tween approximately 60 and 75 % for |η| < 2.4. The nom-
inal misidentification rate for light-quark or gluon jets is
1 % [54].

The missing transverse momentum is defined as the mag-
nitude of the vector sum of the transverse momenta of all
PF particles over the full calorimeter coverage (|η| < 5).
The Emiss

T vector is the negative of that same vector sum.
The calibrations that are applied to the energy measure-
ments of jets are propagated consistently as a correction to
the Emiss

T obtained from PF particles. We require Emiss
T >

100 GeV.
To summarize, events are required to contain one isolated

lepton (e or μ), no additional isolated track or hadronic τ -
lepton candidate, at least four jets with at least one b-tagged
jet, and Emiss

T > 100 GeV; this is referred to below as the
“event preselection”. Signal regions are defined demanding
MT > 120 GeV. This requirement provides large suppres-
sion of the SM backgrounds while retaining high signal effi-
ciency. Requirements on several kinematic quantities or on
the output of boosted decision tree (BDT) multivariate dis-
criminants are also used to define the signal regions, as de-
scribed below.

4.2 Kinematic quantities

To reduce the dominant tt̄ → �� background, we make use
of the quantity MW

T2, defined as the minimum “mother” par-
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ticle mass compatible with all the transverse momenta and
mass-shell constraints [55]. This variable is a variant of the
MT2 observable [56–58], and is designed specifically to sup-
press the tt̄ → �� background with one undetected lepton
in the top squark search. By construction, for the dilep-
ton tt̄ background without mismeasurement effects, MW

T2
has an endpoint at the top-quark mass. The MW

T2 calcula-
tion relies on the correct identification of the b-quark jets
and the correct pairing of the b-quark jets with the leptons.
The MW

T2 value in the event is defined as the minimum of
the MW

T2 values calculated from all possible combinations
of b-quark jets and the lepton. For events with only one b-
tagged jet, the combinations are performed using each of
the three remaining highest pT jets as the possible second
b-quark jet.

In the˜t → tχ̃0
1 search, the dilepton tt̄ background is sup-

pressed by requiring that three of the jets in the event be
consistent with the t → bW → bqq̄ decay chain. For each
triplet of jets in the event we construct a hadronic top χ2 as:

χ2 = (Mj1j2j3 − Mtop)
2

σ 2
j1j2j3

+ (Mj1j2 − MW)2

σ 2
j1j2

. (1)

Here Mj1j2j3 is the mass of the three-jet system, Mj1j2

is the mass of two of the jets posited to originate from
W boson decay, and σj1j2j3 and σj1j2 are the uncertain-
ties on these masses calculated from the jet energy resolu-
tions [59]. The three-jet mass Mj1j2j3 is computed after re-
quiring Mj1j2 = MW using a constrained kinematic fit, while
Mj1j2 in Eq. (1) is the two-jet mass before the fit. Finally,
Mtop = 173.5 GeV (MW = 80.4 GeV) is the mass of the top
quark (W boson) [60]. The three jets are required to have
pT > 30 GeV and |η| < 2.4 and to be among the six lead-
ing selected jets. The jet assignments are made consistently
with the b-tagging information, i.e., j3 must be b-tagged if
there are at least two b-tagged jets and j1 and j2 cannot be
b-tagged unless there are at least three b-tagged jets in the
event. The minimum hadronic top χ2 amongst all possible
jet combinations is used as a discriminant on an event-by-
event basis.

Two topological variables are used in the selection of
signal candidates. The first is the minimum �φ value be-
tween the Emiss

T vector and either of the two highest pT

jets, referred to below as “min�φ”. Background tt̄ events
tend to have high-pT top quarks, and thus objects in these
events tend to be collinear in the transverse plane, result-
ing in smaller values of �φ than is typical for signal events.
The second variable is H ratio

T , defined as the fraction of the
total scalar sum of the jet transverse energies (HT) with
pT > 30 GeV and |η| < 2.4 that lies in the same hemisphere
as the Emiss

T vector. This quantity tends to be smaller for sig-
nal than for background events, because in signal events the
visible particles recoil against the LSPs, resulting on aver-

age in events with more energy in the opposite hemisphere
to the Emiss

T .
In the ˜t → bχ̃+ decay mode, the bottom quarks arise

from the decay of the top squark, while in background events
they originate from the decay of the top quark. As a re-
sult, in most of the signal parameter space the pT spec-
trum of the bottom quarks is harder for signal than for back-
ground events. Conversely, in the˜t → tχ̃0

1 decay mode, if
the top quark is off-shell, the pT spectrum of the bottom
quarks is softer for signal than for the background. The pT

value of the highest-pT b-tagged jet is therefore a useful dis-
criminant. An additional, related, discriminating variable is
the �R separation between this jet and the lepton. Finally,
the pT spectrum of the lepton can be used to discriminate
between on-shell and off-shell leptonic W decays, which
occur in the ˜t → bχ̃+ mode when the mass splitting be-
tween the chargino and the LSP is smaller than the W boson
mass.

The distributions after the preselection of Emiss
T , MT,

and the kinematic quantities described above, are shown in
Fig. 2. These quantities are seen to be in agreement with
the simulation of the SM background processes that will be
discussed in more detail in Sect. 5.

4.3 Signal region definition

Two approaches are pursued to define the signal regions
(SRs): a “cut-based” approach based on sequential se-
lections on individual variables, and a BDT multivariate
approach implemented via the TMVA package [61]. In
both methods, we apply the preselection requirements of
Sect. 4.1. The cut-based signal regions are defined by adding
requirements on individual kinematic variables. In contrast,
the BDT combines the kinematic variables into a single dis-
criminant, and the BDT SRs are defined by requirements
on this discriminant. The BDT approach improves the ex-
pected sensitivity of the search by up to 40 % with respect
to the cut-based approach, at the cost of additional complex-
ity. The primary result of our search is obtained with the
BDT, while the cut-based analysis serves as a crosscheck.
Table 1 lists the variables used in the training of the BDTs
(Sect. 4.3.1) and summarizes the requirements for the cut-
based SRs (Sect. 4.3.2).

4.3.1 BDT signal regions

The BDTs are trained on samples of MC signal and back-
ground events satisfying the preselection requirements and
with MT > 120 GeV. The BDTs are trained with MAD-
GRAPH samples for˜t → tχ̃0

1 and a mixture of MADGRAPH

and PYTHIA samples for˜t → bχ̃+. The choice of genera-
tors has little impact on the final result. The background MC
sample contains all the expected SM processes.
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Fig. 2 Comparison of data with MC simulation for the distribu-
tions of (a) MT, (b) Emiss

T , (c) MW
T2, (d) hadronic top χ2, (e) H ratio

T ,
(f) minimum �φ between the Emiss

T vector and the two leading jets,
(g) pT of the leading b-tagged jet, (h) �R between the leading
b-tagged jet and the lepton, and (i) lepton pT, after the preselec-
tion. For the plots (a)–(f), distributions for the ˜t → tχ̃0

1 model with
m̃t = 650 GeV and mχ̃0

1
= 50 GeV, scaled by a factor of 1000, are

overlayed. We also show distributions of ˜t → tχ̃0
1 with m̃t = 250 GeV

and mχ̃0
1

= 100 GeV for (g), scaled by 10, and of ˜t → bχ̃+ with

m̃t = 650 GeV, mχ̃0
1

= 50 GeV, and x = 0.5 for (h) and (i), scaled by
1000, as well as of m̃t = 250 GeV, mχ̃0

1
= 150 GeV, and x = 0.5 for

(i), scaled by 10. In all distributions the last bin contains the overflow



Page 6 of 46 Eur. Phys. J. C (2013) 73:2677

Table 1 Summary of the variables used as inputs for the BDTs and of
the kinematic requirements in the cut-based analysis. All signal regions
include the requirement MT > 120 GeV. For the˜t → tχ̃0

1 BDT trained
in the region where the top quark is off-shell, the hadronic top χ2 is

not included and the leading b-tagged jet pT is included. The lepton
pT is used only in the training of the˜t → bχ̃+ BDT in the case where
the W boson is off-shell

