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ABSTRACT

A study is made of neutron slowing down and thermal-
ization in crystalline media in the range of energies, less
than 1 ev., where crystal binding effects are significant.
Equations are presented, with various approximations,
for the energy transfer cross section and the average
logarithmic energy decrement per collision in this region.
The validity of these equations and approximations is
discussed and numerical results are presented. With these
results, the Fermi Age from indium resonance to thermal
is calculated for graphite and beryllium, and found to
be 53.7 and 8.94 sq. cm, respectively. A detailed
calculation is also made of the age from fission to 2
indium resonance, in beryllium, and found to be 70.1 cm .
The results obtained are compared to existing experimental
and theoretical values, and discrepancies, where they occur,
are disd~xssed.
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I Introduction:

The study of neutrons slowing down in the energy range

less than one ev., and their approach to thermal equilibrium

with the moderator, constitutes a portion of the field of

neutron thermalization. In this region the binding

energies of the atoms in the moderator material are comparable

with the neutron energy so that, in the slowing down treat-

ment, the moderator atoms can no longer be considered free.

In this treatment, only moderators in crystalline form will

be considered1 the extension of this treatment to liquid

systems (H20, D20) is further complicated by the necessity

for considering, not only atomic binding, but also molecular

energy levels and molecular motion in liquid systems.

For energies less than one ev,, the neutron is considered

to interact with the crystal lattice as a whole, and con-

sequently slowing down theory developed for high energy

neutrons, in which the scattering atoms are assumed free,

is unsuitable* The presence.of crystalline has the effect

of reducing the average logarithmic energy decrement per.

collision (k) below that value calculated for a free atomI

This decrease is partially due to the fact that neutrons

can gain, as well as loose, energy in interactions with

the crystal lattice. The energy units transfared in crystal

interactions are called phonons, and are somewhat analogous

to photon transfers in atomic and nuclear interactionso
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The procedure to be followed in this treatment is to

present expressions for the energy transfer cross section

that is, the cross section, at a given temperature

T, for a neutron initially at energy B, to be scattered at

an angle2., and have energy E' after the collision* By

integrating over all angles, the above cross section can

be reduced to a(E,E',T)9  With this cross section, and a

prescribed spectrum for the energy of the transferred phonons,

the average logarithmic energy decrement per collision can

be calculated as a function of neutron energy, moderator

temperature, and crystalline properties, in the region of

crystalline binding effects. With k(E,T) known, the Fermi

age from indium resonance (1.46 ev.) to an appropriate lower

limit can be calculated with the familiar Fermi age integral

from age-diffusion theory. Although the exact value of

this lower limit, corresponding to thermal energy, is open

to question, a value of 5kT is used for the final result;

values of age as a function of the lower limit of the age

integral are also presented*

Detailed calculations are given for the age, from

indium resonance to thermal, in beryllium and graphite;

however, the methods and equations used, with appropriate

modifications, are applicable to most crystalline substances.

For complietness, a detailed calculation was made of

the age from fission to indium resonance in beryllium.
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In this calculation, effects of the variation in scattering

cross section and of the fission spectrum were considered.

II. Enersy TgAnsfer Cross Section

In the past many authors, using various approximations,

have derived expressions for the energy transfer cross section

in the crystalline binding region. Weinstock1 , in 1944,

derived an expression for the cross section for one phonon

processes in monoatomic, polycrystalline solids. Later

Cassels2 extended the theory to include spin and isotope

effects. More recently, the theory has been generalized,

to include multi-phonon processes, by Squires , Kothari and

4 5 6Singwi , Placezk , Glduber and others.

2.1 Method of Kothari and Singwi

The following discussion is based primarily on the

work of Kothari and Singwi, and the complete mathamatical

details may be found in reference 4. The inelastic scatter-

ing cross section, in the range of crystalline binding, is

composed of a coherent and incoherent contribution. The

coherent cross section is related to t13 interference

scattering of slow neutrons, while the incoherent contribu-

tion is related to diffuse scattering from spin, isotope,

and magnetic disorder.
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This can be expressed as

as =Oh+a aincoh[

In the treatment to follow, the Fermi pseudopotential

approximation is used in which the short range potential

between neutron and scattering nucleus is replaced by a

point interaction of the form

V(rnr)= 2a b(r -) [2)

where rn and r are the position vectors of the nucleus and

neutron respectively, m is the neutron mass, and an is the

bound scattering length adjusted so that acattering from

isolated fixed nuclei is correctly represented by the Born

approximation.

With the above Fermi approximation, and the methods

of quantum mechanics, it is shown4 that the differential

incoherent cross section; per unit solid angle, per

scattering nucleus, for a process in which 1 phonons are

absorbed, neglecting magnetic effects; is given by

dincoh,+1r ,t -
lizo

A

1^ %T 3
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Using the Debye model of a crystal, replacing the sum over q

by an integration, letting q take on positive as well as

negative values to account of emission as well as absorbtion

of phonons, and integrating over all solid angles, one

obtains the following expression for the incoherent cross

section corresponding to the emission or absorbtion of 1

phonons: kv k,
+1

incoh, l' LCO

In equation [4], all energies are expressed in terms of the

Debye energy of the crystal, k9D, where k is Boltzmann's

constant and 9D is the characteristic temperature of the

phonon spectrum in the Debye model. In this model, k9 is

also the maximum phonon energy. Also

k= the initial neutron energy in terms of the Debye energy,

i.e. E/kQ9

2k2 = the neutron energy after collision, i.e. E'/kQDI

M = ratio of moderator to neutron mass,

s = 4n times the difference between the mean square and

squared mean scattering lengths, i.e. 4iu[(a 2) () 2I

qi =-energy of transferred phonon in terms of the Debye energy

T= moderator temperature in terms of the Debye temperature,

2 2,
t =-(k 1-k 2 )*



The exponential, appearing in eq.[4], is known as the Debye

Waller factor; and in the Debye approximation

F= 1/2 jq coth(q/2T) dq.

The initial and final neutron energies, k and k2 are1 2'
related by

1 2Z~k-k22Zq 9i [51

and the total incoherent cross section is given by

aincoh [ aincoh,1 [6]

In a similar manner, it is shown that the coherent

cross section can be expressed as

coh' (ohl coh, coh + coh
where

0~4 
', 41,

coh,l [C

and.

aoh.1

all
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S-li(s)2, and Zr is the number of nuclei at lattice distance

If equation [8J is compared to equation [4], one notes

that the two expressions are identical aside from the factor

S/s. With this fact and eq. [1], the total scattering

cross section can be written as

a= (s+S) all + aoh [10

where a{' is given either by eq.[4] or [8] with the

factor s or S omitted respectively, and a' is obtainedcob
by summing eq.[9J over all values of 1. The assumption

made by Placzek, to simplify eq.[10], is that a' can becob
neglected in comparison with (s+S)a"l. This is called the

incoherent approximation, and its validity will be discussed

later.

