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Abstract

The dollar exchange rate in the post-1973 era of floating is characterized by occasional
large “jumps,” daily returns of 3%, 4%, or even 5% which take place in response to
extraordinary news, shifts in fiscal and monetary policy, or are the result of bursting
speculative bubbles. This dissertation examines the nature of jumps in the $/DM
and $/Yen exchange rates during 1984-1993 and the related question of how market
participants form their expectations of such jumps. Particular advantage is taken
of recent advances in the empirical option-pricing literature, which show that it is
possible to use prices of options to infer the market’s expectation of a jump in the
price of the underlying asset. Newly released Federal Reserve Board data on daily
U.S. foreign exchange intervention are also exploited to shed light on the question of
how intervention is related to jumps and jump expectations.

Chapter 1 shows that option-implied jump expectations are economiically signif-
icant, and that they have a strong relationship with measures of the deviation of
the current nominal exchange rate from a “fundamental” rate such as a PPP tar-
get. Jump expectations have a significant relationship with the U.S.-foreign interest
differential for the $/DM rate but nct the $/Yen. Jump expectations have no signifi-
cant relationship with government intervention in foreign exchange markets, or with
traditional measures of exchange rate overvaluation such as the trade deficit or the
government budget deficit.

Chapter 2 uses option-implied jump expectations to determine whether such ex-
pectations lead to a “peso problem” bias in tests of exchange rate pricing models.
There is little evidence for “peso problem” biases for the $/Yen and $/DM in the
1984-1993 period.

Chapter 3 considers how exchange rate jumps are related to U.S. intervention
activity. Strong evidence is found that the U.S. “leans against the wind” to offset
small, “non-jump” movements in the exchange rate, and that such intervention is



effective. However, there is no strong evidence that “jump” movements affect or are
affected by intervention activity.
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0.1 Introduction

The dollar exchange rate in the post-1973 era of floating is characterized by occa-
sional large “jumps,” movements which take place over the course of a month, week,
or even day, of a magnitude which would have been unimaginable to denizens of the
foreign exchange market during the Bretton Woods period. Jumps are the rare daily
returns of 3%, 4%, or even 5% which take place in response to extraordinary news,
shifts in fiscal and monetary policy, or are the result of bursting speculative bubbles.
At the weekly frequency, movements as large as 8% are sumetimes observed, while
over a month or two months a nominal revaluation of 20% is possible. Such large
movements can make or break a speculator over a short period of time. More im-
portantly, in a world of sticky goods prices, jumps in the nominal exchange rate lead
to large overnight real revaluations, with concomitant large effects on the relative
competitiveness of nations. This dissertation examines the nature of jumps in the
$/DM and $/Yen exchange rates during 1984-1993 and the related question of how
market participants form their expectations of such jumps. Particular advantage is
taken of recent advances in the empirical option-pricing literature, which show that it
is possible to use prices of options to infer the market’s expectation of a jump in the
price of the underlying asset. Newly released Federal Reserve Board data on daily
U.S. foreign exchange intervention are also exploited to shed light on the question of
how intervention is related to jumps and jump expectations.

In chapter 1, the prices of foreign exchange options are used to infer, on a month-
by-month basis, the market expectation of a “jump” in the underlying exchange
rate. It is shown that monthly jump expectations for the $/DM and $/Yen were
economically significant during 1984-1993 and highly variable from month to month.
Expectations of jump depreciations in the $/DM are found to be positively related
to the the one-month U.S.-German interest differential, evidence that the differential
widens in compensation for the possibility of a “crash” in the dollar. By contrast, the
$/Yen jump expectations seem to have no significant relationship with the U.S.-Japan

interest differential. Both the $/DM and $/Yen jump expectations are found to be
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strongly regressive, with fears of dollar jump depreciation increasing when the dollar
strays away from a “fundamental” target level such as the purchasing power parity
level. Somewhat surprisingly, option-implied fears of jump depreciation are found to
have no strong relationship with current government intervention against the dollar,
or with traditional measures of overvaluation such as the government budget deficit
and the trade deficit. For both the $/DM and $/Yen exchange rates, option-implied
expectations of exchange rate volatility are shown to be good predictors of ez post
volatility. Option-implied jump expectations seem to have some power in explaining
ex post jumps in the $/DM exchange rate, but not the §/Yen rate.

Chapter 2 uses option-implied jump expectations to address the “peso problem”
as a possible cause of the forward discount bias. When the one-month U.S. inter-
est rate is above the German interest rate, one would expect that, on average, the
dollar should depreciate over the coming month. The overwhelming empirical ev-
idence is that the dollar does not depreciate one-for-one with the current interest
differential. For some currencies and subperiods it even appreciates on average. The
“peso problem” explanation suggests that market participants may be expecting a
large depreciation of the dollar which is so rare it does not occur in small samples.
Thus, a continued appreciation of the dollar in the face of a positive U.S.-German
interest differential is possible, and reflects an unrealized fear of a sudden “crash” in
the dollar. Until recently, the peso problem explanation of the forward discount bias
has been difficult to refute, since it involves the essentially unobservable jump expec-
tations of market participants. This chapter uses option-implied jump expectations
to conduct an exchange rate pricing test which is resistant to the peso problem. For
the $/DM rate, a strong positive relationship between the one-month jump expec-
tation and the one-month interest differential implies that, during sub-periods when
jumps are expected but do not occur, the “peso problem” can account for some of
the forward discount bias. However, for the 1984-1993 period as a whole, the ex-
pected jumps seem to have occured “often enough,” so that the peso problem is not
a problem for the period as a whole. For the $/Yen exchange rate, the evidence for a

peso problem explanation of the forward discount is even weaker. There is no signifi-
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cant relationship between the $/Yen expected jump depreciation and the U.S.-Japan
interest differential.

Chapter 3 examines the relationship between jumps in the exchange rate and U.S.
intervention in support of the dollar. It is shown that the U.S. “leans against the
wind” in response to small “non-jump” movements in the exchange rate, buying dol-
lars in reponse to dollar depreciations and selling dollars in response to appreciations.
Moreover, it seems that such intervention has a statistically significant effect at the
daily and weekly frequency, although the effect operates with a lag. There seems
to be no clear relationship between intervention and large “jump” movements in the
dollar exchange rate. That is, intervention is neither more nor less likely to occur
after a jump has occurred, and jumps are neither more not less likely to occur after
an intervention. This result must be interpreted in light of a possible simultaneity
bias. It is possible that “leaning against the wind” in response to very large “jump”
movements is futile and hence should not be practiced. However, it may also be the
case that, during the time of the intervention in support of the dollar, some exogenous
factor is operating to depreciate the dollar, so that the net effect of the intervention
and exogenous factor “wash out,” leaving the probability of a jump unchanged. Thus,
in the absence of the intervention in support of the dollar, a jump depreciation would
have been more likely. The overall conclusions of this chapter are in the spirit of
other recent studies on intervention, which find that intervention, even if sterilized,
can have some limited effect on the exchange rate, especially at daily and weekly

horizons.

15



16



Chapter 1

On the Nature of Jitters in
Foreign Exchange Markets:
Evidence From Option Prices

1.1 Introduction

Mounting empirical evidence suggests that exchange rates in the post-1970’s period
of generalized floating are best characterized by a mixed jump-diffusion process.! In
the jump-diffusion model, exchange rates are susceptible to occasional large move-
ments, or “jumps,” caused by the arrival of extraordinary information about market
fundamentals or perhaps by the bursting of speculative bubbles. Between such dis-
continuous jumps the exchange rate takes small continuous (“diffusion”) movements
with the arrival of ordinary day-to-day information. At any given time, participants
in the spot and options foreign exchange markets hold some before-the-fact opinions
about the behavior of the exchange rate over the coming month. In making direc-
tional bets and/or hedging decisions, it is critical for them to form an expectation of
the day-to-day diffusion volatility of the exchange rate as well as the possible risk of
a large unidirectional movement, or “crash.”

As Bates [6], [4], [5], [6] has shown, it is technically possible to use a theoretical

1See Jorion [25), Akgiray and Booth (2], and Tucker and Pond [32], as well as chapter 3 of this
dissertation. These studies find that a jump-diffusion model dominates various forms of the pure
diffusion model in explaining the behavior of the major trading currencies during the post-1974
floating rate period.
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option-pricing formula and observed options prices to “back out” the option market’s
implied expectations of future volatility and crashes.? Suppose that the exchange
rate process is well-approximated by a jump-diffusion. Then, if prices currently paid
for options are rational, they will reflect the market’s subjective assessment of (i) the
probability of a crash, (ii) the size of the crash if it occurs, and (iii) the day-to-day
diffusion volatility over the life of the options.

In this paper we find the option-implied diffusion voiatility and jump expectation
at monthly frequency for the $/DM and $/Yen exchange rates during 1984-1992. We
then examine how the option-implied expectations are formed, how they are related
across currencies, and whether or not they are good predictors of ez post jumps and
volatility. This work relates to that of Frankel and Froot [13], who use survey data
on exchange rate expectations to ask how such expectations are formed and whether
they are rational. Option-implied expectation estimates are superior to survey data
in that they reflect actual bets made by market participants. However, two caveats
are in order. The option-implied approach suffers the drawback that only the jump
frequency, jump size, and volatility expectations may be recovered, and not the mean
movement of the exchange rate.> Moreover, as Wei and Frankel [29] point out in their
study of volatilities in FX markets, the option-implied approach depends critically on
the correctness of the assumed option-pricing model, including the particular form
assumed for the underlying exchange rate process.