Selection ˜t → tχ̃0
1

˜t → bχ̃+

BDT Cut-based BDT Cut-based

Low �M High �M Low �M High �M

Emiss
T (GeV) yes >150, 200,

250, 300
>150, 200,
250, 300

yes >100, 150,
200, 250

>100, 150,
200, 250

MW
T2 (GeV) yes >200 yes >200

min�φ yes >0.8 >0.8 yes >0.8 >0.8

H ratio
T yes yes

Hadronic top χ2 (on-shell top) <5 <5

Leading b-tagged jet pT (GeV) (off-shell top) yes >100

�R(�,leading b-tagged jet) yes

Lepton pT (GeV) (off-shell W)

Separate BDTs are trained for the˜t → tχ̃0
1 and˜t → bχ̃+

decay modes and for different regions of parameter space.
In what follows we refer to the different BDTs as BDTn,
where n is the region number defined in Fig. 3. In general,
for a given BDT, the optimal requirement does not depend

strongly on the point in parameter space within each region.
Thus, for almost all regions a single BDT requirement is
sufficient, and each such requirement defines a BDT sig-
nal region. The exceptions are BDT1 for the˜t → tχ̃0

1 signal
model and BDT2 for the˜t → bχ̃+ signal model with param-

Fig. 3 The regions used to train the BDTs, in the mχ̃0
1

vs. m̃t pa-

rameter space, for (a) the˜t → tχ̃0
1 scenario, and for (b) the˜t → bχ̃+

x = 0.25, (c) 0.5, and (d) 0.75 scenarios. The dashed lines correspond

to �M ≡ m̃t −mχ̃0
1

= Mtop for˜t → tχ̃0
1 , and �M ≡ mχ+

1
−mχ̃0

1
= MW

for˜t → bχ̃+
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eter x = 0.5; in these regions we choose two BDT operating
points, referred to as “tight” and “loose”.

BDT distributions after the preselection are shown in
Fig. 4 for four of the 16 BDTs (two tight and two loose
BDTs). The data are in agreement with the MC simulation
of SM processes.

4.3.2 Cut-based signal regions

For the˜t → tχ̃0
1 model, two types of signal regions are dis-

tinguished: those targeting “small �M” and those targeting
“large �M”, where �M ≡ m̃t − mχ̃0 . Both categories in-
clude the requirement that the azimuthal angular difference
between the two leading jets and the Emiss

T vector exceed
0.8 radians, in addition to the requirement that the value of
the hadronic top χ2 be less than 5. The MW

T2 > 200 GeV re-
quirement is applied only for the large �M signal regions.
Within each set, the SRs are distinguished by four succes-

sively tighter Emiss
T requirements: Emiss

T > 150, 200, 250,
and 300 GeV.

For the˜t → bχ̃+ model, the same approach is followed
as for˜t → tχ̃0

1 by defining two sets of signal regions, one
for small �M and one for high �M , where �M here is
the mass difference between the chargino and the LSP. Just
as in the˜t → tχ̃0

1 case, SRs are distinguished by increasingly
tighter requirements on Emiss

T . Since in the case of ˜t → bχ̃+
the signal has no top quark in its decay products, the require-
ment on the hadronic top χ2 is not used. The large �M

selection includes the MW
T2 requirement, as well as the re-

quirement that the leading b-tagged jet have pT larger than
100 GeV.

4.3.3 Signal regions summary

To summarize, this search uses two complementary ap-
proaches: one a cut-based approach and the other a BDT

Fig. 4 Comparison of data and
MC simulation for sample BDT
outputs. (a)˜t → tχ̃0

1 scenario in
training region 1; (b)˜t → bχ̃+
scenario with x = 0.5 in training
region 1; (c)˜t → tχ̃0

1 scenario in
training region 4; (d)˜t → bχ̃+
scenario with x = 0.5 in training
region 3. Only the event
preselection is applied, and in
all cases the last bin contains the
overflow. Events in the signal
regions are further selected by
requiring MT > 120 GeV and
by applying BDT requirements
as indicated by the vertical
dashed lines. We also overlay
expectations for possible signals
with m̃t = 250 GeV and
mχ̃0

1
= 50 GeV (panels (a) and

(b)) and m̃t = 650 GeV and
mχ̃0

1
= 50 GeV (panels (c) and

(d)). For display purposes, these
are scaled up by factors of 30
and 100 respectively
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multivariate method. Correspondingly, there are two distinct
sets of signal regions. In the BDT case, the SRs are de-
fined by requirements on the BDT outputs. The BDT SRs
provide the primary result, since the BDT method has bet-
ter expected sensitivity. There are a total of 16 cut-based
SRs (eight each for the˜t → tχ̃0

1 and˜t → bχ̃+ cases) and 18
BDT SRs (six for the˜t → tχ̃0

1 mode and 12 for the˜t → bχ̃+
mode). The expected number of background events in the
SRs varies between approximately 4 and 1600 (see Sect. 8).

5 Background estimation methodology

The SM background is divided into four categories that
are evaluated separately. The largest background contribu-
tion after full selection is tt̄ production in which both W
bosons decay leptonically (tt̄ → ��), but one of the lep-
tons is not identified. The second largest background con-
sists of tt̄ production in which one W boson decays lepton-
ically and the other hadronically (tt̄ → � + jets), as well as
single-top-quark production in the s- and t-channels: These
are collectively referred to as “single-lepton-top-quark” pro-
cesses. The third largest background consists of a variety of
SM processes with small cross sections, including tt̄ events
produced in association with a vector boson (tt̄W, tt̄Z, tt̄γ ),
processes with two (WW, WZ, ZZ) and three (WWW,
WWZ, WZZ, ZZZ) electroweak vector bosons, and single-
top-quark production in the tW-channel. These processes are
collectively referred to as the “rare” processes. The fourth
and final background contribution is from the production of
W bosons with jets (W + jets). The multijet contribution to
the background is negligible in the signal regions due to the
requirement of a high-pT isolated lepton, large MT, large
Emiss

T , and a b-tagged jet. Here, “multijet” refers to events
composed entirely of jets, without a lepton, W or Z boson,
or top quark.

Backgrounds are estimated from MC simulations, with
small corrections (see below). The simulation is validated in
control regions (CRs) designed to enrich the data sample in
specific sources of background while maintaining kinematic
properties that are similar to those in the signal regions (see
Sect. 6). In the CRs the kinematic variables used in the cut-
based and BDT selections are examined to verify that they
are properly modeled. A key distribution in each CR is that
of MT after the cut-based or BDT selection requirements,
since MT > 120 GeV is the final criterion that defines each
signal region. The data/MC comparison of the number of
events with MT > 120 GeV is then a direct test of the ability
of the method to correctly predict the SM background in the
signal regions.

The CR studies are designed to extract data/MC scale fac-
tors to be applied to the MC predictions for the background
in the signal regions. We find that the only scale factor re-
quired is related to an underestimation of the MT tail for

single-lepton-top-quark and W + jets events, as discussed in
more detail in Sect. 6.

The selection of signal events requires at least four
hadronic jets. As mentioned above, the dominant back-
ground consists of tt̄ → �� events with one unidentified lep-
ton. These events satisfy the signal region selection only if
there are two additional jets from initial- or final-state ra-
diation (ISR/FSR) or if there is one such jet in conjunction
with a second lepton identified as a jet (e.g., in the case
of hadronic τ -lepton decays). To validate the modeling of
ISR/FSR, a data control sample of tt̄ → �� events is de-
fined by requiring the presence of exactly two opposite-sign
leptons (electrons or muons) in events satisfying dilepton
triggers. To suppress the Z + jets background that is present
in this control sample, same-flavor (ee or μμ) events with
an invariant mass in the range 76 < m�� < 106 GeV are
rejected, the presence of at least one b-tagged jet is re-
quired, and minimum requirements are imposed on Emiss

T .
We then compare the distribution of the number of jets in
data and MC simulation, as displayed in Fig. 5. The frac-
tion of tt̄ → �� events with three or more jets is found to be
in agreement with the expectation from the MC simulation
within a 3 % statistical uncertainty.

To minimize systematic uncertainties associated with the
tt̄ production cross section, integrated luminosity, lepton ef-
ficiency, and jet energy scale, the tt̄ MC backgrounds at high
MT are always normalized to the number of events in data
in the transverse-mass peak region, defined as 50 < MT <

80 GeV, after subtracting the contribution from rare back-
grounds. We refer to this normalization factor as the “tail-to-
peak ratio”. Background contributions from rare processes
are taken directly from the simulated samples. Their rates
are normalized using the corresponding NLO cross sections.

