
MIT Open Access Articles

Cache-Oblivious Iterated Predecessor 
Queries via Range Coalescing

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Demaine, Erik D., Vineet Gopal, and William Hasenplaugh. “Cache-Oblivious Iterated 
Predecessor Queries via Range Coalescing.” Algorithms and Data Structures. Ed. Frank Dehne, 
Jörg-Rüdiger Sack, and Ulrike Stege. Vol. 9214. Cham: Springer International Publishing, 2015. 
249–262.

As Published: http://dx.doi.org/10.1007/978-3-319-21840-3_21

Publisher: Springer Berlin / Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/110844

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110844


Cache-Oblivious Iterated Predecessor Queries via
Range Coalescing

Erik D. Demaine, Vineet Gopal, and William Hasenplaugh

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{edemaine, whasenpl}@mit.edu, vineetg@alum.mit.edu
http://toc.csail.mit.edu/

Abstract. In this paper we develop an optimal cache-oblivious data
structure that solves the iterated predecessor problem. Given k static
sorted lists L1, L2, . . . , Lk of average length n and a query value q, the
iterated predecessor problem is to find the largest element in each list
which is less than q. Our solution to this problem, called “range coa-
lescing”, requires O(logB+1 n + k/B) memory transfers for a query on
a cache of block size B, which is information-theoretically optimal. The
range-coalescing data structure consumes O(kn) space, and preprocess-
ing requires only O(kn/B) memory transfers with high probability, given
a tall cache of size M = Ω

(
B2
)
.

1 Introduction

The predecessor problem is to find the largest item in a given sorted list L that
is less than a query value q ∈ R. The iterated predecessor problem is to find
the predecessor for a query q in each of a set of k static lists L1, L2, . . . , Lk, each
of average size n. A naive solution involves individual binary searches over all
k lists, which would require O(k lg n) time in the worst-case. However, Chazelle
and Guibas [6] showed that the lists can be preprocessed to support iterated
predecessor queries in O(lg n+k) time, with linear preprocessing time and linear
space via their technique fractional cascading.

In this project, we will demonstrate that the iterated predecessor problem
can also be solved using a technique called range coalescing in O(lg n + k)
time. Range coalescing is cache-oblivious [7], using only O(logB+1 n + k/B)
memory transfers per query in the worst case.1 Furthermore, range coalescing re-
quires only linear space and the preprocessing requires O(kn) time and O(kn/B)
memory transfers.

The essence of range coalescing, as the name suggests, is to coalesce ranges of
the query space into n “bins”, each of which could generate O(k) different results
depending on the specific value of q within that range. Figure 1 illustrates how
the smallest element in each bin is the “splitter” for the bin, so named because
1 Throughout this paper we will use the notation lgn to mean log2 n and lnn to mean
the natural logarithm.



2 Demaine et al.

they collectively “split” all of the elements into bins of contiguous value ranges.
In addition, the predecessor of the splitter from each list is included in order to
service predecessor requests that are smaller in value than the smallest element
in the bin from each list. Figure 2 gives an example of how the data in a bin is
stored. The elements from each list are stored in sorted subsequences of varying
lengths, but of total length O(k). Each bin stores O(k) different values and thus
the total data structure is linear space.

A query q on a bin D walks through the O(k) elements in D in a single pass.
Within D are k subsequences of each list in sorted order as depicted in Figure 2,
so we merely take the largest element from the ith subsequence which is less
than q as our predecessor answer from the ith list. A more detailed description
of the query process can be found in Section 4.

value	


O(k) elements 	
 splitters	


L1	


Lk	


L2	


...
	  

Fig. 1: Range coalescing data structure for the iterated predecessor problem with the
value of the element on the x-axis and each row representing a list in {L1, L2, . . . , Lk}.
Each vertical line delineates the O(k) elements in each bin. The elements with a heavy
black border are the splitters for each bin — the smallest item in the bin is the splitter.
An example bin is highlighted by the blue vertical bar. The elements to the left of the
bar with rightward arrows are the predecessors of the splitter from the blue bin in each
list.

