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Abstract

This paper introduces a tensor-based approach
to semantic role labeling (SRL). The motiva-
tion behind the approach is to automatically
induce a compact feature representation for
words and their relations, tailoring them to
the task. In this sense, our dimensionality
reduction method provides a clear alternative
to the traditional feature engineering approach
used in SRL. To capture meaningful interac-
tions between the argument, predicate, their
syntactic path and the corresponding role la-
bel, we compress each feature representation
first to a lower dimensional space prior to as-
sessing their interactions. This corresponds to
using an overall cross-product feature repre-
sentation and maintaining associated parame-
ters as a four-way low-rank tensor. The tensor
parameters are optimized for the SRL perfor-
mance using standard online algorithms. Our
tensor-based approach rivals the best perform-
ing system on the CoNLL-2009 shared task.
In addition, we demonstrate that adding the
representation tensor to a competitive tensor-
free model yields 2% absolute increase in F-
score.1

1 Introduction

The accuracy of Semantic Role Labeling (SRL) sys-
tems depends strongly on the features used by the
underlying classifiers. For instance, the top perform-
ing system on the CoNLL–2009 shared task em-
ploys over 50 language-specific templates for fea-
ture generation (Che et al., 2009). The templates

1Our code is available at https://github.com/
taolei87/SRLParser.

are manually created and thus offer specific means
of incorporating prior knowledge into the method.
However, finding compact, informative templates is
difficult since the relevant signal may be spread over
many correlated features. Moreover, the use of lex-
icalized features, which are inevitably sparse, leads
to overfitting. In this case it is advantageous to try
to automatically compress the feature set to use a
small number of underlying co-varying dimensions.
Dimensionality reduction of this kind can be incor-
porated into the classifier directly by utilizing tensor
calculus. In this paper, we adopt this strategy.

We start by building high-dimensional feature
vectors that are subsequently mapped into a low-
dimensional representation. Since this high-
dimensional representation has to reflect the inter-
action between different indicators of semantic rela-
tions, we construct it as a cross-product of smaller
feature vectors that capture distinct facets of seman-
tic dependence: predicate, argument, syntactic path
and role label. By compressing this sparse repre-
sentation into lower dimensions, we obtain dense
representations for words (predicate, argument) and
their connecting paths, uncovering meaningful inter-
actions. The associated parameters are maintained
as a four-way low-rank tensor, and optimized for
SRL performance. Tensor modularity enables us to
employ standard online algorithms for training.

Our approach to SRL is inspired by recent suc-
cess of our tensor-based approaches in dependency
parsing (Lei et al., 2014). Applying analogous tech-
niques to SRL brings about new challenges, how-
ever. The scoring function needs to reflect the high-
order interactions between the predicate, argument,



their syntactic path and the corresponding role label.
Therefore, we parametrize the scoring function as a
four-way tensor. Generalization to high-order ten-
sors also requires new initialization and update pro-
cedures. For instance, the SVD initialization used
in our dependency parsing work results in memory
explosion when extending to our 4-way tensor. In-
stead, we employ the power method (De Lathauwer
et al., 1995) to build the initial tensor from smaller
pieces, one rank-1 component at a time. For learn-
ing, in order to optimize an overall non-convex ob-
jective function with respect to the tensor parame-
ters, we modify the passive-aggressive algorithm to
update all the low-rank components in one step. The
update strategy readily generalizes to any high-order
tensor.

We evaluate our tensor-based approach for
SRL on the CoNLL–2009 shared task benchmark
datasets of five languages: English, German, Chi-
nese, Catalan and Spanish (Surdeanu et al., 2008).
As a baseline, we use a simple SRL model that re-
lies on a minimal set of standard features. Our re-
sults demonstrate that the tensor-based model out-
performs the original SRL model by a significant
margin, yielding absolute improvements of 2.1% F1

score. We also compare our results against the best
performing system on this task (Zhao et al., 2009a).
On three out of five languages, the tensor-based
model outperforms this system. These results are
particularly notable because the system of Zhao et
al. (2009a) employs a rich set of language-specific
features carefully engineered for this task. Finally,
we demonstrate that using four-way tensor yields
better performance than its three-way counterpart,
highlighting the importance of modeling the relation
between role labels and properties of the path.