Fig. 5 Comparison of the jet multiplicity distributions in data and MC
simulation in the sample dominated by tt̄ → �� events
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6 Control region studies

Three CRs are used in this analysis. A sample dominated
by tt̄ → �� events is obtained by requiring the presence of
two leptons (CR-2�). A sample dominated by a mixture of
tt̄ → � + jets and tt̄ → �� events is obtained by requiring
the presence of a lepton and one isolated track or hadronic
τ -lepton candidate (CR-�t). A sample dominated by W +
jets events is obtained by vetoing events with b-tagged jets
(CR-0b).

In all CRs, we apply the various SR selections and com-
pare data and MC yields with MT > 120 GeV after normal-
izing the MT distribution to the transverse-mass peak region
as described in Sect. 5. In the case of CR-2�, the definition of
MT is ambiguous because there are two identified leptons;
we take the MT value constructed from the leading lepton
and the Emiss

T vector.
The BDT output distribution trained in˜t → tχ̃0

1 region 1
(BDT1) is shown in Fig. 6 for the three control regions. The
MT distribution after the BDT signal region requirement is
also displayed (in the case of CR-0b this is corrected using
the scale factor discussed below). Similar levels of agree-
ment between data and MC simulation are found for the
other SR-like selections.

For CR-2� and CR-�t, the number of data events with
MT > 120 GeV is consistent with the MC prediction. The
level of agreement is used to assess a systematic uncer-
tainty for the tt̄ → �� background prediction. The uncer-
tainty ranges from 5 % for the loosest signal regions to 70 %
for the tightest signal regions, reflecting the limited statisti-
cal precision of the control samples after applying the MT

and BDT requirements. The fraction of events in CR-2� and
CR-�t with MT > 120 GeV that could be from stop pair pro-
duction varies between approximately 1 % and 20 %, de-
pending on the CR and the masses of the top squark and
the LSP. This contribution is always much smaller than the
statistical uncertainty on the data event counts.

In the case of CR-0b, the transverse-mass distribution of
events exhibits a small excess at high MT with respect to
the MC prediction. This discrepancy, illustrated in Fig. 7
using the high-statistics samples of the preselection level,
is attributed to imperfect modeling of the tails of the Emiss

T
resolution in W + jets events. The data/MC agreement in
the CR-0b MT tail can be restored by rescaling the W + jets
contribution by a factor of 1.2 ± 0.3, as seen for example
in Fig. 6, bottom right. We find that this factor is insensitive
to the details of the selection of the kinematic variables in
Table 1 for the CR-0b event sample.

The observation that the simulation underestimates the
MT tail in the W + jets sample suggests that a similar
effect should exist in the single-lepton-top-quark back-
ground. However, the MT tail is more populated for the
W + jets background than for the single-lepton-top-quark

background, due to a significant contribution from very off-
shell W bosons. This contribution is much less pronounced
for the single-lepton-top-quark background because, ignor-
ing the top-quark width, the lepton-neutrino mass M�ν can-
not exceed the difference between the top- and bottom-
quark masses, M�ν < Mtop − Mb. This bound can be vi-
olated only if both the top quark and W boson from top
quark decays are off-shell. For this reason the scale factor of
1.2 ± 0.3 measured in W + jets events cannot be simply ap-
plied to the single-lepton-top-quark simulated sample. The
scale factor is larger in the single-lepton-top-quark sample
because the fraction of events that have MT > 120 GeV due
to Emiss

T mismeasurement is larger than in the W + jets sam-
ple.

Following the arguments given above, a lower bound on
the data tail-to-peak ratio for the single-lepton-top-quark
sample (Rtop) can be obtained by scaling the MC value of
Rtop by the W + jets scale factor (1.2 ± 0.3). Conversely,
an upper bound for Rtop is Rtop = RW+jets, where RW+jets

is the tail-to-peak ratio for W + jets in the data, i.e., its MC
value scaled up by 1.2 ± 0.3. This is an overestimate of the
true value of Rtop because, as mentioned above, the MT tail
is more populated for the W + jets sample than for the one-
lepton-top sample. Since the true value of Rtop lies between
these two extremes, we take the average of the upper and
lower bounds. The resulting scale factor for Rtop with re-
spect to its uncorrected MC result lies between 1.5 and 2,
depending on the signal region. The associated uncertainty
includes the statistical uncertainty in the data/MC scale fac-
tor from CR-0b, and half the difference between these upper
and lower bounds.

7 Systematic uncertainties of the background
prediction

All backgrounds except for the rare contribution are normal-
ized to data in the MT-peak region, so the statistical un-
certainties of the data and MC yields in the MT-peak re-
gion contribute to the uncertainty of the background predic-
tions in the high-MT signal regions. This normalization is
repeated after varying the W + jets background yield in the
MT-peak region by ±50 % to estimate the associated sys-
tematic uncertainty.

For the tt̄ → �� background, the dominant uncertainty is
assessed by comparing the data and MC yields in the high-
MT regions of the CR-2� and CR-�t samples after applying
the kinematic requirements for the corresponding signal re-
gion. This uncertainty varies between 5 % and 70 %. The un-
certainty for the modeling of additional jets from radiation
in tt̄ → �� events results in a 3 % uncertainty on the dilep-
ton background. The uncertainty from the limited number of
events in the tt̄ → �� MC sample also contributes, particu-
larly in the tight signal regions.
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Fig. 6 Comparison of data and
MC simulation for the
distributions of MT and BDT
output for the control regions
associated with the BDT trained
in region 1 for the˜t → tχ̃0

1
scenario. The MT distributions
are shown after the “BDT1
loose” requirement indicated by
vertical dashed lines on the
BDT output plots. (a)–(b):
CR-2�; (c)–(d): CR-�t; (e)–(f):
CR-0b. The vertical dashed
lines in the MT plots correspond
to the MT > 120 GeV selection
requirement. For CR-0b, the
scale factors are applied to the
MC distribution in the MT tail.
The last bin in all distributions
contains the overflow

An additional uncertainty is associated with the effi-
ciency to identify a second lepton (e, μ, or one-prong
hadronic τ -lepton decay) as an isolated track. We verify that

the simulation reproduces the efficiency of the isolated track
requirement through studies of Z→ �� events in data, and
we assign a systematic uncertainty of 6 %. An uncertainty
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Fig. 7 Comparison of data and MC simulation for the MT distribu-
tion in the CR-0b control region, after the preselection. The MT tail
is underestimated by the simulation. A scale factor derived from this
control region is used to correct the predictions of the W + jets and
single-lepton-top-quark backgrounds. The last bin of the distribution
includes the overflow

of 7 %, based on studies of the efficiency for τ -lepton iden-
tification in data and simulation, is applied to events with
a hadronic τ -lepton in the hadronic τ -lepton veto accep-
tance. We also verify the stability of the tt̄ → �� MC back-
ground prediction by comparing the results of the nominal
POWHEG sample with those obtained using MADGRAPH

and MC@NLO, by varying the MADGRAPH scale param-
eters for renormalization and factorization, as well as the
scale for the matrix element and parton shower matching,
up and down by a factor of two, and by varying the top-
quark mass in the range 178.5 to 166.5 GeV. Since the re-
sulting background predictions are consistent within the sys-

tematic uncertainties discussed above, we do not assess an
additional uncertainty from the tt̄ MC stability tests.

The uncertainty of the W + jets background prediction is
dominated by the uncertainty from the tail-to-peak ratio, as
determined from data/MC comparisons in the CR-0b control
region. The main uncertainty for the single-lepton-top-quark
background arises from the difference in the tail-to-peak ra-
tios for W + jets and single-lepton-top-quark events.

The main contributors to the rare SM backgrounds are
pp → tt̄Z and pp → tt̄W; these processes have not yet been
measured accurately. As mentioned in Sect. 3, we normal-
ize their rates to the respective NLO cross-section calcula-
tions [31, 32]. We assign an overall conservative uncertainty
of 50 % to account for missing higher order terms, as well
as possible mismodeling of their kinematical properties (see
for example the discussion of Ref. [31]).

The systematic uncertainties for the˜t → tχ̃0
1 BDT analy-

sis are summarized in Table 2. The uncertainties for all other
signal regions are presented in Appendix A.1.