Throughout this paper we will let M be the size of the cache and B be the
size of the cache blocks on a hypothetical external-memory machine. We will
consider solutions to the iterated predecessor problem, in which we are given k
n-length lists L1, L2, . . . , Lk and we preprocess them to improve the query time.

In Section 2 we discuss some simple known results from the study of cache-
oblivious algorithms and data structures which are useful in subsequent analy-
sis. Section 3 gives an overview of solutions to the iterated predecessor problem
which are not cache-oblivious, but nonetheless serve as a reasonable baseline for
our work. We present range coalescing in Section 4 and show that they answer
queries cache-obliviously using O(logB+1 n+ k/B) memory transfers. Section 5



Cache-oblivious Range Coalescing 3

value	


list subsequences	


L1	


Lk	


L2	


...
	  

Fig. 2: An example of how a bin is constructed in a range coalescing data structure.
The elements that fall in the range of the blue bar and the predecessor of the splitter
(with heavy black border) from each list is represented in the bin. In particular, the
subsequences of those elements from each list are stored together and concatenated so
that the subsequence from L1 comes first and so on until the subsequence from Lk.

demonstrates that the preprocessing for a range coalescing data structure re-
quires only O(kn/B) with high probability. Section 6 describes our implemen-
tations of each solution described herein and an experimental methodology for
testing the performance of each. Finally, Section 7 describes some limitations of
range coalescing, providing opportunities for future work.

2 Cache-oblivious Tools

This section describes some cache-oblivious primitive operations that are known
in the literature and useful to build up solutions to the iterated predecessor
problem in this paper.

Array Scanning

Accessing a random element in an length n array requires O(1)memory transfers.
However, if we access the entire array in order, we can achieve O(n/B) memory
transfers, where B is the size of a block in cache. Each memory transfer brings
B elements into cache, so we must make at most O(n/B) transfers.

vEB Layout

Traditional binary search on an array requires O(lg(n/B)) memory transfers.
Every access to the array is a random access, and could be located in a different
cache block, except for the last O(lgB) elements which are located on the same
block.



4 Demaine et al.

The vEB layout as depicted in Figure 3 tries to optimize memory transfers
by rearranging the array. It works by recursively dividing the tree into triangles,
and storing each triangle contiguously in memory. This means that children and
parent nodes are likely to be stored together in memory, reducing the number
of memory transfers required.

N

N N

…

Fig. 3: vEB trees are recursively divided into triangles of size
√
N . Each of these

triangles is stores contiguously in memory.

Lemma 1. A query on an binary tree in the vEB layout requires O(logB+1 n)
memory transfers.

Proof. Triangles of size S are recursively divided into smaller triangles of size√
S. Lets examine the largest triangle that has at most B elements. This triangle

must have at least
√
B + 1 elements, so its height must be at least 1

2 lg(B + 1).
This entire triangle can be loaded into one cache block. There are at most
lg n/ 1

2 lg(B + 1) = 2 logB+1 n of these triangles along a root to leaf path, so
we only need to make O(logB+1 n) memory transfers to find an element. 2

The vEB layout has been the basis for several known cache-oblivious algo-
rithms, including B-trees [2], funnel sort [7], and priority queues [1,5]. It is also
used in our solution for range coalescing.

3 Known Solutions

We examine several simple solutions to the iterated predecessor problem. These
solutions provide a good background for understanding range coalescing and
serve as our implementation baselines in Section 6.

Sequential Binary Search
The simplest solution to the iterative predecessor problem is to do a binary search
on each of the k unmodified lists L1, L2, . . . , Lk, and write down the output
from each. Since each binary search requires O(lg(n/B)) memory transfers, this
solution requires a total of O(k lg(n/B))memory transfers. The total space usage
is optimal, O(kn).

Sequential vEB Binary Search
Using the vEB layout described previously, we can do binary searches using only
O(logB+1 n). If we use a vEB layout for each of the k lists, we can perform the
searches in O(k logB+1 n). The total space usage is optimal, O(kn).



Cache-oblivious Range Coalescing 5

Fractional Cascading

Fractional cascading [6] is the incumbent solution for the in-memory iterated
predecessor problem. An external memory-oriented extension of fractional cas-
cading described below achieves a runtime of O(logB+1 n+ k).