2 Related Work

A great deal of SRL research has been dedicated to
designing rich, expressive features. The initial work
by Gildea and Jurafsky (2002) already identified a
compact core set of features, which were widely
adopted by the SRL community. These features de-
scribe the predicate, the candidate argument, and
the syntactic relation between them (path). Early
systems primarily extended this core set by includ-
ing local context lexicalized patterns (e.g., n-grams),

several extended representations of the path fea-
tures, and some linguistically motivated syntactic
patterns, as the syntactic frame (Surdeanu et al.,
2003; Xue and Palmer, 2004; Pradhan et al., 2005).

More recent approaches explored a broader range
of features. Among others, Toutanova et al. (2008),
Martins and Almeida (2014) and Yang and Zong
(2014) have explored high-order features involving
several arguments and even pairs of sentence pred-
icates. Other approaches have focused on seman-
tic generalizations of lexical features using selec-
tional preferences, neural network embeddings or
latent word language models (Zapirain et al., 2013;
Collobert et al., 2011; Deschacht and Moens, 2009;
Roth and Woodsend, 2014). To avoid the intensive
feature engineering inherent in SRL, Moschitti et
al. (2008) employ kernel learning. Although attrac-
tive from this perspective, the kernel-based approach
comes with a high computational cost. In contrast
to prior work, our approach effectively learns low-
dimensional representation of words and their roles,
eliminating the need for heavy manual feature en-
gineering. Finally, system combination approaches
such as reranking typically outperform individual
systems (Björkelund et al., 2010). Our method can
be easily integrated as a component in one of those
systems.

In technical terms, our work builds on our recent
tensor-based approach for dependency parsing (Lei
et al., 2014). In that work, we use a three-way ten-
sor to score candidate dependency relations within a
first-order scoring function. The tensor captures the
interaction between words and their syntactic (head-
modifier) relations. In contrast, the scoring function
in SRL involves higher-order interactions between
the path, argument, predicate and their associated
role label. Therefore, we parametrized the scoring
function with a four-way low-rank tensor. To help
with this extension, we developed a new initializa-
tion and update strategy. Our experimental results
demonstrate that the new representation tailored to
SRL outperforms previous approaches.

3 Problem Formulation

Our setup follows the CoNLL–2009 shared
task (Hajič et al., 2009). Each token in sentence x
is annotated with a predicted POS tag and predicted



UNESCO      is         holding       its          meetings        in         Paris
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Figure 1: Example sentence from the CoNLL–2009
dataset annotated with syntactic and semantic de-
pendencies. The lower graph is the syntactic depen-
dency tree for the sentence. The upper part contains
the semantic dependencies for the predicate “hold-
ing”.

word lemma. Some tokens are also marked as
predicates, i.e., argument-bearing tokens. The goal
is to determine the semantic dependencies for each
predicate pi (cf. upper part of Figure 1). These de-
pendencies identify the arguments of each predicate
and their role labels. In this work, we focus only
on the semantic side – that is, identification and
classification of predicate arguments. To this end,
our system takes as input a syntactic dependency
tree ysyn derived from a state-of-the-art parser
(bottom part of Figure 1).

More formally, let {pi} ⊂ x be the set of ver-
bal and nominal predicates in the sentence. For each
predicate pi (e.g., “holding”), our goal is to predict
tuples (pi, aij , rij) specifying the semantic depen-
dency arcs, where aij ∈ x is one argument (e.g.,
“meetings”), and rij is the corresponding semantic
role label (e.g., A1). The semantic parse is then the
collection of predicted arcs zsem = {(pi, aij , rij)}.

