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Rhodnius prolixus not only has served as a model organism for the
study of insect physiology, but also is a major vector of Chagas dis-
ease, an illness that affects approximately seven million people world-
wide. We sequenced the genome of R. prolixus, generated assembled
sequences covering 95% of the genome (∼702 Mb), including 15,456
putative protein-coding genes, and completed comprehensive geno-
mic analyses of this obligate blood-feeding insect. Although immune-
deficiency (IMD)-mediated immune responses were observed, R. pro-
lixus putatively lacks key components of the IMD pathway, suggesting
a reorganization of the canonical immune signaling network. Al-
though both Toll and IMD effectors controlled intestinal microbiota,
neither affected Trypanosoma cruzi, the causal agent of Chagas dis-
ease, implying the existence of evasion or tolerance mechanisms.
R. prolixus has experienced an extensive loss of selenoprotein genes,
with its repertoire reduced to only two proteins, one of which is a
selenocysteine-based glutathione peroxidase, the first found in insects.
The genome contained actively transcribed, horizontally transferred
genes from Wolbachia sp., which showed evidence of codon use evo-
lution toward the insect use pattern. Comparative protein analyses
revealedmany lineage-specific expansions and putative gene absences
in R. prolixus, including tandem expansions of genes related to che-
moreception, feeding, and digestion that possibly contributed to the
evolution of a blood-feeding lifestyle. The genome assembly and these
associated analyses provide critical information on the physiology and
evolution of this important vector species and should be instrumental
for the development of innovative disease control methods.

Rhodnius prolixus | genome | hematophagy | immunity | Chagas disease

Dating back to Wigglesworth’s pioneering work in the 1930s
(1), Rhodnius prolixus (Fig. 1A) has served as a model organism

for the study of cellular and physiological processes in insects, such as

gametogenesis, the role of hemolymph proteins and lipids in oo-
genesis, and ion and water transport mechanisms. As an obligate
blood-feeding hemipteran, this insect has adapted remarkably well to
digesting and eliminating the potentially toxic by-products of blood
digestion. R. prolixus is also a major vector of Trypanosoma cruzi, the
parasitic protozoan that causes Chagas disease in humans. This
disease, commonly considered a disease of the poor, causes pre-
mature heart failure in humans and is responsible for high economic
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and social costs. Approximately 10,000 people die from the disease
annually and 100 million people are at risk for infection (2).

Results and Discussion
Genome Landscape. We assembled 702.6 Mb (v3.0.1, designated
RproC1) of the predicted 733-Mb genome size (3, 4), with mean
depth coverage of 8×. The current assembly includes 27,872
scaffolds (SI Appendix, Fig. A1), with a measured GC content of
27.1% that was slightly lower than that of another hemipteran,
the pea aphid, Acyrthosiphon pisum (29.2%), although compa-
rable GC content was found in protein-coding regions (5). The
consensus gene prediction (VectorBase 1.3) includes 15,456
protein-coding genes and 738 RNA genes (Figs. 1A and SI Ap-
pendix, Fig. A1). We also found 25 Y-chromosome linked scaf-
folds, including nine Y-linked genes.
Orthologous gene clustering analyses (6) classified R. prolixus

genes with orthologs in other insects and outgroup species (Fig.
1B), and highlighted 630 lineage-specific expansions (LSE) in many
R. prolixus gene groups related to defense mechanisms, behavior,
development, and physiology. A comparison of gene families based
on protein domain annotations revealed a few putative lineage-
specific reductions (LSR), where R. prolixus possessed substantially
fewer genes. These LSEs and LSRs will be specifically discussed
below in relation to their biological roles.

