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ABSTRACT

We derive a model for wireless communication channels without feedback for one or
several users. The model takes into account the fact that the channels vary in time. We
establish the effect of time and bandwidth spreading when a user's channel is perfectly
known. We derive the capacity of the system in the single and multiple user case when
the channel is known at the sender and the receiver. We establish a multiple access
coding theorem which uses interieaving to achieve an error upper bound which
decreases exponentially in the block lengths. We study the effect upon capacity of not
knowing the channel at the sender and the receiver and derive resuits relating the
variance of the channel measurement error at the receiver to the loss in capacity with
respect to the case where the channel is perfectly known. We show that, for a time
invanant channel, we may achieve the same rates as in the case where the channel is

perfectly known apriori at the receiver. For the uth order Markov channei model. we
derive limit resuits relating the loss in capacity due to not knowing the channel to the
channel characteristics. We give explicit bounds for the effect of the channel variations
when we have a Gauss-Markov model for the channel taps. We show that. as the
Doppler Spread goes to 0. the mutual information for the Gauss-Markov case
approaches that attainabie when the channel is perfectly known at the receiver. We
establish some results concerning the fact that we wish to spread at least until the SNR
per degree of freedom drops to a certain value. We give examples where spreading is
not desirable below a certain threshold of SNR per degree of freedom. We use our
results for Gauss-Markov channeis to establish an upper bound to the minimum SNR
per degree of freedom until which spreading is desirable.

Thesis Supervisor : Professor R. G. Gallager

Title : Professor of Electrical Engineering.



Chapter I- Introduction.

1-1- Purpose of the thesis.

The increasing applications of wireless communications have spawned much research
and debate about the best manner to utilize the available spectrum. and have prompted
more spectrum to be opened to commercial uses. The basic model for mobile wireless
communications is that of mobile users in two-way communication with some central
network. In current systems. the mobiles communicate with stationary
transmitter/receiver units. called base stations. which in turn are connected to the public
switched telephone network (PSTN) or some altemative carrier. such as a satellite link
or the cabie system. The communications link from the base station to the mobile is
called the forward or downlink and the reverse link is called the uplink. The figure
below gives a schematic of the network we are considering, with the downlink shown
in full lines and the uplink shown in dashed lines. Note that the representation of the
mobile user as a vehicle is simply for convenience, for the user could also be a
pedestrian. The presence of obstacles is unavoidable, particularly in dense metropolitan
areas, and may even preclude a line of sight between mobile and base station. The
reflections off various obstacies leads to the reception of echoes of the original
transmission. This phenomenon is known as muitipath, and each reflection is called a
path. These paths are typicaily time-varying, particularly when there is relative motion
of the obstacies. the mobile, and/or the base station. For instance. in the figure below.
as the mobile approaches the base station. the line of sight path becomes shorter while
the path involving a reflection off the obstacle becomes longer. As we shall see later,
phase changes accompany these path variations.

Obstacle

Base Station

Figure I.1 : Uplink and downlink in a mobile communications environment.
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The geographical area over which a particular base station communicates with mobiles
is referred to as the cell corresponding to that base station. hence the name cellular
telephony. Depending on the fading conditions. the cell or area of coverage of any base
station may change in time and may overlap with neighboring cells. Such overlapis
desirable so that calls may be transferred smoothly from one cell to another. This
transfer is called hand-off. Improper hand-off may lead to a call being lost and. hence.
to very poor quality of service. The ceils are often represented schematically by a

honeycomb pattern of contiguous hexagons as shown below in dashed lines.

Figure 1.2 : Cellular structure.

Within the general framework we have sketched, there are many proposed standards
and many claims are made by these standards’ respective proponents. We concentrate
on one of the most important features of these standards, namely the transmission
scheme used in the uplink and downlink. Although they are important, we do not
address such issues as the hand-off scheme, the compression of the data or the
interaction among different cellular providers. We give below a short overview of the
main existing standards in commercial systems. It is difficult to evaluate these different
strategies individually without some adequate model for the problem. Several simplified
models exist but fall short of considering the time-varying character of the channel.
Most tend to consider the channel through a statistical description only. Another
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extreme in the information theoretic literature is to consider oniy the time-spreading
nature of the channel but not its time-varying nature. When the problem of muitiple
access is added. most models usually consider the other users as interference if they
occupy the same spectrum at the same time. or simplify the problem by requiring the
users to be made mutuaily orthogonal by some means. The issue of how much
feedback is given by the base station to the mobiles renders the problem even more
confusing. While everybody agrees that some form of power control, albeit
rudimentary, needs to be performed, the amount of bandwidth, power and time devoted
for such power control seems to be the result of ad hoc schemes. In the extreme case of
full feedback. the amount of bandwidth devoted to the feedback would be comparable
to the amount of bandwidth used to send information bits. Therefore, we see the utility
of proposing a model for time-varying channels which allows us to determine the
capacity of the channel under multipie-access conditions. Capacity considerations are
not purely academic. Not only do they provide us with an optimum against which to
gauge any system. they also yield insight as to how to achieve such optimality. While
any specific transmission scheme will eventually become obsolete and we cannot
predict what the ingenuity of applications engineers may create next, we may at least
aﬁempt to determine in what direction progress will occur.

In order to motivate our need for further research, this chapter gives a brief overview of
the transmission schemes presently used. From the above discussion. we see that there
are three areas which need to be addressed and which are a source of confusion and
difficulty. First, the time-varying nature of the channel, which introduces memory and
distortion, must be dealt with appropriately. Such is the topic of Chapter I, where we
consider the single-user time-varying channel without feedback. Second, the issue of
multiple access is overlaid onto time-varying channels in Chapter [I1. Finaily, in

Chapter IV, we present the conclusions of our research and present some directions for
further work.

[-2- Current schemes.

I-2-1- Frequency Division Multiple Access.

The currently most used scheme in North America is Frequency Division Multiple
Access (FDMA), which is used in the AMPS standard. Different users transmit over
different channels, or portions of the spectrum, so that they transmit signais that are
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orthogonal to each other. In the FDMA scheme. bandwidth is divided into channels
which are reutilized at certain spatial intervals such that the interference from one cell
where a certain channel is used to the next is low enough to allow adequate detection
(|Lee}. [Lee86]). Typically the re-use interval is considered to be a cell, so that only
contiguous cells may not use the same channels. In practice. the use of directional
antennas may somewhat relax this constraint. Channel re-use is only allowed when
there is 10 dB attenuation between separate transmissions on the same channei.
regardless of whether that channel is being used in a contiguous cell. Therefore, the
power control consists of keeping each user's channel at a power high enough that each
user has adequate reception at the base station and low enough that each user does not
interfere substantially with other users transmitting over the same channel in another
location. Two cells which use the same channel simultaneously are usually called "co-
channel” cells. The interference in this context is usually measured in terms of carrier to
interference (C/1) ratio or of signal to noise ratio (SNR). Clearly, the interference from
co-channel ceils depends on the strength of the signals, the topology of the area (which
affects fading) and the distance among the cells ([Lee89], [Lee}). The power
assignment in this case has the advantage of being simple, since each user has a
designated channel at a constant power. However, the many restrictions placed on how

spectrum. time and power are assigned probably do not make for an efficient use of the
available resources.

Several techniques have been proposed and are utilized for the efficient use of channels.
We may roughly divide them into techniques which consider co-channel interference as
a simple exclusion constraint and techniques which attempt to perform some sort of
simuitaneous power control and channel assignment. Let us first consider the
simplified case where the co-channel interference is simply viewed as being
unacceptable below a certain carrier to interference ratio and acceptable above. In this
way, the problem reduces to a discrete optimization problem where the constraints are
given by the unacceptable co-channel interference pairs. The problem of optimal static
channel assignment can be reduced to that of graph coloring, as shown by Hale
([Hal80]), and is therefore NP-hard. Such a problem. however, does not bear much
relevance to the FDMA situation, since moving mobiles make the channel assignment
problem a dynamic one. Most of the techniques proposed rely on heuristics for channel
-assignment. Most of the techniques keep some portion of the channels statically
assigned to certain cells, while the remaining channels are dynamically allocated among

the ceils according to some ruie. These techniques seek reasonable channels whose
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bandwidth and power are fixed. Their performance. determined by the avaiiable rate to
the users. is not measured against achievable capacity regions. The performance
evaluation of these methods also depends on heuristics and simulations. Since keeping
record of the dynamic channels in a large system rapidly becomes cumbersome
([EKh86}). schemes for borrowing channels have been proposed in which channels are
borrowed only from neighboring cells. Such is the principle of directed retry, proposed
by Ekhlund and Karisson ([KE89],[ Ekh86)). Finaily, cost-minimization models for
FDMA have been proposed. Cost reduction is proposed by Anderson, who uses it to
reflect the state of the cell which is most adversely affected by a proposed borrowing
([And73]), and by Yum and Zhang ([ZY89)). The use of simulated annealing
([DKR93]) and neural networks ([Kun88]) are also examples of minimization of a cost
function approach to achieve overail optimization. Dynamic channel allocation through
centralized control has been studied. often through simulation ([DV94}). Dynamic
channel allocation can however be subject to certain undesirable instability ([SG93]).
All the above refinements require a substantial increase in hardware and complexity.
Performance limits for graph-coloring approaches have been given in ((MS94]), where
the problem is reduced, in the limit of an infinite number of channels, to a linear
optimization problem. It is interesting to note that the problem of the capacity region in
mobile communications, which is continuous in the first place, is reduced to a simpler
discrete problem for channel allocation in FDMA, which is itself solved by a
continuous approximation.

Methods for considering channel assignment and power control simultaneously
abound. Some rely on cell customizing. One such proposed scheme considers statically
assigning different frequencies within a cell according to the distance from the center of
the cell and controlling the power to reduce interference among the cells ([Lee87]). A
dynamic method of power control, which is used in urban systems, is subdividing cells
into "micro-cells” to respond to changing traffic conditions. More general methods for
joint power control and channel assignment have been studied in [Zan92] and
[CNW®94]. The first work considers the static assignment for given attenuation matrices
within and between cells. The second work overviews several heuristic algorithms
which seek to balance the carrier to interference ratio, or pursue some sort of greedy
approach ([GGV93)) in terms of carrier to interference. etc... Whichever cost
minimization approach we choose, solving the problem of channel assignment always
reduces to some sort of dynamic programming problem which is difficult and whose
relevance to our actual problem will depend strongly on our model's assumptions.
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[-2-2- Time Division Multipie Access.

Division in time rather than frequency is the basis for TDMA (time division multiple
access) where different users are allocated time slots which they may use for
transmission. Practical systems which use TDMA usually incorporate it into other
schemes. in particular FDMA. For instance. an FDMA channel might be divided among
several users through TDMA. An important exampie is the standard that has been
adopted in Europe by the GSM (Groupe Spécial Mobile), established in 1982 by the
CEPT (Conference of European Postal and Telecommunications Administrations). In
the U.S., Hughes Networks Systems has created enhanced TDMA (E-TDMA), which
features compression of the voice data. In Japan. TDMA is used in the Japan Digital
Cellular (JDI) mobile communications standard. In TDMA, users contend for time
slots. reieasing them when they are not using the channel. The problem of optimally
assigning time slots among users for a given traffic pattern is, as in the case of FDMA,
combinatoriai in nature. The problem of minimizing the number of transmissions
(hence the maximum aggregate delay) for a certain number of messages to be sent to a
certain number of users is NP-complete. The problem reduces to a traditional job-
scheduling problem, with bin-packing (which is NP-hard) as a subproblem ([GG92],
[GS76]). However, as with FDMA, this job-scheduling problem is not germane to the
TDMA case, because we are very unlikely to know in detail the future traffic pattern of
the users. Therefore, as in the case of channel assignment in FDMA, aigorithms have
been proposed which rely on heuristics to achieve suboptimal assignments. We may
note that packet schemes where coilision is not allowed are aiso a form of time sharing
and reduce to the same problem as the TDMA problem outlined above. TDMA requires

good synchronization to keep the users orthogonal and usuaily some portion of the
transmission is devoted to achieving synchrony.

[-2-3-Spread Spectrum.

Another approach to division of the spectrum is the overlaying of users in spread-
spectrum (SS) systems. A definition, as given in [PMS82] and quoted in [LM] is:
"Spread-spectrum is a means of transmission in which the signal occupies a bandwidth
in excess of the minimum necessary to send the information: the band spread is
accomplished by means of a code that is independent of the data, and a synchronized
reception with the code at the receiver is used for despreading and subsequent data
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recovery'. However. this definition does not capture another aspect of spread-
spectrum: the average transmitted power remains the same. Otherwise, with uniimited
power, even a very small bandwidth would be enough to transmit any amount of
information. The bandwidth expansion factor is called the processing gain. SS systems
have been in use for many years. in particular in defense and transportation
applications. SS techniques have a long history in military systems because of their low
detectability to eavesdroppers and their superior ability to withstand jamming if the
jammers are limited in power ([PSM82], [Lee9l]). S'pread-spectrum commercial
applications include Qualcomm's Omnitracs, which tracks and communicates with
trucks. In the past few years, the interest in SS techniques for civilian purposes has
been remewed ([Goo91], [PMS91]). This interest was largely sparked by the
Qualcomm [Qua91] system for personal communications. which uses direct-sequence
spread-spectrum. Although the IS-95 standard uses SS transmission. the applications
of SS to public communications systems have been very limited.

The two most common approaches to SS are direct sequence Code Division Multiple
Access (referred to in what follows as CDMA) and Frequency Hopping (FH). In the
former scheme, each user is assigned a code and shares the bandwidth with all other
users. The users are therefore distinguished from each other by their codes. Each
original bit of a user is transmitted as a string of bits called "chips". If all users have
orthogonal codes and the channel is well-behaved, they do not interfere with each
other. In general, codes with low cross-correiations. such as Gold codes, are deemed
sufficient to preclude most muliti-user interference ([PSM82]). However. channels in
practice distort the signal. for instance through multipath. so that interference may occur
among users despite the use of orthogonal codes. Therefore, unless we perform some
form of joint decoding of the users, each user appears as noise to all other users. The
power control for existing schemes such as the Qualcomm ([Qua91]) system and the
IS-95 standard consists of maintaining the power levels of all users so that each is

received at the same power. Thus, the system strives to maintain the same amount of
interference at the receiver for each user.

In FH. the users use small portions of bandwidth and "hop" from one portion to
another. thus spreading the users over all the available bandwidth. If the hopping
patterns of the different users are selected in such a way that no two users ever use a
portion of bandwidth simuitaneously, i.e. if users are assigned altogether disjoint
hopping patterns, then this method reduces to an FDMA problem with added diversity
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([VMS84}). If CDMA and FH are used in such a way that signature codes and hopping
patterns are chosen so that the interference among users is low rather than preciuded.
the problem of power control becomes closely linked to the detection method used and
the fading experienced by the users. Error probabilities for FH are usually computed
according to the probability of a "hit". i.e. of several users using the same portion of
the overall bandwidth simultaneously. Frequency hops may occur more siowly than the
information bit rate (slow hopping) or more rapidly than the data rate (fast hopping).
The overlapping may occur because of bursty traffic, such as packet traffic, which
causes users with overlapping hopping patterns to interfere if they are both transmitting
([MP90]), or because of continuous traffic in which the patterns can overlap, ((HS90]).
Probabilities of error involving partial hits versus full hits refine the analysis of FH
systems ([Ger90]) at the expense of compiexity. Similarly, the analysis of fast hopping
systems is more complex than that of slow hopping systems. Such analysis has been
carried out in the slow hopping case to take into account fading channels ([GP82],
(GP82,1]) and unequal power levels of users ([Ger90], [VMS84]). The complexity of
such analyses, which are often modeled by extensive Markov chain subsystems, clearly

shows the need for theoreucal capacity results which may hold independently of the
detailed system and model.

It might seem that the greater complexity associated with reception for SS systems
renders it unattractive. The primary advantage of spread-spectrum schemes is that they
afford greater flexibility. For instance, the Qualcomm system makes use of voice
activity to stop transmission when the users are silent during the normal course of
spoken conversation. If we were to re-use frequency or time slots in FDMA or TDMA
when users are silent. it would require extensive re-allocation of resources and users
might be dropped in the middle of a conversation. Since calls are fairly frequently
dropped when a mobile changes cells and must therefore change channels, one could
imagine that extensive re-assignment of channels could be disastrous. However, E-
TDMA dynamically re-assigns channels during some inactive talk times. In the CDMA
case, the renewed voice activity of a new user will simply cause a slight increase in
interference to all users. Indeed, since partial interference is allowed, we may allow a
new user to degrade the overall service of all users whereas in the FDMA or TDMA
case, the new user might have been blocked while other users saw the quality of their
service unchanged. Fitting a new user in an FDMA system with no available channels.
for instance, requires modifying the very structure of the channeis. We can imagine that
reducing the bandwidth of each user by equal amounts to gain a new channel for the
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new user would be unattractive and complicated. In practice. when the capacity of the
FDMA system is insufficient for the demand. cell-splitting may occur. i.e. the cells are
made smaller in order to increase the possibility to re-use frequency. Cell-splitting is at
best an ad hoc solution with high costs associated with it. in particular because each
cell requires its own hardware and users have to be re-assigned to cells. In TDMA.
having to change the timing of the system to reduce the iength of the time slots couid
lead to timing difficulties and cell-splitting is no more attractive than in the FDMA case.
Therefore. SS allows a new user to be admitted without requiring other users to modify
their transmission mode. ‘

Such a feature is not only important in allowing more users to be admitted into the
system but could also allow for better differentiation in service quality. Instead of
having equal service for every user, price discrimination could be performed by
guaranteeing to some users better carrier to interference ratios than to others. In the case
of FDMA or TDMA, such guarantees would entail unwanted dynamic changes in the
frequency re-use pattern or in, respectively, the frequency or the time division. In
CDMA, one could simply set the carrier to interference level at which a certain category
of service would operate. Such a feature would surely be attractive in an industry
suffering from high churn and which already practices every other sort of price
discrimination to palliate for the excessive chumn. The feasibility of such a scheme
clearly depends on its sensitivity to operating conditions.

Our discussion above has not considered the type of communication that is carried. All
of the systems mentioned above serve primarily as voice channels. If we have voice
communication, delay may be a more stringent constraint than quality of transmission,
whereas the reverse might hold for file transfers. Packetized transmission may therefore
be attractive for data and is the basis of the Cellular Digital Packet Data (CDPD)
standard developed by [BM. It utilizes the existing cetlular networks to transmit at rates
of up to 19,200 bits/sec ([Sch94]). The demand for packetized data or a continuous
data stream and the allocation of resources between such data transmissions are outside
the scope of this thesis. Therefore, we wish to consider what rates are achievable,
without regard for the burstiness or the delay constraints of different data. Once certain

rates are achievable, the question of how to allocate rates to diffcrent types of traffic
may be considered separately.

[-3- Thesis outline.




The preceding discussion mouvates the approach proposed for this thesis. We see that
there is a vast array of implementation techniques and that it is difficuit to evaluate their
performance. Many fundamental questions remain unanswered and these questions
have a direct impact on how to design and operate systems. Given the wide range of
standards. either existing or proposed. it is useful to have a framework from which
general statements may be made which are applicable to any standard. Therefore. we
take an information theoretic approach to obtain results regarding the optimal achievable
rates, Such an approach is general and allows us to be removed from the complicated
issues of implementation. Moreover, it provides insight into how system features affect
performance. We may then better isolate the issues which intrinsically limit achievable
rates versus the issues which anse simply because of difficuity of implementation.
Eventually, we interpret our resuits in terms of general properties of, and guidelines
for, systems. We may divide the main thrust of the thesis into the following three
topics:

- What are the optimal rates that are available under the following conditions: amount of
bandwidth, transmission scheme, number of users, channel response and power
assignments? The considerations which affect a system for a given number of users are
the channel response and the muitiple access effects. Both must be included
simultaneously to obtain a plausible model. Under fully known conditions. we find the

capacity of the system for a single user in Chapter II and for muitiple users in Chapter
I11.

-What effect does uncertainty in our knowledge of the system parameters have upon
capacity? In any real system, knowledge of the channel can only be acquired through
measurement, and can therefore never be altogether certain. Therefore, we next
consider the effect of the uncertainty in the system regarding the set of parameters
mentioned above. The transmission scheme, number of users, amount of bandwidth
and other such parameters which are set apriori are known with certainty. On the other
hand, the channel response and. hence, power levels may be determined only with
some uncertainty. The effect of this unavoidable uncertainty upon the capabilities of the

system is investigated for single user systems in Chapter II and for multiple user
-systems in Chapter II1.



Chapter II- The single user case in a time-varving channel without
feedback.

11-1- Introduction.

This chapter looks at the mutual information between input and output for a single user
transmitting on a time-varying channel. This single-user case is not of direct interest for
the real applications of mobile communications, but it should allow us to deal with the
issues of time-varying channels without having to contend with muitiple access
interference. We consider the reverse link, i.e. the link from the mobile user to the base
station. The reverse link involves signals that are often weaker than the ones transmitted
by the base station, since the power that may be emitted by mobiles is bounded by the
limitations of portable power sources and by regulations governing the power of
emissions allowed in hand-held appliances. In later chapters, we shall consider the fact
that the multiple access effects are more severe for the reverse link.

The main thrust of the chapter is to examine the effect upon capacity of not knowing the
channel exactly. We first present the idealized model where the channel is perfectly
known at the sender and the receiver. We establish the capacity of an arbitrary but
known time-varying multiplicative channel with additive white Gaussian noise
(AWGN), since only time-invariant capacity results were previously available. The
main contributions of the chapter are for the case where the channel is not known at the
sender (as would occur when there is no feedback from the receiver to the senders) but
partially known at the receiver. When the channel is known at the receiver with an error
of fixed variance, the loss in mutual information due to not knowing the channel at the
receiver may be bounded tightly in the variance of the channel measurement error. The
uncertainty in the measurement of the channel is a consequence of its time-varying
nature. Indeed, we could always obtain an arbitrarily good description of a static
channel by probing it initially. We show that, if the channel is time-invariant but
unknown at the receiver, we may achieve the same rates as if the channel were known
atthe receiver apriori. Therefore, we consider the intrinsic channel measurement error
in terms of the channel parameters. For channels that may be represented by mth order
Markov processes, we establish exact limits for the loss in terms of mutual information
per symbol. In particular, we relate the loss in capavity to mcasures of channel
variability for a Gauss-Markov model for the channel. We finally consider the issue of

spreading, when we spread by increasing the bandwidth for transmission while
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retaining the same total power for the transmission. We study the effect of the channel
uncertainty upon spreading and show that the channel variations may limit the extent to
which spreading is beneficial in terms of capacity.

[1-2- Model.

In the following section, we present our model for the channel. Mobile communications
channels are subject to many changes which cannot be controlled or predicted.
Obstacles appear and disappear as the mobile moves in its environment, leading to
partial blocking (shadowing) or to echoes (multipath). In examining the problems of
radio propagation for mobile communications, the issue of multipath is very important.
Multipath accounts for most of the deep fades and may change far more rapidly than
other fading phenomena. Moreover, it is altogether dependent on the surroundings of
the base station and the mobile and must be considered in real time. Multipath is,
therefore. relatively ornery and cannot be simply modeled by the log-normal fading
which usually describes slow f ading phenomena. We present a channel model based on
a general multipath situation. We establish equivalent continuous and discrete-time
models for this general multipath situation. In light of these results. we review some of
the most common models for narrow band multipath systems and relate them to our

general results, which are applicable to both narrow and wide band situations.
11-2-1- Model for the multipath channel.

We first derive a model, both in continuous time and discrete time. for a single user
multipath channel and then incorporate AWGN into our model. The approach will be
extended in the next chapter to several users. We denote random variables by capital

letters and sample values by lower case letters, unless we explicitly define a variable
otherwise.

11-2-1-a- Continuous time model.

Let us look at the channel response at baseband for a muitipath channel. We assume
that the signal is contained in a bandwidth Wipput centered around a carrier frequency
fo, so that the baseband input signal 1s constrained to [-Winpui/2. Winput/21 Although
our whole argument could be carried out at passband. it would complicate the

discussion. The effects of the carrier frequency are taken into account when

20



appropriate. The goal is to develop a continuous-time baseband model and a tapped-
delay line model. In order to derive such models. we first consider the continuous-time
 response of a channel and then look at its samples. The samples are chosen so that,
using the Nyquist theorem. they are sufficient to reconstitute the continuous-time
response. Equivalently. the sampling rate is greater than the frequency W to which the
response is bandlimited. We consider later how to choose such a sampling rate. We
present in this section the model in terms of sample values. without considering (unless
otherwise specified) the type of random variable of which they are samples. The model
is therefore applicable to any sort of random process and we shall later examine specific
examples. We first look at a system without noise, in order to deal solely with the time-
varying mulitiplicative part of the channel. We shall later include the effect of additive
noise. The continuous-time system which we consider (for the present without noise) is
represented in Figure II.1. A discrete data stream from the user is passed through a

modulator, whose output is a continuous signal.

x[n] s(t'-t) v(t)

Channel
—> Modulator » g(t, v) ‘ ™= Receiver

Figure 11.1 : Continuous-time muitipath system.

We denote the channel by a linear time-varying filter of impulse response g rather than
the more familiar h to avoid confusion with the entropy function which we shail use

later. The impuise response of the muitipath channel seen at time t' for a transmission
sent at time t'- t is taken to be: '

gt,n= ¥ gty
all paths m

-2.01]

where g™(t, t') is the response of the multipath channel seen at time t' for a
transmission sent at time t'-t. [f we had a continuum of paths rather than several

specular paths, we could easily adapt our discussion by using integration rather than
summation in [I-2.[1]. ‘

II-2-1-b- The Doppler effect.

21



We may note that, since g™ is time-varying, any frequency spreading may be
incorporated into this complex function. Since we would in reality be transmitting at
some passband, the frequency spread would be a function of the carrier frequency.
denoted by f,, in Hz, although we consider a baseband representation. Although we
usually consider our model at baseband, it is more natural to discuss Doppler spreading
at passband, since it is closely related to the carrier frequency. If we have reflections off
objects in motion relative to the transmitter. the received signals will experience a
Doppler spread in frequency ([Gal64], [Ken], [Leel), denoted by Bpoppler- Indeed,
different paths will correspond to reflections off different objects and these paths will
be subject to different Doppler shifts in frequency, depending on the motion of the
obstacles relative to the transmitter and the receiver. The spread among these shifts in
frequency is the Doppler spread. In general, we will observe a Doppler spread in a
mobile communications environment, since we have mobiles moving with respect to

many fixed and moving objects. especially in an urban environment.

Let us derive the form of the Doppler shift. Let us consider a receiver and a sender
moving away from it at velocity v. At time 0, the sender and the receiver are at the same
position. A transmission sent at time ts is received at time tg. The sender transmits a

sinusoid at frequency fs. The receiver receives a sinusoid at frequency fr. The
schematics below show our model:

w
b

*— o

Figure I1.2: Sender and receiver in relative motion.
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time at
I R‘: receiver
| ) ) f
|

V_\ / time at sender
0 \'s

Figure I13 : Times and transmissions at the sender and the receiver.

Suppose that the sender and the receiver are at the same location at time 0. From our
model, we see that a transmission is received after having traveied a distance (gw.

. . . tg@ . trgw
Therefore. the delay between transmission and reception is R7-. i.e. tp-tg= RT' The
. ts
reception time may be expressed as tg = .
o]
1- —
c

The number of cycles received by time (R is the same as the number of cycles sent by
timets and is equal to Tsfs. Therefore, the frequency of the sinusoid at the receiver is
given by the number of cycles of the sinusoid over the time elapsed to receive these

t
cycles. namely #: fs(l- %) Therefore, the frequency shift is f ol
R c

The analysis carried out above holds for each path m corresponding to an obstacle for
which the path length from the mobile to the base station is changing at speed v™. The
associated Doppler shift in Hertz is BM given by

B™=fo—

I1-2.[2].

The difference between the smallest and largest Doppler shift B™ over all paths gives
Bpoppler at passband. The delay associated with path m is: '



11-2.[3]

where t™ is the original time shift.

To evaluate the extent of the Doppler effect in mobile communications, we may look at
its magnitude in a simple application. If we have a vehicle traveling at 55 mph,
transmitting at around 800 MHz (the currently available region for wireless telephony),
the shift BM for a single path is 65.6 Hz. From our discussion of the Doppler spread,
BDoppier is of the order of the individual B™. Bpoppier is therefore small in comparison
with the channel spacings typically considered. For instance, in the IS-54 standard,
channels are spaced 30 kHz apart. In the GSM system, they are spaced 200 kHz apart.
The effect of the Doppler spread is therefore negligible when we consider its bandwidth
broadening effect. Bpoppier is of the order of the roll-off on a bandlimiting filter.
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However, even if the actual spreading may be considered to be negligible. the time- .

varying nature of the channel may not be neglected. The importance of the Doppler
spread in our appliéation is that it indicates the speed at which the phase changes. The
fact that we have frequency shifts indicates that the channel is time-varying and the
magnitude of the frequency shifts gives the speed of these variations. The channel is
not linear time invariant and thus simple frequency and time domain methods for
general LTI systems no longer apply.

1I-2-1-c- Sampling in a time-varying channel.

We have established that the channel changes in time at a rate which is bounded by a
known quantity. In order to derive a discrete-time model for the system, we must
determine how to sample the channel output. Since we are using a time-varying model
for the channel, we need to take into account that the output bandwidth may be greater
than the input bandwidth. A broadening of the bandwidth is due mainly, as we have
discussed earlier, to the Doppler effect. If the channel were not time-varying, we could
use a LTI model and the issue of bandwidth would be easier. For such a channel. the



bandwidth of the noiseless output would be the smaller of the bandwidths of g(t) and
_ s(t), and therefore any rate sufficient to sample s(t) would be sufficient to sample the
noiseless output. The Doppler spread represents the rate at which the channel varies. As
we have seen, Bpoppler 1S typically small with respect to the bandwidth over which we
are sending, i.e. the channel varies slowly in comparison to the time needed to send a
datum. In general, we know that the bandwidth of the output of a linear time-varying
filter will be bandlimited to the sum of the input bandwidth plus the filter variation
bandwidth ([Kai59]). Therefore, the output may be bandlimited to Winput + BDoppler at
passband. Let us derive the time-varying model in frequency to illustrate this point.

In continuous time, s(t) is the complex baseband signal transmitted by the user. This
signal might typically be a data stream modulated by a modulating waveform for
transmission on the channel. The signal s(t) would be modulated to some passband for
transmission, although we consider a baseband model here, rather than the passband
model we used for our discussion of Doppler spread. For our single user case, the
response due to the mth path of the channel at time t' is '

v = f s(t-Hg (', 1) dt

11-2.[4]
where

g™t 0= alt) 6(tm(t'k t)
11-2.[51.

where am(t') is the complex multiplicative factor associated with the mth path
(accounting for fading and phase shift) and, as in II-3.[3], T™(t") is the delay associated
with the m!h path. The difference between the smallest and the largest T™ is called the

time spread, or Tpread- Tspread represents the interval of time over which an impulse at
the sender will be received at the receiver.

Let us indicate how the Doppler effect may be included in the baseband model of I1-
2.[1]. The variables a™ are complex with phase changing at rate 2xBmM and with

amplitude denoted by la™|. Therefore, we may write that :
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gt -g=a'lr) 6(tm(t')- l) = lam(l'ﬂ CXP(J (em + 228" n 6(t - 3—:tl )

11-2.[6]

where j is the square root of -1 and 9m is the phase shift at t'=0. We understand that

the channel baseband output obtained in this manner would require béing filtered to (-
W72, W/2l.

