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ABSTRACT

A study is made of neutron slowing down and thermal-
ization in crystalline media in the range of energies, less
than 1 ev., where crystal binding effects are significant.
Equations are presented, with various approximations,
for the energy transfer cross section and the average
logarithmic energy decrement per collision in this region.
The validity of these equations and approximations is
discussed and numerical results are presented. With these
results, the Fermi Age from indium resonance to thermal
is calculated for graphite and beryllium, and found to
be 53.7 and 8.94 sq. cm. respectively., A detailed
calculation is also made of the age from fission to 2
indium resonance, in beryllium, and found to be 70.1 cm“,
The results obtained are compared to existing experimental
and theoretical values, and discrepancies, where they occur,
are disdussed.
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I. Introduction:

The study of neutrons slowing down in the energy range
less than one ev.,, and their approach to thermal equilibrium
with the moderator, constitutes a portion of the field of
neutron thermalization., In this region the binding
energies of the atoms in the moderator material are comparable
with the neutron energy so that, in the slowing down treat-
ment, the moderator atoms can no longer be considered free,
In this treatment, only moderators in crystalline form will
be consideredy the extension of this treatment to liquid
systems (H20, D20) is further complicated by the necessity
for considering, not only atomic binding, but also molecular
energy levels and molecular motion in liquid systems,

For energies less than one ev;, the neutron is considered
to interact with the crystal lattice as a whole, and con-
sequently slowing down theory developed for high energy
neutrons, in which the scattering atoms are assumed free,
is unsuitable; The presence of crystalline has the effect
of reducing the average logarithmic energy decrement per.
collision (t) below that value calculated for a free atom;
This decrease is partially due to the fact that neutrons
can gain, as well as loose, energy in interactions with
the crystal lattice, The energy units transfared in crystal
interactions are called phonons, and are somewhat analogous:

to photon transfers in atomic and nuclear interactionse



The procedure to be followed in this treatment is to
present expressions for the energy transfer cross section

{ ’
olE,E ’T“n); that is, the cross section, at a given temperature

Ty for a neutron initially at energy E, to be scattered at
an anglefl, and have energy E? after the collision., By
integrating over all angles, the above cross section can

be reduced to o(E,E?,T). With this cross section, and a
prescribed spectrum for the energy of the transferred phonons,
the average logarithmic energy decrement per collision can
be calculated as a function of neutron energy, moderator
temperature, and crystalline properties, in the region of
crystalline binding effects. With §(E,T) known, the Fermi
age from indium resonance (l.46 eve) to an appropriate lower
limit can be calculated with the familiar Fermi age integral
from age-diffusion theory., Although the exact value of

this lower limit, corresponding to thermal energy, is open
to question, a value of 5kT is used for the final résult;
values of age as a function of the lower limit of the age
integral are also presented;

Detailed calculations are given for the age, from
indium resonance to thermal, in beryllium and graphite;
however, the methods and equations used, with appropriate
modifications, are applicable to most crystalline subsfances;

For completness, a detailed calculation was made of

the age from fission to indium resonance in beryllium,



In this calculation, effects of the variation in scattering

cross section and of the fission spectrum were considered,

II, Energy Transfer Cross Section

In the past many authors, using various approximations,
have derived expressions for the energy transfer cross section
in the crystalline binding regiom, Weinstockl, in 1044,
derived an expression for the cross section for one phonon
processes in monoatomic, polycrystalline solids. Later
Casse132 extended the theory to include spin and isotope
effects, More recently, the theory has been generalized,

5

to include multi-phonon processes, by Squires”, Kothari and.

n

Singwi ', Placezks, Glauber6 and otherse.

2,1 Method of Kothari and Singwi

The following discussion is based primarily on the
work of Kothari and Singwi, and the complete mathamatical
details may be found in reference 4, The inelastic scatter-
ing cross section, in the range of crystalline binding, is
composed of a coherent and incoherent contribution. The
coherent cross section is related to the:interference
scattering of slow neutrons, whilé the incoherent contribu-
tion is related‘to diffuse scattering from spin, isotope,

and magnetic disorder,
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This can be expressed as

Og= Ooont 94 (1]

coh incoh

In the treatment to follow, the Fermi pseudopotential

approximation7 is used in which the short range potential

- between neutron and scattering nucleus is replaced by a

point interaction of the form

Ztan - -
= 6(1_'11'1‘) [2]

where En and T are the position vectors of the nucleus and
neutron respectively, m is the neutron mass, and a, is the
bound scattering length adjusted so that acattering from
isolated fixed nuclei is correctly represented by the Born
approximation;

With the above Fermi approximation, and the methods
of quantum mechanics, it is shown4 that the differential
incoherent cross sectionj per unit solid angle, per
scattering nucleus, for a process in which 1 phonons are

absorbed, neglecting magnetic effects; is given by

(el 3 oo
1‘;’.6

' .ﬁ\ 1}4(61.3/7_‘) 131

do
incoh,+1% 4Wk4‘ MN
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Using the Debye model of a crYstﬂ, replacing the sum over q;
by an integration, letting qy take on positive as well as
}negative values to account of emission as well as absorbtion
of phonons, and integrating over all solid angles, one
obtains the following expression for the incoherent cross

section corresponding to the emission or absorbtion of 1

phonons: lgik:
¢£+/
1ncoh 1= lk‘l’ ﬁf) i /ﬁg[@{ﬁ Gb 2T) ]C‘lig -
ke-ks
_LFY 4
e,xt? -W dt [ ]

In equation (4], all energies are expressed in terms of the
Debye energy of the crystal, kQD, where k is Boltzmann'’s
constant and GD is the characteristic temperature of the
phonon spectrum in the Debye model, In this model, kQD is

also the maximum phonon energy. Also

ki = the initial neutron energy in terms of the Debye energy,
lo€e E/ng9
kg = the neutron energy after collision, i.e. E’/kQD,

M = ratio of moderator to neutron mass,

8 = 4n times the difference between the mean square and
squared mean scattering lengths, i.e. 4n[(a ) (3)2],

Qi = energy of transferred phonon in terms of the Debye Bnergy

T = moderator temperature in terms of the Debye temperature,
)2,

ot
0

- (ky-k,
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The exponential, appearing in eq.[4], is known as the Debye

Waller factor; and in the Debye approximation

. /
F= 1/2/q coth(q/2T) dq.