With the incoherent approximation, eq.[l0J may be

re-written as

as=(s+S)Z all =7a1  [11)

where

al 

gth,

e~ g C
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F is given by

F= 1/2 q coth(q/2T) dq, [13]

and the relationship between k2, k,2 and i is given by eq.[5].

In a separate paper 8, Kothari and Singwi have

evaluated the first three terms in the phonon expansionill].

The one phonon cross section (the cross section for the

absorbtion or emission of one phonon by a neutron) is

obtained by setting l=unity in eq.[12J, and using eqs.

[15] and [5]. After integration over t, in eq.[12], one

obtains the following expression for the one phonon cross

section as a function of initial and final neutron energy,

and moderator temperature:

*~k (k 910 /

(141

and ks +-

*1 (k 1. a (k ,k9 )dk [15]

2
Equation [15] must be solved, for each value of k 1, by

performing the indicated integration over k2 numerically.2
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It should be noted that the one phonon cross section is

given by eq.[14J only in the region k 2-k and

is equal to zero otherwise.

In a similar manner, the two phonon cross section is

obtained by setting 1=2 in eq.[12J; the resulting expression

is

AA;

4r' 4| I

and

a2(kl)= a2 (k ,k2) dk2 17J

As in the previous case, the above integral is evaluated

numerically for various values of k1. The two phonon

cross section is given by eq.[16] only in the range

k -2'6k2  k +2, and is equal to zero otherwise. This is

equiwlent to specifying the maximum energy of the

transferred phonon as k9



16

The elastic scattering cross section can be obtained

simply be setting 1=0 in eq.[12J; the result is

ae a0= (s+S)M ( 1-exp-[24Fk2/MJ) [181
24k F

For neutron energies of the order of k, 21)

higher phonon processes (greater than two) become

increasingly important. Because of the highly complex

nature of the phonon cross section for three and greater

phonon transfers, and because it would be necessary to

evaluate these cross sections to obtain accurate results in

this energy region, an Einstein approximation of the crystal

is expected to yield better results for k greater than

unity.

Using an Einstein crystal model, Kothari and Singwi8

derive an energy transfer cross section from eq.[12].

The assumption is made that all phonons have the same energy,

kg,, where k is Boltzmann's constant and GE is the Einstein

temperature of the crystal. Further, since the total number

of modes corresponding to each polarization is N, one

obtains

Zf(qi)= Nf(l) [19)

Using the above relations for an Einstein model, and

eq.[12], Kothari and Singwi8 present the following expression

for the cross section in which 1 phonons are absorbed and m

phonons are emitted:
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l*4r koki
, _= ___+ __/- ____C_- + 9 #d [201

All symbols have the same meaning as previously, except

that all energies are now expressed in terms of the

Einstein energy, kE. Also,

F= 1/6 coth 1/2T [21)

and

k-k2= 1-rM [22)2).

After integrating eq.[20] with respect to t, and with

eqs.[21J and [22]; the energy transfer cross section, in

the case in which 1 phonons are absorbed and m phonons

emitted; is given in the Einstein approximation by

(s+S)M (1+e-/T-,I e/+1 1(e~ [l++c2/21+..
k 24k F

+alM/(l+m)l ]) [23]

where

a= (coth 1/2T) 2M 1  [24a]

and

(k +k2
b= ( coth 1/2T)-1 M 22b]
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Equations [23] and[24] will be used in the region E

greater than k9 to give a more accurate representation of

the cross section for multi-phonon processes.

2*2 Method of Nelkin

M.S. Nelkin9; from the derivation of Glauber 6

using the Fermi pseudopotential, the incoherent approxima-

tion, the Debye crystal model, and neglecting polarization

of the phonons; presents the following expression for the

energy transfer cross section in the crystalline binding

region:

a(E--E') ( )1/2 dt dx exp(it[E'-EJ).exp(y/M x

lg(t)-g(0)]) [25)

where

y=E'+E -2x(EE ')1/2  [26]

In the Debye approximation, g(t) is given by

g(t)= 3/93 W dw[(;n+1).exp(iwt)+ -n~exp(-iwt)], [2'7]

-n0

and'

n= [exp(w/T) -] 1 [[281
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In eqs. [25] to [28], E is the initial neutron energy,

Et is the neutron energy after collision, a0 is the

bound atom cross section, T is the moderator temperature,

and w is the frequency of the transferred phonono Nelkin

uses a system in which h=k=l, where h is 1/2n.Planck'a

constant and k is Boltzmann's constnto Although the

form may be different, eq.[25] presented by Nelkin9 ,

corresponds to eqs. [11] and [12] presented by Kothari

and Singwi.

Placzek5 , recognizing the poor convergence of the

phonon expansion of the inelastic scattering cross

section at energies of the order of, and greater than,

the Debye energy, suggested expanding the inelastic cross

section in powers of l/M. This expansion converges rapidly,

for energies in the region of interest, provided that M is

large compared with unity and T/QD*

Following the suggestion of Placzek, Nelkin expanded

the function exp[y/M(g[t]-g[0])] in powers of l/M. If

only first order terms are retained, the expression for

the inelastic scattering cross section, from eq. [25], is

c /2 l+E)( [exp( )l) [29]
MD

for E9-EI-Q4, and is zero otherwise*

The validity of eq.[291 as a representation of the energy

transfer cross section will be discussed later,
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2-3 Discussion and Evaluation of Energy .'ansfer Cross Sections

in this section, the methods and accompanying

assumptions used by Nelkinand Kothari and Singwi in

deriving expressions for the energy transfer cross section

will be reviewed and discussed

The incoherent approximation was made by both authors

in their work. This approximation corresponds to neglecting

the correction term to the coherent scattering contribution,
10

acoh, in eq.[10]. R.C. Bhandari has evaluated this

correction term for the elastic, and one phonon partial

cross sections, i.e. 1=0,1=1, for beryllium. In the low

energy region (0.00104 ev.), below the Bragg cutoff, the

values for the one phonon cross section, with and without

the incoherent approximation, differ markedly* But in the

energy range of interest in age calculations(greater than

5kT), there is essentially no difference between the

computed cross sections0 Moreover, when the total inelastic

scattering cross section is computed, by summing over all

values of 1, the difference between the two values, even

at low energy, is only a few percent. Although the use

of the incoherent approximation does not accurately

describe the behavior of the partial phonon cross sections

at low energies, it yields a fairly accurate representation

of integrated quantities,eg.,the total inelastic scattering

cross section. However, the use of the incoherent approxi-

mation results in a value of the elastic scattering cmss

section which is too large.
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Consequently the total cross section computed is also too

large, and attains a value, in the high energy limitof

6.2 b in beryllium. Bhandari, without the incoherent

approximation, calculated a lower value for the elastic

scattering cross section in beryllium; when this value is

combined with the inelastic cross section, to give the total

cross section, the value obtained in the high energy limit

of the crystalline binding region is 5.9 b in good

agreement with the experimental value23 . As will be seen

later, this difference in total cross section will give

values of , with and without the incoherent approximation,

which differ by approximately 5% maximum.