Transposable Elements and Horizontal Gene Transfers. Approximately
1,400 transposable elements (TEs), with members from most of
the known TE superfamilies, comprised 5.6% of the genome;
this percentage was much lower relative to Aedes aegypti (∼50%)
and Anopheles gambiae (∼20%) but similar to other anophelines
(2–11%) (7). Nearly 70% of the TEs belonged to class II (mariner
TEs) and a single superfamily (DTTRP1-7), composed of seven
new families, represents almost 3% of the genome (Fig. 1 A and C
and SI Appendix, Tables A1 and A2). Many of these sequences
have full-length transposases and ORFs suggesting a recent period
of increased transposition (8).
Horizontal gene transfers from Wolbachia were likely the or-

igin of 27 genes (Tables D1–D3 in Dataset S1) located in some
of the 85 Wolbachia-like genomic regions. These regions span-
ned 100–2,500 bp, which were smaller and more dispersed than
those reported in Glossina morsitans (two segments of ∼500 Kb)
(9). A previous transcriptome analysis showed that eight of these
genes appear to be transcribed in the midgut (10). Codon use
analysis of the horizontally transferred genes (HTG) revealed that,
of the 61 amino acid codons, 38 codons showed a shift from a
Wolbachia spp. use bias toward the Rhodnius codon frequency (SI
Appendix, Fig. A2 and Table D4 in Dataset S1). This codon fre-
quency shift suggests an ongoing adaptive process whereby the HTG
coevolved with the insect tRNA profile for more efficient trans-
lation. The HTG also revealed two transposases (RPRC000742 and
RPRC000770), one reverse transcriptase (RPRC000723), and DNA

recombination/repair enzymes, including one Holliday junction
helicase (RPRC004559), two DNA mismatch repair MutL pro-
teins (RPRC010818 and RPRC011745), and one DNA polymerase
I (RPRC006597). These findings suggest that extensive machinery
to transpose, recombine, and repair the host DNA were likely in-
strumental for the success ofWolbachia gene transfer to R. prolixus.

RNAi Machinery and Target Genes. RNAi is a posttranscriptional
gene-silencing mechanism triggered by double-stranded RNAs
(dsRNAs) that degrade a target messenger RNA (mRNA) in a
sequence-specific manner (11). The RNAi mechanism can also be
triggered by microRNAs (miRNAs), which are small noncoding
RNAs (12). We identified RNAi machinery (Table D5 in Dataset
S1) as well as precursors and 87 mature miRNA sequences (SI
Appendix, Figs. A3 and A4 and Tables D6–D9 in Dataset S1) that
comprised a complete gene-silencing pathway for 804 potential
target genes (SI Appendix, Fig. A3C and Tables D10 and D11 in
Dataset S1). Some miRNA clusters were similar to those de-
scribed for Caenorhabditis elegans (13), such as the cluster rpr-
miR-71/2a-2/13a/13b/2c/2a-1 (SI Appendix, Fig. A3B) that was
identified in one of the introns of the phosphatase-four-like pro-
tein gene (RPRC004331). The miRNA-target gene pairs also
showed conservation; for example, rpr-miR-124-3p targeting the
ROCK1 protein kinase gene (RPRC007732-RA) (14) and rpr-miR-
10-3p targeting the Huntington-like gene (RPRC006430-RA) (15).

