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Abstract

The system efficiency of a self-propelled flexible body is ill-defined, hence
we introduce the concept of quasi-propulsive efficiency, defined as the ratio of
the power needed to tow a body in rigid-straight condition over the power it
requires for self-propulsion, both measured for the same speed. Through exam-
ples we show that the quasi-propulsive efficiency is a rational non-dimensional
metric of the propulsive fitness of fish and fish-like mechanisms, consistent with
the goal to minimize fuel consumption under size and velocity constraints. We
perform two-dimensional viscous simulations and apply the concept of quasi-
propulsive efficiency to illustrate and discuss the efficiency of two-dimensional
undulating foils employing first carangiform and then anguilliform kinematics.
We show that low efficiency may be due to adverse body-propulsor hydrody-
namic interactions, which cannot be accounted for by an increase in friction
drag, as done previously, since at the Reynolds number Re = 5 000 considered
in the simulations, pressure is a major contributor to both thrust and drag.

Keywords: fish swimming, self-propelled, swimming efficiency, quasi-propulsive
efficiency

1 Introduction

Efficiency is defined as the ratio of useful work over expended energy, measured over
a specific time interval. The useful work, for a body moving at constant speed within
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a viscous medium, is the work needed to overcome the resisting fluid forces (drag).
However, except in very few, limiting cases, this work cannot be measured because
the drag of a self-propelled body depends not only on its shape and speed, but also
on the type of propulsor used, and, in particular, the body-propulsor hydrodynamic
interaction. This is especially true for flexible bodies, where propulsive forces are
generated by body deformations that significantly influence the drag forces.

A rational goal of propulsion optimization is set as follows: For a given shape
and size vehicle, find the propulsor that will require the least amount of power to
drive the vehicle at a given speed. In other words, we intend to minimize the “fuel”
consumption under certain size and velocity constraints and not the hydrodynamic
efficiency of the system. Let us consider the general case of a self-propelled body of
mass m moving with acceleration ac and velocity Us (both averaged over a period)
along the x-direction.

Considering the system {body + propeller} as a whole, the efficiency (referred to
as net propulsive efficiency, ηn) in its strict definition is the ratio of the power output
Pout over the power input Pin:

ηn =
Pout

Pin
, (1)

where overbars indicate time-averaged values. The power output is given by the rate
of change of kinetic energy (averaged over a period) of the body:

Pout =
d

dt

(
1

2
mU2

s

)
= mac Us = Tn Us, (2)

with Tn the net thrust produced by the {body + propeller} system, such that:

ηn =
TnUs

Pin
. (3)

This definition of efficiency is traditionally used to measure the performance of an
isolated propeller, but is it appropriate for a self-propelled body?

Going back to the intuitive definition of efficiency, viz. the ratio of useful work
to total work, different configurations can be compared. A propeller in isolation is
meant to produce thrust that will balance the drag on the hull of a ship, so TnUs
is a meaningful measure of useful power output. Similarly, for a fish performing a
C-start or an escape maneuver (Domenici & Blake 1997, Liu et al. 2011), its goal is to
accelerate, such that ηn is still a reasonable measure of efficiency that quantifies how
much work is needed to attain a certain speed in a given amount of time. However,
once the cruising speed is reached and the body moves at constant speed, the total
average hydrodynamic force on the body must be zero, so using the definition of (3),
the net efficiency is 0. As pointed out by Schultz & Webb (2002) among others, “unless
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a fish is trying to ‘stir up the water,’ it performs no useful work” when swimming at
constant speed:

ηn = 0 for a self-propelled body in steady state. (4)

This measure of efficiency becomes meaningless when the goal of the system is not to
accelerate or produce thrust.

Over a decade ago, Schultz & Webb (2002) discussed at great length how advances
in experimental and computational methods have fostered new ways of estimating the
drag/thrust of swimming fish. Their conclusion is that “drag and thrust cannot be
separated and hence have no meaning”. They suggest measuring performance in terms
of swimming speed and power, or variables such as “miles per gallon”, instead. While
this is appropriate for a given size body and shape, comparing different geometries
and sizes requires dimensionless variables and normalized efficiency-like variables.
With each researcher using a different definition of efficiency, it is not always clear
what are the assumptions or limitations associated with each definition. The goal
of the present paper is to present a brief overview of existing measures of efficiency
and discuss when they are appropriate to use. We then present general guidelines
for choosing efficiency-like variables and propose a rational measure of efficiency, the
quasi-propulsive efficiency, which is a normalized version of the “miles per gallon”
metric suggested by Schultz & Webb (2002).