"For the few crystals for which the frequency

spectrum has been carefully calculated from force constants,

it is found that the spectrum deviated markedly from the

usual smooth Debye curve. However, since we are interested

only in integrated properties, the error involved in assuming

the Debye frequency spectrum appears to be quite small....994

In the phonon expansion, the Einstein model is used

to calculate the energy transfer cross section in that energy

region where multi-phonon processes make a significant

contribution. It is conceivable that the Einstein model

could give fairly good results when the neutron energy

is several times greater than the Einstein energy of the

crystal. However, in the low energy region, the Einstein

model could not give accurate results, since it is
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impossible, in this model, for any energy transfer to occur

once the neutron energy is less than the E wsuem energy (o.o64ev.

in beryllium). Physically, this is not so.

The inverse mass expansion used by Nelkin9 and

.5originally suggested by Placzek , converges rapidly

provided that the ratio of moderator to neutron mass (M)

is large compared with unity and T/%. Consequently, this

approach would be useful for hesvy crystalline moderators

at moderate temperatures. For Magnesium (mass number=24)

Placzek has calculated the first three terms in the mass

expansion for E=QD/36, and T/9D=2 .05. He found that the

2term of order l/M was only half a percent of the term of

order l/M. To obtain similar accuracyfrom a phonon

expansion, it was necessary for Squires2 to calculate six

terms.

Unfortunately, moderators used in nuclear reactors,

of necessity, have low mass numbers; therefore it is

questionable whether the mass expansion used by Nelkin, in

which terms of higher order than l/M are neglected, is

sufficiently accurate* For the moderator materials of

interest here (graphite and beryllium) the condition for

rapid convergence, M much greater than unity, does not

apply. For the case of beryllium, Kothari and Singwi4

have calculated the term of order 1/M 2 in the mass

expansion, and found it to be negative and approximately

10% of the term of order 1/M in magnitude, for neutrons

of energy equal to 0,009 ev.
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Therefore, by neglecting higher order terms in the mass

uxpansion, the inelastic cross section computed by Nelkin

is approximately 10% too high* L-V. Kazarnovski asserts-

that neglecting terms of greater order than l/M in the

mass expansion is equivalent to neglecting multiple

phonon and thermal effects. This statement is questionable,

since it is difficult to attach direct physical interpertation

to the separate terms in the mass expansion, It should be

noted that in the high energy limit, Nelkin's expression for

the energy transfer cross section, eq.[291, converges to the

bound atom cross section a0. This is not a serious limitation,

as will be shown later, since the quantity a0 will cancel

out of the expression for the average logarithmic energy

decrement per collision. In a later work 2, Nelkin has

replaced a0 by the free atom cross section when using

the energy transfer cross section in spectrum calculations.

In this case

yfree a (1+1/M) 2  [30]

Nelkin does not expect the expression he presents for

a(E-w-E'), eq. [29], to represent the detailed behavior

of the inelastic cross section at all energies; however,

he does believe that it will give physically reasonable

results for integrated quantities,
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The phonon expansion of Kothari and Singwi is

expected.to yield more accurate results than the inverse

mass expansion of Nelkin. This is especially true at neutron

energies below'the Debye energy of the crystal, where multi-

phonon processes are unimportant and the inelastic cross

section can be val approximated by the sum of the one and

two phonon cross sections. At energies greater than the

Debye energy,one should calculate the contribution from

higher phonon processes because the convergence of the

.8phonon expansion is relatively poor0 Kothari and Singwi

have estimated that the contribution of the two phonon

cross section to the average logarithmic energy decrement

per collision is 6.4% at E=kg and 45% at E=2k9 in

beryllium. Since the expressions for higher phonon processes

are so complex, Kothari and Singwi feel that the contribu-

tion of multi-phonon processes to the energy transfer cross

is adequately represented by the Einstein crystal model

at neutron energies greater than k9D The fact that the

Einstein model is not applicable at low neutron energies

does not preclude its yielding physically reasonable

results at higher energies.



III. Average Logarithmic Energy Decrement De Collision

Once expressions for the energy transfer cross

section have been obtained, one can calculate the average

logarithmic energy decrement per collision,g. In the

general case, this is given by

a

/a(E-*.E9)ln[E/E9] dE-9Fx
1L ~ -A. J

S (B-4-E') dE'

where the limits of integration, A and B, are functions

of E, and depend on the specific form of a(E-P-E'), This

point will be clarified by specific examples to be presented

later.

3.1 Method of Kothari and Singwi

With the phonon expansion of Kothari and Singwi 8

equation [31] becomes

kJ'4'1

1 s k + 2(k )1/C C1 ( kl,k2)-ln~kl/k 23 dk2 +

lnLk1/k ]dk 2

a2 (k ,k2) x

[32]

where a1 (k ,k2) and a2 (k ,k2) are given by eqs. [1I] and

[16] respectively.
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The total scattering cross section, as, is given by

ar(k 2 )=-a(k 2 )+ a (k 2)+ a k2 [55]s 1 ~ 1 a2 k1)

where a, a1 , and a2 are given by eqs. [18], [15], and

[17] respectively. In eq. [32], the first term on the

right hand side corresponds to one phonon transfer, and

the second term to two phonon transfer processes.

Within the range of neutron energies where the

Einstein approximation is used, is given by

k2 k 2
)( +a ]ln 1 + a .ln 1 [34]

s nl k2 -n k1+n

where the partial cross sections are given by eq.[23]

with the appropriate values of 1 and m. a0 n is the

cross section for a process in which zero phonons are

absorbed by the neutron, and n phonons are emitted;

similarly, aln+l corresponds to the absorbtion of one

phonon and the emission of n+l phonons. a is the

cross section for the absorbtion of n phonons and the

emission of zero phonons. The first two terms on the right

hand side of eq.[34] correspond to processes in which

there is a net transfer of n phonons, of energy kQE,

from the neutron; the last term corresponds to the

transfer of n phonons to the neutron.
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Kothari and Singwi8 assert that only cross section terms

of the form indicated in eq.[341, with n running from zero

to two, make a significant cottribution to%

Kothari and Singwi8 have made the long and tedious

calculations necessary to evaluatersfrom eqs. [321 and

[34]. The calculation has been made for beryllium with

9D = 1000 0K and 9E= 7400K; the moderator temperature,T,

was taken to be 300 0K.(E) was plotted in the low energy

range using the Debye model, eq.[32j, and in the high

energy region with the Einstein model,eq.[34]o The two

curves intersected at E/k D= 1.63, and were smoothly

joined in this region to yield a best value of *9 over

the entire energy interval. This curve of r vs. E, for

beryllium, is reproduced figure 1, curve B; the values are

normalized by dividing by the free atom value, go.