Immune Pathways and Their Effects on Intestinal Microbiota and
T. cruzi. We identified most of the genes from canonical immune
pathways, including the Toll, immune deficiency (IMD), and Jak/
STAT pathways, and several immune effectors, including a
substantial LSE of defensins (SI Appendix, Fig. A5 and Table
D12 in Dataset S1). However, some canonical components of the
IMD pathway were not detected: IMD, Fas-associated protein
with death domain (Fadd), death-related ced-3/Nedd2-like cas-
pase (Dredd), and Caspar. A similar observation was reported for
the pea aphid, where a more extensive loss of the IMD pathway
genes purportedly allowed the development of its obligate endo-
symbiont (16). In R. prolixus, however, some members of the IMD
pathway were found, such as the peptidoglycan recognition pro-
teins (PGRPs) and the NF-κB/Rel homolog, rpRelish (KP129556)
(Fig. 2A). The expression of the latter was up-regulated in both
the intestinal epithelium and fat body 24 and 72 h after a blood
meal (Fig. 2 B and C), thereby indicating an active IMD pathway
in R. prolixus. This possibility was investigated by rpRelish knock-
down (SI Appendix, Fig. A6B), which decreased expression of
midgut defensin A (AAO74624), whereas expression of lysozyme B
(ABX11554) remained unchanged and lysozyme A expression
(ABX11553) increased (Fig. 2D). These data suggest that
rpRelish directly controls defensin A expression, but not the
lysozymes. Silencing of rpRelish also increased the population of
the symbiotic bacteria Rhodococcus rhodnii (Fig. 2 E–G), thus
providing further support for an active IMD pathway despite the
lack of several canonical proteins. This could be explained by
either the existence of unknown alternative components linking
the PGRP receptors to rpRelish or, alternatively, to a novel
rewiring of the immune network (Fig. 2I). The role of the IMD
pathway in the control of the gut microbiota led us to investigate
its role in the control of T. cruzi. Unexpectedly, rpRelish-silenced
insects infected with T. cruzi (strain DM28C) did not change
parasite loads after 7 (SI Appendix, Fig. A6C) or 14 days post-
infection (Fig. 2H). Even more surprisingly, silencing the tran-
scription factor rpDorsal of the Toll pathway (17) (SI Appendix,
Fig. A6A), did not change parasite levels (Figs. 2H and SI Ap-
pendix, Fig. A6C). These findings strongly indicate that either T.
cruzi infection does not activate the insect’s immune system or that
the parasite is not affected by antimicrobial peptides that are pro-
duced in response to parasitism or the ingestion of a blood meal. A
plausible hypothesis for these data is that T. cruzi developed active
evasion or tolerance mechanisms, because activation of these im-
mune pathways did not control T. cruzi populations, as previously
suggested (18, 19).

Significance

Rhodnius prolixus is a major vector of Chagas disease, an illness
caused by Trypanosoma cruzi which affects approximately
7 million people worldwide. This report describes the first ge-
nome sequence of a nondipteran insect vector of an important
human parasitic disease. This insect has a gene repertoire sub-
stantially distinct from dipteran disease vectors, including im-
mune signaling pathways that display major departures from
the canonical network. Large gene expansions related to che-
moreception, feeding, and digestion have facilitated triatomine
adaptation to a blood-feeding lifestyle. This study provides in-
formation about the physiology and evolution of an important
disease vector that will boost understanding of transmission of a
life-threatening parasite and may lead to the development of
innovative control methods.
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Selenocysteine Machinery, Selenoproteins, and Detoxification Enzymes.
Selenocysteine (Sec) is a proteinogenic amino acid that is in-
corporated into proteins during translation by the reassignment of
specific UGA codons. We identified enzymes involved in Sec syn-
thesis and insertion (Table D13 in Dataset S1), but only two Sec
proteins were found: selenophosphate synthase 2 (RPRC009014),
which is involved in Sec synthesis, and glutathione peroxidase (GPx;
RPRC011108), a major antioxidant protein. In all insect genomes
sequenced to date, the known GPx genes were nonselenium, cys-
teine-based enzymes. It was previously hypothesized that Sec was
replaced by cysteine in an ancient common ancestor of all insects.
The discovery of a Sec-based GPx in an insect brings new insight
into the evolution of this gene family, indicating that the Sec-GPx
genes are more widespread and conserved than previously thought
(20). We also observed a recent Sec-to-cysteine conversion in one

(RPRC014349) of the two R. prolixus thioredoxin reductases (Fig.
3A). These results, together with the finding of a Sec-GPx in
R. prolixus, indicate that insects originally had a more extensive
repertoire of selenoproteins, and that Sec loss and replacement
by cysteine occurred independently in different species.
A substantial LSE of enzymes involved in drug and detoxifica-