Under special circumstances, one could still define a propulsor efficiency, ηp, by
separating the propulsor thrust Tp from the body drag (one balancing the other on
average when Tn = 0):

ηp =
TpUs

Pin
. (5)

For flexible self-propelled bodies, such as undulating fish, where the distinction
between thrust and drag cannot be made, obtaining Tp is much more challenging than
for a propeller mounted on a rigid body, though Bergmann et al. (2014) still attempted
to do it. Since the drag/thrust is a periodic function with zero mean, its amplitude,
root-mean-square or mean of the positive part can be used as the normalizing thrust
(if the thrust is periodic, all the above are proportional). For instance, Borazjani
& Sotiropoulos (2008) use the latter in their investigation of carangiform swimming.
The main limitation of this choice is that two gaits with the same swimming power
and speed will artificially have different efficiencies if their drag trace is different.
Borazjani & Sotiropoulos (2010), also define a non-dimensionalized “miles per gallon”
variable. Whereas they call it the mean efficiency, its values ranging from 3 to 3000
show that it is not an efficiency-like measure. Moreover, this paper also illustrates
that the choice the measure can condition the conclusions drawn from a study as
their Froude efficiency and their mean efficiency do not always have the same order.

It is still possible, in some cases, to estimate the thrust produced by a swimming
fish. Indeed, when the Reynolds number is sufficiently high and uncontrolled flow
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separation effects are of limited extent, inviscid methods can be used to provide an
estimate of the power needed for propulsion, as well as the developing thrust that
must equal the resistance. This can be quite accurate if separation effects, other than
vorticity shed from body edges and from fin trailing edges, are small, and interaction
of the body with shed vorticity is insignificant. For instance, Lighthill (1971), Wu
(1971), Drucker & Lauder (1999), Pedley & Hill (1999), Wolfgang et al. (1999), and
Zhu et al. (2002) employ inviscid methodologies to estimate the thrust generated and
power expended by swimming fish.

Tytell & Lauder (2004) compared elongated body theory (EBT) efficiency from
Lighthill (1971) with the efficiency estimated from flow visualization and the signifi-
cant difference between both estimates illustrates the confusion caused by the lack of
a consistent definition. Their conclusion that still holds today, as illustrated by the
difference between the EBT efficiency and numerical Froude efficiency in Borazjani &
Sotiropoulos (2008) is a good summary of the situation: “Because of the difficulties
of estimating efficiencies, it is difficult to compare this value with previously reported
values”.

However, the main problem with these definitions of efficiency is that, even in
rigid bodies such as ships and submarines, one is not interested in the propulsor
efficiency, but the power needed to sustain a certain speed, as stated above. Indeed,
it is possible that a very efficient propulsor may cause a large increase in the total drag
when attached to the vessel, due to adverse hydrodynamic interference, and hence an
increase in the required thrust Tp. Then, although the propulsor efficiency is high,
the system efficiency is low because the “fuel” needed may be excessive over another
propulsor that may be less efficient in isolation but does not increase the resistance.
What should be important in terms of the energetics of a certain fish is to employ a
swimming mode that minimizes the power needed for propulsion; whether this mode
is hydrodynamically “efficient” is secondary.

Since the efficiencies defined above are not appropriate metrics for self-propelled
bodies, in section 2 we suggest, instead, the use of ηQP , the quasi-propulsive efficiency.
We then present in section 3 the model problem of a two-dimensional undulating foil
on which we apply the various definitions of efficiency to select an efficient swimming
gait in section 4. In sections 5.1 and 5.2, we discuss how the notions of drag and thrust
relate to the quasi-propulsive efficiency, and how these notions are commonly used in
Naval Architecture. Finally, we present in section 5.3 a measure of performance that
is appropriate for more general problems but is not an efficiency-like measure.
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2 Quasi-propulsive efficiency

In life sciences, the fitness of a self-propelled system is traditionally measured by the
cost of transport (COT), defined as the energy spent per unit distance traveled:

COT =
Ptot
Us

, (6)

where Ptot is the total metabolic power consumed by swimming at speed Us. While for
a given animal, minimizing the COT is equivalent to minimizing the “fuel” consump-
tion, the COT is a dimensional quantity, and there is no natural way to normalize
it. For instance, Kern & Koumoutsakos (2006) normalized the COT by mUsf/2,

Liu et al. (2012) used mLf 2, Eloy (2013) chose ρΩ
2/3
b U2

s , and Tokić & Yue (2012)
normalized it by mgUs. For the first two normalizations, two gaits with different
flapping frequencies f would result in different values of normalized COT even if they
have the same cost of transport, which is undesirable. On the other hand, for a given
fish, the last normalization is the only one that ensures that two gaits have the same
normalized COT if and only if they have the same COT. While this is a preferable
property, this normalized COT is not an efficiency-like quantity since it does not have
a natural unit scale. Hence, we propose to normalize the COT by the towed resistance
R, which, after inversion, provides a fitness measure that we show generalizes the net
propulsive efficiency to self-propulsion. Since here we only consider the hydrodynamic
efficiency and not the internal losses, the quasi-propulsive efficiency ηQP , is employed,
defined as:

ηQP =
RUs

Pin
, (7)

where Pin is the power required by the propulsor to drive the vehicle at speed Us
under steady-state conditions (Tn = 0) and R is the towed resistance at speed Us. In
the case of a flexible body, the towed resistance must be measured or estimated in a
straight configuration, i.e. not allowing any bending of the body.

