A Cholesky-Based SGM-MLFMM for Stochastic Full-Wave Problems Described by Correlated Random Variables

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1109/LAWP.2016.2603232

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Version
Author’s final manuscript

Citable link
http://hdl.handle.net/1721.1/110827

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/4.0/
A Cholesky-Based SGM-MLFMM for Stochastic Full-Wave Problems Described by Correlated Random Variables

Article in IEEE Antennas and Wireless Propagation Letters · January 2016
DOI: 10.1109/LAWP.2016.2603232

4 authors, including:

Zdravko Zubac
Ghent University
5 PUBLICATIONS 8 CITATIONS

Daniel de zutter
Ghent University
435 PUBLICATIONS 5,312 CITATIONS

Dries Vande Ginste
Ghent University
143 PUBLICATIONS 829 CITATIONS

Some of the authors of this publication are also working on these related projects:

Nonuniform transmission lines View project

All content following this page was uploaded by Dries Vande Ginste on 20 January 2017.

The user has requested enhancement of the downloaded file.
A Cholesky-Based SGM-MLFMM for Stochastic Full-Wave Problems Described by Correlated Random Variables

Zdravko Zubac1, Luca Daniel2, Member, IEEE, Daniel De Zutter1, Fellow IEEE, Dries Vande Ginste1, Senior Member, IEEE

Abstract—In this letter, the Multilevel Fast Multipole Method (MLFMM) is combined with the Polynomial Chaos Expansion (PCE) based Stochastic Galerkin Method (SGM) to stochastically model scatterers with geometrical variations that need to be described by a set of correlated random variables (RVs). It is demonstrated how Cholesky decomposition is the appropriate choice for the RVs transformation, leading to an efficient SGM-MLFMM algorithm. The novel method is applied to the uncertainty quantification (UQ) of the currents induced on a rough surface, being a classic example of a scatterer described by means of correlated RVs, and the results clearly demonstrate its superiority compared to non-intrusive PCE methods and to the standard Monte Carlo (MC) method.

Index Terms—Stochastic Galerkin Method (SGM), Multilevel Fast Multipole Method (MLFMM), correlation scattering, Method of Moments (MoM), Cholesky Uncertainty Quantification (UQ), rough surface

I. INTRODUCTION

Electromagnetic simulation of objects prone to variability has become an important issue. Often, Uncertainty Quantification (UQ) relies on Monte Carlo (MC) analysis, which requires many calls to a standard deterministic (full-wave) solver, making it not tractable. Recently, the Polynomial Chaos Expansion (PCE) approach was introduced and combined with known computational electromagnetics (CEM) methods, both in an intrusive and a non-intrusive way [1] [2]. For the scattering analysis of large structures, the Multilevel Fast Multipole Method (MLFMM) was combined with the PCE-based Stochastic Galerkin Method (SGM) [3]. Parallelization of the SGM-MLFMM even led to the efficient UQ of large optical systems [4]. Yet, only variability described by independent random variables (RVs) could be treated with this method. However, problems affected by variability, e.g. introduced by the manufacturing process, can most often only be described by a set of correlated RVs, rather than independent ones. Then, traditionally, this set of correlated RVs is transformed into a set of independent RVs via the well-known Karhunen-Loève (KL) transformation [5]. Unfortunately, when in the space of the correlated RVs, the so-called correlation length is small, then the total number of independent RVs after KL transform stays as large as the number of correlated RVs, leading to a high-dimensional problem. In [6], where a finite element method (FEM) was adopted, this was dealt with by dividing the space of variables into subspaces with a correlation length comparable to their size. Nevertheless, when using an integral equation (IE) formulation, where the electromagnetic behavior is described globally, such an approach as described in [6] is not possible. Therefore, in this letter, we introduce another transformation to tackle the correlation, i.e. the Cholesky transformation. This alleviates the curse of dimensionality within the IE-based SGM-MLFMM framework.

This letter is organized as follows. Section II describes the theoretical framework of the stochastic MLFMM with correlated RVs. An illustrative numerical example of the scattering at a two-dimensional (2D) rough surface is given in Section III. Section IV concludes the letter.

II. CHOLESKY-BASED SGM-MLFMM

As a generic example for full-wave stochastic problems with correlated RVs, in this letter, we consider two-dimensional frequency domain scattering from a perfect electrically conducting (PEC) plate of width \(w\), residing in free space. As depicted in Fig. 1, the plate’s roughness is stochastically defined by letting the height of \(M\) nodes, equidistantly spaced along the \(x\)-axis, vary randomly. These heights are described by a set of \(M\) correlated Gaussian variables, collected in

\[h_1, h_2, \ldots, h_M \]