We may note that for fo of the order of 800 MHz and B™ of the order of 60 Hz. the
rate of change of delay given in [1-2.[3] is proportional to that of the phase. but much
smaller. Since Ia"‘(t’)‘ changes slowly with the delay, we may use the common
assumption ([Pro], pg. 705) that the amplitude lam(t')‘ changes much more slowly than
the phase and therefore we take the amplitude to be fixed while the phase changes with
rate B™. We shall not discuss the path fading models. A discussion of such models
may be found in {GH92]. Most of these models, including the widely used Hata

model, involve regressions run on extensive measurements and are difficuit to discuss
theoretically.

Let the superscript FT denote Founer Transform and the subscript refer to the order in
which we take the transforms. The derivation of 2-dimensional Fourier transforms is
well known. but we present it here for the sake of illustration. We can express the
above relation by taking transforms in frequency thus:

FT

yve (F)zf Vm(t')e_sz‘l'd['

s

(substituting I1-2.{5})

=f f eI s g™t vy ded
v=-m

(changing the variables of integration)



27

=f f e Mgt v-n didy

(replacing s(t) by the integral of its Fourier transform)

-z

= f o2 [ gFTiped 28 g oMy vty dedt

f= -®

(changing the order of integration)

-

= J' sFTipe? 2™ f e/ ™, ¢ty dudt df

f=.>

(multiplying by exp (j2nft) and its inverse)

s

_ f SFT(f)e-J 2mf ] Z:tft'f o anft ant‘gm(t,‘ ¢-0) dt de df

f=->

r=-z

(replacing the innermost integral by its Fourier transform expression)

- e FT
= f sFT(fed 20 ) 3G ™y (v, ) drdf
f= .@

= -%

(regrouping exponent terms)
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-

= j sFT(fes 20 G"";T(t', f) drdf
(z.x

t=-x

(changing the order of integration and replacing the innermost integral by its Fourier
transform expression)

- FT
- f sFTin G™y (0 5. D) df

[-2.[7].

FT
Let us now compute sz_ |(f -f. ) for g given by II-2.[6] where ‘am(t' )l is constant.

(regrouping exponent terms)

m m 'jzm' ('B-"' E—)
l m| 8 -j2nft to
=j{a |¢€ € (<

[[-2.18]
and hence
F."[‘ . m
G210, D=[a"e” ¢ o(f BmJ%')
0
[1-2.[9].

If our signal is narrowband with respect to the original carrier frequency, then the term
m

- is ne011°1ble We see that the double Fourier transform of the response due to the
0

mth channel is an impulse centered approximately at B™. Henceforth. we shall neglect
m

the terms —=— and consider that. for each path, there is a frequency shift of B™. Let us
0



now look at the response to all the paths combined, i.e. at the response from the
channel. We may write that

v(t') = f‘s(t‘-t)g(t'. ) dt

(using [I-2.[1] and II-2.[5])

+

m
= Z s(t'-Ha"(t) 6(1: (') t) dt
all palhs m t= @
[1-2.[10].
Therefore. from the linearity of Fourer transforms,
mFr mFr
G f.D= Y G uf.D
all paths m
I1-2.[11].

We have already stated that g(t', t) gives the effect of the channel at time t' from inputs t
time units earlier. Similarly, GFT gives the response at frequency f' to an input at
frequency f. The effect of each path is to give at passband a response shifted by B™ in
frequency, and therefore the total response of the channel is a sum of responses with
frequency shifts ranging over all the possible values that B™ takes. Hence, the response
of the whole channel at passband is spread in frequency over Bpopper- Therefore, from
11-2.[9], we see that the double Fourier transform of the channel response at baseband
in [1-2.[11] is nil unless f- is in the interval {-Bpoppier’2, Bpoppler/21. 1. the input at
a certain frequency f has effects on the output only within Bpoppier of that frequency.
The range of f at baseband is [-Winpur/'2, Winpur/2]. Therefore, from [1-2.[10]-[11], we
see that the output is limited at baseband to [-Bpoppier2 -Winpur/2, Bpoppler/2
+Winput/2] in frequency. Therefore, it is sufficient to sample at passband at the Nyquist
rate of W = Winput + Bpoppler- Henceforth, we shall denote this Nyquist rate by W.
Such a result is compatible with what we know about sampling in a time-varying
channel ([Kai59]), but our treatment above illustrates the effect of the time-vanation in
the particular case of a simple multipath model. ‘
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[n terms of the Bello functions for the description of time-varying channels. g(t', t) is
the input delay-spread function ([Bel63], [GH92], pg. 128). The function GFT» y(f'-f,
f) is the output Doppler spread function in terms of Bello functions. We could have

taken transforms in the reverse order and still have obtained the same function
(IGH92), pg. 133).

The question arises as to whether we truly need to sample at this rate W when we know
the channel exactly. Would it not be possible for the receiver to invert the effect of the
channel and reconstruct the original information signal sent over a bandwidth of Winput
at passband? The problem arises because of the AWGN component, which is unknown
at the receiver. Communication in the presence of noise is not about signal
reconstruction but about information resolution. To take an extreme exampie, suppose
the channel simply transmits the signal unchanged over the frequency interval [-
Winput/2. Winpur/2] at baseband and duplicates the signal with a shift in frequency of
Winpu: over the band [Winpui/2. 3Winpu/2]. In that case, we could simply bandlimit the
received signal to [-Winpu/2. Winpui/2] to reconstruct the original signal. If. however.
the channel adds noise over the whole spectrum, by bandlimiting to [-Winpur'2,
Winpuv/2] and ignoring the received signal over [Winpur/2. 3Winpur/2]. we are in effect
foregoing the benefit of having a repetition code. Therefore, because of the presence of
noise, we cannot, strictly speaking, sample at passband at Winpu even if the
multiplicative part of the channel is known and invertible.

[1-2-1-d- Discrete time model.

Let us now derive an expression for the sampled system. We assume that the input s(t)
and the response v(t') at baseband are bandlimited to [-W/2, +W/2], since we consider
the system at baseband. The response v(t") may be sampled at time intervals of 1/W, by
the Nyquist sampling theorem. We thus obtain a discrete-time sequence defined as

vik] = v(k'W)
11-2.[12]

and we may similarly define

s[k] = s(k/W)
-2.13].




We wish to determine a discrete channel impulse response to relate v{k] to the sequence

s[k]. By the Nyquist sampling theorem. we know that

s(ty= Y s{n] sinc {nW(t - %)}
n=-x
[1-2.[14]
where sinc(x) is sin(x)/x. Therefore. by substitution in II-2.[10], we obtain
~ m
v(t') = z z s{n] sinc ’.TW(['- t- %)\am(t') T (') t) dt
all paths m n=- \ I
(integrating the impuise functions)
+a@ j m \
= Y Y sn]sinc n:W(t‘ -t (U)- l) a"lt')
all paths m p=_x \ w /
11-2.[15].
Hence, when we sample v(t'), we obtain
vk]= z § s[n]sinc /:tW(—k—— tnIL)- l)\ a i—)
al \ Y Wi W [ W
paths m p=.x
11-2.[16].

We may therefore write

viki= Y X slkalgTk, ]

all paths m p= .=

11-2.[17]
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where

gm[k. nj= am(%) sinc {:\:W{_n\v- rm(vl:/_))}

I1-2.[18].

Expression [1-2.[17] is a discrete-time model for the channel's response, with gM{k, n]
being a time-varying, discrete-time impulse response for the mth path. By our initial
assumption that W is large enough that v(t) may be fully reconstituted from v(k]
through the Nyquist sampling theorem, I1-2.[17] yields a complete characterization of
the channel response to the given input. Figure 1.4 shows the discrete-time system.,

which is equivalent to the continuous-time one represented in Figure II.1.

x[n] s{k-m] v(k]

— w| Modulator{ ________gu! Channel | ___ g .
gk, m] Receiver

Figure [1.4: Discrete-time mulupath system

For a causal channel, we may replace the - limit of summation in II-2.[17] by 0. Such
causality agrees with our physical understanding of the channel. However, we cannot
have strict causality and strict bandlimiting simultaneously. We shall address the issue
of our simultaneous time and bandlimiting in section II-2-1-f.

[1-2-1-e- The presence of noise.

Our channel model has only taken into account the linear time varying model with
discrete multipath. We next take additive noise into account. Figure II.5 shows the
AWGN continuous-time model. Define the baseband output, y(t'), of a muitipath
channel with AWGN to be the baseband output v(t') found in the section above with
the addition of a term n(t'), where n(t') is the result of passing the sample value of a
complex white Gaussian noise of double sided spectral density No through a passband
bandlimiting filter over [-W/2, W/2]. Although white Gaussian noise has a power
spectrum which is non-zero over all possible frequencies, only the effect of the noise at
frequencies for which v(t') is non-zero is of any interest. Indeed, noise components
outside those frequencies are independent of the noise components in the bandwidth of
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interest. Therefore. we may bandlimit y(t') at baseband to [-W/2. W/2] without losing
anything but noise which is independent of the quantities of interest. The power
spectrum of N(t') is the rectangular function given by

INoforlﬂ s%\
Snif)= \Ootherwise f

11-2.[19]
and the autocorrelation function is
sin (nWt)
RN () = Ng———
Tt
[1-2.[20].
n(t")
X[n] (0 Channel v® y(t)
> Modulator | ——ums o(t't) \U ml Receiverls—

Figure I1.5: Continuous time model with AWGN.

We may sample y(t) at rate W and still recover y(t), by the Nyquist sampling theorem.
For the discrete-time model, y[k] is v{k] + n[K]. The discrete quantity n[k] is defined as

the sampled quantity of n(t) as in [1-2.[12] and II-2.[13]. Figure I1.6 shows the
addition of noise with respect to Figure [1.4.

n(k]

s{k-m] -
X[n] Channei | V(k] yikl

Modulator | ——amt [k, m] et Receiver

N

Figure [1.6: Discrete time model witht AWGN.
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We know ([LM], pg. 46), or we may see immediately from I1-2.[20], that the sampled
process for the filtered complex white Gaussian process has an autocorrelation function
given by

RN D‘]"‘ NoWd¢
[1-2.[21]

were 0 is a Kronecker delta function. Therefore, the variance of the sampled process is

given by Rn[0] = NoW. The real and complex component of each sample of the white
. ) 2 NgW
noise each have vanance 0= —

[1-2-1-€- Matrix representation of the svstem.

In our previous discussion, the sampled version of the system requires an infinite
number of samples unless we make certain assumptions, which we now discuss.
Moreover, we are interested in channels that are causal, yet limited in bandwidth. We
may note from expression [1-2.[18] that there are infinitely many terms gm(k, n},
whereas in the continuous case there is. for any given t', at most 2 single t which yields
a non-zero value for g®(t', t). For our purposes, we wish to establish an expression for
the output of the channel which is a product of finite matrices in the discrete-time case.
Expression [1-2.[18] shows that the terms g™[k, n] become very small with n for k
fixed. Figure 1.7 below shows the fact that gmfk, n} may be neglected for large n.

We may note that we have used the sinc function for our sampling reconstruction. but
we could instead use a function with significantly faster roll-off in time to reconstitute
the continuous time system from the sampled system. Since we must always consider
that a signal starts at some time, we cannot have true bandwidth limitation. We filter
through a causal filter such that a small percentage of the signal energy is outside the
bandwidth of the filter. Such an assumption of approximate simultaneous band limiting
and time limiting in order to obtain a matrix representation of a time-varying system is
similar to that found in [Spi65]. In effect, if we choose appropriate functions for
sample reconstruction of the signal, we lose an arbitrarily small percentage of the signal

energy by assuming that the signal is simultaneously time and frequency limited. A
more detailed discussion is found in [Spi65].



Figure [[.7 : Behavior of gM[k, n] with n for the case tm = 5/(2W).

Let us consider what happens when we send a single puise. If we arbitrarily choose the
delay associated with the first path to be O, then we see that the received signal will be
vanishingly small after WT spread time samples. Let us now consider that we are sending
a continuous stream of data and determine which inputs affect y[k]. The input signal
samples s(j] for j < k-WTspread have a negligible effect on y[k]. Therefore, we may
choose some artificial cut-off in n such that gM[k,n] is approximated to be zero beyond

that point. Therefore, we may approximate the sampled channel output as :

s(k-A]
ylkl =[g[k.A] ... gkOI]| .. [+nik]
s[k]

11-2.{22]

where A is some integer satisfying A > WT spread and
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REUSTERD W (1

all paths m
11-2.[23].

If we wish to examine a string of outputs, say yi, where yi is [y[1], ... y[k]]T, we
may use [[-2.[19] to write the vector expression we seek. In the sequel, a subscript k
after a vector v indicates that we are considering [v([1], ... v(k]1T, a pair of subscripts
j-k where j<k indicates that we are considering [v[j], ... v[k]]T. If we are considering a
matrix, the superscript will indicate the range of the columns in the same manner. If we
indicate the range of the columns but not that of the rows, it means that we are

considering the whole range of rows for a square matrix. Therefore, v k is a shortened
1.1 Lk
notation for v | , and v K is a shortened notation for ¥ .

We assume that s{n] for any n<0 is zero. This implies that y(1], ..., y[k] will depend
only on inputs s{1], ..., s[k]. Let us also assume, as before, that we have chosen A >

WT spread Such that we take g(k.n] = O for n> A. In that case, we may write that

K
Ye=[se+ng
[1-2.[24]
where fX is the complex matrix with entries
[ £%.1= fj.j-]for oxjiza |
\ 0 otherwise f
11-2.[25].

We have therefore a vector expression for the output over k unit intervals. each of
length 1/W. Although the vector expression is approximate, we know that we may
make this approximation arbitrarily good by the choice of A. We shall use this
expression later when trying to compute the capacity of the system. Throughout this
section, we have considered all variables as being known. We shall first relax the
assumption that the input and noise are known and thus find the mutual information
when the multiplicative part of the channel is known. Next, we shall relax the
assumption that the channel is known in order to find mutual information results when
there is uncertainty about the channel at the receiver.
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I1-2-2- Comparison to statistical muitipath models.

In light of our model of secuon 1I-1. we may now discuss some of the existing models
for muitipath. As we have seen, we may describe the channel with a tapped delay line
and therefore the problem of characterizing the channel reduces to the problem of
determining the taps. In general. we may be able to sample at a Nyquist rate such that
the effect of several paths which are close together in delay is seen only as an aggregate
effect. Indeed, Winput > Wnoppier because of our channel dynamics. In a narrowband
model. i.e. in a case where 1/W is larger than Tpread Or at least than the spread between
a subset of paths, the effect of several paths will be combined at a single tap. If two
paths are separated in time delays by more than 1/W. their primary effects appear at
different taps and are therefore said to be resolved. If we are transmitting over a band
which is very narrow with respect to the reciprocal of the multipath spread, then we

may even describe the whole channel by a single tap which captures the effect of all the
physical paths.

To illustrate the issue of resolvability, let us consider the case where we have three
paths, two of which are close together in delay with respect to 1/W and a third whose
delay is much greater than 1/W with respect to the first two. Figure I1.8 below shows
the impuise response of a channel and the received signal (at baseband) when an
impulse bandlimited to W is sent. Part ¢ of Figure I1.8 shows that the effect of the two
physical paths that are close together in part a may be fully described at one tap by an
aggregate effect. Therefore. when we have a signal which is fairly narrowband with
respect to the inverse of the delay spread. we need to consider aggregate muitipath
effects at the taps. When several paths affect a single tap, it is reasonable to expect that
we may provide some probabilistic description of the behavior of that tap. Such is the
basis for the common statistical multipath models which we discuss in this section. We
first examine models which deal with looking at the distribution of a single tap and then
consider the issue of observing several taps.
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Figure 11.8.a : Impulse response of the channel.
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Figure [.8.b : Response of the bandlimited channel.
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Figure [1.8.c : Sampling of the bandlimited response of the channel.

[I-2-2-a- Statistical multipath models for a single tap

Since each tap may be determined by the aggregate effect of several paths, it is
reasonable to assume that it would not be useful to track the behavior of each path
present at a tap and deduce the behavior of the tap. Therefore, statistical models for the
behavior of a single tap are derived and commonly used. In light of our discussion, all
the models we present below are valid for a single tap at which many paths are
unresoived. i.e. W << l/Tspread- The most common statistical models for such
muitipath channels are Rayleigh fading, Rician fading and Nakagami fading.

In the literature, the most common way of modeling fast fades in a mobile radio
environment is to use Rayleigh fading. While we refer to the fades due to the multipath
as fast fades, these fades are still slower than the rate of change of the signal. They are
fast with respect to fading linked to the general terrain and atmospheric conditions,
generally described by log-normal distributions. The Rayleigh fading model is not
usually expressly specified to be for aggregate multipath as opposed to several
distinguishable paths from the mobile transmitter to the receiver. However. in light of
our previous discussion, we know that we are indeed dealing with an aggregate
multipath model. i.e. a narrowband model where the paths are not resolved. The
Rayleigh fading model may be attained in different ways. One way of deriving it,

which presents the most physical justification. is to consider that the impuise response
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is the superposition of a large number of complex paths. If we have a sufficient number
of paths. we may use the Central Limit Theorem (CLT). We then find that the aggregate
muitipath can be approximated as a random variable which has Gaussian distributed [ID
real and imaginary parts. The distribution of the envelope of the aggregate is then
Rayleigh distributed while the phase is uniformiy distributed between O and 2. The
Rician model is that of a single specular path, for instance a line of sight path, overlaid
over a Rayieigh fading channel.

More generally, the strength of a tap for the aggregate muitipath case may be modeled
using Nakagami distributions ([Cha79], [Nak58]). The Nakagami distribution has
often been put forward as a better approximation to the fading encountered in wireless
communications than Rayleigh or Rician fading. Rayleigh is a special case of
Nakagami. Therefore, given more freedom in choosing the distribution, it is not
surprising that Nakagami does better. This, however, does not explair; whether there is
a meaningful physical link between the Nakagami distribution and the fading seen in
wireless communications. Referring to the original work by Nakagami [Nak58], we
see that the Nakagami distribution is derived as a distribution for aggregate multipath
fading. The distribution is valid when there are many paths and when certain
approximations on the coefficients of an orthonormal expansion for the amplitude of the
impulse response hold. Under such conditions, it is clear why Rayleigh is a speéial
case of Nakagami, since Rayleigh was derived using the CLT for multipath off a large
number of reflectors such that the phases of the reflections off these reflectors are
uniformly distributed. However. there is no physical explanation for why, if ever, the
approximations taken by Nakagami hold. While the Rayleigh fading model may be
derived from the CLT for a given multipath model, the Nakagami model is reaily a
heuristic. The parameter, m, of the Nakagami distribution depends only on the first and
second moments and the cross-correlation of the real and imaginary parts of the
multipath expressed as a sum of amplitudes multiplying complex exponentials. The
Rayleigh distribution is obtained when the parameter m is set to 1. The assertion
sometimes made that m represents the number of paths forming the aggregate muitipath
is, therefore, not correct, although m will usually increase with the number of paths.
We have more degrees of freedom in fitting the distribution to the data when we use
Nakagami rather than simply Rayleigh distributions, and the extra de gree of freedom is
given by the parameter m. The Nakagami distribution is sometimes claimed to be useful
when we are modeling a large number of paths which are not individually known. It
has been reported ([Cha79]) that replacing the Rayleigh model at the receiver by a better
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fitting Nakagami distribution leads commonly to differences of 3 dB in the performance
evaluations of systems if the error probability versus SNR is being evaluated.
However. as m is increased. it would appear that the effect of changing the parameter
of the Nakagami distribution decreases sharply [MG92]. The complexity of the model,
however. is greatly increased. so that Nakagami distributions are rarely used.

1I-2-2-b- Statistical muitipath models for severai taps.

None of the models considered above describe the behavior in time of the channel. The
distribution of any tap may be modeled as having a Rayleigh, Rician or Nakagami
distribution, but this does not indicate how this tap is correlated with the rest. If the
channel varies very slowly with respect to the signaling rate. then two consecutive
samples of a tap will be strongly correlated. If, on the contrary, the channel varies at a
rate comparable to the signaling rate, two consecutive samples of a tap may be almost
uncorrelated. In general. it is of interest to know the correlation among these samples of
a tap. For instance, we probably would want to know whether the presence of a deep
fade at one time sample predicts a deep fade at the next time sample. Clearly, in
computing capacities for channels, such an issue is important.

A statistical model of the channel which takes into account the correlation of the channel
in time and frequency is the scattering function ([Galé4], [Ken)). The scattering
function s has as parameters both time, t, and frequency, f. The scattering function
represents the average normalized amplitude of the component of the channel which has
delay t and Doppler shift f. Such a component may be created by reflections off singie
large objects or off a cluster of smail reflectors. Usually, in mobile communications,
they will be off large objects consisting of a cluster of small reflectors, for instance a
rough wall. Such a multitude of reflections might be difficult to characterize, but the
overall effect can be described in part by the scattering function. The scattering function
provides us with a measure of spread ([Ken]) of the channel in time and. frequency

which is lacking in single tap models. In particular, we may write that the average
Doppler spread is given by

1

‘ U( f o(t.ﬂd:)zdf - |
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and similarly the average time spread may be given bv

[ifonsaral

The average total spread may be expressed as

-1

f lolt. ) df dt

Such a model gives us some information about how the channel evoives in time and
frequency and does not rely on narrowband assumptions for its validity. [t gives a
description of the second order statistics of the channel. If we are dealing with a cloud
of scatterers where we cannot hope to distinguish dominant paths. then it is as good a
description as we may wish for. Indeed, the channel then has, by the CLT, a Gaussian
distribution, and therefore second order statistics describe it fully. The capacity of a
channel described by its scattering function is derived in [Gal], pp. 431-438, for the
case of infinite bandwidth. However, second order statistics are not sufficient if we are
to consider that we measure a muitipath channel with good accuracy. The scatterer
model is not consistent with a muitipath channel where, say, dominant paths can be
resolved. their relative delays are changing, they are interfering constructively and
destructively, etc... These conditions violate the WSSUS assumptions of a oft, f)
model. For our purposes, we shall be more interested in measuring the channel than in

characterizing it by a scattering function or more complex model.
[1-2-3- Capacity in the case of a perfectly known channel.
[I-2-3-a- Constant single path channel.

For the sake of a simple illustration, let us consider the case of a single path. where am
is a constant afor all time and where the associated delay T™(t) is always 0. We know -
" that such a flat fading model is a very poor approximation for real multipath models
([GB81]) but we wish first to establish some extremely simple framework which will
be used in the time-varying channel. For this constant single path case. the channel



43

does not chanée in time, and therefore the output bandwidth and the input bandwidth
are the same. Let us constrain the input to power P. as made explicit later. This is the
classic bandlimited AWGN channel. Our motivation in denving this weil-known
example is to establish notation and to present a structure which will be extended in the
next section for known specular paths. For complex transmission over time T using an
input bandwidth W. the mutual information between input and output is given by:

Yy:Sy=hYy-hiNy
[1-2.{26]

where k =| TW | and h denotes differential entropy, since we are dealing with pdfs.

We actually have 2k degrees of freedom since we are dealing with complex random
variables. In order to simplify our simplify our manipulations, we shall use the random
vectors S -y, Y'ay and N >y, whose first k components and last k componenets are the
real and complex parts, of the corresponding vectors Say, Yoy and Noy

For a given covariance matrix for the output, we know that h(Y '~y ) is maximized when
Y2 is Gaussian. Hence, we are interested in determining the covariance matrix of
Y >y and then we shall attempt to construct an S 'y such that Y'», is Gaussian. The
bandlimited noise has zero mean at all times and is uncorrelated with the input. The
output of the channel may be expressed as

Yooclil=a8 5 ]+ N 5 [i]

11-2.[27].
The covariance matrix of Y -, has entries
Ay lis il =2 Eg: [STIS'T] + Ene NEIN'G]
g [STIS'T] + 2 W o
= a’Eg: [STIST] + 52 W o]
[1-2.[28].

Itis well known that if we choose S(t) to have a Gaussian distribution. then the output

of the channel will have a Gaussian distribution with covariance matrix given by II-
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2.[28]. The entropy of Y >y is given by k ln(z::|AY. . |) where | | denotes absolute

value of the determinant. By Hadamard's inequality. the above entropy will be
maximized if we take the off-diagonal terms of the covariance matrix to be 0. We may
indeed construct a Gaussian zero-mean signal S which is bandlimited to [-W/2, +W/2]
and has the desired property that

Es [S]S[] = Es [Sk+i]Sk+i]= WP 8fi-]

I1-2.[29]

for all i and j smailer than k.

Indeed. our previous discussion concerning the noise shows that S couid be
constructed by taking complex white Gaussian noise with spectral density P and
bandlimiting it to [-W/2. +W/2]. This construction is possible because Winpy = W.
The signal power per degree of freedom is a*PW . The noise power per degree of

freedom is %’_ Therefore

l(Xk;§Q=l(Y' - [ m((aP +WN(J

WN,

azP
Inf 1
s TW l‘l( + WK,
[1-2.[30]

where the approximation becomes exact as WT — . The expression in I1-2.[30] is the
well-known expression for the capacity of the bandlimited AWGN channel and is
convex in W. The benefit of having extra bandwidth is therefore close to linear in W
when W is small. 11-2.[30] approaches a limit as W goes to infinity, and therefore the
benefit of extra bandwidth is negligible for W large. Extra bandwidth cannot be
detrimental. since we could always transmit over less bandwidth than the available
bandwidth and thus come back to the case where we have less bandwidth.

Since we have a memoryless channel with additive Gaussian noise, we know ([Gal],
pg. 337) that II-2.[30] gives the capacity for the channel.
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11-2-3-b- Known specular paths.

—

Let us extend the simple flat fading case to the more realistic case. for terrestrial mobile
communications. of several known time-varying specular paths. We assume that both
the sender and the receiver know the channel. We have total bandwidth [-W/2, W/2],
where W is given by the sum of the input bandwidth. Winpuw and the Doppler spread,
Bpoppier- The time we consider is the time over which we signal. T, plus A, which
takes into account the muitipath spread, Tspread, and the decay of the sampling function.
In effect, we consider that we transmit a nil signal outside of Winput and that we
transmit an almost nil signal before time O and after time T, within approximations to
allow for the fact that time and bandwidth limited signals are not achievable. Let us
denote by k the product of the total bandwidth W and the total time T+A that we
consider. The output can be derived from expressions 11-2.[22):

s mof i) v

W=3 T spoe”

n=0 all paths m

-2.[31].

Our vectors are complex, since we are at baseband. The variables a™ are complex with
phase changing at a rate 21B™M . where BM is the Doppler shift for path m.

Let us again define the reat vectors S'»;, N'sy and Y 'ai. Performing a simple
maximization using the determinant of the correlation matrix of the output Y i as in II-
~ 2-3-ais not straightforward. We therefore choose another approach. We decompose the
channel into orthonormal components and apply water-filling techniques to these
channel components to obtain capacity. The constraints we have are that the input is
bandlimited to [-Winpur' 2, Winpur'2] and that the input variance is limited to P.
However, we cannot have exactly time and band limited signals. In our previous
discussion, we have considered that the input was time limited. In capacity arguments,
weallow T to become arbitrarily large, so that the time limitation constraint is relaxed.

For the model in [1-2.[31], the output sample 7 time is given by the vector equation

i) Yk]= e[ ) .. s ki) + [N N 2]
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[1-2.[32]

where 2K is almost zero for ail entries except the entries { i, j] such that A > i-j 2 0. in

which case

oBun Mo )

mf <—Tw('s i)
gt

for A 2i4j-k) 20, i sk, j>k

s in{nw
for A 2{i-k}j 20, i >k, j<k
—)) s mc{:l:W ——-T (—’))

for A >(i-kHj-k) 20, i >k, j>k

dlmtsm

fi.j]=

dl:ntsm

11-2.[33]

from I1-2.[18], 11-2.[23] and II-2.[25].

Therefore, the effect of the multipath spread is seen in the matrix {'2k. Complex inputs
which are spaced by roughly more than the muitipath spread do not affect the same
outputs. This is altogether consistent with our physical model.

We have already discussed the fact that, in most situations, the effect of the Doppler
spread in widening the bandwidth of the received signal with respect to the bandwidth
of the signal sent is negligible. For large enough bands of spectrum, the effect of the
Doppler spread is comparable to that of the roll off at the edges of the bandlimiting filter
at the receiver. However, we consider here the general case where the effect of the
Doppler spread in changing Winpy, to W may not be negligible. We may still describe
the effect of the channel by a linear transformation on the sampled input. even if the
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input is sampled at Wiy, rather than at W. Let us denote by §[k' ] the sample at time
T/Winpu, of the continuous input S(t). We know from the Nyquist sampling theorem
that we may write

-

sig= Y S[n]smc{ Twmpu( o )}

inpu

n=-x

11-2.[34].

Hence. by substitution of 11-2.{34] into I1-2.[10], the output of the channel before
noise may be written as

V(') = Z Z S{a]sin nwmpu( )\ am(t')é(tmlt')-t)dt
all paths m a=-a lnpu f

t=-x

(integrating the impuise functions)

= 3 Z§(n]smc{n mpu( (t)

all paths m p=.0

i)

I1-2.[35].

Hence. when we sample Y(t') = V(t') + N(t'), we obtain

W=, 3 5 e vl ) o) -

I1-2.[36].

We may therefore write

Yil= X Z Spnlz . o]+ Nj]

allpathsm - .«

11-2.[37]




where

g (i,nj=a"

T T

I1-2.[38].

Therefore. making assumptions of approximate simultaneous time and bandwidth

limiting, if we take S’ to be O before sample | and we choose a A large enough, we
may replace matrix expression [1-2.[32] by

YO . YOKI]'= B[S . S]] + [NO .. NEkI]!

11-2.[39]
where
k' =| Wigpy T| and k =l wi(T+ Z)J
[1-2.[40]
and, as in [[-2.[25],
/ fiil= g i-j]for Osi-jsA \
0 otherwise /
[I-2.[41].

The matrix f gives. in terms of a linear transformation, both the effect of sampling
input and output at different rates and the effect of the channel. Let us define S 21 from

S similarly to the way we defined S ' from Sg. The expression equivalent to II-
2.[39]is

2k
Yoor=1 a0 ST o+ Nl gy

[1-2.[42]

where
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5 s ol W

alpahsm
for A 2i-j 20 i <k. jsk

s gt

for A 21-{)-1&} >0.i <k. j>K

s sl .{w m{w - (\"V_\“

0.i>k, jsk

leatsm

al pmsm
for A =li-kH =

I Re(am\ev-\\m{nww{-:v---&;«“‘\&-\,)

Al patsm
for A >li-kHj-k1 20, 1> k, K

11-2.[431.
T _
Let us consider the 2k’ x 2k' matrix o £ 2k' Let Ay --n 2K be the eigenvalues of
V2%
f' 2k- £ f 5. These eigenvalues are real ([Str], p8- 222) and non-negative. From [Gall,
Theorem 8.4.1, there exist eigenvectors €i ok for each A such that:
2kT.. 2k
£ f o Low @i =N @ik
11-2.144}

|. Moreover, there exist 2k' orthonormal yectors

and the vectors i 2y 3¢ orthonorma

0,4y such that:

I— ) _ 2%
N gt b R
11-2.[45].
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Let us express the input random vector S' ;i as a linear combination of the vectors
SR

oK
S_'Zk'= z Ui Qi K

i=1

11-2.[46]

where the coefficients U; are real random vanables.