Indeed, at constant speed, the role of the propeller (for a ship) or of the swimming
motion (for a fish) is to compensate for the drag such as to keep the cruising velocity
constant. In an ideal fluid, there would be no drag on the body and no work would
be needed to sustain velocity Us: gliding would be enough. However, since water is a
viscous fluid, in the absence of a propeller or swimming motion, the body would lose
kinetic energy at a rate of:

Ploss =
d

dt

(
1

2
mU2

s

)
= −RUs < 0, (8)

where, again, R is the towed resistance at speed Us without a propeller (or a swimming
motion). The goal of the propeller – or of the swimming motion – is to prevent this



Efficiency of Fish Propulsion, Submitted to Bioinspiration & Biomimetics 6

loss of kinetic energy due to the drag on the gliding body. Since the goal in this
case is to compensate for the resistance R and prevent the kinetic energy loss Ploss,
a reasonable definition of useful power, Puse, is:

Puse = Pout − Ploss = (Tn +R)Us, (9)

which we use to generalize the quasi-propulsive efficiency ηQP to cases where the net
thrust is not 0:

ηQP =
Puse

Pin
=

(Tn +R)Us

Pin
. (10)

(10) shows that the quasi-propulsive efficiency is the ratio of the useful energy over
the expanded energy, where the goal of swimming is to overcome the drag and prevent
kinetic energy losses. For the case of a self-propelled body moving at constant speed,
Tn = 0, such that the definition of propulsive efficiency proposed in (10) is the same
as (7). The power Pin is either experimentally measured, or evaluated numerically
as the time-average of the power needed to actuate the body. Finally, since towed
experiments or simulations are often preferred to self-propelled ones for practical
reasons, we will show in section 4 that (10) can provide good estimates of the self-
propelled quasi-propulsive efficiency under towing conditions.

There are fundamental differences between the propulsive efficiency of (5) and
the quasi-propulsive efficiency of (7): First, in the “useful” power of (7), one uses
the towed resistance of the vehicle measured under steady towing conditions at speed
Us and without a propulsor attached; hence, this definition does not suffer from any
ambiguity as to what the force should be. Second, in (5) all quantities used refer to
the same (self-propulsion) test; in (7) the numerator refers to a towing experiment,
while the denominator to a self-propulsion experiment, conducted at the same speed.

It is not difficult to see that, if we maximize the efficiency ηQP , we simply minimize
the expended power Pin (since the numerator is independent of the propulsor), in
agreement with the original intent. The advantage of ηQP is that the towed resistance
captures the essential hydrodynamic features of the specific hull or body, and can be
used to compare the performance of dissimilar vehicle shapes, and for devising scaling
laws. An apparent disadvantage is that the quasi-propulsive efficiency is not strictly
an efficiency: it is not necessarily less than one. If the propulsor causes the resistance
of the ship to drop substantially – for example by reducing flow separation – then the
self-propelled power will possibly be less than the power needed to tow the bare hull,
resulting in a value of ηQP higher than 100%.

A distinctive advantage of the quasi-propulsive efficiency is its universality. Unlike
propulsor efficiencies relying on inviscid thrust models, the quasi-propulsive efficiency
is as appropriate for low-Reynolds-number swimming motions as for large-Reynolds-
number ones. Becker et al. (2003) define and use a system efficiency which is the same
as the quasi-propulsive efficiency definition herein; they study a three-link micro-
propulsor, employing flexing of the links to achieve locomotion at very low Reynolds
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homogeneous 
fine grid region 

Figure 1: Flow configuration for the BDIM simulations. The Cartesian grid is uniform
near the undulating NACA0012 with grid size dx = dy = 1/320 and uses a 2%
geometric expansion ratio for the spacing in the far-field. Constant velocity u = Us is
used on the inlet, periodic boundary conditions on the upper and lower boundaries,
and a zero gradient exit condition with global flux correction. The vorticity field for
the carangiform motion with f = 1.8 and zero mean drag is shown as an example.

numbers. In the words of the authors, “We define a swimming efficiency as the power
necessary to pull the straightened swimmer along its axis at the average speed of the
actual swimmer, relative to the average mechanical power generated by the actual
swimmer to achieve that speed.” It is important to note that the useful power is
defined in terms of the towed swimmer at rest. In fact, for very low Reynolds number,
it is impossible to distinguish thrust from drag, since viscous forces produce both
forces, making the use of the quasi-propulsive efficiency essential. Micro-swimmers
have, typically, less than a few percent efficiency.