We decouple syntactic and semantic inference
problems into two separate steps. We first run our
syntactic dependency parser RBGParser2 to obtain
the syntactic dependency tree ysyn. The semantic
parse zsem is then found conditionally on the syntac-
tic part:

z∗sem = arg max
zsem

Ssem(x,ysyn, zsem), (1)

Here Ssem(·) is the parametrized scoring function to
be learned. We build our scoring function by com-
bining a traditional feature scoring function with a
tensor-based scoring function.

2https://github.com/taolei87/RBGParser

Predicate word Path
Predicate POS Path + arg. POS
Argument word Path + pred. POS
Argument POS Path + arg. word
Pred. + arg. words Path + pred. word
Pred. + arg. POS Voice + pred. + arg. POS
Voice + pred. word Voice + pred. POS

Table 1: Templates for first-order semantic features.
These features are also (optionally) combined with
role labels.

3.1 Traditional Scoring Using
Manually-designed Features

In a typical feature-based approach (Johansson,
2009; Che et al., 2009), feature templates give rise
to rich feature descriptions of the semantic structure.
The score Ssem(x,ysyn, zsem) is then defined as the
inner product between the parameter vector and the
feature vector. In the first-order arc-factored case,

Ssem(x,ysyn, zsem) = w · φ(x,ysyn, zsem)

=
∑

(p,a,r)∈zsem

w · φ(p, a, r),

where w are the model parameters and φ(p, a, r) is
the feature vector representing a single semantic arc
(p, a, r) (we suppress its dependence on x and ysyn).
We also experiment with second order features, i.e.,
considering two arguments associated with the same
predicate, or two predicates sharing the same token
as argument.

For the arc-factored model, there are mainly four
types of atomic information that define the arc fea-
tures in φ(p, a, r):

(a) the predicate token p (and its local context);
(b) the argument token a (and its local context);
(c) the dependency label path that connects p and

a in the syntactic tree;
(d) the semantic role label r of the arc.

These pieces of atomic information are either used
directly or combined as unigram up to 4-gram fea-
tures into traditional models. To avoid heavy fea-
ture engineering and overfitting, we use a light and
compact feature set derived from the information in
(a)–(d). Table 1 shows the complete list of feature



templates, used as our first-order semantic baseline
in the experiments.

3.2 Low-rank Scoring via Projected
Representations

Now, we describe the tensor-based scoring function.
We characterize each semantic arc (p, a, r) using the
cross-product of atomic feature vectors associated
with the four types of information described above:
the predicate vector φ(p), the argument vector φ(a),
the dependency path vector φ(path) and the seman-
tic role label vector φ(r). For example, in the sim-
plest case φ(p),φ(a) ∈ [0, 1]n are one-hot indica-
tor vectors, where n is the size of the vocabulary.
Similarly, φ(path) ∈ [0, 1]m and φ(r) ∈ [0, 1]l are
indicator vectors where m is the number of unique
paths (seen in the training set) and l is the number
of semantic role labels. Of course, we can add other
atomic information into these atomic vectors. For
example, φ(p) will not only indicate the word form
of the current predicate p, but also the word lemma,
POS tag and surrounding tokens as well. The cross-
product of these four vectors is an extremely high-
dimensional rank-1 tensor,

φ(p)⊗ φ(a)⊗ φ(path)⊗ φ(r) ∈ Rn×n×m×l

in which each entry indicates the combination of
four atomic features appearing in the semantic arc
(p, a, r)3. The rank-1 tensor (cross-product) cap-
tures all possible combinations over atomic units,
and therefore it is a full feature expansion over the
manually selected feature set in Table 1. Similar to
the traditional scoring, the semantic arc score is the
inner product between a 4-way parameter tensor A
and this feature tensor:

A ∈ Rn×n×m×l :

vec(A) · vec (φ(p)⊗ φ(a)⊗ φ(path)⊗ φ(r)) ,
(2)

where vec(·) denotes the vector representation of a
matrix / tensor.