8 Results

A summary of the background expectations and the corre-
sponding data counts for each signal region is shown in Ta-
ble 3 for the˜t → tχ̃0

1 BDT analysis, Table 4 for the˜t → tχ̃0
1

cut-based analysis, Table 5 for the˜t → bχ̃+ BDT analysis,
and Table 6 for the˜t → bχ̃+ cut-based analysis. Figure 8
presents a comparison of data with MC simulation for the
MT and BDT-output distributions of events that satisfy a
loose and a tight˜t → tχ̃0

1 BDT signal-region requirement.
Equivalent plots for˜t → bχ̃+ are shown in Fig. 9. The MT

and BDT output distributions for the other signal regions are
presented in Appendix A.2.

The observed and predicted yields agree in all signal re-
gions within about 1.0–1.5 standard deviations. Therefore,

Table 2 The bottom row of this
table shows the relative
uncertainty (in percent) of the
total background predictions for
the˜t → tχ̃0

1 BDT signal regions.
The breakdown of this total
uncertainty in terms of its
individual components is also
shown

˜t → tχ̃0
1

Sample BDT1–Loose BDT1–Tight BDT2 BDT3 BDT4 BDT5

MT-peak data and MC (stat.) 1.0 2.1 2.7 5.3 8.7 3.0

tt̄ → �� Njets modeling 1.7 1.6 1.6 1.1 0.4 1.7

tt̄ → �� (CR-�t and CR-2� tests) 4.0 8.2 11.0 12.5 7.2 13.8

2nd lepton veto 1.5 1.4 1.4 0.9 0.3 1.4

tt̄ → �� (stat.) 1.1 2.8 3.4 7.0 7.4 3.3

W + jets cross section 1.6 2.2 2.8 1.7 2.7 2.2

W + jets (stat.) 1.1 1.9 2.0 4.6 10.8 5.2

W + jets SF uncertainty 8.3 7.7 6.8 8.1 9.7 8.6

1 − � top (stat.) 0.4 0.8 0.8 1.4 4.4 1.2

1 − � top tail-to-peak ratio 9.0 11.4 12.4 19.6 28.5 9.1

Rare processes cross section 1.8 3.0 4.0 8.1 15.7 0.7

Total 13.4 17.1 19.3 27.8 38.4 20.2
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Table 3 The result of the
˜t → tχ̃0

1 BDT analysis. For each
signal region the individual
background contributions, total
background, and observed
yields are indicated. The
uncertainty includes both the
statistical and systematic
components. The expected
yields for two example signal
models are also indicated
(statistical uncertainties only).
The first and second numbers in
parentheses indicate the
top-squark and neutralino
masses, respectively, in GeV

˜t → tχ̃0
1

Sample BDT1–Loose BDT1–Tight BDT2 BDT3 BDT4 BDT5

tt̄ → �� 438 ± 37 68 ± 11 46 ± 10 5 ± 2 0.3 ± 0.3 48 ± 13

1� top 251 ± 93 37 ± 17 22 ± 12 4 ± 3 0.8 ± 0.9 30 ± 12

W + jets 27 ± 7 7 ± 2 6 ± 2 2 ± 1 0.8 ± 0.3 5 ± 2

Rare 47 ± 23 11 ± 6 10 ± 5 3 ± 1 1.0 ± 0.5 4 ± 2

Total 763 ± 102 124 ± 21 85 ± 16 13 ± 4 2.9 ± 1.1 87 ± 18

Data 728 104 56 8 2 76

˜t → tχ̃0
1 (250/50) 285 ± 8.5 50 ± 3.5 28 ± 2.6 4.4 ± 1.0 0.3 ± 0.3 34 ± 2.9

˜t → tχ̃0
1 (650/50) 12 ± 0.2 7.2 ± 0.2 9.8 ± 0.2 6.5 ± 0.2 4.3 ± 0.1 2.9 ± 0.1

Table 4 The result of the
˜t → tχ̃0

1 cut-based analysis. For
each signal region the individual
background contributions, total
background, and observed
yields are indicated. The
uncertainty includes both the
statistical and systematic
components. The expected
yields for two example signal
models are also indicated
(statistical uncertainties only).
The first and second numbers in
parentheses indicate the
top-squark and neutralino
masses, respectively, in GeV

Sample Emiss
T > 150 GeV Emiss

T > 200 GeV Emiss
T > 250 GeV Emiss

T > 300 GeV

Low �M Selection

tt̄ → �� 131 ± 15 42 ± 7 17 ± 5 5.6 ± 2.5

1� top 94 ± 47 30 ± 19 9 ± 6 3.1 ± 2.4

W + jets 10 ± 3 5 ± 1 2 ± 1 1.0 ± 0.4

Rare 16 ± 8 7 ± 4 4 ± 2 1.8 ± 0.9

Total 251 ± 50 83 ± 21 31 ± 8 11.5 ± 3.6

Data 227 69 21 9

˜t → tχ̃0
1 (250/50) 108 ± 3.7 32 ± 2.0 12 ± 1.2 5.2 ± 0.8

˜t → tχ̃0
1 (650/50) 8.0 ± 0.1 7.2 ± 0.1 6.2 ± 0.1 4.9 ± 0.1

High �M Selection

tt̄ → �� 8 ± 2 5 ± 2 3.2 ± 1.4 1.4 ± 0.9

1� top 13 ± 6 6 ± 4 3.0 ± 2.2 1.4 ± 1.0

W + jets 4 ± 1 2 ± 1 1.5 ± 0.5 0.9 ± 0.3

Rare 4 ± 2 3 ± 1 1.8 ± 0.9 1.0 ± 0.5

Total 29 ± 7 17 ± 5 9.5 ± 2.8 4.7 ± 1.4

Data 23 11 3 2

˜t → tχ̃0
1 (250/50) 10 ± 1.1 4.6 ± 0.8 2.3 ± 0.5 1.4 ± 0.4

˜t → tχ̃0
1 (650/50) 4.9 ± 0.1 4.7 ± 0.1 4.3 ± 0.1 3.7 ± 0.1

we observe no evidence for top-squark pair production. We
note that there is a tendency for the background predictions
to lie somewhat above the observed yields; however, the
yields and background predictions in different signal regions
are correlated, both for the BDT and cut-based analysis. The
interpretation of the results in the context of models of top-
squark pair production is presented in Sect. 9.

9 Interpretation

The results of the search are interpreted in the context
of models of top-squark pair production. As discussed in
Sect. 3, we separately consider two possible decay modes

of the top squark, ˜t → tχ̃0
1 and ˜t → bχ̃+ → bWχ̃0

1 , each
with 100 % branching fraction. Using the results of Sect. 8,
we compute 95 % confidence level (CL) cross section upper
limits for top-squark pair production in the mχ̃0

1
vs. m̃t pa-

rameter space. Then, based on the expected pp →˜t˜t∗ pro-
duction rate, these cross section limits are used to exclude
regions of SUSY parameter space. For the ˜t → bχ̃+ sce-
nario, the mass of the intermediate χ̃±

1 is specified by the
parameter x defined in Sect. 3.

In setting limits, we account for the following sources of
systematic uncertainty associated with the signal event ac-
ceptance and efficiency. The uncertainty of the integrated
luminosity determination is 4.4 % [62]. Samples of Z →
�� events are used to measure the lepton efficiencies, and
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Table 5 The result of the
˜t → bχ̃+ BDT analysis. For
each signal region the individual
background contributions, total
background, and observed
yields are indicated. The
uncertainty includes both the
statistical and systematic
components. The expected
yields for several example
signal models are also indicated
(statistical uncertainties only).
The first number in parentheses
indicates the top-squark mass,
the second the gluino mass, and
the third the chargino mass
parameter x. The units of the
two mass values are GeV