3 Model problem: two-dimensional undulating foil

In order to illustrate the discussion above, we will show through an example why
the quasi-propulsive efficiency is a meaningful way of measuring propulsive efficiency
for self-propelled fishes or vehicles. In this example, the vehicle is represented by a
self-propelled two-dimensional undulating NACA0012 foil of length L swimming at
average velocity Us, chosen such that the Reynolds number is Re = UsL/ν = 5000
(unless specified otherwise), where ν is the fluid dynamic viscosity. All lengths are
normalized by L, velocities by Us and times (resp. frequencies) by L/Us (resp. Us/L).
The deformation and swimming speed of the foil are prescribed, while its heave and
pitch motion are caused by the hydrodynamic forces. These forces are estimated
through two-dimensional viscous simulations on a Cartesian grid using the boundary
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Figure 2: Carangiform and anguilliform motion for f = 1.8 and α = 0.1.

data immersion method (BDIM) described in Weymouth & Yue (2011) and Maertens
& Weymouth (2014) on a domain represented in Figure 1.

The leading edge of the foil is located at x = 0 and its trailing edge at x = 1. The
lateral displacement h(x, t) of a point located at x along the foil is given at time t by:

h(x, t) = h0(x, t) +B(x, t)

= αA(x) sin
(
2π(x/λ− ft)

)
+B(x, t) (11)

where

A(x) = 1 + (x− 1)c1 + (x2 − 1)c2 (12)

is the envelop of the prescribed traveling wave of wavelength λ and frequency f , and

B(x, t) = (ar + brx) sin
(
2π(ft+ φr)

)
(13)

is the recoil term due to the hydrodynamic forces on the foil. α is the amplitude
of the deformation h0 at the trailing edge. It is either kept constant (α = 0.1) or
adjusted through a feedback control loop to ensure that the average drag on the foil
is 0.

Two envelopes, represented in figure 2a, will be compared. The first one, widely
used to represent carangiform gaits (Videler & Hess 1984), is characterized by:

carangiform : c1 = −0.825, c2 = 1.625. (14)

The second one, representative of an anguilliform swimmer (Tytell 2004), has param-
eters:

anguilliform : c1 = 0.323, c2 = 0.310. (15)
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Figure 3: Time-averaged power coefficient as a function of undulating frequency for
(a) the zero drag and (b) the fixed amplitude configurations.

λ = 1 is used for all cases, while f is varied in order to identify the most efficient
undulating frequency for both gaits. Figure 2b illustrates the deformation and motion
(with recoil) of the body by representing the total displacement h(x) of the mid-line
at several times t for f = 1.8.

As mentioned above, the viscous simulations provide an estimate of the swimming
power Pin and thrust Tn:

Pin =

∮
∂B

v · fh ds and Tn =

∮
∂B

−fhx ds, (16)

where fh are the hydrodynamic forces on the foil (with x-component fhx ), v the local
velocity of the undulating foil (as given by (11)) and ∂B the surface of the foil. From
these values, we define the dimensionless power coefficient CP and thrust coefficient
CT :

CP =
Pin

1
2
ρU3L

and CT =
Tn

1
2
ρU2L

(17)

where ρ is the fluid density. We similarly define the drag coefficient CD = −CT , as well
as the friction (CDf ) and pressure (CDp) drag coefficients such that CD = CDf +CDp.

Figure 3a shows that the self-propelled undulating NACA0012 foil travels with
the least energy when using the anguilliform gait with frequency f = 1.6, in which
case CP = 0.10. If the carangiform gait was chosen, the most efficient frequency
would be f = 2 with a power coefficient of CP = 0.13. Though dimensionless, the
power coefficient is not an intuitive measure of efficiency and does not allow easy
comparison between various geometries.
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4 Application to gait selection: anguilliform vs

carangiform gaits

From the prescribed undulation h0(x, t) and the recoil B(x, t) calculated by the vis-
cous BDIM simulation, Wu’s potential flow theory (Wu 1961, Wu 1971) can estimate
the input power and propulsor thrust TWu ≈ Tp. Using the input power Pin and
the net thrust Tn estimated from the BDIM simulation, as well as thrust and power
estimates from Wu’s theory, we will now compare the efficiency of the various gaits
using the three measures defined above.

Note that, unlike Borazjani & Sotiropoulos (2010) and Tytell et al. (2010), we use
the same speed for all kinematics while the amplitude is varied to achieve the desired
speed. Indeed, comparing the “miles per gallon” performance between kinematics is
mostly meaningful when the swimming speed is the same. The undulating frequency
is also systematically varied such that the optimal frequency can be identified for each
kinematics.

4.1 Net propulsive efficiency

As discussed in the introduction, the net efficiency ηn = TnUs/Pin is zero when the
mean drag on the foil is 0, which is the case for the self-propelled cases (0 drag) in
Figure 4. In these cases, it is therefore impossible to compare the performance of the
two gaits or of the various frequencies using ηn. As soon as the mean drag is non zero
in the towed simulations (a0 = 0.1), it becomes clear that the anguilliform undulation
is more efficient at accelerating than the carangiform but, with values ranging from
−0.6 to 0.3, these undulating foils seem to be very poor propellers.