(]

The initial and final neutron energies, kjg_ and kg, are
related by
1l 1.2 !
klf-k2=Z qi , (5]
‘=l '

and the total incoherent cross section is given by

Glncoh [ incoh,1 [6]
Z-.I

In a similar manner, it is shown that the coherent

cross section can be expressed as

9con™ Z (Gcoh 1t Gcoh 1) = h + O02on (7]
where I
szl
:,l#l
Uc h,1 W(Z”/ ﬁ/f[uﬂ.(f/zr) ]C[f (A
kq-£,
. exp(4EE) dt (81
and
: = ‘5‘ of - C e
o2 2 1 zM/ Z ZZ; 7‘[‘ ifor)1] dgi ..
tzﬁl

. / (L) ¢ Lsmtrt) dt 14

%1-4,



s.an(z)e, and Z, is the number of nuclei at lattice distance
To

If equation (8] is compared to equation [4], one notes
that the two expressions are identical aside from the factor
S8/s. With this fact and eq. [1], the total scattering

cross section can be written as
Og= (s+S)ZEG” + 02on 9 [10]

where o]*® is given either by eq.[#] or [8] with the
factor s or S omitted respectively, and Olopn 1s obtained
by summing eq.[9] over all values of 1, The assumption
made by Placzek, to simplify eq.[10], is that Géoh can be
neglected in comparison with (s+S)o??. This is called the
incoherent approximation, and its validity will be &iscussed
later,

With the incoherent approximation, eq.[10] may be

re=-written as

=<s+s>Z & =Z L [11]

1-0
where
kest,
= al+!
o1 L’Z/ /tM/ /f[(.'o/%(f/frj—-] c{ﬂ ¢ -
by-L,

ex/s-/é_,g_éz/ dt (1z]

13
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F is given by

t
F= 1/2 /(q coth(q/27) dq, [13]

(4

and the relationship between ki, kg, and Q; is given by eq.[5].

In a separate paperB, Kothari and Singwi have
evaluated the first three terms in the phonon expansion[11].
The one phonon cross section (the cross section for the
absorbtion or emission of one phonon by a neutron) is
obtained by setting l=unity in eq.[12], and using egs.

'[13] and [5]. After integration over t, in eq.[12], one
obtains the following expression for the one phonon cross
section as a function of initial and final neutron energy,

and moderator temperature:

i 1’k2)"‘ Cf+5/M (LY. L?}/Coﬂ:/ )_] [/f ‘F(éz_L)/

ex,é[. %F(k.;k.)'],. [+ %F(éﬂb.}z/zxf[.f_;(éﬁh)'//
[14]

and ksl
2 2 .24 :
Equation [15] must be solved, for eéch value of ki, by

performing the indicated integration over kg numerically;
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It should be noted that the one phonon cross section is
given by eq.[14] only in the region ki-lﬁkéﬁki«;—l, and
is equal to zero otherwise.

In a similar manner, the two phonon cross section is

obtained by setting 1=2 in eq.[12]; the resulting expression

is
R R
—[1 + &E (btl)" + zf-{f_f/ it ézfé,}‘/e.x/é —[ %"’( botk) '// x
2/
e/'v-colté_énr_/ /Lé‘ -
/ o ///c,,(ﬂq,//
/ UL - v / | fie]
and Ltz
o, (K= [ 0,(k2,k2) ax2 [17]
L2
As in the previous case, the above integral is evaluated

numerically for various values of ki; The two phonon

cross section is given by eq.[16] only in the range
k§—2£k§£k§+2, and is equal to zero otherwise, This is
equiwlent to specifying the maximum energy of the

transferred phonon as kOD.
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The elastic scattering cross section can be obtained

simply be setting 1=0 in eq.[12]; the result is

o}
e o
24K F

"For neutron energies of the order of kGD,(k§=l),
higher phonon processes (greater than two) become
increasingly important. Because of the highlj complex
nature of the phonon cross section for three and greater
‘phonon transfers, and because it would be necessary to
evaluate these cross sections to obtain accurate results in
this energy region, an Einstein approximation of the crystal
is expected to yield better results for ki greater than
. unity.

Using an Einstein crystal model, Kothari and Singwi8
derive an energy transfer cross section from eq.[12].

The assumption is made that all phonons have the same energy,
kOE, where k is Boltzmann®s constant and GE is the Einstein
temperature of the crystal, Fﬁrther, since the total number

of modes corresponding to each polarization is N, one

obtains
2 fla)=1:(1) [19]
L .

Using the above relations for an Einstein model, and
eq.[12], Kothari and Singwi8 present the following expression

for the cross section in which 1 phonons are absorbed and m

phonons are emitted:



- e S)1-F) (- /) “’"’“' [éFf’]Jt [201
tom 24 (Ltm)] pgtt™
fc

All symbols have the same meaning as previously, except
that all energies are now expressed in terms of the

Einstein energy, kQE; Also,

F= 1/6 coth 1/27 [21]

2
lc lem [22]

After integrating eq.[20] with respect to t, and with
eqs.[21] and [22]; the energy transfer cross section, in
the case in which 1 phonons are absorbed and m phonons

emitted; is given in the Einstein approximation by

. 1/7
o A£§i§lM (1+e l/T)"m(é +1) e [ 1rara®/20 4o e s
Lol oy

1 ¥
+a B/ (Lem)d Dy | [23]
where
[k2 l]
a= (coth 1/2T)————————— [24aJ
and’
[k +k,]2
b= (coth 1/27)—2 2= (24, ]

M

17
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Equations [23] and[24] will be used in the region E
greater than kOD to give a more accurate representation of

the cross section for multi-phonon processes,

202 Method of Nelkin

M.S. Nelkin9; from the derivation of Glauber6,
using the Fermi pseudopotential, the incoherent approxima-
tion, the Debye crystal model, and neglecting polarization
of the phonons; presents the following expression for the

energy transfer cross section in the crystalline binding

region§
+a0 Py
; fo :
o(B=2%)= 22E)2 | at [ ax exp(it[B'-E1)-exp(v/M x
vl / ‘
[g(t)-g(0)1) [25]
where
y=E'+E -2x(EE*)1/2 [26]

In tﬁe Debye approximation, g(t) is given by

s
g(t)= 3/9% ][w awl (n+1) -exp(iwt)+ neexp(-iwt)], (271

- o

and

Z= [exp(w/m) -11-1 , [28]
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In egs. [25] to [28], E is the initial neutron energy,
'E? is the neutron energy after collision, S, is the
bound atom cross section, T is the moderator temperature,
and w is the frequency of the transferréd phonon, Nelkin
uses a system in which he=k=1, where h is 1/2mn.Planck’s
constant and k is Boltzmann'’s constant. Although the
form may be different, eq.[25] presented by Nelking,

corresponds to egs. [11] and [12] presented by Kothari
4 .

and Sinéwi .

Placzek5, recognizing the poor convergence of the
phonon expansion of the inelastic scattering cross
section at energies of the order of, and greater than,
the Debye energy, suggested expanding the inelastic cross
section in powers of l/M; This expansion converges rapidly,
for energies in the region of interest, provided that M is
large compared with unity and T/GD.

Following the suggestion of Placzek, Nelkin expanded
the function exply/M(glt]l-gl0])] in powers of 1/M. If

only first order terms are retained, the expression for

the inelastic scattering cross section, from eq. [25], is

o 5T
o(B=E")= 2-ENHY2 (5048) BB lexpErE)-117Y) (29
Mo
D
for  |E'-El€6,, and is zero otherwise.

