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Tensor Computation: A New Framework for
High-Dimensional Problems in EDA

Zheng Zhang, Kim Batselier, Haotian Liu, Luca Daniel and Ngai Wong

(Invited Keynote Paper)

Abstract—Many critical EDA problems suffer from the curse  synthesis, formal verification. This paper mainly concerns
of dimensionality, i.e. the very fast-scaling computational burden computational problems in EDA. Specifically, we focus on
produced by large number of parameters andfor unknown mqg4aeling, simulation and optimization problems, whose per-
variables. This phenomenon may be caused by multiple spatial . . . . .
or temporal factors (e.g. 3-D field solvers discretizations and f_ormance heavily relle§ on ef‘fec_tlve nur_nerlca_l implementa-
multi-rate circuit simulation), nonlinearity of devices and circuits, ~ tion. Very often, numerical modeling or simulation core tools
large number of design or optimization parameters (e.g. full- are called repeatedly by many higher-level EDA tools such
chip routing/placement and circuit sizing), or extensive process as design optimization and system-level verification. Many
variations (e.g. variability/reliability analysis and design for efficient matrix-based and vector-based algorithms have been

manufacturability). The computational challenges generated by - .
such high dimensional problems are generally hard to handle developed to address the computational challenges in EDA.

efficiently with traditional EDA core algorithms that are based Here we briefly summarize a small number of examples among
on matrix and vector computation. This paper presents “tensor the numerous research results.

computation” as an alternative general framework for the de-  |n the context of circuit simulation, modified nodal analy-
velopment of efficient EDA algorithms and tools. A tensor is a sis [2] was proposed to describe the dynamic network of a

high-dimensional generalization of a matrix and a vector, and A . . .
is a natural choice for both storing and solving efficiently high- general electronic circuit. Standard numerical integration and

dimensional EDA problems. This paper gives a basic tutorial on linear/nonlinear equation solvers (e.g., Gaussian elimination,
tensors, demonstrates some recent examples of EDA applicationsLU factorization, Newton’s iteration) were implemented in
(e.g., nonlinear circuit modeling and high-dimensional uncer- the early version of SPICE [1]. Driven by communication
tainty quantification), and suggests further open EDA problems IC design, specialized RF simulators were developed for
where the use of tensor computation could be of advantage. - . - - .
periodic steady-state [3]-[7] and noise [8] simulation. Iterative
solvers and their parallel variants were further implemented
|. INTRODUCTION to speed up large-scale linear [9]-[11] and nonlinear circuit
. L simulation [12], [13]. In order to handle process variations,
A. Success of Matrix & Vector Computation in EDA HySto%oth Monte Carlo [14], [15] and stochastic spectral meth-

The advancement of fabrication technology and the dgds [16]-[26]) were investigated to accelerate stochastic circuit
velopment of Electronic Design Automation (EDA) are twgimulation.
engines that have been driving the progress of semiconductogfficient models were developed at almost every design
industries. The first integrated circuit (IC) was invented iRevel of hierarchy. At the process level, many statistical and
1959 by Jack Kilby. However, until the early 1970s designefgarning algorithms were proposed to characterize manufac-
could only handle a small number of transistors manually. Thgring process variations [27]-[29]. At the device level, a
idea of EDA, namely designing electronic circuits and systemgige number of physics-based (e.g., BSIM [30] for MOS-
automatically using computers, was proposed in the 196@$T and RLC interconnect models) and math-based model-
Nonetheless, this idea was regarded as science fiction UM§ frameworks were reported and implemented. Math-based
SPICE [1] was released by UC Berkeley. Due to the succegsproaches are also applicable to circuit and system-level
of SPICE, numerous EDA algorithms and tools were furthgjoblems due to their generic formulation. They start from
developed to accelerate various design tasks, and desigrReietailed mathematical description [e.g., a partial differen-
could design large-scale complex chips without spendifigy equation (PDE) or integral equation describing device
months or years on labor-intensive work. physics [31]-[33] or a dynamic system describing electronic

The EDA area indeed encompasses a very large varigi¥cuits] or some measurement data, then generate compact
of diverse topics, e.g., hardware description languages, 10gidels by model order reduction [34]-[42] or system iden-

. , _ _ tification [43]-[46]. These techniques were further extended
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improved. For instance, in analog/RF circuit optimization, «
posynomial or polynomial performance models were extracted
to significantly reduce the number of circuit simulations [64]—

[66].

B. Algorithmic Challenges and Motivation Examples

Despite the success in many EDA applications, conven-
tional matrix-based and vector-based algorithms have certain
intrinsic limitations when applied to problems with high
dimensionality. These problems generally involve an extremely
large number of unknown variables or require many sim-,
ulation/measurement samples to characterize a quantity of
interest. Below we summarize some representative motivation
examples among numerous EDA problems:

Transactions on Computer-Aided Design of Integrated Circuits and Systems
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Design Space Exploration.Consider a classical design
space exploration problem: optimize the circuit perfor-
mance (e.g., small-signal gain of an operational amplifier)
by choosing the best values éfdesign parameters (e.g.
the sizes of all transistors). When the performance metric
is a strongly nonlinear and discontinuous function of
design parameters, sweeping the whole parameter space
is possibly the only feasible solution. Even if a small
number of samples are used for each parameter, a huge
number of simulations are required to explore the whole
parameter space.

Variability-Aware Design Automation. Process varia-
tion is a critical issue in nano-scale chip design. Captur-
ing the complex stochastic behavior caused by process
uncertainties can be a data-intensive task. For instance,
a huge number of measurement data points are required
to characterize accurately the variability of device pa-
rameters [27]-[29]. In circuit modeling and simulation,
the classical stochastic collocation algorithm [22]-[24]
requires many simulation samples in order to construct
a surrogate model. Although some algorithms such as
compressed sensing [29], [71] can reduce measurement
or computational cost, lots of hidden data information
cannot be fully exploited by matrix-based algorithms.

Parameterized 3-D Field SolversLots of devices are
described by PDEs or integral equations [31]—[33] with
spatial dimensions. With discretization elements along
each spatial dimension (i.ex-, y- or z-direction), the
number of unknown elements is approximate{j=n?

in a finite-difference or finite-element scheme. When

is large (e.g. more than thousands and often millions),
even a fast iterative matrix solver with(NN) complexity
cannot handle a 3-D device simulation. If design param-
eters (e.g. material properties) are considered and the
PDE is further discretized in the parameter space, tke Toward Tensor Computations?

computational cost quickly extends beyond the capability In this paper we argue that one effective way to address
of existing matrix- or vector-based algorithms. the above challenges is to utilize tensor computation. Tensors
Multi-Rate Circuit Simulation. Widely separated time are high-dimensional generalizations of vectors and matrices.
scales appear in many electronic circuits (e.g. switch@énsors were developed well over a century ago, but have
capacitor filters and mixers), and they are difficult thheen mainly applied in physics, chemometrics and psycho-
simulate using standard transient simulators. Multi-timeetrics [72]. Due to their high efficiency and convenience
PDE solvers [67] reduce the computational cost by di#n representing and handling huge data arrays, tensors are
cretizing the differential equation alongtemporal axes only recently beginning to be successfully applied in many
describing different time scales. Similar to a 3-D devicengineering fields, including (but not limited to) signal pro-
simulator, this treatment may also be affected by the cursessing [73], big data [74], machine learning and scientific
of dimensionality. Frequency-domain approaches such @mputing. Nonetheless, tensors still seem a relatively unex-
multi-tone harmonic balance [68], [69] may be mor@lored and unexploited concept in the EDA field.

efficient for some RF circuits witlkl sinusoidal inputs,  The goals and organization of this paper include:

but their complexity also becomes prohibitively high as « Providing a hands-on “primer” introduction to tensors
d increases. and their basic computation techniques (Section Il and
Probabilistic Noise Simulation. When simulating a cir- appendices), as well as the most practically useful tech-

cuit influenced by noise, some probabilistic approaches
(such as those based on Fokker-Planck equations [70])
compute the joint density function of itsstate variables
along the time axis. In practice, thé-variable joint
density function must be finely discretized in tle
dimensional space, leading to a huge computational cost.
Nonlinear or Parameterized Model Order Reduction.
The curse of dimensionality is a long-standing challenge
in model order reduction. In multi-parameter model order
reduction [47], [48], [54], [55], a huge number of mo-
ments must be matched, leading to a huge-size reduced-

inques such as tensor decomposition (Section Ill) and
tensor completion (Section IV);

Summarizing, as guiding examples, a few recent tensor-
based EDA algorithms, including progress in high-
dimensional uncertainty quantification (Section V) and
nonlinear circuit modeling and simulation (Section VI);
Suggesting some theoretical and application open chal-
lenges in tensor-based EDA (Sections VII and VIII) in
order to stimulate further research contributions.

Il. TENSORBASICS

order model. In nonlinear model order reduction based onThis section reviews some basic tensor notions and op-
Taylor expansions or Volterra series [36]-[38], the conerations necessary for understanding the key ideas in the
plexity is an exponential function of the highest degree giaper. Different fields have been using different conventions
Taylor or Volterra series. Therefore, existing matrix-basddr tensors. Our exposition will try to use one of the most
algorithms can only capture low-order nonlinearity. popular and consistent notations.
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/] TABLE |
i e 13 16 19 22 STORAGE COSTS OF MAINSTREAM TENSOR DECOMPOSITION
3/// 14 17 20 23 APPROACHES
7
7 i 15 18 21 24 Decomposition Elements to store  Comments
1 4 7 10
! , Canonical Polyadic [81], [82] ndr  see Fig. 2
i |12 5 8 11 i
7 d .
3 6 9 12 /// Tucker [83] r® +ndr  see Fig. 3
Tensor Train [84] n(d—2)r? 4+ 2nr  see Fig. 4

Fig. 1. An example tensqA € R3%X4x2,

Some additional notations and operations are introduced
A. Notations and Preliminaries in Appendix A. The applications in Sections V and VI will
make it clear that the main problems in tensor-based EDA

We use boldface capital calligraphic letiers (ed) to applications are either computing a tensor decomposition or
denote tensors, boldface capital letters (e4). to denote PP omputing PO
solving a tensor completion problem. Both of them will now

matrices, boldface letters (e @) to denote vectors, and romanbe discussed in order

(e.g.a) or Greek (e.ga) letters to denote scalars. '
Te.nsor. A tensor is a high—dimens_ional generalization of a Hl. TENSORDECOMPOSITION

matrix or vector. A vectora € R" is a 1-way data array, ) .

and itsith elementa; is specified by the index. A matrix A. Computational Advantage of Tensor Decompositions.