tion occurred, such as in carboxylesterases and cytochrome P450
(Tables D14 and D15 in Dataset S1) (see also ref. 21). These
enzymes, together with glutathione S-transferases, can drive in-
secticide resistance. Their identification is particularly relevant for
public health surveillance, as recent reports indicated that natural
triatomine populations have responded with increasingly higher
levels of insecticide resistance and could threaten the successful
vector control initiatives that have occurred over the last two and
half decades in Latin America (22, 23).
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Fig. 1. Rhodnius genome. (A) Genome overview. All scaffolds are represented in layer I and are organized clockwise from the longest to the shortest,
starting at the arrowhead. The genic (layer II, red) and TEs (layer III, blue) showed opposite densities until the asterisk (*) and were similarly low from this
point until the end (shorter scaffolds). The Wolbachia sp. insertions (layer IV, orange) were observed throughout the genome without a trend. The kernel
picture illustrates an adult R. prolixus. (B) Gene clustering. The Venn diagram partitions 15,439 OrthoMCL gene clusters according to their species compo-
sitions for R. prolixus and three other Hemimetabola (blue), four Diptera (yellow), four other Holometabola (green), and four noninsect outgroup species
(pink). The 6,993 R. prolixus genes show widespread orthology (white circle, and bars, Bottom Left): these are part of the 7,115 clusters that have repre-
sentatives from each of the four species sets, of which a conserved core of 2,253 clusters have orthologs in all 16 species. The 5,498 R. prolixus genes show no
confident orthology (bars, Bottom Right), but most of these are homologous (e-value < 1e-05) to genes from other animals or to genes in its own genome. (C)
TE distribution. The inner chart represents the three main classes of TEs (LTRs, non-LTRs, and class II), and the outer shows the distribution of TE superfamilies
within each class. The charts are based on the total base pairs occupied by TE-related sequences longer than 0.5 Kb, as shown in SI Appendix, Table A1.
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Signaling and Development. We identified and manually curated
most of the major metazoan cell signaling pathways related to
development and metabolism (Table D16 in Dataset S1). Tyrosine
kinases are a class of protein kinases found exclusively in meta-
zoans that regulate functions related to multicellularity, including
intercellular communication, growth, differentiation, adhesion,
and cell death. The tyrosine kinome (TK) of R. prolixus contained
only 17 genes (Table D17 in Dataset S1), which were confined to
13 subfamilies (10 genes encode receptor TKs and 7 encode sol-
uble TKs). This represents the smallest TK described to date; for
comparison, A. gambiae has 32 TKs and H. sapiens has 90 TK
members distributed among 30 subfamilies (24, 25).
Using orthologous relations to other insects (26), we identified

genes involved in oogenesis, anteroposterior (AP) and dorso-
ventral (DV) axes determination (Tables D18 and D19 in
Dataset S1). Of note, the germ plasm genes osk and valois (vls)
were absent from R. prolixus. The absence of osk likely reflects a
gene loss in insect evolution, because it was present in the
transcriptome of the basally branching cricket Gryllus bimacu-
latus (27), where it was incorporated during neural development.
Among the embryonic AP genes, Kruppel (RPRC000102) and
giant (RPRC001027) were functionally confirmed as gap genes
(28, 29). We identified single-copy orthologs for the DV pat-
terning genes, including most Toll and bone morphogenetic
protein (BMP) pathway elements. The BMP type I receptor Sax,
however, was not found in R. prolixus or in previous analyses
(30). Our functional analysis showed that one of the rpToll genes
(RPRC009262), similarly to that reported for hymenopterans
(31, 32), performs both DV and AP embryonic patterning roles
(30), pointing to a potentially novel role that this pathway ele-
ment might display during embryogenesis. The role of hypoxia in
the development of the tracheal system—originally reported in
R. prolixus by Wigglesworth (33)—involves a set of remarkably con-
served genes (Table D20 in Dataset S1) (34). The role of the corpora
allata hormone, later named juvenile hormone (JH), in the control
of insect metamorphosis and reproduction was also another of
Wigglesworth’s landmarks in the history of biology usingR. prolixus as
the experimental model (35). Although eight different forms of JH
have been identified in other insects, ironically, the identity of the JH
forms present in triatomines are still unknown. Nevertheless, we
identified R. prolixus genes coding for the JH biosynthetic pathway/
signaling system (36) (Table D21 in Dataset S1).
Among developmental genes, marked LSEs have occurred in

several transcription factor (TF) families. Recent independent
expansions of the Pipsqueak TF family in R. prolixus, as well as
A. pisum, were driven in part by transponsons, with the potential
reuse of DNA-binding domains of transposases as new TFs.
Given the developmental roles of Pipsqueak TFs in Drosophila,
these LSEs might have played some role in the morphological
and behavioral diversification of hemipterans. Other predicted
TF expansions were also found as resulting from proliferation of
transposable elements (37). Other expansions related to devel-
opment were found in cuticle genes, including those that tran-
scribe cuticular proteins and sclerotization enzymes (SI Appendix,
Figs. A7–A10 and Tables D22 and D23 in Dataset S1).