It is interesting to note that, at low frequency, the net efficiency is negative due to a
net drag on the undulating foil. What is the meaning of this negative efficiency? If we
were considering a propeller, a net drag on the propeller would be counter productive

1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.40.4

f

η
n

carang, 0 drag
anguil, 0 drag
carang, a

0
=0.1

anguil, a
0
=0.1

Figure 4: Net propulsive efficiency.
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and the ship might “perform” better without the propeller, so one accepts the notion
of a negative efficiency. However, in the case of a self-propelled undulating foil, an
undulation is counter productive only if it increases the drag, not merely because it
is not able to completely overcome it. Since, in the present case, the drag on the
towed undulating foil is less than on the towed rigid foil, one would intuitively expect
the efficiency to be positive. The quasi-propulsive efficiency solves this paradox by
offering a measure of efficiency that is compatible with our intuition.

If we turn to the case where the goal is to accelerate the foil, a net thrust is
needed. According to the net propulsive efficiency, the optimal undulating frequency
is around f = 2.5 (ηn = 0.27) for the anguilliform motion and f = 3.5 (ηn = 0.21)
for the carangiform motion. These frequencies minimize the work required to attain
a given acceleration. However, once the cruising speed has been reached and the goal
is to minimize the power spent swimming in steady state, there is no guarantee that
these frequencies are optimal. Indeed, these optimal frequencies are different from
those selected from the power coefficient in figure 3.

4.2 Potential flow propulsor efficiency

In order to calculate the hydrodynamic efficiency of the undulating foil in the sta-
tionary regime, the thrust produced by the swimming motion needs to be estimated
independently of the drag on the foil. This thrust can, for example, be estimated
by one of the numerous inviscid methods. Here we use Wu’s (1961) two-dimensional
theory which has an analytical expression for thrust and power. The dependency of
ηWu = TWuUs/PWu on the undulating frequency f , shown in Figure 5, is qualitatively
consistent with figure 3.

Similarly to what had been observed from the viscous power estimates, Wu’s
method suggests that, in general, the anguilliform motion is more efficient than the
carangiform one. The maximum efficiency for the anguilliform gait is ηWu = 0.69 at

1 1.5 2 2.5 3 3.5
0.6

0.62

0.64

0.66

0.68

0.7

f

η
W

u

carang, 0 drag
anguil, 0 drag

Figure 5: Propulsor efficiency estimated from Wu’s potential flow theory.
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Figure 6: Quasi-propulsive efficiency. (a): Comparison of towed estimates with self-
propelled values (Re = 5000). (b): Comparison of efficiency for Re = 2500 and
Re = 5000 (self-propelled).

f = 1.6 whereas the carangiform gait is most efficient at f = 2 with ηWu = 0.64.
However, this approach might overestimate the efficiency by rewarding high thrust,
which is also synonym of enhanced drag. Whereas, here, the most efficient gait and
frequency according to Wu’s theory correspond to the gait and frequency with least
power, there is no guarantee that this will be true in general.

4.3 Quasi-propulsive efficiency

Finally, ηQP = (R + Tn)Us/Pin, with values comprised between 0.2 and 0.5, provides
an intuitive and meaningful measure of the efficiency for the two undulating gaits
at the various frequencies. Figure 6 shows that the anguilliform gait, requiring less
power, is an energetically better choice for a cruising undulating foil, and the best
frequency is f = 1.6 with an efficiency of 43%. For the carangiform undulation, the
maximum efficiency drops to 35% for the frequency f = 2. Since the goal here is
primarily to illustrate the differences between various definitions of efficiency, two-
dimensional simulations have been used. However, the results seem consistent with
the three-dimensional results from Borazjani & Sotiropoulos (2010) and Tytell et al.
(2010) showing that, at Reynolds number Re = 4000, an anguilliform swimming
motion is more efficient.

Since self-propelled experiments and simulations are often more challenging than
towed ones, it is of high practical interest to be able to estimate the quasi-propulsive
efficiency from towed experiments. Figure 6a shows that the estimates obtained by
keeping the amplitude a0 constant instead of ensuring 0 mean drag are very close to
the self-propelled values (except at the very low frequencies).

Within the same hydrodynamic regime, the values of ηQP for different Reynolds
numbers are also of comparable amplitude, on a natural unit scale. For instance,
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figure 6b compares the efficiency of the same self-propelled undulating motion for
two different Reynolds numbers: Re = 2500 and Re = 5000. Even though the power
coefficient increases by 50% from Re = 5000 to Re = 2500, the difference in efficiency
between the two Reynolds numbers is no more than 7% and their trends are very
similar. This result therefore corroborates what the intuition would expect: within
a given hydrodynamic regime, the efficiency only weakly depends on the Reynolds
number. This also illustrates that, even though both CP and 1/ηQP are normalized
versions of the swimming power, CP is not very convenient to use due to its strong
dependence on Reynolds number.