3.2 Method of Nelkin

With eq.[31], and Nelkin's expression for the energy

transfer cross section, one obtains for

(E)= E (E--E).ln dE' E35]

TS -C

where a(E-u"E') is given by equation [29].



28

After substituting

z= 9 /E

y= E-E'/ [36]

(P= 9 D/2T

in eq.[35], the following expression is obtained for the

slowing down power in the crystalline binding region:

dy(l-yz)3/(-yz/2)*.ln[l-yz] .g(2(py) [37]
-I

where

g(x)= x(e l8

If the factors in the integrand are expanded in a power

series, multiplied out, and integrated term by term, the

following expression results

1- (4.5 3 [])z + (1175)z2 (7019 5[<)z3+

+ (1.205)z4 - (9.66P7 [p])z5 + (1.207)z6 +

-(1l.9?0 [(p])z7+... [391

The first five terms are given by Nelkin in ref. 9-

the remaining three terms were evaluated by the author

using Dr. Nelkin's original calculation sheets.
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where

((P)= tn. coth((pt) * dt= + +5 + Q 9 (+ n fn~p 5 n+) 9n+4) +45(n+)
0

S 7_ + -[401
4725(n+8)

The quantities cp and z are d.fined in eq.[361. In eq.[39],

2a 0/M was replaced by Vjas so as to give the proper value

of V in the limit when E approaches infinity,i.e., z

approaches zero. With a value of D= 10000K and

T=300 K, /.was computed as a function of neutron energy.

The results of this computation are presented in figure 1,

curve A.

It should be noted that in Nelkin's inverse mass

expansion, when terms of higher order than l/M are

neglected, the only material property affecting 1k. is the

Debye temperature. The factor l/M, in eq.[373, is

incorporated into 'V, . The calculation was originally

made for beryllium- however i the Debye temperature of

graphite is taken to be 1000K. the results of fig. 1,

curve Acan also be applied to graphite. Actually, due

to the highly anisotropic crystal lattice of graphite, the

calculation of 5/ is not so straightforward as: is

indicated above; however the use of 1000 0K for the

Debye temperature of graphite does have some experimental

and theoretical basis. A further discussion of the effect

of the anisotropic nature of the graphite lattice, on the
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calculation of the slowing down properties, will be presente&

later.

303 Results of Gurney

In 194r, R.Gurney, using an Einstein crystal model,

calculated the average logarithmic energy decrement per

collision in beryllium and graphite. The details of his

calculation were not available, but his equations indicate

that only processes in which energy was lost by the neutron

were considered. His equation is presented in the following

form:

7( nln[E/E-nkG9])g(E)= [41]

The exact form of J is not given,but it is believed that

Jn corresponds to the partial cross section for the emission

of n phonons of energy kQE.

Gurney calculated rS(E), using an Einstein model with

GE=7420K and T=3000K, in beryllium. The results of this

calculation are reproduced in fig. 1, curve C. He also

applied the Einstein model to graphite using 91= 4520K as

characterizing lattice vibrations perpendicular to the

graphite lattice planes, and Q% 1553OK for vibrations

parallel to lattice planes, A value of E was evaluated

corresponding to each direction, and the total f was obtained

by simply adding the two,. i.e. ir rb+ +*'
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The validity of Gurney's method is questionable, since it

is doubtful whether the anisotropic nature of the graphite

crystal lattice can be treated in such a simple manner.

Gurney's results, for graphite, are presented in fig. 2,

curve C. In both cases, the plots are normalized by

dividing by the free atom value, .,

3.4 Discussion and Evaluation

In figure 1, results are presented for f. in

beryllium; as determined by the methods of Nelkin (curve A),

Kothari and Singwi (curve B), and Gurney(curve C); with

9D =10000K, 0E=- 7420K, and T=3000KO The dashed portions

of the curves are extrapolated to obtain values of V. at

low energies. All the curves approach unity at large values

of E.

The reason for Gurney's values (curve C) being higher

than the others is twofold: first, cross sections were not

known very accurately when the calculation was made (194Q),

and second, an Einstein model is used in which energy gain

processes are neglected. This would give a higher value of-/,.

than that calculated by Kothari and Singwi, using an

Einstein model for E greater than 1.63kQO, who included

energy gain processes (see eq.[341).

There is no obvious reason for Nelkin's method (curve A)

to yield values of i which are lower than those of Kothari

and Singwi. However, it is believed that the neglecting

of higher order terms in the mass expansion; in the case of
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low mass number materials (beryllium), where the condition

for rapid convergence (M>-71) is not satisfied; may yield values

of V/,which are too low.

It should be noted that the series expansionpresented

by Nelkin, eq.[39], for V , converges quite slowly at low

energies. This is a result of the mathamatical form in which

the coefficient of l/M , in the inverse mass expansion, is

presented rather than the failure to satisfy the condition

for rapid convergence. The form in which Nelkin presents

his results lends itself, rather easiallyto numerical

computation, while the equations of Kothari and Singwi,eq.

[32] and [34] are exceedingly cutbersome to manipulate. In

spite of this, it is believed that the method of Kothari and

Singwi yields the most accurate results forv/v.in beryllium.

In figure 2, results are presented for /.in graphite

as determined by Gurney,, and as calculated from Nelkin9 s

0 0
equation with 9D= 1000 K and T= 300 K.

Unlike beryllium, which has a hexagonal close-

packed lattice, carbon atoms are situated in planes in

the graphite crystal lattice; this gives rise to a highly

anisotropic material. Consequently, the graphite texture

has a considerable effect on its slowing down, and

difftsin properties.
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As stated previously, no reason can be seen as to why the

method used by Gurney to computeV(E), for graphite, is

appropriate, It seems unreasonable that the V for poly-

crystalline substances should be equal to the algebraic sum

of values computed for vibrations perpendicular and parallel

to the lattice planes. The details of Gurney's calculation

were not available, but his result does exhibit the proper

over all trend. Gurney's results are presented in fig.2,

curve C. Theexplination of the high value of 'V obtained

by Gurney, assuming that his method is correct, is the same

as that used to explain the high values found for beryllium.