Hematophagy-Related Genes. All developmental stages of R. pro-
lixus, from first instar nymphs to adults of both sexes, feed ex-
clusively on blood. Chemoreception is essential to host finding
(38), and several LSEs that we identified included odorant and
gustatory receptors as well as odorant and chemosensory binding
proteins (SI Appendix, Figs. A11–A14 and Tables D24–D27 in
Dataset S1). Some of the recent LSEs, such as OR58-87 (SI
Appendix, Fig. A11) (named “recent Rhodnius expansion”) were
found in tandem arrays (Table D24 in Dataset S1). As in other
blood-feeding insects, detection of carbon dioxide contributes
to host finding in triatomines (39). Nevertheless, the carbon di-
oxide receptor subfamily was absent in R. prolixus, as previously
reported in the body louse and the pea aphid, despite being
highly conserved in holometabolous insects (40). The sugar re-
ceptor subfamily was also missing in R. prolixus, but this may

represent a more recent loss as it was found in the pea aphid (SI
Appendix, Fig. A12). Rhodnius saliva was previously studied for
its capacity to interfere with host blood clotting, platelet aggre-
gation, and vasoconstriction (41), and also for its immunomod-
ulatory activity. Lipocalin genes [n = 51 genes, some previously
described (10, 41)], which transcribe the most abundant salivary
proteins, formed large LSEs, and occurred as tandem clusters (SI
Appendix, Fig. A15 and Table D28 in Dataset S1). We discovered
12 previously unidentified members of the nitrophorin clade (Fig.
3B), which encode lipocalins that carry nitric oxide in R. prolixus
saliva. We also found LSEs occurring in tandem clusters for
aspartic peptidases (cathepsin-D like aspartic proteases), probably
reflecting a replacement of digestive serine proteinases found in
most insects by lysosomal proteinases for blood digestion in he-
mipterans (Table D29 in Dataset S1). Among the putative LSRs
(Table D30 in Dataset S1), a reduced set of only seven amiloride-
sensitive sodium channels (SI Appendix, Fig. A16) may also be
linked to hematophagy because amiloride-sensitive sodium chan-
nels are involved in the malpighian tubules filtration. This paucity
could have evolved to limit sodium transport for the production of
hypoosmotic urine and can be related to the unusually weak re-
sponse of R. prolixus sodium channels to amiloride (42).
Moreover, we manually annotated other gene families related to

hematophagy but without displaying signals of LSE. These families
included the following pathways/functions: iron/heme binding,
transport and metabolism (43, 44) (Table D31 in Dataset S1); be-
havioral control of the blood-seeking habits (45), including loco-
motory and visual activities, memory formation, temperature and
humidity detection, mechanoreception, and circadian clock control
(Tables D32 and D33 in Dataset S1); energy metabolism pathways
[glycolysis, gluconeogenesis, and pentose-phosphate pathways (Table
D34 in Dataset S1)]; and regulatory peptides and receptors, as well as
37 neuropeptide precursors or hormone genes (46).
As reported for A. pisum (47), most urea cycle enzymes were

not observed, with the exception of argininosuccinate synthetase
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(RPRC003927) (Table D35 in Dataset S1). The uricolysis path-
way, which is present in mosquitoes (48), is putatively absent in
R. prolixus. Absence of both pathways explains the lack of
elimination of nitrogen as urea, also originally described by
Wigglesworth, even before the discovery of the urea cycle (1). As
is the case for most eukaryotes, the R. prolixus genome does not
encode several pathways for essential amino acid synthesis (47)
(Table D36 in Dataset S1), but the lack of almost all urea cycle
enzymes (Table D35 in Dataset S1) also precludes the de novo
synthesis of arginine. This is noteworthy because arginine is the
precursor for nitric oxide, an important salivary vasodilator for
blood-feeding insects. We postulate that adaptation to a diet rich
in amino acids, such as blood, allowed for relaxation of the
constraints on the arginine synthesis pathway.
This first analysis of the R. prolixus genome generated novel in-