Let us create an orthonormal basis for vectors of dimension 2k such that the first 2k’
elements of the basis are the vectors 8, ,, . We shall denote the other 2k-2k’ elements as

8, 5, also. We may then express the noise as

2k
HLZK-_- z vi Qi 2%

1=1

[1-2.[47]

where the random coefficients v; are IID complex zero-mean Gaussian random

variables with mean WNy/2. The noiseless output may always be expressed only in
terms of the first 2k’ vectors 8, ,,:

- 2k 2k
PaeSae=2 Uivh 8y
=1

[1-2.[48].

We have therefore decomposed the channel into 2k parallel independent channels
where, along the last 2k-2k' channels, nothing is transmitted and only noise is

received. We may perform our maximization along the first 2k' channels subject to the
constraint

o d L 4 T
U'(E[S_':‘.k'S_'ZK' DS TP W
[1-2.[49].

Since we have used an orthonormal basis to decompose i;k-. [1-2.[49] is equivalent to
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i Hu/| s TPW
1=1
11-2.{50].

We are carry out water-filling arguments similar to [CT] on these eigenvectors under
our average energy constraints. To maximize capacity, we choose Ui and y such that

w2

2,
11-2.[51]
w1 WNg)
v- -“WTP
1=1 2kl
11-2.[52].
WNo\"
2% M 2% Hu/ |
1 i 1 i}
The capacity is 5+ 2. In| 1+ === In| | + =—=—in terms of
1) i= WN, 2T i=1 WN,

2 2
achievable rate per second.We do not need to calculate first derivative results to see that
the mutual information is increasing, maybe not strictly, in Wipput, since we could
always transmit over less than the total available bandwidth. However, the incremental
benefit of having more bandwidth may or may not be decreasing. Indeed, if we
transmit over a portion of the channel which is severely faded because of frequency
selective fading, and add an available portion of bandwidth with small fading, then the
incremental benefit from that extra portion of bandwidth may be greater than the
incremental benefit from a faded portion of bandwidth. In terms of our eigenvectors,
adding a channel with very small associated eigenvalue may actually not even increase
capacity at all. We may note that, given our construction, we need not make use of any
coding theorem other than the memoryless channel coding theorem, although theorems

for channels with limited memory exist. We may also note that our results do not give a
compact expression for capacity whenT — .
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[1-3- The effect of an unknown channel.

[1-3-1- The effect upon maximum achievable mutual information of an unknown

channel at the sender and an unknown or partially unknown channel at the receiver

In part [[-2. we did not establish how we would determine the channel at both the
receiver and the sender. In this section, we consider that the sender does not know the
channel and the receiver does not know the channel, or has an imperfect estimate of the
channel. We shall use the notation of II-2.[31] and II-2.[33] uniess otherwise specified
Such is the situation if, for instance, we are transmitting without feedback from the
receiver to the sender. The sender has no way of knowing the channel. The receiver
must either estimate the channel from the signal that is sent or from some separate
sounding signal. If the channel is not perfectly known, it is reasonable to model it as a
known part with a probabilistic additive component. Such a description of the channel
is compatible with the common situation where the channel is measured and there is
some zero-mean Gaussian noise of known variance in the measurement. We would
also, obviously, not know a priori the signal s but know the distribution of the
random variable S[n] of which s[n] is a sample value (we consider the discrete-time
model for ease of exposition, since we have shown in II-2 that it may be freely
interchanged with the continuous-time model). Similarly, we would know the
distribution of F2k of which f2X is a sample value. The distribution of Y[k] would be
given by the measurement and the measurement error distribution. Therefore. we
would also know the distribution of Y[k].

In this section, we consider the effect on mutual information of the unknown channel
at the receiver. The sender transmits as though the channel were an AWGN channel.
For the mutual information to give some indication of the reliability of feasible
communication schemes, we must establish an appropriate coding theorem. [VH94]
gives a general formula for channel capacity for a single user. In appendix B, we
establish a coding theorem for multiple access channels where the channel decorrelates
in a manner which is defined in the appendix. The channel may have infinite memory in

the outputs but we require the memory to decrease sufficiently rapidly. We also require
certain ergodicity assumptions.

In the following, replacing I1-2.[24] with random variables, we have



Y= EZkS'.zk + Ny

1-3.11}.
The mutual information between input and output is, by definition:
Y25 S21 = hiS2u - MS2 ! Yo
11-3.12]
where h is the differential entropy function.
Similarly, the mutual information given perfect knowledge of the channel is
I(Y.zk; Sox! E:k) = h(§2k | E:k) - h(§2k B Yo
11-3.[3].
Since S» and F2K are independent.
2K
HSad = b{Szel ™)
[1-3.[4].
Therefore,
2k 2k
(Y au: Szl E)- ¥zic S2d = WSl Yol - S | E™, Yo
= l(.S-ZK B Izk)
11-3.[5]
oralternatively
(¥ 26 S E™) - (¥ S = {E™ £ (800 Yaul)- E™ Yau)
1-3.16]

|(Izk3 So! EZk) WY 8oy = h(EZK‘ sz) - h(EZk I'Sak sz)
11-3.17].
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The effect of not knowing the channel may be interpreted as the difference between the
information about the channel that we obtain from both the output and the input, and the
information about the channel that we obtain from the output only. Although the above
expression is simple. computing it in any particular case may be difficult. However, we
can make some general statements about I(sz; S ! _E2k - Y25 S2i)- We have the

intuition that the difference in how well we can use the channel between the known and
unknown channel cases depends on how well we can measure the channel. In other

words, we suspect that [(izk; Say! EZK)- I{Y5y; S2y) will depend on how well the
channel can be measured at the output solely from Y. Indeed. in the limit where the

channel can be measured perfectly, the difference I(Xzﬁ S| EZk) Y258,y is O

since. from lI'3.[5], I(sz; -S—?.k l _F_2k) - I(XZk; §-2k) = [(§2k , E2k| XZK)'

Expression II-3.[5] has a further interpretation. We might in general question whether it
matters that we do not know the channel, for we may perform equalization.
Equalization uses the symbols already decoded to help decode the next symbois.
However, equalization usually supposes that the past input can be perfectly detected
from the output ([Qur85]). Such a supposition is generally thought to be reasonable,
because if we did not decode the data properly anyway, we have a failure in the system.
If the input is perfectly determined from the output, then the RHS of II-3.[5] is nil.
Hence, if we claim that we may perform equalization perfectly, we are in essence
already claiming that we do not suffer, in terms of mutual information, from not
knowing the channel. Therefore, in order to perform equalization. we may be sending
at a lower rate than the maximum achievable rate. Equalization assumes a slow variation
of the channel so that we may measure the channel and use our measuremeats. In later
sections, we shall see how the rate of variation of the channel relates to [I-3.[6], thus
giving some quantitative support to our intuitive understanding that equalization is
reasonable under slowly changing channel conditions.

In the next section, we consider the case where the channel is measured at the receiver
with some error of known variance. Such a model gives us bounds concerning the loss
of mutual information when we have a particular error variance in the receiver. We may
thus consider the fundamental detrimental effect of a measurement error without:
" restricting ourselves to a specific measuring scheme. This allows us in later sections to

consider the general loss in mutual information per symbol due to not knowing the

b ———— e —
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channel at the receiver when the channel is a stochastic process with some stationarity
assumptions.

1I-3-2- Channel known with a small error of known variance.

1I-3-2-a- Single svmbol case.

Let us consider the case where the channel is known at the receiver with some mean
square error. We consider for simplicity that the measurement has some known error
power. We first look at the single real sample case to be able to view with ease the
effect of the measurement error without having to contend with matrices. The purpose
of looking at the single real sample case is to establish a framework for the more useful
multiple sample case. The random variables we usuaily consider are complex. in
keeping with our baseband model. However, in our single symbol model. we consider
real random variables for ease of manipulation. When we go to the several symbol
case, the case of compliex random variables will be included.

We have the following model :

N
—_— F - M >@ Y

-l

Figure I1.9: System model for channel known with error

where

Y is the output of the channel




F is a constant which is equal to the measurement of the channel

-~

F is a zero-mean measurement error of the channel at the receiver. with variance Or

o]

N is AWGN with variance 0;.

The input § to the channel is constrained to have mean square value at most og'. When
the muitiplicative noise is nil, we know that the optimal choice for the distribution of S
is zero-mean Gaussian ([Gal], page 336). It is difficult in general to determine the
optimal distribution of S for a general channel distribution. Qur bounds are applicable
for any distribution on F.We may note that we do not make any assumptions about the
distribution of the measurement error. The distribution would in practice depend on the
manner in which we perform the measurement and the channel distribution. Since the
measurement error has zero mean. the measurement of the channel is also its mean
value. We know only F,i.e. the measurement, and the variance of F.

The mutual information between the output, Y, and the input, S is

I(Y:SIF) = h{Y'F) - hY'S. F)
11-3.[8]

where the entropies are differential entropies since we are dealing with continuous
valued random variables. Let us examine how we may maximize I1-3.[8]. In the rest of
this section, we shall not explicitly write our conditioning on F, since we have
assumed that we have an apriori measurement independent of the inputs and outputs
over the time during which we perform our observation.

Let us first consider whether the methods that we use to find the capacity of an additive
Gaussian noise channel may be applied here. Since

Y=SF+SF+N
11-3.[9]

fora given value of s we may write that
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hY 1S =s)=h{sF+ NJ
11-3.[10]

since entropy is invariant under transiation. Therefore, the second term in the RHS of
[1-3.[8] can be expressed as

h(YIS) = f " pu(s) hlsE+N) ds

[1-3.[11]

The above expression cannot be calculated if we do not have a distribution for F. Even
if we do know the distribution for F whether 11-3.[11] can be calculated easily
depends on the form of the distribution of F .

We wish to find a lower bound to the maximum achievable mutual information I(Y:S)
for the model owen in Figure [1.9. We may do so by using a zero-mean Gaussian input
S with variance °s In order to determine how tight this lower bound is, we also find

an upper bound to the maximum achievable I(Y;S). We determine that the lower bound
2 2

and the upper bound converge as —-0.

Ov

I[-3-2-a-a- A lower bound on the maximum achievable mutual information between Y
and S.

To find a lower bound on the maximum achievable I(Y;S) = h(S) - h(SIY), we may
choose S to be Gaussian, even though the Gaussian distribution may not be the one that
maximizes mutual information for the specific measurement noise distribution. Thus,
we fix the value of h(S). We next find an upper bound on h(S!Y), which holds for all

possible distributions for S. The difference between h(S) and the bound on h(SIY)
immediately yields a lower bound on I(YS).

By definition.

(S | Y)=f hiS 1Y=y) py(y) dy
[1-3.[13].




Since adding a constant does not change differential entropy.

hS | Y=y)= (S - ay I Y=y)

11-3.[14]
thus
h(S1Y)=h(S-a¥!Y)

[1-3.[15]
for any real a. Since conditioning always decreases entropy, we have that
h(S-aY1Y)<h(S -aY)

[1-3.[16].

Therefore
hS1Y) < h(S -aY)

(using the fact that the entropy of a random variable with given variance is upper
bounded by the entropy of a Gaussian random variable with the same variance)

< 5 In[2neVards-aY))
11-3.017]

for any a. Therefore, II-3.[17] also holds when we minimize the RHS over al.
Therefore, we wish to take a so that aY is the linear minimum variance estimate of S in
terms of Y ([AM], pg. 93).

B
Hy]

! This approach was suggested by Dr. S. Shamai.
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Fc:s

2 e hi
2 2

F Og+ OO+ Ty

11-3.[18]

since S and Y are zero mean. Therefore, the variance of S - aY, maximized over a, is

given by

2

5 2 22 2
F Og+ OLOp+ Oy

Var(S - aY)= cz i (FO;)

42 22
322 2 2 2
Fos+osoF+o_\.

[1-3.[19].
Therefore, we have that
42 22
1 90 +0.0g
h(SIY) < 5 2..1.._2 > — >
F Og+ OO+ Oy
[1-3.[20].

The mutual information between S and Y may therefore be lower bounded by

4 2 2 2
2 g +0
(S:¥) 2 Lin{2eor) - Lin| 20 OCF s
2 2 22 22 2

F Os+ OO+ Oy

- 2
1 | F og
2 T
OO0 +0y

I1-3.[21].
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The above bound may be interpreted as saying that the worst effect that the
measurement noise can have is to behave as AWGN. We see that the above bound is

equal to the capacity of the channel that would resuit from sending a Gaussian signal

) . =2 2 ) ) ) 22 2
with variance F G nan AWGN channel with noise variance OO +0.-

[1-3-2-a-b- An upper bound on the maximum achievable mutuél information between Y
and S.

We obtain an upper bound to [(Y;S) by using the fact established in section iI-3-i that

I(Y:S)<I[Y:SIF)
1-3.[22].

For F known to be f, the maximum mutual information I[(Y; S | F=f), over all possible

2 2
L o 1 fzos+ oy )
choices for S, is given by 7111 — Hence, the RHS of 11-3.[22] is equal to
ox
22 22 2 1

1 Fog+F og + 0o
=E
2 F 2

ox

Therefore. using the convexity of the In function, we may write that

2 2 22
F°s+°s°F

I(Y:S) < %—l 1 +
On

1

I1-3.[23].

We see that the above bound is equal to the capacity of the channel that would result

2 2 2 2

from sending a Gaussian signal with variance F Og+ 0O in an AWGN channel with
2

noise variance Oy-

We may interpret the upper bound II-3.[23] as indicating that the channel has an upper
bound given by the case where the effect of the measurement error is only that of extra
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transmission power. [ntuitively, we may see the upper bound as the case where the
effect of the measurement noise is altogether useful and the lower bound as the case

where the measurement error is wholly detrimental. We should expect that, as
22
905
-

Ox

— 0, I(Y:S) should have some limiting behavior. Indeed. from iI-3.[21] and

[23], we see that

y 2

F oq

I(Y;S)—-é—l s+

Oy

[1-3.[24]

i.e. the mutual information converges to the case where there is no measurement error.

Such behavior was to be expected and the bounds 11-3.[21] and [23] simply offer an
indication as to how that convergence occurs.

We may point out that in the derivation of the upper bound, our analysis is valid for F a
zero-mean random varable of arbitrary finite variance. We may note that our bounds
are tighter than the pessimum mutual information upper and lower bounds given by
Blachman ([Bla62]) for a band-limited channel perturbed by statistically dependent
interference. This is to be expected since we are not looking at a worst-case statistical

dependence. We may proceed to the case of greater interest with muiti-dimensional
inputs and outputs.

[I-3-2-b- Extension to the multiple symbol case.

The extension of the previous results to the multiple symbol case is fairly
straightforward. Such an extension is useful to analyze our model as given in matrix
form in section II-2. Indeed. uniess we consider several time intervals, we cannot hope
to capture the memory inherent in multipath systems where the inverse of the
transmission bandwidth is smaller than the multipath spread. Let us assume that we
KBowW tiie covariance matrix of the input S and that the covariance matrix is not singular.
We have, as in section [1-2-3-b, that the dimension of the input vector is k' and the

dimension of the output vector is k if we consider complex notation (if we are
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considering complex random vanables expressed as real vectors. the dimensions are.
respectively, 2k and 2k’ in the notation of II-2-3-b).

[I-3-2-b-a- A lower bound to the maximum achievable mutual information between 1
and S.

Let us first determine a lcwer bound to the achievable maximum mutual information.
Assume we have a Gaussian input with mutually independent Gaussian components.
Such a distribution will yieid a lower bound on the maximum achievable mutual

information between input and output. If S»y is 2k'-dimensional Gaussian ([CT], pg.
234), then

h{S 2] =§ln((2n°)2r|A§nvl)

[1-3.[25]

where | | denotes the absolute value of the determinant of a matrix and ASZk' is the

covariance matrix of S»y. Denote the cross-correlation matrix of § and R, say, by
A(i. R) - We take the correlation matrix of S to be given. We have that F is a 2k x 2k’
known matrix with components given by 11-2.[33]. E is a zero mean random matrix
representing the measurement noise on each component of F which is not outside the
ranges given in [1-2.[33], depending on which model we choose.

To find a lower bound on the maximum achievable I(Y; S) = h(S) - h(S] Y), we
proceed as in the single-use case with some modifications. We shall consider 2k and
2k’ to be constant in the denvation of our lower bound. Therefore, we shall omit 2k

and 2k’ as subscripts and superscripts in order to simplify the notation. We still have
that, as in I1-3.[17]

hiS! Y) = h{S - oY Y)

< k(S - oY)
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(using the fact that the entropy of a random variable with a given covariance matrix is

upper bounded by the entropy of a Gaussian random variable with the same covariance

matrix)

2k’
< é-m((z.—:e) A §Q_YJJ

[1-3.[26]

for @ any real 2k’ x 2k matrix. Using the same reasoning as in the one-dimensional
case, we wish to find that a which gives the linear minimum variance estimator of Sin
terms of Y. We shall derive the information form of the MVE error because it provides
insight into the meaning of our bounds. Expression I1-3.[18] becomes ([AM], pg. 93)

-1
e=Ag yAy

(using the fact that the signal. the measurement noise and the additive Gaussian noise
are all mutualily independent and have zero mean)

= A Es)(AEs* Afs + Ay

[1-3.[27].

The matrix Agg + Afg + Ay isindeed invertible, because it is positive definite. The

matrix A is, from our assumptions, positive definite.

The estimation error of the input from the output is given by E=S - aY. Thus. in II-

3.[26], we canreplace S - aY in the RHS by E. The covariance matrix of E is given
by ([AM], pg. 93)

-1
Ag=Ag - AL_)( Fs+ AEs+ AN AR, g
11-3.[28].
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The above matrix Ag cannot be singular. If it were singular. we would have an
entropy of minus infinity on the RHS of II-3.[20], and therefore we could send an

-1
infinite amount of information. Multiplying each side of [1-3.[28] by Ag . we obtain
1=Ag As= Ag As, F(AEs+ Afs+ Ay AFS ) =

. . -1 '
Ag Ag=1+Ag Al FylAEs+ Afs+ An) AFs, 5)
I1-3.(29].

-1 —
Let us derive A g 0 the case where k=k'and E is invertible. We shall later show that

the same form extends to the case where k=zk' or E is not invertible. Under the .
assumption that k=k' and F is invertible, all the terms in the second term of the RHS of

[1-3.[29] have an inverse. Rewriting the second term in the RHS of 11-3.[29], we have
that

A1 _ -1
Ag Ms ESI(AEs + Afs + Ay AES.

-1

=(A(1ss'l(A?_s AEs + AnJAls, F) AJ

(substituting II-3.{28] for the last term)

ABs s) (AFs*Afs+ AN ES
(Ag- M EslARs+ Afs + Ay A ;))

(distributing over the sum in the last term)

-1

- (s 5 (A A+ Andas 5 'As - 1
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(distributing over the remaining sum)

-1
-1 -1 -1 -1
_|AEs, s) ABSAS,FS) As+AFs, s) ABsA(s Es) As
-1 -1
+AFs, s) ANA[S Fs) As-

I1-3.[30].
Let us simplify the first term in the parentheses of the RHS of 11-3.[30}:
- =TI
s Es)=EAgand A )= ASE =
-1 -1 1l _r(_r)" -
AEs s) AEsAlsEs) As= As E EASEIE) Ag Ag
=1
[1-3.[31].

The second term in the parentheses of the RHS of 11-3.[30] may similarly be rewritten
as:

-1

-1 -1 -1 -1 -1
AEs,s) ABsSAlS,Fs) As =Ag E A’F‘_g(ﬂ As Ag

- g EAgs(E)
11-3.[32].

Finally, the third term in [1-3.[30] may be replaced by:

-1 -1 -1 I LR
AEs,s) ANA[SFs) As =As E Au(ﬁl) As Ag

- Ag.lE-l/\N(Ej)

I1-3.[33].




Substituting I1.[31]-[33] in the parentheses of the RHS of I1-3.[30] vields

Ag Als, EsI(AFs + AFs + An) A, §

“ag EagglE] - ag ' HM)

[1-3.[34].

Substituting I[-3.[34] into 11-3.[29] yields

[1-3.[35].
Therefore, we may write that
-1 -1 T -1_
AE =A§ + E (AF’S-FAN) E
I1-3.[36].

Expression I1-3.[36] is for the case where k=k' and F is invertible only. Let us now
show that I1-3.[36] also applies to the general case. From 11-3.[28], we may write that

(Ag" . ET(A-F-_S+ Au)-lE)A
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-1 _ -1_
=(A§ - E (Ags+ Ay E)
-1
x(Ag- Als, EslAEs * ABs + An) A, g)

(distributing)

=1 -ET(A§_5+ A‘p'_s+ Au);IEA§+ E'T(A‘ls'_s+ Au)-lﬁl\g

3
8
5
agQ
i
>
i
|
o
<
>
%
+
>
oot
+
>
P4
|
>
[
(2]
+
>
=
-1
5
(¢}
&
o]
3

I1-3.[37].

For a given cross-correlation matrix, entropy is maximized for a Gaussian distribution.
Therefore, from [1-3.[28]

hiS!Y) < hB

| s‘k'ln(2:n:e)+ %ln( IAED



(using I1-3.[36])

<k' ln(Z:r.e) > Ln('/\s + E (AFS + /\_) ')
I1-3.{38].
The mutual information between S and Y may therefore be lower bounded by the

following vector analog to I1-3.[21]. We manipulate our expression so as to obtain a
form which will easily be comparable to the upper bound:

l@;_)>—ln(|/\s‘l/\s ~ ET(AE+ I\E)—IE ')

(using the fact that IABI =!Al IBI)
ln(

Theinterpretation of the above bound is as in the single sample case. The RHS of II-
3.[39] is the mutual information between the input S to a known channel F with
independent additive Gaussian noise N of correlation A & Fs + AN Indeed. let us call

LS Kl

- E'(Ags+ Ay FAg D

I1-3.[39].

Y the output to that channel. shown in Figure II.10.

(72}

'
-

#
-

Figure [1.10 : Channel with mutual information between input and output equal to the
RHS of I1-3.[39].

The mutual information of the above channel may be expressed as

(s:9)=hs)-n(s1¥)
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= h(S)- h(E)
11-3.[40]

~ . . . . » . . ~
where E is the error in estimating S from Y. The correlation matrix of E may be

expressed. from standard estimation arguments. as

11-3.[41].

Combining I1-3.[41] and 11-3.{40] yields the RHS of II-3.[39]. Note that we may also
write the mutual information between S and z as

i(s;9)=n¥)-n¥1s)

| —

u\( FASE + Afs+ An ” -%1“{|AE§+ AED

1 - T T
=.2_m( (Afs+ An) EASE +1)
11-3.[42].
Therefore, from our interpretation of 11-3.{39], we may rewrite the RHS as
. 1 - T
IS;: Y25 [(Afs+ Ay EAE +1
11-3.[43].

[1-3-2-b-b- An upper bound on the maximum achievable mutual information between
Y and S.

Obtaining an upper bound to I(Y;S) is a straightforward extension of the single sample
case. Expression [1-3.[22] holds with the appropriate modifications to take into account
that we are in the multi-dimensional case. The RHS of II-3.[22] is

kln(Z‘te)*';—ln(lA(E,L Bs+ Aun if we are in the real case. The expression

analogous to [1-3.[23] 1s
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(using the fact that the inverse of the determinant is the determinant of the inverse)

|

1 -1
=7‘"(|Au AE+Bs+!

(rewriu'ng AFE+D §)

-
’5
>
1z
o
>
s
=)
1
>
|Z
>
I
7
+

[1-3.[44].

The above bound is equal to the capacity of the channel that would result from sending a
Gaussian signal with covariance matrix A(E_,_B s in an AWGN channel with noise

variance A \. Therefore. as in the single dimensional case, we may interpret the upper

bound [I-3.[44] as the case where the only effect of the measurement error is that of extra
transmission power. In the limit as A?S — 0, from II-3.[43] and II-3.[44], we have

|

Note that the condition A§ g — 0 may seem to be a fairly strong condition. However,
an equivalent condition i: Enat tr(A‘l_‘:_‘§) — 0. Since AE‘§ is positive semi-definite,
requiring that U'(AE §_) — 0 is equivalent to requiring each individual term in the diagonal
of A‘I_:-_"_S_ to go to 0. Indeed, if the diagonal terms of AE§_ are O then, since AE§ isa

_]_ — -
ux;i)—»;—ln(l AN EAGE T

I1-3.{45].

covariance matrix, the off-diagonal terms must go to O also.

In the following section, we shall use these results for channels with a measurement error

to determine some general properties regarding the loss of mutual information from not
knowing the channel at the receiver.



II-3-3- The relation between the rate of chance of the channel and loss of mutual

information from not knowing the channel at the receiver.

In our previous discussion. we have simply considered that a channel was perfectly
known or known with some error without making any assumptions about how the
channel changes in time. In particular, in section II-3-2, we simply assumed that we
have a measurement error on the channel without concerning ourselves with the origin
of the error. In this section. we make some assumptions regarding the general structure
of the random process by which the channel evolves. We obtain results where the loss
in mutual information due to not knowing the channel at the receiver is related to
parameters of the channel. In particular, we relate the coherence time of the channel to

the loss in mutual information from not knowing the channel at the receiver.

Our intuition suggests that. if we know the general structure of the channel, the speed at
which the channel changes determines to some extent the error that we have in the
measurement. [n this section, we therefore separate the case where the channel is
constant or is time-varying in some deterministic manner from the case where the
channel is a random process. In the first case, we can hope to measure the channel and
thus compute the capacity by considering our measured channel. We must restrict
ourselves to certain types of channels, because we could construct an arbitrary time-
varying deterministic channei which would thwart our efforts at measurement. When
the channel is a random process, we cannot hope that repeated measurements will lead
to an arbitrarily accurate estimation of the channel because, as time elapses between
measurements, the channel changes stochastically. Again, an arbitrary stochastic
process is unlikely to yield interesting results, and therefore we concentrate on a fairly
general model, the u'h order Markov channel, which includes the common Gauss-
Markov model. We consider the taps of the channel to be real for ease of exposition,
but all the results can be readily extended to the complex case.

I1-3-3-a- Case of an unknown time-invariant channel with known distribution.

Expression 11-3.{7]

(Yo Sapl B - (¥4 S2 = W{E™ 1 o) - WE™1 850 Yao)
[1-3.[7]

7
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indicates that the difference in mutual information between input and output when we
know and do not know the channel depends on the difference between the accuracy of
the channel measurement when the output only is considered versus the accuracy of the
channel measurement when both input and output are considered. How well we can
measure the channel will depend partly on how it varies. Let us consider the extreme -
case where the channel is unknown, with some a priori distribution, but each tap that
describes the channei does not change with time. Intuitively, we know that if we were
faced with such a channel. we would first measure it at the receiver with arbitrarily
good precision by repeatedly sending a known signal and then transmit data once we
had a satisfactory measure of the channel at the receiver. Such is the principle behind
the actual practice of "sounding" the channel. As the number of data symbols, 2k,
becomes very large, the effect of the symbols "lost" to the channel measurement will
become negligible when we look at average mutual information per symbol. However,
there is a residual loss per symbol, owing to the fact that the initial measurement of the
channel is not perfect. We shall now quantify the notions of vanishing loss from the
initial measurement and of per symbol residual loss from the measurement error. We
assume that the channel may be described by a finite number A of contiguous taps, that

the channel has an apriori distribution, and that its entropy is not infinitely large.

Theorem II-3.] : Let F°K be an unknown time-invariant channel with a known finite
number of taps A, known apriori distribution and additive Gaussian noise. Let S-i be

a stationary, Gaussian distributed and power limited input to the channel with an
arbitrary correlation matrix. For any positive €, we may choose a probabilistic input

So whose corresponding output we denote by Y-y’ such that for all k large enough

. 2K "
I(sz- Soxl Ezk ) - “sz' ‘Sz")) <t

[1-3.[46].
Proof:

We choose the signal Sai' sent by the sender, which does not know the channel. to be
such that at any time i S'[i] is either a fixed sounding pattern or S[j], where j is defined
below. The sounding pattern is known at the receiver. For simplicity, the sounding
pattern we choose consists of a constant tone of power AP for one sample followed by

a nil signal for (A-1) time sampies. Since our channel is time-invariant, BDoppler is nil,
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so we may choose W and Winput to be the same. Therefore the sender can send this
sounding pattern. Such a pattern of constant tones satisfies the average power
constraint. The sender repeats this pattern ko times. The transmitter thus spends k; =
koD time sampies transmitting a sounding signal. Figure [I.11 shows the real part of
the sampled received signal without noise, vi,, for the first k; samples. It then
transmits using S'(k)+i] = S[i] for i>0. Thus, the output Y" to the input S' is identically
distributed with the output Y shifted by ki in time. We assume the receiver knows the

sounding pattern and k. but does not know the input sample values after time sample
Kkj.

.
sampled time

ky=koA
Figure II.11 : Real part of the received signal vy, (before noise) for the first k| samples.

Since the channei does not change, all rows of EX are identical aside from the shift of
terms. Similarly, all rows of Fk.2k are identical aside from the shift in terms. Let us
denote by Y '»y the output corresponding to the input S '»;.. By averaging the statistically
independent channel outputs Y'[1], Y'[A+1 ], s Y[(ko-i)A+1], we may obtain the real
part of the first channel tap, FA-A[1}, an estimate which we denote by

Ko-1
an EO E[JA + l]

[1-3.[47].

The variance of the estimate is the varniance of the error
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Z Var(_[lﬂA]l a8r

1=0

Vm-?m%qu“AUﬂ=

ko AP

9

kAP

[1-3.[48].

We may similarly obtain the error variance of our estimate for each component of each
tap of the channel. Let us denote the error by the matrix E, in keeping with the notation

of section II-3-2-b. We shall prove several inequalities which, together, will yieid II-
3.[46].

Let us show our first inequality. Since k; is fixed, for all k large enough, we may write
that:

€
3

11-3.[49]

I(szSS.zkIEn) ((SkkfskzkkJ (Ykk,Ykzkk (Fkk‘ Fk 2""))
2%k 2k- 2k1 —

since the input distribution is stationary.

Let us now show our second inequality. For large enough k, we may write that:

/ , (hk,.k Ak+ky, Zk) \
(8, 0 Sk, 263 (Y, 0 Y, 2 WE L E

2k-2k 1 €

akpk o kvk, 2K
(( ke Sk, 2i) 3 (k0 Yook, 20 (E " E ))

) = /

[I-3.[501].
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Moreover.
[(Slax: Yiok) = [((ik vk Sk, 2x) 3 Yo k)
(since the first k| inputs are known)

= l((i'.k ok Stk 26 (ko Yok, 26) Yok Yk ok ,))
+ l((ik v ek, 2 (e Yk ek ,))

(using the fact that the second term is zero)

= l((s—k v Sk 2k) Xk e Yokek, 26 (Y, Yok kok J)
(since (Sik, o Slkek, 2 and (Y, Y, k+k ) &re independent)
=h(S"y, o Slkrk,21)- h((i.k o Sk, 21! ﬂzk)

~knk Lk+k, 2K
since Y 5, fully determines {F E

=h(S'y, o Sk, 24)

‘ , ' (,.k..k k+k Zk)
B8k, o Sk, 26 | (Yik, 10 Yy, 2p\E L E
_ ke k kv, 2K
(smce (S'k o S kok .2x) is independent of (E_ ,E ))

: . (-k.. k _ k+k, zk}
=1 ('S—k n S kik |'2k) ;(ik\- o Xy " 2k)| F E

[1-3.[51].
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Dividing the RHS and LHS of 1I-3.[51] by 2k. we obtain from i1-3.[50] that. for large
enough k:

' (,,k..k krk, Zk) \
(8k, 0 Stkek, 2+ (Yok, o Yoo, ) WE L E
k2K, .