The main idea behind fractional cascading is to use the query result from
each list to perform a search on the next list in constant time. One needs only
to do a binary search on the first list to prime the pipeline. To do this, we store
pointers in each list to its predecessor and successor in the next list. This gives
us a constant-sized range to search through in the next list.

If we did this naively, this would be of no benefit — the predecessor and
successor of the ith list could span the entirety of the i + 1st list. However, by
altering the lists slightly, we can achieve constant time per remaining search.
Starting with the last list, we insert every other element into the previous list.
We do this for each list. This ensures that the range between predecessor and
successor is at most a constant value.

We store the initial list in the vEB layout to minimize memory transfers for
the initial binary searches. Using this method, we can perform a query using
O(logB+1 n+ k) memory transfers. The total space usage is optimal, O(kn).

Quadratic Storage

A brute-force fast solution involves storing one sorted kn-length list of all ele-
ments from all lists using the vEB layout. Accompanying each element in the
list is a k-length sublist with a copy of its k predecessors, one from each list in
{L1, L2, . . . , Lk}. We can iterate over this contiguous sublist using O(k/B) mem-
ory transfers, so the total number of memory transfers is O(logB+1(kn)+ k/B).
However, the total space usage is O(nk2), since we must store a k-length sublist
for each element.

4 Range Coalescing

In this section we describe how an iterated predecessor query can be satisfied
cache-obliviously using O(logB+1 n+ k/B) memory transfers using a range co-
alescing data structure. We describe how a range coalescing data structure is
built cache-obliviously from a set of sorted lists L1, L2, . . . , Lk each of size n
using only O(kn/B) memory transfers with high probability in Section 5.

Let H be a range coalescing data structure built from a set of n-length sorted
lists L1, L2, . . . , Lk. H is composed of n bins, each of size O(k), which partition
the space of possible query values using a sorted list of n splitters S, as depicted
in Figure 1. Figure 2 illustrates how a bin concatenates k sequences of elements,
each of which is a subsequence of each constituent list from {L1, L2, . . . , Lk}.
The first element of the ith subsequence in the jth bin is the predecessor of the
splitter Sj in Li and is strictly smaller than Sj by construction, a fact that we
will exploit to implicitly denote the beginning of each subsequence.



6 Demaine et al.

query(H, q)

1 〈D, s〉 = vEB(H.S , q)
2 j = 1
3 for i = 1 to D.size − 1
4 if Di < q
5 Zj = Di

6 if Di+1 < s
7 j = j + 1
8 return Z

Fig. 4: Pseudocode of the query method for a range coalescing data structure H. H
contains a sorted array S of splitters organized using a van Emde Boas layout [3]. The
function vEB returns a bin D, organized as an array, and a splitter s, which is the
predecessor of q in S. The bin D is walked in a linear fashion, overwriting potential
predecessors in the output array Z and incrementing the output position whenever the
subsequence of the next list begins. The jth subsequence begins with the one and only
element from Lj that is smaller than the splitter s and each bin is appended with −∞
to handle the boundary condition when Di+1 is compared with the splitter s.

Lemma 2. A range coalescing data structure H built from a set of n-length
sorted lists L1, L2, . . . , Lk consumes O(kn) space.

Proof. The elements from all n-length lists L1, L2, . . . , Lk are partitioned into n
bins. In addition, each bin has exactly one element for each of the k lists which
is smaller in value than the splitter for the bin. Thus, each of the n bins has
O(k) elements and the data structure has O(kn) space. 2

Iterated predecessor queries

This section describes the process by which a range coalescing data structure
answers iterated predecessor queries and demonstrates that the process incurs
O(logB+1 n+k/B) memory transfers with high probability. Figure 4 gives pseu-
docode for the procedure query, which takes a range coalescing data structure
H and a query q and returns an ordered list of results which correspond to the
predecessors of q for each constituent list in {L1, L2, . . . , Lk}.

While it may be that the function query is correct by inspection, we leave
nothing to chance and prove it here.

Lemma 3. Given a range coalescing data structure H and a query value q, the
function query(H,q) returns the correct answer.