Fig. 1: Rough surface described by a set of correlated random variables (RVs) \(h_i\).
vector \(h = [h_1, h_2, ..., h_M] \), and with correlation matrix \(\Sigma \). The elements of the correlation matrix are given by:
\[
\Sigma_{ij} = \sigma^2 \exp\left(-\frac{||x_i - x_j||^2}{L_c^2}\right), \ i, j = 1, ..., M,
\]
where \(\sigma \) is the standard deviation and \(L_c \) the correlation length. Traditionally, in order to apply PCE, the correlated RVs are converted into independent RVs, collected in vector \(\xi = [\xi_1, \xi_2, ..., \xi_R] \) via the KL transform as follows:
\[
h = \mu + \bar{U} \sqrt{\Lambda}^{1/2} \xi,
\]
where \(\mu \) is the mean value of \(h \), and \(\bar{U} \) and \(\Lambda \) are matrices defined by the eigenvalue decomposition of the correlation matrix \(\Sigma \), i.e.
\[
\Sigma = \bar{U} \Lambda \bar{U}^T.
\]
Note that the number of independent parameters \(R \) may be smaller than the number of correlated parameters \(M \) \((R \leq M)\). The standard electric field IE description of the scattering problem of Fig. 1 in conjunction with the Method of Moments (MoM) yields a linear system that is dependent on \(\xi \) [4]:
\[
\bar{Z}(\xi) I(\xi) = V(\xi),
\]
with \(\bar{Z}(\xi) \) the MoM system matrix, \(I(\xi) \) the vector collecting the unknown currents and \(V(\xi) \) the known RHS. All quantities in (4) are expressed in PCE form, e.g. for \(\bar{Z}(\xi) \):
\[
\bar{Z}(\xi) = \sum_{k=0}^{K} \bar{Z}_k \phi_k(\xi),
\]
where \(\{\phi_k(\xi)\}_{k=0,...,K} \) represents a set of \(K + 1 \) mutually orthonormal multivariate polynomials according to the Wiener-Askey scheme. In the case of Gaussian variables \(h \) (and thus \(\xi \)), these are products of univariate Hermite polynomials, dependent on a single RV \(\xi_i \). The total number of polynomials grows rapidly with \(R \) as
\[
K + 1 = \frac{(R + P)!}{R!P!},
\]
where \(P \) is the total order of the polynomials \(\phi_k(\xi) \), calculated as the sum of the orders of the univariate polynomials they are composed of. Calculation of the PCE coefficients \(\bar{Z}_k \) is done via projection, necessitating a multidimensional integration in the \(R \)-dimensional space of \(\xi \):
\[
\bar{Z}_k = \langle \bar{Z}(\xi), \phi_k(\xi) \rangle = \int_{\xi_1} \ldots \int_{\xi_R} \bar{Z}(\xi) \phi_k(\xi) W(\xi) d\xi_1 \ldots d\xi_R,
\]
where \(W(\xi) \) represents the multivariate Gaussian probability density function (PDF) of \(\xi \). In particular, when the correlation length \(L_c \) is low, the KL transform may lead to a dense, square matrix \(\bar{U} \sqrt{\Lambda}^{1/2} \), i.e. \(R = M \) and each correlated RV \(h_i \) is dependent on all RVs \(\xi \). Moreover, each matrix element of \(\bar{Z}(\xi) \) will also depend on all RVs \(\xi \), and the multidimensional integrals of type (7) become cumbersome to compute. After calculating the coefficients \(\bar{V}_k \) in a similar way, solution of the system (4), for the unknown coefficients \(I_k \), is obtained via Galerkin projection:
\[
\bar{V}_m = \sum_{k,l=0}^{K} \bar{Z}_k I_l \gamma_{klm}, \ m = 0, ..., K,
\]
where \(\gamma_{klm} \) represents a three-term inner product of Hermite polynomials:
\[
\gamma_{klm} = \langle \phi_k(\xi) \phi_l(\xi), \phi_m(\xi) \rangle.
\]
Note that (8) constitutes a deterministic linear system with a complexity that scales with the number of non-zero numbers \(\gamma_{klm} \), which follows an \(O(K^{1.5}) \) law.

To expedite the solution of the linear system, MLFMM [7] is invoked, by dividing the structure into groups of sources. If the distance between a source and an observation group is large enough, then the system (4) can be approximated as:
\[
\bar{D}(\xi) \bar{T} \bar{A}(\xi) I(\xi) \approx \bar{Z}(\xi),
\]
where \(\bar{D}(\xi) \), \(\bar{T} \) and \(\bar{A}(\xi) \) represent the well-known disgregation, translation and aggregation matrix respectively. However, in contrast to the problems described in [3], whereas the aggregation and disaggregation matrices were dependent only on a group of sources, and thus only on few \(h_i \), here, they are still dependent on all independent RVs \(\xi \). Besides the aforementioned curse of dimensionality in calculating PCE projections (7), this also entails an unacceptably long solution time of (8). Indeed, since the aggregation and the disaggregation matrices are dependent on all independent RVs, their PCE coefficients are all nonzero and the complexity does not scale linearly with the number of polynomials \(K \) as in [3], but with the total number of \(\gamma_{klm} \).