Finally, we would like to remark that, as the thrust produced by the undulating
foil increases, ηQP converges to ηn. Indeed, if Tn � R, then ηQP ≈ TnUs/Pin. Since
this is typically the case for a propeller, the drag on the hull being much larger than
that of the propeller, ηQP can be seen as a generalization of the traditional propeller
efficiency to the low thrust regime.

5 Discussion

5.1 Efficiency and the notion of drag/thrust on a self-propelled
body

Schultz & Webb (2002) already discussed the difficulty of establishing a system propul-
sive efficiency for self-propelled bodies. They applied the concept of propulsor effi-
ciency to define the system efficiency; since the net force is zero (as it must be in every
self-propelled body in steady state), the system efficiency defined in this manner is
zero as well; this is not a helpful result, because any system, however wasteful its
propulsor may be, will be deemed equally (in)efficient as any other.

The difficulty of establishing a propulsive efficiency stems from the impossibility
to separate drag and thrust since they balance on average and pressure (resp. vis-
cosity) is the primary source of both at large (resp. low) Reynolds number. Inviscid
approaches propose thrust estimates, but these are not allways applicable and re-
main controversial due to the blurry definition of thrust for a self-propelled body.
For instance, it is sometimes argued that Lighthill’s (1971) model overestimates the
thrust (Hess & Videler 1984, Anderson et al. 2001, Shirgaonkar et al. 2009). The
quasi-propulsive efficiency moves away from the ill-defined notion of drag on a self-
propelled body, using the well defined drag on a towed body instead. It results in an
intuitive measure of efficiency that can be used to minimize the “fuel” consumption
rather than the hydrodynamic efficiency.

Although the notion of thrust is ill-defined, attributing high (respectively low)
quasi-propulsive efficiencies to a drag reduction (respectively enhancement) is a pos-
sible way of interpreting the performance of a propulsion system. Indeed, if one
considers a {body+propeller} system, a low quasi-propulsive efficiency is either the
result of an inefficient propulsor, or adverse hydrodynamic interactions between the
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gait f St ηQP ηWu CDf/CDf0 ηWu/ηQP

carangiform
1.8 0.41 0.40 0.63 1.45 1.60
2.1 0.38 0.40 0.64 1.41 1.58
2.6 0.36 0.39 0.62 1.39 1.59

anguilliform
1.3 0.42 0.42 0.66 1.49 1.58
1.6 0.35 0.46 0.69 1.38 1.50
2.4 0.32 0.41 0.64 1.34 1.57

Table 1: Efficiency and drag amplification for various gaits at Reynolds number
Re = 5000. At this Reynolds number, the friction drag accounts for 65% of the
towed drag.

propeller and the body (or a combination of both factors). Adverse hydrodynamic
interactions between the body and the propulsor can be interpreted as an increase in
drag due to the propulsor:

ηQP =
RUs

Pin
= ηp

R

Tp
(18)

where Tp/R = ηp/ηQP is the drag amplification. This drag increase due to body
undulations, which has often been reported in the literature, is at the core of a
century long controversy opposing the drag reduction proponents (Gero 1952, Fish &
Hui 1991, Fish & Lauder 2006) in the wake of Gray and his famous paradox (Gray
1936), to the drag enhancement advocates (Lighthill 1971, Webb 1975, Goldspink
1977, Videler 1981). While the latter have long conjectured that body undulations
must significantly increase the skin friction along the body due to what is often
referred to as the Bone-Lighthill boundary-layer thinning hypothesis (Lighthill 1971),
such an increase has never been confirmed. Instead, experimental visualization of
the boundary layer of dead towed and live self-propelled fishes showed that the skin
friction on a fish, undulating or not, was just higher than the drag on a flat plate
(Anderson et al. 2001). Similarly, theoretical analysis from Ehrenstein & Eloy (2013)
suggested an increase in the skin friction drag on the order of 1.2, well bellow the
Bone-Lighthill hypothesis values of 3 to 5 (Lighthill 1971). Our viscous simulations
of undulating self-propelled foils in which power, friction and pressure forces are
simultaneously estimated can help shed a new light on this controversy. Using Wu’s
potential flow theory to estimate the propulsor efficiency, the drag amplification due to
the undulating motion can be estimated as the ratio between the propulsor efficiency
and the quasi-propulsive efficiency. Table 1 shows that, for the examples considered
in this study, the drag amplification is between 50% and 60%. This drag increase
is traditionally attributed to an increase in the friction drag, and the amplification
of the friction drag is indeed of the same order. However, while the friction drag
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increases with increasing undulation frequency, the total drag amplification does not
follow these trends. This observation seems in contradiction with the results from
Borazjani & Sotiropoulos (2008) and Borazjani & Sotiropoulos (2009). This apparent
contradiction illustrates once more how much conclusions can be affected by the
definition of drag or efficiency, as well as the assumptions made. Since the skin
friction mostly contributes to drag, their conclusions regarding skin friction are similar
to ours. Separating pressure drag from pressure thrust is much less straightforward.
Since they define form drag as the positive part of the longitudinal pressure force and
keep the undulation amplitude constant, there is no reason why their drag should
follow the same trend as ours.