The validity of eq;[29] as a representation of the energy

transfer cross section will be discussed later,
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2.3 Discussion and Evaluation of Eggxgx‘gigngigg Cross Sections
In this section, the methods and accompanying

assumptions used by Nelkin,and Kothari and Singwi in

deriving expressions for the energy transfer cross section

will be reviewed and discussed;
The incoherent approximation was made by both authors

in their work. This approximation corresponds to neglecting

the correction term to the coherent scattering contribution,

10

y in eg.[10]. R.C. Bhandari” has evaluated this

Géoh
correction term for the elastic, and one phonon partial
cross sections, i.e. 1=0,1=1, for beryllium. In the low
energy region\(0.00104 ev.), below the Bragg cutoff, the
values for the one phonon cross section, with and without
the incoherent approximation, differ markedly. But in the
energy range of interest in age calculations(greater than
5kT), there is essentially no difference between the
computed cross sections. Moreover, when the total inelastic
scattering cross section is computed, by summing over all
values of 1, the difference between the two values, even.

at low energy, is only a few percent; Although the use

of the incoherent approximation does not accurately
éescribe the behavior of the partial phonon cross sections
at low energies, it yields a fairly acéurate representation
of integrated quantities,eg;,the total inelastic scattering
cross section, However, the use of the incoherent approxi-

mation results in a value of the elastic scattering aoss

section which is too large.
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Consequently the total cross section computed is also too
large, and attains a value, in the high energy limit,of
6.2 b in beryllium., Bhandari, without the incoherent
approximation, calculated a lower value for the elastic
scattering cross section in beryllium; when this value is
combined with the inelastic cross section, to give the total
cross section, the value obtained in the high energy limit
of the crystalline binding region is 5.9 b in good
agreement with the experimental value23;k As will be seen
later, this difference in total crosé section will give:
values of § , with and without the‘incoherent approximation,
which differ by approximately 5% maximum,
'*For the few crystals for which the frequency
spectrum has been carefully calculated from force constants,
it is found that the spectrum deviated& markedly from the
usual smooth Debye curve. However, since we are interested
only in integrated properties, the error involved in assuming
the Debye frequency spectrum appears to be quite small....”4
In the phonon expansion, the Einstein model is used
to calculate the energy transfer cross section in that energy
region where multi-phonon processes make a significant
contribution, It is conceivable that the Einstein modei
could give fairly good results when the neutron energy
is several times greater than the Einstein energy of the
crystal, However, in the low energy region, the Einstein

model could not give accurate results, since it is
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impossible, in this model, for any energy transfer to occur
once the neutron energy is less than theEmwte»lenergy (0;064ev.
in beryllium). Physically, this is not so.

The inverse mass expansion used by Nelking, and
originally suggested by PlaczekE, converges rapidly
provided that the ratio of moderator to neutron mass (M)
is large compared with unity and T/OD; Consequently, this
approach would be useful for hegvy crystalline moderators
at moderate temperatures., For Magnesium (mass number=24)
Placzek has calculated the first three terms in the mass
expansion for E=9D/36, and T/9D=2;O5; He found that the
term of order l/M2 was only half a percent of the term of
order 1/M. To obtain similar accuracy.,from a phonon

2 to calculate six

expansion, it was necessary for Squires
terms, |
Unfortunately, moderators used in nuclear reactors,
of necessity, have low mass numbers; therefore it is
questionable whether the mass expansion used by Nelkin, in
which terms of higher order than 1/M are neglected, is
sufficiently accurate., For the moderator materials of
interest here (graphite and beryllium) the condition for
rapid convergence, M much greater than unity, does not
apply; For the case of beryllium, Kothari and Sing;wi4
have calculated the term of order l/M2 in the mass
expansion, and found it to be negative and approximately

10% of the term of order 1/M in magnitude., for neutrons

of energy equal to 0,009 ev.
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Therefore, by neglecting higher order terms in the mass
wxpansion, the inelastic cross section computed by Nelkin

is approximately 10% too high, MV, KazarnovSkill asserts
that neglecting terms of greater order than 1/M in the

mass expansion is equivalent to neglecting multiple

phonon and thermal effects., This statement is questionable,
since it is difficult to attach direct physical interpertation
to the separate terms in the mass expansion. It should be
noted that in the high energy limit, Nelkin’s expression for
the energy transfer cross section, eq.[29], converges to the
bound atom cross section Ogye This is not a serious limitation,
as will be shown later, since the quantity o will cancel

out of the expression for the average logarithmic energy

12, Nelkin has

decrement per collision. In a later work
replaced Iy by the free atom cross section when using
the energy transfer cross section in spectrum calculations,

In this cse

-2
Orree= Oo(1+1/M) [30]
Nelkin does not expect the expression he presents for
o(E-~E?), eq. [29], to represent the detailed behavior
of the inelastic cross section at all energies; however,
he does believe that it will give physically reasonable

results for integrated quantities,
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The phonon expansion of Kothari and Singwi is
expected to yield more accurate results than the inverse
mass expansion of Nelkin. This is especially true at neutron
energies below the Debye energy of the crystal, where multi-
phonon processes are unimportaﬁt and the inelastic cross
section can be wll approximated by the sum of the one and
two phonoh cross sections, A% energies greater than the
Debye energy,one should calculate the contribution from
higher phonon proceéses because the convergence of the
phonon expansion is relatively poor. Kothari and Singw18
have estimated that thé contribution of the two phonon
cross section to the average logarithmic energy decrement
.per collision is 6.4% at E=kQD and 45% at E=2kGD in
beryllium, Since the expressions for higher phonon processes
are so complex, Kothari and Singwi feel that the contribu-
tion of multi-phonon processes to the energy transfer cross
is adequately represented by the Einstein crystal model
at neutron energies greater than kGD; The fact that the
Einstein model is not applicable at low neutron energies

does not preclude its yielding physically reasonable

results at higher energies.



III. Average Logarithmic Energy Decrement per Collision

Once expressions for the energy transfer cross
section have been obtained, one can calculate the average
logarithmic energy decrement per collision,§ o In the

general case, this is given by

8
.[c(E-m’)ln[E/E’] dE?
]To(E-»E?) aE’®
A

§(E)= [31]

where the limits of integration, A and B, are functions
of E, and éepend omn the specific form of c(E-~E?), This
point Will be clarified by specific examples to be presented

later,

3.1 Method of Kothari and Singwi

With the phonon expansion of Kothari and SingwiB,

equation [31] becomes
K&+ 1 kir2
2 2 .2 2.2 2 2,2

kf..
1n[k§/k§] ak2 } [32]

where ol(ki,kg) and 02(k§9k§) are given by eqgs. [14] and
[16] respectively.



The total scattering cross section, Ogo is giVen by
2 2 2 2
0g(ky)= 0,(k)+ oy (kP)+ o5(k7) [33]

where o, 0y, and o, are giveh by egs. [18], [15], and
[17] respectively. In eq. [32], the first term on the
right hand side corresponds to one phonon transfer, and
the second term to two phonon transfer processes.
Within the range of neutron energies where the

Einstein approximation is used, § is given by

2 2
k k
E(ki)g %—Z.([Go n*91 pe1l 1 '?L— + On,o°1n :]2- ) [34]
s & ’ ’ k{-n ’ ki+n

where the partial cross sections are given by eq.[23]

with the appropriate values of 1 and m, % ,n is the

cross section for a process in which zero phonons are
absorbed by the neutron, and n phonons are emitted;
similarly, cl,n+l corresponds to the absorbtion of one
phonon and the emission of n+l phonons. Gn,o is the

cross section for the absorbtion of n phonons and the
emission of zero phonons. The first two terms on the right
hand side of eq.[34] correspond to processés in which
there is a net transfer of n phonons, of energy kGE,

from the neutronj the last term corresponds to the

transfer of n phonons 9o the neutron.