˜t → bχ̃+ x = 0.25

Sample BDT1 BDT2 BDT3

tt̄ → �� 18 ± 4 2.2 ± 1.3 1.2 ± 1.0

1� top 10 ± 5 4.0 ± 1.8 1.5 ± 0.8

W + jets 3 ± 1 2.0 ± 0.7 0.7 ± 0.3

Rare 4 ± 2 1.6 ± 0.8 1.0 ± 0.5

Total 35 ± 6 9.8 ± 2.4 4.4 ± 1.4

Data 29 7 2

˜t → bχ̃+ (450/50/0.25) 19 ± 2.9 11 ± 2.2 5.2 ± 1.5

˜t → bχ̃+ (600/100/0.25) 8.8 ± 0.8 7.5 ± 0.8 5.6 ± 0.7

˜t → bχ̃+ x = 0.5

Sample BDT1 BDT2–Loose BDT2–Tight BDT3 BDT4

tt̄ → �� 40 ± 5 21 ± 4 4 ± 2 6 ± 2 100 ± 16

1� top 24 ± 10 15 ± 7 4 ± 3 4 ± 2 33 ± 12

W + jets 5 ± 1 5 ± 1 2 ± 1 3 ± 1 5 ± 1

Rare 8 ± 4 8 ± 4 3 ± 1 4 ± 2 8 ± 4

Total 77 ± 12 50 ± 9 13 ± 4 17 ± 4 146 ± 21

Data 67 35 12 13 143

˜t → bχ̃+ (250/50/0.5) 45 ± 7.6 24 ± 5.2 5.7 ± 2.4 5.2 ± 2.6 55 ± 8.1

˜t → bχ̃+ (650/50/0.5) 3.5 ± 0.4 9.5 ± 0.7 5.6 ± 0.5 8.3 ± 0.6 3.2 ± 0.4

˜t → bχ̃+ x = 0.75

Sample BDT1 BDT2 BDT3 BDT4

tt̄ → �� 37 ± 5 9 ± 2 3.1 ± 1.3 248 ± 22

1� top 17 ± 9 6 ± 5 1.6 ± 1.6 188 ± 70

W + jets 4 ± 1 4 ± 1 1.6 ± 0.6 22 ± 6

Rare 4 ± 2 4 ± 2 1.8 ± 0.9 20 ± 10

Total 61 ± 10 22 ± 6 8.1 ± 2.3 478 ± 74

Data 50 13 5 440

˜t → bχ̃+ (250/50/0.75) 115 ± 13 21 ± 5.6 8.0 ± 3.7 518 ± 28

˜t → bχ̃+ (650/50/0.75) 3.9 ± 0.4 8.4 ± 0.6 6.8 ± 0.6 5.5 ± 0.5

the corresponding uncertainties are propagated to the sig-

nal event acceptance and efficiency. These uncertainties are

3 % for the trigger efficiency and a combined 5 % for the

lepton identification and isolation efficiency, where we also

account for additional uncertainties in the modeling of the

lepton isolation due to the differences in the hadronic activ-

ity in Z → �� and SUSY events. The uncertainty of the effi-

ciency to tag bottom-quark jets results in an uncertainty for

the acceptance that depends on model details but is typically

less than 1 %. The energy scale of hadronic jets is known to

1–4 %, depending on η and pT, yielding an uncertainty of

3–15 % for the signal event selection efficiency. The larger

uncertainties correspond to models for which the difference
between the masses of the top squark and LSP is small.

The experimental acceptance for signal events depends
on the level of ISR activity, especially in the small �M
region where an initial-state boost may be required for an
event to satisfy the selection requirements, including those
on Emiss

T , MT, and the number of reconstructed jets. The
modeling of ISR in MADGRAPH is investigated by com-
paring the predicted and measured pT spectra of the system
recoiling against the ISR jets in Z + jets, tt̄, and WZ events.
Good agreement is observed at lower pT, while the simula-
tion is found to over predict the data by about 10 % at a pT

value of 150 GeV, rising to 20 % for pT > 250 GeV. The
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Table 6 The result of the
˜t → bχ̃+ cut-based analysis. For
each signal region the individual
background contributions, total
background, and observed
yields are indicated. The
uncertainty includes both the
statistical and systematic
components. The expected
yields for several sample signal
models are also indicated
(statistical uncertainties only).
The first number in parentheses
indicates the top-squark mass,
the second the gluino mass, and
the third the chargino mass
parameter x. The units of the
two mass values are GeV

Sample Emiss
T > 100 GeV Emiss

T > 150 GeV Emiss
T > 200 GeV Emiss

T > 250 GeV

Low �M Selection

tt̄ → �� 875 ± 57 339 ± 23 116 ± 14 40 ± 9

1� top 658 ± 192 145 ± 70 41 ± 24 14 ± 9

W + jets 59 ± 15 21 ± 5 8 ± 2 4 ± 1

Rare 70 ± 35 33 ± 17 16 ± 8 8 ± 4

Total 1662 ± 203 537 ± 75 180 ± 28 66 ± 13

Data 1624 487 151 52

˜t → bχ̃+ (450/50/0.25) 47 ± 3.3 33 ± 2.7 19 ± 2.0 8.7 ± 1.4

˜t → bχ̃+ (600/100/0.25) 15 ± 0.7 13 ± 0.7 11 ± 0.6 7.9 ± 0.5

˜t → bχ̃+ (250/50/0.5) 419 ± 17 157 ± 9.9 52 ± 5.4 21 ± 3.4

˜t → bχ̃+ (650/50/0.5) 14 ± 0.6 13 ± 0.5 11 ± 0.5 8.4 ± 0.4

˜t → bχ̃+ (250/50/0.75) 854 ± 26 399 ± 18 144 ± 10 56 ± 6.4

˜t → bχ̃+ (650/50/0.75) 17 ± 0.7 16 ± 0.6 13 ± 0.6 11 ± 0.5

High �M Selection

tt̄ → �� 25 ± 5 12 ± 3 7 ± 2 2.9 ± 1.5

1� top 35 ± 10 15 ± 6 6 ± 3 2.7 ± 1.8

W + jets 9 ± 2 5 ± 1 2 ± 1 1.8 ± 0.6

Rare 9 ± 5 7 ± 3 4 ± 2 2.4 ± 1.2

Total 79 ± 12 38 ± 7 19 ± 5 9.9 ± 2.7

Data 90 39 18 5

˜t → bχ̃+ (450/50/0.25) 30 ± 2.7 23 ± 2.3 15 ± 1.8 7.3 ± 1.3

˜t → bχ̃+ (600/100/0.25) 11 ± 0.6 9.7 ± 0.6 8.4 ± 0.6 6.1 ± 0.5

˜t → bχ̃+ (250/50/0.5) 37 ± 4.8 23 ± 3.8 11 ± 2.6 5.0 ± 1.7

˜t → bχ̃+ (650/50/0.5) 11 ± 0.5 9.8 ± 0.5 8.6 ± 0.4 6.7 ± 0.4

˜t → bχ̃+ (250/50/0.75) 32 ± 5.2 23 ± 4.4 11 ± 2.9 3.6 ± 1.4

˜t → bχ̃+ (650/50/0.75) 9.2 ± 0.5 8.4 ± 0.5 7.5 ± 0.4 6.3 ± 0.4

predictions from the MC signal samples are weighted to ac-
count for this difference, by a factor of 0.8–1.0, depending
on the pT of the system recoiling against the ISR jets, and
the deviation of this weight from 1 is taken as a systematic
uncertainty. Further details are given in Appendix B.

Upper limits on the cross section for top-squark pair pro-
duction are calculated separately for each SR, incorporating
the uncertainties of the acceptance and efficiency discussed
above, using the LHC-style CLs criterion [63–65]. For each
point in the signal model parameter space, the observed limit
is taken from the signal region with the best expected limit.
The results from the BDT analysis are displayed in Fig. 10.
The corresponding results from the cut-based analysis, and
maps of the most sensitive signal regions for each of the top-
squark decay modes, are presented in Appendix A.3. The
cross section limits from the BDT analysis improve upon
those from the cut-based analysis by up to approximately
40 %, depending on the model parameters.

Our results probe top squarks with masses between ap-
proximately 150 and 650 GeV, for neutralinos with masses

up to approximately 250 GeV, depending on the details of
the model. For the˜t → tχ̃0

1 search, the results are not sensi-
tive to the model points with m̃t − mχ̃0

1
= Mtop because the

χ̃0
1 is produced at rest in the top-quark rest frame. However

the results are sensitive to scenarios with m̃t − mχ̃0
1

< Mtop

in which the top quark in the decay ˜t → tχ̃0
1 is off-shell,

including regions of parameter space with the top squark
lighter than the top quark.