Proof. Consider the jth bin, with corresponding splitter Sj , which is used to
satisfy all queries q ∈ [Sj , Sj+1). By construction, the jth bin contains all ele-
ments {l ∈ ∪ki=1Li s.t. l ∈ [Sj , Sj+1)} in addition to the predecessor of Sj from
each list in {L1, L2, . . . , Lk}. Thus, the jth bin contains the k correct answers
— the predecessors of q in each constituent list in {L1, L2, . . . , Lk}. We also see
that each subsequence has exactly one element that is less than the splitter Sj ,



Cache-oblivious Range Coalescing 7

which allows us to know which subsequence we are in during the course of the
scan — each element falling below the splitter denotes the beginning of a new
subsequence. Furthermore, since the subsequences are stored in sorted order,
we know that the predecessor result for a particular list Li corresponds to the
largest element less than q in Li’s subsequence. 2

Now we bound the number of memory transfers incurred by query by walk-
ing through the pseudocode in Figure 4.

Theorem 1. An iterated predecessor query query(H, q) on a range coalescing
data structure H built from a set of n-length sorted lists L1, L2, . . . , Lk incurs
O(logB+1 n+k/B) memory transfers on a processor with cache blocks of size B.

Proof. We use the cache-oblivious search tree structure described by Bender,
Demaine and Farach-Colton [3] on line 1 of Figure 4 to find the bin correspond-
ing to the predecessor in the sorted n-length splitter list S using O(logB+1 n)
memory transfers. After we find the splitter and the corresponding bin D, we
merely scan through D once and write out the answers in a continuous stream
to the array output . Thus, we incur a read stream and a write stream, each of
which is O(k) elements and O(k/B) memory transfers. 2

5 Preprocessing

This section describes how a range coalescing data structure is built cache-
obliviously from a set of k n-length sorted lists L1, L2, . . . , Lk and bounds the
number of memory transfers incurred by the process. We do this in four steps.
First, we give a suboptimal deterministic strategy for finding the “splitters” —
the values that partition the query space such that each partition has O(k) el-
ements from the constituent lists in {L1, L2, . . . , Lk}. Second, we demonstrate
that the elements from each list can be assembled in the bin corresponding to
each splitter using O(kn/B) memory transfers. Finally, we give two randomized
algorithm for finding the splitters when k < ln2 n and k ≥ ln2 n, respectively,
each of which incurs O(kn/B) memory transfers.

Preprocessing suboptimally

In this section, we show how to find an n-length sorted splitter array S, such that
O(k) elements from L = ∪ki=1Li fall in each range [Sj , Sj+1) ∀ 1 ≤ j ≤ n. If we as-
sume that all elements in L are unique, we can merely merge all the elements and
take every kth element in the merged list as the splitters.2 We can use a cache-
oblivious k-merger [7] to merge the elements using O((kn/B) logM/B(k/B) + k)

memory transfers if k ≤ 3
√
n and O((kn/B) logM/B(kn/B)) memory transfers

otherwise.
2 We can extend the value of each element with the list number in order to make them
unique, since the elements from any particular list Li are unique. Note that if each
list contained a value l and the value l from the Li was chosen as the jth splitter
Sj , we do not compromise the correctness of the query, since the next smaller value
than Sj from each list in {L1, L2, . . . , Lk} is contained in the jth bin.



8 Demaine et al.

Bin construction

This section demonstrates how we can build the O(k)-sized bin corresponding to
each splitter in the array S using O(kn/B) memory transfers in the worst case.
If we were to merely build each of the n bins in sequence, each of which could
incur as many as 2k memory transfers since k may be larger than M , we could
incur as many as O(kn) memory transfers overall. This is unacceptable. Instead,
we will build the bins using a Z-order traversal [8] of the 2D space spanned by
the cross-product of bin number and list number, notated as the bin number ×
list number iteration space.

bins	


lists	


L9	

L10	


L16	


...	


D25	
D26	
 D32	
...	


Fig. 5: Example 2r by 2r (for r = 3) region of a Z-order traversal of the bin number ×
list number iteration space. During the course of the execution of this example region
there are 8 lists and 8 bins active. The blue regions represent cache blocks which are
partially read (lists L9, L10, . . . , L16) and partially written (bins D25, D26, . . . , D32).
The orange blocks are those which are fully read or written, respectively.