26
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Kothari and Singwi8 assert that only cross section terms
of the form indicated in eq.[?4], with n running from zero
to two, make a significant contribution to% .

Kothari and Singwi8 have made the long and tedious
calculations necessary to evaluate® from eqgs. [32] and
[34]. The calculation has been made for beryllium with
GD= 1000°K and GE=~74O°K; the moderator temperature,T,
was taken to be %00°K. ¥(E) was plotted in the low energy
range using the Debye model, eq.[32), and in the high
energy region with the Einstein model,eq.[34]. The two
curves intersected at E/kQD= 1.63, and were smoothly
joined in this region to yield a best value of §© over
the entire energy interval. This curve of ¥ vs. E, for

beryllium, is reproduced figure 1, curve Bj the values are

normalized by dividing by the free atom value, Eoo

5.2 Method of Nelkin

With eq.[31], and Nelkin’s expression for the energy

transfer cross section, one obtains for ;

E#gp
¥(®)- - c(E-E*)-lni‘; 4B’ [35]
S
E-6p

where o(E-¢E?') is given by equation [29].
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After subétituting

‘Z= GD/E
y= B-E*/0, [36]

in eq.[35], the following expression is obtained for the

slowing down power in the crystalline binding region:

vy
=30 :
Eds='EEEfL:/fdy(l-yz)"3/2(l—yz/2).ln[l-yz].g(2¢y) [37]

g(x)= x(eX-1)"1, [38]

If the factors in the integrand are expanded in a power

series, multiplied out, and integrated term by term, the
8

following expression results :

% = 1- (4.5p5l0D)z + (1.175)2° - (7.195000)2%s

+ (1.205)z% - (9.66[37£cp])25 + (1.207)2%

~(11.978gLe1) 2 +- . . [39]

¥ The first five terms are given by Nelkin in ref. 9;

the remaining three terms were evaluatéd by the author

using Dr. Nelkin®s original calculation sheets.,
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where
{
( )- tn th( ). dt ;_ Jo) @5 2@5 +
B (®)= PCOLRLQL)«db= 7ot Z(m+2) * T5(n+h) T 945(n+6)
o
7 toee, (401

.
4725(n+8)

The gquantities ¢ and z are défined in eq.[%6]. In eq.[39],
200/M was replaced]mrgpé so as to give the proper value
of § in the limit when E approaches infinity,i.e., z
approaches zero. With a value of GDzrlOOOOK and
TzBOOOKQ'ségwas computed as a function of neutron energy.
The results of this computation are presented in figure 1,
curve A,

It should be noted that in Nelkin'®s inverse mass
expansion, when terms of higher order than 1/M are
neglected, the only material property affecting gﬁ& is the
Debye temperature, The factor 1/M, in eq.[37], is
incorporated into %, . The calculation was originally
made for beryllium; however if the Debye temperature of
graphite is taken to be lOOOOK%Bthe results of fig. 1,
curve A, can also be appiied to graphite. Actually, due
to the highly anisotropié crystal lattice of graphite, the
calculation of ﬁ@i is not so straightforward am is
indicated abovej; however the use of 1000°K for the
Debye temperature of graphite does have some experimental
and theoretical basis, A further discussion of the effect

of the anisotropic nature of the graphite lattice, on the
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calculation of the slowing down properties, will be presented.

later.

3,3 Results of Gurney

In 1946, R.Gurney, using an Einstein crystal model,
calculated the average logarithmic energy decrement per
collision in beryllium and graphite. The details of his
calculation were not available, but his equations indicate
that only processes in which energy was lost by the neutron

were considered. His equation is presented in the following

form:

E)=2;(Jn-ln[E/E—nk9E12N~

2 Iy

n

(41]

E(

The exact form of Jn is not given,but it is believed that
Jn corresponds to the partial cross section for the emission
of n phonons of energy kop.

Gurney calculated % (E), using an Einstein model with
OE=742°K and T=300°K, in beryllium. The results of this
calculation are reproduced in fig. 1, curve C., He also
applied the Einstein model to graphite using O%: 452°K as
characterizing lattice vibrations perpendicular to the
graphite lattice planes; and O%= 1553°K for vibrations
parallel to lattice planes. A value of & was evaluated

corresponding to each direction, and the total § was obtaineé

by simply adding the two, i.e. 5 = S, + Fu .



The validity of Gurney’s methgd is questionable, since it
is doubtful whether the anisotropic nature of the graphite
crystal lattice can be treated in such a simple manner,
Gurney®s results, for graphite, are presented in fig. 2,
curve C. In both cases, the plots are normalized by

dividing by the free atom value, Eo.

3.4 Discussion and Evaluation

In figure 1, results are presented for ‘CE)/f. in
beryllium; as determined by the methods of Nelkin (curve A),
Kothari and Singwi (curve B), and Gurney(curve C); with

6,=1000°K, 6p= 742°K, and T=300°K, The dashed portions

D
of the curves are extrapolated to obtain values of ‘/f. at
low energies, All the curves approach unity at large values
of E.

The reason for Gurney's values (curve C) being higher
than the others is twofold: first, cross sections were not
known very accurately when the calculation was made (1946),
and second, an Einstein model is used in which energy gain
processes are neglected; This would give a higher value ofﬁh,
than that calculated by Kothari and Singwi, using an |
Einétein model for E greater than l.65k9D, who included
energy gain processes (see eq.l[34]).

There is no obvious reason for Nelkin®s method (curve A)
to yield wvalues of‘ﬁiwmich are lower than those of Kothari

and Singwi, However, it is believed that the neglecting

of higher order terms in the mass expansion; in the case of
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low mass number materials (beryllium), where the condition
for rapid convergence (M>”1) is not satisfied; may yield values
ofzygowhich are too low.

It should be noted that the series expansion,presented
by Nelkin, eq.[39], for F/'go , converges quite slowly at low
energies, This is a result of the mathamatical form in which
the coefficient of 1/M , in the inverse mass expansion, is
presented rather than the failure to satisfy the condition
for rapid converzence. The form in which Nelkin presents
his results lends itself, rather easially,to numerical
computation, while the equations of Kothari and Singwi,eq.
[32] and [34] are exceedingly cudbersome to manipulate., In
spite of this, it is believed that the method of Kothari and
Singwi yields the most accurate results for‘ygcin beryllium,

In figure 2, results are presented for‘Vg;in graphite
as determined by Gurney,, and as calculated from Nelkin’s
equation with @ = 1000°K and T= 300°K.