A € Rm*™ js a 2-way data array, and each elemep, The number of elements in @&way tensor isniny - - - ng,

is specified by a row index; and a column index,. By Which grows very fast ag increases. Tensor decompositions

extending this idea to the high-dimensional cake> 3, a compress and represent a high-dimensional tensor by a smaller

tensor.A € R™1xm2X"Xna represents d-way data array, and number of factors. As a result, it is possible to solve high-

its element;, ;,...;, is specified byl indices. Here, the positive dimensional problems (c.f. Sections V to VII) with a lower

integerd is also called the order of a tensor. Fig. 1 illustratesforage and computational cost. Table | summarizes the storage

an example3 x 4 x 2 tensor. cost of three mainstream tensor decompositions in order to
intuitively show their advantage. State-of-the-art implementa-
B. Basic Tensor Arithmetic tions of these methods can be found in [75]-[77]. Specific

examples are for instance:

o While the hidden layers of a neural network could
consume almost all of the memory in a server, using

Definition 1: Tensor inner product. The inner product
between two tensorgl, B € R"1* %" js defined as

(A, B) = Z Wiy iy Diy ovig - a canonical or tensor-train decomposition instead results
11,02, 0sia in an extraordinary compression( [78], [79]) by up to a
As norm of a tensotA, it is typically convenient to use the factor of 200, 000. - _ _
Frobenius norm|A||p := m « High-order mpdgl; describing nonlinear Qynamlc systems
Definition 2: Tensor k-mode product. The k-mode product can also be significantly compressed using tensor decom-
B = Ax, U of atensotd € R™ X XnxXxna yith a matrix position as will be shown in details in Section VI.
U ¢ Rr+*m s defined by « High-dimensional integration and convolution are long-
- standing challenges in many engineering fields (e.g.
b = Z v ) computational finance and image processing). These two
tho1 kg = Jin Ty problems can be written as the inner product of two

tensors, and while a direct computation would have a

XX —_1 XpEX XX . . .
and B € R 7o PR e X complexity of O(n), using a low-rank canonical or

Definition 3: k-mode product shorthand notation. The tensor-train decomposition, results in an extraordinarily
multiplication of a d-way tensor A with the matrices lower O(nd) complexity [80].

. p : e
UW,...,U? along each of itsl modes respectively is | this section we wil briefly discuss the most popular and

[AUD  UD2 A%, UD %y xUD, useful tensor decompositions, highlighting advantages of each.

When A is diagonal with all 1's on its diagonal andg canonical Polyadic Decomposition
0's elsewhere, thend is omitted from the notation, e.g.
[UW,.. U™,

Definition 4: Rank-1 tensor. A rank-1 d-way tensor can be
written as the outer product af vectors

A=uVou@o...ou® =[u® . uD] (2

Polyadic Decomposition. A polyadic decomposition ex-
presses a-way tensor as the sum efrank-1terms:

A= Zaiugl) o~~oul(.d) =[D;uWY,... UD]. (@3)
i=1

where u®) ¢ R™, ... u(® e R". The entries ofA are The subscript; of the unit-norm u§1> vectors indicates a

completely determined by;,;,...., = T CO summation index and not the vector entries. 'ﬂj@ vectors

i1 2 id
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n3 , "y ———————— "
n;/_/ /ﬁﬂm u?® %uf )um // //Gl) 7/ r{ Q‘G)
oT—— o —— — :
— = m I g(z)
= " + e+ m .ﬂ. : —
n A m< | (" u e — n
— =
— "
n
Fig. 4. The Tensor Train decomposition decomposes a 3-wayrtedsato
Fig. 2. Decomposing4 into the sum of- rank-1 outer products. two matricesG(!), G(3) and a3-way tensorg(2).

- S with the factor matriced/(*) € R™*"* and a core tensor
”3// n; o o , S € Rmxmxxra The Tucker decomposition can signifi-
@ v : cantly reduce the storage cost whenis (much) smaller than
. - 13 ny. This decomposition is illustrated in Fig. 3.
l A {//S Multilinear Rank. The minimal size(ry, 7, ..., rq) oOf the
Iy . -
core tensorS for (4) to hold is called the multilinear rank
n (O]

e Ny 5 of A, and it can be computed as = rank(A)),...,7q =

rank(Aq)). Note thatA;) is a matrix obtained by reshaping

(see Appendix A)A along itskth mode. For the matrix case
g%-sgr-sTgr?dT;Jacclig: ﬂqe;?i?ggs(igoyg)cog&gses a 3-way tedsoro a core e have_ thatrl = ry, i.e., the row rank equals the column
' ’ ' rank. This is not true anymore wheh> 3.

Tucker vs. CPD. The Tucker decomposition can be con-
are called the mode-kectors. Collecting all vectors of the Sidered as an expansion in rank-1 terms that is not necessarily
same modek in matrix U®*) € R™*" this decomposition canonical, \_/vhi_le the CPD fjoes not necessarily have a minimal
is rewritten as thei-mode products of matriceéU(k)}(,j,l core. This indicates _the d!fferent usages of these two decpm—
with a cubical diagonal tensoD € R7*"*" containi_ng posmons: the CPD is typlcally_ used to decompose da_tg |ntlo
all the o; values. Note that we can always absorb eadfterpretable mode vectors while the Tucker decomposition is

of the scalarss: into one of the mode vectors. then writdOst often used to compress data into a tensor of smaller size.
A=[UD, ... UD] ' Unlike the CPD, the Tucker decomposition is in general not

Example 1:The polyadic decomposition of a 3-way tensoHMNAué. . _
is shown in Fig. 2. A variant of the Tucker decomposition, called high-order
singular value decomposition (SVD) or HOSVD, is summa-

Tensor Rank. The minimumr := R for the equality (3) to > ) .
rized in Appendix C.

hold is called theeensor rankwhich, unlike the matrix case,
is in general NP-hard to compute [85].
Canonical Polyadic Decomposition (CPD). The corre-D. Tensor Train Decomposition

sponding decomposition with the minimd is called the  Tensor Train (TT) Decomposition. A tensor train decom-
canonical polyadic decompositio(CPD). It is also called position [84] represents d-way tensor.A by two 2-way

Canonical DecompositiofCANDECOMP) [81] or Parallel tensors andd — 2) 3-way tensors. Specifically, each entry
Factor (PARAFAC) [82] in the literature. A CPD is unique, of 4 € R™1* >4 js expressed as

up to scaling and permutation of the mode vectors, under mild (1) ~(2) @
conditions. A classical uniqueness result for 3-way tensors is Qirigia = 93y iy = Giy (%)
described by Kruskal [86]. These uniqueness conditions g@ . o G eRre—1xmexTe s the k-th core tensorry, —

not apply to the_matrlx case _ . rq = 1, and thusg®M) and G(¥ are matrices. The vector
The computation of a polyadic decomposition, togetherwmmﬁ’ -..,rq) is called thetensor train rank. Each element

two variants are discussed in Appendix B. of the coreg®), denoted ag(k) has three indices. By

Q10K Ok +1

fixing the 2nd indexi;, we obtain a matrixgi(f) (or vector

C. Tucker Decomposition fork=1ork=d.
Tucker Decomposition. Removing the constraint thBx is Computing Tensor Train Decompositions. Computing a
cubical and diagonal in (3) results in tensor train decomposition consists of doifhig 1 consecutive
reshapings and low-rank matrix decompositions. An advantage
A=8x,UW x, U ... U@ (4)  of tensor train decomposition is that a quasi-optimal approxi-
=[s; UM, U, .. UD] mation can be obtained with a given error bound and with an

automatic rank determination [84].
indeed, for a given matrix decompositioh = UV and any nonsingular
matrix T we have thatd = UTT—1V. Only by adding sufficient conditions ~ 2One can always right-multiply the factor matrice&*) with any nonsin-
(e.g. orthogonal or triangular factors) the matrix decomposition can be magidar matrixZ"(*) and multiply the core tensa with their inverses(®) !
unique. Remarkably, the CPD for higher order tensors does not need any stisls means that the subspaces that are defined by the factor mdtfiées
conditions to ensure its uniqueness. are invariant while the bases in these subspaces can be chosen arbitrarily.
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E. Choice of Tensor Decomposition Methods modes. This heuristic makes (7) convex, and its optimal

Canonical and tensor train decompositions are preferred for Solution can be computed by available algorithms [90],
high-order tensors since the their resulting tensor factors have a [91]. Note that in (7) one has to compute a full tensor
low storage cost linearly dependentoandd. For some cases X, leading to an exponential complexity with respect to
(e.g., functional approximation), a tensor train decomposition the orderd. o .
is preferred due to a unique feature, i.e., it can be implemente¢ APProximation with Fixed Ranks. Some techniques

with cross approximation [87] anithoutknowing the whole compute a tensort’ by fixing its tensor rank. For
tensor. This is very attractive, because in many cases obtaining instance, one can solve the following problem

a tensor eleme_nt can be expensive. Tucker decomposmons min [P (X — A) |2

are mostly applied to lower-order tensors due to their storage x

cost of O(r?), and are very useful for finding the dominant s. t. multilinear rank(X) = (r1,...,7a)  (8)

subspace of some modes such as in data mining applications. with X parameterized by a proper low-multilinear rank

factorization. Kresner et al. [92] computes the higher-
IV. TENSORCOMPLETION (OR RECOVERY) order SVD representation using Riemannian optimiza-
Tensor decomposition is a powerful tool to reduce storage tion [93]. In [94], the unknownX is parameterized
and computational cost, however most approaches need a by some tensor-train factors. The low-rank factorization
whole tensom-priori. In practice, obtaining each elementof a  significantly reduces the number of unknown variables.
tensor may require an expensive computer simulation or non- However, how to choose an optimal tensor rank still
trivial hardware measurement. Therefore, it is necessary to remains an open question.
estimate a whole tensor based on only a small number of, Probabilistic Tensor Completion. In order to auto-
available elements. This can be done by tensor completion or matically determine the tensor rank, some probabilis-
tensor recovery. This idea finds applications in many fields. tic approaches based on Bayesian statistics have been
For instance in biomedical imaging, one wants to reconstruct developed. Specifically, one may treat the tensor fac-
the whole magnetic resonance imaging data set based on a tors as unknown random variables assigned with proper
few measurements. In design space exploration, one may only prior probability density functions to enforce low-rank
have a small number of tensor elements obtained from circuit properties. This idea has been applied successfully to
simulations, while all other sweeping samples in the parameter obtain polyadic decomposition [95], [96] and Tucker

space must be estimated. decomposition [97] from incomplete data with automatic
rank determination.