In order to explain the specific heat of graphite at

low temperatures, Krumhansl and Brooks15 have constructed

a model in which Debye temperatures of 900 0K and 2500 0K

are assigned to vibrations perpendicular and parallel to

the lattice planes respectively. Based on this model,

Kothari and SingwiAave attempted to make theoretical esti-

mates of the scattering cross section in graphite.

Using the incoherent approximation, and the Debye model,

they have calculated the one and two phonon cross sections

corresponding to vibrations both perpendicular and parallel

to the lattice planes. The total scattering cross section,

for polycrystalline graphite, was taken to be the sum of

thesepartial cross sections. The calculation was made for

low energy neutrons (10A), but unfortunately their results

do not agree very well with the experimental values,(BNL-325).
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Kothari and Singwi attribute this discrepancy to the effect

of texture and microstructure in graphite. Another source

of error may lie in the fact that the incoherent approximation

is not particularly well suited for estimation of the elastic

scattering cross section, and McReynolds et.al. assert

that elastic scattering predominates strongly over inelastic

scattering in graphite.

At present, there appears to be no satisfactory method

for considering the anisotropic nature of the graphite

crystal lattice in the computation of the energy tansfer

cross section or * Since the binding energy between atoms

within a crystal plane is ftr greater than that between

planes, the average logarithmic energy decrement per

collision should be significantly greater in interactions

perpendicular to the lattice planes than parallel to them*

As a first approximation, it is assumed that almost the

entire contribution to y comes from vibrations perpendicular

to lattice planes. For greater ease in calculation, Nelkin's

00
eq.[39] is used with 9 D 1000 K. (Krumhansl and Brooks give

9000K as the Debye temperature corresponding to vibrations

perpendicular to the lattice planes; an additional 100 K was

added to partially correct for interactions parallel to the

lattice planes. Reference 13 also quotes 9%= 1000 0K for

graphite). Based on this approximation, the values of

obtained are presented in fig.2, curve A.



For neutron energies greater than approximately

0.2 ev., a certial portion of the interactions involve

collisions in which an atom is displaced from its lattice

site. For these events, i is greater than any of the

previously discussed theories would predict, since they do

not account for such events. The frequency of such events

increases with neutron energy so that, at the upper end of

the energy range considered, the values of M/ffor each

method presented, should be increased. A quantitative

estimate of this correction has not been made, but the

existance of this effect should be noted since its

omission adds another approximation to the results already

derived.

V. Computation of Fermi Age from Indium Resonance to Thermal

f CE)
After obtaining -- in the crystalline binding region,

Fe0
one can calculate the Fermi age,T. The age will be computed

from indium resonance to thermal; consequently, T will be

taken as zero at E=1.46 ev.

4.1 Method

The age to thermal is given by

146,

___D AE_ d E [4~2J

/ Ns E 3N2atr% as

Et Et
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where N is the number of moderator atoms per cc., D is the

diffusion coefficient, and atr is the transport crss section.

The value of the lower limit of the age integral,E , is

somewhat arbitrary, and the difficulties associated with

its choice will be discussed later.

For the case of small absorbtion, a is taken as

a (1-2/3A), where a is the total (elastic+inelastic)

scattering cross section. With this substitution, eq.[42)

becomes
I(.

3N2 a2(1-2/3A) 
[

Et

Taking as as constant in the range 1.46 ev. to Et 23, one

obtains,for the age from indium resonance to thermal

1.416

1 1 dE, [44

3A,(1-2/3A)N 2 Cr2 E/O
s Et

Let

C= 2[45
3J(1-2/3A)N2 s

and I(E 1 dE
I( ) [46]

Then

t(E t)= C[I(E t)] [47]
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I(E ) must be evaluated by numerically integrating eq. [46].

This is done in the following way:

n E.
I(E )-ln B [48]

where E = 1.46 ev., and [171] is the average value of
0a

in the energy interval E to E . The upper limit of

the summation, n, is a function of Et which is, in turn,

the lower energy limit of the nth group.

With the values of S/, obtained from figures 1 and 2,

I(E t) was calculated for graphite and beryllium from eq.[48J.

The details of this calculation, corresponding to each

curve in figs. 1 and 2, are presented in tables I through

IVa For each calculation, values of I(Et) are obtained

by adding the last column in each table up to the group

in which Et - Ej; these values are presented at the bottom

of each table as a function of E which is now expressed

as a function of moderator temperature.,

Correspondingly, values of C, eq.[45], were calculated

for graphite and beryllium using the following physical

properties:
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TABLE I

Details of calculation of age from indium res. to thermal, in

beryllium and graphite, using results of Nelkin: Figs. 1 & 2, curve A

Group e;l Nol Ej 1

2 1.20 1.00 o.90L 1.106 1.200 o.1821 0.2015

3 1.00 0.80 o.88o 1.136 1.250 0.2230 0.2532

4 0.80 0.70 o.862 1.159 1.142 0.1328 o.1539

5 0.70 o.6o 0.846 1.182 1.168 0.1551 o.1834

6 0.60 0.50 o.821 1.219 1.200 0.1821 0.2220

7 0.50 0.40 0.785 1.273 1.250 0.2230 0.2840

8 o.Lo 0.30 0.727 1.374 1.333 0.2870 0.3941

9 0.30 0.25 o.660 1.514 1.200 0.1821 0.2757

10 0.25 0.20 0.599 1.670 1.250 0.2230 0.3722

11 0.20 0.182 0.542 1.846 1.099 0.0944 0.1742
12 0.182 0.156 O.498 2.025 1.174 0.1602 0.3245

13 0.156 0.129 o.4.11 2.1 35 1.200 0.1821 0.1430

14 0.129 0.104 0.242 4.130 1.243 0.2172 0.8950

Et 0.182 0.156 0.129 0.104
ev. (7kT) (6kT) (5kT) (4kT)

~I(Et) 2.728 3.052 3.496 4.390
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TABLE II

Details of calculation of age from indium res. to thermal,

in beryllium, using results of Kothari and Singwi; Fig.l, curve B.

Group

I

Ej-l
ev.

2 1.00

3 0.70

4 0.50

5 0.4o

6 0.30

7 0.25

8 0.20

9 0.182

10 0.156

11 0.129

12 0.104-

E '
e4.