In section 1.2, the option-pricing formula, the options data, and the technique
for estimating the option-implied parameters are described. Section 1.3 describes
the monthly time series of option-implied jump expectations and volatilities. It is
shown that, while expected diffusion volatilities tend to persist from month to month,

jump expectations are quite mercurial. Jump fears in the current month have little

2This practice is the jump-diffusion analogue to the well-worn tradition of finding implied volatil-
ities using the Black-Scholes formula.

3This is of course related to the well-known “risk-neutral” option pricing results. Under appro-
priate conditions, options may be priced as if the process followed by the underlying asset is the one
which would hold in a market of risk-neutral participants. Hence, the only information which can
be recovered from options prices is information regarding the “risk-neutral” exchange rate process,
which has mean drift equal to the US-Foreign interest differential.
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to do with jump fears in the previous two months. Section 1.4 describes how the
option-implied “jitters” are related across the $/DM and $/Yen exchange rates. The
expected diffusion volatilities for the two currencies track one another quite closely.
The jump expectations, which likely reflect country-specific factors, are also positively
related, though not as closely as the diffusion volatilities are. Option-implied jump
expectations and volatility expectations are more variable for the $/Yen than for the
$/DM exchange rate. Section 1.5 turns to an examination of what information the
options market uses in forming its volatility and jump expectations. Sectior 1.5.1
discusses the relationship between jump expectations and the interest differential in
the context of a trading strategy known as “buying the rich currency and selling
the poor.” It shown that there is a strong positive relationship between the U.S.-
German interest differential and fears of jump depreciation. However, this relationship
does not hold for the $/Yen exchange rate. In section 1.5.2, it is shown that jump
expectations have a strong regressive component: when the current exchange rate
is strong relative to some “fundamental” ievel, expectations of a jump depreciation
back towards the fundamental increase. There is also weak evidence of “bandwagon”
expectations for the $/DM exchange rate, with large exchange rate movements in one
month leading to increased jump expectations in the following month. There is no
evidence of bandwagon effects for the $/Yen exchange rate. Section 1.5.3 considers the
possibility that current foreign exchange intervention, trade deficits, and government
deficits may have an effect on expectations of a jump in the exchange rate in the
future, perhaps by affecting expectations of a future shift in policy. The effects
of intervention and the twin deficits are found to be negligible. Finally, in section
1.6 we consider whether option-implied expectations are good predictors of ex post
exchange rate behavior. For the $/DM rate, it is shown that the option-implied
total volatility, including volatility due to diffusion and jumps, gives an unbiased
forecast of er post total volatility. While the $/Yen option-implied total volatility
is not an unbiased predictor, it nonetheless carries information about the future in
the sense that it can predict the direction if not the magnitude of changes in er

post volatility. Tests of whether option-implied jump expectations can predict ez
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post jumps are shown to depend critically on which one-day returns in the sample
period are considered “jumps” and which are not. If we consider movements of about
2.25 standard deviations larger than the mean daily movement to be “jumps,” then
it is the case that beginning-of-the-month option-implied jump expectations carry
statistically significant information about subsequent jumps in the $/DM exchange

rate, but not the $/Yen exchange rate.

1.2 Estimation of Option-Implied Parameters

The options data used are from the Philadelphia Stock Exchange (PHLX) and con-
sist of transactions data on foreign currency options traded between January 1984
and December 1992. Each observation consists of the price paid for the option, the
Telerate spot exchange rate at the time of the transaction, and the term to maturity
and strike price of the option. The options data for June through November of 1985
cannot be used due to severe errors in reporting during that period.

To invert for jump-diffusion parameters, we will need to specify an option pricing
formula that is used by the market to price options in the presence of jumps. We
assume that, between now and the time the option expires, options traders take the
exchange rate to follow the jump-diffusion process given below

ds

<= (1 — Ak]dt + odz(t) + kdq(t) (1.1)

where z(t) is a Wiener process and g(t) is a poisson process with jump intensity A
and where k is a non-stochastic jump size. We assume traders input their current
belief of ), k, and o when pricing options. The instantaneous expected rate of return
of this process will be u. Conditional on no jumps occurring however, the expected
rate of return will be 2 — Ak. The expected depreciation due to jumps is Ax. To price
the option, we follow Merton [28] and assume that the jump risk is not priced-i.e.

that it can be diversified away.*

4If the jump risk is not diversifiable, the option can still be priced. However, the option price
will depend on a risk-neutralized jump frequency A* and not the true distributional frequency A.
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Because the majority of currency option transactions on the PHLX are of Amer-
ican style options (96% of the Deutschemark option transactions are American—
almost all transactions were American prior to 1991), we chose to work with the
American options in order that we do not run out of observations in many of the
years prior to 1991. A drawback of using American options is that there exists no
analytic closed form formula for the price of an American option. We rely on an an-
alytic approximation proposed by Bates [6] which extends the work of Barone-Adesi
and Whaley [5] and MacMillan [27] to the case where the underlying price process
follows a jump-diffusion process.

As pointed out by Bates [6], theoretical pricing of PHLX options must also take
account of delivery lags. According to PHLX contractual agreements, an American
option is settled in 5 days after expiration and 7 days (5 business days) after early
exercise. Given these contractual specifications and the process described above, one

can arrive at the following approximation to the American put or call price:

Ve(pe) + (£) [pe- (78" — e K) — Ui(pe)] if S < S°

(1.2)
pc- (€7 ™S" — e K) if $> S

W a(pe) =
where pc takes the value 1 if the option is a call and —1 if it is a put, S is the value of
the underlying exchange rate, K is the strike price, 7, is the delivery lag after early
exercise, and S”* is the level of the exchange rate at which it is optimal to exercise
early and hence satisfies the following equation:®

S

S.)q [pe- (e ™8* - ™ K) — W (pc)] (1.3)

S* = argmaxg. (

while the parameter of curvature q satisfies:

1 1
502q2 +(r—r*" - -2-02 — Ak)q —

9_)\=
e MR - A =0 (1.4)

5The first order condition of this maximization is equivalent to the smooth pasting condition
derived in Bates.
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and W g(pc) is the corresponding European option price as derived in Merton [28) and

Jones [20]:

g (pc) = e T+ Z P(n) - pc- [Se('"“")"“"TN(pc +dyn) — KN(pc - dgn)] (1.5)

n=0

where:
e (AT

P(n) o

(1.6)

and 7, is the delivery lag after expiration, N(.) denotes the cumulative normal distri-
bution and:

by =7 —1"— A +nlog(l + &)/ (1.7)

log(S/K) + (r — "), + (b + 0%/2)T

dln = 0_\/;
dy = log(S/K) + (r —;\‘/);l + (by — 0%/2)T (1.8)

A set of observed option prices {y,-}fil will in all likelihood not fit the parametric
specification. A set of three options along with the price of the underlying asset and
the other observable inputs to the option pricing function will uniquely determine
), & and 6. Any other set of three options will probably produce another set of W
and 6. This is a problem common to all option pricing models. The likely reasons for
this is that (i) the assumed model is misspecified, (ii) some options are thinly traded
and trades do not take place at “true values”, (iii) trades take place at bid and ask
prices instead of at the “true value,” (iv) investors make errors in evaluating the “true
value” of the options. All four reasons are likely play a role. We will assume that our
specification is approximately correct and that the majority of the errors come from
factors (ii), (iii) and (iv). We further assume that the deviations of the observed prices
from the “true values” can be expressed in terms of a mean zero random variable that
is independent of the arguments entering the option pricing formula.

By taking a set of options traded during a given day, we can “invert” these options
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to find the implicit parameters used by option traders during that day.® A consistent

estimate of ), k and o is obtained by the following non-linear least squares regression:’

M
{A,&,6} = argmin, ., > (% — ¥i(pc))® (1.9)
=1

Due to the over-abundance of data in many months, we construct a sub-sample of
the data as follows. Our objective was to pick one trading day in a given month and
take options trading in that day that had the same expiration date. We also wanted
at least 50 options. We start with the first trading day of a given month and find the

expiration date that was less than 120 days away with the most options. If that set

contained at least 50 options we used that set. Otherwise we proceeded to the next

trading day.

1.3 Option-Implied Estimates

The results of the monthly non-linear least squares regressions along with the asymp-
totic approximations to the standard errors are reported in Tables 2.5 through 2.9
appended to chapter 2 of this dissertation, while the monthly time series for the jump
expectation of the $/DM exchange rate Ax is shown in Figure 1-1. The jump expec-
tation is quoted in annualized terms. Hence, 0.05, or 5 per cent, corresponds to a
expected depreciation of 0.42 per cent over a single month (A is measured in a scale of
probability per unit of time while « has no time dimension). Although the estimates
for Mk are of a fairly reasonable order of magnitude, the estimates of the individual
components A and k are somewhat less believable. In the space of A and x (for a
fixed value of total variance®) there is an approximate hyperbolic ridge in the least

squares objective function—the objective function is peaked for one value of A X K.

8The inversion process is conceptually straightforward but computationally challenging. See the
appendix to chapter 2 of this dissertation for a diz ussion of the computational issues.

TConsistency is achieved as the number of options M — oo.

8The objective function is maximized for one value of total variance, v, almost regardless of the
other parameters.