A. lll-Posed Tensor Completion/Recovery » Low-Rank and Sparse Constraints.In some cases, a
low-rank tensor.A may have a sparse property after a

Let Z include all indices for the elements o, and its
subsef? holds the indices of some available tensor elements.
A projection operatoi’, is defined for.A.:

linear transformation. Let = [z1,..., 2] With 2z =
(A, W), one may find that many elementsnare close
to zero. To exploit the low-rank and sparse properties

B=Po(A) & b..., = { Qiyoigy if ?1 crig € Q simultaneously, the following optimization problem [98],
0, otherwise. [99] may be solved:
In tensor completion, one wants to find a tenfdrsuch that 1 m
it matches.A for the elements specified by: min S|P (X - A) 742D (X, W) |
k=1
2
IPo (X —A) [ = 0. ®) s. t. multilinear rank(X) = (r1,...,7q). 9
This prob_lem isiII-posed, because any value can be assigned In signal processingz may represent the coefficients
10 @iy if i1+ ig € Q. of multidimensional Fourier or wavelet transforms. In

uncertainty quantificationz collects the coefficients of
B. Regularized Tensor Completion a generalized polynomial-chaos expansion. The formula-
Regularization makes the tensor completion problem well- tion (9) is generally non-convex, and locating its global
posed by adding constraints to (6). Several existing ideas are minimum is non-trivial.
summarized below.

« Nuclear-Norm Minimization. This idea searches for theC. Choice of Tensor Recovery Methods

minimal-rank tensor by solving the problem: Low-rank constraints have proven to be a good choice for
min || X[,  s.t. Po (X) =P (A). (7) instance in signal and image processing (e.g., MRI reconstruc-
X

tion) [88], [89], [92], [96]. Both low-rank and sparse properties
The nuclear norm of a matrix is the sum of all singulamay be considered for high-dimensional functional approx-
values, but the nuclear norm of a tensor does not havenaation (e.g., polynomial-chaos expansions) [98]. Nuclear-
rigorous or unified definition. In [88], [89], the tensor nunorm minimization and probabilistic tensor completion are
clear norm|| X’||.. is heuristically approximated using thevery attractive in the sense that tensor ranks can be automati-
weighted sum of matrix nuclear norms &f’s for all  cally determined, however they are not so efficient or reliable
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for high-order tensor problems. It is expensive to evaluate the Vad
nuclear norm of a high-order tensor. Regarding probabilis-
tic tensor completion, implementation experience shows that
many samples may be required to obtain an accurate result.

V. APPLICATIONS INUNCERTAINTY QUANTIFICATION

Tensor techniques can advance the research of many EDA
topics due to the ubiquitous existence of high-dimensional
problems in the EDA community, especially when consider-
ing process variations. This section summarizes some recent
progress on tensor-based research in solving high-dimensidﬂ&la Schematic of a multistage CMOS ring oscillator (with Veirters).
uncertainty quantification problems, and could be used as

guiding reference for the effective employment of tensors in. TABLE Il
OMPARISON OF SIMULATION COST FOR THE RING OSCILLATORUSING
Other EDA prOblemS. DIFFERENT KINDS OF STOCHASTIC COLLOCATION
. e L. method tensor product  sparse grid  tensor completion
A. Uncertainty Quantification (UQ) fotal samples 1.6 x 10%7 6o 11 =00

Process variation is one of the main sources causing yield
degradation and chip failures. In order to improve chip yield, ] )
efficient stochastic algorithms are desired in order to simf€ights, and thus is easy to compute. Obtainpigexactly
late nano-scale designs. The design problems are generfif2/most impossible because it has the valueg it all
described by complex differential equations, and they havef§égration samples. Instead of computing all elementy of
be solved repeatedly in traditional Monte-Carlo simulators. PY 7172 ---na numerical simulations, we estima@2 using
Stochastic spectral methods have emerged as a pror@@ly @ small number of (say, several hundreds) simulations.
ing candidate due to their high efficiency in EDA applica®S Shown in compressive sensing [71], the approximation
tions [16]-[26]. Let the random vectof € R? describe (10) usually has sparse s_tructures, and thus the Iow-ra_nk
process variation. Under some assumptions, an output &}d sparse tensor completion model (9) can be used. Using
interest (e.g., chip frequency)(¢) can be approximated bytensor recovery, stochastic collocation may require only a few

a truncated generalized polynomial-chaos expansion [100]:hyndreq simulations, thus can be very efficient for some high-
dimensional problems.

P
N Example [98], [99]. The CMOS ring oscillator in Fig. 5
v~ Y ca¥alf). (10) 2557 random parameters describing threshold voltages, gate-
oxide thickness, and effective gate length/width. Since our
Here {¥4(£)} are orthonormal polynomial basis functionsfocus is to handle high dimensionality, all parameters are
the index vectolr € N? indicates the polynomial order, andassumed mutually independent. We aim to obtaim@-order
its element-wise surfr| is bounded byp. The coefficients,  polynomial-chaos expansion for its frequency by repeated

|ex|=0

can be computed by periodic steady-state simulations. Three integration points are
chosen for each parameter, leading3té ~ 1.6 x 1027 sam-
=E(¥ 11 . ) ' . .
Co (Fa(£)y(£)) (11) ples to simulate in standard stochastic collocation. Advanced
wherelE denotes expectation. integration rules such as sparse grid [105] still needs 60@®

Main Challenge. Stochastic spectral methods become inefimulations. As shown in Table II, with tensor completion
ficient when there are many random parameters, because e@jl- the tensor representirgj” solution samples can be well
uatingc,, involves a challenging-dimensional numerical inte- approximated by using onl§00 samples. As shown in Fig. 6,
gration. In high-dimensional cases, Monte Carlo was regardgm@ optimization solver converges aftgf iterations, and the
more efficient than stochastic spectral methods. However, vemsor factors are computed with less thé&h relative errors;
will show that with tensor computation, stochastic spectréie obtained model is very sparse, and the obtained density
methods can outperform Monte Carlo for some challengifgnction of the oscillator frequency is very accurate.

UQ problems. Why Not Use Tensor DecompositionBince) is not given
a priori, neither CPD nor Tucker decomposition is feasible
B. High-D Stochastic Collocation by Tensor Recovery here. For the above example our experiments show that tensor

train decomposition requires abol@® simulations to obtain
Hhe low-rank factors with acceptable accuracy, and its cost is
gyen higher than Monte Carlo.

Problem Description. In stochastic collocation [101]-
[103], (11) is evaluated by a quadrature rule. For instance, wi
n; integration samples and weights [104] properly chosen f

each element of, ¢, can be evaluated by
C. High-D Hierarchical UQ with Tensor Train

Coc = (Y, Wa). (12) Hierarchical UQ. In a hierarchical UQ framework, one
Here bothy andW,, are tensors of size; x --- x ng. The estimates the high-level uncertainty of a large system that
rank-1 tensorW,, only depends on¥,(£) and quadrature consists of several components or subsystems by applying
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Fig. 6. Tensor-recovery results of the ring oscillator. Teft:Irelative error of the tensor factors; top right: decrease of the cost function in (9); bottom left:
sparsity of the obtained polynomial-chaos expansion; bottom right: obtained density function v.s. Monte CarkD08isgmples.

stochastic spectral methods at different levels of the design
hierarchy. Assume that several polynomial-chaos expansions
are given in the form (10), and eaghi¢) describes the output

of a component or subsystem. In Fig. #(£) is used as

a new random input such that the system-level simulation
can be accelerated by ignoring the bottom-level variati$ns
However, the quadrature samples and basis functionsaoé
unknown, and one must compute such information using a
3-term recurrence relation [104]. This requires evaluating the
following numerical integration with high accuracy:

E (g (y (S))) = <g= W> ) (13)

My X XTg
where the elemenf of tei?so@ and .W €R are Fig. 7. Hierarchical uncertainty quantification. The statha outputs of
g(y(ﬁil“‘id)) and wy' ---wy', respectively. Note tha;,...;, bottom-level components/devices are used as new random inputs for upper-
and wi' ---w) are thed-dimensional numerical quadraturgevel uncertainty analysis.
samples and weights, respectively.

Choice of Tensor Decompositions\e aim to obtain a discretization ofy(¢) on a46-dimensional integration grid was
low-rank representation dy, such thatG and E L . g
P @ g (9(y())) resented by a tenspr (with 9 integration points along each

. . r
can be computed easily. Due to the extremely high accura . X .
P y y g é?iuensmn), they was approximated by a tensor train decom-

requirement in the 3-term recurrence relation [104], tens tion. After thi imati 13 i ted
completion methods are not feasible. Neither canonical ten%)grs't')?n.' ther IS ap{)hroxma |c|)n, (I ) w_asi eaS|dy corr:jpute
decomposition nor Tucker decomposition is applicable here, ggoptain the new orthonormal polynomials and quadrature
they need the whole high-way tensdt before factorization. points for y. Finally, a StOChaSt'(.: oscillator S|mula'F0r [21] .
Tensor-train decomposition is a good choice, since it can co as (_:alled at the system Ievgl using the new_ly obtained ba_3|s
pute a high-accuracy low-rank representation without knowi gnct]ons and_ quadrature points. As shqwn in Tabl_e i, th's
the whole tensop; therefore, it was used in [18] to accelerat® rcuit was simulated by the tensor-train-based hierarchical

: . roach in onlyl0 min in MATLAB, whereas Monte Carlo
the 3-term recurrence relation and the subsequent hierarch . '
UQ flow g with 5000 samples required more than 15 hours [18]. The

Example. The tensor-train-based flow has been applied yariations of the steady-state waveforms from both methods
the oscillator with four MEMS capacitors ant4 random are almost the same, cf. Fig. 9.
parameters shown in Fig. 8, which previously could only be
solved using random sampling approaches. In [18], a sparsél- APPLICATIONS INNONLINEAR CIRCUIT MODELING
generalized polynomial-chaos expansion was first computed\onlinear devices or circuits must be well modeled in order
as a stochastic model for the MEMS capaciig€). The to enable efficient system-level simulation and optimization.
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Fig. 8. Left: the schematic of a MEMS switch acting as capaditgr, which has 46 process variations; right: an oscillator using 4 MEMS switches as
capacitors (with184 random parameters in total).

TABLE Il
SIMULATION TIME OF THE MEMS-IC CO-DESIGN INFIG. 8 5
T ®
method Monte Carlo  proposed [18] B * :> B vey
total samples  15.4 hours 10 minutes

(@) @

6 T

0.6 Fig. 10. Traditional projection-based nonlinear model omgguction meth-
(b) ods reduce a large system mati#X to a small but dense matriB through
‘ ‘ an orthogonal projection matri¥’.