Instead of reducing and pruning possible feature
concatenations (e.g., by manual feature template

3We always add a bias term into these atomic vectors (e.g., a
fixed “1” attached to the beginning of every vector). Therefore,
their cross-product will contain all unigram to 4-gram concate-
nations, not just 4-gram concatenations.

construction as in the traditional approach), this ten-
sor scoring method avoids parameter explosion and
overfitting by assuming a low-rank factorization of
the parameters A. Specifically, A is decomposed
into the sum of k simple rank-1 components,

A =

k∑
i=1

P (i)⊗Q(i)⊗R(i)⊗ S(i). (3)

Here k is a small constant, P,Q ∈ Rk×n, R ∈
Rk×m and S ∈ Rk×l are parameter matrices, and
P (i) (and similarly Q(i), R(i) and S(i)) represents
the i-th row vector of matrix P .

The advantages of this low-rank assumption are
as follows. First, computing the score no longer re-
quires maintaining and constructing extremely large
tensors. Instead, we can project atomic vectors via
P , Q, R and S obtaining small dense vectors, and
subsequently calculating the arc score by

k∑
i=1

[Pφ(p)]i [Qφ(a)]i [Rφ(path)]i [Sφ(r)]i .

Second, projecting atomic units such as words, POS
tags and labels into dense, low-dimensional vectors
can effectively alleviate the sparsity problem, and it
enables the model to capture high-order feature in-
teractions between atomic units, while avoiding the
parameter explosion problem.

3.3 Combined System
Similar to our low-rank syntactic dependency pars-
ing model (Lei et al., 2014), our final scoring func-
tion Ssem(x,ysyn, zsem) is the combination of the tra-
ditional scoring and the low-rank scoring,

Ssem(x,ysyn, zsem) =

γ w · φ(x,ysyn, zsem) + (1− γ)
∑

(p,a,r)∈zsem

k∑
i=1

[Pφ(p)]i [Qφ(a)]i [Rφ(path)]i [Sφ(r)]i .

where γ ∈ [0, 1] is a hyper-parameter balancing the
two scoring terms. We tune this value on the de-
velopment set. Finally, the set of parameters of our
model is denoted as θ = {w, P,Q,R, S}. Our goal
is to optimize the weight vector w as well as the four
projection matrices given the training set.



4 Learning

We now describe the learning method for our SRL
model. Let D = {(x̂(i), ˆysyn

(i), ˆzsem
(i))}Ni=1 be the

collection of N training samples. The values of the
set of parameters θ = {w, P,Q,R, S} are estimated
on the basis of this training set. Following standard
practice, we optimize the parameter values in a max-
imum soft-margin framework. That is, for the given
sentence x̂ and the corresponding syntactic tree ˆysyn,
we adjust parameter values to separate gold seman-
tic parse and other incorrect alternatives:

∀zsem ∈ Z(x̂, ˆysyn) :

Ssem(x̂, ˆysyn, ˆzsem) ≥ Ssem(x̂, ˆysyn, zsem)

+ cost( ˆzsem, zsem) (4)

where Z(x̂, ˆysyn) represent the set of all possible se-
mantic parses, and cost( ˆzsem, zsem) is a non-negative
function representing the structural difference be-
tween ˆzsem and zsem. The cost is zero when zsem =

ˆzsem, otherwise it becomes positive and therefore is
the “margin” to separate the two parses. Follow-
ing previous work (Johansson, 2009; Martins and
Almeida, 2014), this cost function is defined as the
sum of arc errors – we add 1.0 for each false-positive
arc, 2.0 for each false-negative arc (a missing arc)
and 0.5 if the predicate-argument pair (p, a) is in
both parses but the semantic role label r is incorrect.