J(8lac Yo

. )

Expressions [I-3.[49] and 11-3.[52] may be interpreted as stating that, regardless of
whether the channel is perfectly known or estimated through measurement, the effect of
the first k) symbols is negligible when we average over sufficiently many symbols. Let
us now show our last inequality which will relate I1-3.[49] and II-3.[52] so as to yield
11-3.[47]. We now must show that

11-3.(52].

( l((-s-k-k{ Skack )i (Yuky Yie2uk)! (Ek'k Vg ') ) \
2k‘2k t - ) €

-~ k+k 2k
(( ke Sk, 21) (Yo, 0 Yoo, 20) E ( ))

\ |

for large enough k| and k.

[1-3.[53]

Since a Gaussian distribution maximizes entropy for a given covariance matrix, we
have that:

l{(§k-ka Se2kk) (Y, Yiexx)! (Ek'k ' ES 2""“) )




(since Eand E are independent)

et |

(from the concavity of the in function and the fact that F is zero mean)
T U AT
1 AN _A SE- + /\'F:"S +1

Moreover, from II-3.[43], substituting F for F, since F is an unbiased estimate of F

- ~ ~~ T
AN B+BAGE+D +1

S%E'E‘

11-3.[54].

(Ak-k. k. 2k-k,)
N(Sik 0 S ki, 20) i (Yew, Ye2ek)\E L E

)l

m(I(A3+ An) BAGE +1

> 1Ep
[13.(55]

since S is Gaussian.

From II-3.[54] and I1-3.[55], we see that, to prove I1-3.[S3], it is sufficient to show
that

mk}kl ln( (A'l.':"—+ AE) EA_S_ET*'L

T YA AT
Z4{T}k|—,ln(l\ﬂ l(EAgE +A:§) +1

[1-3.[56]
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for large enough k; and k.

In order to prove 1I-3.[56]. let us show that

|

T
AS + F‘,"g) +L

~

l - da AT

fln(l(A§+AN) EAGE -1
| - 1 -l

=2 Au -2 Ar_\l. AE§ +L

To prove I1-3.[57], we may consider the following channei. The channel has

™
)
>

[1-3.[57].

independent Gaussian inputs §; and S, with covariance matrices E A S ET and AFg,

respectively. The channel has additive Gaussian noise N. Let Y be the output of this
channel. Figure I1.12 shows our channel.

Sy

\/T\ -* r
/\U

S;

Figure I1.12 : Channel for the proof of II-3.[57].

Let us look at the mutual information between the input § | and the output Y . Since S,
and S ; are independent, S , acts as noise to S | in the expression [(S,:¥ )

-1
[(S,;Y )=%{ﬂ(l(l\u+ A'E_S.) EA§_ET +1

[1-3.[58].

We may write that
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[1-3.[59].
Since the inputs § | and § ; are independent.
1 -1
[(gz;x |§l)=2 AN /\'f:'s +1
[1-3.[60].
Moreover,
Sz S):Y )=hY |- hiN)
[I-3.[61].

~ AT
Since the covariance matnx of Y is F AgE + AFg+ Ay and Y is Gaussian, we

may rewrite [[-3.[61] as

From combining I1-3.[58], and I1-3.[60] through 11-3.[62], we obtain II-3.[57].

“Ha AT
Sz S):¥ )=54n(|/\u st agd 1

[1-3.[62].

Using Hadamard's inequality,

A A
Zl Va:(EA A[l]S) > Var(EA A[.»fk]s)
i= 1=t
s%ln 1+ - +-2k—ln L+ - -
0.\' GN

(since Eand S are independent, § is stationary and Eis zero-mean)




A a8 2 A a4 2
2E  fiog SE fi+k]og
k 1=l k ]_n 1=1
-fh] 1+ 3 +5 I+ 3
Oy O\

(using [1-3.[48))

2
Os
=kInl l4+——n-
koAP
[1-3.[63].
For large enough k and ko. with k>ko, we have that
2
o k'k]
kinf 1+ S < A 3 F
koAP
(from I1-3.[63])
- n{]A —IA"" + [l)s :
TR AN AEs +l=3
[1-3.[64].

Combining [1-3.[57] and II-3.[64], we obtain I1-3.[56] as desired. Hence II-3.[53]
holds.Cascading [I-3.[49], [I-3.[52] and II-3.[53], we obtain II-3.[46].

Q.E.D.

We may easily extend the same analysis to the case where the channel is periodic, in the
sampled space, with a period p known at the receiver. Given the typically random
nature of our channel, such a periodicity is unlikely and we shall not consider it beyond
the following corollary. We just perform the same analysis as for the time-invariant
case but with a spacing equal to the period in between measurements. We first measure
the first tap of the first period by transmitting over one time sample and then being
silent for D-1+pD samples and repeating this operation kg times. We then measure the
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second tap of the first period in the same manner, etc... After measuring all the taps for
the first period, we measure in the same fashion the taps of the second, third. ... pb
periods. Similarly. we may extend the analysis when the channel is a sum of periodic
channels, whose different periods are known. Indeed, a sum of periodic channels has
itself a period equal to at most the product of the periods of the channels. Therefore, we
may state the following corollary.

Corollarv [1-3.]:

Let E2K be a channel with a known finite number of taps A, known apriori distribution
and additive Gaussian noise. Let F2K be periodic with finite period p in the sampled
time domain. Let S~ be a stationary, Gaussian distributed and power limited input to
the channel with an arbitrary correlation matrix. For any positive €, we may choose a

probabilistic input S-i whose corresponding output we denote by Yo' such that for all
k large enough

[1-3.[65].

If the sampling rate is large enough with respect to the Doppler spread, this case may
approximate the multipath channel with fixed Doppler shifts and fixed path amplitudes.

We have shown that the fact that the channel is unknown at the receiver does not reduce
the mutual information with respect to the case where the channel is perfectly known.if
the channel does not change in time. Our argument relied on sounding the channel for
an arbitrarily long time. If the channel were to vary in time in a non-periodic manner,
this measurement method would not be applicable. Therefore, we suspect that we shall
lose some mutual information per symbol to not knowing the channel at the receiver
“and that that loss of mutual information will be related to the manner in which the
channel varies. We also suspect that, as the channel varies more and more "slowly" (we
shall later give a precise definition of what we mean by "slowly"), we shall lose less
and less mutual information per symbol because of not knowing the channel at the

receiver. The following sections shall quantify our intuition.
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1[-3-3-b- Case of a channel modeled as a stochastic process.

We determined in the last section that. if the channel is time-invariant, we do not lose
mutual information owing to not knowing the channei at the receiver. Our purpose in
this section is to determine how the channel variability impacts the average loss, in
mutual information per transmitted symbol. due to not knowing the channel at the
receiver. Throughout this section, we use the notation of II-2.[24] and II-2.[25] with
complex numbers, rather than the notation of 11-2.[32] and I1-2.[33]. Therefore, we
have k complex sampies rather than 2k real samples. If the channel is close to static,
then the previous section leads us to believe that we do not have much loss from not
knowing the channel at the receiver. We suspect that the loss may be more significant if
the channel experiences dramatic variations. But quantizing the variability of the
channel is in itself a difficult task. For instance. a channel may vary rapidly and
significantly butin a predictable manner. In that case, our result in corollary 1I-3.1 on
channels which are periodic in the sampled time would indicate that not much mutual
information is lost by not knowing the channel at the receiver. If the channel is not
easily predictable, it is still difficult to characterize its variability. We use an information
theoretic approach in order to present results independently of implementation issues.

Let us assume that the channel has a stationary and ergodic structure such that any row
F-i depends on at most p past rows, i.e. that Fi\i conditioned on Fi-#.1-1 is independent
of Fli-w-l_ [n steady state, this is equivalent to stating that for any k > i+m, Fi
conditioned on Fi+! i+ is independent of Fi+#+1.X_ Such a model is that of a uth order
Markov chain. We shall in the sequel use the second definition for convenience.
Markov models are often used to represent channels ([Gil60], [Fri67], [AFK72]) and
in particular mobile channels ([McMan70], [Gol94]). Markov models offer great
accuracy of representation, albeit at the expense of added complexity. We may note that
our model does not assume that we have a finite state Markov channel, and therefore
the existing coding theorems for Markov channels are not applicable. As mentioned

before, appendix B gives the appropriate coding theorem for special class of Markov
channels.

Our purpose is to obtain limit results for the loss in mutual information, per transmitted

symbol, due to not knowing the channel at the receiver. In order to accomplish this, we
first express



(¥ St EY- 1y 9= [EX 8,0 Y

| [1-3.(5]
as a sum. Our motivation is to obtain a summation of terms, each of which has a limit.
Thus. we may obtain an ensemble average limit by simply taking the limit of the
components. We assume that the channel is stationary and ergodic.

Let us first establish some properties which we shall use in our proof. The main
property we shall use to prove our theorem is that F! is independent of Y{i+1] and

S[i+1] given Fi+!.K S;.and Y;.

Lemma II-3.] :

h‘Eilf_M € Y[i+1] Si+1} Y, s) h(F By §i)
- [1-3.[66)].

Proof:

In order to see why [I-3.[66] is true, we may write the following entropy expression,
using repeatedly the fact that h(A, B) = h(B) + h(AIB):

h(g E'NE Y1) Si+1] x,,gi)
=h( 1 1+lk Y[l+l} Sﬁ+1]|Y,,S) HlkIYivS-i)
- h(S[“'l]IEm‘kv Y;, §i)' h(Yt“"l]IEM.k' Y. S, S[i"'lj
_ h(Fx+l le“ s )+ h(F 1Y, S, E FH-I k)
~ I itlk i oitlk
+hiSi+1]1Y,, S ELET T+ b+ 1]1Y,, S, SE+1} E' L E

ET Y ) Hspe BT YL ) - WYE ETEL Y 8L S
11-3.[67].

o cm - e o



Let us show that the fourth and last terms in the above expression are in fact equal.
[ndeed. if we know the channel response at time i+1. the output up to time i and the
input up to time i+1. knowing the channel response at time i tells us nothing further
about the channel output at time i+ 1, since the channel is independent of both the noise
and the input. More rigorously, we may write that

o Y1) BN B SEe1} Y, 8
_ h(EiH'iH&m . N[H_l]'EH»l.k’ E Si+1] Y, §i)
(using independence)

_ h(EM'M&H . N[x+l]l£”l’k. SE+1} S, Xa)

= h(Y[m]l E*X sfie) 8, x,-)
1-3.[68].

Note that the conditioning on Y; on the RHS of II-3. (68] could be removed because of
our independence assumptions.

We may similarly show that the third and sixth terms in the RHS of [[-3.[67] are equal
because the input is independent of the channel. Moreover, the first and fifth terms are
equal and cancel. Therefore, canceling pairwise the fourth and seventh terms, and the
third and sixth termsi in I1-3.[67], we obtain II-3. [66].

Q.E.D.

Let us now express the loss in mutual information due to not knowing the channel as a
sum. We may write that, from expression [1-3.[6],

(¥ S EY- 1 s =blES 1Y) - E TS, v

where, using the fact that h(A, B) = h(B) + h(AIB), we may rewrite the first term as



o(EXE v+ ES 1Y, E4Y)
and from [I-3.[66], we may rewrite the second term as

- h(Ek.kyl §k’ ik) . h(Ek-l : Sk_l, Xk-l’ Ek~k

Therefore, we may write that

‘(kas 'F) (Y Sd=hlES 1Y)+ h(F“ 1Y, ES )
'h(Ekk@k- Xk) - (E Sk Yen E E“ k)

(rearranging the terms and repeating the same manipulation)

_ h(Ek.k[Ik)_ h(Ek.kES_b lk)
- h(f.k'l'k_l Yo Ek'k) * h(f.k'l'k-l S Yo E°F
e b{E Y B E"? S Yieo B

(using repeatedly the fact that h(A, B) = h(B) + h(AIB) and I1-3.[66])

k o . o .

_ Z [h(Em Y, Ex+l.k) i h(El.x S, Y, En-l.k]
i=A

fE e B S Xa o B

(using the fact that the channel is uth order Markov)
; i i+1.k i o

= Z h(El.l Y, EH . )_ h(Ex.l 1S, Y, Ex+l.|+u)]
i=A

,+h(g" h(F NSa 1 Ya F‘“‘)

I1-3.[69].
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11-3.[69] expresses the oss in mutual information due to not knowing the channel as a
sum over the number of symbois transmitted. Using such a form, we shall in Theorem
I1-3.2 find a limit for the information lost per transmitted symbol by finding the limit of
each term in the sum. In general, the term in the sum in the above RHS of [I-3.[69]
may or may not reach a limit. Therefore, we make the assumption of stationarity for the
channel and the input. Under this condition, we may state the following theorem.

Theorem [I-3.2 : Let EX be an unknown time-varying channel with finite number of
taps A and a known apriori stationary distribution. Let any row Fi-i conditioned on

Fi+l.i+1 be independent of Fi+u+1.k and let h(Ei'i I'Y[i} S S, E™lS o Let

the input Sy be stationary. Then

(Y S EY- 1Y4 S
k

k—>

i+l.k 1,1 1+1.0+n
- k_.w("(— e BV EN YL E §))

I1-3.[70].
Proof:

Let us first consider the first term in the sum of the RHS of 11-3.[69]. For any given
i<k. let us define x,  as

ii 1+1.k
Kig= h(E Yo E )
I1-3.[71].

We see that x; i is decreasing in k from the fact that conditioning decreases entropy.

Moreover, the following lemma shows that «; i is bounded below by a quantity
independent of k.

Lemma {I-3.2 :

h(E“l_Y_k, Ei+l.k)2 h(Ei'ilY[n] pirline s, Fi!



g7
I1-3.[72].
Proof: The proof is relegated to appendix A.

The RHS of II-3.[72] depends only on i and is not -, from our assumption that

hE“lY[x] _E'H'H". S, E""""l > -. Therefore, since K; i is decreasing in x and

bounded below, lim k. K, i exists and is denoted by «;.

Since conditioniing decreases entropy, we see from [1-3.[71] that the elements Ki,i+j are

decreasing in i for any fixed positive j. Indeed, from stationarity,
h(Ei.ilEn-l,iﬂ" Xw‘)= h(El—l.l+l|EI+2.i+j+l' Xz.i+j+1)- The RHS may be lower
bounded by h‘EM'hl g Xu,‘u)’ because conditioning decreases entropy. For

any i, we may express K, as the limit in j of Ki i+j- From our discussion, the elements k;
are decreasing in i. From [1-3.{71]-[72], we see that for i larger than A and u, we may
write that

Ki > b(Ei.i | Y[l] El-f-l.l#-u’ ii, Ei-u.i-l)

(using the fact that the input is independent from the channel and the noise and that the
channel has finite time spread and the channel is ulh order Markov)

= h Ei.i | le} Ei+l.i+u. il_A.l, Fi-u..i-l)

[1-3.[73].

Hence, x; is lower bounded and decreasing, and therefore it reaches a limit which we
denote by k.

Let us choose an arbitrarily small positive €. For j large enough,

€

IK K]-IS
4

i.i+}

[1-3.[74]
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for all i and for all j>jo. Therefore. we may choose an ig such that for all i>ig and j>jo,
we have that

|Ki i+~ K|S '8-
) 2
[1-3.[75].
Hence, for all i>ig and k>10+j0,
k ig-1
2 Ky 2 Kiy
i=1 1=t - l(js <
—_—
T TR TR )
[1-3.[76].
Therefore, we may write that
k . A
Z h(Ex.x | Ib Eu-l.k)
lim lim {i=1
=K
1= k—>a k
[1-3.[77].

Let us now consider the second term in the sum of the RHS of [I-3.[69].We can see,

from the stationarity of the channel and input and the fact that entropy is reduced by
conditioning, that the elements g; given by

g=tlE 1Y, BT s,
[1-3.[78]

are decreasing in i. Moreover, since conditioning reduces entropy,

h.(_Ei'il 1+l Jd+p S ) F F“Lk, §|)

(from I1-3.[72])
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> h(EHIY[ll §_., Ex-v-l.l—u‘ El-g_l.l

11-3.][79]
hence g has a limit. which we denote by C. Therefore.
K 1.1 1+la+
> HE v, BT,
lim lim | =1
11-3.[80].
Combining [1-3.[77] and 11-3.[80] yields [1-3.[70].

Q.E.D.

The RHS of II-3.[70] may not be easy to evaluate. However, since conditioning
reduces entropy, we may write that for k large enough

h(f.i'ilik, Fm.k’s h(El.l v, Ei+l.i+p.

I1-3.[81].
We may substitute [1-3.[78] into [I-3.[67] to state the following corollary.

Corollary {I-3.2: Let EX be an unknown time-varying channel with finite number of
taps D and a known a priori stationary distribution. Let FK also have the property that
any row Fbi  conditioned on Fi+l.i+m is independent of Fi+m+L.K apd let

h(f_i'i Y[} Ere S, _F_i'“'i'l) > - Let the input S have a stationary distribution.
Then |

tim | (Y 8¢ EY- ¥ 8y

k—>

lim { i i . o 1is
< 1 h(E .llxi, Ex “'u)-h(Ful_Y_i, EI .1 u’ §‘)}

11-3.[82].




We may also write the RHS of [1-3.[82] as (I(F” S.1Y, Ehl.l-o-p,)

{—>C0 -

. Let us make

some remarks about the bound in [I-3.[82].

- First.we may potnt out that upper bound in [1-3.[82] is exact if the S[i]s are 1ID and

the channel has a single tap. Indeed. conditioned on Y, and Ei+l.i+u‘ Ei'i depends on

Yi.ixand E
equality.

i+p+i .k

only through the estimates of S;. Therefore, [I-3.[82] holds with

- Second. we may show (see appendix D) that for the bound of II-3.[82] to hold with

lim  lim (h(xhl_ki g l\) h(Y. I lehz )) being 0. The

equality is equivalent to -
difference between the bound of I1-3.[82] and the equality of I1-3.[70] can therefore be

reduced to the difference one extra initial measurement makes.

o k—®

- Third,using the expression for the limit of an average, we have that

lim i j+l.j+u’
(l > IEY: s, E

i+, |+u)
=0 =1

li .
im (I(Ex.l; -S-i | X F

1—>00
(rewnting the mutual informauons as differences of entropies)

_ i i+l N j+l.j+p)
= h(F o E , h(E 1Sy X, E

(using on the first term of the summation the fact that conditioning decreases entropy)

l_z h(EH ! va £J+I.|+u) _ h(EJ-J | -S-j’ Xy E_]+|._|+y,
! i
J=

lim

._.w

(using the Markov property on the second term of the summation)
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j HE . . L . .
%‘2 h(EJ-J | X_js EJ«-I.H-.U) _ h(E.M | §.j! Xja El+|.j+y’
J=1

lim

=
grouping the entropy terms into mutual information terms)

- =)

= im (I’Z I(FJJS lIi’ EJ L UJ)

(using the chain rule for entropies)

hi e
m (l_ I(Fl; §_-.|X., Fx 1.1 u))

|~

{1-3.[83].

Therefore, our upper bound to the average loss per symbol due to not knowing the
channel at the receiver is not stronger than the upper bound given by assuming that we
know the final m sample values of the channel. These two remarks simply give a flavor
that these limiting arguments for the foss of mutual information per symbol due to not

knowing the channel at the receiver are affected by any assumptions of initial or final
knowledge of the channe].

Even though we obtain a fairly simple upper bound, computing it in general may be
difficult. Out uth order Markov modef allows for many different probabilistic channel
descriptions. We shall therefore give an example of a fairly common model which is
tractable enough to yield a tight upper bound. In the next section, we apply corollary I1-
32to obtain some limiting results in the case of a Gauss-Markov channel. The
complexity of obtaining results even for this relatively simple model suggests that more
complicated uth order Markoy channel models might be best dealt with by using
mathematical packages or by approximating them as combination of u'h order Markov
channels. We suspect that some of the insight that is gained from the Gauss-Markov
model may extend to more general uth order Markov models, although proving it may
be computationally intensive.
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1I-3-3-c An example of how the coherence time is related to the loss in mutual

information due to not knowing the channel apriori_at the receiver.

Expressions I1-3.[70] and 11-3.[82] show some sort of dependency between how much
the channel changes from sample to sampie and how much mutual information is lost
per symbol owing to not knowing the channel. As an important example, let us
suppose that the channel can be described by a Gauss-Markov model for the individual
terms of the channel response matrix. As in I1-2.[25], F[i, j] for I<i<k and i<j< i+A is

the real part of the response at time i to the real input at time j and F[i, j] for k+1<i<2k
and i-k<j< i-k+A is the complex part of that same response. We shall restrict ourselves

to real inputs for simplicity of derivation. We look at the limit as k goes to . and the
arguments here are independent of k. The taps evoive as:

Fi.j]= ofi-1.j-1]Fi-1.j-1]+ Zf-1.j-1]
11-3.[84]

where {Z[i,j]} is a set of zero-mean mutually independent Gaussian random variables
independent of the noise. The random variable = is commonly known as the innovation
term. The assumption that the Z[i j] are independent implies that the taps of the channel
are mutually independent. We see that we satisfy the conditions of Theorem [I-3.2 with
u = 1. Since we wish to consider a stationary channel, we assume that, for each j such
that O<j<A (for the real components of the taps) or k+1<j<k+1+A (for the complex
components of the taps){Z[i,i+j] | i=0} is a set of [ID random variables. Similarly, we

may express the expected power of the innovation in terms of the expected power of the
channel by writing:

E[F.iT]= E[(a[.-l,j-lpzm-l,,--lf; E[n-u-lf]

(using the fact that the expected power of F is unchanged by the same shift in both i and
j because F is stationary)

eE[Eﬁ-l.j-l]z]i(l -(a[.-l.j-l])z)E[Fp-l,j-l]z]

I1-3.[85].
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Since the expected power of F remains constant after the same shift in both i and J. the
expected power of the innovation term is also unchanged by the same shift in both i and
J» l.e. our stationarity assumption requires ai, i+n| to be a function of n only. In the
following, for the sake of simplicity, we shall take the different values that a(i,j] takes
for different i and j to be constant and denoted by a. We could extend our discussion to
the case where a takes different values for different i - j.

The term a indicates how fast the channel decorrelates. Indeed. we may find the term a
by writing:

E[Fp-1j- RG] ElafLi UL )R- L] - Li-1] 11
E{Fp7] E[Fp.i7]

(using the fact that the term = is zero-mean and independent of past F. and the fact that

the expected power of the F term s unchanged by the same shift in both and j)

- ofi-1,j-1]

[1-3.(86].

" The form of the constant a depends on the channel coherence time, Teoherence. We
choose apriori a level of decorreiation, ¢, through which to define our coherence time.
We denote by ¢ the value of Efffi-m, j—mlfo,j]]

E[FiT
that the channel has decorrelated in m time units, The time the channel takes to
decorrelate, in accordance with the value of ¢ we have chosen, is the coherence time.

Therefore, Tooherence is m/W. From I1-3.[83], we see that

which we deem sufficient to indicate

C*l!-' \V
a =y < Infa) = Infe) !

Tcohcrencew

I1-3.[87].

Therefore, if T ooherence g0€s to ., a goes to |.
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There are different ways in which to choose ¢. In general. depending on how we define
the coberence time, we shall have that T oherence is inversely proportional to BDoppier
with a proportionality constant which wiil depend on the amount of decorrelation we

deem necessary in our definition of coherence time. Coherence times are often defined
in terms of the envelope correlation coefficient for two received signals separated by Af

in frequency and At in time, denoted by p(Af, At). In [Jak], the coherence time is taken

to be the time it takes for the received signal envelope correlation coefficient to become
035. In the literature, the correlation coefficient ¢ is taken to vary from 0.9 ([CL75]) to
0.37 ([BN63}) for a time separation of T ooherence-

We consider that the real input sequence S; is composed of IID zero mean random
variables. Since the sender does not have any knowledge of the channel. such an
assumption is reasonable. If §; had an arbitrary distribution. we might not be able to
find a limit for some of our expressions. In order for our IID distribution for the S[i] to
hold well, we must have W >> BDoppier, otherwise sampling at a higher rate than
Winpui would preciude the samples S[i] from being IID.

Let us first look at the case where we have a single, real tap. Such a model will allow
us to generalize to several complex taps later without having to tackle immediately the

extra difficulty of having several taps. In the single tap case, Fi-i may be described
simply by F[i,i].

Using the fact that conditioning decreases entropy, the bound in [1-3.[82] can be further
upper bounded by:

h(F[l.i]lX_i, F['n+l,i+l])- h(F[l,i]lXi, Fli+1,i+1] §_i)
< h(FfLi]1 Fi+1,i+1]) - h(FQL.i}l Y, Fli+L.i+1] S))

I1-3.[88].

Let us consider separately the two terms of the RHS of [1-3.[88]. We have already
argued that the entropy of a random variable given a second random variable is upper
bounded by the entropy of the error of the LLSE estimate of the first random variable
from the second. Since all the random variables involved are Gaussian. the first term
may be found from the variance of the LLSE estimate of F[i,i] given F[i+1, i+1]. The
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2
1 a
inverse of the variance of the LLSE estimate of F[i.i] given Fli+1. i+1] is -
O Oz
The first term of the RHS of [1-3.[82] may be rewritten as:
2
h{FR.i]1 Fi+1,i+1]) = = Inf2re ) - 1| e &
) ’ 2 2 2 2
OF Oz
(using I1-3.[85]))
1 2l 2
=?ln(27te(l-a )CF)
[1-3.[89]

where oé is the variance of the tap.

Let us now consider the second term of [1-3.[88]. Assume that we wish to obtain an
estimate of F[i,i] from F[i+1,i+1], S; and Y;. We shall use a Kalman filter approach to
first obtain the estimates of F[1,1}, F[2,2], ..., F[i.i] from S; and Y;. Next, we shall
combine our estimate of F[i,i] obtained from the Kalman filter with our estimate of

Fi.i} from F[i+1.,i+1]. Equation [1-3.[85] gives the Gauss-Markov model for the
evolution of the channei. The Kalman filter gives us F[ix] , the LSE estimate for F[i.i]

given §; and Y;. F[i.i] is a Gaussian random variable. We can then perform recursive

estimation to use the observation of F[i+1,i+1] in order to improve our estimate of
F{i,i]. It might at first seem odd that we should use Fli+1.i+1] as just another
observation. However, the innovation term X[i,i] is independent from all previous

innovation terms and all previous channel noise terms N[1], ..., N[i]. Therefore,
performing Kalman filtering on Y; and S, to obtain F]_'u] and then using F[i+1.i+1] to

refine our estimate yields the LSE estimate of F[i,i] conditioned on S;, Y; and
Fli+L.i+11. This estimate is 2 Gaussian random varizble. Since we are dealing with

Gaussian random variables. the LSE estimate is also the LLSE estimate. Therefore, we
may write that:

. v m— . e ewe—— e w8 wm o m  s————



h{F[Li]1 X, Fi+1.i+1} 8,) = b{FR.i)- FLi]I Y, Fi+1is1] S

[1-3.[90].

Therefore. since F[u] is Gaussian, the variance of the error on F[n] will determine the

entropy h{F[i.i]l Y, Fi+1.i+1] S).

Let us denote by A; the variance of the estimate of F[j,j] given Y; and §; using Kalman
filtering. We have the fcllowing recursive expression for A, which is independent of

the values yj,

11 (s[lj)2
N 2 2 2
' op+o: oy

[1-3.[91].

For arbitrary s;, we see that it not possible to write a limiting expression for Aj.
Therefore, let us define A'; thus:

[1-3.[92].

We have the following lemma, whose proof is relegated to appendix C.



97

Lemma [I-3.3: for the channel model of II-3.[85] with a single tap and S; a sequence
of Gaussian [ID zero-mean variables, we have that for all ij>1

inf>' ) < Eg,[infn ]

11-3.[93].

We may find. as i —, the limit A' for A'; from II-3.[92]:

2

1 1 Og
—— T cr———— e ——
A 2 2 2
a A +0z Oy

2 2 2 2 202 2 2 2 2
= o.a }\'+030_\.—05a A - 0g0=A' =o' =0

2 2 2 22 ,\/

2
2 2 2 2 2 2 22 2
ONyQ - Oy—-0gO0= +405030_\-a

%A’=

2 2
Zosa

[1-3.[94]

since A'; is positive.

Let us now look at the variance, denoted by A' ';, of the estimate of F[i,i] from Y;, S;
and F[i+1, i+1]. From our previous discussion, we know that A' ' is given by the

variance of an estimate using the observation of F[i+ L,i+1] with the previous estimate
of F[i,i]

2
1 1 a
— T em— e erm—
)\'”‘l ;‘-i 2

O=

[1-3.[95].

Therefore,




WFR)I Y, Fi+1.iv1} 8,) = £ n{27en )

11-3.[96].
Let us define the following :
2
l 1 a
— S — - —
xvvvi )‘-'I 2
Oz
2
Y . ( z) 2
1-a O
I[1-3.[97].

We have, from appendix C, the following lemma.

Lemma [I-3.4 : for the channel model of II-3.[88] with a single tap and $; a sequence
of IID zero-mean variables, we have that for all i>j=1

infr"" ) < Eg [infx ]

I1-3.[98].

Therefore, from 11-3.[96]-[97],

h(Ffi.i]1 X, Fi+1.i+1} Si)s %-ln‘(z:tei\"' -l)

[1-3.[99].

Hence. we may write the following theorem.

Theorem [I-3.3 : for the channel model of II-3.[88] with a single real tap and §; a
sequence of real [ID zero-mean real variables, we have that




lim ( Y, EY- I(Xk;§k])< L, ‘1-a3)ozF >

<= -
k 2 n

k—oo

[1-3.{100].

Proof.

Combining Theorem 11-3.2, 11-3.[89], I1-3.[97] and I1-3.[99], we obtain

lim

k—x

{¥e Se Y- 11y, §k))
k

b

-

lim 2 a

1 ( 2) 1 1
< =Inl2te | l-a O |- 5Inf 2te | —+
=] 2 2 A 2) 2
' \la fog

(using the continuity of the functions involved to bning the limit to A';)

[1-3.[101].

Expression I1-3.{100] follows immediately.

Q.E.D.

[ia¥o;
Let us look, in the limit as @ — 1, at the behavior ofﬁ From [1-3.[94], we

A
may write
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-

2 2 z)( :) 202 2 2
O+ 0q0¢ 1-a +4osoro_\.o.

A 0;- 1 ’«

= - - +

(l-a-)o; Zo;a-o; 2a Zo;a.(l-a-)c;-
[1-3.[102]

whose limit is + as @ — 1. Therefore, the limit as @ — | of the RHS 11-3.[100] is 0.
This limit agrees with our intuition and Theorem II-3.1.

[t may seem natural to consider the limit of the RHS of I1-3.[100] as a — 0. However,
if @ — 0, [I-3.[87] indicates that Toperence = O, and therefore our initial assumption

that Bpoppler<< W no longer holds. The RHS of 11-3.[100], correspondingly, gives a
very weak limit when a — O. From [I-3.[94] we see that the limit may be expressed as

r n 5
2 2 °

li ' 2y 2 1 (o] o]
oL (l—a)oF MR | PR Pl ol
a—0]|2 ( 2) 2 2 2 2

[1-3.[103].

Equivalently, the RHS of 11-3.[103] is I(Y[i], ; s(1] I F{i.i]), which is the capacity of an

2 2 2
AWGN channel with noise variance oy and Gaussian signal with variance O Og-

Therefore, as a becomes very small, our bound is quite weak.