4+ B
2\/\/\/\/\/\ 1 variables and input signals anl € R"*™ describes how

0 ‘ ‘ ‘ ‘ ‘ the input signals are injected into the circuit. This differential
0 0.1 0.2 0.3 0.4 0.6 . h .. .

tins] equation will serve as the basis in the following model order
reduction applications.

Matrix-based Nonlinear Model Order Reduction. The
idea of nonlinear model order reduction is to extract a compact
reduced-order model that accurately approximates the input-
Capturing the (possibly high) nonlinearity can result in higheutput relationship of the original large nonlinear system. Sim-
dimensional problems. Fortunately, the multiway nature ofation of the reduced-order model is usually much faster, so
tensor allows the easy capturing of high-order nonlineariti#3at efficient and reliable system-level verification is obtained.
of analog, mixed-signal circuits and in MEMS design. For instance, projection-based nonlinear model order reduction
methods reduce the original system in (14) to a compact
reduced model with size < n

Fig. 9. Realization of the steady-state waveforms for thellagzi in Fig. 8.
Top: tensor-based hierarchical approach; bottom: Monte Carlo.

A. Nonlinear Modeling and Model Order Reduction . N ) A A A
Similar to the Taylor expansion, it is shown in [37], [38], &= A+ Bi® +Ci® + Duw &)+ Fu, (15)
[106]-{108] that many nonlinear dynamical systems can Rgere s R?, A € R1*%1, B ¢ RIX7*, & ¢ R1*¢°, D ¢
approximated by expanding the nonlinear terms around R@xsm and £ < R9*™. The reduction is achieved through
equilibrium point, leading to the following ordinary differentialapp|ying an orthogonal projection matriX € R”*¢ on the
equation system matrices in (14). Fig. 10 illustrates how projection-
&= Az + Bx®@ + Cz® + D(u®z)+ Eu, (14) based m(_athods redud® to a dense system matri8 with a
smaller size.
where the state vectar(t) € R™ contains the voltages and/or Most traditional matrix-based weakly nonlinear model or-
currents inside a circuit network, and the veaigt) € R"™ de- der reduction methods [36]-[40] suffer from the exponential
notes time-varying input signals. The?, @ notation refers growth of the size of the reduced system matridgsC', D.
to repeated Kronecker products (cf. Appendix A). The matriks a result, simulating high-order strongly nonlinear reduced
A € R"*™ describes linear behavior, while the matricemodels is sometimes even slower than simulating the original
B € R™"" andC € R describe2nd- and 3rd-order system.
polynomial approximations of some nonlinear behavior. The Tensor-based Nonlinear Model Order Reduction. A
matrix D € R"*™™ captures the coupling between the stateensor-based reduction scheme was proposed in [109]. The
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TABLE IV
COMPUTATION AND STORAGE COMPLEXITIES OF DIFFERENT NONLINEAR MODEL ORDER REDUCTION APPROACHES ONJASTATE REDUCED SYSTEM
WITH dTH-ORDER NONLINEARITY.

Reduction methods Function evaluation cost  Jacobian matrix evaluation cost  Storage cost
Traditional matrix-based method [36]-[40] O(gdth) O(q+2) O(q%+1)
Tensor-based method [109] O(qdr) O(q?%dr) O(gdr)
Symmetric tensor-based method [110] O(qr) O(q?r) O(qr)

¥l = A + ‘B + (d-way VT
(2-way) (3-way) conceptual)

(@) (b)

Fig. 11. Tensor structures used in [109]. (a) Tensor representation of the original nonlinear system in (14); (3 tisneeduced to a compact tensBr
with a projection matrixV" in [109].

coefficient matricesB, C, D of the polynomial system (14) Symmetric Tensor-based Nonlinear Model Order Re-
were reshaped into the respective tensBse R™*"*" duction. A symmetric tensor-based order reduction method
C € R»xnxnxn gnd D € R™*™ ™ as demonstrated inin [110] further utilizes the all-but-first-mode partial symmetry
Fig. 11(a). These tensors were then decomposed via e.g. CBDthe system tensoB (C), i.e., the mode factors oB (C)
Tucker or Tensor Train rank-1 SVD, resulting in a tensare exactly the same, except for the first mode only. This
approximation of (14) as partial symmetry property is also kept by its reduced-order
. 1) T2 Tr@) model. The symmetric tensor-based reduction method in [110]
& =Azx+[B", 2" B,z B"] provides further improvements of computation performance
+ W, 2TCc@ 2TC® 2TCW] and storage requirement over [109], as shown in the last row

4 [[1)(1)7 .’BTD(Q),’U,TD(B)]] + Eu, (16) of Table IV.

where B%), c®) D) denote thekth-mode factor matrix . _ o
from the polyadic decomposition of the tensddsC, D re- B. Volterra-Based Simulation and ldentification for ICs

spectively. Consequently, the reduced-order model inherits thayolterra theory has long been used in analyzing communi-
same tensor structure as (16) (with smaller sizes of the magiggion systems and in nonlinear control [111], [112]. It can
factors). If we take tensoB3 as an example, its reductionpe regarded as a kind of Taylor series with memory effects
process in [109] is shown in Fig. 11(b). since its evaluation at a particular time point requires input
Computational and Storage Benefits. Unlike previous information from the past. Given a certain input and a black-
matrix-based approaches, simulation of the tensor-structigx model of a nonlinear system with time/frequency-domain
reduced model completely avoids the overhead of solvingiterra kernels, the output response can be computed by the
high-order dense system matrices, since the dense Kronegl@hmation of a series of multidimensional convolutions. For

products in (14) are resolved by matrix-vector multiplicationgstance, a8rd-order response can be written in a discretized
between the mode factor matrices and the state vectors. Thesgm as
fore, substantial improvement on efficiency can be achieved.

M M M 3
Meanwhile, these mode factor matrices can significantly re- _ ,
duce the memory requirement since they replace all densey3[ I= Z_:l 2—21 2_:1 h3[m1’m2’m3][[1u[k mil,
tensors and can be reduced and stored beforehand. Table IV e e = 17)

shows the computational complexities of function and Jaco-

bian matrix evaluations when simulating a reduced model witthere h3 denotes thedrd-order Volterra kernely is the dis-
dth-order nonlinearity, where denotes the tensor rank usedretized input and// is the memory. Such a multidimensional
in the polyadic decompositions in [109]. The storage costs obnvolution is usually done by multidimensional fast Fourier
those methods are also listed in the last column of Table Itansforms (FFT) and inverse fast Fourier transforms (IFFT).
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System Identification. In [114]-[116], similar tensor-
\olterra models were used to identify the black-box Volterra
kernelsh;. It was reported in [114]-[116] that given certain
input and output data, identification of the kernels in the
polyadic decomposition form could significantly reduce the
parametric complexity with good accuracy.

VIl. FUTURE TorPicsS EDA APPLICATIONS

1 Z 3 7 This section describes some EDA problems that could be
et v - Lc Cc== potentially solved with, or that could benefit significantly from
ey - employing tensors. Since many EDA problems are charac-

21z = 1 terized by high dimensionality, the potential application of

(b) © tensors in EDA can be vast and is definitely not limited to

) ) ) o the topics summarized below.
Fig. 12. (a) System diagram of @rd-order mixer circuit. The symbadll
denotes a mixer; (b) the equivalent circuit of the mix8r= R = 50 $2; (c)
the circuit schematic diagram of the low-pass filtéfs, H;, and H., with T .
L — 42.52nH andC — 8.5 pF. A. EDA Optimization with Tensors

Many EDA problems require solving a large-scale optimiza-
tion problem in the following form:

Although the formulation does not preclude itself from model-

ing strong nonlinearities, the exponential complexity growth in H}Ein fla), s.t. zeC (18)
multidimensional FFT/IFFT computations results in the curse . s .
wherex = [z1,---,z,] denotesn design or decision vari-

of dimensionality that forbids its practical implementation. : . ;
i ) . ables, f(x) is a cost function (e.g., power consumption of
Tensor-Volterra Model-based Simulation. Obviously, the chip, layout area, signal delay), addis a feasible set

3rd-order Volterra ker_nehg itself can be viewe.d as away specifying some design constraints. This formulation can
tensor. By compressing the Volterra kernel into a polyadigegcerine problems such as circuit optimization [64]-[66],
decomposition, it is proven in [113] that the computatlonallwacement [59], routing [60], and power management [117].

expensive multidimensio_nal FFT/IFFT can be replaced by e optimization problem (18) is computationally expensive
number of cheap one-dimensional FFT/IFFTs without cony . 1o many elements.

promising much accuracy. It is possible to accelerate the above large-scale optimiza-
Computational and Storage Benefits. The chosen rankjon problems by exploiting tensors. By adding some extra
for the polyadic decomposition has a significant impact GQpyriapless with 7 elements, one could form a longer vector
both the accuracy and efficiency of the simulation algg; — [, ] such thatz hasn, x --- x ng variables in total.
rithm. In [113], the ranks were chosen a priori and it wasSet ¥ be a tensor such that — vec(X), let z = Q& with

demonstrated that the computational complexity for the tensey- peing the firsts rows of an identity matrix, then (18) can
Volterra based method to calculate alth-order response pe written in the following tensor format:

is in O((Rreal + Rimag)dmlogm), wherem is the number e o
of steps in the time/frequency axis, am@ea and Rimag min f(X), s.t. XecC (19)
denote the prescribed ranks of the polyadic decomposition - - - -
used for the real and imaginary parts of the Volterra kernaijth f(X) = f(Qved X)) andC = {X|Qved X) € C}.
respectively. In contrast, the complexity for the traditional Although problem (19) has more unknown variables
multidimensional FFT/IFFT approach is ®(dm®logm). In  than (18), the low-rank representation of tenddmay have
addition, the tensor-Volterra model requires the storage miuch fewer unknown elements. Therefore, it is highly possible
only the factor matrices in memory, with space complexitthat solving (19) will require much lower computational cost
O((Rreal + Rimag)dm), while O(m®) memory is required for for lots of applications.
the conventional approach.