sights regarding multiple adaptive mechanisms that likely contrib-
uted to a strict blood-feeding lifestyle, and thus provided new
working hypotheses that will drive future research in the biology
of triatomines and Chagas disease. Some of the unique features of
R. prolixus, including its numerous lineage-specific gene family ex-
pansions, the peculiar immune network, and a “silent” relationship
between the insect host and the trypanosome parasite, also provide
a new starting point for further understanding its evolutionary ad-
aptations. In summary, our data illustrate the important role of
R. prolixus as an additional study model to that of dipteran species in
the vector biology arena and in the broader insect biology landscape
as well. This work also reinforces the extraordinarily rich legacy of
Wigglesworth, whose experimental studies on R. prolixus illumi-
nated the basic concepts of insect physiology still used today. We
hope the findings described here will allow the development of
novel strategies to control this important Chagas disease vector.

Materials and Methods
All candidate colonies were genotyped to assure R. prolixus identity before
extracting genetic material from ovaries or testis. Whole-genome shotgun
sequencing using Sanger and 454 technologies produced 8× genome cov-
erage. After end-sequencing a BAC library, we assembled all data by
implementing the default parameters in CABOG (49).

We predicted gene sequences using ab initio and similarity-based approaches
that were merged to construct the final set of gene models. We performed
automatic annotation and paralog clustering using AnoXcel (50). We performed
orthology-based clustering using OrthoMCL (6) and gene family counts based
on conserved protein domain annotations from InterProScan (51) for 16 species.

We used three different methods for identifying TEs. First, we identified
class II and nonlong-terminal repeats (non-LTRs) with RPS-blast (52). Sec-
ond, we identified LTRs using homology-based approaches (53, 54). The

third method, used to discover MITEs, relied upon Findmite (55) and a
repeat library produced with RepeatScout (56). We assessed the genomic
coverage of all TE using BLAT (57). We identified genomic duplicated re-
gions using BLASTN (52) of all scaffolds against each other with 5-Kb cut-
off to avoid TE detection.

miRNA precursors and mature sequences were retrieved using Einverted
(58) and filtered. Their target genes were predicted using miRanda (59).

Selenoprotein genes were identified using Selenoprofiles (60) and Seblastian
(61).We also identified SECIS elements using SECISearch3 (61).We used tRNAscan-
SE (62) to detect tRNA-Sec. Selenoproteins multiple sequence alignments used
T-Coffee (63) and then performed phylogenetic analyses by reconstructing trees
with maximum likelihood using the best-fitting evolutionary model (64).

Wolbachia similar regions were searched using BLASTN (52) to compare
the Rhodnius genome with 16 Wolbachia genomes. The gene models
present in these regions were selected and grouped with those having a
Wolbachia protein as best hit in a BLASTP (52). This gene group had their
codon-use compared with Rhodnius and Wolbachia backgrounds by Ex-
pander Tool (65).

Immunity genes were searched in expressed sequence tags, gene pre-
diction, assembled genome, and genomic unassembled raw reads to assure
reliability of the absences; all searches used BLAST (52) and homologous genes
from closely related taxa. The rpRelish gene was manually assembled using
contigs of a previously published transcriptome (10). For confirmation, rpRelish
was cloned and sequenced. Insects were immunologically challenged through
blood meal as it increases endosymbiont (R. rhodnii) population in the gut.
Total RNA was extracted using the TRIZOL reagent (Invitrogen) following the
manufacturer’s instructions. Real-time PCR (quantitative RT-PCR) was used to
assess the transcript abundance and silencing efficiency of the genes of in-
terest. T7 Megascript kit (Ambion) was used to generate and purify dsRNA
from PCR-amplified genes following the manufacturer’s instructions. The
dsRNA in sterile water was introduced into the thorax of adult females by
injection. The microbiota of R. prolixus digestive tract was analyzed by counting
colony forming units after plating homogenates of the different sections of
the midgut.
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