The acceptance depends on the polarization of the top
quarks in the ˜t → tχ̃0

1 scenario, and on the polarization
of the charginos and W bosons in the ˜t → bχ̃+ scenario.
These polarizations depend on the left/right mixing of the
top squarks and on the mixing matrices of the neutralino
and chargino [36, 37]. The exclusion regions obtained in the
nominal˜t → tχ̃0

1 scenario with unpolarized top quarks are
compared to those obtained with pure left-handed and pure
right-handed top quarks in Fig. 11 (left). The limits on the
top-squark and χ̃0

1 masses vary by ±10–20 GeVdepending
on the top-quark polarization.
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Fig. 8 Comparison of data and
MC simulation for the
distributions of BDT output and
MT corresponding to the
tightest and loosest signal region
selections in the˜t → tχ̃0

1
scenario. The MT distributions
are shown after the requirement
on the BDT output, and the
BDT output distributions are
shown after the MT > 120 GeV
requirement (these requirements
are also indicated by vertical
dashed lines on the respective
distributions). (a) MT after the
loose cut on the BDT1 output;
(b) MT after the cut on the
BDT4 output; (c) BDT1 output
after the MT cut; (d) BDT4
output after the MT cut.
Expected signal distributions for
mχ̃0

1
= 50 GeV and

m̃t = 250 GeV or 650 GeV are
also overlayed, as indicated in
the figures. In plot (b), the bin to
the right of the vertical line
contains all events with
MT > 120 GeV, and has been
scaled by a factor of 1/3 to
indicate the number of events
per 60 GeV. In all distributions
the last bin contains the
overflow

In the˜t → bχ̃+ scenario, the acceptance depends on the
polarization of the chargino, and on whether the Wχ̃0

1 χ̃±
1

coupling is left-handed or right-handed. In the nominal in-
terpretations for the˜t → bχ̃+ models presented in Fig. 10,
the signal events are generated with an unpolarized chargino
and a left/right-symmetric Wχ̃0

1 χ̃±
1 coupling. We have stud-

ied the dependence of our results on these assumptions.
We find that the scenarios in which the limits deviate the
most from the nominal result correspond to right-handed
charginos with either a right-handed Wχ̃0

1 χ̃±
1 coupling

(maximum sensitivity) or a left-handed Wχ̃0
1 χ̃±

1 coupling
(minimum sensitivity). This is shown for the ˜t → bχ̃+
x = 0.5 model in Fig. 11 (right). The corresponding results
for the x = 0.25 and 0.75 scenarios can be found in Ap-
pendix A.3.

Mixed-decay scenarios, i.e., scenarios with non-zero top-
squark decay branching fractions into both ˜t → tχ̃0

1 and
˜t → bχ̃+, have not been considered here. However, our re-

sults can be used to draw useful conclusions about these pos-
sibilities. We must distinguish between two typical SUSY
spectra: one in which the chargino and LSP are nearly mass-
degenerate, and the other in which the chargino is consider-
ably heavier. In the degenerate case, corresponding to x ≈ 0,
the acceptance is small for top-squark pairs with one or more
˜t → bχ̃+ decays. This is because the visible decay products
in the χ̃+

1 → χ̃0
1 +X process are soft and likely to escape de-

tection. Thus, to a good approximation, in these scenarios
the top-squark pair cross section limit can be extracted by
scaling the corresponding limit in the 100 %˜t → tχ̃0

1 model
by B2, where B is the branching fraction for˜t → tχ̃0

1 . Exclu-
sion regions for a few choices of B are shown in Fig. 12. In
the mixed case with a chargino much heavier than the LSP, a
conservative approximate cross section limit can be obtained
as σ(pp →˜t˜t∗) < min(σ0/B2, σ+/(1 − B)2), where σ0 and
σ+ are the cross section limits for the 100 %˜t → tχ̃0

1 and
100 %˜t → bχ̃+ scenarios, respectively, and B is the branch-
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Fig. 9 Comparison of data and
MC simulation for the
distributions of BDT output and
MT corresponding to the
tightest and loosest signal region
selections in the x = 0.5
˜t → bχ̃+ scenario with an
on-shell W boson. The MT
distributions are shown after the
requirement on the BDT output,
and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
cut on the BDT1 output; (b) MT
after the cut on the BDT3
output; (c) BDT1 output after
the MT cut; (d) BDT3 output
after the MT cut. Expected
signal distributions for x = 0.5
with mχ̃0

1
= 50 GeV and

m̃t = 250 GeV or 650 GeV are
also overlayed, as indicated in
the figures. In all distributions
the last bin contains the
overflow

ing fraction defined above. (The limits σ0 and σ+ shown in
Fig. 10 are available electronically [66] and as supplemen-
tary material to this paper.) This approach is conservative as
it uses only one out of the three possible decay modes of the
top-squark pair. It should also be noted that in the heavier-
chargino scenario it is possible for one additional neutralino
(χ̃0

2 ) to be nearly degenerate with the chargino. The decay
˜t → tχ̃0

2 followed by, for example, χ̃0
2 → Zχ̃0

1 or Hχ̃0
1 would

then also be possible. This would further complicate the in-
terpretation of the experimental results.

10 Summary

We have performed a search for the direct pair production
of top squarks in a final state consisting of a single iso-
lated lepton, jets, large missing transverse momentum, and
large transverse mass. Signal regions are defined both with

requirements on the output of a BDT multivariate discrimi-
nator, and with requirements on several kinematic discrim-
inants. The observed yields in the signal regions agree with
the predicted backgrounds within the assessed uncertainties.
The results are interpreted in the context of models of top-
squark pair production and decay. The analysis probes top
squarks with masses up to about 650 GeVand significantly
restricts the allowed parameter space of natural SUSY sce-
narios.
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Fig. 10 Interpretations using the primary results from the BDT
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Fig. 11 (a) the observed 95 % CL excluded regions for the˜t → tχ̃0
1

model for the case of unpolarized, right-handed, and left-handed top
quarks. (b) the observed 95 % CL excluded regions for the ˜t →

bχ̃+ model with x = 0.5 for the nominal scenario, right- vs. left-
handed charginos (χ̃±

R and χ̃±
L , respectively), and right- vs. left-handed

Wχ̃0
1 χ̃±

1 couplings

Fig. 12 The observed 95 % CL excluded regions as a function of the
assumed branching fraction for the˜t → tχ̃0

1 decay mode. The results
are based on the assumption that the search has no acceptance for
top-squark pair events if one of the top squarks decays in a different
mode. See text for details

Appendix A: Additional tables and figures

A.1 Further information about systematic uncertainties

The systematic uncertainties for the˜t → tχ̃0
1 cut-based,˜t →

bχ̃+ BDT, and˜t → bχ̃+ cut-based analyses are shown in
Tables 7, 8, and 9, respectively. The corresponding informa-
tion for˜t → tχ̃0

1 BDT analysis is given in the body of the
paper (see Table 2).

A.2 Additional MT and BDT output distributions

In this section, MT and BDT-output distributions in addition
to those shown in Figs. 8 and 9 are presented for the˜t →
tχ̃0

1 (Figs. 13, 14) and˜t → bχ̃+ (Figs. 15–19) BDT signal
regions.

A.3 Further information about model interpretations

The interpretations for the˜t → tχ̃0
1 and˜t → bχ̃+ scenarios,

using the cut-based analysis, are presented in Fig. 20. Maps
of the most sensitive signal regions for the cut-based and
BDT searches are shown in Figs. 21 and 22. The variations
in the˜t → bχ̃+ x = 0.25 and 0.75 limits due to assumptions
about particle polarizations are presented in Fig. 23.

Appendix B: Monte Carlo modeling of initial-state
radiation

The experimental acceptance for signal events depends on
initial-state radiation (ISR). As the simulation is not neces-
sarily expected to model ISR well, we validate the simula-
tion by comparing MADGRAPH MC predictions with data.
The predicted pT spectrum of the system recoiling against
the ISR jets is compared with data in Z + jets, tt̄, and WZ
final states. These processes can be measured with good sta-
tistical precision in data and cover a variety of masses and
initial states.