In [113], the method was applied to compute the timgs gk pimensional Modeling and Simulation
domain response ofad-order mixer system shown in Fig. 12. ) ) i ] ]
The 3rd-order responsg; is simulated to a square pulse input | Consllder a general alget_)ralc equatlon resulting from a high-
with m = 201 time steps. As shown in Fig. 13(a), a rankdimensional modeling or simulation problem
20 (qr above) polyadic decomposition for both the real and () =0, withez € RY and N =n1 x ng--- x ngq (20)
imaginary parts of the kernel tensor matched the reference
result from multidimensional FFT/IFFT fairly well. Figs. 13(b)which can be solved by Newton'’s iteration. For simplicity, we
and (c) demonstrate a certain trade-off between the accurasgumen; = n. When an iterative linear equation solver is
and efficiency when using different ranks for the polyadiapplied inside a Newton’s iteration, it is possible to solve this
decomposition. Nonetheless, a 60x speedup is still achievapteblem at the complexity aD(N) = O(n?). However, since
for ranks around 100 with a 0.6% error. N is an exponential function af, the iterative matrix solver
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Fig. 13. Numerical results of the mixer. (a) Time-domain resultg;ofcomputed by the method in [113] with different rank approximations; (b) relative
errors of [113] with different ranks; (c) speedups brought by [113] with different ranks.

quickly becomes inefficient asincreases. Instead, we rewrite
(20) as the following equivalent optimization problem:

min f(z) = g(@)3, st @R, -

This least-square optimization is a special case of (18), and
thus the tensor-based optimization idea may be exploited to
solve the above problem at the cost@fn). —
A potential application lies in the PDE or integral equation
solvers for device simulation. Examples include the Maxwell
equations for parasitic extraction [31]-[33], the Navier-Stokddd- 14. Represent multiple testing chips on a wafer as a siegleor. Each
equation describing bio-MEMS [118], and the Poisson equ?Jl‘l_ce of the tensor captures the spatial variations on a single die.
tion describing heating effects [119]. These problems can be

described as (20) after numerical discretization. The tensonnstead of measuring each device on each die (Wh|Ch

representation of can be easily obtained based on the numefequireskmn measurements in total), one could measure only
ical discretization scheme. For instance, on a regular 3-D cubjcfew devices on each wafer, then estimate the full-wafer
Structure, a finite-difference or finite-element discretizati%riaﬂons using tensor Comp'etion_ One may emp'oy convex
may usen,, n, andn. discretization elements in the y and  gptimization to locate the globally optimal solution of this

z directions respectively. Consequenttycould be compactly \yay tensor completion problem.

represented asiaway tensor with size:, x n, xn, to exploit

its low-rank property in the spatial domain. VIl

This idea can also be exploited to simulate multi-rate h s by itself . h . hi
circuits or multi-tone RF circuits. In both cases, the tensor re _Tensor theory is by itself an active research topic. This

resentation ofc can be naturally obtained based on the timgeClion summarizes some theoretical open problems.

domain discretization or multi-dimensional Fourier transform.

In multi-tone harmonic balance [68], [69], the dimensionalitp. Challenges in Tensor Decomposition

d is the total number of RF inputs. In the multi-time PDE pgjlyadic and tensor train decompositions are preferred for

solver [67],d is the number of time axes describing differenigh-order tensors due to their better scalability. In spite of

time scales. their better computational scalability, the following challenges

still exist:

C. Process Variation Modeling « Rank Determination in CPD. The tensor ranks are

In order to characterize the inter-die and intra-die process usually determined by two methods. First, one may fix the

. FUTURE ToPICS THEORETICAL CHALLENGES

variations across a silicon wafer with dice, one may need

to measure each die with am x n array of devices or
circuits [27]-[29]. The variations of a certain parameter (e.qg.,
transistor threshold voltage) on thth die can be described

by matrix A; € R™*", and thus one could describe the
whole-wafer variation by stacking all matrices into a tensor
A € RF>mxn with A; being theith slice. This representation

is graphically shown in Fig. 14.

rank and search for the tensor factors. Second, one may
increase the rank incrementally to achieve an acceptable
accuracy. Neither methods are optimal in the theoretical
sense.

Optimization in Polyadic Decomposition. Most rank-

r polyadic decomposition algorithms employ alternating
least-squares (ALS) to solve non-convex optimization
problems. Such schemes do not guarantee the global
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optimum, and thus it is highly desirable to develop glob&FT/IFFT approach. These are just few initial representative
optimization algorithms for the CPD. examples for the huge potential that a tensor computation
o Faster Tensor Train Decomposition. Computing the framework can offered to EDA algorithms. We believe that
tensor train decomposition requires the computation tfe space of EDA applications that could benefit from the
many low-rank decompositions. The state-of-the-art inuse of tensors is vast and remains mainly unexplored, ranging
plementation employs “cross approximation” to perforfrom EDA optimization problems, to device field solvers, and
low-rank approximations [87], but it still needs too manyo process variation modeling.
iterations to find a “good” representation.
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B. Challenges in Tensor Completion

Major challenges of tensor completion include: APPENDIXA

« Automatic Rank Determination. In high-dimensional ADDITIONAL NOTATIONS AND DEFINITIONS
tensor completion, it is important to determine the ten- Diagonal, Cubic and Symmetric Tensors. The diagonal
sor rank automatically. Although some probabilistic apentries of a tensotA are the entriesa;,;,..;, for which

proaches such as variational Bayesian methods [96], [97] = i, = --- = i;. A tensorS is diagonal if all of its
have been reported, they are generally not robust for vafgn-diagonal entries are zero. A cubical tensor is a tensor for
high-order tensors. whichn; = ny = --- = ng. A cubical tensotA is symmetric

« Convex Tensor Completion. Most tensor completion if a;,...;, = ax(,, . i,) Wheren(ii,...,iq) is any permutation

problems are formulated as non-convex optimizatiogf the indices.

problems. Nuclear-norm minimization is convex, but itis The Kronecker product [120] is denoted by®. We use

only applicable to low-order tensors. Developing a scahe notationz@® = z ® z ® - - - ® « for the d-times repeated

able convex formulation for the minimal-rank completiorkronecker product.

still remains an open problem for high-order cases. Definition 5: Reshaping.Reshaping, also calleshfolding,
 Robust Tensor Completion. In practical tensor com- is another often used tensor operation. The most common

pletion, the available tensor elements from measuremesthaping is the matricization, which reorders the entries of

or simulations can be noisy or even wrong. For thesd into a matrix. The mode-mmatricization of a tensotA,

problems, the developed tensor completion algorithnaienoted.A,,,), rearranges the entries of such that the rows

should be robust against noisy input. of the resulting matrix are indexed by th¢h tensor index,,.

« Optimal Selection of SamplesTwo critical fundamental The remaining indices are grouped in ascending order.
questions should be addressed. First, how many samplegxample 2:The 3-way tensor of Fig. 1 can be reshaped as
are required to (faithfully) recover a tensor? Second, hosv2 x 12 matrix or a3 x 8 matrix, and so forth. The mode-1
can we select the samples optimally? and mode-3unfoldings are

1 4 7 10 13 16 19 22

IX. ConcLusIoN An=|2 5 8 11 14 17 20 23|,

By exploiting low-rank and other properties of tensors (e.g., 36 9 12 15 18 21 24
sparsity, symmetry), the storage and computational cost of 1 2 3 4 .. 9 10 11 12
many challenging EDA problems can be significantly reduced. A3y = (13 4 15 16 --- 21 22 23 24> .

For instance, in the high-dimensional stochastic collocation
modeling of a CMOS ring oscillator, exploiting tensor comThe column indices 0f4 ), A(s) are[izis] and[i;is], respec-
pletion required only a few hundred circuit/device simulatiotively.

samples vs. the huge number of simulations (el§2") Definition 6: Vectorization. Another important reshaping
required by standard approaches to build a stochastic moigethe vectorization. The vectorization of a tensér denoted
of similar accuracy. When applied to hierarchical uncertaintec(.A), rearranges its entries in one vector.

quantification, a tensor-train approach allowed the easy hanExample 3:For the tensor in Fig. 1, we have

dling of an extremely challenging MEMS/IC co-design prob- T

lem with over 180 uncorrelated random parameters describing veqA) = (1 2 --- 24)°.

process variations. In nonlinear model order reduction, the

high-order nonlinear terms were easily approximated by a APPENDIXB

tensor-based projection framework. Finally,68x speedup COMPUTATION AND VARIANTS OF THE POLYADIC
was observed when using tensor computation in a 3rd-order DECOMPOSITION

Volterra-series nonlinear modeling example, while maintain- Computing Polyadic Decompositions. Since the tensor
ing a 0.6% relative error compared with the conventionatank is not known a priori, in practice, one usually computes
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a low-rankr < R approximation of a given tensad by inverses with the original tensor to compute the HOSVD core
minimizing the Frobenius norm of the difference betwedn tensor. For a 3-way tensor this entails a computational cost of
and its approximation. Specifically, the user specifieand 2ninan3(n1+na+nsz)+5(ningnz+nining+ningn3)2(ni+
then solves the minimization problem n3 +n3)/3(nt +n3 +n3)/3 [122].

argmin |[A— [D;UW,... . UD]||p

DU, UWD REFERENCES
rxrxeexr T7(0) X [1] L. Nagel and D. O. Pederson, “SPICE (Simulation Program with
whereD € R ,UW e RY*7(i = {1,...,d}). One Integrated Circuit Emphasis),” University of California, Berkeley, Tech.

can then increment and compute new approximations until a Rep., April 1973.

« »ofir ; ; [2] C.-W. Ho, R. Ruehli, and P. Brennan, “The modified nodal approach
good enough” fit is obtained. A common method for solving o network analysis 1EEE Trans. Circuits Syst., vol. 22, no. 6, pp.

this optimization problem is the Alternating Least Squares  504-509, June 1975.
(ALS) method [82]. Other popular optimization algorithms [3] K. Kundert, J. K. White, and A. Sangiovanni-Vincentefiteady-state

; ; ; i methods for simulation analog and microwave circuits Kluwer
are nonlinear conjugate gradient methods, quasi-Newton or Academic Publishers, Boston, 1990

nonlinear least squares (e.g. Levenberg-Marquardt) [121]. Thesy T. Aprille and T. Trick, “Steady-state analysis of nonlinear circuits with
computational complexity per iteration of the ALS, Levenberg- _ periodic inputs,"|EEE Proc., vol. 60, no. 1, pp. 108-114, Jan. 1972.

: 5] ——, “A computer algorithm to determine the steady-state response of
Marquardt (LM) an_d Enhanced _L_Ine Search (ELS) methods tO[ nonlinear oscillators,IEEE Trans. Circuit Theory, vol. CT-19, no. 4,
compute a polyadic decomposition of3away tensor, where pp. 354-360, July 1972.
n = min(ny,ne, ng), are given in Table V. [6] K. Kundert, J. White, and A. Sangiovanni-Vincentelli, “An envelope-

following method for the efficient transient simulation of switching
power and filter circuits,” irProc. Int. Conf. Computer-Aided Design,

TABLE V 1988 Nov.
COMPUTATIONAL COSTS OF3 TENSOR DECOMPOSITION METHODS FOR A [7] L. Petzold, “An efficient numerical method for highly oscillatory
3-WAY TENSOR[122]. ordinary differential equations3IAM J. Numer. Anal., vol. 18, no. 3,
pp. 455-479, June 1981.
Methods Cost per iteration [8] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscil-

lators: A unifying theory and numerical methods for characterization,”
IEEE Trans. Circuits Syst. I: Fundamental Theory and Applications

ALS (nang + ning + nin2)(7n? 4 n) + 3nninang vol. 47, no. 5, pp. 655-674, 2000.
2 9 [9] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, “A multigrid-like
LM ninznz(ni +n2 +nz)n technique for power grid analysidEEE Trans. CAD of Integr. Circuits

Syst., vol. 21, no. 10, pp. 1148-1160, 2002.