4.1 Online Update

The parameters are updated successively after each
training sentence. Each update first checks whether
the constraint (4) is violated. This requires “cost-
augmented decoding” to find the maximum viola-
tion with respect to the gold semantic parse:

˜zsem = arg max
zsem

Ssem(x̂, ˆysyn, zsem)

+ cost( ˆzsem, zsem)

When the constraint (4) is violated (i.e. ˜zsem 6=
ˆzsem), we seek a parameter update ∆θ to fix this vi-

olation. In other words, we define the hinge loss for
this example as follows,

loss(θ) = max{ 0, Ssem(x̂, ˆysyn, ˜zsem)

+ cost( ˆzsem, ˜zsem)− Ssem(x̂, ˆysyn, ˆzsem) }

and we revise the parameter values to minimize this
loss function.

Since this loss function is neither linear nor con-
vex with respect to the parameters θ (more precisely
the low-rank component matrices P , Q, R and S),
we can use the same alternating passive-aggressive
(PA) update strategy in our previous work (Lei et
al., 2014) to update one parameter matrix at one
time while fixing the other matrices. However,
as we demonstrated later, modifying the passive-
aggressive algorithm slightly can give us a joint up-
date over all components in θ. Our preliminary ex-
periment shows this modified version achieves better
results compared to the alternating PA.

4.2 Joint PA Update for Tensor
The original passive-aggressive parameter update
∆θ is derived for a linear, convex loss function by
solving a quadatic optimization problem. Although
our scoring function Ssem(·) is not linear, we can
simply approximate it with its first-order Taylor ex-
pansion:

S(x,y, z;θ + ∆θ) ≈ S(x,y, z;θ) +
dS

dθ
·∆θ

In fact, by plugging this into the hinge loss func-
tion and the quadratic optimization problem, we get
a joint closed-form update which can be simply de-
scribed as,

∆θ = max

{
C,

loss(θ)

‖gθ‖2

}
gθ

where

gθ =
dS

dθ
(x̂, ˆysyn, ˆzsem)− dS

dθ
(x̂, ˆysyn, ˜zsem),

and C is a regularization hyper-parameter control-
ling the maximum step size of each update. Note
that θ is the set of all parameters, the update jointly
adjusts all low-rank matrices and the traditional
weight vector. The PA update is “adaptive” in the
sense that its step size is propotional to the loss(θ)
of the current training sample. Therefore the step
size is adaptively decreased as the model fits the
training data.

4.3 Tensor Initialization
Since the scoring and loss function with high-order
tensor components is highly non-convex, our model



performance can be impacted by the initialization of
the matrices P , Q, R and S. In addition to intial-
izing these low-rank components randomly, we also
experiment with a strategy to provide a good guess
of the low-rank tensor.

First, note that the traditional manually-selected
feature set (i.e., φ(p, a, r) in our notation) is an ex-
pressive and informative subset of the huge feature
expansion covered in the feature tensor. We can train
our model using only the manual feature set and then
use the corresponding feature weights w to intialize
the tensor. Specifically, we create a sparse tensor
T ∈ Rn×n×m×l by putting each parameter weight
in w into its corresponding entry in T . We then try
to find a low-rank approximation of sparse tensor T
by approximately minimizing the squared error:

min
P,Q,R,S

‖T −
∑
i

P (i)⊗Q(i)⊗R(i)⊗ S(i)‖22

In the low-rank dependency parsing work (Lei et
al., 2014), this is achieved by unfolding the sparse
tensor T into a n× nml matrix and taking the SVD
to get the top low-rank components. Unfortunately
this strategy does not apply in our case (and other
high-order tensor cases) because even the number
of columns in the unfolded matrix is huge, nml >
1011, and simply taking the SVD would fail because
of memory limits.

Instead, we adopt the generalized high-order
power method, a.k.a. power iteration (De Lathauwer
et al., 1995), to incrementally obtain the most im-
portant rank-1 component one-by-one – P (i), Q(i),
R(i) and S(i) for each i = 1..k. This method is
a very simple iterative algorithm and is used to find
the largest eigenvalues and eigenvectors (or singular
values and vectors in SVD case) of a matrix. Its gen-
eralization directly applies to our high-order tensor
case.