In general, increases in friction drag alone cannot account for low swimming ef-
ficiencies. It seems from table 1 that, for the examples used here, the optimal gait
is the one with the most efficient propulsor and least total drag amplification, rather
than the one with least friction drag amplification. However, minimizing the friction
drag can help reduce the fuel consumption. For instance, experiments on a robotic
tuna by Barrett et al. (1999) suggested that, especially at high Reynolds number, it is
possible for the undulating motion to interact beneficially with the drag on the body
and obtain quasi-propulsive efficiencies larger than 1. Barrett et al. (1999) directly
measured the power needed to drive the tuna-like motion of a robotic mechanism un-
der self-propulsion conditions. Inviscid theory provided values for the self-propulsion
power very close to the experimentally measured values (Barrett et al. 1999, Kage-
moto et al. 2000, Smith & Wright 2004). The quasi-propulsive efficiency, estimated
as proposed herein, provided values up to 150%, well in excess of 100%, which simply
means that the resistance of the actively swimming body was less than the drag un-
der straight-towing conditions. The measurements were at the transitional Reynolds
number of around Re = 800 000 where re-laminarization of the boundary layer and
separation suppression is possible. Indeed, simulations (Shen et al. 2003) and ex-
periments (Techet et al. 2003) on an actively flapping two-dimensional sheet demon-
strated clear turbulence reduction, in addition to flow separation suppression, which
was noted earlier by Taneda (1977). This can explain the drop in drag under self-
propulsion conditions and hence the high quasi-propulsive efficiency values; indeed
Barrett et al. (1999) found the equivalent drag coefficient of the actively swimming
mechanism to be closer to laminar boundary layer values, whereas the drag coefficient
of the straight-towed mechanism was close to turbulent boundary layer values.

5.2 Quasi-propulsive efficiency in Naval Architecture

In Naval Architecture, the use of the quasi-propulsive efficiency is standard (Comstock
1967) – and straight-forward to use because the body is rigid. Usually, to estimate the
required power Pin, one uses the propeller characteristics as measured in open water,
i.e. with the propeller tested in isolation, without a hull in front. The interaction
between hull and propeller is accounted for through factors derived either empirically
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or through additional experimental tests.
The resistance of the ship under self-propelled conditions, Rsp, will in general

be larger than the towed resistance, because the stern stagnation pressure (which is
beneficial, reducing the drag) is reduced due to the presence of the propeller which
accelerates the flow. Rsp is related to the towed resistance R through the“thrust
deduction factor” t, which depends on the hull characteristics, the propeller charac-
teristics and, primarily, the hull-propeller interaction:

Rsp =
R

1− t
. (19)

The factor t is usually positive, reflecting the expectation that the self-propelled
resistance is larger than the towed resistance; there may however be some cases where
the reverse occurs, for hulls which are bluff, i.e. not well streamlined, because of a
reduction in the separation effects. Another, but physically incorrect way to view
relation (19) is that the propeller thrust T , which must be equal to Rsp in order to
achieve self-propulsion, is reduced when the propulsor is placed behind the vehicle,
hence the name thrust deduction.

Finally, since the propeller operates inside the wake of the vehicle, the oncoming
velocity is reduced compared to the free stream velocity U ; an averaged incoming
velocity is used, UA:

UA = U(1− w), (20)

where w, the “wake fraction”, is derived empirically or with separate experiments.
Hence, the useful power of the propeller must be equal to RspUA in order to drive the
vehicle in self-propulsion. If the propeller efficiency has been measured to be equal
to ηp under “open water conditions”, i.e. separately from the vessel, then the input
power must be equal to the useful power divided by the propeller efficiency:

Qin =
RspUA
ηp

=
RU(1− w)

ηp(1− t)
. (21)

Substituting in (7) one finds:

ηQP = ηp
1− t
1− w

. (22)

Finally, a factor is required to account for Reynolds number effects on the propeller
torque, caused by testing in model scale and in uniform flow, the so-called “relative
propulsive efficiency”; but this factor is not essential and we will not pursue it in the
present discussion.

As seen in (22), the quasi-propulsive efficiency is the product of the propeller
efficiency ηp and the so-called hull efficiency, ηH , defined as:

ηH =
1− t
1− w

, (23)
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which accounts for the hydrodynamic interference between the hull and the propeller.
Then, (22) turns into:

ηQP = ηpηH . (24)

It is usual, for example to have ηQP > ηp; and is even possible, albeit rare, that
ηQP > 1 if the factors t and w reflect a large, favorable overall hydrodynamic inter-
ference. (24), then, explicitly relates the system efficiency (ηQP ) to the efficiency of
the propulsor (ηp), correcting for possible hydrodynamic interference (ηH).