9The estimates for x can sometimes be quite large especially when X is small. This is not
surprising since when X is very small, x does not much influence the pricing function. This is the
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The individual estimates of A and « are not well estimated because the peak of the
ridge is not very well identified—the objective function takes on similar value for all

points on the ridge.!°
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Figure 1-1: Jump Expectations Ax for the DM
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Figure 1-2: Jump Expectations Ax for the Yen

The estimated jump expectations are of an economically reasonable magnitude
and, moreover, the time series of A& seems to agree with the qualitative stories told
about the dollar in the 1980’s and 1990’s. During the mid-1980’s when the dollar was

thought to be overvalued it was indeed the case that participants in the options mar-

reason why the standard errors can be very large for £ when X is small.
10There were also two months out of the total 114 for which the non-linear least squares procedure
did not converge. For the yen there was one month that did not converge.
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ket were expecting dollar depreciations due to jumps.!! See, for example, the 1985
studies of Krugman [22] and Marris [25], who argued that the strong 1984-85 appre-
ciation of the dollar, inexplicable by fundamentals, was evidence of an unsustainable
“speculative bubble” in the exchange rate. These results are in general accord with
those of Bates [4],[5] who also found substantial expected jump depreciations for his
sample of 1984-87 using CME options on Deutschemark futures.

Interestingly, occasional fears of dollar depreciation due to jumps persisted until
the late 1980’s while the dollar was on a steady downward path during this entire
period. This accords with the “hard landing” fears expressed by then-chairman of
the Federal Reserve Paul Volcker. It was widely perceived in 1985-87 that the dollar
needed to depreciate, but there was fear that this depreciation might come in the
form of a sudden crash, a concomitant shift from dollar assets, and a sharp rise in
interest rates.

January 1990 marks the start of a new period during which there are many months
when the market was calm, with essentially no expected depreciation due to jumps.
These calm months are interspersed with months when there are fairly dramatic
expected appreciations. During this later period, the economic problems associated
with the reunification of Germany became apparent. Market participants claimed
that the tight monetary policy implemented by the German government could not be
sustained given the severe recession in the former East Germany. It was believed the
Bundesbank would eventually lower its rate and consequently send the Deutschemark
tumbling.!?

The two months with the most dramatic jump expectations are October 1987,
when a crash occurred in the U.S. stock market, and October 1992, the period of the
ERM crisis. In October 1987 there was a 6.7% expected dollar depreciation while in

October 1992 there was a 16.7% expected Deutschemark depreciation. In both cases,

111t is unfortunate that the PHLX options price data are completely contaminated and hence
unusable for the months June-November 1985 which includes the post-Plaza Accord crash of the
dollar. The expected depreciation for April 1985 is large, perhaps indicating anticipation of the
eventual decision of the G-5 to bring the dollar down.

12Gee Dornbusch [14].

25




the currency of the country in crisis was expected to jump down.

Figure 1-2 displays the jump expectations in the $/Yen rate while Tables 2.10
through 2.14 appended to chapter 2 of this dissertation report the estimates and
asymptotic standard errors. There are some similarities here to the $/DM case. In
the period from 1984 to 1985 there are fears of dollar depreciations from jumps.
Again, it is possible that market participants feared the coordinated G-5 intervention
that ultimately took place in late 1985. After this period, from 1986 to late 1988
there remained fears of a dollar depreciation although much smaller than what was
expected earlier. From 1989 to late 1990 there are months with dollar expected
depreciations interspersed with months of large expected dollar appreciations. After
1990, any similarity to the $/DM jump expectations end. From 1991 to mid 1992,
there are consistent fears of dollar depreciation. Starting in mid-1992 the options
trading on the yen became so thin on the PHLX that for many months there was not
a single day where more than 50 options with the same maturity were traded. From
July 1992 to December 1992, 10 of the 18 months did not have enough options. It
is not surprising in this case that for the months for which we did have enough data
that the estimates were so erratic. Perhaps the trading was so thin in the markets

that options traded far from their “true” value.
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Figure 1-3: Diffusion Volatility for the DM

Figure 1-3 gives the monthly time series of o, the expected diffusion volatility.

The volatility figure, which is annualized, varies from a high of about 18 per cent
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Figure 1-4: Diffusion Volatility for the Yen

during the summer of 1985 to lows which are below 10 per cent during many months
in the sample. The option implied estimates for the yen’s continuous volatility are
plotted in Figure 1-4. The continuous volatility in the yen falls to a low of 0.023 in
September 1984. Because A and « are large during this month the total volatility
including the jump component works out to a more realistic number of 0.092. This
total volatility, inclusive of the jump component, is given by v = (02 + M?2)%, where
v = log(1 + ). The total volatility is plotted on the same axis with the diffusion
volatility for each of the currencies in Figures 1-5 and 1-6. With few exceptions, the

total volatility tracks the diffusion volatility quite closely.
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Figure 1-5: Diffusion Volatility and Total Volatility for the DM

Figures 1-7 and 1-8 report the fraction f = 3;,%3 of expected total variance which

27



« $/Yen Total volatilaty - S/Yen Diffusion Volatilaty
.25

.15

.05 -

| T \J |

B8
Year

Figure 1-6: Diffusion Volatility and Total Volatility for the Yen

is accounted for by the expected jump variance Ay2. The fraction f is typically less
than 0.25, though there are months of exceptionally large jump expectations when

this fraction is greater than 0.5.
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Figure 1-7: Jump Variance as Fraction of Total Variance for the DM

We turn now to the issue of the persistence of the option-implied jitters. Con-
sider the regressions, reported in Table 1.1, of the various option-implied jitters on
their own one- and two-month lags. The estimates reveal that, for both the $/DM
and $/Yen exchange rates, the expected diffusion volatility persists from month to
month: large expected volatility is associated with large expected volatilities during
the two preceding months. By contrast, the option-implied jump expectations are

quite mercurial. For both currencies the autoregressive coefficients are insignificantly

28



.75

.25 -

$/Yen Total variance Fraction
4]
1

84 as 86 a7 a8 a9 90 91 92 a3
Year

Figure 1-8: Jump Variance as Fraction of Total Variance for the Yen

different from zero, indicating that this month’s jump fears are their own in the sense
that they have little to do with those in the preceding two months. For total volatil-
ity, including both the diffusicn and jump component, the estimates indicate a high

degree of persistence for the $/Yen rate and a weaker persistence for the $/DM rate.

1.4 Cross-Country Comparison

In this section we consider how volatilities and jump expectations are related across
the $/DM and $/Yen exchange rates. Figures 1-9, 1-10, and 1-11 plot the jump
expectations, diffusion volatilities, and total volatilities for the two currencies on
common axes.

The diffusion volatilities for the two currencies seem to track one another ciosely,
while the relationship between the jump expectations is less clear, particularly for the
period after 1990, which exhibited large expected jump depreciations for the $/Yen
and “calm” months or expected jump appreciations for the $§/DM exchange rate.
Table 1.2 reports the results of OLS regressions in which each of three option-implied
$/DM option-implied measures was regressed on the corresponding $/Yen measure.
The diffusion volatilities are indeed positively related, with a highly significant slope
coefficient of 0.42, indicating that the $/DM volatilities do not vary as much as

do those for the $/Yen rate. The jump expectations are also positively related,
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Table 1.1: AR(2) Estimates for Option-Implied Measures

DM o 5] P2

Diffusion Volatility [ 0.0540 0.5360 0.0293
(4.436)** | (5.192)** | (0.285)
Jump Expectation | -0.0009 0.0937 0.0563
(-0.3880) | (0.912) (0.549)

Total Volatility 0.0956 0.1478 0.1558
(5.208)** | (1.442) | (1.529)
Yen a B B2

Diffusion Volatility | 0.0487 0.3325 0.1944
(4.236)** | (3.140)** | (1.844)*
Jump Expectation 0.0033 0.0293 0.1708
(0.818) (0.274) (1.158)
Total Volatility 0.0682 0.2022 0.2167
(4.613)** | (1.935)* | (2.092)**

Regression of option-implied quantity X, on its one- and two-month lags:
Xe=a+ 68X+ B:X-2+¢€ (1.10)

Asymptotic t-statistics in parentheses. (*), (**) denote significance at 90% and 95% levels.
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Figure 1-9: Jump Expectation for Yen and DM Rates
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Figure 1-10: Diffusion Volatility for Yen and DM Rates
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Figure 1-11: Total Volatility for Yen and DM Rates
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Table 1.2: Cross-Currency OLS Regressions

Constant | Slope
Diffusion Volatility [ 0.0759 [ 0.4329
(8.665) | (5.234)
Jump Expectation | -0.00041 | 0.0940
(-0.254) | (2.108)
Total Volatility 0.1017 | 0.2749
(6.735) | (2.201)

OLS regression of $/DM option-implied measure on the corresponding $/Yen option-implied mea-
sure. Asymptotic t-statistics in parentheses. T=92 observations on the months for which there were
sufficient options data to estimate both the $/DM and the $/Yen option-implied parameters.

though less significantly so. This is not surprising, given that the directional risk
represented by jumps may sometimes be due to factors specific to Japan or Germany,
factors which may well work in opposite directions at times. A slope coefficient of
0.09 indicates that $/DM jump expectations are less variable than the corresponding
$/Yen jump expectations. Finally, and not surprisingly, the expected total volatility
due to both diffusion and jump movements is also positively and significantly related

across currencies, with greater variability of this measure for the $/Yen rate.!”

1.5 How Are Jump Expectations Formed?

1.5.1 Buying the Rich Currency, Selling the Poor

The intuition of uncovered interest parity suggests that, when the 30-day U.S.-
German Eurocurrency differential is positive, that is, when dollar deposits pay a
higher interest rate than DM deposits, then the dollar should on average depreciate
over those 30 days. This must occur to make risk-neutral investors indifferent. be-
tween deposits denominated in the two different currencies. The empirical evidence

points to an overwhelming rejection of uncovered interest parity, both across time and

13These results are robust to the exclusion of the outliers associated with the October 1987 crash
and the September 1992 ERM crisis.
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across various currencies.'® The currency of the high interest rate country does not
depieciate one-for-one with the interest differential, and in fact often appreciates.'®
This result suggests the profitability of the following strategy: borrow money from
a bank in the low interest rate country (the “poor” currency, in the parlance of for-
eign exchange traders), and place that money in a bank account denominated in the
high interest (“rich”) currency. By covered interest parity, this strategy can also be
implemented by buying the rich currency in the forward market and selling the poor
currency. See Choie [9] for a practitioner’s account of the profitability of this strategy.
See also Backus, Gregory and Telmer [4], who find evidence that the strategy gives
superior returns, even on a risk-adjusted basis, in the sense of having a higher Sharpe
ratio than a passive strategy of holding an equity portfolio.