Unlike beryllium, which has a hexagonal close-
packed lattice, carbon atoms are situated in planes in
the graphite crystal latticej this gives rise to a highly
anisotropic material, Consequently, the graphite texture
has a considerable effect on its slowing down, and

diffusion properties.
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As stated previously, no reason can be seen as to why the
method used by Gurney to computef(e),’ for graphite, is
appropriate, It seemsunreasonable that the § for poly-
crystalline substances should be equal to the algebraic sum
of values computed for vibrations perpendicular and parallel
to the lattice planes. The details of Gurney’s calculation
were not available, but his result does exhibit the proper
over all trend. Gurney®s results are presented in fig.2,
curve Co. Theexpldnation of the high value of ¥ obtained
by Gurney, assuming that his method is correct, is the same
as that used to explain the high values found for beryllium;
In order to explain the specific heat of graphite at
low temperatures, Krumhansl and Brooks15 have constructed
a model in which Debye temperatures of 900°K and 2500°K
are assigned to vibrations perpendicular and parallel to
the lattice planes respectively, Based on this model ,
Kothari and Singwilﬁave attempted to make theoretical esti-
mates of the scattering cross section in graphite,
Using the incoherent approximation, and the Debye model,
they have calculated the one and two phonon cross sections
corresponding to vibrations both perpendicular and parallel
to the lattice planes; The total scattering cross section,
for polycrystalline graphite, was taken to be the sum of
thesepartial cross sections. The calculation was made for
low energy neutrons (lOAQ), but unfortunately their results

do ngt agree very well with the experimental values,(BNL-325),
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Kothari and Singwi attribute this discrepancy to the effect
of texture and microstructure in graphite; Another source

of error may lie in the fact that the incoherent appfoximation
is not particularly well suited for estimation of the elastic
scattering cross section, and McReynolds et.al.l7 assert

that elastic scattering ﬁredominates strongly over inelastic
scattering in graphite.

At present, there appears to be no satisfactory method
for considering the anisotropic nature of the graphite
crystal lattice in the computation of the energy tansfer
cross section or € . Since the binding energy between atoms
within a crystal plane is far greater’than that between
planes, the average logarithmic energy decrement per
collision should be significantly greater in interactions
perpendicular to the lattice planes than parallel to them,

As a first approximation, it is assumed that almost the
entire contribution to E comes from vibrations perpendicular
to lattice planes. For greater ease in calculation, Nelkin's
eq.[39] is used with GD= 1000°K, (Krumhansl and Brooks give
900°K as the Debye temperature corresponding to vibrations
perpendicular to the lattice planesj an additional IOOOK was
added to partially correct for interactions parallel to the
lattice planes. Referénce 1% also quotes QD= 1000°K  for
graphite). Based on this approximation, the values of E/E;

obtained are presented in fig.2, curve A.
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For neutron energies greater than approximately
0.2 eV.,y & certial portion of the interactions involve
collisions in which an atom is displaced from its lattice
site. For these events, ¥ is greater than any of the
previously discussed theories would predict, since they do
not account for such events, The frequency of such events
increases with neutron energy so that, at the upper end of
the energy range considered, the valﬁés of ﬁé&,for each
method presented, should be increased. A quantitative
estimate of this correction has not been made, but the
existance of this effect should be noted since its

omission adds another approximation to the results already

derived,
Iv. Computation of rermi Age from Indium Resonance to Thermal

BCE)

After obtaining ,i— in the crystalline binding region,
(-]

one can calculate the Fermi age,t. The age will be computed

from indium resonance to thermal; consequently, T will be

taken as zero at E=1.46 ev.

4,1 Method

The age to thermal is given by

1,46 (46
D dE 1 . dE .
S tr-s

E¢ Et



where N is the number of moderator atoms per cc., D is the
diffusion coefficient, and Orp is the transport amss section.
The value of the lower limit of the age integral,Et, is
somewhat arbitrary, and the difficulties associated with
its choice will be discussed later.

For the case of small absorbtion, Otn is taken as
0,(1-2/34), where o, is the total (elastic+inelastic)

scattering cross section. With this substitution, eq.[42]

becomes
(AL
1 dE
T= e . = [43]
BN°05(1-2/380F ©

Et

* Taking o, as constant in the range 1l.46 ev, to Et23' one

obtains,for the age from indium resonance to thermal

.46
1 1 dE -
T= — ) e e Laa]
35(1-2/30)N°05 E:Z—“D/Ea E
Let
3E(1-2/3A)N"0
l.4L
and
1
I(Et)z/m . @E [46]
Ec ‘
Then

T(Et)= C[I(Et)] (47]
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I(Et) must be evaluated by numerically integrating eq.[46].

This is done in the following way:

n E. :
I(Et)=22-—l ‘1n =4 [48]
J':l [B/E,JJ- ’ J

where E = 1.46 ev., and [i/i,]j is the average value of F/E,
in the energy interval Ej to Ej-l‘ The upper limit of
the summation, n, is a function of Et which is, in turn,

the lower energy limit of the nth groupe.

With the values of /g, obtained from figures 1 and 2,
I(E,) was calculated for graphite and beryllium from eq.[48].
The details of this calculation, corresponding to each
curve in figs., 1 and 2, are presented in tables I through
Iv; For each calculation, values of I(Et) are obtained
by adding the last column in each table up to the group
in which Et"E33 these values are presented at the bottom
of each table as a function of Et which is now expressed
as a function of moderator temperature.

Correspondingly, values of C, eq.l45], were calculated
for graphite and beryllium using the following physical

properties:

39



TABLE I
Details of calculation of age from indium res. to thermal, in

beryllium and graphite, using results of Nelkin: Figs. 1 & 2, curve A

— €7 Ej1 - E. h1nEi-1
Ei-1 By [“‘/’E.\; ['é’], E 1n§§ : [ ‘?'-]ﬁ
I.217

Group ev, e
IT— T.0% 1.20 0.919 I.089 0.196T 0.72135
2 1.20 1.00 0,904 1,106 1.200 0.1821 0,2015
3 1.00 0,80  0.880 1.136 1.250 0.,2230 0.2532
L 0.80 0,70  0.862 1,159 1.1h2 0.1328 0.1539
5 0.70 0.60 0.8/6 1.182 1.168 0.1551 0.183L
6 0.60 0450 0.821 1.219 1.200 0.1821 6.2220
7 0,50 0,40 0,785 1.273 1.250 0.2230  0.2840
8 0.0 0430 0.727 1;37u 1.333  0.2870 0.3941
9 0.30 0.25 0.660 1.51 1.200 0.1821 0.2757
10 0.25  0.20 0,599 1.670 1.250 0.2230 043722
11  0.20 0.182 . 0.5h2 1.846 1.099 0,004 0.1742
12 0.182 0.156 o.&98 2.025 1.17h  0.1602 0.3245
13 0.156 0.129  0,h11 2.&35 1.200 0.1821  0.1430
1l 0.129 - 0.10L  0.22 h.13o 1.2143 0.2172  0.8950