5.3 Measure of performance for optimizing velocity and body
shape

We have shown through examples that the quasi-propulsive efficiency ηQP is a rational
measure of the efficiency for a self-propelled body in steady motion. There is no
theoretical guarantee that ηQP will be smaller than 1, and it can indeed be greater
than 1 for very efficient fish (Barrett et al. 1999) and ships. However, it gives an
intuitively meaningful number that allows the comparison of various geometries and
propulsion systems. It can, for instance, be used to compare the efficiency of man-
made systems and biological ones. It can not, however, be used to compare or optimize
the performance of hull or body shapes (Kagemoto 2013, van Rees et al. 2013), or
swimming velocities (Liu et al. 2012).

A more general goal than that of Section 2 can be expressed as: Find the body
size, shape, propulsor and velocity that will require the least amount of energy per unit
mass to drive the vehicle from point A to point B in a fluid of kinematic viscosity ν
and density ρ with gravitational acceleration g.

In other words, the goal is to minimize the energy per unit mass and unit length
traveled mass in a given fluid. For this problem, the natural units are:

mass : ρ
ν2

g
, length :

(
ν2

g

)1/3

, time : ν

(
ν

g2

)1/3

. (25)

If the average swimming power is Pin and the average velocity is Us, the average
energy E spent per unit mass and length (using the length unit defined above) is:

Em =
Pin
mUs

(
ν2

g

)1/3

. (26)

The corresponding dimensionless coefficient, which we will call energy coefficient CE,
is:

CE =
Pin
mgUs

. (27)
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This energy coefficient is convenient for comparing various geometries and propulsion
strategies, but CE is decreasing with Reynolds number, therefore any optimization
would conclude that a swimming speed of zero is optimal since it does not require
energy. Indeed, the coefficient CE takes into account the hydrodynamic power spent
to travel from A to B, but nothing ensures that the travel will be accomplished in
a finite time, which is why the total metabolic power Ptot needs to be used instead
of Pin. The metabolic power, which includes a cost Pm proportional to time, can be
expressed as Liu et al. (2012):

Ptot =
Pw
β

+ Pm, (28)

where β is the muscle power efficiency, Pm is the standard metabolic rate independent
of swimming speed and Pw is the hydrodynamic power (similar to the definition of
Pin in Eq. 16).

We now define the performance index:

Cη =
mgUs

Ptot
=

mg

COT
, (29)

that can be used to solve the very general problem of optimizing the body shape,
swimming speed and propulsion system. Cη is exactly the performance index used
in Tokić & Yue (2012). Even though the performance index could also be used to
solve the optimization problem presented in Section 2, its order of magnitude varies a
lot with Reynolds number; the quasi-propulsive efficiency, with a natural scale going
from 0 to 1, is much more intuitive and easy to work with.

6 Conclusion

The optimal propulsor for a self-propelled system is the one that minimizes fuel
consumption for a given body size and speed. The hydrodynamic efficiency is not a
good measure of optimality, because the numerator (the useful energy) is not easily
defined in fish, since drag is difficult to measure and, far more importantly, its value
depends on the propulsion mode employed.

There does not exist a universal measure of swimming performance but, for a given
problem, it is possible to define rational fitness indicators. If, for a given body and
speed, one wants to find the “best” propulsion system, the quasi-propulsive efficiency,
ηQP , is a meaningful efficiency-like measure defined as the ratio of the energy needed
to tow the fish straight at a given speed divided by the power to self-propel itself at
the same speed. Traditionally used in Naval Architecture, ηQP is also the inverse of
a normalized Cost of Transport, COT, built upon the intuition that a propulsor is
meant to overcome the drag that the body would be experiencing in the absence of
propulsion.
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As Fish (2005) demonstrates in his outline of the controversial Gray’s paradox, es-
timates of the propulsive parameters must be made very carefully, especially because
the quasi-propulsive efficiency is based on two separate experiments, one for a towed
body (numerator, or useful work) and one for the self-propelled experiment (denom-
inator, or expended energy); both experiments must refer to the same speed and
the same duration of time over which performance is assessed, otherwise erroneous
conclusions may be drawn.

One should also keep in mind that the mechanical efficiency, considered in this
paper, is only the last link in a series of processes involved in swimming. As Ellerby
(2010) explains in his short review of Webb’s contributions, “For fish, just as with
engineered vehicles, fuel consumption is the most obvious measure of power input.”
Fuel comes in the form of metabolic energy, and the efficiency of converting this
chemical energy to mechanical energy plays an important role in the final measure of
swimming efficiency, as hinted by the total power defined in (28).

Finally, the rationale presented in this paper to define the quasi-propulsive effi-
ciency can also be used to choose proper fitness indicators for other problems. For
instance, we showed that the net propulsive efficiency is a good measure of the ability
for a propeller to efficiently accelerate the body. Section 5.3 describes a performance
index, previously used in Tokić & Yue (2012), that is more general than the quasi-
propulsive efficiency but is not an efficiency-like measure and is difficult to use in
self-propelled cases.
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