It is possible that the returns to a strategy of “buying the rich, selling the poor”
are illusory in the following sense. Suppose that uncovered interest parity holds, so
that the U.S.-foreign Eurocurrency differential always equals expected depreciation of
the dollar. Suppose further that a major portion of the expected depreciation is due
to a small probability of a very large crash in the high interest rate currency. Then,
because the probability of the crash is small, it is possible that over a limited time
horizon the crash does not occur, creating an illusion of “excess returns” to the trading
strategy. However, if the strategy is still being followed when the crash occurs, profits

t.16 If the returns to a “buying the rich, selling

accrued earlier may well be wiped ou
the poor” strategy are driven by ez ante fears of a large depreciation in the high-
interest currency, then at a minimum it should be the case that expectations of jump

depreciations are positively correlated with the interest differential.'” That is, the

4Frankel and Froot [14] summarize the evidence on this point.

16 As Lewis [22) notes in her survey of this so-called “forward discount bias,” the failure of uncovered
interest parity is difficult to account for even when risk aversion of investors is allowed.

16\ T. Baily notes, based on discussions with traders and researchers at Goldman Sachs, Merrill
Lynch, and Salomon Brothers, that such a strategies have actually been implemented by traders.
The “buying the rich” strategy would have worked particularly well during the 1980-85 period when
the dollar appreciated strongly while trading at a forward discount. However, the strategy would
have been disastrous if followed during the sharp post-Plaza Accord depreciation of the dollar.

17This is closely related to the question of whether “peso problem” jump fears can explain the
forward discount bias. As chapter 2 of this dissertation discusses in more detail, positive correlation
of jump depreciation fears with the interest differential is a necessary though not sufficient condition
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U.S. interest rate should exceed the foreign interest rate precisely when the markets

fear a large crash in the dollar. Option-implied jump expectations permit a direct
examination of the hypothesis that jump fears move with the interest differential.'®
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Figure 1-12: A« for the DM & U.S.-German Interest Differential

The broad picture presented by the $/DM option-implied jump expectations is
one of expected depreciation due to jumps during 1984-1989 and expected appreci-
ation thereafter. As Figure 1-12 shows, this pattern of expected jump depreciation
tracks the behavior of the U.S.~German one month Eurocurrency interest differential.
As Table 1.3 reports, a linear regression of the jump expectation on the interest dif-
ferential yields a highly significant slope coefficient of 0.22. This positive relationship
between jump depreciation and the interest differential is robust to exclusion of the
months corresponding to the 1987 stock market crash and the 1992 ERM crisis. Even
excluding these months, the slope coefficient is 0.115 and significant, indicating that
when the interest differential widens by one hundred basis points, jump fears widen
by about 11.5 basis points.

Figure 1-13 displays the time series of the yen jump expectation together with the
U.S.-Japan one month interest differential. The $/Yen rate presents a stark contrast

to the case of the $/DM rate. The jump differential is not au all correlated with the

for a “peso problem” explanation of the forward discount bias.

18The work of Frankel and Froot [13] shows that survey expectations of dollar depreciation vary
closely with the interest differential. However, the survey expectations do not allow for a decompo-
sition of expected depreciation into a “jump” and “non-jump” component.
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Table 1.3: Regressions of Jump Expectation on Interest Differential

Constant | Slope | T
DM -0.0028 | 0.2218 | 99
(-1.225) | (3.449)
DM e | -0.0009 | 0.1150 | 97
(-0.557) | (2.674)
Yen 0.0025 | 0.1627 | 91
(0.494) | (0.945)
Yen ee | 0.0081 | 0.0071 |90
(2.235) | (0.057)

OLS regression of option-implied jump expectation on the 30-day Eurocurrency interest differential.
Asymptotic t-statistics in parentheses. Run on a sample of T months during 1984-92, excluding June-
November 1985 and months with thin trading in options. (e) indicates regression run excluding the
October 1987 Crash and September 1992 ERM crisis. (ee) indicates regression run excluding the
June 1992 outlier in the $/Yen jump expectation.
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Figure 1-13: A« for the Yen & U.S.-Japan Interest Differential
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interest differential. A regression of the jump expectation on the interest differential
yields a slope coefficient which is not significantly different from zero. Thus, the
statement that crashes are feared in the high interest rate currency does not hold

universally, although it may hold for some currencies such as the Deutschemark.

1.5.2 Jump Expectations: Regressive or Bandwagon?

Floating exchange rates tend to spend long periods of time away from “target” or “fun-
damental” levels, such as those indicated by purchasing power parity. Using survey
data on exchange rate expectations, Frankel and Froot [13] suggest that expectations
have a regressive component in the sense that, when the current nominal exchange
rate is away from its target, an eventual return to the target level is expected. '
Another possibility is that of “bandwagon” expectations, in which market partici-
pants extrapolate the most recent trend: large depreciations of the exchange rate in
the previous months lead to expectations of further depreciation. It is interesting
to consider whether option-implied jump expectations are regressive or bandwagon.
To consider the matter of regressivity, two “target” levels of the exchange rate are
defined. The first is a purchasing power parity (PPP) level. This PPP level for the
$/DM and $/Yen exchange rates was constructed by (i) setting the parity level of the
exchange rate equal to the nominal rate at the time of the Louvre Accord in February
of 1987, when the G-7 agreed that exchange rates should be stabilized “at or near
their present levels,” and (ii) updating the PPP level by the change in the appropriate
bilateral Consumer Price Index ratio.?’ The second target level considered is the one

reported by Funabashi [15] in his study of G-7 exchange rate policy. There are no

publicly announced targets for the dollar exchange rate. Nonetheless, during 1985-89,

19Gee Takagi [27] for a survey of the large and growing literature on exchange rate survey expecta-
tions and their formation. See also Ito [18] for evidence from “micro” survey data on yen exchange
rate expectations.

20precisely, PPP is the nominal $/DM exchange rate S; which solves $£~ = k, where P and Px
are the U.S. and German price levels and & is some constant. Once k has been chosen, changes in
the PPP level are governed solely by changes in the ratio %. CPI’s were used to calculate this ratio
for the results reported, but the general results in this paper are robust to the use of other price
indexes.
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the G-7 had certain target levels in mind and intervened in the FX market when the
dollar drifted from these levels. See Frankel and Dominguez [10] for evidence that
deviations of the exchange rate from the implicit targets have power in explaining
intervention activity. The 1985-87 Funabashi target for the DM/$ is 2.6, agreed on
by the G-5 in the Plaza Accord in September of 1985. From February 1987 onward,
the target is 1.825 DM to the dollar, as set in the Louvre Accord, with the exception
of the brief period from October 1987 to June 1988, when dollar weakness following
the U.S. stock market crash necessitated a revision of the level to 1.7 DM/$. For the
Yen/$, the 1985-87 target is the 200 Yen level deemed acceptable to Japan at the
time of the Plaza Accord, while from 1987 onwards it is the 1563.5 Yen level agreed
on in the Louvre Accord. Figures 1-14 and 1-15 show the nominal exchange rates,
PPP targets, and Funabashi targets for both the $/DM and $/Yen exchange rates.
The figures indicate considerable overvaluation of the dollar during the early part of

the 1984-1992 period and fluctuations around the targets thereafter.
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Figure 1-14: $/DM Nominal, PPP Target, and Funabashi Target Exchange Rates

The first two rows of each of Tables 1.4 and 1.5 report the results of regressing the
option-implied jump expectation on each of the two measures of deviation from target
levels: PPPDEV, = log(g‘?{m) and FDEV, = log(gtgf,;), where SIPP and S/*" are the
PPP and Funabashi target levels. For both currencies and for both measures of the
target level, the slope coefficient is negative and significant at the 95% level. This

indicates, quite plausibly, that the stronger is the dollar relative to the target level,
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Figure 1-15: $/JY Nominal, PPP Target, and Funabashi Target Exchange Rates

the greater is the expectation of a dollar jump depreciation. Thus, participants in the
options market seem to have in mind a model of the world in which the exchange rate
may drift away from fundamental levels, but when it does so there is an increased
expectation of a sudden jump back in the direction of the fundamental.

The possibility of bandwagon expectations was also considered. It may be that
expectations of jump depreciations in the coming month are caused by nervousness
over large depreciations in the previous month. Tables 1.4 and 1.5 report the results of
regressions of the jump expectations on AS;_;, the exchange rate depreciation in the
previous month. For the DM, the coefficient is positive, indicating that depreciation
in the previous month leads to expectations of further depreciation, although the
effect is not statistically significant. For the Yen, the coefficient is negative, though
not statistically significant. The results of hybrid regressions which include both
regressive and bandwagon terms are also reported. In these hybrid regressions, the
regressive term retains its significant and negative effect for both currencies. For the
DM, the AS,_, has a positive and nearly significant coefficient, which may be taken
as weak evidence of bandwagon effects. For the Yen, the bandwagon term is negative
and insignificant in the hybrid regressions.