5 Implementation Details

Decoding Following Lluı́s et al. (2013), the de-
coding of SRL is formulated as a bipartite maximum
assignment problem, where we assign arguments to
semantic roles for each predicate. We use the maxi-
mum weighted assignment algorithm (Kuhn, 1955).
For syntactic dependency parsing, we employ the
randomized hill-climbing algorithm from our previ-
ous work (Zhang et al., 2014).

Input: sparse tensor T , rank number i
and fixed rank-1 components P (j), Q(j),
R(j) and S(j) for j = 1..(i− 1)

Output: new component P (i),Q(i),R(i) and
S(i).

1: Randomly initialize four unit vectors p, q, r
and s

2: T ′ = T −
∑

j P (j)⊗Q(j)⊗R(j)⊗ S(j)
3: repeat
4: p = 〈T ′,−, q, r, s〉 and normalize it
5: q = 〈T ′, p,−, r, s〉 and normalize it
6: r = 〈T ′, p, q,−, s〉 and normalize it
7: s = 〈T ′, p, q, r,−〉
8: norm = ‖s‖22
9: until norm converges

10: P (i) = p and Q(i) = q
11: R(i) = r and S(i) = s

Figure 2: The iterative power method for high-
order tensor initialization. The operator p =
〈T ′,−, q, r, s〉 is the multiplication between the
tensor and three vectors, defined as pi =∑

jkl Tijklqjrksl. Similarly, qj =
∑

ikl Tijklpirksl
etc.

Features Table 1 summarizes the first-order fea-
ture templates. These features are mainly drawn
from previous work (Johansson, 2009). In addition,
we extend each template with the argument label.

Table 2 summarizes the atomic features used in
φ(p) and φ(a) for the tensor component. For each
predicate or argument, the feature vector includes its
word form and POS tag, as well as the POS tags of
the context words. We also add unsupervised word
embeddings learned on raw corpus.4 For atomic
vectors φ(path) and φ(r) representing the path and
the semantic role label, we use the indicator feature
and a bias term.

6 Experimental Setup

Dataset We evaluate our model on the English
dataset and other 4 datasets in the CoNLL-2009
shared task (Surdeanu et al., 2008). We use the

4https://github.com/wolet/
sprml13-word-embeddings



word word-l word-r
pos pos-l pos-r
pos-l + pos pos + pos-r pos + word
pos-l + pos + pos-r voice embeddings

Table 2: Predicate/argument atomic features used by
our tensor for SRL. word stands for the word form
(and also lemma), pos stands for the predicted POS
tag and voice stands for the voice of the predicate.
The suffixes -l and -r refer to the left and right of
the current token respectively. For example, pos-l
means the POS tag to the left of the current word in
the sentence.

official split for training, development and testing.
For English, the data is mainly drawn from the Wall
Street Journal. In addition, a subset of the Brown
corpus is used as the secondary out-of-domain test
set, in order to evaluate how well the model gen-
eralizes to a different domain. Following the offi-
cial practice, we use predicted POS tags, lemmas
and morphological analysis provided in the dataset
across all our experiments. The predicates in each
sentence are also given during both training and test-
ing. However, we neither predict nor use the sense
for each predicate.

Systems for Comparisons We compare against
three systems that achieve the top average perfor-
mance in the joint syntactic and semantic parsing
track of the CoNLL-2009 shared task (Che et al.,
2009; Zhao et al., 2009a; Gesmundo et al., 2009).
All approaches extensively explored rich features
for the SRL task. We also compare with the state-
of-the-art parser (Björkelund et al., 2010) for En-
glish, an improved version of systems participated in
CoNLL-2009. This system combines the pipeline of
dependency parser and semantic role labeler with a
global reranker. Finally, we compare with the recent
approach which employs distributional word repre-
sentations for SRL (Roth and Woodsend, 2014). We
directly obtain the outputs of all these systems from
the CoNLL-2009 website5 or the authors.