T.-H. Chen and C. C.-P. Chen, “Efficient large-scale power grid analysis
based on preconditioned Krylov-subspace iterative method$?rdu.
Two variants of the polyadic decomposition are summarized Design Automation Conf., 2001, pp. 559-562.

ELS (8n + 9)ninans [10]

below. [11] Z. Feng and P. Li, “Multigrid on GPU: tackling power grid analysis on
’ . arallel SIMT platforms,” inProc. Intl. Conf. Computer-Aided Design,
1) PARATREE or tensor-train rank-1 SVD (TTr1SVD): D008, pp, 647-654 P 9

This polyadic decomposition [123], [124] consists of orthog{12] R. Telichevesky and J. K. White, “Efficient steady-state analysis based

_ ; ; ; on matrix-free Krylov-subpsace methods,”®Pnoc. Design Automation
onal rank-1 terms and is computed by consecutive reshapings Cont.. June 1995, pp. 480.484.

and SVDs. This computation implies that the obtained decoms3] x. Liu, H. Yu, and S. Tan, “A GPU-accelerated parallel shooting
position does not need an initial guess and will be unique for a  algorithm for analysis of radio frequency and microwave integrated

- P o ; ; ; circuits,” IEEE Trans. VLSI, vol. 23, no. 3, pp. 480-492, 2015.
fixed order of indices. Similar to SVD in the matrix case, this 14] S. Weinzierl, “Introduction to Monte Carlo methods,” theory Group,

decomposition has an approximation error easily expressed in" The Netherlands, Tech. Rep. NIKHEF-00-012, 2000.
terms of theo;’s [123]. [15] A. Singhee and R. A. Rutenbar, “Why Quasi-Monte Carlo is better

; ; than Monte Carlo or Latin hypercube sampling for statistical circuit
2) CPD for Symmetric Tensorsthe CPD of a symmetric analysis,”IEEE Trans. CAD of Integr. Circuits Syst., vol. 29, no. 11,

tensor does not in general result in a summation of symmetric  pp. 1763-1776, 2010.
rank-1 terms. In some applications, it is more meaningful t616] Z. Zhang, X. Yang, G. Marucci, P. Maffezzoni, |. M. Elfadel, G. Kar-

i i ini i niadakis, and L. Daniel, “Stochastic testing simulator for integrated
enforce the symmetric constraints explicitly, and wride= circuits and MEMS: Hierarchical and sparse techniques,Pioc.

R . .
Doich Aivd, where); € R, A is ad-way symmetric tensor. Custom Integr. Circuits Conf. San Jose, CA, Sept. 2014, pp. 1-8.
Herew¢ is a shorthand for thé-way outer product of a vector [17] fZ Zhang, |. OIA. M. Elfagel, ﬁnd L Damel,I “Untr:]eréamty quantglcatlon

Cwith ; d_ ... o i or integrated circuits: Stochastic spectral methodsPrioc. Int. Cont.
v; with itself, i.e.,vf = v; o w; o © Vi Computer-Aided Design. San Jose, CA, Nov 2013, pp. 803-810.
[18] Z. Zhang, |. Osledets, X. Yang, G. E. Karniadakis, and L. Daniel,
APPENDIXC “Enabling high-dimensional hierarchical uncertainty quantification by
ANOVA and tensor-train decompositionEEE Trans. CAD of Integr.
HIGHER-ORDERSVD Circuits Syst., vol. 34, no. 1, pp. 63 — 76, Jan 2015.

The Higher-Order SVD (HOSVD) [125] is obtained from [19] T.-W. Weng, Z. Zhang, Z. Su, Y. Marzouk, A. Melloni, and L. Daniel,

L. - “Uncertainty quantification of silicon photonic devices with correlated
the Tucker decomposition when the factor matri€&$) are and non-Gaussian random paramete@gtics Expressvol. 23, no. 4,

orthogonal, when any two slices of the core tenSom the pp. 4242 — 4254, Feb 2015.

S o — i [20] Z.Zhang, T. A. EI-Moselhy, I. A. M. Elfadel, and L. Daniel, “Stochastic
fsame mzde_arle OrtthQOnjLS”“Hp’ Stll’j‘]_q> i 0 Iff pths'é q testing method for transistor-level uncertainty quantification based on
or any = L,...,a, ana when € slices o e core generalized polynomial chao3EEE Trans. CAD Integr. Circuits Syst.,
tensorS in the same mode are ordered according to their  vol. 32, no. 10, Oct. 2013.
Erobenius nOfm,HSik:ﬂl > Hsik:2‘| > > ||Sik:nk|| [21] z. Zha_ng, T. A EI—MoseIhy, P. Maff_e_zzo_m, . A. M. E_Ifaqel, and

: . L. Daniel, “Efficient uncertainty quantification for the periodic steady

for k& = {1,....d}. Its Com_pUtatlon consists O‘ﬁ SVDs ) state of forced and autonomous circuitl)fEE Trans. Circuits Syst.
to compute the factor matrices and a contraction of their I Exp. Briefs vol. 60, no. 10, Oct. 2013.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2618879, IEEE

ACCEPTED BY IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2016

Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

[22] R. Pulch, “Modelling and simulation of autonomous oscillators with [44] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamilto-

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

random parametersMath. Computers in Simulation, vol. 81, no. 6,
pp. 1128-1143, Feb 2011.

J. Wang, P. Ghanta, and S. Vrudhula, “Stochastic analysis of interf45]
connect performance in the presence of process variation&tdo.

Design Auto Conf., 2004, pp. 880-886.

S. Vrudhula, J. M. Wang, and P. Ghanta, “Hermite polynomial based
interconnect analysis in the presence of process variatidBEE [46]
Trans. CAD Integr. Circuits Syst., vol. 25, no. 10, pp. 2001-2011, Oct.
2006.

M. Rufuie, E. Gad, M. Nakhla, R. Achar, and M. Farhan, “Fast variabil-

ity analysis of general nonlinear circuits using decoupled polynomial
chaos,” inWorkshop Signal and Power Integrity, May 2014, pp. 1-4. [47]
P. Manfredi, D. V. Ginste, D. D. Zutter, and F. Canavero, “Stochastic
modeling of nonlinear circuits via SPICE-compatible spectral equiva-
lents,” IEEE Trans. Circuits Syst. |: Regular Papersl. 61, no. 7, pp.
2057-2065, July 2014.

D. S. Boning, K. Balakrishnan, H. Cai, N. Drego, A. Farahanchi,[48]
K. M. Gettings, D. Lim, A. Somani, H. Taylor, D. Truque, and X. Xie,
“Variation,” IEEE Trans. Semicond. Manuf., vol. 21, no. 1, pp. 63-71,
Feb. 2008. [
L. Yu, S. Saxena, C. Hess, A. Elfadel, D. Antoniadis, and D. Boning,
“Remembrance of transistors past: Compact model parameter extrac-
tion using Bayesian inference and incomplete new measurements,” '[lgo]
Proc. Design Automation Conf, 2014, pp. 1-6.

W. Zhang, X. Li, F. Liu, E. Acar, R. A. Rutenbar, and R. D.
Blanton, “Virtual probe: A statistical framework for low-cost silicon [51]
characterization of nanoscale integrated circulBEE Trans. CAD of

Integr. Circuits Syst., vol. 30, no. 12, pp. 1814-1827, 2011.

Y. S. Chauhan, S. Venugopalan, M. A. Karim, S. Khandelwal, N. Pay152]
davosi, P. Thakur, A. M. Niknejad, and C. C. Hu, “BSIM—industry
standard compact MOSFET models,” Rroc. ESSCIRC, 2012, pp.
30-33. 53]
K. Nabors and J. White, “FastCap: a multipole accelerated 3-D[
capacitance extraction programZEE Trans. CAD of Integr. Circuits

Syst., vol. 10, no. 1, pp. 1447-1459, Nov 1991. [54]
M. Kamon, M. J. Tsuk, and J. K. White, “FASTHENRY: a multipole-
accelerated 3-D inductance extraction progralBEE Trans. Microw.
Theory Tech., vol. 42, no. 9, pp. 1750-1758, Sept. 1994.

J. Phillips and J. K. White, “A precorrected-FFT method for electro-

static analysis of complicated 3-D structurelEEE Trans. CAD of [55]
Integr. Circuits Syst., vol. 16, no. 10, pp. 1059-1072, Oct 1997.
A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: Passive reduced-[56]

order interconnect macromodeling algorithniZEE Trans. CAD of
Integr. Circuits Syst., vol. 17, no. 8, pp. 645-654, Aug. 1998.

J. R. Phillips, L. Daniel, and L. M. Silveira, “Guaranteed passive
balancing transformations for model order reductiofEE Trans.
CAD of Integr. Circuits Syst., vol. 22, no. 8, pp. 10271041, Aug.[>8!
2003. [59]
J. Roychowdhury, “Reduced-order modeling of time-varying systems,”
IEEE Trans. Circuits and Syst. II: Analog and Digital Signal Process.,[eo]
vol. 46, no. 10, pp. 1273-1288, Oct 1999.

P. Li and L. Pileggi, “Compact reduced-order modeling of weakly
nonlinear analog and RF circuitdZEE Trans. CAD of Integr. Circuits
Syst., vol. 24, no. 2, pp. 184-203, Feb. 2005.

J. R. Phillips, “Projection-based approaches for model reduction of62]
weakly nonlinear time-varying systemsfEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 2, pp. 171-187, Feb. 2003.

C. Gu, “QLMOR: a projection-based nonlinear model order reduction63]
approach using quadratic-linear representation of nonlinear systems,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 9,
pp. 1307-1320, Sep. 2011. [64]
Y. Zhang, H. Liu, Q. Wang, N. Fong, and N. Wong, “Fast nonlinear
model order reduction via associated transforms of high-order Volterra
transfer functions,” irProc. Design Autom. Conf., Jun. 2012, pp. 289—[65]
294.

B. N. Bond and L. Daniel, “Stable reduced models for nonlinear
descriptor systems through piecewise-linear approximation and proje¢66]
tion,” IEEE Trans. CAD of Integr. Circuits and Syst., vol. 28, no. 10,

pp. 1467-1480, 2009.