Theorem 2. Given a sorted list of O(n) splitters S and k sorted n-length lists
L1, L2, . . . , Lk, the bins for a range coalescing data structure can be constructed
deterministically and cache-obliviously using O(kn/B) memory transfers on a
processor with a cache of size M = Ω

(
B2
)
and cache blocks of size B.

Proof. Please see Appendix. 2

Finding splitters for small k

In this section, we show how to find the splitters which partition all of the
elements into bins, each of which stores the answers to any query which falls in



Cache-oblivious Range Coalescing 9

the range of values between the associated splitter and the splitter for the next
bin of larger value. When k is less than ln2 n, we can randomly select elements to
be splitters with probability 1/k using O(kn/B) memory transfers by streaming
the lists and writing out the samples to separate lists. Next, we subdivide bins
that are too large, potentially generating extra splitters. We will show that this
process generates O(kn/B) memory transfers with high probability.3 First, we
establish two straightforward yet useful lemmas.

Lemma 4. Consider a coin with heads probability 1/k. In kn flips we will see
between n/2 and 2n heads with probability at least 1− (kn)

−c for some c > 1.

Proof. The proof follows from an application of Hoeffding’s inequality, for suffi-
ciently large n and the assumption that k < ln2 n. 2

Lemma 5. The largest number of elements with value between two splitters se-
lected randomly with probability 1/k is (1 + ε)k ln(kn) with probability at least
1− (kn)

−ε for any ε > 0.

Proof. We can think of a bin as being created by successive coin flips with
probability of heads equal to 1/k: every time tails comes up, the bin grows
by one. Thus, the probability that a bin is of a particular size R is at most
(1− 1/k)R/k. Summing from R = R′ to ∞, we can bound the probability that
a particular bin has size at least R′,

∑∞
R=R′(1− 1/k)R/k = (1− 1/k)R

′
. Letting

R′ = (1 + ε)k ln(kn) and taking the union bound across at most kn different
bins, the proof follows. 2

Consider the process of splitting a bin which exceeds 2(1 + ε)k elements.
We use bR/2(1 + ε)kc applications of a cache-oblivious selection algorithm [7]
to subdivide large bins of size R into bins of size at most 2(1 + ε)k elements
using O(bR/2(1 + ε)kcR/B) memory transfers.4

Theorem 3. The total number of memory transfers S required to subdivide all
m bins to be less than 2(1 + ε)k elements each is O(kn/B), assuming that the
largest bin is at most (1 + ε)k ln(kn) elements and n/2 ≤ m ≤ 2n.

Proof. Please see Appendix. 2

We need to verify that the process of subdivision does not unduly increase
the number of bins.

Lemma 6. After subdivision, we will have O(n) bins.

Proof. Initially, there are O(n) splitters with high probability by Lemma 4. The
process of subdividing bins generates bins with size at least k, thus we can create
at most n extra bins through subdivision. 2

3 In this context, with high probability means with probability greater than 1−N−c

where N is the total number of elements in the problem and c > 1 is some constant.
4 For convenience, we assume R > B. There is no need to make the bins smaller than
B elements, since processing a bin incurs at least one memory reference.



10 Demaine et al.

Finding splitters for large k

When k is at least ln2 n, we use an oversampling technique as used in sample
sort [4] to find a set of splitters and bound the size of all bins. In particu-
lar, we start by randomly sampling elements as candidate splitters with prob-
ability 1/ ln k, which can be accomplished by streaming each list and writing
out the samples to a separate candidate list with O(kn/B) memory transfers.
Then, we merge these candidates using and a cache-oblivious k-merger [7] us-
ing O((kn/B ln k) logM/B(k/B) + k) = O(kn/B) memory transfers, assuming
M = Ω

(
B2
)
and n = Ω(B). Finally, we take every n evenly space elements from

this sorted list as our set of splitters.

Theorem 4. Given an oversampling rate of k/ ln k, the largest resulting bin has
at least 2(1 + ε)k elements with probability less than (kn)

−ε.