1.00

0*70

0.50

0.40

0.30

0.25

0*20

09

0.951 1.050

0.940

Ej.l

1,4h6o

1.060 1.43o

E
E

0.3784

03Ej-7

0.3975

0.3565 0.3795

0.925 1.081 1.400 0.3360 0.3638

0.910 1.099 1.250 0.2230 0.2450

0.886 1.129 1.330

o.858 1.16b 1.200

0.2850 0.3218

0.1822 0.2120

0.821 1.219 1.250 0.2230 0.2720

0.182 0.787 1.270 1.100 0.0952 0.11149

0.156 0.753 1.328 1.174 0.1602 0.2125

0.129 0.703 1.1421

0.104 o.615 1.625

o.0776 O.445 2.245

1.205 0.1863

1.243

1.337

0.2650

0.2172 0.3530

0.2900 o.6510

0.I2 0.156
(7kT) (6kT)

I(Et) 2.307 2.519 2.7t$Lj. 3.137 3.7titS

Et'
ev.

0.129
(5kT)

0.1038
(4kT) .

0.0776
(3kT)

I (Et) 2.307 2.519 2.704 3.137 3.7bb



Details of

in beryllium, us

TABLE III

4Z

calculation of age from indium res. to thermal,

ing results of Gurney: Fig. 1, curve C.

Group Ej .-

2 1.00

3 0.80

4 0.50

5 0.40

6 0.30

7 0.20

8 0.182

9 0.156

10 0.129

11 0.10)

~~ O.Ji I-~;-I
O~b 1*7

o.80

0*50

0. 0

O.30

0.20

0.37W

0.957 1.045 1.250 0.2230 0.2330

0.950 1.051 1.600 o.)469o 0 .4935

0.946 1.057 1.250 0.2230 0.2355

0.93, 1.070 1.333

0.921 1.086 1.500

o.182 0.895 1.118 1.099

0.156 0.870 1.l19 1.17v

0.129 0.827

0. 10

1.210 1.200

0.2870 0.3070

0.4.060 o.441o

0.0944

0.1602 0.1841

0.1821 0.2200

0.734 1.361 1.243 0.2172 0.2955

0.776 0.538 1.858 1.337 0.2900 0.5380

Et a21.82 0.156 0.129 0.104 0.0776
ev. (7kT) (6kT) (5kT) (4kT) (3kT)

0.1112

3.*4502.617I (Et) 2.213 2.397 2.912

nW

0*3915



TABLE IV

Details of calculation of age from indium res. to thermal, in

graphite, using results of Gurney: Fig. 2, curve C

1000

0080

0.60

0.50

040

0.30

0.25

0.20

0.182

0.156

0.129

0.104

1.00

0.80

o60

0.50

0.110

0.30

0.25

0.20

0.182

0.156

0.129

0. 104

0.776

0.944 1.09

0.927

0.914

0.898

0.879

0.8441

0.807

0.765

0.720

0.579

0.14

0.326

0.265

1.079

1.094

1.113

1.139

1.184

1.239

1.308

1.389

1.725

2.415

3.068

3.775

E-1

1.460

1.250

1.333

1.200

1.250

1.333

1.200

1.250

1.099

1.17k4

1.200

1.243

1.337

inEL-

003784

0.2230

0.2870

0.1821

0.2230

0.2870

0.1821

o.2230

o.0914L

0.1602

0.1821

0.2172

002900

0 .19010

0 .2L08

0.3138

0.2030

0.2540

0.3400

0.2258

0.2915

0.1310

O.2762

0 .44390

o.666o

1.0880

Et 0.182 o.156 0.139 0.104 0.0776
ev. (7kT) (6kT) (5kT) (4kT) (3kT)

I(Et) 2.401 2.677 3.116 3.782 4.870

Group

1

2

3

4
5

6

7

8

9

10

11

12

13

k
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For beryllium

density= 1.85 gm/cc

A= 9

N= 0.1238-1024 atoms/cc

as= 5.95 b

= 0.207

For graphite

density= 1.60 gm/cc

A= 12

N= 0.0803-1024 atoms/cc

as= 4.75 b

.= 0.158

With eq. [45], and the above data, C for beryllium and

graphite were calculated to be

CBe= 3.21 cm2

CC = 15.38 cm2

From eq.[47J; with the values of I(E t) presented in tables

I to IV, and the values of CBe and CC given above; T(E t) was

evaluated, corresponding to the methods of Kothari and

Singwi, Nelkin, and Gurney for evaluating V/A., for graphite

and beryllium. The results of this calculation are

presented in table V (beryllium) and VI (graphite).

For purposes of comparison, results are also presented,

for t(Et ), when V/.is taken to be independent of energy and

equal to unity.



TABLE V

Results of calculation of age from 1#16 ev. to Et in

beryllium.

Et in ev. T(Et) in cm2.

o.182:(7kT)

0.156:0(6kT)

O.129:(5kT)

0.074:(4kT)

o o776:.(3kT )

Nelkin
Table I

8.76

9*,8o

11.21

14.10

Kothari & Singwi
Table II

8.09

8.94

10.08

12.17

Gurney
Table III

7*10

7*70

8.40

9.35

11.09

C.=Const.

6.66

7.19

7.79

8*50

9.40

DENSITY=1.85 gm/cc

Temp. a 3000K

= 0.207
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TABLE VI

Results of calculation of age from 1.1 6 ev. to Et in

graphite..

Et in ev. t'(Et) in cm2 .

0.182 :(7kT)

0.156 :(6kT)

0.129 :(5kT)

0.10+ :(I4kT)

0.0776:(3kT)

Nelkin
Table I

41.9

46.9

53*7

67.*4

Gurney
Table IV

36.9

41.*0

47.8

58.2

74o9

density:1.60 gm/cc

Temp. 03000K

to =0.158

V=cons I t=1

32.0

34.4

37.2

4o.6

45.1



In thi

'All ca

300 0K.

s case, eq. [44] can be integrated directly to give

t(E t)= C.ln[1.46/E t] [49]

lculations were made for a moderator temperature of

42 Results and Discussion

At this point one is faced with the problem of

choosing an appropriate value of Et, corresponding to

thermal energy. The value of Et to use as a lower limit

of the age integral appears to be that value of energy at

which the epithermal reactor spectrum (approximately 1/E)

joins the Maxwell-Boltzmann spectrum, In reality, this

joining is continuousso that Et is not clearly defined.

From both experimental and theoretical studies of reactor

spectra18 ,19, this transition energy is estimated to be

approximately 4 to 5kT, where T is the moderator temperature,

(the difference between neutron and moderator temperature,

caused by spectrum hardening due to large thermal absorbtion,

has been neglected)* For the work to follow, a value of Et

equal to 5kT, as suggested by Cohen19 , will be used.

For reasons discussed in section 3.4, it was conclu-

ded that, of the methods available for calculating 5 , the

method of Kothari and Singwi (eqs. [32] and[34]) should

give the best results in the case of beryllium.

47
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Therefore the value of T from indium resonance to thermal,

in beryllium, is that value of T(E t), calculated from

the values of v/presented by Kothari and Singwi, at Et= 5kT.
2

From table V, this value tf 8.94 cm for a density of

1.85 gm/cc.