0.182 0.156 0.12 0.10
33. (7xT) (6icT) (SkT? (hxT

“I(Ey) 2.728 3,052 3.196  11.390




TABLE II
Details of caleculation of age from indium res. to thermal,

in beryllium, using results of Kothari and Singwi; Fig.l, curve B,

o % (B (8], B2 o2 (SRR

1 1.6 1.00  0.951 1.050 1.160 0.378L 043975

2 1.00 0.70 0.940 1.060 1.430 0.3565 0.3795
3 0.70 0.50 0,925 1.081 1,400 0.3360 0,3638
L 0.50 0.1,0 0.910 1.099 1.250 0.2230 0.2450
5 0.h0 0430 9,886 1.129 1.330 0.,2850 0,3218
6  0.30 0.25  0.858 1.16L 1.200 0.1822 0.2120
7 0.25 0,20 04821 1.219 1.250 0.2230 0.2720
8 0.20 0,182  0.787 1.270 1.100 0.0952 0.1149
9 0.182 04156  0.753 1.328 1,174 0.1602 0,2125
10 0.156  0.129 0.703 1.2l 1.205 0.1863  0.2650
11 0.129 d.lou 0.615 1.625 1.23 0.2172 043530
12 0.10h  0.0776 o0.Lh5 2.245 1.337 o.zéoo 06510

“Ey 0,182 0,156 0.12 0.1038 0.0776
eve (TxT) (6xT) (SkT (hkT% (3k%;

st

I(Ey) 2.307 2.519 2e78F  3.137  3.768




TABLE III

Detalls of calculation of age from indlum res., to thermal,

in beryllium, using results of Gurney: Fig, 1, curve C.

2 (G

———

Group & j-1 EJ [—%—J. ‘ES-.:L

g1

T T.I6 00 ~0.062 I.OLO G915
2 1.00 0.80  0.957 1.045 1.250 0.2230 042330
3 0.80 0.50  0.950 1,051 1.600 0.1690  0.14935
I  0.50 0.0 0.946 1.057 1.250 0.2230 0.2355
5 0.0 0.30  0.93L 1.070 1.333 0.2870 0.3070
6 0.30 020 0.921 1.086 1.500 0,060 0.4410
7 0.20 0,182 0,895 1.118 1.099 0.09h); 0.1112
8 0.182 0.156  0.870 1.1ué 1.127h  0.1602 0.1841
9 0.156 0,129 0.827 1.210 1.200 0,1821  0,2200
10 0.129 0.10h  0.73L 1.361 1.243 0.2172 042955
11 0.104 0.776 06538 1.858 1.337 0.2900 0.5380

E l82 0.156 0,12 0.10 0.0776
e3. (7eT)  (6KT) (5KT (hkT% (3kT)

I(Ey) 2.213  2.397 2,617  2.912 3450



TABLE IV

Detalls of calculation of age from lndium res. to thermal, in

graphite, using results of Gurney: Fig. 2, curve C

[:5515 {%%]; "“gg:l 1n§%§;

[t

Group Eétl 54.
1 1.6 1.00 0.4 1,059 I.K60 0.378[ 0.[}010
T2 1.00 0.80 0.927 1.079 1.250 0,2230 0,208
3 0.80 0.60 0.91l 1.094 1.333  0.2870 0.3138
L 0.60 0.50  0.898 1,113 1.200 0.1821 0,2030
5  0.50 0.},0 0.879 1.139 1.250 0.2230 0.2540
6 0.0 0430 0.8 1.18L 1.333 0.2870 0.3400
7 0.30 0.25 0.807 1.239 1.200 0.1821 0.2258
8 0.25 0,20  0.765 1.308 1.250 0.2230 0.2915
9 0.20 0,182 0,720 1.389 1.099 0.094) 0.1310
10 0.182 0.156 0,579 1.725 1.17h 0.1602 0.2762
11 0,156 0.129 0.1l 2,415 1.200 0,1821  0.4390
12 0.129 0.10L  0.326 3.068 1.213 0.2172 046660
13 0.104 0.776 04265 3.775 1.337 0.2900 1.0880
Et 0.182 0, 156 0.13 0.10 0.0776
eve  (T7kT) ( kT) (5kT (LT (3kT)
I(Eg) 2,01 2.677 3.116  3.782  L.870
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For beryllium

density=

A=

N=

For graphite
density=

‘Az

Ne

1.85 gm/cec
9
0.1238.10
5.95 b
0.207

24 atoms/cc

1.60 gnm/cc
12

24 atoms/ce

0.0803.10
4.75 b

0.158

With eq. [45], and the above data, C for beryllium and

graphite were calculated to be

2
CBe=‘3.2l cm

2

C = 15038 cm P

C
From eq.[47]; with the values of I(Et) presented in tables
I to IV, and the values of CBe and CC given above; T(Et) was
evaluated, corresponding to the methods of Kothari and
Singwi, Nelkin, and Gurney for evaluating E/ko, for graphite
and beryllium, The results of this calculation are
presented in table V (beryllium) and VI (graphite).

For purposes of comparison, results are also presented,

for T(Et)., when E/Eois taken to be independent of energy and

equal to unity.



Results of caleculation of age from 1l.16 ev. to E; in

TABLE V

beryllium,

E¢ in ev. T(E;) in cm?.

Nelkin Kotharl & Singwil Gurney ¥ -const.

Table I Table II Table III %,
0.182:(7kT) 8.76 7.0 " 7.10 6466
0.156:(6xT) 9.80 8.09 7470 7419
0.129:(5%T) 11.21 8.9l 8.0 7.79
0.10l s (LxT) 1h.10 10,08 9.35 8.50
0.0776:(3kT) e 12,17 11.09 9.40

DENSITY=1.85 gm/cc
Temp. = 300°K
€, = 0.207



TABLE VI

Results of calculation of age from 1.L6 ev. to Et in

Et in ev.

04182 :(7xT)
0,156 :(6kT)
0.129 :(5kT)
0.10l :(lxT)
040776:(3kT)

graphite. .

T(Et) in cm2,

Nelkin

Teble

I

41.9

1649
53.7
670

Gurney

Table IV

36.9
hi.0
47.8
58,2
79

density=1.60 gm/cc

Temp.

£

=300°0K
=0. 158

.E.zcons ttm]

32.0

bl
372
0.6

5.l

4%
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In this case, eq. [44] can be integrated directly to give

T(Et)= C-ln[l.46/Et] [49]

‘All calculations were made for a moderator temperature of

2009k,

4,2 Results and Discussion
At this point one is faced with the problem of
choosing an appropriate value of Et’ corresponding to
thermal energy. The‘value of Et to use as a lower limit
of the age integral appears to be that value of energy at
which the epithermal reactor spectrum (approximately 1/E)
joins the Maxwell-Boltzmann spectrum, In reality, this
joining is continuous,so that Et is not clearly defined,
From both experimental and theoretical studies of reactor
spectra18’19, this transition energy is estimated to be
approximately 4 to 5kT, where T is the moderator temperature,
(the difference between neutron and moderator temperature,
caused by spectrum hardening due to large thermal absorbtion,
has been neglected), For the work to follow, a value of Et
19

equal to 5kT, as suggested by Cohen ”, will be used.