Let us now consider what happens when we have several complex taps, i.e. when A >

I and each tap has a real and a complex component. We still send a real signal.
Expression II-3.[88] becomes

h(Ei,i Y, i+Li+l )_ h(Fi.i Y.

Im

< h(Ei'iIEM'“' )_ h(E“'X.’- Ei+l,i+l' S-)
[1-3.[104].
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Assuming all the taps are independent (our assumption can be relaxed with appropriate
modifications), the first term of the RHS of [1-3.[104] is. using the chain rule for
entropies.

L 1+4 S .
h(El.l | EH—I.H-I ) — z h(F[i_]]l EHI'HI- E:]‘l

=

(using the fact that conditioning decreases entropy)

1+A

sg h{Ffi.j]1 Ffi+1.j+1])

2
denoting by o the vanance of the innovation on the real part of the jlh tap,
=

which is equal to the variance of the innovation on the imaginary part of thejlh tap
and proceeding as in [1-3.[89]

I1-3.[105].

The second term of [1-3.[104] cannot be manipulated as the second term of 11-3.[88].
[ntuitively, the reason is that, for any given tap, the signal not only contributes to
reducing the variance of the measurement error in a Kalman filter, but also contributes
to the noise by multiplying the other taps. We could also perform Kalman filtering for
vectors, but since we can prove a tight bound without having to resort to such tedious
algebraic manipulations, we shall not. Therefore, we use the following bound:

1+A

3 HELY, B (FinDuy S

=

i1 i+1.0+1
h(El I‘Xi, EH- i ’ 53)2
[1-3.[106]

using the chain rule for entropies and the fact that conditioning decreases entropy. The
RHS of II-3.[106] corresponds to the case where, for each tap component., we
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eliminate the ISI. We can lower bound each term in thg s}ummation on the RHS of II-

3.[106] as we lower bounded the second term in the RHS of II-3.[88]. Therefore. we
may bound the limit as i —  of the LHS of [1-3.[104] by:

lim (h(Fi.i Y. Fh-l.i+l )- h(Fl.l Y Fi+l.i+l S))
L el =~ = i » 2

|—»c0

(using I1-3.[104]-[106}))

2 1+A

2reo: Z h(FI' 1Y, g AFLn]ga;, S -')

s—z In

(using II-3.[99] and the fact that we have eliminated the ISI in the RHS of 11-3.[106])

2 ,J 2 2.2 2 2
2 -0y 0¢050F l-a +40 sOf, O\ @

2

r,

205a or,JR 2a 2050.2(1 -a )o
[1-3.[107].

We may now apply our results concerning the loss of capacity due to channel vanations
to discuss the issue of spreading.

[I-4- Spreading in time-varying channels with memorv.

The issue of spreading is often associated with time-varying channels and one of its
touted advantages is that of extra "diversity". Loosely speaking, the time-varying nature
of the channels is responsible for fades which could be catastrophic. Therefore, by
transmitting over a wider bandwidth. we attempt to avoid being altogether vulnerable to
such fades. Such a concept is indeed sound. and spreading has been shown to improve
bit error rate by adding diversity ([FS83]). When we consider capacity results. we are
looking ataveraging over very long periods of time. The fact that spreading allows us
to average over more symbois in less time does not increase capacity.
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All of our previous discussion provides us with tools for considering the important
issue of spreading. Although spreading is seldom associated in commercial systems
with single user channels. we wish to study it for a single user before we add the
consideration of multiple access. We define the spreading of a system as the ratio of the
bandwidth used to the data rate. We investigate what happens when the spreading is
increased while holding the power and the data rate fixed. In the following, we
consider the channei to be composed of many small slices of spectrum. We assume that
the signal S along any slice of bandwidth is IID with respect to the signals along all the
other slices of bandwidth. The signal power along any slice of bandwidth is scaled
down with increased spreading to maintain constant overall input power. Note that,
since the channel has a non-zero coherence bandwidth, the response of these slices will
not be independent of each other. However, we shall later consider capacity resuits,
where we average over an arbitranly large number of symbols. In that case, it is the
average behavior that counts. rather than the instantaneous behavior. The fact that two
contiguous slices of bandwidth are correlated in their fading will imply that we have
less "diversity". However, over many symbols, the average mutual information will be
the same as if they faded independently. We may therefore arrive at the desired resulits
while remembering that our intermediary results do not hold for non-zero coherence
bandwidth. Since we do not worry about the effect of the coherence bandwidth, we
assume that each slice is narrow enough to be described by a single tap. If the
bandwidth of each spectrum slice were larger than the coherence bandwidth (which is
inversely proportional to Tspread), the taps would be spaced less than Tspread apart. and
therefore the channel slices could not be described by a singie tap.

Three remarks are in order about the spreading scheme which we choose. The
spreading scheme is optimal if we have AWGN channels. For fading dispersive
channels, we know ([Gal], pp. 431439, [Ken]), that capacity may be achieved by
transmitting very high power pulses with a very low duty factor. However, the
bandwidth over which we must be able to transmit to approach capacity may be
extremely large ([Tel88]). Such signaling assumes that we have very large bandwidth
and creates marked spikes in power. Given the limited availability of bandwidth and the
regulatory limitations on peak power, this sort of spreading may not be very practical.

The sort of spreading we consider here is over limited bandwidths and also assumes
- that we do not change the type of signaling as we spread. We merely change the

amount of energy per unit of bandwidth through multiplying the signal by the
appropriate scaling factor.
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The second remark is that, in our white noise signalling scheme. we are using all of the
available degrees of freedom. Each symbol sent corresponds to a data symbol. Another
way in which we could spread over frequency would be to multiply the data by a
spreading sequence, as is the practice in most DS CDMA systems ([Qua91]). Each data
symbol is then mapped onto several signal symbols. The distribution of the signal sent
would appear to be white to an observer who did not know the spreading code, but we
are not sending a white signal. Instead. we are sending repetition codes with impulse-
like autocorrelation functions. '

The third remark is that. when the channel is not perfectly known at the receiver but not
fully described by a scattering function, it may sometimes be preferable to have some
sort of repetition code rather than to have independent input signals along all the
degrees of freedom. The added problem is that, since we keep the total signal energy
constant while increasing the bandwidth over which we transmit, the measurement of
any portion of the channel is bound to be worse in the spread case than in the unspread
case. We have seen that. for an unknown but time-invariant channel, it is reasonable to
send bits which do not contain information but which enable the receiver to measure the
channel. Similarly, it may be preferable to repeat a data bit and thus obtain a partial
measurement of the channel as well as the transmission of the bit, rather than to send
two separate data bits. However, if we send the same data bit repeatedly, we shall
obtain good measurements of the channel. but we shall not be able to transmit much
information. There must be some trade-off between the number of data bits that are

transmittted and the number of bits that are repeated for the sake of channel
measurement.

We shall not consider this issue of signalling, but shall instead assume a signalling
scheme and consider the trade-off between measurement of the channel and number of
data bits transmitted in terms of spreading by using all of the available degrees of
freedom. Understanding the case where we signal in this manner yields some insight
which is necessary to study the more general case where we consider spreading and
signalling schemes together.
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[1-4-1- The issue of spreading for a single time sample over a channel known with a

Gaussian error.

We wish to examine whether spreading in frequency is beneficial in terms of capacity.
We denote by S the baseband symbols modulated and sent over a single slice of
bandwidth and by Y the corresponding output for that slice of bandwidth. F is, as in
our previous discussion, the multiplicative part of the channel over that slice of
bandwidth, which may have a fixed component and a probabilistic component, and N

2
is AWGN of variance o . Let us assume that F is statistically the same in each slice of

bandwidth and that the AWGN noise components on the different slices are [[D. We
have assumed that the form of the distribution of S is the same in each slice and that the
signals along the various slices of bandwidth are IID. Hence, I(S; (FS + N) is solely a
function of the SNR on each frequency slice. If we denote by E the overail input energy
per signalling interval and by n the number of frequency slices we use, I(S: (FS + N) is

. E E . : o .
solely a function of FE where - s the energy per signailing interval per bandwidth

slice. Let us therefore define the function f as

r(%: I(S: (FS + N)

[1-4.[1].

The sign of the derivative {

ET) is positive. Indeed. let us consider what happens when

we increase the signal variance by multiplying S by o, where a > 1. The mutual

information after the increase is

1S :SF + N)= [(/a$ ; /aSF + N

=I(S:SF+-N—)

Vo

[1-4.[2]

Hence. increasing the variance of S by muitiplication is tantamount to reducing the

variance of the AWGN. Since adding white Gaussian noise cannot be beneficial (by the
Data Processing Theorem)
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[1-4.(3].

If we have n slices of bandwidth such that we send IID signals with energy %— over
each slice of bandwidth, spreading over m extra slices of bandwidth means that we
send. over n+m slices of bandwidth, [ID signals with the same distribution as before

but muitiplied by %;= To say that spreading over m extra slices of bandwidth is
n+m

beneficial in terms of capacity is equivalent to saying that the mutual information
between input and output for the second system is greater than or equal to the mutual
information for the first system. Then, spreading from n to n+m slices is beneficial iff

n f(% < (n+m) f(%n')

[1-4.{4].

Note that. if we send a nil signal. the mutual information between input and output is O.

Therefore, if I(S; Y) is concave in ET then [1-4.[4] holds for all positive m and n.

Conversely, if I(S; Y) is convex, then spreading is detrimental. i.e. [I-4.(4] holds with
the opposite inequality.

However, a weaker condition is sufficient for spreading to be beneficial for all values

of %— above some threshoid 0.

If
E
e )
E
8— E _o °
n

[1-4.{5]

and
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11-4.[6]

for all i— > 0, [1-4.[2] holds as long as the variance on each slice of bandwidth exceeds

8. Figure IT-4.1 illustrates our conditions. Note that, if we have enough signal power
and enough bandwidth, we wish to spread so that we have & over each slice of
bandwidth. For instance, if we are transmitting over n slices of bandwidth, each with

signal energy 8. then along each slice of bandwidth we obtain the mutual information

. dn . . N
shown as / in the figure. [f we spread over Fn slices of bandwidth. each with signal

dn . . . -
energy 0. then each of the ? slices has mutual information shown asi' in the figure.

3 . <1 . i
dni > ni , which is equivalent to d—gl .

) o .
Figure I1.13 illustrates that the latter inequality holds. Moving away from the origin on

We see that spreading is beneficial iff

the — axis indicates that we are spreading less, since the total energyE is kept fixed.
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I(Y:S) perslice

Optimal spreading point

£
n
—

Figure I1.13: Illustration of the fact that 11-4.[4] holds for a certain range of i— if
conditions [[-4.[5] and 11-4.[6] hold.

E

Note that En s the slope of the line from the origin to the curve l(i—) This slope is

" j’i_)n—

Mutual information is maximized by maximizing this slope, which occurs in the figure

also

- Which is the total mutual information per signalling interval divided by E .
at—am=9J.
n

Let us assume the random variable F is zero-mean Gaussian, so that we may later
extend our results to the case where the channel has a known component and a zero-
mean Gaussian error. We may interpret the case where F is zero mean as a Rayleigh
channel and the case where F is a known component plus a Gaussian error as a Rician
channel. Note that, since we are considering very narrow slices of bandwidth. the fact
that we have a Rician channei does not mean that we have a single line of sight path
plus a Rayleigh component. Any arbitrary number of known paths will appear at the
same tap if we consider narrow enough slices of bandwidth. Therefore. any muitipath
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profile known with a Gaussian error will appear as Rician over a small enough
bandwidth.

We may write directly from the formula for mutual information for single variables that
I{Y;S) = h{Y) - h(YIS)
(using the formula for the entropy of a Gaussian random variable)
= h(Y) - é—E{ln(Zn:e(S 20§+ oi))]
11-4.{7].

We may upper bound the first term of the RHS of 11-4.[7] by the entropy of a Gaussian
random variable with the same variance. Hence. we may upper bound I1-4.{7] by

L [E 2 2| 22 2
I‘Y;S)Sflﬂ TOF+ Ol - TEs[ln(S Op+ OJ]
2 2
---LE S'op+ oy
-2s E 2 2
TCF'FO\

I1-4.[8].

Let us assume that the distribution of S is such that the fourth central moment of S is

. E . -
upper bounded by a multiple of the square of - Such an assumption is not restrictive,
since we assume that we have a fixed distribution for S with a scale factor. From the

lower bound - Inf1+x) < XT for x> 0, we may upper bound the RHS of 11-4.[8] to

obtain
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2EV 4 |
I [E 2 2\ | S-orjor
I(Y.S)SEIU(TOF’ (SAN < IEq - : 3
—sp+ 0y
L .

1-4.{9].

) 2
2
From our assumption that there exists a C such that E[(S - ET)}S C(E?) , we may

further upper bound [1-4.{9] by

[ 2] 2
2EYN 4 E\ 4
(S-——;CF C{—}OF
IE n <l \n
Z 1 5 1: 4 - -;2
—Op+ 0y (70;+0;

[1-4.{10].

The derivative of the RHS of 11-4.[10] with respect to i— 1s

“E E ®
Ccl-_-n— -n{,,p
. 1- 1 Hence, from 11-4.[8]-11-4.[10], we see that I(S;Y) cannot
< 2 2
\ (TOF'F 0\-

. . E . _E .
be strictly concave in - because tor - close enough to 0. it is upper bounded by a

function which approaches 0 and whose first derivative approaches 0 as ET approaches

0. Figures II.14 and [I.15 illustrate the mutual information for a Rayleigh channel and
binary signaling. More examples are in appendix E.
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Figure II.14 : Mutual information for 0,1 signaling in a Rayleigh channel with noise

variance 4, multiplicative channel variance 1.
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Figure II.15: Mutual information for 0,1 signaling in a Rayleigh channel with noise
vaniance 4. multiplicative channel variance 1.

Let us now consider the case the case where the channel is partially known as a
constant with zero-mean Gaussian error of given variance. If the channel is perfectly
known, we know that spreading is advantageous. Let us fix the channel energy, i.e. the
sum of the error variance and of the square of the known part of the channel.

We denote the energy of the channel by E{F 2]. The error variance is BE{F 2]. where b is

in [0,1]. The parameter f represents the accuracy of our knowiedge of the channel.
Expression [14.[8] becomes
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IY:S) < ;—ln(% dF)- o))- é_ES[m(s Help + 0\)]
1-4011].

Let us define

{8l ol e o)l o)
HeT + o

wn

114.[12],

E
where S has variance e The function defined in I1-4.[12] is differentiable and we may

use the Taylor series expansion of In(1+x) to write that :

1%5{1:2]):'%55 S:E{FZ]B-ETE{FZ] l SZE{Fz]ﬁ-i—E{FZ] + ...

Edrleor °| Edreo

[1-4.[13].

The second term of the RHS of 114.[13] approaches O as % approaches O faster than

E E
the first term. As S approaches O, the derivative of the first term with respect to —

(ol e S

approaches > - Therefore, we see that —F approaches
20, : 6? 20
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-i— approaches 0. Therefore. for f close enough to 1. the function f is upper bounded

by a function whose value at O is 0 and whose first derivative is very small. Therefore,

: E
spreading cannot be advantageous for small enough values of . Note that our results

hold for any distribution on the input.

Let us look at whether. for f small enough, spreading is always beneficial. For a

Gaussian distribution on S, we know that for B = 0. spreading is always beneficial.
For both these distributions. the second derivative of [(Y:S) with respect to %— 1s
continuous in B. If spreading is always beneficial for a perfectly known channeli for
some signal distribution and if the second derivative of I(Y:S) with respect to -En— is

continuous in B, then there is a range of values of B near O for which spreading is
always advantageous for that type of signaling. Figures [1.16 and I1.17 show the

mutual information for a Rician channel for 0.1 signalling. We see that, as expected,

i ) ) E
when the channel is poorly known, there is a convex region for low values of e

E
When the channel is well known, I(Y:;S) is concave in -i;- over all values of - More

examples may be found in appendix E.
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Figure I1.16: Mutual information for 0,1 signaling in a Gaussian channel with a known
part having 50 % of the channel energy, noise variance 4, multiplicative channel
vaniance 4.
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Figure [1.17 : Mutual information for 0,1 signaling in a Gaussian channel with a known

part having 50 % of the channel energy, noise variance 4, muitiplicative channel
variance 4.

I1-4-2- Spreading for several time samples over an unknown Gaussian channel.

All our previous discussion has dealt with a single time sample, but we would in
general wish to examine many time samples so that we may say something about
capacity. The main problem in examining several time samples versus just one time

sample is that the variance of our error in knowing the channel changes from time to
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time. Let us first consider the extreme case where each channel sample is independent
of the next. Since we sample at W = Winput + BDoppier, We must be transmitting at a
very low rate and BDoppier must be the dominant term in W. In that case. our
discussion for the single time sample case carries over. In general. if we have several
time samples, at each time sample there is some distribution for the channe! based upon

: : E
our estimate of the channel at that time sample. We may say that as long as -z o for

the maximum 6 over all possible channel distributions corresponding to the channel
estimates at different time samples, then spreading is advantageous. The real difficulty
lies in defining what these channel distributions are for the different time samples. How
the error on the channel varies in time is difficult to express. If we assume that we
decode each symbol correctly, then we may use a Kalman filter to estimate the channel
optimally. However, the variance of the error on the channel at any time will depend on
the specific symbol sequence up until that time. If we peniodically sound the channel
with a known sequence. then the error on the channel will be lower bounded by the
error vanance right after we have sounded the channel plus the vanability of the channel
over the period between soundings. Overall, predicting the distribution of the channel at

each time sample is a difficult task, so we give here some bounds based on the behavior
of f.

Let us use the chain rule on mutual information to rewrite the mutual information
between an input sequence and an output sequence:

18:Y)= 3 IS: YUY,
j=1

(assuming the inputs symbols are [ID and the channel has a single tap)
i
> 3 IS Y6 Y,
El
[14.[14].

“Our single tap assumption is not restrictive, since we consider many small contiguous
slices of bandwidth and a narrowband single tap model is appropriate for each of these

slices of bandwidth. We see that by increasing i— we have two effects on
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l(S[j]; Y(il IXJ_I). One effect is to improve the measurement of the channel that we

obtain from Y _,. The other effect is to improve the SNR for time sample j. We may
define as in [1-4.[4] the functions

6|5 = (501 YU 1 Y,

[1-4.[15]

for all j>1.The threshold at which spreading is advantageous for the different fj is
unknown and it is not clear that it is bounded. We may however make the following
remark. Assuming the inputs symbols are IID and the channel has a single tap, we have

[1-4.[16]
for f defined as in the previous section, i.e. f =, and for f defined as

f (%: [{S; (FS + N)I F)

[I-4.[17].

. . E : :
The function f we know to be concave in - Let us suppose that there exists a 8' such

thatd < &' and

S

6!
Ff

Figure II.18 illustrates this condition.

[1-4.[18].
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[(Y:S) per slice

)

] -~

) )

Figure I1.18 : Illustration of expression [1-4.[18].

lfT = 0'on a frequency slice, it is preferable in terms of mutual information to spread

E .
over enough frequency so that = 0 over each frequency slice and not to know the

channel than to not spread and know the channel. Therefore, from [1-4.[16], we see

that spreading over enough frequency so that i— = J over each frequency slice is
advantageous for all mutual informations l(S[i]; Y1l _ZJ_,) if %2 0'. Therefore, it is

always advantageous to spread at least until % 0 over each frequency slice if 11-4.{18]

holds.

We still do not know how to determine where it is advantageous to spread. Let us use
the results of II-3-3-c for Gauss-Markov channels. If we consider to simplify our
illustration that we have real taps and send real signals, we have from [[-3.[100] that

( 2) 2

1 - 2
hm(/(é-fé.) SI—IHH-FO.
j_.w n n 2 A

[1-4.[19]

orequivalently
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< f

j—»oo

(l-a-)o; 1) lim

)

A n

11-4.120].

Although a changes for the whole channel with W, we do not need to take that change
into account because we always look at a slice of bandwidth of fixed size. From II-
3.[94]. we see that as i; approaches 0, \' approaches GIZ; therefore the RHS of II-

lim

4.[19] approaches 0. We may compute the lower bound to fj
J—nao

E
?) given by the

RHS of 11-4.{20] and find its maximum slope for small ET i.e. large n for £ fixed. The

point at which this maximum slope occurs gives us an upper bound on &. The

intersection of the line through the origin with this slope and f yields an upper bound
ond'.

Figures I1.19 and I1.20 illustrate how our bounds may be used to obtain an upper
bound on &' for two examples where Bpoppler = 60 Hz. We send white Gaussian
signals. Suppose that we take Y = 0.37, Tooherence = 1/BDoppler and the bandwidth of
each slice of spectrum to be 1000 Hz. From I1-3.[87], we may compute a to be of the
order of 0.9 for Bpoppier = 60 Hz and of the order of 0.8 for Bpoppter = 200 Hz.

Appendix F gives another example for BDoppier = 60 Hz and three examples for
BDopp[er =200 HZ.
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Chapter III - The multiple user case in time-varving channels without

feedback.

III-1- Introduction.

The purpose of Chapter II was to study the effect of time variations on the capacity of a
channel without having to take into account the effect of multiple access. In mobile
communications, we are interested in having several sources rather than a single
source. We now add multiple access considerations to extend the resuits of Chapter I1
to several sources. We first extend the model of Chapter II to accommodate several
users and then outline the extensions we propose.

As in the previous chapter, each source has its own time-varying channel. It is
reasonable to assume that the channels of the different sources are mutually

independent. Figure I.1 shows how each source experiences different multipath
because it is at a different location than the other sources.

Base Station

Channel for user |

Channeli for user 2

Mobile 2

ANNNNNNNNNNNL

Figure III.1 : Illustration of different channels for different users.

We assume that there is a single portion of spectrum available to all the sources. The
users may or may not transmit simultaneously over some or all the bandwidth. We
follow the structure of the previous chapter to show how our resuits for the single-user
case extend to the muitiple-user case. We first present the time-varying model for a
multiple-user multipath channel. We study the fnultiple access capacity region when the
time-varying channels of all the users are perfectly known. When the users cooperate
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by sending possibly correlated signals. the capacity region may be found by techniques
similar to the single user case. When the users are constrained to send independent
signals. the problem does not have a simple closed form soiution. As in Chapter II. we
next consider the case where the channels are not perfectly known. We show how the
resuits of Chapter II for channels with some smail Gaussian error and for u'h order
Markov channels apply to the multiple user case. In particular, we discuss how our
results for the single-user case provide insight into the propagation of the channel
measurement error when we perform interference cancellation. Finally, we consider the
effectiveness of spreading when we have multiple users in time-varying channels.

1II-2- Known channel system.

[11-2-1- Model for the muitipath channel.

In the following section, we look at the channel response at baseband for a multipath
channel. The goal is to develop a continuous time and a tapped-delay line model. In
order to derive such models, we first consider the continuous-time response of a
known channel and then look at its samples. The input bandwidth, of size Wigpu, is
shared by all users. This does not necessarily mean that all users simultaneously
transmit over the same portions of the spectrum, although we may choose to have them
overlap in time and/or frequency. The sampies are chosen so that, using the Nyquist
theorem. they are sufficient to reconstitute the continuous-time response. We see from
our discussion for the single user case, that it is sufficient to take W to be

max [pi \ i . : .
Winpu * =l K \Bpoppier] Where Bpoppier 1S the Doppler spread associated with

the it" channel. Therefore, we choose the sampling interval 1/W to be the smallest of all
the sufficient sampling rates for all users.

The continuous-time system which we consider is represented in figure [I1.2. Discrete
data streams from the different users are passed through modulators, which produce
continuous signals. The signal from each modulator passes through a different channel.
The output of all the channels is added before being received at the receiver. For a given
set of channels, modulators, receivers and initial transmission times tg, ..., tg for the
K users, we may describe a system by figure [I1.2. The initial transmission times may
be incorporated in the channels as arbitrary delays, although in practice they may be
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considered separately from the channel. Therefore. the model of fi gure [I.1 is adequate
for symbol asynchronous systems.

X,(n] sy(v

Modulator | [ """ o | Channel | vit)
gt}

' f . vy 63
xin] /
—| ModulatorK| "~ " o | Channel K

silt)
gdt.}

-~

viy
i=1

Receiver
Figure I11.2 : Continuous-time multipath system with multiple users.

The impuise response of the muitipath channel seen by user i at time t' for a
transmission sent at time t'- t is:

P, m
gt 0= aj(t) a(r, (t)- t)
m=|
M-2.[1]

where P; is the number of paths in the channel seen by user i, aj™ is the complex
multiplicative constant associated with the mth path of user i (accounting for fading and
phase shift) and t;™ is the delay associated with the mth path of user i. The issue of
Doppier spread was addressed in the previous chapter and the same issues are
applicable to each user's channel in the multi-user situation.

Let si(t) be the complex signal transmitted by user i. This signal might typically be a |
data stream modulated by, first. a signature sequence for differentiating users and,
second, a modulating waveform for transmission on the channel. For K users, where
the channel for user i has P; paths, the response of the channel is
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K
vt)= Y vie)
1=1

K -
=2 | s-ngt.vad

1=1

P. -0
= Z I s,(t'-na™(t') a(t{"(t' )-t) dt
1-2.[2].

Let the response be sampied at time intervals of 1/W, where v(t') is bandlimited to [-
W/2, +W/2). As in the previous chapter, we obtain a discrete-time sequence defined as

vik] = v(k'W)

I11-2.[3]
and we may similarly define fori=1, ..., K
Si[k] = Si(k/W)

I11-2.[4].

We wish to determine a discrete channel impulse response to relate v(k] to the K

sequences si[k]. By extending the discussion for the single-user case, we may write
that

v(t)_z z a |t ,[nlsmc{ W(t -t- W} }6(1: (t)—t

i=l m=i n=-o

t=-0



K P -x =
=z z SJn]f am{[)smc{

Therefore

Si[k-n]f smc

vik] = i lZ_ § [nlf wsinc{nW{%-

-~

P, -=
D)
1=l m=lg=.x

Hence,

vik] = ZZ Z s,(k-n]g™[k, n]

i=lm=lp=.x

where

il )

w(t t-
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} (‘c (t)—t)dt

%
[T1-2.[5].
t- V[:/ lai"l‘kv) ﬁ(t:r{%-’- t) dt
7 et Tk o
[11-2.[6] .
[11-2.[7]
111-2.8].

Asin the single user case, our initial assumption that W is large enough that v(t) may be
fully reconstituted from v[k] ensures that [1I-2.[7] gives a complete characterization of
the channel response. Figure I11.3 shows the discrete-time system, which may be freely
substituted for the continuous-time one in figure [I1.2, with
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i
g, (k.k-n}= Z gM [k.k-n]
m=1
[11-2.[9].
x,(n] 5q(m]
—t 3l Modulator 1 | Channel | v k]
Elrk'k' 9
xfn] sxim}
» ModulatorK| _______ ga] Channel K ,
gk k-mi 3 vilk]

i=1

Receiver |.g_ |

Figure I11.3 : Discrete-time muitipath system with muitiple users.

As in the single-user case, we need to take noise into account and we assume that we
have AWGN at the receiver. As in the previous chapter. we sample the bandlimited
noise at rate 1/W to have the discrete-time noise variable n{k]. To take the effect of
noise into account. we add the term n[k] to v{k] in the discrete-time case to obtain v{k].

As in the single-user case, there may be an infinite number of terms involved in the
discrete-time expression. The conditions under which we may approximate the discrete-
time case by a finite vector expression may be easily extended from the single-user
case. We see from expression [11-2.(8] that there are infinitely many terms gk, n],
whereas in the continuous case there is, for any given t, at most a single t' which yields
a non-zero value for gi™(t', t). As in the previous chapter, we wish to establish an
expression for the discrete-time output of the channel which is a product of finite
matrices. We know that the quantities gk, n], for /W > Tspread.i» Where Tspread.i is
the multipath spread for the channel seen by user i, become vanishingly small as n -
increases. Figure I1.7 in Chapter II holds for every‘g:'{k, n]. Moreover. we may

include the fact that the channel is causal by ignoring future inputs.
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We choose some arbitrary cut-off in n such that g™k. n]is taken to be zero bevond that

point. Therefore. we approximate the sampled channel output by :

K S [k'Ai]
yikl= Y [g[ka].. g koll| .. |+ nik]
1=
S; (k]
IT1-2.[10]

where A is some integer satisfving A; > WTspread.i.

We assume. as an extension of the single user case. that we have chosen

A> lmax K {T;pmd}‘ so that we take gi[k.n] = O for n > A. We may then write,

with the obvious extensions of notation from the single user case. that

K
Y-ﬁZL_kS-k o,

MI-2.[11].
We shall use this expression later when trying to compute the capacity of the system.

111-2-2- Capacity in the case of a perfectly known channel.
II1-2-2-a- Constant single path channels.

When each channel has a constant single path, since we have a memoryless channel
with AWGN, we may compute the achievable rate region as found in [Ahl71] and

[Lia72]. Let R; be the rate per second achieved for used i. For K users, we have that,
for each subset U of users,

1
z Risrl{Y:{Siiey ! {Si}ien)

=2

m-2.[12].




Therefore. when each user has the same average power constraint P, the capacity
region 1s given by the set of inequalities

a’P |U|+ WN,,
z R‘-sn—?ﬂl ( W, )

I1-2.[13]

where U ranges over all the possible subsets of users.

For each of these constraints, the behavior when W increases 1s the same as in the
single-user case.

I11-2-2-b- Specular paths.

The general multipath model we have developed for the multiple acces channel has
memory. The capacity region for a certain class of muitiple-access channels with
memory was found in [Ver89]. However, we must carefully explain the meaning of
memory. In [Ver89], the memory is assumed to satisf y the constraints that "the outputs
(-..) are conditionally independent given the inputs, and each output depends on m
consecutive inputs of each user, thus encompassing intersymbol interference of finite
duration”. Thus, this capacity region allows us to find the capacity region of the
multiple-user channel when there is perfectly known multipath if the multipath is
constant. If the multipath is constant, then we do not encounter fading, and therefore
we can perform water-filling once and for all. The solution to this multiple-user water
filling problem in channels with time-invariant memory is given in [CV93].

Since we are looking at a multiple access situation rather than at a single user channel,
we must consider a rate region rather than a single rate. Therefore, the concept of
maximization no longer holds in a straightforward manner. We may choose to
maximize the sum of all the rates, or the sum of any subset U of the rates, or the sum of
all the rates subject to the rates all being equal, etc... The power constraint may also be
different - we may consider that each user has the same power constraint, or that the
constraint is on the sum of the powers of all the users, etc... The extension from the
single user case to the muitiple user case depends on what knowledge of the channel we
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have at the senders and the receiver. The receiver, however, knows the channeis of all
the users, hence it does not have to consider all the users independently when it
decodes. In particular, it can perform some sort of interference cancellation, especially
at times when the fading along the different channels makes the users unequal in
instantaneous received power. Note that this scheme still assumes that each sender is
told by the receiver at what rate it should send. Indeed, only the receiver can compute

the capacity region for the system, since only the receiver knows all the channels.

The cases we shall study will assume that each user knows the channels of all the other

K
users. We shall first solve the problem of maximizing the sum of all the rates, Z R,

j=I
subject to a constraint on the sum, P, of all the powers, since this is the most
straightforward extension of the single user case. We do not restrict the users to be
independent of each other. and hence the users act as an antenna array. However, such
a model wouid not be applicable to the case where we have independent users. For
users to cooperate in their transmission, they must be linked to each other in some
fashion. Unless the users are co-located, as would be the case if we considered each
antenna in an antenna array to be a user, such links among users do not exist.
Therefore, users, would be independent for most cases of interest. Moreover, having a
constraint on the total amount of power rather than the power of the individual users is
not realistic. Each user has intrinsic limitations (from its hardware, regulatory concermns,
or other factors) which are independent of the behavior of other users.