M. Rewienski and J. White, “A trajectory piecewise-linear approach[67]
to model order reduction and fast simulation of nonlinear circuits and
micromachined devices|EEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 22, no. 2, pp. 155-170, Feb. 2003.

B. Gustavsen and S. Semlyen, “Rational approximation of frequenc{68]
domain responses by vector fittinglEEE Trans. Power Delivery,

vol. 14, no. 3, p. 10521061, Aug.

[57]

(61]

nian matrices,”IEEE Trans. Circuits and Systems I: Regular Papers
vol. 51, no. 9, pp. 1755-1769, Sept.

C. P. Coelho, J. Phillips, and L. M. Silveira, “A convex programming
approach for generating guaranteed passive approximations to tabulated
frequency-data,'EEE Trans. CAD of Integr. Circuits Syst., vol. 23,
no. 2, pp. 293-301, Feb. 2004.

B. N. Bond, Z. Mahmood, Y. Li, R. Sredojevic, A. Megretski, V. Sto-
janovic, Y. Avniel, and L. Daniel, “Compact modeling of nonlinear
analog circuits using system identification via semidefinite programing
and incremental stability certificationfEEE Trans. CAD of Integr.
Circuits Syst., vol. 29, no. 8, p. 11491162, Aug.

L. Daniel, C. S. Ong, S. C. Low, K. H. Lee, and J. White, “A multi-
parameter moment-matching model-reduction approach for generating
geometrically parameterized interconnect performance mod&E&E
Trans. CAD of Integr. Circuits Syst., vol. 23, no. 5, pp. 678-693, May
2004.

——, “Geometrically parameterized interconnect performance models
for interconnect synthesis,” iRroc. IEEE/ACM Intl. Symp. Physical
Design, May 2002, pp. 202—-207.

49] K. C. Sou, A. Megretski, and L. Daniel, “A quasi-convex optimization

approach to parameterized model order reductiteE2E Trans. CAD

of Integr. Circuits Syst., vol. 27, no. 3, pp. 456-469, March 2008.

B. N. Bond and L. Daniel, “Parameterized model order reduction of
nonlinear dynamical systems,” iRroc. Intl. Conf. Computer Aided
Design, Nov. 2005, pp. 487-494.

——, “A piecewise-linear moment-matching approach to parameterized
model-order reduction for highly nonlinear systemEEE Trans. CAD

of Integr. Circuits Syst., vol. 26, no. 12, pp. 2116-2129, 2007.

T. Moselhy and L. Daniel, “Variation-aware interconnect extraction
using statistical moment preserving model order reductionPrioc.
Design, Autom. Test in Europe, Mar. 2010, pp. 453-458.

F. Ferranti, L. Knockaert, and T. Dhaene, “Guaranteed passive pa-
rameterized admittance-based macromodelil§FE Trans. Advanced
Packag., vol. 33, no. 3, pp. 623-629, 2010.

J. F. Villena and L. M. Silveira, “SPARE-a scalable algorithm for
passive, structure preserving, parameter-aware model order reduction,”
IEEE Trans. CAD of Integr. Circuits Syst., vol. 29, no. 6, pp. 925-938,
2010.

L. M. Silveira and J. R. Phillips, “Resampling plans for sample point
selection in multipoint model-order reductioEEE Trans. CAD of
Integr. Circuits Syst., vol. 25, no. 12, pp. 2775-2783, 2006.

S. Boyd and L. Vandenbergh&onvex Optimization. = Cambridge
University Press, 2004.

L. Vandenberghe and S. Boyd, “Semidefinite programmirg§AM
Review, vol. 38, no. 1, pp. 49-95, 1996.

D. P. BertsekasNonlinear programming. Athena Scientific, 1999.

K. Shahookar and P. Mazumder, “VLSI cell placement techniques,”
ACM Comput. Surveysol. 23, no. 2, pp. 143-220, 1991.

J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance opti-
mization of VLSI interconnect layout/ntegration, the VLSI Journal,
vol. 21, no. 1, pp. 1-94, 1996.

G. De Micheli, Synthesis and Optimization of Digital Circuits
McGraw-Hill, 1994.

G. Gielen, H. Walscharts, and W. Sansen, “Analog circuit design
optimization based on symbolic simulation and simulated annealing,”
IEEE J. Solid-State Circuitsvol. 25, no. 3, pp. 707-713, 1990.

W. Cai, X. Zhou, and X. Cui, “Optimization of a GPU implementation
of multi-dimensional RF pulse design algorithm,” Bioinformatics
and Biomedical Engineering, IEEE Intl. Conf. on, 2011, pp. 1-4.

M. Hershenson, S. P. Boyd, and T. H. Lee, “Optimal design of a
CMOS op-amp via geometric programmindEEE Trans. CAD of
Integr. Circuits Syst., vol. 20, no. 1, pp. 1-21, 2001.

X. Li, P. Gopalakrishnan, Y. Xu, and T. Pileggi, “Robust analog/RF
circuit design with projection-based posynomial modeling,’Rroc.

Intl. Conf. Computer-aided design, 2004, pp. 855-862.

Y. Xu, K.-L. Hsiung, X. Li, I. Nausieda, S. Boyd, and L. Pileggi,
“OPERA: optimization with ellipsoidal uncertainty for robust analog
IC design,” inProc. Design Autom. Conf., 2005, pp. 632—637.

J. Roychowdhury, “Analyzing circuits with widely separated time
scales using numerical PDE method##EE Trans. Circuits Syst.:
Fundamental Theory and Applicatigngol. 48, no. 5, pp. 578-594,
May 2001.

R. C. Melville, P. Feldmann, and J. Roychowdhury, “Efficient multi-
tone distortion analysis of analog integrated circuits,Pioc. Custom
Integr. Circuits Conf., May 1995, pp. 241-244.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2618879, IEEE

ACCEPTED BY IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2016

(69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]
(84]
(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

Transactions on Computer-Aided Design of Integrated Circuits and Systems

15

N. B. De Carvalho and J. C. Pedro, “Multitone frequency-domain[94] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear

simulation of nonlinear circuits in large- and small-signal regimes,”
IEEE Trans. Microwave Theory and Techniques, vol. 46, no. 12, pp.
2016-2024, Dec 1998.
M. Bonnin and F. Corinto, “Phase noise and noise induced frequency
shift in stochastic nonlinear oscillatordFEE Trans. Circuits Syst. I:
Regular Papersvol. 60, no. 8, pp. 2104-2115, 2013.

X. Li, “Finding deterministic solution from underdetermined equation:
large-scale performance modeling of analog/RF circulSEE Trans.
CAD of Integr. Circuits Syst., vol. 29, no. 11, pp. 1661-1668, Nov.
2011. [
T. Kolda and B. Bader, “Tensor decompositions and applications,’
SIAM Review, vol. 51, no. 3, pp. 455-500, 2009.

A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Ca-

[95]

[96]

97]
[98]

iafa, and H. A. Phan, “Tensor decompositions for signal processin?gg]

applications: From two-way to multiwvay component analysiEEE
Signal Process. Mag., vol. 32, no. 2, pp. 145-163, March 2015.

N. Vervliet, O. Debals, L. Sorber, and L. D. Lathauwer, “Breaking tthOO]
S:

curse of dimensionality using decompositions of incomplete tenso
Tensor-based scientific computing in big data analy$BEE Signal
Process. Mag., vol. 31, no. 5, pp. 71-79, Sep. 2014. [
B. W. Bader, T. G. Koldaet al., “MATLAB Tensor Toolbox
Version 2.6,” February 2015. [Online]. Available: http://www.sandia.
gov/i~tgkolda/TensorToolbox/
N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer.
(2016, Mar.) Tensorlab 3.0. [Online]. Available: http://www.tensorlab.
net
I. Oseledets, S. Dolgov, V. Kazeev, O. Lebedeva, and T. Mach.
(2012) TT-Toolbox 2.2. [Online]. Available: http://spring.inm.ras.ru/
osel/download/tt22.zip

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing

neural networks,” inAdvances in Neural Information Processing Sys[10

tems 28. Curran Associates, Inc., 2015.

01]

[102]

[103]

[104]

5]

V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempii—loe]

sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,"arXiv preprint arXiv:1412.6553, 2014.

M. Rakhuba and I. V. Oseledets, “Fast multidimensional convolutio[r}on

in low-rank tensor formats via cross approximatio8/AM Journal on
Scientific Computing, vol. 37, no. 2, pp. A565-A582, 2015.

J. D. Carroll and J. J. Chang, “Analysis of individual difference:
in multidimensional scaling via an n-way generalization of “Eckart-

élO

8]

Young” decomposition,Psychometrika, vol. 35, no. 3, pp. 283—319,[109]

1970.
R. A. Harshman, “Foundations of the PARAFAC procedure: Models

and conditions for an “explanatory” multi-modal factor analysis,}110]

UCLA Working Papers in Phoneticsol. 16, no. 1, p. 84, 1970.
L. R. Tucker, “Some mathematical notes on three-mode factor analy-
sis,” Psychometrika, vol. 31, no. 3, pp. 279-311, 1966.

I. Oseledets, “Tensor-train decompositio8JAM J. Sci. Comp., vol. 33, [111]

no. 5, pp. 2295-2317, 2011.

J. Hastad, “Tensor rank is NP-completd,” Algorithms vol. 11, no. 4,
pp. 644-654, 1990.

J. B. Kruskal, “Three-way arrays: rank and uniqueness of trilinear de-

[112]

compositions, with application to arithmetic complexity and statistics[113]

Linear Algebra and its Applicationaol. 18, no. 2, pp. 95-138, 1977.
|. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for mul-
tidimensional arrays,Linear Algebra and its Applicationsvol. 422,
no. 1, pp. 70-88, 2010.

[114]

S. Gandy, B. Recht, and I. Yamada, “Tensor completion and Iow-n-raTﬁS]

tensor recovery via convex optimizatiorifiverse Problemsvol. 27,
no. 2, p. 119, Jan. 2011.

J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion fofllG]

estimating missing values in visual datéZEE Trans. Pattern Anal.
Machine Intelligence, vol. 35, no. 1, pp. 208-220, Jan. 2013.

J. Douglas and H. Rachford, “On the numerical solution of heat Co117]

duction problems in two and three space variabl@sgns. American
Math. Society, vol. 82, no. 2, pp. 421-439, Jul. 1956.

D. Gabay and B. Mercier, "A dual algorithm for the solution of nonq{11g]

linear variational problems via finite-element approximatio@&gmp.
Math. Appl., vol. 2, no. 1, pp. 17-40, Jan. 1976.

D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor
completion by Riemannian optimizatiorBIT Numer. Math., vol. 54,
no. 2, pp. 447-468, Jun. 2014.