For reasons discussed in section 3.4, it was conclu~
ded that, of the methods available for calculating § , the
method of Kothari and Singwi (eqs. [32] andl[34]) should

give the best results in the case of beryllium,
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Therefore the value of v from indium resonance to thermal,
in beryllium, 1is that value of T(Et), calculated from ‘
the values affhagnesented by Kothari and Singwi, at Eyg= SkT.
From table V, this value #% 8.94 cm2 for a density of
1.85 gm/cce

Kothari and Singwil also made a calculation of the
age from 1046 ev. to thermal, in beryllium, and obtain a
value of 25 cmgf To obtain this‘value, E(E) [presented‘here
as curve B, fig, 1] is averaged over a Maxwellian distribution
to obtain ‘E(To), where To is the temperature of the
distribution, and in this case is equal to the moderator
temperature. The Fermi age integral 1s now expressed in
terms of To with a lower limit of BIOOK (the moderator temper-
ature is 300°K3. To be consistent, the author58 should have
used 300°K as a lower limit for the age integral, since this
is the temperature at which the neutron distributiok is in
equilibrium with the moderator. However, this would have
resulted in an age of infinity, since ‘F(To) goes to zero
at T0='BOO°K; The use of BlOOK for a lower limit appears

to be merely an attempt to obtain a finite value for the

age with little regard for the physical situation.

¥ The value quoted in reference 8 is 20 cmg, however

a list of errata, distributed by the authors, indicate that
5 ;

14

this value should be 25 cm



Moreover, the weighing of ;(E) with a Maxwellian distribution
at all energies below'lo46 ev. seem incorrect, since neutrons
of energy from 5kT to 1l.46 ev, do not have such a distribu-
tion. It appears, therefore, that the value of 25 cm2, for
the age from indium resonance to thermal in beryllium, is
incorrect and much too large.

At present, there are no experimental results with

2

which to compare the value of 8.94 cm“, calculated herein.

Also for reasons discussed in section 3.4, the values
of T(Et), for graphite, presented in table VI, as calculated
from eq.[39] with GD= 1000°K appears to be the most
satisfactory. At E,= SkT= 0.129 ev.(at T=300°K), t= 53.7 cu’,
This value is in good agreement with the age measurement,
from indium resonance to thermal, in graphite, of
57.5 £ 5 cm® ( for density of 1.6) made by the FrencheO;

The agreement between the two values may be coincidental,
since the approximation of applying Nelkin’®’s simple equation
to the cpmplex crystal structure of graphite is rather
crude, However, it does tend to indicate a certain degree
of confidence in the method.

In ﬁiew of the many approximations incorporated in
the derivation of the equations from which the age calculations
were made, it is difficult to estimate the accuracy ascoci-
ated with the values of age from indium resonance to thermal

2

of 8.94 cm® and 53.7 em®  in Pperyllium and graphite

respectively.,
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V. Calculation of Age from Fission to Indium Resonance in

Beryllium,

For completeness, it was decided to make a detailed
calculation of the age, in beryllium, from fission to
indium resonance. This valuej when added to the age from
indium resonance to thermal, previously determined; will )
give the total Fermi age, in beryllium, from fission to
thermal, Because such a calculation had recently been
performed, in detail, for graphite, it was considered
unnecessary to repeat it. However, the only previous
calculation of age from fission to indium resonance,
in beryllium, recorded in the literature, was made by

21 in 1946; Since the cross section of

Goldberger
beryllium and the details.of the fission spectrum were not
known too accurately in 1946, it was considered worthwhile
to perform this calculation again.
The difficulties associated with sucQ a calculation

are unrelated to the problems encountered in the calculation
of the age from 1.46 ev. to thermal, In this case, the
neutron energies are large enough so that the moderator
atoms can be considered free, and crystalline binding is no
longer a problem., The value of ; uSed is the free atom value,

;a , and is constant throughout the entire energy range
considered, The difficulties encountered involve the var-

iation of scattering cross section at high energy (0,04-12 Mev),

and the energy distribution of fission neutrons.
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5,1 Method

The procedure to be followed is first to calculate
the age to 1.46 ev. for monoenergetic neutrons at various
source energies in the range of the fission spectrum (this
age will be a function of neutron energy), then to weigh,
the age, so determined, with the fission spectrum.

The age of neutrons of energy En’ to 1l.46 ev., is given by

Ewn
' D dE
T(En)= Eﬁbgﬂ'"ﬁ (501
[Abev.

In the case of small absorbtion, and taking otrz(l-E/EA)cs,

equation [50] becomes

€En
t(E )-= 1 1 . _@ (53]
D7 3§ (1-2/34)N° L [GS(E)]ﬁ E
14

Actually, eq.[51] is only the integral contribution to the
age, and a first and last flight corrections (to be discussed
later) must be added. Equation [51] is numerically

integrated in the following way:

n
1 By
T(En)z /P ———-ln R (52]
(o )5 i-1
a=| L=

where

P= 3(1-2/38)N°, [524
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E = 1.46 evo;(E;)i is the average value of the scattering
cross section in the energy range Ei-l to Ei; Ei is greater
than Ei_l; and En is the upper limit of the integral in eq.
[51], and corresponds to the source energy for monoenergetic
neutrons,

To obtain the age of fission neutrons, which are
distributed over a wide range of source energies, En’
one performs the following integration:

[+
//;(E )£(E_).4E
Te= 2 n n n [53]

©
J/.f(En)-dEn

0

where'f(En) is the number of fission neutrons in the energy
interval dEn about +'En; Equation [53%] is numerically

integrated as follows:

m
Te= Z :En'fn [54]
n=1
where
T,= 1720 1(B) + (B )], [55]

and fn is the fraction of fission neutrons having energies
between E 4 and E 3 m is the total number of groups used
in the calculation.

The first flight correction , for source neutrons

of energy En,is ghven by

FFC, = 1/3(1-2/30)N2(G (] (5¢]



For neutrons distributed in a fission spectrum, eq. [56]

becomes

f.
| FFcJ-/PZ =, [57]

o EGSiJ
where P is defined byeg.[52], and the fission spectrum is

normalized so that i fi= 1,
(AT

The last flight correction, in the calculation of

the age to 1.46 ev.,, is given by

1 |
3(1-2/5A)N2[cs(l.46)]2

LFC= [58]

The total age from fission to indium resonance is

then the sum of eqs. [54],([57], and [58], i.e.

T[fiss.-In. res.l= To+FFC+ LFC L59]

5,2 Results and Discussion

With the aforementioned procedure, the age in
beryllium from fission to 1l.46 ev. was calculated, Twenty
energy groups were used to cover the fission spectrum and
describe the cross section variation. The fission spectrum

22

used in the calculation was taken from ANL-5800 for

thermal neutron fission in U235° In the energy range
greater than approximately 1.5 Mev., the scattering cross

section was obtained by subtracting the (n,2n) and (n,a)



cross sections from the total cross section. All cross
section values were obtained from BNL-52523; The complete
details of the calculation of the Fermi age from fission to

1,46 ev,, in beryllium, are presented in table VII.