.8Kothari and Singwi. also made a calculation of the

age from 1.46 ev. to thermal, in beryllium, and obtain a

value of 25 cm o To obtain this value, (E) [presented here

as curve B, fig. 11 is averaged over a Maxwellian distribution

to obtain '(T ), where T is the temperature of the

distribution, and in this case is equal to the moderator

temperature. The Fermi age integral is now expressed in

terms of T0 with a lower limit of 310 0K (the moderator temper-

ature is 3000K). To be consistent, the authors8 should have

used 300 0K as a lower limit for the age integral, since this

is the temperature at which the neutron distributiot is in

equilibrium with the moderator* However, this would have

resulted in an age of infinity, since '(T 0 ) goes to zero

_ 00

at T = 300 K. The use of 3100K for a lower limit appears

to be merely an attempt to obtain a finite value for the

age with little regard for the physical situation.

The value quoted in reference 8 is 20 cm2 , however

a list of errata, distributed by the authors, indicate that

this value should be 25 cm2
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Moreover, the weighing of (E) with a Maxwellian distribution

at all energies below 1.46 ev. seem incorrect, since neutrons

of energy from 5kT to 1.46 ev. do not have such a distribu-

tion. It appears, theref~ore, that the value of 25 cm 2, for

the age from indium resonance to thermal in beryllium, is

incorrect and much too large.

At present, there are no experimental results with

which to compare the value of 8.94 cm , calculated herein,

Also for reasons discussed in section 3.4, the values

of T(E t), for graphite, presented in table VI, as calculated

from eq0 [39] with 9 = 10000K appears to be the most

satisfactory. At E t= 5kT= 0.129 ev.(at T=3000K), t= 53.7 cm2

This value is in good agreement with the age measurement,

from indium resonance to thermal, in graphite, of

57.5 5 cm2 ( for density of 1.6) made by the French
20

The agreement between the two values may be coincidental,

since the approximation of applying Nelkin's simple equation

to the cpmplex crystal structure of graphite is rather

crude. However, it does tend to indicate a certain degree

of confidence in the method.

In view of the many approximations incorporated in

the derivation of the equations from which the age calculations

were made, it is difficult to estimate the accuracy associ-

ated with the values of age from indium resonance to thermal
c2 an 57c 2

of 8.94 cm and 53.7 cm in -beryllium and graphite

respectively.
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. Calculation of Age from Fission to Indium Resonance in

Beryllium.

For completeness, it was decided to make a detailed

calculation of the age, in beryllium, from fission to

indium resonance. This value; when added to the age from

indium resonance to thermal, previously determined; will

give the total Fermi age, in beryllium, from fission to

thermal. Because such a calculation had recently been

performed, in detail, for graphite, it was considered

unnecessary to repeat it. However, the only previous

calculation of age from fission to indium resonance,

in beryllium, recorded in the literature, was made by

21
Goldberger in 194G. Since the cross section of

beryllium and the details of the fission spectrum were not

known too accurately in 194G, it was considered worthwhile

to perform this calculation again.

The difficulties associated with such a calculation

are unrelated to the problems encountered in the calculation

of the age from 1.46 ev. to thermal. In this case, the

neutron energies are large enough so that the moderator

atoms can be considered free, and crystalline binding is no

longer a problem. The value of used is the free atom value,

, and is constant throughout the entire energy range

considered. The difficulties encountered involve the var-

iation of scattering cross section at high energy (0.04-12 Mev),

and the energy distribution of fission neutrons.

El
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.,_1 Method

The procedure to be followed is first to calculate

the age to 1.46 ev. for monoenergetic neutrons at various

source energies in the range of the fission spectrum (this

age will be a function of neutron energy), then to weigh,

the age, so determined, with the fission spectrum.

The age of neutrons of energy En, to 1.46 ev., is given by

n -

In the case of small absorbtion, and taking a tr(1-2/A)asl

equation [50] becomes

E d

__(E_)=_-1[51]n 3 ,(1-2/3A)N2 s 2 E

IAL

Actually, eq.[51] is only the integral contribution to the

age, and a first and last flight corrections (to be discussed

later) must be added. Equation [51] is numerically

integrated in the following way:

E.
l(En 2 n E [52]

(a ). i-
S 1

where

P= 5'(1-2/3A)N 2 . [52,
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1.46 ev.;(a) is the average value of the scattering

cross section in the energy range E 1 to E ; Ei is greater

than Ei 1 ; and En is the upper limit of the integral in eq.

[51], and corresponds to the source energy for monoenergetic

neutrons.

To obtain the age of fission neutrons, which are

distributed over a wide range of source energies, E n

one performs the following integration:

JT(En) f(En).dEn
or f= [ 53]

f(En)dEn

where f(E n) is the number of fission neutrons in the energy

interval dEn about En . Equation [53] is numerically

integrated as follows:

VI

orf -f n, 54]

where

n= 1/2[ T(En) + T(E n-1)], [55]

and f n is the fraction of fission neutrons having energies

between En-1 and En; m is the total number of groups used

in the calculation.

The first flight correction , for source neutrons

of energy E ns given by

FFCn 1/3(1-2/3A)N C)I
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For neutrons distributed in a fission spectrum, eq. [56]

becomes

FFC=/P2 I 2 [57]

where P is defined byeg.[52], and the fission spectrum is

normalized so that f = 10

The last flight correction, in the calculation of

the age to 1.46 ev., is given by

LFC= [58]
3(1-2/3A)N [c s (l.46)]

The total age from fission to indium resonance is

then the sum of eqs. [54],[57J, and [58], i.e.

T[fiss.-In. res.]= T f+FFC+ LFC [591

5,2 Results and Discussion

With the aforementioned procedure, the age in

beryllium from fission to 1.46 ev. was calculated. Twenty

energy groups were used to cover the fission spectrum and

describe the cross section variation. The fission spectrum

used in the calculation was taken from ANIL-5800 22 for

thermal neutron fission in U2 35. In the energy range

greater than approximately 1.5 Mev., the scattering cross

section was obtained by subtracting the (n,2n) and (n,a)
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cross sections from the total cross section. All cross

section values were obtained from BNL-32523, The complete

details of the calculation of the Fermi age from fission to

1.46 ev., in beryllium, are presented in table VII,

With the properties of beryllium as given in see. 5.1,

the factor P is given by eq.[52alasa

PBe= 3(0.207)(0.926)(o.l238-1024)2 0.882-1046

The last flight correction, from eq.[58J, is 0.665 cm 2

Referring to table VII, the values in column 11 are

obtained by summing the values in column 10 as indicated in

eq.[52], The values in column 11,x(En), are plotted against

En in figure 3. This plot shows that the approximation of

tn by an arithmetic mean, eq.[553, is fairly accurate,

Values of T so calculated, are presented in column 12 of

table VII. the fission spectrum, presented in column 13,

was obtained from ref. 22. The integral contribution to

the age is obtained by summing the values in column 14

according to equation [541. Similarly, the first Ilight

correction is obtained by summing col. [15] according to

eq.[57]. The total age from fission to 1.46 ev., in

beryllium, is given by eq.[59] as

T[fiss.-In. res.]= 64.30 + 5.126 + 0.665 p

= 70.1 cm2



TABLE VII

Details of calculation of age from fission to indium res.

in beryllium (density= 1.85 gm/cc).