P.-A. Absil, R. Mahony, and R. Sepulch®ptimization algorithms on
matrix manifolds Princeton University Press, 2008.

[119]

scheme for tensor optimization in the tensor train form&AM J.

Sci. Comput., 2012.

P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin, “Scalable
Bayesian low-rank decomposition of incomplete multiway tensors,” in
Proc. Int. Conf. Machine Learning, 2014, pp. 1800-1809.

Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determinatidBEE Trans.
Pattern Anal. and Machine Intelligence, vol. 37, no. 9, pp. 1751-1763,
2015.

——, “Bayesian sparse Tucker models for dimension reduction and
tensor completion,arXiv:1505.02343, May 2015.

Z. Zhang, T.-W. Weng, and L. Daniel, “A big-data approach to handle
process variations: Uncertainty quantification by tensor recovery,” in
Proc. Int. Workshop Signal and Power Integrity, May 2016.

——, “A big-data approach to handle many process variations: tensor
recovery and applicationsEEE Trans. Comp., Packag. Manuf. Techn.,
submitted in 2016.

D. Xiu and G. E. Karniadakis, “The Wiener Askey polynomial chaos
for stochastic differential equationsSIAM J. Sci. Comp., vol. 24, no. 2,
pp. 619-644, Feb. 2002.

D. Xiu and J. S. Hesthaven, “High-order collocation methods for
differential equations with random input§I1AM J. Sci. Comp., vol. 27,
no. 3, pp. 1118-1139, Mar 2005.

I. Babwska, F. Nobile, and R. Tempone, “A stochastic collocation
method for elliptic partial differential equations with random input
data,”SIAM J. Numer. Anal., vol. 45, no. 3, pp. 1005-1034, Mar 2007.
F. Nobile, R. Tempone, and C. G. Webster, “A sparse grid stochastic
collocation method for partial differential equations with random input
data,”SIAM J. Numer. Anal., vol. 46, no. 5, pp. 2309-2345, May 2008.
G. H. Golub and J. H. Welsch, “Calculation of gauss quadrature rules,”
Math. Comp., vol. 23, pp. 221-230, 1969.

H.-J. Bungartz and M. Griebel, “Sparse grida¢ta Numerica, vol. 13,

pp. 147-269, 2004.

T. Wang, H. Liu, Y. Wang, and N. Wong, “Weakly nonlinear circuit
analysis based on fast multidimensional inverse Laplace transform,” in
Proc. Asia South Pacific Design Autom. Conf., Jan. 2012, pp. 547-552.
H. Liu and N. Wong, “Autonomous \olterra algorithm for steady-
state analysis of nonlinear circuit$£EE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 32, no. 6, pp. 858-868, Jun. 2013.

Y. Zhang and N. Wong, “Compact model order reduction of weakly
nonlinear systems by associated transformt|. J. Circuit Theory and
Applications 2015.

H. Liu, L. Daniel, and N. Wong, “Model reduction and simulation
of nonlinear circuits via tensor decompositiofZEE Trans. CAD of
Integr. Circuits Syst., vol. 34, no. 7, pp. 1059-1069, Jul. 2015.

J. Deng, H. Liu, K. Batselier, Y. K. Kwok, and N. Wong, “STORM: a
nonlinear model order reduction method via symmetric tensor decom-
position,” in Proc. Asia and South Pacific Design Autom. Conf., Jan.
2016, pp. 557-562.

E. Bedrosian and S. O. Rice, “The output properties of \Volterra systems
(nonlinear systems with memory) driven by harmonic and Gaussian
inputs,” Proc. IEEE, vol. 59, no. 12, pp. 1688-1707, Dec. 1971.

W. Rugh,Nonlinear System Theory — The Volterra-Wiener Approach.
Baltimore, MD: Johns Hopkins Univ. Press, 1981.

H. Liu, X. Xiong, K. Batselier, L. Jiang, L. Daniel, and N. Wong,
“STAVES: Speedy tensor-aided volterra-based electronic simulator,” in
Proc. Int. Computer-Aided Design, Nov 2015, pp. 583-588.

G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear system model-
ing and identification using Volterra-PARAFAC modelfijt. J. Adapt.
Control Signal Processvol. 26, no. 1, pp. 30-53, Jan. 2012.

A. Khouaja and G. Favier, “Identification of PARAFAC-\olterra cubic
models using an alternating recursive least squares algorithrRfoin
Europ. Signal Process. Conf., 2004, pp. 1903-1906.

K. Batselier, Z. Chen, H. Liu, and N. Wong, “A tensor-based Volterra
series black-box nonlinear system identification and simulation frame-
work,” in Proc. Intl. Conf. Computer Aided Design, 2016.

L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, “Policy
optimization for dynamic power managemenEE Trans. CAD of
Integr. Circuits Syst., vol. 18, no. 6, pp. 813-833, 1999.

D. Vasilyev, M. Rewienski, and J. White, “Macromodel generation
for BIOMEMS components using a stabilized balanced truncation plus
trajectory piecewise-linear approachEEE Trans. CAD of Integr.
Circuits and Syst., vol. 25, no. 2, pp. 285-293, 2006.

W. Yu, T. Zhang, X. Yuan, and H. Qian, “Fast 3-D thermal simulation
for integrated circuits with domain decomposition methotEEE
Trans. CAD of Integr. Circuits Syst., vol. 32, no. 12, pp. 2014-2018,
2013.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2618879, IEEE

[120]

[121]

[122]

[123]

[124]

[125]

Transactions on Computer-Aided Design of Integrated Circuits and Systems

ACCEPTED BY IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2016 16

C. F. V. Loan, “The ubiquitous Kronecker producf,” Comp. Appl.
Math., vol. 123, no. 1-2, pp. 85-100, Nov. 2000.

L. Sorber, M. V. Barel, and L. D. Lathauwer, “Optimization-based
algorithms for tensor decompositions: Canonical polyadic decompog
tion, decomposition in rank-{([ l,-, 1) terms, and a new generalization,”
SIAM J. Optim., vol. 23, no. 2, pp. 695-720, 2013.

P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decompo
sitions, alternating least squares and other talds,Chemometrics
vol. 23, no. 7-8, pp. 393-405, JUL-AUG 2009.

K. Batselier, H. Liu, and N. Wong, “A constructive algorithm for
decomposing a tensor into a finite sum of orthonormal rank-1 terms,

Luca Daniel (S'98-M'03) is a Full Professor in
the Electrical Engineering and Computer Science
Department of the Massachusetts Institute of Tech-
nology (MIT). He received the Ph.D. degree in Elec-
trical Engineering from the University of Califor-
nia, Berkeley, in 2003. Industry experiences include
HP Research Labs, Palo Alto (1998) and Cadence
Berkeley Labs (2001).

Dr. Daniel current research interests include inte-
gral equation solvers, uncertainty quantification and
parameterized model order reduction, applied to RF

SIAM J. Matrix Anal. Appl., vol. 26, no. 3, pp. 1315-1337, Sep. 201%ircuits, silicon photonics, MEMs, Magnetic Resonance Imaging scanners,
J. Salmi, A. Richter, and V. Koivunen, “Sequential unfolding SVDand the human cardiovascular system.
for tensors with applications in array signal processitBFE Trans. Prof. Daniel was the recipient of the 1999 IEEE Trans. on Power Electronics

Signal Process., vol. 57, no. 12, pp. 4719-4733, Dec. 2009.

best paper award; the 2003 best PhD thesis awards from the Electrical

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinearEngineering and the Applied Math departments at UC Berkeley; the 2003
singular value decomposition3IAM J. Matrix Anal. Appl., vol. 21, ACM Outstanding Ph.D. Dissertation Award in Electronic Design Automation;

no. 4, pp. 1253-1278, 2000

the 2009 IBM Corporation Faculty Award; the 2010 IEEE Early Career Award

in Electronic Design Automation; the 2014 IEEE Trans. On Computer Aided
Design best paper award; and seven best paper awards in conferences.

Zheng Zhang (M’15) received the Ph.D degree
(2015) in Electrical Engineering and Computer Sci-
ence from the Massachusetts Institute of Technology
(MIT), Cambridge, MA. Currently he is a Postdoc
Associate with the Research Laboratory of Electron-
ics at MIT. His research interests include uncertainty
quantification, tensor and model order reduction,
with diverse engineering applications including na-
noelectronics, energy systems and biomedical imag-
ing. His industrial experiences include Coventor
Inc. and Maxim-IC; academic visiting experiences

include UC San Diego, Brown University and Politechnico di Milano;
government lab experiences include the Argonne National Laboratory.

Dr. Zhang received the 2016 ACM Outstanding Ph.D Dissertation Award in
Electronic Design Automation, the 2015 Doctoral Dissertation Seminar Award
(i.e., Best Thesis Award) from the Microsystems Technology Laboratory of
MIT, the 2014 Donald O. Pederson Best Paper Award from IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, the 2014
Chinese Government Award for Outstanding Students Abroad, and the 2011
Li Ka-Shing Prize from the University of Hong Kong.

Kim Batselier (M'13) received the M.S. degree

in Electro-Mechanical Engineering and the Ph.D.
Degree in Engineering Science from the KULeuven,
Belgium, in 2005 and 2013 respectively. He worked
as a research engineer at BioRICS on automate(
performance monitoring until 2009. He is currently
a Post-Doctoral Research Fellow at The University

ory/identification, algebraic geometry, tensors, an(?
numerical algorithms.

Haotian Liu (S'11) received the B.S. degree in
Microelectronic Engineering from Tsinghua Univer-
sity, Beijing, China, in 2010, and the Ph.D. degree
in Electronic Engineering from the University of
Hong Kong, Hong Kong, in 2014. He is currently
a software engineer with Cadence Design Systems,
Inc. San Jose, CA.

In 2014, Dr. Liu was a visiting scholar with the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA. His research interests include numerical
simulation methods for very-large-scale integration

(VLSI) circuits, model order reduction, parallel computation and static timing
analysis.

of Hong Kong since 2013. His current researcrbnforcement and ten
interests include linear and nonlinear system the-utomation (EDA)

Ngai Wong (S'98-M'02) received his B.Eng. and
Ph.D. degrees in Electrical and Electronic Engineer-
ing from The University of Hong Kong, Hong Kong,
in 1999 and 2003, respectively.

Dr. Wong was a visiting scholar with Purdue
University, West Lafayette, IN, in 2003. He is cur-
rently an Associate Professor with the Department
of Electrical and Electronic Engineering, The Uni-
versity of Hong Kong. His current research interests
include linear and nonlinear circuit modeling and
simulation, model order reduction, passivity test and
sor-based numerical algorithms in electronic design

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