With the properties of beryllium as given in see. 5.1,

the factor P is given by eg.[52é7as

Py = 3(0.207)(0.926)(0.1238.10°*)%. 0.882.10%°,

The last flight correction, from eq;[BSJ, is 0,665 cmz;
Referring to table VII, the values in column 11 are
obtained by summing the values in column 10 as indicated in
eq.[52]c The values in column ll,t(En), are plotted against
EIl in figure %2, This plot shows that the appreximation of
'?n by an arithmetic meén, eq.[55], is fairly accurate.
Values of ?n,,so calculated, are presented in column 12 of
table VII. f"The fission spectrum, presented in column 13,
was obtained from ref, 22, The integral contribution to
the age is obtained by summing the values in column 14
according to equation [54]. Similarly, the first Tlight
correction is obtained by summing col. [15] according to
eql.[57]. The total age from fission to 1l.46 ev., in

beryllium, is given by eq.[59] as

T[fiss.~In., res.]l= 64,30 + 5.126 + 0.665 2
- 70.1 cm®



TABLE VII

Details of calculation of age from fission to indium res,

in beryllium (density=

1.85 gm/cc).

1 2 3 e 5 6 1
PR . D Sev @0V @7 gy
1 0.0L  1.46x107° 5.95 35.40 0.3120  3.210
2 0.10 0.0 5e85 3&,20 0.3020 3,310‘
3 0.20 0,10 5,20 27.0L 0.2385  L.190
I 0,50 0.20 .20 17.62 0.1555 61110
5 0.60 0.50 3.70 13.70 0,1210 8.260
6 0.65 0.60  5.70 32.50 0.2865  3.L85
7 0.70 0.65  3.80 1Ll 0.1270 %,87
8 0.80 0,470 3.70  13.68 0.1205 8.30
9 0.85 0.80 3.90 15.20 0,1340 7.6
10 1.00 0,85  3.40 11.65 0.101h 9.86
11 1.50 1.00 2.85 8.12 0,0716  13.99
12 2,00 1.50 1.80 302l 0.0286 35,00
13 2,50 2,00 1.85 312 0.0316 31,60
1, 3.00 2,50 3,00 9,00 0,0793 12.66
15 .00 3,00 1.67 2,79 0.0246° L0.6
16 5.00 ly.00 1.33 1.77 0.0156  6lh.1
17 6.00 5.00 1.30 1.69 0,01L9 67.1
18 8.00 6.00  1.27  1.61 0.0142 70.5
19 10,00 8,00  1.20 1.&uA 0.0127 78.8
20 12,00 1000 1.18 1.0 0.,0123 81.3

Bioq

2. 7hx10"
2450
2.00
2.50
1.20
1.083

1076

1,113
1.0625
1.33
1.50
1.33
1.25
1.20
1.33
1.25
1.20
1.33
1.25
1.20

56



continued
9 10 11 12 13 1 15
g 11%%_ . p(q)Zln 53 T:(:ﬁp) T n TIn P(E %s, 2
— 1 T0,20 33.10 33,10 33.10 0] 0 0]
2 0.9160 3.03  36.13  34.61 0.0139 181  0.0095
3 0.6930 2,91  39.0L 37.59 0.0239 0.897 0,0205
L 0.9160 5,90  Wh.oL  L41.96 0.0950 L.000 0.127
5 0.1820 1.50 Wé iy  L5.69 0.0351 1.608 0.060
6 040797 0.28
‘ 47.30 146.87 0.0357 1.670 0,0485
7 0.0731 0.58 |
8 0.1336 1.11 L18.h1 L7.86 0.0358 1.710 0.0621
9 0.0596 o.us 118,86 18,6l 0.0178 0.865 0.027
10 0.2850 2,81 51,67 50427 0.0527 2.650 0,108
11 0.4050  5.66  57.33 5L.50  0.1621 8.840  0.1480
12 0.285 9.98 67.31 62.32 0.1342 8.360 0.97h
13 0,223 7.05  The36  70.8L  0.105h  7.460  0.690
1l 0.182 2.30  76.66 75,51 0.0802 6,060 0.210
15 0.285 11.60  88.26 82,46 0.1032 8.500 0.857
16 0.223 14.30 102,56 95,41  0,0538 5.130 0,715
17 0.182 . 12.20 114,76 108,66 0.,0269 2.920 0,373
18 0.285 26.10 134,86 124,81 0.,0192 2.390 0.280
19 0.223 17.60 152.16 1&3,66 0.0042 0,598 0.0678
20 0.182 .80 167.26 159.86 0.0011 0,169  0.0177
Tote 61,300 5.126

TABLE VII
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The experimental value for the age from fission to
indium resonance, in beryllium, is 80.2 ¥ 2 cm® (ref. 24).
However, at energies greater than approximately 1.5 Meve.,
the (n,2n) and (n,a) cross sections become appreciable [see
BNL-325], These reactions, ocurring in the experimental
sample, modify the original fission spectrumj; consequently,
one would not expect the measured age to agree with that
value calculated with a fission spectrum. Meneghetti
and Hummel25 have estimated that the combination of (n,2n),
and (n,0) reactions, in beryllium, tend to increase the
original source neutrons by 8 or 9 percent. in an experiment;
To determine the precise effect of this increase of source
neutrons on the original fission spectrum, one would have
to determine the energy distribution of the neutrons involved
in these nuclear reactions. The analytical solution to this
problem is highly complex and is not attempted herein,

Goldberger’sziélculation, in 194€, resulted in a value

of 81 cm2 for the age from fission to In. resonance in

beryllium, and Meneghetti and Hummel25 y assuming the scatt-

ering cross section equal to the total cross section,

2 25

calculated a value of 89 cm“, A calculation was also made
to determine what value of age to indium resonance would
be measured in an experiment such as deseribed in ref. 24
This calculation involveé‘considering the effects of the

(n,2n), and (n,a) reactions on the spectrum measured;

the calculatioy employed only two groups of neutrons, and
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the vdue obtained was 73 cw® (ref. 25),

In order to check Goldberger?s value of 81 cm2, an
age calculation was made with the method described in sece
5.1, from those cross sections, for beryllium, used at the
time Goldberger made his calculation (1947)26; With the
same fission spectrum as wasg used before (ref. 22), the
integral contribution was found to be 78.3 cm2° When the

first and last flight corrections were added, the age from
2

fission to indium resonance was found to be 83.5 cm
The difiference between this value and the value of 81 cmg,
obtained by Goldberger, is probably dme to the different
fission spectrum and cross section values used in the
respective calculations. Goldberger took his cross section
values from report number MUC-HHG-?7, while the values used
for the comparison calculation were taken from ref. 26,
Goldberger does not specify the fission spectrum that he
used.,

Since the numerical details of the calculations made
by Meneghetti and Hummel®” were not available, it is diffi-
cult to comment on the validity of their guoted values.

They are presented here for purposes of comparison and

completeness, ~

From the values obtained hereiny for the age from
fission to 1.46 ev. (sec. 5.2), and from 1.46 ev. to thermal

(séc. 4,2); the total age from fission to thermal, in

beryllium of density= 1.85 gm/cc, is

v[fiss,=thermall= 70,1 + 8.94 = 79.0 cm?
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