1 2 3 5 6 -7 8

Group Ei Ei-1
i orn mev. mev.

1 0.0. 1.46x0~ 5695

2 0.10 0.04 5.85

3 0.20 0.10 5.20

4 0.50 0.20 4.20

5 o.6o 0.50 3.70

6 o.65 o.6o 5.70

7 0.70 o.65 3.80

8 o.8o 0.70 3.70

9 0.85 o.8o 3.90

10 1.00 o.85 3.40

11 1.50 1.00 2.85

12 2.00 1.50 1.80

13 2.50 2.00 1.85

14 3.00 2.50 3.00

15 4.00 3.00 1.67

16 5.00 4.00 1.33

17 6.oo 5.00 1.30

18 8.oo 6.oo 1.27

19 10.00 8.00 1.20

C;)3-2410 p(&) 2

35.40 0.3120

34.20

27.04

17.62

13.70

32.50

14.44

13.68

15.20

11.65

8*12

3.24

3.42

9 *00

2*79

1.77

1.69

1. 61

1.44.

0.3020

0.2385

0*1555

0.1210

0.2865

0.1270

0.1205

0.1340

0.1014

0.0716

0.0286

0.0316

0.0793

0.0246,

0.0156

000149

0 .0142'

0*0127

3*210

3*310

4*.190

6.44o

8.260

3.485

7.87

8*30

7.46

9.86

13.99

35.00

31,60

12*66

40.6

64.1

67.1

70.5

78.8

1.18 1.40 0.0123 81.3

Ei

2.74X104

2*50

2*00

2.50

1020

1.083

_.W76

1.143

1.0625

1.33

1.50

1.33

1.25

1.20

1.33

1*25

1*20

1.33

1.25

1.2020 12.00 10000
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TABLE VII

continued

10 11

33.10 33 .10 33*10-

fn

U0

--n -E( ( . fn

2 0.9160

3 0.6930

4 o.9160

5 0.1820

6 0.0797

7 0.0731

8 0.1336

9 0.0596

10 0.2850

11 0.L050

12 0.285

13 0.223

14 0.182

15 0.285

3.03

2.91

5.90

1.50

0.28

0.58

1.*11

0.45

2.81

5.66

9.98

7.05

2*30

36.13 34.61 0.0139 o.481 0.0095

39.04 37.59 0.0239 0.897 0.0205

44.94 41.96 0.0950 4.000 0.127

46,44 45.69 0.0351 1.6o8 o.o6o

47.30 46.87 0.0357 1.670 0.0485

48.41 47.86 0.0358 1.710 0.0621

48.86 48.64 0.0178 o.865 0.027

51.67 50.27

57.33 54.50

0.0527 2.650 0.108

0.1621 8.840 0.480

67.31 62.32 0.1342 8.360 0.974

74.36 70.84 0.1054 7.460 0.690

76.66 75.51 0.0802 6.o6o O.2o

88.26 82.46 0.1032 8.500 0.857

0*223

17 0.182

18 0.285

19 0.223

20 0.182

14.30 102.56 95.41 0.0538

12.20 114.76 108.66 0.0269

20.10 134.86 124.81

5*130 0.715

2.920 0.373

0.0192 2.390 0.280

17.60 152.46 143.66 0.0042 0.598

14.80 167.26 159.86 0.0011 0.169

Tot. 64.300

0.0678

0.0177

5.126

Group
ic n

- 1*

12

ln

10.20-

13-
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The experimental value for the age from fission to

indium resonance, in beryllium, is 80.2 2 cm2 (ref. 24).

However, at energies greater than approximately 1.5 Mev.,

the (n,2n) and (n,x) cross sections become appreciable [see

BNL-325]. These reactions, ocurring in the experimental

sample, modify the original fission spectrum; consequently,

one would not expect the measured age to agree with that

value calculated with a fission spectrum, Meneghetti

25and Hummel have estimated that the combination of (n,2n),

and (n,cx) reactions, in beryllium, tend to increase the

original source neutrons by 8 or 9 percent. in an experiment.

To determine the precise effect of this increase of- source

neutrons on the original fission spectrum, one would have

to determine the energy distribution of the neutrons involved

in these nuclear reactions. The analytical solution to this

problem is highly complex and is not attempted herein*
21

Goldberger's calculation, in 194G, resulted in a value

of 81 cm2 for the age from fission to In. resonance in

beryllium, and Meneghetti and Hummel2 5 , assuming the scatt-

ering cross section equal to the total cross section,

2. 25calculated a value of 89 cm . A calculation was also made

to determine what value of age to indium resonance would

be measured in an experiment such as described in refo 24.

This calculation involved considering the effects of the

(n,2n), and (n,a) reactions on the spectrum measured;

the calculation employed only two groups of neutrons, and
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the value obtained was 73 cm2 (ref. 25).

In order to check Goldberger's value of 81 cm2 , an

age calculation was made with the method described in sec.

5.1, from those cross sections, for beryllium, used at the

time Goldberger made his calculation (1947) 2 . With the

same fission spectrum as was used before (ref. 22), the

integral contribution was found to be 78.3 cm2 . When the

first and last flight corrections were added, the age from

fission to indium resonance was found to be 83.5 cm2 .

The difference between this value and the value of 81 cm2

obtained by Goldberger, is probably dite to the different

fission spectrum and cross section values used in the

respective calculations. Goldberger took his cross section

values from report number MUC-HHG-7, while the values used

for the comparison calculation were taken from ref. 26.

Goldberger does not specify the fission spectrum that he

used.

Since the numerical details of the calculations made

by Meneghetti and Hummel25 were not available, it is diffi-

cult to comment on the validity of their quoted values.

They are presented here for purposes of comparison and

completeness.

From the values obtained herein; for the age from

fission to 1.46 ev. (sec. 5.2), and from 1.46 ev. to thermal

(sec. 4.2); the total age from fission to thermal, in

beryllium of density= 1.85 gm/cc, is

t [fiss.-thermal]= 70.1 + 8.94 5 79.0 cm2,
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