Therefore, after solving the case above, we shall consider a case where each user has
its own individual power constraint, its signal is independent of the other users’
signals, and we wish to maximize the sum of the rates. Such a case would be
reasonable if the users were sending, for instance, data, with very loose delay
requirements. Each user is subject to its own power limitations but the different users
may be getting different grades of service.

I11-2-2-b-a- Maximizing the total rate under a total power constraint over all users and
‘no independence constraint.

We look at the case where all the users know each other's channels and may or may not
transmit independently. The problem is similar to the one dimensional problem, except
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that we now consider that the channel has more degrees of freedom at the input than at
the output. We shall use complex notation rather than consider twice the number of
dimensions for real vectors. Following the notation of [1I-2.[36]-[41] in Chapter II, we
may write that

A

vl = 3 e[S S e ]+ [N[1] ... N[xkT"

1

[11-2.114].

We see that we have M = 2Kk’ input degrees of freedcom and 2k output degrees of
freedom. Indeed, we may rewnte [1I-2.[3] as

Y] Y] = (S0 SM] N N

[MI-2.[15]
where we have defined
[Sr... M =[5, (1] 5, [2k') S, [1] .. S, [2k'D, ... Sic[1]... S [2K']]
M1-2.[16]
and
2k = 2k = 2k - 2k
fu =[—1 sk f2 2 -oen £ 2k']
[I-2.[17].

~ - 2k2kT
Let A, ..., A, be the eigenvalues of f, f,, . These eigenvalues are real and non-

~

negative. Using Theorem 8.4.1 in [Gal], for each positive eigenvalue A, there exists a
vector §2k such that

2ka2k T

fuly @k =M8ix
[11-2.[18]



and the vectors ,,, form an orthonormal set. We shall assume for ease of exposition
”~

~

thatall A, are positive. Moreover. there exist 2k orthonormal vectors 8, such that

II-2.[19].

Let us complete the orthonormal basis with M-2k orthonormal vectors which we shall
also denote by 6,,,. Let us also complete the set of eigenvalues by assigning nil
”~ ~

eigenvalues A, to the vectors 8, ,, which complete the orthonormal basis. We may then
express any random input vector [§Tl] §[M]] as a linear combination of the vectors

~

8.\

=\l
\[ z Ul =\
[11-2.[20]

where the coefficients U, are real random variables. The noise may be expressed as

[1-2.[21]

where the coefficients v; are IID real zero-mean Gaussian random variables with mean

2 .
oy We may express the noiseless output as

f\ls\l- Z U; ‘V SQ_zL
1I1-2.[22].
We have decomposed our multiple-access channels into 2k parallel independent

chanaels. The input has M-2k additional degrees of freedom, but those degrees of

freedom do not reach the output. The maximization along the active k channels may
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now be performed using water-filling techniques with the following constraint on input
power

aa T
tr(E{§ B DsTPw

[11-2.[23]

where T is the duration of the transmission. Since our decomposition of §.\1 in I11-2.19]

is along an orthonormal basis. II1-2.[12] is equivalent to

S (du)s1p W

[11-2.[24].
We may now carry out arguments similar to those in [CT]. We choose
Hu/]- (v : N‘LW) if, =0
2'7\'i
I11-2.[25]
where y satisfies
. WNg\
> (y - =TP W
i1s.t.A;m0O 2}%
HI-2.[26].

We have reduced several channels, each with its own user, to a single channel with a
composite user. The result we obtain from water-filling gives us the maximum sum of
the rates. Hence, the sum of all the rates is upper bounded by

K M 2
l 1 ﬁUi Ei
. IR‘STmlell‘(l-'- NOW
\

]:

2



?{ NW
AlY - —
| | 2\,
=T % - WN,
1s.L.h,=0 3

1-2.[27).

In our case, it is not relevant to look at the other inequalities that constitute the rate

region, since we are in effect looking only at a single composite user with a single rate

K
denoted as Zl Rj.
]=

I[I-2-2-b-b- The case of maximizing the total rate sum when the users are constrained
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to have independent signals.

Let us now consider that each source has an individual power constraint, that the signal

of each source is independent of every other source, but that we still seek to maximize
K

z RJ-. For instance, for the two-user case, we may write the optimization problem as:
)=

subject to

Ag positive semi-definite
22k

AS positive semi-definite
229k

%AQQJSP“W

u'(A-SJzn) <PWT



[11-2.128].

We see that all feasible vectors of inputs are regular (i.e. the vectors formed by the
partial derivatives of the constraints form an independent system) and, therefore, we
have some hope of being able to apply Lagrangian techniques. We may write necessary
and sufficient conditions for local extrema by using the Kuhn-Tucker conditions, but
these conditions are tedious. Appendix G shows the explicit solution for the Kuhn-
Tucker conditions for a k=k'=1 problem. For larger values of k, k', the expression is

complicated enough that a symbolic algebra program (Maple V) cannot solve the system
of equations.

Fortunately, the problem is concave and the region over which we optimize is convex.

Let us first show that the problem is concave. In order to prove concavity, we first
define A as

T T

2k 2k
F, A« E, X+
By Ag, Ly 2
219k

111-2.[29]

Similarly,let Aqr  and A¢: . be another pair of covariance matrices that saﬁsfy the
) 12k S P

22
conditions of I11-2.[28]

T T
2k 2k 2k 2k
E AS IZkEl +E, A_' 2 =

%
(8]
|
I>
~

I11-2.[30].

Let us denote by Z,,, and Z,, two vector random variables with with zero-mean

Gaussian distributions and covariance matrices A and A> respectively. Let us consider
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an AWGN channel with noise Noy. Then, from theorem 4.4.2 in [Gal], we know that

for any 0<6<1

BN(Z 5 + Ny + (1'9)h(Z22k + Noy) = hiZoy + Noy



1-2.[31]

where Zoy is a random vector. independent of N»i, whose p.d.f. is the sum of 6 times

the p.d.f. of Z; and (1-6) times the p.d.f. of Z5. The variance of Z>y + N~y is given by

BA, + (1-6)A2+ Ay - Since entropy is maximized by a Gaussian distribution for any
Ny

given covariance matrix.

NZ+ N)sin ((me)zwea. ~l1-eas Aﬂzvj)

IM1-2.[32].

Combining II1-2.[32] and 111-2.{31] yields

0 ln(]BAl +AN|‘D+(I-G) ln(lA?ﬁ- Aukl)s lnﬂﬂ_l}_l + (I-O)A2+Aﬁkl)

[11-2.{33].

Therefore, the function in III-2.[28] is concave. The region over which we maximize is
convex, because the convex linear combination of positive semi-definite matrices is
positive semi-definite and because the trace operator is linear. This means that any kind
of hill-climbing technique can be used to perform the maximization. In particular, we
may use water filling alternately over the two users. For any given covariance matrix
for user I, we may optimize the distribution for user 2. Then. we may take that
distribution for user 2 as being fixed and optimize the distribution for user 1. and so

on. A stationary point found by this technique is guaranteed to be a global maximum by
our concavity results.

We may note that, when the channel is time-invariant multipath, we have a very

particular structure. The complex channel response matrix for user 1 may be written in
terms of complex terms as
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[ E, (L, 1} E,[l. A 0
0 EIIL1 E[1.,A] O 0
0 0 E[L1] E,(ll,A] 0---0

k
El =

0 0
. . 0 - :
0 0 E|[IL,1]

L | ‘ i

[11-2.[34]

therefore, the rows are all identical to within a shift (except for an end effect of A).

Related problems may not exhibit the same convex behavior. We give here some
overview of the problems that might be of interest when we wish to maximize capacity
for known channels. A natural extension of the case where we wish to maximize the
sum of the rates is the problem where each user has its own power constraint and we
wish to maximize the rate that may be guaranteed to everv user. We then have a max-
min problem over a convex region. Such a case is germane to the situation where all the
users require the same rate and have the same power limitations. For instance, we may
wish to give everybody the clearest possible voice channel, but we do not want to give
some users very good channels at the expense of poor ones for others. However, we
can expect that, statistically, the users will get the same average grade of service even
though they may have great differences in their grades of service for prolonged periods
of time. Therefore, it is not clear that we need to solve the max min problem explicitly,

because over long periods of time the problem in I11-2.[28] will probably approach the
solution to the max min problem, by symmetry.

HI-3- The effect of unknown channels.

In this section, we seek to extend the results concerning channel measurement
uncertainty to the multiple user case and consider the effect of spreading when we have
several users. The use of broadband signals under multipath channel conditions is often
advocated because of the possibility of resolving the multiple paths at the receiver and
then combining them in some approximately optimal way [LP87]. such as by a rake
receiver [PG58]. When we deal with multiple access situations, such as the situation of
mobile communications, where the users share bandwidth under some spread-spectrum
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protocol. the issue of spreading is further complicated by multiple-user interference.
The most commonly proposed approach [Qua91] is to decode each user as if all other
users were noise. The advantage of spreading under these conditions is to reduce the
power spectral density of the users, when the users are all under a maximum power
constraint, so that the system becomes limited by the additive Gaussian noise in the
channel rather than being interference-limited. Such an approach is, from an
information theoretic sense, quite suboptimal (unless we use FDMA [Par81])) when we
can measure the channels for the various users [RTM94]. In effect, by considering
other users as noise, the multiple-access channel is reduced to an interference channel.
For the sake of illustration, figure III.4 shows the achievable rates region for an
AWGN channel with noise spectral density No. The gray shaded area shows the region
of achievable rates for the interference channel.

FDMA

CDMA

Figure .4 Region of feasible rates for two users in an AWGN channel.

We therefore wish to show that interference cancellation is still possible when we do
not know the channel as iong as we may measure the channel for each user. We know

that under certain ergodic conditions, when equalization is possible, interference
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cancellation is possible with a small added error due to the channel uncertainty
([Gal94]). However, we consider explicitly the loss in capacity due to not being able to
perform equalization perfectly. The main purpose of this section is to extend the results
of Chapter II to incorporate the effect of channel uncertainty. In particular, we may
bound the effect of channel estimation error upon interference cancellation.

In order to show that such bounds in terms of mutual information have some
significance for reliable communications, we extend the multiple-access coding theorem
to channels with certain decorrelating properties. Appendix B gives this theorem, which
leads to an upper bound on the error probability which is exponential in the block
lengths. We must be careful in defining memory. Our channels have finite memory in
that, conditioned upon the channels only, the output at any time depends on only a
finite number of inputs. Similarly, when conditioned solely upon inputs. the output at
any time depends on the same finite number of inputs. However, if we condition the
output at any one time upon all past outputs and all past inputs, we may not eliminate,
in general, the dependency on any of the past inputs. Such a case encompasses the u'h
order Markov channeis. for instance. If the channel never decorrelates. in a sense
which is made precise in appendix B, then a coding theorem may be difficult, because
the channel may remain indefinitely in some poor state where communication is
virtually impossible.

[11-3-1- Channels known with a small error of known variance.

The inequalities we have found for the single user case hold for every inequality which
defines that feasible rate region. We shall show the effect of knowing the channels of
the users with a certain error of given variance.We shall give our examples for two
users, since we may give a graphical interpretation of our bounds. The signals of the
users and of the channels are assumed to be mutually independent. The bounds II-
3.[21] and I-3.[23] of Chapter II lead to the following upper bounds on the region of

feasible mutual informations for the single symbol case (the subscripts denote the
users) :

2 2 22
F, Og,+ OsOF,

. 1
(Y:S1S)<=Inf 1+ :
N
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MI-3.[1]
2 2 2 2
L F' osz+ os-.on
I(Y.S:|S|)STI I+ >
ox
[11-3.[2]
) ‘7 —_
F o0to +F°al + 02 o
l(Y;(S-.,S,))sl—ln(l 2 %, F,7 178 ™ ™5~ Fl
= 2 5
%
I1-3.[3].

Each bound of 111-3.[1]-[3] may be interpreted as in the single user case. The upper
bound may be given by the case where all the received signal components other than the
AWGN N are part of the input signal. Indeed, we may write that

I(Y;SllS‘_v,SI(Y;SllSZ, Fl' FZ)
-—-h(YIS:. Fl’ F:)-h(Y'SZ Sl’ Fl’ FZ)

=h(YIS:, F F:)- h(N)

(since a Gaussian distribution maximizes entropy for any given variance)
Le bl 4 oo E 2]l ] ( J

Si' F 0N+OS( 1) --2-11'10.

(since the In function is concave)

2 2 2 2

Fy o< +0.0
sl—l 1+ LS. S
2 2

a..

I11-3.[4].
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Therefore. the channel uncertainty on all channels acts as extra input signal power for
each combination of users. The inequality in III-3.[3] can be obtained by considering
the sum of the signals from the two users as being a single signal.

The lower bounds to the region of achievable rates may be more interesting and are
given by:

=

Oé‘

2 2 2 22
Oy + 05 OF, + 05 Of,

l(Y;SlIS._,)zé—I 1+

[1-3.[5]
1 Fy o}
(Y:S;18 )21 1+ e
N * O5,9F, * O5,OF,
[11-3.[6})
202 2
+F o"
l(Y;(S._.,Sl))zé—l 1+ S 1S
o+ O5,0F, + 95, O,
m-3.[7].

Again. the bounds in III-3.[5]-[6] bear a similar interpretation to the one we gave for
the single user case. The effect of the channel uncertainty can be no worse than to
contribute to the AWGN. Each user must contend with the uncertainty of its own
channel but also with the uncertainty of the other users' channels. In particular, when
we consider the mutual information between user 1 and the output conditioned on user

© 2, we must take into account the fact that there is a residual effect upon user 1 of the

uncertainty on the channel of user 2. Indeed, when we perform interference
cancellation, the fact that we are not able to cancel a user exactly because of error in its
channel measurement means that there is extra noise beyond the AWGN. Indeed,

I(Y:S,1S) = h(SIS,)- h(S, 1Y, S,)

(since Sy and S» are independent)




=1(S,)- (S, Y. S)
=h(S ) - bS I(Y-FS2). Sa)

(since conditioning reduces entropy)

2 b ) - bfS 1 1(Y-F3S )
[11-3.[8].

We may use the LLSE of S, from Y as in II-3.[18]-[20] to obtain III-3.[5] from III-
3.[8].

Using the lower bounds of I11-3.[5]-[7], we may obtain a lower bound to the feasible
rate region and represent it as in figure I11.4. The perfectly known rate region
corresponds to the case where the variance of the channel measurement errors are 0.
Figure III.5 shows our lower bound to the feasible rate region when the channels are
known with some error of given variance. The effect of the channel error may be
bounded as the effect of extra AWGN on the channel. Note that the corners of the
feasible rate regions correspond to the rates that are achievable when the users transmit
white signais over the same bandwidth at the -ame time and the receiver performs
interference cancellation. When the lower bound is a pentagon rather than a square, we

are guaranteed that it is preferable to perform interference cancellation rather than to
treat each user as noise to the other user.

143




144

R2 Perfectly known channel

—_— hl
o
1 2 s,
2 g 1+ o Bound for the channel
N known with an error
— 2
1 Fy og
=I01!+ ———
2 22 A

-
-2 2
=2 F o
1 F-,Oé L S
3 1 + — )
2 2 2 N
oi +oszo§!+osoF +F,
2 2 2 2 2
O\ + 05,0, + O5 O,
-2 2
Og
—él 1+ LS
9 9 9 —2
0\'+°s,°2_+°§ Ft 2°§

Figure II1.5 : Lower bound to the feasible rate region for channels known with a given
error variance.

Figure II1.5 considers that the channel is known for each user with an error of a given
variance. As in the single user case, the actual error variance will depend on the

structure of the channel. The next section considers the case of channels with a Gauss-
Markov structure.
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For the multiple symbol case, the bounds 11-3.[43] and [1-3.[44] extend in the same
way as [1-3.[21] and II-3.[23] extend for the single symbol case. Let us simply write
the lower bounds:

[I-3.[9]

I11-3.[10}

II-3.[11].

We do not give a graphical representahon of the multlple symbol case, since such an

extension would be difficult and would not improve our intuition.

III-3-2- The relation between the rate of change of the channels and loss in terms of

mutual information from not knowing the channel a prion at the receiver.

The results of Chapter II extend to the multiple user case with the appropriate

modifications to take into account the multiple access. Theorem II-3.1 may be extended
as follows:

Theorem [1I-3.] : Let { E -l_k}izt__” g be a set of K unknown time-invariant channels with

a known finite number of taps A, known apriori distributions and additive Gaussian
noise. Let {S -k}l be a set of arbitrary stationary probabilistic, mutually

independent and power hmited inputs to the channel. For any positive €, we may
choose a set of probabilistic inputs lS'- \ ok whose corresponding output we

denote by Yy ' such that for all k large enouOh

. /S. '
,Xk'Ev\§ V. ) ‘(\—_k; kl\s—lkleEU

SE
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11-3.{12]

for all subsets U of {1 ... K}.

The main idea in extending the proof is the following chain rule for mutual
informations:

==
(2]
k

]

A
I~<
»

—————
I
I
=<
+
[

K
=<
=
%

)t t [(-S-&;Xkl {Sucdi o1k )

IM1-3.[13].

Each of the terms in the RHS of III-3.[7] may be computed by treating as noise all
input signals which are not in the conditioning.

Similarly, theorem II-3.2 may be extended to the multiple access case:

Theorem {II-3.2 : Let {Ei_k}m g be asetof K unknown time-invariant channels with

a known finite number of taps A, known a priori distributions and additive Gaussian

J+u+l, j+k
noise. Let any row F, ' conditioned onkE; Pl independent of E iJ "% and let

i\ j+1 w\ | [ it
h({F =1 IY[} F =1...R {§|-J}I=IK' \EL li:l...K > - hold. Let
{'S"—k}i-l . be a set of arbltrary stationary probabilistic. mutually independént inputs

to the channel. Then

IS\ Lys v : .
lim [(\g'-klieu’z“lE ' \§lkljeu > I({—'-k}iEU Xl {ilk}jeu)
k—> k
3\ /i+1.k\
lim lim h((-E'. fiz k! Y BT iy K’{iik}jegu
k] () i\ [ o i*tivu)
Ao 0 B e 8

I11-3.[14]
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for all subsets U of {1 ... K}.

Expressions III-3.[15] and I1I-3.{16] allow us to extend the results about Gauss-

Markov channels to the multiple access case. Let us give the following extension of
theorem [1-3.3:

Theorem III-3.3 : For the model of [1-3.[88] with a single tap for each user's channel
and S a sequence of IID white Gaussian random, we have that

/ \ : S.\ SIS N . /S.\
lim l(\glklieu’xklg‘\ilkljeu) l-(\iﬂtlieu’I"‘l\glkljesu)

k— 4
l (1 2) 2
alo ,
k—“:o ;‘IU L - F g
[11-3.{15]
where
- (o2 - l)(o_i.+ K 020;)_ ol o
202 o’
'\[‘(-a + 1)(0" +K OgO’) 02 =) + 40q 0_(0\ +K qur)a
205 o
I-3.[16].

In order to see why [11-3.[15] and I1I-3.[16] hold, we may first write tha;
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(leeh v (ewr)) )

- -

(5] ke "(ﬁuwik’ (S

(et v ieuy) ) }

[I1-3.117]

where ig(p) is the index of the p'h user in set U/ and Up is the set of all users with
indices iy 1) through igAp-1). For each term in the summation of the RHS of 111-3.9],
we see that we must contend with the users in U-Up) acting as noise and the residual
noise from the channef uncertainty of the users not in U. The effect of the users in U-
Up+| may be upper bounded by considering that the whole power of their output signal
before AWGN goes into being additional AWGN. For the users not in U or in Up, we
may upper bound the effect of their residual noise by considering that the whole power
of their output signal before AWGN goes into being additional AWGN. We are
therefore taking into account more than just the power of the component due to channel
measurement error. Expression II1-3.[16] may be therefore be interpreted as being an

- . . . ’
extension of 11-3.[94] using the above discussion to replace oi, by 0’1 +K oéo,'; .

Note that our extension is slightly less general than the single user case, because we
restrict the users to send IID white Gaussian signals. The reason for this restriction is
that we wish to be able to consider users as noise to other users in the terms of the sum
in the RHS of III-3.[17]. A more general formulation would be much more
cumbersome. Figures II1.5 and II1.6 give some examples of how the Doppler spread
affects the region of achievable rates. These figures show, for a given IU |, the ratio of
the bound in III-3.[15] to the mutual information which would be obtained with
perfectly known AWGN channels with the same energy as the Gauss-Markov
channels. Figure II1.5 illustrates the case for IU | = 1 and figure II1.6 the case for IU | =
3. In appendix H, we give more examples.
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Figure I11.5. o
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[II-4- Spreadine in time-varving channels with memory.

We have examined in Chapter II the benefits of spreading for a single user. We have
seen that there exists a threshold SNR per degree of freedom for which spreading is
advantageous. Below that threshold. spreading may be disadvantageous. For multiple
users. we may spread users over each other or over separate time and/or frequency
intervals. If the users are spread separately, we are back to the single user case for each
user. Each user wishes (o spread until it reaches its SNR threshold. Let us now
consider what happens when the two users are spread over each other. i.e. they
transmit at the same time over the same bandwidth. We invoke II1-3.[ 15} once again
and examine the terms in its RHS for the two user case:

{8 w122 Y ) = U8 X)) + (S5, X, 1S )
[I-4.(1].

[n the first term. (S, Y, ). user 2 acts as noise to user |. The SNR per degree of
freedom for user | is then lower than jf user 2 were not present. Note that. for some
degrees of freedom. the SNR may be affected differently than for others, depending on
the distribution of user 2's s; gnal. For the second term, I SHs Y, IS 1%)» the product of
the channel of user | and the known sj gnal of user | acts as noise for user 2. Again, the
SNR per degree of freedom for user 2 is lower than if user 1 were not present.
Therefore. the threshold to which we want 1o spread the two users jointly is higher than
the threshold to which we wouid spread the users separately.

If the muitiplicative part of the channel is perfectly known. then we may send the users
spread over each other without any loss in capacity. For instance, if the channel is
AWGN and the users are appropriately separated in power so that interference
cancellation is possible, then we wish to spread the users jointly as much as possible.
We may relax the assumption that the channej is perfectly known and assume that
equalization is possible. If we assume that equalization is possible. then we have
shown that we are in effect assuming that we do not lose any mutual information by not
" knowing the channel. We therefore still want to spread the twn users as much as
possible. even when we are spreading jointly. If we relax the assumption that the
channel may be equalized. then spreading jointly behaves differently. The fact that the
channel is not perfectly known causes users to act as noise to each other in the
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measurement of the channel. Therefore. if bandwidth is not limited and the channei is

not known. we do not want to spread jointly.
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Chapter IV - Conclusions_and directions for further research.

[V-1- Conciusions.

Let us first recapitulate the main resuits of this thesis. We
- derived a sampled model for single and muitiple user time varying multipath channeis

- gave capacity results for perfectly known channels at the sender and the receiver for
the single and muitiple user case

- bounded the effect upon capacity of having a measurement error of known vanance

- showed that, for an unknown time-invariant channel. the capacity of the system is not
affected by whether or not we know the channel a priori at the receiver

- established exact limit results for the loss in capacity due to not knowing the channel
at the receiver for Markov channel models of order m

- computed explicit bounds for the intrinsic effect of time and frequency spreading upon

capacity with respect to the perfectly known channel assumnption for a Gauss-Markov
model

- showed that spreading for an unknown channel., when subject to certain assumptions
about the transmitted signal. is beneficial up to a certain SNR per degree of freedom but
may be detrimental below and studied the effect of multiple access upon spreading

- established a strong multiple access coding theorem for channels that decorrelate in

time and showed that interieaving with block codes can achieve capacity.

The main thrust of this thesis has been to investigate the effect of channel variations
upon channel capacity. The effect of channel variations and the ensuing uncertainty
about the channel at the receiver are crucial in determining how we wish to transmit.
Indeed. the original research interest that sparked this thesis was power control.

However. power control is useful only because we have time-varying multipath.
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Without understanding the effect of time-varving muttipath upon capacity. we cannot
devise effective power control techniques. Suppose. for instance. that we do not
perform interference canceilation but spread the users simuitaneously over the same
bandwidth. We then consider the muitiple access channel to be an interference channel.
Each user 1s interference to all other users. Our power control will require the users to
be close in received power so as to avoid having one user overwheim the others. But if
we were to perform interference cancellation, even with some error in our estimate of
the channel at the receiver. then we could allow users to drift away from each other in
terms of received power. The strongest user would be decoded first. its estimated
noiseless output signal subtracted from the received signal. then the second strongest
would be decoded, and so on We have seen that if we know the channel well enough, it
is preferable to perform interterence cancellation rather than to decode the users
independently.

Another aspect of power control which is affected by imperfect knowledge of the
channel at the receiver is the fact that mutual information for a multipath channel known
with some Gaussian error does not degrade gracefully when the SNR falls below a
certain level. Not only do we not want to spread so that the SNR per degree of freedom
is too low, but we also must be aware that vanations in the channel which could cause
us to go below our minimum desirable SNR are much more nefarious than if we knew
the channel. Therefore, our power control should seek to avoid allowing low SNRs,
even if we are performing interference cancellation and allowing the power of the users
to drift away from each other. Our discussion suggests some directions for further
research.

[V-2- Directions for further research.

The use of feedback is a natural extension to our research. The study of the use of
feedback in information theoretic terms usually assumes total feedback. Since the
resources allocated to feedback are no less costly than the resources allocated to data
transmission, such an assumption is not satisfactory. The benefit of feedback, as we
already mentioned. is due solely to the fact that we have muitipath. If a single user
channel is memoryless. for instance and AWGN, then feedback cannot help ([Dob58]).
If the channel has memory but is time-invariant, we wish to sound the channel and then
transmit our measure of the channel to the sender. The feedback channel is then used

very briefly, but its use permits large gains in capacity because the sender can tailor its
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signalling scheme to the channel. [t would be reasonable to assume that. if the channel

changes slowly enough. periodic sounding and feedback may be beneficial for
capacity.

Another problem reiated to feedback is the delay between the reception at the receiver
and the feedback. If feedback were faster than the decorrelating time of the channel,
then we could know the value of noise before it decorrelated. therefore we would
modulate the data through noise and have an infinite capacity. The bound for the benefit
of feedback in [CT] assumes infinite feedback and also implicitly assumes that we do
not have instantaneous feedback. although the form of the determinant optimization
does not show this assumption. The main reason why the existing theoretical results for
channels with feedback do not apply to our channels is that these resuits attempt to
perform estimation on the noise. which decorrelates very rapidly, but we wish to

estimate the muitiplicatve part of the channei. which changes slowly with respect to our
data rate.

The fact that delay is important makes data rate arguments difficuit. [ndeed, we cannot
use very long block codes in the feedback channel, because if we get a measurement of
the channel long after it was taken, that measurement may be of no use. In particuiar,
the sort of interieaved block code that we have shown achieves capacity for channels
which decorrelate as defined in appendix B entails long delays, guaranteeing that the
channel has decorreiated. Therefore. capacity arguments where time is allowed to go to
infinity are difficult to apply to time-variant channels with feedback. Information
stability of the input and output in a channei with feedback is guaranteed by the input
signal being stationary and ergodic and the multiplicative part of the channel and the
additive noise being weakly mixing when the input and channel are independent. When
there is feedback, the input and the channel are no longer independent, since we modify

our signal according to our knowiedge of the channel.Therefore. capacity arguments
are more difficult.

Finally, we must consider muitiple access in our feedback. If we have several users,
providing each user with feedback about every other user is costly. The resuits in
[Tho87] for Gaussian multiple access channeis assume an infinite feedback channel.
Again the issue of delay is important. If every use could know immediately what every

other user transmits. then the users could cooperate coherently and act as an antenna
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array. Such cooperation is uniikely to be practical. however. because it would require

very rapid communication and a link from every user to every other user.

An approach which might be attractive would be to look at single symbols and consider
he deviation from the optimal signalling covaraiance matrix due to the fact that we do
not have perfect knowledge of the muitiplicative part of the channel at the receiver.
Allocating more power/bandwidth to feedback and sounding is beneficial as long as the
incremental benefit from reducing the variance of the error on the channel outstrips the
benefit from having those resources used for transmission. The sort of bounds that we

found in II-3 and I11-3 couid be useful for considering the use of feedback.
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Appendix A.

Proof of Lemma [I-3.2.

h(Ei.i Y Enl.k)ah(f-i.i Y, Em.k. §i)
(rewnting Yy) |

2 h(Ei'iiXm.k' Y. Y} E7 §i)

(since conditioning reduces entropy)

2E" Yoo Yo YR E T 8, B

(using the fact that Y;.; is E-!S;.; + Nj.))

= l'l(Ei'i Yivie Niow Y[ EChE Si .E.H)

(using the fact that the noise is white and independent from the other random variables)
= h(l:_i'i Yoo Y0} ENK Si, EM)

(using the fact that the channel is u" order Markov)

_ h(f.i'ii'lm,k» YR E" s, Fi-u..i-l)v

(using the fact that conditioning aecreases entropy)

2 h(E“ ' Xi-&l.k' Y[ll E”Lk- S.i' EHLM» §i+l.k’ Ni+l.k)
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(using the fact that the noise is white and independent from the other random variables)
Y ET Y s, B s.m.k)

(using the fact that h(A. B) = h(A) + h(BIA))

= h(E“‘ Sivix! Y[ E7 R s, El'm-l) - h(§i+|.k|Y[l] ETX Si !

(using the fact that the input is independent from the channel and the noise)

= h(f.“' Sivix! Y[} EV'E Si EHLH) -hiSis; k!S)

(using the fact that h(A, B) = h(A) + h(BIA))

_ h(Ei.i;Ytl] Frik s Ex-u.l-l) . h(S.m,k' Y ET s, B B s 08y

(using the fact that the input is independent from the channei and the noise)

= h{EM Y[} EFE S, EM . BSiei ! S)-NSis !S)

(canceling the last two terms and using the fact that the channel is u'h order Markov)

Lt i
SHE Y B s, B )

[I-3.[591.
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Appendix B : Capacirv region for a channei with infinite memorv on pas inputs and
Quiputs and finite memorv on past inputs only.

B-L.[1].

When the channe] is memoryiess. we have that fora single user channe| B-1.[1] may be
rewritten as:

Pyis. vils)= E[ P smMJ] Isf)

B-1.[2].

‘One‘common méaning for the channei having finite memory A is that ([Khi56],
[Ver89]):

i
. U= | ' ;
P g ilsi Pras,balsd IT P18, PO S0 )
j=A+1

e L e ——
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Expression B-1.[3] would apply if the muitipath profile were constant and known at
the receiver. However. considering that the muitipath is constant is not appropnate for a
fading channel. Indeed. if the channel is constant. there is no fading other than
constant multiplicative attenuation. The results are then a special case of Chapter II.
section II for known channei for a channel which does not change. Moreover. even if
the channel is unknown at the receiver, we have shown in that we do not lose anything
in terms of mutual information to not knowing the channel at the receiver. Therefore.
B-1.[3] captures neither the fading nor the effect of the unknown channei.

If we condition on knowing the multiplicative part of the channel. then we a modified

version of B-1.[3] holds with the appropriate conditioning on the channei:

i
P l(iilii’ f)=p A{)’.A'ia» EA) IIp (Yﬁ]‘ Sj-aslp fj)
LIS i sk j=A+l Y[i]' §j‘A4-I.y'Fl

-
)
9

m
£
I

B-1.[4].