The bottom halves of Tables 1.4 and 1.5 repeat all of the foregoing regressions,
excluding the outliers associated with the 1987 stock market crash, the 1992 ERM

crisis, and the large outlier in the $/Yen jump expectation in June 1992. The results
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Table 1.4: Regression of Jump Expectations on Regressive and Bandwagon Terms

Constant | PPPDEV | FDEV | AS,; | T
DM | -0.0047 | -0.0359 99
(-1.758) | (-2.768)**
0.0014 -0.0345 99
(0.561) (-2.006)**
-0.0011 0.0672 | 98
(-0.478) (0.998)
-0.0055 | -0.0386 0.0988 | 98
(-2.001)** | (-2.908)** (1.497)
0.0014 20.0423 | 0.1137 | 98
(0.536) (-2.357)** | (1.656)
DM e | -0.0058 | -0.03903 97
(-2.263)** | (-3.163)**
0.0018 -0.0243 97
(1.095) (-2.213)**
-0.0000 0.0364 | 96
(-0.011) (0.846)
-0.0038 | -0.0328 0.0641 | 96
(-2.221)** | (-3.987)** (1.579)
0.0017 -0.0288 | 0.0687 | 96
(1.020) (-2.511)** | (1.568)

() indicates regressions run excluding the October 1987 Crash and September 1992 ERM cri-
sis. Asymptotic t-statistics in parentheses. OLS regression of option-implied jump expectation

PPPDEYV, = log ( E‘fgfrp), where S; is the current nominal exchange rate in dollars per unit of for-

eign currency, and SPPF is the current “equilibrium” exchange rate indicated by purchasing power
parity. Analogously, FDEV, is the month ¢ percentage deviation of the nominal exchange rate
from the politically determined “target” levels reported by Funabashi [15]. AS,_; is the percentage
change in the nominal exchange rate in the preceding month. Run on a sample of T months during
1984-92, excluding June-November 1985 and months with thin trading in options. (*), (**) indicate
significance at 90% and 95% levels.
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Table 1.5: Regression of Jump Expectations on Regressive and Bandwagon Terms

Constant | PPPDEV FDEV AS,, | T
Yen -0.0014 -0.0650 91

(-0.330) | (-2.925)**

0.0120 -0.0633 91
(2.567)** (-2.262)**

0.0050 -0.0667 | 90
(1.324) (-0.585)
-0.0010 -0.0561 -0.0247 | 90
(-0.226) | (-2.443)** (-0.220)
0.0103 -0.0521 | -0.0133 | 90
(2 149)** (-1.771) | (-0.114)
Yen ee | 0.0024 -0.0541 90

(0.767) | (-3.481)**

0.0132 -0.0488 90
(3.975)** (-2.460)**

0.0074 -0.0024 | 89
(2.800)** (-0.030)
0.0024 -0.0468 0.0315 | 85
(0.771) | (-2.967)** (0.405)
0.0115 -0.0407 0.0386 ! 89
(3.473)** (-1.996)** | (0.476)

(ee) indicates regressions run excluding the June 1992 outlier in the §/Yen jump expectation. (*),
(**) indicate significance at 90% and 95% levels.
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on regressive and bandwagon effects are robust to these exclusions.

1.5.3 Foreign Exchange Intervention and the Twin Deficits

There is a literature which suggests that government intervention in foreign exchange
markets may affect expectations of future exchange rates by “signalling” information
about future monetary policy. For example, it may be the case that current interven-
tions in support of the dollar credibly indicate future tightening of monetary policy. If
so, current intervention may lead to expectations of dollar appreciation even if the in-
tervention is small and/or sterilized by sales of domestic bonds. Kaminsky and Lewis
[27] and Ghosh [22] give some evidence that interventions signal future monetary pol-
icy. Using survev data on exchange rate expectations, Dominguez and Frankel [11]
show that current interventions in support of the dollar are associated with expected
deliar appreciation. In this section we examine whether intervention affects option-
implied jump expectations in the same way. More generally, if jumps in the exchange
rate are caused by shifts in fiscal, monetary, or exchange rate policy, then variables
which help predict such shifts should affect current jump expectations.?! This leads
us to also consider the effect of the so-called “twin deficits:” the government budget
and the trade balance. Market participants are likely to use information about the
twin deficits in forming expectations about the exchange rate. Large U.S. deficits
may signal the need for an eventual large depreciation of the dollar.

Table 1.6 reports the results of regressing jump expectations on intervention and
the twin deficits. The variable INT measures intervention by the Federal Reserve
Board during the month previous to the day that the jump expectation is formed.
INT is in terms of millions of dollars of either DM or Yen bought in support of the
dollar. TRADE is the appropriate bilateral trade surplus (exports minus imports)
during the previous month, while GDEF is the government budget surplus. Both
surpluses are measured in billions of dollars.

Somewhat surprisingly, the intervention and twin deficit measures seem to have

21Gee Borenzstein [1], who shows that trade surpluses help explain “jump expectations” in the
1980-84 dollar as measured by the excess foreign exchange return AS, — (ry — 7).
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Table 1.6: Jumps, Intervention and the Twin Deficits

Constant INT TRADE | GDEF | PPPDEV | AS,, | T

DM | -0.0010 | -0.0000015 97
(-0.419) | (-0.347)
-0.0043 -0.000003 98
(-0.686) (-0.839)
-0.0012 ~0.00003 98
(-0.403) (-0.263)
-0.0054 ~0.000005 | -0.00004 98
(-0.780) (-0.674) | (-0.385)

-0.0091 | -0.000002 | -0.000003 | -0.00005 | -0.0379 | 0.1036 | 97
(-1.306) | (-0.438) | (-0.434) | (-0.500) | (-2.780)** | (1.456)

Yen | 0.0047 | -0.0000174 90
(1.288) | (-0.003)
0.0212 0.000004 91
(1.111) (0.837)
0.0047 -0.00005 91
(0.967) (-0.282)
0.0204 0.000004 | -0.00002 91
(1.006) (0.797) | (-0.145)

~0.0162 | 0.000057 | -0.00003 | -0.000036 | -0.0641 | -0.0163 | 90
(-0.697) | (0.081) | (-0.653) | (-0.216) | (-2.441)** | (-0.131)

Asymptotic t-statistics in parentheses. OLS regression of jump expectation on various measures from
previous month. INT is Federal Reserve Board data on intervention in previous month, measured
as millions of dollars worth of foreign currency (DM or Yen) bought. TRADE is U.S. bilateral trade
surplus with Germany or Japan, billions of dollars, and monthly U.S. government surplus, billions of
dollars. PPPDEYV is percent deviation of current exchange rate from its PPP level, and AS;_, the
exchange depreciation during the previous month. Run on a sample of T months during 1984-92,
excluding June-November 1985 and months with thin trading in options. (**) denotes significance
at 95% level. The results in this table are robust to the exclusion of the 1987 crash, 1992 ERM
crisis, and the June 1992 outlier in the $/Yen jump expectations.

42



little power in explaining jump expectations. This is true in simple and multiple re-
gressions and for both the /DM and $/Yen exchange rates. The coefficients are gen-
erally negative, which accords with intuition: dollar purchases, U.S. trade surpluses,
and U.S. government surpluses should be associated with expected jump appreciation
of the dollar. However, the coefficients are all insignificantly different from zero. This
remains true when intervention and the twin deficits are included in the hybrid ex-
pectations formation regression of section 1.5.2 above. As before, the single variable
most strongly associated with jump expectations is the deviation of the exchange rate
from its fundamental level. There is again weak evidence of bandwagon effects for
the $/DM but not for the $/Yen.?? It must be concluded that, while inteivention and
deficits may affect expectations of the exchange rate, as reported by Dominguez and
Frankel [11], options traders do not seem to believe that such intervention affects the
probability or likely size of a jump movement in the dollar. This does not rule out the

possibility that intervention affects smaller “drift” movements in the exchange rate.?®

1.6 Are Option-Implied Jitters Justified?

Having examined option-implied jitters and the information the market uses in form-
ing them, we now consider whether such jitters are justified ez post. Do option-implied
jump expectations help predict jumps? Does option-implied volatility provide an un-
biased forecast of actual future volatility in the exchange rate? This latter question
was considered by Wei and Frankel [29] for the simple Black-Scholes diffusion casc
with no jumps in the underlying exchange rate. In this section, their methodology is
used to study the jump-diffusion case.

First consider the option-implied forecast of the total volatility v = (a2 + Ay?)?
which is due to both jumps and diffusion movements. The option-implied estimate

is extracted from options trading on a giver day at the beginning of the month. The

22The results in this section are all robust to exclusion of the 1987 crash, 1992 ERM crisis, and
the June 1992 outlier in the §/Yen jump expectations.