To tackle this issue, instead of using the traditional KL transform, we propose to adopt a Cholesky transformation. Then, the correlated RVs are expressed via another vector of independent RVs \(\eta \):
\[
h = \mu + \bar{U} \eta,
\]
where \(\bar{U} \) is a lower triangular matrix related to the correlation matrix as follows [8]:
\[
\Sigma = \bar{U} \Omega \bar{U}^T.
\]
To show the benefits of this Cholesky decomposition, for a canonical structure as shown in Fig. 1, with \(M = 200 \), \(L_c = \lambda/5 \), \(\sigma = \lambda/20 \) and \(w = 20\lambda \) (with \(\lambda \) the free-space wavelength), we present the structure of this particular correlation matrix in Fig. 2 and its corresponding KL and Cholesky matrices in Fig. 3. Whereas the KL matrix \(\bar{U} \sqrt{\Lambda}^{1/2} \) is a densely filled matrix, the off-diagonal elements of the Cholesky matrix \(\Omega \) rapidly vanish as can be seen from Fig. 3. As of yet, a formal proof of this behaviour is still missing. Consequently, when dimensionality reduction with KL transform is not possible, the benefits of the advocated Cholesky approach are:
- The \(M \) correlated RVs \(h \) depend only on a few independent RVs \(\eta \). Thus, the \(M \)-dimensional integrals of
Fig. 2: Magnitude (on a logarithmic scale) of the elements of the correlation matrix Σ for a canonical problem.

Fig. 3: Magnitude (on a logarithmic scale) of the elements the matrices pertaining to the decomposition of Σ, shown in Fig. 2.

Fig. 4: Average current density $E[J_s]$ on the rough strip, with $E[\cdot]$ the expectation operator.

Fig. 5: Average current density $E[J_s]$ on the rough strip, with $E[\cdot]$ the expectation operator.

III. Numerical Example:

We consider scattering from a rough PEC strip of width $w = 100\lambda$, whose roughness is described by 81 RVs that determine the y-coordinates of the equally distributed points on the structure, as presented in Fig. 1. The correlation length is $L_c = \lambda$ and the standard deviation is $\sigma = \lambda/20$. The incident field is a TM-polarized plane wave impinging under an angle of $\alpha = 3\pi/4$. The structure is discretized with $N = 2000$ segments and the unknown current density type (7) depending on these correlated RVs, are reduced in dimension, and their computation is expedited

- Many PCE coefficients are zero, as their corresponding stochastic quantities, in particular the elements of $Z(\eta)$, only depend on a few independent RVs. This substantially improves the computational and memory complexity.

<table>
<thead>
<tr>
<th>method</th>
<th>setup</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGM</td>
<td>99 s</td>
<td>3948 s</td>
</tr>
<tr>
<td>SCM</td>
<td>26570 s</td>
<td>7971 s</td>
</tr>
<tr>
<td>MC</td>
<td>19200 s</td>
<td>5887 s</td>
</tr>
</tbody>
</table>

The average current density on the strip is given in Fig. 4 and its standard deviation is presented in Fig. 5. A good agreement between SGM and MC is visible. These results are presented for polynomial order $P = 2$ and the corresponding total number of stochastic unknowns $N_{stoc} = (K + 1)N = 6806000$. To reduce possible truncation errors, as described in [3], the polynomial order should be chosen large enough such that the PCE of \bar{Z} can be found accurately through multiplication and Galerkin projection of the PCE coefficients of \bar{D} and \bar{A}. To demonstrate the influence of the truncation error on the average...
current density, in Fig. 6 we present $E[J_s]$ in the middle of the strip for several polynomial orders. From this figure, the convergence of the advocated SGM-MLFMM scheme is clearly visible, which also again validates our method. Moreover, at this point, it is important to point out that, in particular when dealing with full-wave problems, variations of the output parameters, such as current density, can be substantial and the Smolyak integration rule used in SCM may fail to produce good results. This is visible from Fig. 7, where the standard deviation of the current density J_s in the middle of the rough strip is shown. This behavior is well known for integration of functions that are not smooth enough [10]. The proposed SGM-MLFMM does not suffer from this issue, however, since the integration was done in a lower dimensional space thanks to the advocated Cholesky transformation. To achieve the same level of accuracy for the standard deviation, with the SGM, the number of Smolyak integration points should be increased to 722 089, which becomes prohibitively expensive. This clearly demonstrates the huge advantage the novel SGM-MLFMM scheme over SCM.

IV. CONCLUSION

In this letter, the UQ of full-wave stochastic problems, described by correlated RVs, was investigated. Classically, the KL transformation is applied to decorrelate the RVs, however, for the envisaged applications, the SGM-MLFMM scheme, presented in literature before by the authors, cannot be straightforwardly extended by incorporating a KL transformation, and this because of two reasons: (i) the computation of the PCE coefficients entails integration in a highly-dimensional space; (ii) all these PCE are nonzero, as the stochastic quantities are dependent on all independent RVs after KL transformation. We proposed to tackle these issues by invoking Cholesky decomposition of the correlation matrix instead, leading to a very accurate and efficient SGM-MLFMM algorithm. The novel method was validated and compared against a MC analysis and a SCM for the case of scattering at rough PEC plate.

REFERENCES