Model Variants Our full model utilizes 4-way
tensor component and a standard feature set

5http://ufal.mff.cuni.cz/conll2009-st/
results/results.php

from (Johansson, 2009). We also compare against
our model without the tensor component, as well as
a variant with a 3-way tensor by combining the path
and semantic role label parts into a single mode (di-
mension).

Evaluation Measures Following standard prac-
tice in the SRL evaluation, we measure the perfor-
mance using labeled F-score. To this end, we apply
the evaluation script provided on the official web-
site.6 The standard evaluation script considers the
predicate sense prediction as a special kind of se-
mantic label.7 Since we are neither predicting nor
using the predicate sense information, we exclude
this information in most of the evaluation. In addi-
tion, we combine the predicate sense classification
output of (Björkelund et al., 2010) with our seman-
tic role labeling output, to provide results directly
comparable to previous reported numbers.

Experimental Details Across all experiments, we
fix the rank of the tensor to 50 and train our model
for a maximum of 20 epochs. Following com-
mon practice, we average parameters over all it-
erations. For each experimental setting, we tune
the hyper-parameter γ ∈ {0.3, 0.5, 0.7, 0.9} and
C ∈ {0.01, 0.1, 1} on the development set and apply
the best model on the test set. Each model is eval-
uated on the development set after every epoch to
pick the the best number of training epoch. For the
experiments with random initialization on the ten-
sor component, the vectors are initialized as random
unit vectors. We combine our SRL model with our
syntactic dependency parser, RBGParser v1.1 (Lei
et al., 2014), for joint syntactic and semantic pars-
ing. The labeled attachment score (LAS) of RBG-
Parser is 90.4 on English, when we train the “stan-
dard” model type using the unsupervised word vec-
tors.

7 Results

We first report the performance of our methods
and other state-of-the-art SRL systems on English
datasets (See Table 3). We single out performance

6http://ufal.mff.cuni.cz/conll2009-st/
scorer.html

7Note that the original script includes such prediction in the
F-score calculation, although the predicate sense is typically
predicted in a separate step before semantic label classification.



Model Excluding predicate senses Including predicate senses
WSJ-dev WSJ-test Brown-test WSJ-test Brown-test

1st-order w/o tensor 79.42 80.84 69.38 85.46 74.66
+ 3-way tensor 80.77 82.19 69.76 86.34 74.94
+ 4-way tensor 81.03 82.51* 70.77 86.58* 75.57
CoNLL-2009 1st place – 82.08 69.84 86.15 74.58
CoNLL-2009 2nd place – 81.20 68.86 85.51 73.82
CoNLL-2009 3rd place – 78.66 65.89 83.24 70.65
(Roth and Woodsend, 2014) – 80.87 69.33 85.50 74.67
(Björkelund et al., 2010) 78.85 81.35 68.34 85.80 73.92

Model + Reranker WSJ-dev WSJ-test Brown-test WSJ-test Brown-test
(Roth and Woodsend, 2014) + reranking – 82.10 71.12 86.34 75.88
(Björkelund et al., 2010) + reranking 80.50 82.87 70.91 86.86 75.71

Table 3: SRL labeled F-score of our model variants, and state-of-the-art systems on the CoNLL shared
task. We consider a tensor-free variant of our model, and tensor-based variants that include first-order SRL
features. For the latter, we consider implementations with 3-way and 4-way tensors. Winning systems (with
and without a reranker) are marked in bold. Statistical significance with p < 0.05 is marked with ∗.

on English corpora because these datasets are most
commonly used for system evalutation. As a sin-
gle system without reranking, our model outper-
forms the five top performing systems (second block
in Table 3) on both in-domain and out-of-domain
datasets. The improvement from the F-score of
82.08% to our result 82.51% on the WSJ in-domain
test set is significant with p < 0.05, which is com-
puted using a randomized test tool8 based on Yeh
(2000). For comparison purposes, we also report
F-score performance when predicate senses are in-
cluded in evaluation. The relative performance
between the systems is consistent independent of
whether the predicate senses are included or ex-
cluded.