Expression B-1.[5] simply brings us back to the case of a known channel at the
receiver, which was studied in Chapter II, section II. It allows us to consider the effect
of fading but assumes pefect knowiedge of the channel at the receiver. However, our

goal is to consider the effect upon achievabie rates of the uncertainty in the channel at
the receiver.

Another way of discussing finite memory on both past states of the channel and past
outputs is the finite state model found in {Gal]. Finite-state Markov models are often
used to represent channeis ([Gil60], [Fri67], [AFK72]) and in particular mobile
channels ([McMan70], [Gol94]). Markov models offer great accuracy of
representation, albeit at the expense of added complexity. The finite state assumption
requires us to have a good grasp of the structure of the channel and its accuracy

depends heavily on how we create our finite states. [t is not compatible with some sort
of Gauss-Markov model.

In practice, the memory of the channel is often not truly finite, but simply decaying
rapidly enough that it eventually becomes. in some sense, "unimportant”. The time
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threshold after which the memory is "unimportant” depends on what rate we are trying
to send at. on the particular structure of the channel. etc... As stated in [Pfa71], "since
the memory of most physical channels is not really finite. but oniy decreasing in some
sense with increasing time distance between incoming and outgoing signals. the
assumption of a finite-memory channel is not quite satisfactory". We wish to give some
idea of how the structure of the channel, especially its time variation. affects the way in
which we need to code. In particular, we wish to find some sort of exponential bound
on the probability of error in terms of the length of our code. Such a resuit gives us

some sense of a trade-off between delay and probability of error for a given channel.

For finite muitipath spread when the multipath profile is not constant. if we condition a
singie output symbol on the input only, then we could write that

P\l §;M']' s)= P s '(y[i]l S |
B-L.[5]

which is a much weaker condition than B-1.[4]. We see that B-1.[5] alone is unlikely to
yield a coding theorem and it does not contain any sense about the channel structure. In
B-II, we give some conditions for the decorrelation of the channel which allow us to
establish an error bound which decreases exponentially in the iength of the block code.

Several coding theorem resuits have been established for channels with some sort of
weak mixing. In [KW72], a coding theorem is given for a channel with a known
multiplicative part and a strongly nﬁxixig noise component. In B-V, we point out that all
we need is weak mixing for both the muitiplicative part and the additive noise part of
the channel. In [Pfa71], a coding theorem is given with some sort of weak mixing
condition on the channel input to output transition probabilities. More generally,
[Tin62] shows that information stability is enough to establish a coding theorem.
However. it also shows that is necessary. All of these papers make some sort of Strong
Law of Large Numbers argument to establish that atypical sequences, without good
mutual information properties between the input and output sequences. occur with
vanishing procability. We present in B-V how we may use such conditions to construct
a coding theorem. However, such coding theorems do not establish how rapidly the
error probability vanishes. Therefore, we have a weak coding theorem. which does not
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give us much of an idea as to how we may wish to code or what the trade-off is

between delay and error probability.

Our discussion of the literature has until now dwelt mostly on the aspect of channel
memory and decorrelation. We must also contend with multiple access. For discrete-
time, memoryless. muiti-access channels, the capacity region has been given in
[Lia72]. Similar results for just two senders and one receiver have been established by
Ahlswede in (AhI71]. In {Ahl74], it is postulated that the resuits extend to an arbitrary
number of reccivers and senders, as long as the senders transmit to all the receivers.
This postulate 1s shown to be true by Ulrey in ([Ulr75]), although there the worst link
between a sender and recetver 1s examined, which is not the sort of problem we wish to
consider. The capacity region established in [Lia72] is just a special case of that for the
channel with s senders and r receivers considered by Ulrey where r=1. When the
channel has finite memory as in the usual sense ([Ver89,1] and[Ver89.2]) establish the
capacity region for the multiple access case. The source coding theorem specifically
uses B-1.[3] (extended to one output and several inputs) and is therefore not applicable
for our purposes. The converse to the coding theorem for multi-user channeis with
memory which is established in {Ver89,1] does not specificaily make use of B-1.[3]
and is applicable to our channel model. In the following, we shall assume stationarity
and ergodicity. We do not seek to establish results with stationarnty and no ergodicity.
As for synchronism. asynchronism among the users can be included in the path delays,
as mentioned in Chapter III. Therefore. we do not need to consider separately the
synchronous (in frame oniy or in symbol also) case from the asynchronous (in frame
only or in symbol also) case. In the memoryless muitiple access channel. asynchronism
affects the capacity region only by the lack of a convex hull operation ((HH85]). In the
channel with memory as in B-1.[3], frame asynchronism. and hence symbol

synchronism, reduces the capacity region because the users cannot cooperate in time
([Ver89.2]).

We establish a muitiple access coding theorem for users with infinite memory on
outputs and finite memory on past inputs only. We proceed in a way similar to that of
[Gal68] and [Lia72]. We first establish an exponential bound on the probability of
error. We next establish that the bound is vanishingly small for rates in a certain
capacity region. Our coding theorem indicates that one way to achieve capacity is to

interleave in such a way as to weather out the fades. Such a practice can easily be seen
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to help combat fading. and engineers have been adopting it without any need for a
coding theorem. However. this coding theorem confirms that such a practice is in some

sense optimal and also gives some idea as to what delay trade-offs we may expect.

B-IT Model and notation.

We use a similar notation and model to that found in [Gal68] and |Lia72], with
minor changes due to the nature of the problem. Unless otherwise specified. the '
subscript associated with the vectors is N. We first consider a discrete-time channel with
two users. the case for an arbitrary number of users being considered later as an
extension. At any time. we know the probability of the output, given the previous inputs
from the two users. The goal of the decoder is to furnish us with a pair of codewords.
to reflect the codewords sent by the two users. We perform maximum-likelihood
decoding on the output. i.e.. we choose as the decoded pair of codewords one such pair
which maximises the probability of the observed output given that pair of codewords
was the channel input. Since we are trying to show that we may transmit up to rates
within a certain capacity region expression, it is sufficient to show that we may achieve
such transmission by performing maximum-likelihood decoding. Each user has its own
codebook, where each word is mapped to a sequence of N letters. Each user has words
selected independently from its codebook with a given probablity mass function, Q,
defined below. We denote probability density functions by a small p.

We have the following notation :

M; : number of code words for the codebook of user 1

N: number of channel input letters per user source codebook word
N' : number of output letters per receiver codebook word

R; : rate of transmission of user1 in nats. R; =InM;/N

X : random variable denoting the N-tuple of letters forming the codeword sent by
user1
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Y : random variable denoting the N'-tuple of letters forming the output codeword
x; : N-tuple of letters: value that may be taken by X,
y : N'-tuple of letters: value that may be taken by Y.

p(y | X, x2) : simplified notation for p(Y = ¥ | X = Xy, X5 =x1) ; maximum
likelihood decoding, with this notation. reduces to choosing the pair (xj, x») which
maximises p(y | xj, x2) for y given

qN(x;) : probability density that the codeword x; was chosen for any particular
codeword of user 1

m; : message sent by user!

~ -
m; : decoded message for user1

Pe; (Pea) : probability that the decoded codeword for user 1 (2) is different from
that sent by user 1 (2) while the decoded codeword for user 2 (1) is the same as the one
sent by user 2 (1), i.e.

”~ ~ ”~ ”~
m,# m, and m, = m, My = M,y andm,:m,)

such errors will be denoted as error of type 1 (2)

Pe, » : probability that the decoded codewords for both users 1 and 2 are different
from those sent by those users, i.e.
m;# m;fori=1,2

such error will be denoted as error of type 3

I K Y X

=f f‘lf qlN(“x)q (‘:Jp(xixml‘“{ﬁlg';jj} dxpdx, dy

B-1L.[1]
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[ql..\'- q:..\'ixz.. _Y_[ x!)
N 2N X, X2
=f\_ filfl;q M a N e py L x x) ln{p(imﬂ—m—)} dx, dx  dy
B-1L.[2]
™ (K X Y)
=f_\; fllfl;ql..\’(;,}q (xdply ! X4, xz)m{P‘l:;; x:‘j} dx; dx, dy
B-IL[3].

Although we shall not state it explicitly, all distributions q! and g which we
consider are. by assumption. such that the limit of the average over N as N—» of the

RHS of B-II.[1]-[3] exists. The above notation will later be extended when we
consider the case of an arbitrary number of users.

In order to establish our coding theorem with an exponentially decreasing upper
bound on the probability of error, we define the following conditions :

s
V£>0VNOEN 3N, eEN “suchthat V k & N

P(Y-hl- keNo! Zlgy), k+NJ
expl-¢) < < exple)
4!k+l . k+N0 —_k+| k+N - 1 _)

for =, any subset of Xiysi.n; = any subsetof y, .

B-I1.[4]

.+ .+ .+
Ve>0,YNgEN ,IN,EN suchthaVkeN

P(!k ke, X '
exp(-e) S +1 k+Ng' 22k 4. k+NJ < exdg)
d!k-ﬁ-l, k+No| £Zk+l, k+Ng E? E’

for Z, any subset Ofl‘-lkn-.\',' = any subset of YieloN,

B-I1.[5]
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Ves0VN,EN CIN,EN suchtha VkEN

P(y-k*fl. koo Liger keNg 22k41. k+;\')
expl—€) <

< exple)

Yir i kenNo! Byt kang B2icel, kang =10 22 =

for Z, any subset of Xigyi.n; S2any subset of Xogein; = 20Y subsetof v, .\

B-I1.[6]

to which we shall refer as the decorreiating channel conditions. These conditions
will later be contrasted with weaker conditions for the decorrelation of channels which
yield a weaker form of the coding theorem. Note that Ng in the context of this appendix
has no relation to the spectral density of noise.

B-II1 A source codino theorem for a two-user channel with decorrelating channeis.

We begin by bounding the probability of error with an appropriéte exponential
argument. whose behavior we later explore. Our arguments up to B-IIL.[55] follow
very closely the ones of [Gal68] and [Lia72]. The main difference is the use of the full

ql:N and g*-N pdfs because of the infinite memory in both inputs and outputs. After B-
[1.[55], we make use of B-11.[4]-[6] and ergodicity.

Let us first consider errors of type 1. Let us denote by Pel.m,.m, the probability that

an error of type 1 occurs conditioned on messages m{ and m being sent. Using the
overbar to denote expectation, we have:

l_)Zl.m,.m, = J
Y

x P«(l?ll = ml) N (ag = mz)}l Y. X, 5.2) dlz di‘ dy

JXL q"N(x) @V () Y1 X0 Xp)

B-IIL.[1]
where

m=m,

P({(al“ml)n(r?“l:‘mz)}ll’ Xp &;]=P( U {(l‘?l|=m)n(r?12= m:)}ly_,;,z(_g



167

B-111.[2].

Using the union bound ([Gal68]. pg. 136) on the above RHS. we obtain

B-111.[3]
VOsps1

Since we are using maximum-likelihood decoding, the event

\(I?ll = m) N (1?12 = mg)} can occur only if X is the m‘! code word for user | and if

MYz g
MY TX;, X9

B-II1.[4].

Since we have a random choice of codewords with probability mass function given
by the function q, we may write that

P({(m1==ml (M, = ma);lx,_pxz)SJ y q'(x) dx

o PLIT S

ol I8

B-IL.[5].

Therefore, we have the inequality

P({(;;,l =my) N (@, = mo)l v, x,, LZ}SquL-\U{;lL'l:v_XJ}

B-II1.[6]



168

V6>0

Using B-111.[6] and the fact that there are (M-1) erroneous messages for user 1.
we obtain from B-II1.[3] and B-II1.[2] the inequality

Pel,mmeSJ J [ q'™ (x,) % (x5) Y1 %y X5)

LIy /g =
| WIS
x\(Mrl\[ q‘~-\<9{ ~ =2 [ dn; dgdx, dy

B-1IL.[7].

We cantake 6 = 1/(1+p). yielding

’ i \l+p
ﬁe-l.m..mS(Ml'l)pJ J qz"\(&z)\I Q" NMOp(y ! x, Lz)“pd)_(_[ dx, dy
: s 2 | 2 s

B-IIL.[8].
Rewriting B-II1.[8] to use the definition of rate, we have the following lemma.

Lemma B-II1.] : forall p € [0, 1], q!-N and q>-N probability density functions for
X and X respectively, we have

Pe o, m, expl-N (-pR1 «Ep. @'Y, 2V ))
B-HIL.[9],

where we have defined, analogously to [Gal68],

E(l)(p, q I,N' q:..\)

=-F1‘4n\f£thz"jzsﬁ\fl Q' ply | % X d&f dx, dy

/ AR \
J
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B-II1.[10].
The same reasoning may be appiied to obtain

Lemma B-I11.2 : forall p €10, 1], q'N and q=-N probability density functions for
X} and X we have

Pes . m, S XN PRy + B (o 0! ) )
B-IIL{11],

where

Eé(fx Q' q:“\)

[ %
=-F11-1n\ff q .7_ \f q (_)p(xlxh p / dx, .Y./
B-IIL.[12].

We see that it suffices to determine the behavior of the exponents in B-111.[9] and
B-1II.[11], to determine whether or not the upper bound to error probability becomes
vanishingly small. We therefore proceed to show the following lemma. which closely
parallels [Gal68], pg. 142 and [Lia72], pg. 108.

Lemma B-I1.3: if (Y ; X, | X,)> O then for all 12p>0 we have

N 2N
g )>0

aNE; (p, q'
11X, : YIX,) = E“("aq
P

B-II1.[13]

E(l) (p' ql..\"qz,.\.) >0
B-II1.[14]
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B-1IL.[15].

Proof: We will first compute the first derivative of E(l) for any q!'N and g=-N

probability density functions for X| and X respectively.

aEAp. q 1..\" q:..\)
ap

Lo
";\fxth Mg | 0 Vel in kg ax dhdlf
N \14—9 }

XiUv L Q> (x,) {L Q" (1) ply | X X,)'*P | dxdy

B-III.[16].

| 3
Let us use the fact that —(aﬂ“b = Infa)
ax

( oflx)

“" to rewrite the second term in the
9x

RHS of B-II1.[16] as




171

! I
J

(l+p)\fL q"x(sz(xla, Xy dx

/ L

(l+p

+\f q"xts)ptxzs-sg“p daf ln\f‘ql“\'(sz(x'&aa dx

dx, dy
B-IIL.[17].

Setting p to be 0. we therefore have that

{x_j p(xl X1 xg)dx }dxl

1 I,.N 2N
an(p-q ™) =%fith2‘”(aﬂ{f‘

ap | p=0

X {-L "V (xy) Y1 8, %) Inlp(y | Xy, Xp)) dXy

B-II1.[18].

Let us now show that the first derivative is always positive. The function of p given

by
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is nondecreasing in p. as shown in (Gal68]. pg. 323. relation (e). Therefore the same

holds for any positive linear combination of such functions. In particular.

| l+p

JJ Q™ (xy) \J q"'\'(a)p(xla,a;)mdai dx, dy

is nondecreasing in p. Therefore. by using the fact that

E\(0.q"N ¢*N =0
B-II1.[19],

and using B-II1.[13], we have shown B-III.[14].

To show that the second derivative with respect to p is negative, we show that Ey is
a convex M function of p, i.e.

Eé(lv+(l-7\.)w. "N V= )\.Eé (v. q'N, g2V + (1_)\)5!; (w, gV, >N

B-111.[20]
VAE[O1]

Yuve(ol]

Establishing that Eg is a convex M function of p is equivalent to establishing that Eq

is a convex M function of 1+p. Inequality B-II1.[20] can therefore be established as
follows:

1 lkv-‘-(l'x‘)w
I J >N (LZ)U Nz oyl x), G RVHILMW a5 dx, dy
Yy Jx X - - - -

(by applying the resuit of [Gal68], pg. 194, (5.B.7), which is a consequence of
Hélder's inequality)



l A\’
z-Hn{L J_‘ 9>V (x,) {L Q"™ (% Jply | 5y, %,)Y d .} dx, dx}

173

x J {I >N (x ){L Q'Y (x )L K 2 d;t

(applying Holder's inequality)

v A
[ N L \ \
Xs) q"- (EL).P(EIEL, En)v dx_l_ dlg. dy [

1 e
‘-‘Y. JX \ h9]
I ( N I ( : L \w \(I-K)
x (0] @' N(x)ply !Xy, %)Y dx, [ dx,_dy
\m 2\, e B
B-IIL.[21].
By taking logarithms in B-I11.{21], we obtain
f | AvH(1- M)W \
- an J >N (h)d Q"N (x)) Pl xp, mpVHI-MW 9, dx, dx[
r I = Uy = = = =

=i
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-(lk»ln{Z] q:“\'(m{]-_ g (x )P(X!L-,ﬁl)wl?da\ dx, dx\
B-111.[22].

Theretore. we have established B-II1.[20], from which we obtain B-III.[13].

Combining B-III.[15] with B-II1.[18] and the fact that the first derivative is positive,
we obtain B-II1.[13].

Q.E.D.

Let g!-N. q2+N be a pair of probability density functions for the codewords of
length N of users | and 2. From B-III.[19] , we see that

(Eo(p.a ™. q* M- pR, || =0

p-

B-111.[23].

The firstderivative of{E(I) (p, q!'N, qz‘N) - PR, } with respect to p is given by

l 5
3Ey p. q"N. q*™)
op

-R

and the second derivauve is

8 Eylp. q''N, q*Y)
2
op

Therefore, from B-lII.[15], in order for {E“, (p. ql’N, qz'N) - pRl} to be strictly
positive for some p in [0,1], it is necessary and sufficient that

[oEL (o, gt N |
— fls

B-I11.[24].

From B-II1.[ 18], we see that
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aEl(p I.N qz.x)
_1_11.x LN(X;Y!X:)>R20= o\P. 4 . '-Rl I >0
N'a .9 &b =g ! 3 / p=U
p
B-IIIL.[25].

Therefore. we have the following lemma.

Lemma B-1l1.4: for all q'-N and g>-N probability density functions for X, and Xa
respectively, we have

1

‘ 1 I.N
N{q...\‘ SXpYX)>Ri20=3p €1[0.1]s.t Eo(P» q

2.\
-q ) Riyp >0
B-111.[26].

In the same manner. we can establish

Lemma B-lIL.5: for all g!:N and q>N probability density functions for X, and X3
respectively, we have

Lo o 2 IN 2N
ﬁlq'--_q---(x_g,ﬂ}_(_ﬂ>R220=3pE{O,lls.t_E0(p,q . q J}-R‘lp >0

B-II1.[27].

We point out the difference between our results and those for the memoryless case. We
need to consider the distribution over ail N input symbols because of the memory. When
the channel has finite memory as in B-1.[3], then it sufficient to consider q!+4 and g2-4.

We wish to establish a result analogous to B-II1.[26] and B-IIL.[27] for errors of type
3. The denvation is similar to that for errors of type | and 2. with some modifications.
We have that

Pe3 m.m,= f)_. fll fx; q (xga” (g ply Xy X

X P({(r‘ﬁ| =m,)ﬂ(r?12= mz)}ly_, X, gz)dg_; dx, dy
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B-111.[28]
where
P{{(r?n = m,) N (r?]-_»:: m:)}| Y. 5’_‘ LJ
= U {(l'?l1=m}ﬂ(r?12= m')}[l, LL’ &Z)
m=m, m=m, 2
B-I11.[29].
Using the union bound. we obtain
U {(l‘?‘h:m)ﬂ(r?!:: m')}|1, X, ,_(_;)
Mm=m, m'=m,
~ - F
S{ Z P({(rm:m)ﬂ(m-_.: m')}] Y, Ll_v &2)\
m=m, m'=m, ;
B-IIL.{30]

VO<psl

The event {(E\, = m) N (l?lz =m' )} occurs only if x is the m‘h codeword for user | and

x_ is the m"h codeword for user 2 and

ply!x x)
E(ilal_,a;j‘

B-1II.[31].

Since we have a random choice of codewords with probability mass function given by
the functions q, we may write that

P{(@, =m) N (@ =m )y, x,. x,)< [ Cyie ) AN (x)dx dxt
X emm—— |
Ply! g x3)
B-111.[32].

Hence
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AR, =m0 =iy gls | q‘--‘(x)ql-x(u{a’%} it de.
B-111.{33]
Ve>0

From inequality B-I11.[28]. B-111.[29]. B[30] and B-111.[33] and the fact that there are
(M1-1)(M2-1) erroneous messages for user 1. we obtain

PeJ.m,,m,S! L J ql'N(ll)q2°N(&g)P(llliv5.2)

/ LN (o) o2 N oy [ P T x0) P . \p
x \(MMXM:-UL_ . q T (x)q () m‘ dx dX_’ dx, dx, dy

B-II1.[34].

Taking 8 = 1/(1+p) yields

| { 1 l+p
Pea.m.,m,S(Mrl)p(Mz-l)"L \L Q"N (x) >N (xp(y | . x)'*Pdx |

xl

B-II1.{35].

Using the definitions of R} and R», we may rewrite B-II1.[35] so that for any (m{, m»)
pair, we have the following lemma

Lemma B-111.6 : forall p €10, 1], q-N and q2:N probability density functions for X
and X> we have

Pe}.m.. m,s exP('N(-p(RI+R2)"' % (p' ql'N' qZ.N»)
B-111.[36]

where

I | L \l+p \

{ . ql..\ (’_(-) qZ-N (&) p(X|L, &)l-ﬂ)da d&’ d!{
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B-111.[37].

We shall therefore try to determine values of Rj+R> for which the expression
multiplying N in the exponent of B-1I1.{36} is positive.

Lemma B-[I1.7: forany q'-> and q=-™ probability density functions for X and X>, we
have that for ail 12p=0

Eylp. ' q*%) 20
B-111.[38]
dNEj{p q""\ qﬂ\)
X X5 Y) _ >0
ap
B-111.[39]
B2 (p. g, g*)
- - <0
ap
B-111.{40].

Proof: Forany q!N and g>- probability density functions for X and X3, let us first
3
compute the first denivative of Ej; with respectto p.

653(p~,q1'N- q”’




x-a_ f\' / | N, lipdg dﬁ\
ap\ ) \fu q e Pyl x, x) j dy
l+p
: L
h;\f‘- {f;.l " g N ) ply fx, &)dex dﬁ} dy

Therefore

353(9. q", qZ'N)
ap

Y

. > l+p
NS \fu " e ply i x)  dx dx

Therefore, by setting p = 0, we obtain

{J JECRA L 31 (15 XJrem dx d&}

1

1

] +{L L TR )Pyl x)+ dx .

1

" \
[+

P

"{'“ . )ZI | ql'N(?&)qz'N(X_'.)P(llL.&);:ln(p(xli, X)) dx dg_}
+p)~/x X

l+p

x ln{L "I a0 () ply |5 %) dx 9
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B-1I1.[41].

dy

B-111.[42].



180

Enlp o™ a1 xoxey
op [ p=0 NE o e

B-111.[43].

L 3. . .
Let us show that the first denvative of Ej with respect to p is always positive. The

function of p given by

is nondecreasing in p, as shown in {Gal68], pg. 523. expression (e). Therefore.

J 1 l“p
L \Ll L ql'x(ll) qz..\'(iz)p(yir L;)'*p d&_d&-__,-j dy

is nondecreasing in p. Hence, B-II1.[38] holds because of B-11.[39] and

0

E%(O, Qx..\'. Qz..\)
B-I11.[44].

We now wish to show that the second derivative with respect to p is negative. To prove
L 3. . . .
that the second derivatve of Ej with respect to p is negative, we show that Eé is a convex

M function of p+1, i.e.

B (10w, Q"% @223, @' @Y+ (1-ME w. N @

B-I11.[45]
vAe(o.l]

Vuvelo, 1]

Showing that E, is a convex (1 {unction of p is equivalent to showing that E(J) is a

convex N function of 1+p. Inequality B-IT1.[45] can be established as follows:
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I 1 AV+CT-AwW

I \J q' %, 977 (%) Pyl X, X, AVHIE-MW dx, di‘J dy
hvooUy, Un - = - = -

(by applying the result of [Gal68], pg. 194, (5.B.7). which is a consequence of
Holder's inequality)

L Av

(by taking logarithms)
I ’ N B ‘Kv+(l-7\)w \
- lﬂ‘L \L L‘ 0! (%) 42 (%) Py | 5, ZPVHI-MIW dx, d;_! dl’
z=Aln J I I gy N \
\; \ " ‘[L; (x, )q (5.2) P(l'l(.; _2) dx., dx dlf

L w
Jx Jx. q!.N(EL) qz"\" (K'Z) P(ll_&l_. Ei)w dEQ d&l_} d}.’.}

B-II1.[46].



182

Therefore. we have established B-111.[40]. Combining B-111.[40]. B-I11.[43] and the

fact that the first derivative of E’é with respect to p is positive. we obtain B-I11.[39].

Q.E.D.

Letql:N. q2+N be two probability density functions for codewords of length N for
users | and 2. From B-11[.[44], we have that

LN 2,N) _
Elp.q""N. q )le,+Rg)‘p_0—0

B-11l.[47].
The first derivative of E% (p. ql‘N. qz’N) -p (Ry+R,) with respect to p is given by

1,N _2,N
oEy(p.a"" g )_R‘_R:
ap

and the second derivauve is

2
3 Elp. q"'N. >V
2

ap

Theretore. from B-I11.[40], in order for E% (p, ql’N. qZ'N) - p (R,+R,) to be strictly

positive for some p in {0,1], it is necessary and sufficient that

l >0

3 1,N 2,N
JoE (p. a"N. q )'Rz"%}p_o

ap -
B-II1.[48].

From B-111.[43], we see that

! 1,N _2,N
'IETIQ"‘. & (X YXy) >R+ Ry 20= lan(p’ g R, - R.,\l >0
op fle=0

B-II1.[49].
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Therefore. we have the following lemma, which parallels lemmas B-111.4 and B-I11.5.

Lemma B-111.8: for all q'-™ and q=-V probability density functions for X| and X5 we
have

Lros o
qu' Xy X9 Y) >R +Ry 20
N2
=3pec]0l]s.t Eo(p.q q )-(R1+R-_.]p >0
B-111.[50].
Since the probability of error (inciuding any type of error) obeys
PCSPC] + Pe:+ PC3
B-1IL.[51].

We may write, using B-1I1.[9], B-III.[11] and B-II1.[36], that for any pair m| and m»
of messsages

B-II1.[52]

where

m(Eop "N, ¢*Y)-R,p), “’“(Eo(p, N, Y- Ryp),
(Ef,(p LN 2\) (R, + RyJo)

B-II1.[53].

Combining the above equations with lemmas B-1I1.4, B-111.5 and B-III.8, we have the
following theorem.

Theorem B-111.1 - for all g!-N and q>-N probability density functions for X and X»,
for any messages m and m» of users | and 2, we have
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Pem, ms3e
B-111.|54)
and
{ﬁl.[ql..\' q:..\'()_(__;_Y_ X1)> R, 20 ‘a.nd{ l ‘ LN (&7 X&L)> R‘.’ZO}
d{gll- [ @¥((X,.X5):Y) >R +R220‘ Emin> 0
B-II1.[55].

The above theorem establishes an upper bound to the probability of error. but this is not
enough to show that we have reliable communications possible within the rate region of
the LHS of B-II1.[55]. The term Eq,n varies with N. If it were to decrease faster than N.
then we would not have that the probability of error goes to 0 as N goes to infinity.
However. if we show that we can obtain a lower bound on Ep; as N goes to infinity,
we would establish a coding theorem. It is now that we make use of our assumption that
the channels decorrelate as given in B-11.[4]-[6] and are ergodic.

Let us consider errors of type 3. The channel is ergodic and the probabilities q!-N and
lim

q*N were chosen such that —[ v v (X, X5) 1Y) exists. Hence. if we have
N—w® N ' =
that
lim | <
N_mN-I LN ”((X.. X3 Y)> R+R,= 0
B-1IIL.[56]
then, for large enough No,
b}_olq...\, (X Xog) 1Y) -(Ry+Ry) 2£2 0
B-II1.[57]

where
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B-II1.[58].

The ability to measure the channel affects the average behavior of the channel in terms
of mutual information. If. for instance. the channel varies very rapidly. then we know
~ that we cannot reaily use past outputs to measure the channel and Ny is very small. If the

channel varies very slowly, then N will be large to take into account that we may use
many past outputs to measure the channel.

Combining B-I11.[57]. B-II1. (58] and B-1I1.[50] of lemma B-III. [8], we obtain that
there exists a pg € [0. 1] such that

By po: ', q7)- (R, + Rylpy = 55 0
B-IIL[59].

Using B-I1.[6], we select an Ny such that, for ail integer k,

Yo koNyl X » X2 »
cxp{?} P( +LkeNo Kl gy N _k+|.k+N) <exp(c)

P{qu keNol X1, keNg 22at keng =10

for =, any subset of X1 .j.n; Saany subset of LTINS = any subsetof y, | .«
B-I11.[601].

We assume, w.l.0.g., that we choose N1 to be a multiple of Nj.

Let us denote by Q!N and Q2.N the in
For every integer i. the sequence X
"iINg+ L iNg+ 1

put p.d.f.s constructed in the following manner.
is distributed according to the

1.N,

distribution @ and the other elements are set to be nil. Similarly, for every integer i,

2.N,

the sequence X » is distributed according to the distribution Q  and

INg+ L ilNg+ )
the other elements are set to be nil. We form a block interleaved code in the following
manner. Let us take. w.l.o.g., N to be a multiple of Ny. The first block of the code is
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created as follows. The first block's symbols are the first Ny symbols. followed by the
symbols from sampled time Nj+1 to N{+Np, then the symbols from sampled time
2Np+1 to 2Np+No. ... iNj+1 10 iNj+Np, ... (hf;‘—l N+ o (% 1)N,+N0, The

second codeword of the first layer of the code is similar but its symbols are shifted by

No. Thus, there are % blocks. each composed of Nﬁ segments of length No. Figure B.3
0 1

illustrates our coding technique. For the sake of illustration. we show the simplie case

where Ng =4, Ny =8 and N = 16.

segments of the first
block segments of the second

N, N,

Figure B3 : Block interleaved coding scheme.

Let us consider the following suboptimal decoding method. We use maximum
likelihood decoding for a slightly modified channel in which the coupling among different

segements of the code block is broken. We also decode each block independently. Let us
define

N
N,
"y1x,x)= 11 ) I X X
P!z x) i=0p(LLNI + LN +Ng TINp o+ LN +N NG+ LN +N

B-111.[61]

and
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X
N

(vix,, xy)= I Xy . X5 . .

Py ix;. Xy) - "(3’-,;\;1 + LiN+Ng “HING + LN +N, 2iN, + L. 1N1+N0)

B-II1.[62].

Let us define the set £3{1] of x and x for which an error of type 3 occurs with our
suboptimal decoding scheme for the first block when X and X2 were sent (the subscript 3

refers to the type of error and the (1] refers to the fact that we are considering the first
block):

fi*&‘ ”'(xllLL) 5 11
23[11.__ % (1 £|_v 51)
\ X# X, X =X, f
B-H11.{63].
Exprcssion.B-III.[32] is replaced by:
I 0" 9™ ) dx dx' 2 M@, = m) N (@, = m )y, 5, x,)
x x €1]
B-II1.[64]

where we consider messages over the first block.