Proof. Please see Appendix. 2

6 Implementation and Experimentation

We implemented each of the simple solutions described in Section 3, and com-
pared their performance to range coalescing on a variety of data sets.

Each solution was implemented in C++, and compiled and tested on an In-
tel i7 processor with 3MB of L3 cache. We implemented the full merge range
coalescing solution described in Section 5, instead of the randomized solution.
Before each test, k lists each of length n were generated using a uniform dis-
tribution of integers from 0 to 1 million. These lists were passed in as input to
each of the solutions. The initialization times and average query times of each
solution were recorded.

Range coalescing performed significantly better in practice than other linear-
storage solutions. It performed better on both small and large datasets. Average
query times are shown in Figure 6 and Figure 7. As the datasets got larger, the
effects of range coalescing became more evident. For n = 50 and k = 1000, range
coalescing did 5 times better than a simple binary search, whereas for n = 5000
and k = 1000, range coalescing performed 18 times better.

However, range coalescing requires much more time for preprocessing. It takes
about 20 times longer to initialize than the vEB search, and 3 times longer than
fractional cascading. We believe these results could be improved upon - we did
not implement the linear time randomized preprocessing method described in
Section 5, leaving it instead to future work.

The average query time for the quadratic storage solution is better than
all linear storage solutions. However, it requires O(nk2) time to initialize. For
k = 1000, n = 100, this is 42 times longer than the preprocessing for the range
coalescing solution.



Cache-oblivious Range Coalescing 11

500 1,000 1,500 2,000
0

100

200

300

400

k

Q
ue

ry
ti
m
e
(µ
s)

Binary Search
vEB Search

Fractional Cascading
Range Coalescing
Quadratic Storage

Fig. 6: Query times vs k (for fixed n=1000).

1,000 2,000 3,000 4,000 5,000
0

200

400

600

800

n

Q
ue

ry
ti
m
e
(µ
s)

Binary Search
vEB Search

Fractional Cascading
Range Coalescing
Quadratic Storage

Fig. 7: Query times vs n (for fixed k=1000).

7 Future Work

We have presented an optimal cache oblivious solution for the static iterated
predecessor query. There are several areas in which this can be extended. Range
coalescing does not currently support dynamic operations like insert or delete.
For instance, it is not obvious how one would avoid the adversarial behavior of
repeatedly adding and deleting an element. An element can appear in many bins
if the corresponding list does not have other elements in those bins. Repeatedly



12 Demaine et al.

adding and deleting such an element could cost Ω(n) work per operation given
a naive extension to dynamic range coalescing.

Range coalescing specifically solves the iterated predecessor problem on k
lists, but this does not generalize easily to a graph of lists. Fractional cascading
achieves a running time of O(lg n + k) on a graph query, where k is the length
of the traversed path in the graph. Applying range coalescing directly to this
problem results in O(logB+1 n+K), where K is the total size of the graph. The
concepts of range coalescing could hopefully be developed to be used as a black
box for such problems.

Acknowledgments

This work was begun during the open-problem sessions of the MIT class 6.851:
Advanced Data Structures taught by E. Demaine in Spring 2014. We thank the
other participants for making a creative and productive environment.

References

1. Arge, L., Bender, M. A., Demaine, E. D., Holland-Minkley, B., and
Munro, J. I. Cache-oblivious priority queue and graph algorithm applications.
In STOC (2002).

2. Bayer, R., and McCreight, E. M. Organization and maintenance of large
ordered indexes. Acta Informatica (1972).

3. Bender, M. A., Demaine, E., and Farach-Colton, M. Cache-oblivious B-
trees. In FOCS (2000), pp. 399–409.

4. Blelloch, G. E., Leiserson, C. E., Maggs, B. M., Plaxton, C. G., Smith,
S. J., and Zagha, M. A comparison of sorting algorithms for the connection
machine CM-2. In SPAA (1991).

5. Brodal, G. S., and Fagerberg, R. Funnel heap - a cache-oblivious priority
queue. In ISAAC (2002).

6. Chazelle, B., and Guibas, L. Fractional cascading: 1. a data structuring tech-
nique. Algorithmica (1986).

7. Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. Cache-
oblivious algorithms. In FOCS (1999).