23Gee chapter 3 of this dissertation for evidence that, at daily and weekly frequency, intervention
may have effects on drift movements but not jumps.
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realized volatility v° is calculated by taking daily exchange returns over the coming
month and calculating their sample standard deviation.2* Rationality of the option-
implied forecast can be tested by running the following regression of realized volatility

on the option-implied volatility:

vi =a+bi +n (1.11)

Under the null hypothesis of rationality of the option-implied forecast, the coefficient
b is equal to one. A strict interpretation of “rationality” would also include a = 0 in
the null hypothesis, but we allow for the possibility that the forecast is biased by a
constant term. The results of this regression, using both regular asymptotic standard
errors as well as White heteroskedasticity-robust standard errors, are reported in
Table 1.7. For the $/DM exchange rate using the full sampie, the hypothesis of
unbiasedness (b = 1) can be rejected with 95% confidence regardless of whether
regular or White standard errors are used. The coefficient a is also significantly
different from zero. However, this rejection of unbiasedness is driven by a single
outlier in the data: the large 37% total volatility forecast in December of 1989 which
can be seen in Figure 1-5. The third and fourth rows of Table 1.7 repeat the $/DM
unbiasedness regressions excluding this single data point. The results now indicate
that the hypothesis of unbiasedness cannot be rejected, as b is insignificantly different
from one. It is also the case that the intercept a is insignificant from zero at the 95%
level. We may take this as evidence that, for the $/DM rate, the option-implied total
volatility & provides a rational forecast of ez post volatility over the coming month.
The last rows of Table 1.7 report the results of unbiasedness regressions for the $/Yen
rate. For the Yen, we can reject the null hypothesis of b = 1 with 95% confidence,
although the forecasts are still valuable in the sense that b is significantly different
from zero. Hence, the option implied v for the $/Yen rate is valuable in forecasting
the direction if not the precise magnitude of the ez post volatility. The point estimate

b is less than 1, which indicates that the option-implied total volatility is excessively

24The daily data are business daily from the Bank for International Settlements.
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variable as a forecast of realized volatility. This is in accord with the results of Wei
and Frankel [29] for the pure diffusion (no jumps) case.

The foregoing unbiasedness regressions provide a quite stringent test of the ratio-
nality of option-implied forecasts. A looser criterion is the Henriksson and Merton
[17) sign test. This test can be used to determine whether the forecast change in
volatility is in the right direction, regardless of its magnitude. Define the option-
implied forecast of the change in volatility as A9, = 4, — v, and the actual ez post
change in volatility as Ay} = v}, — 1], where again 7, is the option-implied volatil-
ity extracted from options prices at the beginning of month ¢ and v} is the sample

volatility calculated using daily returns during month t. Define the probabilities

p1(t) = Prob[Av, > 0|Av] > 0] (1.12)
p2(t) = Prob[Ai, < 0|Av] < 0] (1.13)

These give the probabilities of the option-implied forecast being correct, given the
direction of the ez post volatility change. Forecasts which are always wrong will be
such that p; + pp = 0, while forecasts which are always correct will have p; +p, = 2.%°
We would like to examine the null hypothesis of p; + p, = 1, which represents a
situation in which the option-implied total volatility has no value in forecasting the
direction of the change in ez post volatility.2® Define the following quantities: N, is
the number of observations such that Ay} < 0, and N, is the number of observations
such that Ayf > 0. Then N = N, + N, is the total number of observations. Let n; be
the number of forecasts which are correct, given that Ay < 0, while n, is the number
of incorrect forecasts given that Ay} > 0. Hence, n = n; + ny is the total number of
times in the sample that A} is forecast to be less than or equal to zero. It can be

shown that, under the null hypothesis of valueless forecasts, n; will be distributed as

25As Henrikkson and Merton point out, forecasts which are systematically incorrect in the sense
of p; + pz < 1 have value if one simply reverses their direction. The pundit who is always wrong is
worth as much as the one who is always correct.

26An example of a valueless forecast is the random walk, which always forecasts the current
volatility as the next month’s volatility. For the random walk forecast, p; = 0, p = 1, and

p+p =1
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a hypergeometric independent of p; and p,. Hence, n; can be used as the statistic in
a test of the null hypothesis. Moreover, a normal approximation to the distribution

of n, is appropriate, with mean and variance given by

E(n) = "TN‘ (1.14)
Var(n;) = nlNl(xzzNNl_)(ll)v“n) (1.15)

Table 1.8 reports various statistics of this test as applied to the /DM and $/Yen
option-implied forecasts. For the DM, the option-implied Av; correctly forecast a
fall in volatility 38 of 49 times, while it correctly forecast a rise in volatility 34 of 49
times. The final column reports the t-statistic in the test of the null hypothesis the
option-implied total volatility has no value in explaining the direction of change in ez
post volatility. For both currencies, we can strongly reject the null, indicating that
the option-implied total volatility is valuable in forecasting the direction of change of
volatility in the subsequent month.

Using option-implied parameters to predict the jump component of the exchange
rate is problematic in several respects. First, although the jump expectation estimate
M is well-identified and of an economically reasonable order of magnitude, the indi-
vidual estimates of A and k are not. Hence, although it would be desirable to have
estimates of the individual parameters, we are confined to using information about
the size and sign of the jump expectation in predicting ez post jumps. Second, in
evaluating the predictive power of the jump expectations, we must of course identify
which portion of the ez post monthly return is due to “jump” movements and which is
due to diffusion movements. The following ad hoc but intuitively plausible approach
to identifying jumps is adopted.?” The option-implied jump expectation is extracted
using option trading on a given day at the beginning of the month. The realized
daily exchange rate returns during that month are used to estimate the volatility ¢

and drift ji of the process for the month. A daily return is deemed to have a jump

27Gee chapter 3 of this dissertation for a more formal approach to jump identification which uses
maximum likelihood estimates of the parameters of the jump-diffusion process.
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Table 1.7: Rationality of Option-Implied Total Volatility v

Brackets [ ] hold asymptotic t-statistics in the test of the hypothesis that b is different from one.
Parentheses ( ) hold asymptotic t-statistics in test of the hypothesis that either a or b is different.
from zero. (e) indicates regressions run excluding the December 1989 outlier in the $/DM option-
implied total volatility. (*), (**) indicate significance at 90% and 95% levels. Rows labeled (Whitc)

a b T
DM 0.0766 0.4843 98
(4.4264) | (3.816)**
[-4.064]
DM (White) 0.0766 0.4843 98
(2.405)** | (2.865)**
[-2.5606]**
DM e 0.0350 0.8013 97
(1.570) (4.939)**
[-0.361]
DM e (White) | 0.0350 0.8013 97
(1.498) (4.451)**
(-1.1039]
Yen 0.0559 0.5315 90
(3.252)** | (3.701)**
[-3.263]**
Yen (White) 0.0559 0.6315 90
(2.832)** | (3.125)**
[-2.7540])**

calculate standard errors using the heteroskedasticity-robust method of White.

Table 1.8: Henriksson-Merton Test of AP Forecast

#( Avf <0) | # Correct | #(Ay} > 0) | # Correct | t-Stat
DM 49 38 49 34 5.478
Yen 54 36 36 28 5.279

Final column is the t-statistic in the test of the null hypothesis that the option-implied forecasts are

valueless (p; + p2 = 1). T=98 total observations for the $/DM, T = 90 for the §/Yen.
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component if

|ASEY (- =6%)| > fx6 (1.16)

N | -

where f, the “filter level,” is a number greater than or equal to zero. This is akin
to a classical hypothesis test of whether a particular one day move came from a
pure diffusion process or not. A detrended one day movement more than f standard
deviations away from zero is deemed to have a jump component. The movements
ASP _ (- 567%) that were determined to be “jumps” are summed to obtain the

jump component of the monthly return.
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Figure 1-16: $/DM Monthly Jump Movement (f = 2.25)
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Figure 1-17: $/Yen Monthly Jump Movement (f = 2.25)

Figures 1-16 and 1-17 show the time series of monthly jump movements at filter

level f = 2.25. Tables 1.9 and 1.10 report the results of regressing the monthly
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er post jump movements on the option-implied jump expectation. Several values of
the filter level f were considered. For the $/DM rate, the slope coefficients at each
of the filter levels are positive, indicating that expected jump depreciation and and
subsequent jump depreciation are positively related. However, the slope coefficients
are not significantly different from zero at the 95% level. The lower half of Table 1.9
reports the results of the regressions when the two data points corresponding to the
'87 market crash and '92 ERM crisis are excluded. This exclusion renders the slope
coefficients larger and more significant. The slope coefficient corresponding to a filter
level of 2.25 is significant at the 95% level. The coefficients for higher filter levels are
not as significant. Perhaps it is the case that filter levels greater than 2.25 arc¢ too
“stingy,” and do not identify as jumps some daily returns which are in fact jumps
and which are predicted by the option-implied jump expectations. If f = 2.25 is the
correct filter in the sense that daily detrended movements which are 2.25 standard
deviations from zero are truly “jumps,” we may conclude that option-implied jump
expectations have some power in predicting jumps during the subsequent months.
For the $/Yen rate, there is less evidence in favor of the hypothesis that jump
expectations help predict jurps. At some filter levels it is the case that the slope
coefficient is negative, indicating a negative relationship between the expected jump
depreciation and subsequent jump depreciation. For f = 2.75, the negative cocfficient,
is even significant. Excluding two large outliers in the jump expectation for September
1984 and June 1992 renders the slope coefficients insignificant for all filter levels,
though some of the slope coefficients are still negative. It must be concluded that, for
the $/Yen rate, there is little evidence that jump expectations can predict subsequent

jumps in the exchange rate.

1.7 Conclusion

This paper has examined option-implied jump expectations and volatility expecta-
tions for the dollar exchange rate during 1984-1992. Option-implicd expectations

of jumps in the dollar exchange rate have been economically significant at various
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Table 1.9: Regression of Monthly Jumnp Movement on Jump Expectation Ax

DM Intercept | Slope | T
f=0 0.0033 0.3537 | 98
(0.937) | (2.354)*
f=20 | -0.0007 | 0.05621 |98
(-0.422) | (0.712)
f=225] 0.0012 0.1007 | 98
(0.792) | (1.579)
f=25 0.0003 0.0411 |98
(0.244) | (0.808)
f=2.75| -0.0005 | 0.0421 |98
(-0.480) | (0.937)
DM e | Intercept | Slope | T
f=0 0.0031 0.1193 | 96
(0.878) | (0.501)
f=20 | -0.0008 | 0.1339 |96
(-0.469) | (1.150)
f=225] 0.0011 0.2467 | 96
(0.709) | (2.466)*
f=25 0.0002 0.1015 | 96
(0.195) | (1.256)
f=275|( -0.0006 | 0.1077 | 96
(-0.542) | (1.513)

Asymptotic t-statistics in parentheses. () indicates regressions run excluding months of the 1987
stock market crash and 1992 ERM crisis. (*) indicates significance at 95% level.
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Table 1.10: Regression of Monthly Jump Movement on Jump Expectation Ax

Asymptotic t-statistics in parentheses. (ee) indicates regressions run excluding the June 1992 and
September 1984 outliers in the $/Yen option-implied jump expectations. (*) indicates significance

at 95% level.