Hence. for our suboptimal decoding scheme

F{(@, =) (B, = v, 5, ;Z)sj

X

I.N 2. N0 ,P'(lll, &) \Qd dx’
Lq (X)q (L)\—Pl'(llﬁi,lg” X dx

B-II1.[65]
V6>0

Ny

N,
Using B-I11.[28)-{30] appropriately modified to take into account that we assign M,
No

Ny
M, messages for user | (user 2) to the first block. we may write




Pe'“]l m,. m, = J
/ No No 1

\(Ml-l) (M-,-l) ff 0" Nwe )

dx, dx, dy
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B-I11.[66]

where Pe’ refers to the probability of error under our suboptimal decoding scheme and
the [1] after Pe' refers to the fact that we are considering the first block.

.

The following lemma. which is similar to B-I11.7, holds.
Lemma B-II1.9 : forall p € [0, 1], we have |

qz..\')

| N
Pc'nls.m,. m.S exp (-N(-p (N—O;(RI*'R:) + Eg(P, gt
; 1

Analogously to B-II1.[37], we have defined Eg in B-1I1.[65] as

E'%(p. ql.N‘ q2..\')

L L L lV(X;)q V(Xz)p(xl X Xo)

x“ L q" g N(x)

/_/

P(!'E ) \T -
PU(X!X), X5

1+pdx I

dx, d

B-IIL.[67].

dv

(replacing Q with its product expression and expressing ply | x 1+ %3] as a product



N
N
I.N
fﬁ j.l: J‘l;n q (S—I.i.\',ﬂ. |.\',+_\',)
=0
2.N

Xn...
q (—24.-\,*1..‘.\'”.\')

l\r‘-l. l.\,+;\0 ill.\'ﬁ'l. l‘_\-ﬁ__\'o'

] S4N .+, NNy
x VEIN 1 j\r"-\'o}j:o,w -1
X1:ve
{~__,‘\'+] IN#N, =0 i-1
' §
220N NN
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We also have that

fx fL. ﬁq l“\-{ii.-\',-l. IN N

: \(—l\|+l 1\,+\()

1
1+p
JPlx x) | dx dx'
|PUtxy, xg)f
dx, dx, dy

[ s )

f‘ f‘, qu”\'(éiNrﬂ-l. NN
T T

Q7 (Kin 1, iN+Ng

.
1

p+1

p+1

—

~—
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B-II1.[69].

B-II1.[70].
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Using B-111.{691-[70]. we obtain for large enough N that

E._Ni a') 0 LN gl SNy
B-IIL.[71).
Expressions B-111.[59] and B-111.[71] together yield
B3 by 6 YT R, « Rolpg R0 2 2 R0
N, 2 N,
B-I11.[72]

for all large enough N.

We have Pe'[1] = Pe[1]. Moreover, we may write that the probabil.ity of error of type 3
over all N is symbols is bounded as

i

7

Pe3 mg m, s em}.m,.m:
i=1

B-IL[73].

Combining B-I11.[72]-[73], B-1I1.[59] of lemma B-II1.9. B-1I1.[56] and B-111.[57], we
obtain the following lemma.

Lemma B-1I1.10 : if we have

lim -blj-lqm‘ q:..\'((&‘-,ll) Y)> Ri+R,2 0

N—>c0
B-II1.[74)
then there exists £ > 0 and z> O such that for all large eriough N

-Nt
Pes p, m,s<2e
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B-IIL.[75].
. _ N, NoG . . . :
In our derivation, z = N and £ = N3 Similarly, we may derive the following
0 1
lemmas for errors of type | and 2.
Lemma B-III.1] : if we have
lim
=]y (X Y IXVS>R, 20
N—sco N 4 -4 1 2 1
B-II1.[76]
then there exists T' > O and z' > O such that for all large enough N
-NT

Pey o, m,SZe
B-1IL.[77].

Lemma B-111.12 : if we have

lim |
S N 2\(&,Y|&)> =0
N—sco N 9.9 2 K R'Z
B-II1.[78]
then there exists £'* > O and z" > O such that for all large enough N
-NE"

Pes mom,<2'€

B-IIL.[79].

Therefore, if we choose

t=minl¢, T, ¢")
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B-I11.[80]

and

Zz=max{z, ', Z'')
B-IIL.[81]

we may write from lemmas B-111.10- 12 that
Theorem B-1I1.2 : if we have

;
m ;J—lq‘.x_ 33X, X5) Y)> R +Ry 2 0
N—w

B-IIL.[74]
li
m &—lql.s‘ qz'N(-x—l_ ;ll_x_z)‘—' R,a 0

N—sa

B-H1.[76]
li
m NquLN' q!.N(&z ;il&l_)> R,2 0

N—wx
B-1I1.[78]

then there exists § > 0 and z > 0 such that for all large enough N

BN 4
Pe<ze

B-II1.[82].

Remarks :

- We have not used Eyy directly to prove our coding theorem. However, we can
esteablish some properties about Ey;p

From B-II1.[43], we may write that
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:p’ Eolp.q' g™ (R|+R)Pf| =N‘ (e X3 Y)-(Ry+ Ry
B-I11.[83].

Moreover.

" Rty

{ SN 1. (14.1)N0[,=0 lNo.l
s @M (X Xp) V)2 [px o ot ={XNO}‘=0

0 1
{&liN0+ L, (i+1 )No}i=0

(rewriting the mutual information as a difference of entropies)

B

(X,
‘ ZiNg+1, .(N0+1);'=°

" ol

k :
R H{Ng+ak 1. iNg+a N, =0 . l?j

[Ny (N0+A)+l (1+l)(N0+A)["°
A2y Ng+ah 1. {Ny+a N, ji=0

=b { TiNg+1, |(N0+1)

.——‘

(rewriting the first term from the definition of q)
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N
53]
= Z hKL '&Z
i=0 i(No+ra 1. (Ngra N {Nog+raj 1 i{Nga N,
| | tiNgrak L ilNgra kN =0 Iy \lN0+AJ
lﬁj {—i(NO+A)+I, (i+l)(No+A)Ii=°
X 0
{_3i(N0+A)+l. i(Ng+A JN, [1=0

(using the chain rule for entropy on the second term and using the fact that conditioning
reduces entropy)

N
Ng+A

® go h(Kli(No+A}+l,i(N0+A)-0-N0'
X,

oy
Y Hf iNgrakl iNgaRN,

'Mb{z

Z{Ngrake1, iINg+AJN,

X

Zi(N0+A)+1, {NgrapN,

LY

i(Ng+a k1, (i+1) (Ng+a)

(pairing the above entropies into mutual information expressions)

e x
= 3 I g (‘_li(NO+A)+l, .i(‘r;zom)mo "TH(NgrAN i(N0+A)+N0)
=0 HNgrAlL, (i+1) (Ng+a)

(from the stationarity of the channel)

x *
B g (g raben, gl g, e
Ny+A ' Y

THNg+AR 1, (i+1) (Ng+a)
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B-111.[84].

Combining B-I11.[83] and B-111.[84]. we obtain

i{Eg(p.ql'N-qz"\) (R |+R~)p | 2-(R, + R,

4_L [ LN N
N0+A

( No+A k1, 1(N0+A)+N .(N0+A)+| 1(N0+A)+N]
1(N0+A)+l (1+l)(N0+A)

B-IT1.[85].

For large enough N

TN +A)-+l 1 No+A KN, &2( No+A 1, 1(N0+A)+N)

1(N0+A)+l (i+1)(Ng+A)

(&( Ng+ak1, 1(N0+A)+N 2i(N0+A)+l i(NO+A)+N0)

otA
|(N0+A)+l 1+l)(N0+A)

B-IIL.[86].
From B-II1.[43], we may write that for N large enough
d /.3 I.N 2.\ €
Z{edle. 0" 0™ Ry - Rl 25
P

B-II1.[87].

Note that the above is not sufficient to prove our coding theorem. Indeed, the first
derivative in the LHS of B-II1.[87] might decrease in p with N. However, B-1IL.[87]
gives some indication about the behavior of E% (p q'-Y, qz"\'). Similar results can be
found for E(l)(p q'>, ¢*V) and {p q'-N, &),

- We give here another remark about the behavior of E% (p, g%, ¢*Y). The same
discussion applies to Ej, (p. @'Y, ¢*) and EZ (p. 'Y, g2N).
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We first state here a lemma which we shall use and whose proof may be found in
[Gal68], pages 112-113.

Lemma B.]3: letay. for N= 1,2, ...be a sequence such that

a< o

a>-x

If for all n=21 and N2n

N-n
.a_\vZ N-an + Ta'\-_n

B-I11.[88]
then

li.m_\'_,@_\' =a

B-I11.[89].
Moreover, if for all n>1 and N>n

ays< -l%-an + r—t—naN_n

B-II1.[90}

then

B-IIL.[91].
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Let us define

Fle)= ™ [ (p.q", q2)]
q'. q*

B-111.[92].

Let us separate the input sequence x) = (xj[1], ..., x)[N]) intox'; = (xi[11, .... x3{n))
and x| = (xj[n+!], ..., x;{N]). and the output sequence y = (y}, .... yN) intoy' =
(Y11, ... y[nD and v'' = (y[n+1], .... Y[N]). Let us define the input sequences x'''} =
(xil1], ..., x1IN-n]) and x'''» = (xa[1}], ..., x2IN-n]) and the corresponding output
sequence y''' = (y[1]. .... y[N-n]. Let us consider probability density functions pairs
(q1l" q;>P) and (g2t:N-0 qa2N-ny for (x5, x'2) and (x'""), x'"") such that they
maximize F?,(p) and Fs\-_n(p) respectively. Furthermore, let us consider the probability
mass function for x given by

ql..\(y = qi].n(Ll )qlz'\-n(Lz)

B-II1.[93].
From B-II1.[45], we may write that
3 N 2N
exp‘- NE3(p. o' g )) -0
. 2, AN- 2.(N- p-O -
-ex‘{ ) nEg{p, ql a a n)-{N-nlEg(p. ql (Nn)‘ q (N ul))
B-II1.[94].

Let us consider the derivative of the LHS of B-II1.[94]:

F) CXP(- NE?)(P, Q" qz..\”
an|. exp( -aEa(p. 0" q7%) - (N-alE3 o, 7! qz“N"'” P

(using B-II1.[42] and setting p=0)
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il
YE

I '

q" Nxy) 97 Nxy) Py 1 X, x,)IP(y Ix,, 5,) d, dagl

I

=1

P

Q" Nx,) g7 Nxy) Ply Ix,, x,) dx, dl(-‘-’t dy

J,‘—\ i

9" Nxy) g% %) Py [ X, X,) dX, dx, ;

.Y}
( - I I I I q" () g Mgt ) g “(&z)qz'x'“(ﬁz)l \
v Jey v Jy
xp(ll |X_'.]l &2)“1” Iﬂlv &2) [
xin(ply’ 'x'y, x) ply " X X)) A dx i, dx

I < I J I g" Mx,) g g ) g n(iz)qz..\'-n(x.;z)l
- + '15:[ X'y - dl
1

Py 1 Ky X, K1) de de de, dE ’

J ql' n(’_".l) ql'N- n(ﬁﬂ qz' n(&’.z) qz"\'-n(x';z)

[y Ky T, K1) dx! dE dx, dR ' )
(rewriting terms as entropies)

=h(Y1X Xo)- hY)- bY 1 X0}, XUo) - BY'" 1K, XU o)+ BY) + BY)

(using the stationarity of the channel to replace Y''* byY')
=BY1 X X)- BY)- Y1 X', X o) - B IX, XU )+ BY) + BY'Y)

(rewriting Y as the concatenation of Y' and Y'' and using the chain ruie on the first and
second terms)

=YX, Xl + Y 1X ), X Y) - Y- Y 1Y)
-B{YLIXC) Xtg) - WYX X0 o)+ (Y] + hY')

(cancelling pairwise the first and fifth terms, and the third and seventh terms)
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= h(g‘_!xlx Y)-hY Y - h(Y"!X"‘,X"J-t-hw

(pairing the first and second terms, and the third and fourth terms into mutual
information expressions)

=- 1Y (X XY + I (X, X))

(upper bounding the first term by the fact that I((A.B):C) 2 (A:C))
£ K )+ IR )

(rewriting the mutual information terms as entropies)

=-h(X", XU Y) (X XU UYL Y+ R, X ) - WX X YY)
(cancelling the first and third terms)
=B{X", XU IYL V) - BXE, XTI Y)

(rewriting the entropies as a mutual information)

=- (X, XU Y 1Y
<0
B-IIL.[96].

Therefore, for any positive €, we can pick j large enough such that there exists a & for
which

0spsd = F>(p)- Fjp)<e
B-I11.{97].
Similar results can be found for errors of type 1 and type 2. We may note again that B-

[11.[97] does not by itself prove our coding theorem, because 6 may decrease arbitrarily
rapidly with N.
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B-1V Extension to an arbitrarv number of users.

We extend the model used for the two-user case without giving the details of the
derivation. since the derivation is a simpie extension of the two user case. We need to
consider the different error combinations that may arise, rather than just the three cases of
the two-user channel. We have the following notation :

K': number of users

U:set {1, ....K}.

The following extension to theorem B-II1.2 holds:

Theorem B-1V.] : if we have

lim
Nl ¢ (Kdes YN X)eyr)> 3 Rz 0
N-’CD ieE
VECU
B-1V.[1]
then there exists § > 0 and z > O such that for all large enough N
-Ng
Pe<ze
B-1V.[2].

B-V Extension to weaker decorrelatin g conditions.

We have discussed in B-I that weaker decorrelating conditions could be given to satisfy
a coding theorem without an exponentially decreasing bound of the form of B-1V.[2].
The reasoning is the following. Let the multiplicative part of the channel of the ckannel be
stationary and weakly mixing and the additive noise component of the channel be
stationary and weakly mixing. Then, if the input signal is ergodic and all three processes
are mutually independent, then the input and the output of the channel are jointly ergodic,
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from {Pin], pg.74. If the average mutual information per symbol is finite. then the input
and output pair is information stable ([Pin|, pg. 117). Information stability is defined as
the fact that. as the number of samples goes to infinity, the probability that the mutual
information between any given sequence of inputs and outputs is different from the
expected mutual information goes to O ([Pin], pg. 60). Therefore. from (Gal|. problem
5.18. we may show that the probability of error goes to 0 as the number of samples
increases. However. we do not have an exponential bound. because the definition of
information stability does not specify how fast the probability of a sample input-output

sequence having the average mutual information approaches 1. Moreover. this sort of
argument does not tell us how we would wish to encode.

Conditions B-I1.[4]-[6] are not quite satisfied by a Gauss Markov model. However, as
long as we restrict the channel not to go above a maximum energy threshold for each tap,
then our model holds. Indeed. if we have no threshold. then we could reach a very high
energy value for certain taps such that it would take arbitrarily long for the channel to
wander off from such a high value. If the channel taps cannot take arbitrarily large energy
values, then, after a certain time, the channel will not behave significantly differently
whether it started out from a low value or a high value. Such a restriction on the value of
the channel taps is not artificial. In a system, arbirtarily high values cannot be registered
without eventually running into some sort of saturation. Besides, if the channel is

extremely strong, just about any coding will do. When the channel is weaker,
transmission of information is more difficuit.
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Appendix C.

Define

4i]= TZ"L:]_+ EE;for 121

a +oEzﬁ-l] o N

2
a
Ol= —
40)= —
OF
C.[1].
From [1-3.[82], we see that. for i1, z[i] is l/A;.
Let us define the function f to be
z
= — >
a +0z
C.[2].
2
The first derivative of f is > therefore f'(z) is always positive and f is
2 2
a +0z
2 2
monotonically increasing. The second derivative of f is , therefore f is
2 2
a +0=z

concave.

. We may rewrite C.[1] as

A=+ 4L

Ox
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C.[31.
Similarly. we may define
o .
Z[i]=1z{i-1}) + —2for i1
Ox
2[0)= =
o
C.[4].

From II-3.[83], we see that. for i21. z'(i] is I/A'j. To show Lemma [I-3.3, we shall
work by induction.

For i=1, from C.[l] and C.[3], z[l]: o +_sﬂ]2_, and, from C.[4],

2 pi
a ag
z'[l]: Z |+ —S_ Therefore.
2 2
O oy

Egul(11]=2[1]

C.[5].

Let us now assume that Eg id[z[i-l]]s Z[i-1]. In that case,

2
Es[d]]-= Es, [ 1]+ —

(using the fact that f is concave)
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<A [1)])+ ==

(using our induction assumption and the fact that f is monotonically increasing)

o,
<flzfi-1]) + ——2
AN
C.[6].
Therefore. for all i>1.
Es [2[il]< 2]
C.[71.

Therefore, Lemma II-3.3 and Lemma II-3.4 follow immediately from C.[7].
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Appendix D.

First. let us rewrite the argument of the limit in I[-3.[67]. We may express the first term
as: '

h(Ei.i Y, Em,x) - h(Em.k) N h(Ei.i | Ei+l.k) . h(lx | Ei.k) i h(Ei+l.k) i h(XkIEM'k)

(canceling together the first and fourth terms and using the Markov property to rewrite
the second term for k large enough with respect to i)

_ h(Ei.i | Em.nu) . h(_Y_k l Ex.k) ) h(!k | Em;x)

D.[1]
and the second term as

1, B 5= oE ) e ) el ) e )
i h(Il | Eh.],i-m) ) h(Ei«rl .|+u) ) h(§i | Ei+l.i+p.)

(canceling pairwise the third and seventh terms, since the input is independent of the
channpel, and the first and sixth terms)

- h(Ei.i | Ei+l.i+p.) + h()—,. | Ex,i-bu.‘ §|) } h(!. | Ei+l.i+u)
D.[2].

Combining D.[1] and D.[2], we obtain:

i) by, ). by, | Y
h(F E”' ion) h(Y |EhE 5_,) h(Y LT '*“)

(canceling the first and fourth terms)
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=h(!k l Ei.k) A h(XL ! -Eh-l.k} . h(i, | Ex.iﬂl. §') _ h(l,‘ | F1+I.i-u)

(rewriting the first and second terms)

=h(Y | Fi.i)+ h(YM N Fn«-l.k) ) h(YJEM'M)- h(xn.l.kl.Ei?z.k)

h‘YIF'"" s) ( IF‘*"*“)

D.[3].

Now, the RHS of 11-3.[79] may be rewritten as:

h(Ei.ith Ei+l.k)_ h(El" prelasu S) ( L pielisg Y) h(F”' den Y)

) h(Ei.i ‘ EHLHM» xv i.) N h‘Flvl A= Y" §|)
(expanding each term)

_ h(Ei+l,i+u) . h(Ei.x l Em.m) N h(Xi!Ei.i ‘ Ei+l.i+p.) X.lEM'W) ) h(E_M'"")
E - b B ny - WY B 8+ sy

+ h(Ei+l,i+u)+ b(lilEu-l.'H—u‘ §|)

(cancéling pairwise the first and fifth terms, the second and seventh terms. the sixth and
eleventh terms, the eighth and tenth terms and rewriting the fourth term to eliminate
Fi+l .i+|.|.)<

D.[4].

Comparing the RHS of D.[3] and D.[4], we see that the bound of 1I-3.[79] can be
obtained from I[[-3.[67] by upper bounding by O the limit
lim lim irl.k i+2.k

- k__oo( Y. xE }' h(!m,k‘.E” )) If that limit were indeed 0. then II-

3.[79] would be satisfied with equality.
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Figure E.1 : Mutual information for 0,1 signaling in a Rayleigh channel with noise
variance |. muitiplicative channel variance 4.
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Figure E3 : Mutual information for 0,1 signaling in a Rayleigh channel with noise
variance 4, multiplicative channel variance 4.
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Figure E.4: Mutual information for 0,1 signaling in a Rayleigh channel with noise
variance 4, multiplicative channel variance 4.
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Figure E.5 : Mutual information for 0,1 signaling in a Gaussian channel with a known

part having 95 % of the channel energy, noise variance 4, multiplicative channel energy
4,
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Figure E.6 : Mutual information for 0,1 signaling in a Gaussian channel with a known
part having 95 % of the channel energy, noise variance variance 4, multiplicative
channel energy 4..
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Appendix F.

Bounds to the mutual information
1.2

1.0 1
1
0.8 4

0.6 -

0.4 1

1 ~#——— lower bound to tim fj
0.2 4 J—-»oo
E
n

0.0 4 —_— . i :
0 ] 2 3

maximum slope for lower bound is 0.71291933 for% =0.07
yielding &' < 0.94

o
Figure F.1: Graph of f and . f; versus Z-for By = 60 Hz,
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spectrum bands of 1000 Hz, y =.037, channel strength 3 and noise variance 1
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Bounds to the mutual information
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Bounds to the mutual information
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Bounds to the mutual information
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The following is a transcript of a Maple V session to find the Kuhn Tucker conditions
for two users and k=k'=1.

» Al seem((F111. F112], (F121, F1 220

» wily finaig &
-ATRARG: "e« cer.aitiam feT “orm
JAFMADG: Te¢ QEIIIiLiOB 0T  Lrace

( BlockD1aeonai. GramSchmuds. JordanBilock. W ronsican.

add. addcol. uddrow. adj. adjoint. angie. augment.
backsub. band. basis. bezows. blockmairx, charma.
charpolv. col. coldim. colspace. colspan. compamon.
concal. cond. copvinto. crossprod. curl. definite. delcois.
delrows. dei. diag. diverge. dotprod. eigenvais. eieenvects.
entermains. equal. exponennai. extend. ffgausseiim.

fibomacc:. frobemius. gausselim. gaussjord. genmairir.

grad. hadamard. hermute. hessian. hilbert. htranspose.
thermute. indexfunc. innerprod. irubasis. inverse. isrmith.
Lszero. jacobian. jordan. kernel. luplacian. ieastsqrs.
linsolve. matnx. minor. minpoly. muicol. muirow.
mudaplv. norm. normalize. nuiispace. orthog. permanen:.
pivot. potennal. randmarrix. randvector. rank. rasyorm.
row, rowdim. rowspace. rowspan, rref. scalarmui.
singuiarvals. smuth. stack. submarinx. subvector. sumbasis.
swapcol. ssaprow. svivester. toeplirz. trace. iranspose.
vandermonde. vecpotent. vectdim. vector |




FHI FLI
=1
_F121 FI22)
> 81 (8111, 9121, 8221, 8112, 8122 8222) -» memxi((8111, 81211 (s121. 822D

Al

Bl:=usiil. 5121.5221.5112.5122.5222) —
mamxe ([(s//7.5121). [5/21.52211))
» A2 = mawm((F211. F212), [F221. F2221)):
“F211 F2121
A2:=] :
1F221 F222)

> 82 (s111. 3121, 2221, 8112, 8122 4223} -> mawmm((9112. 8122}, (8122, 8223})
; ovamnt@e111. 8121, 8221, 8112 8122, 52210):

B2:msil].5121.522).5112.5122.5222) —

s112 5122
$122 5222
> N = searexi|(sigma. OL (0. sigme)ik .
e 01
N =i '
10 o]

>0 (811, 9121, 8221, 8112 8122. 8222) -» ovawwe A1 &° B1(0111. 8121, 8221. 8
112. 9122 8222 4° renamoemiAl) « A2 §° B2{9111. 3121, 6221. 8112 8122. 02

o) 8 2) & N): 11, 8121, 8221, 0112 8122 82220
fri=(sdil.512].522].5112. 5122, 5222) — evaim((
(Al &* BNs/il.5121.5221.5112.5122.5222)) &*
transposet A/ )) +(

(A2&*BUII1. 31205220, 5112.5122.5222)) &*
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transposet A2 1) + V)

{(FI111-s111 « 2FIIN FHI25121 + F112* 5221

= F21 5112« 2RI F2125122 + F2126 5222 + 6 .
FIRLFITD sl - FI2LFNI2 5121 + FI22F111 5121

« FI22FII25220 « F22I F211 5112 « F221 F212 5122
« F22F2115122 4+ F222 F2125222)

VFI2LFID il « FI2LFHI25121 « FI22F111 5121
« FI22F1125221 « F221 F211 5112 + F221 F212 5122
< FA22F2115i22 + F222 F2125222 . F121% 5111
«2FI21 FI225121 + F122*5221 + F221% 5112

«2F221 F2225122 + F222' 5222 + o

SHm(e111. 8121, 8231, 8112 $1Z4 62N > eewme11. 8131, 8221, 0112 $122
S22 & evesmano111. 9121, 8231, 112 $122. 62ZM:

Mo (sill.5121.5221.5112.5122.5222) =
detf(s//1.5121.5221.5112.5122.5222))

CFI2I sll] + FII2* 52210+ F211} 5112+ Fill*slll o
+FIII 5111 FI222 5220 + Fill* 5111 F221% 5112
«2F111* 5111 F221 F2225122 + FI11Y 11 F222° 5222
«XFIITFII25121-FIZIFIZZ
«2FIIIF1I25121 F221%5112
~3FIIFII25121 F21 F222 5122
«2F1II FI125421 F2222 5222 « FI112* 5221 F121% 5111
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L2 F211 FA25122 FI2P st
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S FNRIN G- PRI 0 -0 FI22 52N
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=2FI20FIN 511 F22I P21 5102
«2FI21FIIL 5101 F221 F212 5122
“2FI21 FII 5111 F222 P21 5122
«2FI21FIIL 5100 F222 F212 5222
<2FI21 F112512] F221 F211 5112
«2FI121 F1125121 F221 F212 5122
«1FI21 F1I25121 F222 F211 5122
+«2F121 F1125121 F222 F2125222
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«2FI22F1125221 F222 F211 5122
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+2FI12) F111 F222F211 5122
+2FI121 FI11 F222 F2125222=0)
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Appendix H.

The figures in this appendix show. for a given |U |, the ratio of the bound in II1-3.[17]
to the mutual information which would be obtained with perfectly known AWGN
channels with the same energy as the Gauss-Markov channels. Figure H.1 illustrates

the case for iU | = 2. Figure H.2 the case for iU | = 10 and Figure H.3 the case for (U |
= 50. ‘
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Notation.

t.t': times

g(t', t) : known impuise response of a multipath channel seen at time t' for a
transmission sent at t'-t

gm(t'. t) : known impulse response of a the mtb path of the channel seen at time t' for a
transmission sent at t'-t

a™(t'): complex multiplicative factor associated with the m'h path
T™(t'): delay associated with the m!? path

x[n] : discrete input data stream

s(t) : modulated input signal

v(t) : output of the channel with AWGN

fo : carmier frequency

Bpoppier : Doppler spread

Tspread multipath time spread

© : velocity at which sender moves away from the receiver
ts : time at which a transmission is sent

~ tg : time at which a transmission is received

fg : frequency of sender's transmitted sinusoid

c : speed of light
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Bm : Doppler shift for path m

@™ : speed at which the length of path m between 2 mobile and a base station changes
£ : original time shift for the m'h path

Winput bandwidth to which the input signal may be bandlimited

W : bandwidth to whih the output signall may be bandlimited

GmFr(t' . f): Founer transform of g™ with respect to the second variable
2

F“‘r
sz. (- f) . Fourier transform of Gm;_.r(l' , f) with respectto t

f, f : frequencies

n(t) : AWGN component

RNI(k]: autocorrelation function of the filtered discrete time noise n{k]
o?\, - variance of the real or complex componeni of n{k], equal to No W 2
N : spectral density of n(t")

y(t) : output of the chanoel with AWGN

k,n, i, j : sampled times

A : range of non-zero taps
' T
ik notation for[ V] -- v[k]]

v, : notation for[\{l] e "D‘]]T
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‘l.lk' . - .
v, 1 matrix with columns j' through k'. rows j through k

kl
v, : matrix with columns | through k'. rows 1 through k

k
v : matrix with columns | through k. rows 1 through k

gM(k.i] : sampled channel response for path m

g(k. i] : sampled channel response

{% : transfer matrix for the noiseless channel

ot(t, f) : scattering function

Sy, Ny, Y : random vectors corresponding to si, Ok, Yk

S "2y, N'ag, Y 'ai : randomvectors whose first k and last k components are the real and
imaginary parts

P input power constraint for the real part and for the complex part
T : duration of transmission

A! : covarajncc matnx of v

£'2X : transfer matrix for the real representation of the system

S(t), V(t), N(t) : randomvariables corresponding to s(t), v(t'), n(t)

§[n]: sampled version of S{t) sampled at rate W5,

. Em[; n]: transfer function of the m" path for an input sampled at rate Wi,y
and an output sampled at rate W



-~ . ~0
A : range of non-zero the g [i. n]forall m

& _ ~m

f, : transfer matrix constructed from » ¢ [i. n]
m

~2K

JI
f 5 : transfer matrix for the real representation of f

T
~ak' 2K

@ - cigenvector of £ Lo

, 2K
A, :eigenvalueof f o [ o

Disy: ~2K
2L bassed through 5,

9 2y - Output of

i
U, : random variable coefficient of §' 5, in terms of @;,,.

v, : random variable coefficient of N' 5, in terms of 8,

y : coefficient for Kuhn-Tucker conditions

EK : random variable matrix corresponding to { k
F : known part of a single tap

F : known part of a single tap

a, g : multiplicative constant scalar, matrix

E: error vector forthe LLSE of § from Y

1Z»

. zero-mean Gaussian noise with covariance matrix AE"A-\

¥ : output to channel F with AGNR

239
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-~ ”

E :error vector for LLSE of S fromY

Sk : input to time-invaraint channel. including an initial sounding sequence
Y 'k : output corresponding to S 'k

kQ: number of times a sounding pattem is repeated

k1 : total duration koA of the sounding sequence

~0.8
F [1]:estimate of the real part of the i'® channel tap for a ime-invariant channel

Ak+8.k+A ) ) . th
E [i]:estimate of the imaginary part of the i channel tap

p: period for a channel which is penodic in sampied time

Ki k : series given by 11-3.[71]

lim
K. : K. ..
1 j—.m 1.1+)
lim
K: Ki
|—>c0

iow jO : threshold for i, j

€i : series defined by II-3.[78]

ai, j], a : multiplicative constant for Gauss-Markov model

Zi : innovation vector for Gauss-Markov model
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¢: level of decorreiation to define coherence time
Ffi.i]= LSE estimate of F[i, i]given S,and Y,
Aj : vaniance of Kalman filter

\'j : approximation to A;

A''j : variance of Kalman filter with a known final value
A 'j : approximation to A’ j

E: overall input energy

n , m: number of frequency slices over which we'spread

45—) : function defined by i[4.[1]

d : value of£
n

0 : threshold in f—for which spreading is desirable for a single time sample

i ,i': muwual information values
C : positive constant

B : proportion of the channel energy which corresponds to the measurement error

fE ]

: function given by 11-4.[12]
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fi(E—} : function given by 11-4.]15]
\n -
EY . . .
f ~ : function given by 114.[17]
d' : threshold in I:;—for which spreading is desirable for several time sampies

K : number of users

Bimpp,er : Doppler spread associated with the ith channel
gi(t, 1) : reponse of the multipath channel seen by user i
Pi : number of paths seen by user1

aﬂt‘) : complex factor associated with the m" path of user1
t:n(t') : delay associated with the m" path of user i

si(t) : complex signal transmitted by useri

Xj[n] : data stream for useri

gi"D(. n]: sgmpled time response for them' path of user i
g (k. n]: sampled time response for user i

Rj : rate for user i

U : subset of users

M : 2KK' input degrees of freedom

~2k
figyr: transfer matrix for the real representation of the channel of useri
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2k

fxr - transfer matrix for the channe which treats all K users as a composite user

~ Ak 2 k1

"i . eigeﬂ\'alue of ‘-‘.\li.\l

-~ . 2k
@i, - ergenvector of f\fy;

~

8\ : outputs corresponding to the inputs Q;,, and vectors completing the basis

o approximation. given in III-3.[18], to the variance of a Kalman filter for several

users
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