Z + jets events are selected by requiring exactly two
opposite-sign, same-flavor leptons (ee or μμ) with an in-
variant mass between 81 and 101 GeV. These events, as
well as the tt̄ and WZ samples discussed below, are collected
with dilepton triggers. Events with at least one b-tagged jet
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Table 7 The bottom row of this
table shows the relative
uncertainty (in percent) of the
total background predictions for
the˜t → tχ̃0

1 cut-based signal
regions. The breakdown of this
total uncertainty in terms of its
individual components is also
shown

Sample Emiss
T > 150 GeV Emiss

T > 200 GeV Emiss
T > 250 GeV Emiss

T > 300 GeV

Low �M Selection

MT peak data and MC (stat.) 1.4 2.4 4.0 6.3

tt̄ → �� Njets modeling 1.6 1.5 1.6 1.5

tt̄ → �� (CR-�t and CR-2� tests) 5.2 7.6 13.1 19.6

2nd lepton veto 1.3 1.2 1.3 1.2

tt̄ → �� (stat.) 1.9 3.2 5.2 8.0

W + jets cross section 1.1 1.1 1.8 2.2

W + jets (stat.) 2.1 3.2 4.1 5.6

W + jets SF uncertainty 9.4 9.0 7.5 7.0

1 − � top (stat.) 0.6 0.9 1.1 1.5

1 − � top tail-to-peak ratio 16.0 20.7 18.3 18.5

Rare processes cross sections 2.0 2.6 3.8 5.9

Total 19.8 24.6 25.5 30.9

High �M Selection

MT peak data and MC (stat.) 3.9 4.8 6.0 8.5

tt̄ → �� Njets modeling 0.8 0.9 1.0 0.9

tt̄ → �� (CR-�t and CR-2� tests) 4.1 6.1 11.7 14.9

2nd lepton veto 0.7 0.7 0.8 0.7

tt̄ → �� (stat.) 4.2 5.9 8.4 10.2

W + jets cross section 0.6 0.5 1.3 1.8

W + jets (stat.) 3.8 4.7 5.7 7.7

W + jets SF uncertainty 11.7 10.3 8.8 8.8

1 − � top (stat.) 1.8 1.9 2.1 3.4

1 − � top tail-to-peak ratio 17.1 21.3 20.9 17.3

Rare processes cross sections 6.1 6.9 7.8 9.2

Total 23.1 27.0 29.3 30.6

or with additional lepton candidates are vetoed to remove
contributions from tt̄ and diboson (WZ/ZZ) production, re-
spectively. In Z + jets events, the Z boson is expected to be
balanced in transverse momentum with the ISR jet system.
The pT of the Z boson is thus computed in two ways: as the
pT of the dilepton system, and, for events with at least one
reconstructed jet, as the pT of the vector sum of the recon-
structed jets, termed the “jet system” pT. The predicted MC
spectrum for each quantity is compared with data, as shown
in Fig. 24. The MC prediction is normalized to the total data
yield so that the shapes can be readily compared. This pro-
cedure changes the normalization of the simulation by 4 %,
consistent with the luminosty uncertainty. Agreement is ob-
served at lower pT, while at higher pT the MC predictions
lie above the data. The predictions from simulation exceed
the data by about 10 % for pT = 150 GeV and 20 % for
pT = 250 GeV. Both quantities show the same trend, vali-
dating the jet recoil method of measuring this quantity. The
dilepton pT and jet system pT are also checked for events
with exactly one, two, or three jets, as well as at least four
jets, and in each case the results are consistent with the inclu-
sive results shown in Fig. 24. The impact of the jet energy

scale uncertainty, which only affects the jet system pT, is
found to be much smaller than the observed discrepancies.

Dilepton tt̄ events are selected by requiring an opposite-
sign eμ pair and exactly two b-tagged jets. Events contain-
ing a third lepton candidate are vetoed. These requirements
select dilepton tt̄ events with high purity (about 97 % in sim-
ulation) and unambiguously identify all the visible tt̄ decay
products. Because of the presence of neutrinos in the tt̄ de-
cays, the pT of the tt̄ cannot be directly measured but can
be inferred from the ISR jet recoil system. Additional jets
beyond the two b-tagged jets in these events are thus con-
sidered to be ISR jets for the purposes of this study, and the
“jet system” is formed by the vector sum of ISR jets. The pT

of the jet system defined this way is found in simulation to
accurately reproduce the pT of the generated tt̄ system. The
predicted jet system pT spectrum is compared with data in
Fig. 25. Agreement is found at lower pT. At higher pT, the
simulation is consistent with the data to within the uncertain-
ties, but it also exhibits a trend to overpredict the data, as in
the case of Z+ jets events. The jet system pT is also checked
for events with exactly one, two, or three jets, as well as at
least four jets, and in each case the results are consistent



Page 20 of 46 Eur. Phys. J. C (2013) 73:2677

Table 8 The bottom row of this
table shows the relative
uncertainty (in percent) of the
total background predictions for
the˜t → bχ̃+ BDT signal
regions. The breakdown of this
total uncertainty in terms of its
individual components is also
shown

˜t → bχ̃+x = 0.75

Sample BDT1 BDT2 BDT3 BDT4

MT peak data and MC (stat.) 3.5 5.3 7.8 1.2

tt̄ → �� Njets modeling 1.8 1.2 1.1 1.6

tt̄ → �� (CR-�t and CR-2� tests) 6.0 8.2 11.3 3.6

2nd lepton veto 1.7 1.1 1.0 1.4

tt̄ → �� (stat.) 4.3 5.9 9.6 1.4

W + jets cross section 2.7 2.3 2.7 1.4

W + jets (stat.) 4.5 5.3 6.4 2.4

W + jets SF uncertainty 6.9 7.7 7.0 9.9

1 − � top (stat.) 1.2 1.2 1.2 0.6

1 − � top tail-to-peak ratio 11.3 19.5 17.6 10.7

Rare processes cross sections 1.9 6.2 8.9 1.1

Total 16.8 25.4 27.8 15.5

˜t → bχ̃+x = 0.5

Sample BDT1 BDT2–Loose BDT2–Tight BDT3 BDT4

MT peak data and MC (stat.) 3.0 3.3 6.0 5.8 2.4

tt̄ → �� Njets modeling 1.6 1.3 1.0 1.1 2.1

tt̄ → �� (CR-�t and CR-2� tests) 5.2 6.4 17.2 11.1 10.3

2nd lepton veto 1.4 1.2 1.0 1.0 1.9

tt̄ → �� (stat.) 3.5 4.0 6.6 6.2 2.8

W + jets cross section 2.5 2.6 1.4 3.3 2.8

W + jets (stat.) 2.3 2.2 4.1 3.4 2.3

W + jets SF uncertainty 8.0 8.0 8.1 7.3 5.7

1 − � top (stat.) 1.0 1.2 1.5 1.6 0.8

1 − � top tail-to-peak ratio 10.3 11.5 18.4 11.7 5.6

Rare processes cross sections 3.3 6.8 8.7 9.4 1.3

Total 15.7 18.0 29.7 22.3 14.4

˜t → bχ̃+x = 0.25

Sample BDT1 BDT2 BDT3

MT peak data and MC (stat.) 4.0 9.0 10.6

tt̄ → �� Njets modeling 1.5 0.7 0.8

tt̄ → �� (CR-�t and CR-2� tests) 7.7 11.4 19.1

2nd lepton veto 1.4 0.6 0.8

tt̄ → �� (stat.) 5.0 6.5 11.8

W + jets cross section 3.0 1.0 1.5

W + jets (stat.) 2.4 5.3 6.7

W + jets SF uncertainty 7.2 11.3 9.5

1 − � top (stat.) 1.3 3.2 4.2

1 − � top tail-to-peak ratio 10.8 12.6 13.2

Rare processes cross sections 4.5 6.2 9.6

Total 17.7 24.9 32.3

with the inclusive results shown in Fig. 25. Again, the effect
of the jet energy scale uncertainty is examined and found to
be small.