Yen Intercept | Slope | T
f=0 0.0048 0.0629 | 90
(1.313) | (0.621)
f=20 | -0.0007 | 0.0521 |90
(-0.422) | (0.712)
f=225| 0.0054 0.1007 |90
(3.671)* | (-1.510)
f=25 0.0029 | -0.0677 |90
(2.258)* | (-1.909)
f=275( 0.0027 -0.0817 | 90
(2.421)* | (-2.637)*
Yen ee | Intercept | Slope | T
f=0 0.0037 0.2495 | 88
(0.982) | (1.446)
f=20 0.0053 | -0.0356 | 88
(3.432)* | (-0.540)
f=225| 0.0044 | -0.0276 | 88
(2.838) | (-0.422)
f=25 0.0002 0.1015 | 88
(0.195) | (1.256)
f=275| 0.0028 | -0.0193 | 88
(2.040)* | (-0.335)
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times during the 1984-1992 period, and seem to agree with the qualitative stories
told about appreciation and depreciation fears of the market during that period.
Jump expectations seem to be quite mercurial, with little persistence from month
to month. Expected diffusion volatilities are relatively more persistent, with this
month’s expected volatility depending strongly on that in the previous two months.
A comparison of the $/DM and $/Yen rates shows that diffusion volatilities for the
two currencies track quite closely. Jump expectations also have a positive relation-
ship across currencies, although this relationship is not as significant statistically as
for the diffusion volatility. For both jump expectations and diffusion volatility, the
$/Yen series are more variable than the corresponding $/DM series.

On examining the relationship of jump expectations to various measures in the
information set of traders, it was found that for the $/DM, but not the §/Yen, jump
depreciation expectations are strongly correlated with the U.S.-German interest dif-
ferential. This suggests that, at least for the DM, the returns to a strategy of “buying
the rich currency and selling the poor,” are perceived as being in compensation for
the possibility of a large dollar depreciation. Both the $/DM and $/Yen jump expec-
tations are strongly related to the distance of the current nominal exchange rate from
fundamental “target” levels. This suggests option traders have a view of the world in
mind such that the exchange rate drifts away from fundamentals for long periods of
time, but is expected to return to the fundamental level with a sudden “jump.” For
the $/DM rate, there is also weak evidence of bandwagon expectations, with large
depreciations in one month leading to expected jump depreciation in the following
month. There is no evidence of bandwagon effects for the Yen. For both the DM and
the Yen, jump expectations are unrelated to classic measures of overvaluation like the
government budget deficit and the trade deficit. Nor is it the case that current U.S.
foreign exchange intervention affects jump expectations.

Finally, option-implied predictions of ex post total volatility in the exchange rate
are shown to unbiased for the $/DM rate. They are biased for the $/Yen, but still
carry information in the sense of being able to predict the direction of change in

total volatility. Option-implied jump expectations are shown to have some power in
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predicting subsequent jumps in the $/DM exchange rate, but not the $/Yen rate.

In general, the $/Yen option-implied expectations are more difficult to explain
than are those for the $/DM exchange rate in the sense that they have weaker rela-
tionships to variables in the ez ante information set of traders. The Yen expectations
are also more variable than those for the DM, and have less power in explaining sub-
sequent movements in the exchange rate. This may indicate some deep differences in
how traders explain the behavior of the two currencies. However, it may also be due
to the fact that the PHLX Yen options are more thinly traded than are those for the
DM. Low volume could mean that the market in Yen options processes information
less efficiently, and trades take place at prices far away from their “true” values. This
would of course cause the option-implied $/Yen expectations to be “noisier” than

those for the $/DM exchange rate.
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Chapter 2

A Peso Problem Resistant Test
of Foreign Exchange Pricing
Which Uses Option-Implied

Jump Expectations
(joint with W.T. Baily)

2.1 Introduction

Asset pricing theories typically give testable relationships between an asset’s expected
return and some set of explanatory variables. For example, in many models of ex-
change rate determination the expected rate of depreciation of a currency is related
to the current interest rate differential between the domestic and foreign countries,
or, equivalently, to the current forward discount. Because expectations of an asset’s
return are generally not observable, empirical tests use ez post returns and assume
“rational expectations”: that is, that the ez post return is equal to its expectation
plus a conditionally mean zero error term. This practice is susceptible to the “peso
problem” critique. When markets expect a large price movement, or a jump, but only
with low probability, it will be difficult to obtain a “typical” sample. A very large
sample may be needed before enough jumps occur to make the sample average rep-
resentative of the true expectation. In the extreme case when no jumps are observed

in the sample, ez post returns will clearly be unsuitable proxies for expected returns.
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The problem is quite general, and could arise in empirical tests of stock pricing
or the interest rate term structure.! However, because exchange rates seem to be
particularly susceptible to occasional large jumps, peso problems are most likely to
arise in the context of international asset pricing models. The term “peso problem”
has its roots in a puzzle of the early 1970’s, when the Mexican currency traded at a
forward discount despite a policy of fixed exchange rates. The puzzle of an unchanging
exchange rate and a persistent forward discount is resolved by noting that forward
market speculators were expecting an eventual large devaluation of the peso, which
finally occurred in 1976.

Peso problems may be just as likely to occur under floating exchange rate regimes
as they are under fixed rates. It has long been speculated that floating exchange
rates, like other assets, may be subject to “bubbles” which persist for some time
before eventually bursting in dramatic fashion. It is also true that the post-1970’s
regime of floating is best characterized as a “dirty float,” in which exchange markets
are subject to occasional large interventions by national governments. Thus, it is
a priori plausible that either bubbles or expected interventions could give rise to
expectations of exchange rate jumps. Note that bursting bubbles and interventions
need not be mutually exclusive events. The so-called “dollar problem” of the 1980’s
could be interpreted as a bubble which was eliminated by intervention. During 1980-
85, the dollar appreciated steadily against each of the major currencies while trading
at a forward discount. The dollar’s rise was reversed in the fall of 1985 when the G-5
countries staged a coordinated open market operation. It is plausible that the pre-
1985 forward discount reflected the market’s expectation that the dollar’s rise would
eventually end, either of its own accord or through intervention. More recently, there
has been speculation of a peso problem in the Deutschemark. Some believe that the

Bundesbank may eventually lower interest rates to stimulate the German economy

'Reitz [29] suggests that rare but catastrophic falls in aggregate consumption could explain the
equity premium in stock returns. Lewis [22] gives a discussion of peso problems and the term
structure.

2Lizondo [25] gives a detailed account of the behavior of the forward discount before the Mexican
devaluation.
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and thereby send the Deutschemark tumbling.”?

The anecdotal evidence on the existence of occasional large jumps in foreign ex-
change markets is confirmed by the formal empirical analyses of Jorion [25], Akgiray
and Booth (2], and Tucker and Pond [32]. These studies find that a jump-diffusion
model dominates various forms of the pure diffusion model in explaining the behavior
of the major trading currencies during the post-1974 floating rate period.* There is
also an empirical option pricing literature which provides further evidence that jumps
are important in currency markets. For example, Bodurtha and Courtadon [9] find
that the simple Black-Scholes option pricing formula makes systematic errors when
used to price out-of-the-money foreign exchange options, and that those errors are
consistent with the market expectations of large jumps. In a series of papers, Bates
6], [4], [5], [6] shows that options prices can be used to uncover market expectations
of jumps and that such expectations are significant for the dollar-DM exchange rate
in the early 1980’s.?

\We should re-iterate that the econometric difficulties which attend the peso prob-
lem only arise when jumps are of low frequency. When this is the case, there is a
high probability that a given sample of exchange rate returns will be unrepresentative
in the sense that it contains too few jumps. Exchange rate pricing tests which use
ex post depreciation in place of expected depreciation may be misleading. In this
paper we build on the suggestion of Bates [4] that option-implied jump expectations
might be used to conduct exchange rate pricing tests which are resistant to the peso
problem.

In order to illustrate the basic point of how large, infrequent exchange rate jumps

might lead to misleading econometric inferences, we first develop the peso-problem-

3See for example Dornbusch [14].

4Jorion’s result holds even when he allows for conditional heteroskedasticity in the diffusion
process. Akgiray and Booth and Tucker and Pond compare the jump-diffusion model to mixture-
of-normals and stable Paretian models.

5In [4], [5], [6], Bates shows that there was significant downward skewness in the dollar-DM
exchange rate during the “dollar problem” period of the early 1980’s, and that this skewness is
consistent with the presence of jump expectations. In [6], he examines the behavior of options on
S&P 500 futures during the time leading up to the '87 crash and concludes that the crash was
expected.
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resistant exchange rate pricing test in the risk-neutral, or “uncovered interest parity”
(UIP) context. Besides being the simplest example to consider, UIP is of interest
because it is the subject of a large empirical literature. The chief finding of this
literature is the so-called “forward discount bias:” when ez post exchange deprecia-
tion is regressed on the forward discount, or equivalently the home-foreign interest
differential, the regression coefficient is typically less than one and often significantly
less than zero. This runs counter to the intuition that a discount currency should

depreciate on average.