Table 4 shows the results of our system on other
languages in the CoNLL-2009 shared task. Out
of five languages, our model rivals the best per-
forming system on three languages, achieving sta-
tistically significant gains on English and Chinese.
Note that our model uses the same feature config-
uration for all the languages. In contrast, Zhao et
al. (2009b) rely on language-specific configurations
obtained via “huge feature engineering” (as noted by
the authors).

Results in Table 3 and 4 also highlight the con-

8http://www.nlpado.de/˜sebastian/
software/sigf.shtml

WSJ-test Brown-test
1st-order

w/o tensor
80.84 69.38

+ 3-way
tensor

Rnd. Init. 81.87 69.82
PM. Init. 82.19 69.76

+ 4-way
tensor

Rnd. Init. 81.63 70.63
PM. Init. 82.51 70.77

Table 5: SRL labeled F-score for different initializa-
tion strategies of the first order model. Rnd stands
for the random initialization, and PM for the power
method initialization.

tribution of the tensor to the model performance,
which is consistent across languages. Without the
tensor component, our system trails the top two per-
forming systems. However, adding the tensor com-
ponent provides on average 2.1% absolute gain, re-
sulting in competitive performance. The mode of
the tensor also contributes to the performance – the
4-way tensor model performs better than the 3-way
counterpart, demonstrating the importance of mod-
eling the interactions between dependency paths and
semantic role labels.

Table 5 shows the impact of initialization on the
performance of the tensor-based model. The initial-
ization based on the power method yields superior
results compared to random initialization, for both



Language
Test set

Ours
(4-way tensor)

Ours
(no tensor)

CoNLL 1st CoNLL 2nd

English 82.51* 80.84 82.08 81.20
Catalan 74.67 71.86 76.78* 74.02
Chinese 69.16* 68.43 68.52 68.71
German 76.94 74.03 74.65 76.27
Spanish 75.58 72.85 77.33* 74.01
Average 75.77 73.60 75.87 74.84

Table 4: Semantic labeled F-score excluding predicate senses on 5 languages in the CoNLL-2009 shared
task. Statistical significance with p < 0.05 is marked with ∗. Adding the tensor leads to more than 2%
absolute gain on average F-score. Our method with the same feature configuration (a standard set + 4-
way tensor) rivals the best CoNLL-2009 system which explores much richer feature sets, language-specific
feature engineering, and n-best parse combination (Zhao et al., 2009a).

Our method WSJ-test Gain
1st order w/o tensor 80.84 –
+ 4-way tensor 82.51 +1.67
+ 3-way tensor 82.19 +1.35

(Roth and Woodsend) WSJ-test Gain
original baseline 80.38 –
+ pred & arg 80.23 -0.15
+ deppath 80.63 +0.25
+ span 80.87 +0.49

Table 6: Comparision between our low-rank ten-
sor method and (Roth and Woodsend, 2014) for
leveraing word compositions.

3-way and 4-way tensors. However, random initial-
ization still delivers reasonable performance, outper-
forming the tensor-free model by more than 1% in
F-score.

Finally, we compare our tensor-based approach
against a simpler model that captures interactions
between predicate, argument and syntactic path us-
ing word embeddings (Roth and Woodsend, 2014).
Table 6 demonstrates that modeling feature inter-
actions using tensor yields higher gains than using
word embeddings alone. For instance, the highest
gain achieved by Roth and Woodsend (2014) when
the embeddings of the arguments are averaged is
0.5%, compared to 1.6% obtained by our model.

8 Conclusions

In this paper we introduce a tensor-based approach
to SRL that induces a compact feature representa-
tion for words and their relations. In this sense, our
dimensionality reduction method provides a clear
alternative to a traditional feature engineering ap-
proach used in SRL. Augmenting a simple, yet
competitive SRL model with the tensor component
yields significant performance gains. We demon-
strate that our full model outperforms the best per-
forming systems on the CoNLL-2009 shared task.
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