Finally, WZ → �ν�� events are selected by requiring ex-
actly three leptons, with two opposite-sign same-flavor lep-
tons (ee or μμ) consistent with the Z boson mass and a third
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Table 9 The bottom row of this
table shows the relative
uncertainty (in percent) of the
total background predictions for
the˜t → bχ̃+ cut-based signal
regions. The breakdown of this
total uncertainty in terms of its
individual components is also
shown

Sample Emiss
T > 100 GeV Emiss

T > 150 GeV Emiss
T > 200 GeV Emiss

T > 250 GeV

Low �M Selection

MT peak data and MC (stat.) 0.7 1.3 2.2 3.5

tt̄ → �� Njets modeling 1.6 1.9 1.9 1.9

tt̄ → �� (CR-�t and CR-2� tests) 2.6 3.2 6.4 12.4

2nd lepton veto 1.3 1.5 1.5 1.5

tt̄ → �� (stat.) 0.7 1.4 2.4 3.9

W + jets cross section 1.5 2.0 2.5 3.2

W + jets (stat.) 0.8 1.1 1.6 2.2

W + jets SF uncertainty 9.9 6.8 5.7 5.4

1 − � top (stat.) 0.3 0.4 0.5 0.7

1 − � top tail-to-peak ratio 5.9 11.0 11.7 12.1

Rare processes cross sections 1.1 1.7 2.6 3.7

Total 12.2 14.0 15.6 19.7

High �M Selection

MT peak data and MC (stat.) 2.9 3.3 4.3 5.5

tt̄ → �� Njets modeling 1.0 0.9 1.1 0.9

tt̄ → �� (CR-�t and CR-2� tests) 4.8 6.3 10.6 13.4

2nd lepton veto 0.9 0.8 0.9 0.8

tt̄ → �� (stat.) 2.6 3.9 5.6 7.1

W + jets cross section 2.3 1.5 1.6 1.5

W + jets (stat.) 1.8 2.5 3.2 4.3

W + jets SF uncertainty 11.5 10.2 8.4 8.3

1 − � top (stat.) 1.3 1.5 1.5 1.6

1 − � top tail-to-peak ratio 5.2 12.5 15.3 16.6

Rare processes cross sections 4.1 7.0 8.7 10.2

Total 15.0 19.7 23.7 27.1

lepton (e or μ) with MT > 50 GeV. Events with at least one
b-tagged jet are vetoed. The expected purity of this selection
from simulation is about 83 %, with about 7 % of events
coming from ZZ production. As with tt̄ events, the neutrino
in the final state prevents a direct measurement of the WZ
system pT, but the jet recoil system can be used and is de-
fined in the same way as for the Z+ jets sample. In data, this
selection yields on the order of 1000 events, so the statistical
uncertainty at high values of jet system pT is large. As for
the tt̄ MC simulated events, the WZ simulation is found to
be consistent with the data to within the uncertainties, but
also shows a trend to overpredict the data at large pT that is
consistent with the level observed for the Z + jets events.

Given the MC overprediction observed in the high-
statistics Z + jets events, and the consistency of the other
final states with this result, weights are derived to correct
the MC prediction as a function of the pT of the system
recoiling against ISR jets. These weights are applied to
the MADGRAPH signal samples used in this analysis, and
the full values of the corrections are taken as a system-
atic uncertainty. The values of the weights range from 0–
20 % depending on the pT of the system recoiling against
ISR jets. The shaded bands shown on the ratio plots in
Figs. 24–25 are centered on the weighted MC prediction,
with the width of the band showing the associated uncer-
tainty.
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Fig. 13 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
˜t → tχ̃0

1 scenario in training
regions 1 and 2. The MT
distributions are shown after the
requirement on the BDT output,
and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
tight cut on the BDT1 output;
(b) MT after the cut on the
BDT2 output; (c) BDT1 output
after the MT cut; (d) BDT2
output after the MT cut. In all
distributions the last bin
contains the overflow
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Fig. 14 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
˜t → tχ̃0

1 scenario in training
regions 3 and 5. The MT
distributions are shown after the
requirement on the BDT output,
and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
cut on the BDT3 output; (b) MT
after the cut on the BDT5
output; (c) BDT3 output after
the MT cut; (d) BDT5 output
after the MT cut. In all
distributions the last bin
contains the overflow
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Fig. 15 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
x = 0.25˜t → bχ̃+ scenario in
training regions 1 and 2. The
MT distributions are shown after
the requirement on the BDT
output, and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
cut on the BDT1 output; (b) MT
after the cut on the BDT2
output; (c) BDT1 output after
the MT cut; (d) BDT2 output
after the MT cut. In all
distributions the last bin
contains the overflow



Eur. Phys. J. C (2013) 73:2677 Page 25 of 46

Fig. 16 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
˜t → bχ̃+ scenario in training
regions 3 (for x = 0.25) and 2
(for x = 0.5). The MT
distributions are shown after the
requirement on the BDT output,
and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
cut on the BDT3 (x = 0.25)
output; (b) MT after the loose
cut on the BDT2 (x = 0.5)
output; (c) BDT3 (x = 0.25)
output after the MT cut;
(d) BDT2 (x = 0.5) output after
the MT cut. In all distributions
the last bin contains the
overflow



Page 26 of 46 Eur. Phys. J. C (2013) 73:2677

Fig. 17 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
x = 0.5˜t → bχ̃+ scenario in
training regions 2 and 4. The
MT distributions are shown after
the requirement on the BDT
output, and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
tight cut on the BDT2 output;
(b) MT after the cut on the
BDT4 output; (c) BDT2 output
after the MT cut; (d) BDT4
output after the MT cut. In all
distributions the last bin
contains the overflow



Eur. Phys. J. C (2013) 73:2677 Page 27 of 46

Fig. 18 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
x = 0.75˜t → bχ̃+ scenario in
training regions 1 and 2. The
MT distributions are shown after
the requirement on the BDT
output, and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
cut on the BDT1 output; (b) MT
after the cut on the BDT2
output; (c) BDT1 output after
the MT cut; (d) BDT2 output
after the MT cut. In all
distributions the last bin
contains the overflow
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Fig. 19 Comparison of data
and MC simulation for the
distributions of BDT output and
MT corresponding to the
x = 0.75˜t → bχ̃+ scenario in
training regions 3 and 4. The
MT distributions are shown after
the requirement on the BDT
output, and the BDT output
distributions are shown after the
MT > 120 GeV requirement
(these requirements are also
indicated by vertical dashed
lines on the respective
distributions). (a) MT after the
cut on the BDT3 output; (b) MT
after the cut on the BDT4
output; (c) BDT3 output after
the MT cut; (d) BDT4 output
after the MT cut. In all
distributions the last bin
contains the overflow
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Fig. 20 Interpretations based on the results of the cut-based analysis.
(a)˜t → tχ̃0

1 model; (b)˜t → bχ̃+ model with x = 0.25; (c)˜t → bχ̃+
model with x = 0.50; (d)˜t → bχ̃+ model with x = 0.75; The color
scale indicates the observed cross section upper limit. The observed

(solid black), median expected (solid red), and ±1σ expected (dotted
red) 95 % CL exclusion contours are indicated. The variations in the
excluded region due to ±1σ uncertainty of the theoretical prediction
of the cross section for top-squark pair production are also indicated
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Fig. 21 The most sensitive
signal region in the mχ̃0

1
vs. m̃t

parameter space in the BDT
analysis, for the (a)˜t → tχ̃0

1
model, and the˜t → bχ̃+ model
with chargino mass parameter
(b) x = 0.25, (c) 0.5, and (d)
0.75. The number indicates the
BDT training region
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Fig. 22 The most sensitive
signal region in the mχ̃0

1
vs. m̃t

parameter space in the cut-based
analysis, for the (a)˜t → tχ̃0

1
model, and the˜t → bχ̃+ model
with chargino mass parameter
(b) x = 0.25, (c) 0.5, and (d)
0.75. LM and HM refer to low
�M and high �M , respectively,
and the number indicates the
Emiss

T requirement

Fig. 23 The observed 95 % CL excluded regions for the˜t → bχ̃+ model with (a) x = 0.25 and (b) 0.75 for the nominal scenario, right- vs.
left-handed charginos (χ̃±

R and χ̃±
R , respectively), and right- vs. left-handed Wχ̃0

1 χ̃±
1 couplings
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Fig. 24 Comparison of data to MC predictions for the (a) dilepton pT
and (b) jet recoil system pT in Z + jets events. The MC prediction is
normalized to the total data yield. The data/MC ratio is also shown.

The shaded band is centered on the weight values. The width of the

band indicates the associated systematic uncertainty. In both distribu-

tions the last bin contains the overflow

Fig. 25 Comparison of data to MC prediction for the jet recoil sys-
tem pT in tt̄ events. The MC prediction is normalized to the total data
yield. The ratio of data/MC is also shown. The shaded band shows the
weights derived for MC simulation and the variation to assess system-
atic uncertainties. The last bin contains the overflow
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