8. Morton, G. A computer oriented geodetic data base; and a new technique in file
sequencing. Tech. rep., IBM, 1966.



Cache-oblivious Range Coalescing 13

Omitted Proofs

Theorem 2. Given a sorted list of O(n) splitters S and k sorted n-length lists L1, L2, . . . , Lk,
the bins for a range coalescing data structure can be constructed deterministically and
cache-obliviously using O(kn/B) memory transfers on a processor with a cache of size
M = Ω

(
B2
)

and cache blocks of size B.

Proof. Consider a 2r by 2r naturally aligned region in the bin number × list number
iteration space, like the one depicted in Figure 5.5 The cache need only keep the head
of each of the 2r constituent lists Li2r+1, Li2r+2, . . . , L(i+1)2r for some i > 0 and the
head of the 2r bins Dj2r+1, Dj2r+2, . . . , D(j+1)2r for some j > 0. The “head” of a
list is the current location in the list as the list is streamed linearly to transfer the
elements to various bins. For the head of each list, there can be as many as two non-
full memory transfers (i.e., not all of the elements on the cache block were written
or read). Consider the largest r for which these 2 · 2r list heads fit in cache, so that
a2rB =M for some constant a. In total, there will be kn/22r cache flushes for a total of
(M/B) · kn(aB/M)2 = O(kn/B) cache blocks, assuming M = Ω(B2). There may also
be additional full memory transfers in the course of processing each 2r by 2r region,
though each element may appear in at most one full memory transfer, thus there are
at most kn/B full memory transfers. 2

Theorem 3. The total number of memory transfers S required to subdivide all m bins
to be less than 2(1+ ε)k elements each is O(kn/B), assuming that the largest bin is at
most (1 + ε)k ln(kn) elements and n/2 ≤ m ≤ 2n.

Proof. Let xi be the number of memory transfers incurred by the ith bin and thus
S =

∑m
i=1Xi. Then, we have

E[xi] ≤ a
∞∑

R=0

1

k

(
1− 1

k

)R⌊
R

2(1 + ε)k

⌋
R

B

≤ a
∞∑

R=0

(
1− 1

k

)R
R2

2(1 + ε)k2B

≤ a k
B

for some constant a > 0. Also, we see that

xi ≤
⌊
(1 + ε)k ln(kn)

2(1 + ε)k

⌋
(1 + ε)k ln(kn)

B

≤ k

2B
(1 + ε) ln2(kn)

for all i since the largest bin is assumed to have at most (1+ε)k ln(kn) elements. Let t =
(k/2B)(1+ ε) ln2(kn) and note that each random variable in {x1, x2, . . . , xm} has sup-

5 A naturally aligned region of size c by c is one which begins with some index i ≡ 1
(mod c) in one dimension and j ≡ 1 (mod c) in the other.



14 Demaine et al.

port in the range [0, t]. A Hoeffding bound on S gives us Pr
{
S − E[S] ≥ t

√
εm ln(kn)

}
≤ exp

(
−2εm ln(kn)t2

mt2

)
≤ exp(−2ε ln(kn))

≤ (kn)−ε.

Then, for sufficiently large kn, S = O(kn/B) with high probability. 2

Theorem 4. Given an oversampling rate of k/ ln k, the largest resulting bin has at
least 2(1 + ε)k elements with probability less than (kn)−ε.

Proof. Let R be the size of the largest bin. By Theorem B.3 of [4], for sufficiently large
kn, we have that

Pr{R > 2(1 + ε)k} ≤ kn exp

(
−(1 + ε)

(
1 + 2ε

2(1 + ε)

)2
k

ln k

)

≤ kn exp
(
−(1 + ε)

k

4 ln k

)
≤ kn exp

(
−(1 + ε)

ln2 kn
ln2 n

4 ln ln2 n

)

≤ kn exp

(
−(1 + ε)

ln2(kn)− o
(
ln2(kn)

)
8 ln lnn

)
≤ kn exp(−(1 + ε) ln(kn))

≤ (kn)−ε.

2