2.1.1 The Uncovered Interest Parity Example

Suppose that the dollar-DM spot exchange rate S satisfies:

AS, = (r,US - r,DM) + (Iy — p)ke + €& (2.1)

where AS, is the one month percentage depreciation, 75 — r?" is the one-month

U.S.-German interest differential, I, is a Bernoulli random variable which takes the
value 1 if a jump occurs during the month and 0 otherwise, p, is the probability of the
jump occurring, k; is the size of the jump given that it occurs, and ¢, is a normally
distributed random variable independent of I, such that E[e,|r{® — r”»] = 0. The
variables k, and p, are allowed to be functions of the interest differential. We define
the expectational error as 7, = (I, —p)k, +€,. Because E[n|r{’s —rPM] = 0, it follows
that the exchange rate satisfies the UIP hypothesis: E[AS|r{'S — rPM] = ¢/ — ¢ M.

The econometrician does not know the true exchange rate process, and would like
to test whether UIP holds or not. UIP is a hypothesis about expected depreciation,
which is not normally observable.® However, by assuming rational expectations, one

can write down a testable equation in terms of ex post depreciation:

AS, = B(rVS — rPM) + (2.2)

6See, however, Frankel and Froot [17], who use survey data to obtain a measure of expected
exchange rate depreciation and use this measure in UIP regressions.
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An estimate of 3 near 1 will be taken as evidence in favor of UIP. The peso problem
arises because n,, which is the sum of a Bernoulli and a normal random variable, is
ill-behaved in small samples. For small p, and large &, that is, rare and large jumps,
n. will be skewed. As Krasker [21] points out, under skewness of 7, the sampling
distribution of the 3 estimate will be slow in converging to normality as the sample
size grows. This will result in misleading inferences, and may frequently cause a
rejection of the hypothesis 3 = 1 when it is in fact true.

To see how this model fits with the empirical findings, we make further specializa-
tions. Assume that «, is positively correlated with r/S —rPM_ This says, for example,
that if the currency is on average expected to appreciate (e.g. r/5 —rPM > 0), then it
will appreciate the most when the jump actually occurs (i.e. I;x; > 0). The direction
of the jump, in other words, coincides with the sign of the expected return of the cur-
rency. This conforms with the common perception that the jump component forms a
large part of the expected currency movement. If one reverses the direction of causal-
ity from &, to rU5 — rPM | this is equivalent to saying that when the Deutschemark
is expected to take an upward jump, investors will in equilibrium demand a higher
return on dol'ar assets. Now suppose that our sample contains too few jumps; say,
for simplicity, that there are no jumps. Then 1, = —p;k; + €. Thus if jumps are
expected but do not occur in-sample, the interest rate differential and the error term
n, will be negatively correlated, causing a downward bias in the estimate of 3 in (2.2).
This could account for the finding, universal in the empirical UIP literature, that /3

is less than 1 and frequently significantly less than zero.

2.1.2 A Test Immune to the Peso Problem

If p, and &, could be observed or estimated, one could include the jump expectation
in a modified UIP regression, in effect replacing the ill-behaved error term 1), with
an error term which is well-behaved in small samples. This can be achieved by
separating the exchange rate movement into a “jump” and “continuous” component

in the following manner:
AS¢ = AJS[, -+ ACS; (23)
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where:

AJS; = Itﬂt

_ . US .DM
AcSy = 1/ —1r/" — ke + €

During a “peso problem” period most of the observed one-month depreciations will
be of the continuous type A¢S;, that is, composed of the interest differential, an extra
drift term —p,k, due to the expected but unrealized jump, and the mean zero error
term. This suggests that, if p;x, could be observed, one could test UIP by running

the following regression:
AcS, + iy = B —rPM) + ¢ (2.4)

and testing whether § is equal to 1. This test will be robust to the peso problem
since it does not depend on how many jumps occurred in the sample. Note that the
regression only involves the continuous component of the exchange rate movement.
For a month in which no jump occurs, the coutinuous component equals the observed
exchange rate movement (AS; = A¢S;). For months in which a jump does occur, it
is necessary to “de-jump” the observed movement by subtracting the jump size k.
Thus, to implement (2.4) it will be necessary to identify those months, if any, during
which a jump actually occurs. The expected movement due to jumps p.k,;, which we
have moved to the left-hand side of the regression, is of course not literally observable.
However, one might consider the possibility of estimating the jump expectation.

As Bates [6] points out, estimating jump expectation parameters from historical
data is a difficult, perhaps impossible task, since (i) the parameters are time-varying,
and (ii) even if the jump process is time-invariant, the jumps may be rare. In that
case, even a long sample of past data may contain very few observations with jumps.
Our research builds on the insight of Bates that option prices can be used to recover
the otherwise unobservable jump expectation.

Theoretical option-pricing formulas exist which apply when the underlying asset
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follows a jump-diffusion process.”. The option price is shown to depend on the size
and frequency of jumps. Thus, one can use a theoretical pricing formula together
with observed option prices to uncover the expectations of jump size and frequency
which are held by market participants.® Knowledge of the jump expectations will
allow us to perform the test of exchange rate dynamics presented in (2.4) which is
resistant to the peso problem

The example above assumed risk-neutrality in order to highlight the point that
the peso problem can arise even in the absence of a risk premium. In the most
general case, expected exck ge rate depreciation will be related not only to the
interest differential but also to an exchange risk premium. Indeed, as Fama [15)
shows, even in the absence of a peso problem the empirical anomaly of 5 < 1 could
be explained by a time-varying risk premium which is highly variable and negatively
correlated with the interest differential.’ Below we develop a continuous time general
equilibrium model of international asset pricing with risk-averse investors. We allow
for undiversifiable jump risk in the economy and PPP deviations which cause agents
to be heterogeneous across national boundaries. We then show how one can use the
equivalent martingale pricing measure or risk-neutralized parameters recovered from
option prices in conjunction with the observed path of the exchange rate to conduct
an empirical test of the exchange rate dynamics implied by our model.

Our theoretical analysis shows that it is exactly the equivalent martingale param-
eters and not the true distributional ones that are needed to test the final empirical
implications analogous to (2.4). Thus even if one could estiinate the true distribu-
tional parameters of the jump process, one would then have to make assumptions to

convert that into the equivalent martingale parameters. The approach of recovering

"Merton (28] and Jones [20] develop European option formulas for the jump-diffusion case

8This is the jump-diffusion analogue to the familiar practice of using the Black-Scholes formula
to find option-implied volatilities.

9There are many other possible cxplanations of the forward discount bias which our model is
unable to nest. For example, Lewis [23] shows that if there are periodic monetary policy regime
shifts which agents learn about rationally but slowly, it is possible that there will be exchange rate
forecasting errors for a period of time, thereby causing a forward discount bias. Backus, Gregory,
and Telmer [4] show that the forward discount can be explained in the context of a model with habit
persistence. Lewis [24] gives a very thorough and recent survey of competing explanations of the
forward discount bias.
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the equivalent martingale parameters from option prices thus turns out to be “just
right”.

To our knowledge, this will be the first empirical test of an equilibrium model of
exchange rates which explicitly allows jumps, and the first such test which incorpo-
rates options price data to isolate jump expectations.'® In section 2.2 we develop the
continuous-time equilibrium model of international asset pricing when assets are sub-
ject to jumps. Section 2.3 describes how one can recover monthly jump expectations
from prices of currency options on the Deutschemark and Yen. We find that, during
the 1984-1993 period, there were many months with economically significant jump
expectations. Moreover, for the dollar-DM rate, there was a strong positive correla-
tion between expected jump depreciation and the interest differential. This implies
that, during periods when few or no jumps occur, the jump expectations wili account
for at least a portion of the forward discount bias. However, as we show in section
2.4, it cannot be concluded that jump expectations cause bias in exchange rate tests
unless we are certain that we are dealing with a sample period in which few or no
jumps occur. This requires us to identify exactly which exchange rate movements are
jumps and which are not. Another way to state this is that our peso problem resistant

&

test must be performed using ez post exchange depreciations which have been “de-
jumped.” The results of the test will be sensitive to the the method used to de-jump
the data. We report results for several methods of de-jumping and conclude that, for
de-jumping methods which are a priori reasonable, it cannot be concluded that jump
expectations lead to bias in exchange pricing tests. Thus, although jump expecta-
tions are economically significant for the dollar-DM rate in 1984-1993, it seems that
“enough” jumps occurred in the sample, so that the “peso problem” is not a problem
for this period for the DM. For the dollar-Yen rate, there is no significant relation-

ship between jump expectations and the interest differential. Thus, unsurprisingly,

we also conclude that the “peso problem” cannot be taken as an explanation of the

1°Lyons (26] uses Black-Scholes implied volatilities as proxies for time varying risk premia in a
test of a risk aversion modified UIP Our approach is different in that we explicitly allow for jumps.
A recent working paper by Bates [10] also uses option-implied jump expectations to shed light on
the peso problem.
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substantial forward discount bias in the $/Yen rate.

2.2 The International Economy

We consider a world of L + 1 countries and currencies {0,1,...L}. The currency of
country 0 will serve as the measurement currency. There are n nominally risky assets
(e.g.. corporate debt and equity) in positive supply whose dnamics in terms of the

measurement currency is giver, by the jump diffusion equation:

d—,,’-’((t—” — [(Z,8) - NZ (2, 0) de
L)
+G;(Z, t)dw(t) + ki(Z,t)dq(t), (2.5)

where w(t) is an (n + k) dimensional standard Wiener process in R"**, ¢(t) is a
one dimensional standard Poisson process in R with jump intensity A(Z,t) whose
increments are independent of the increments of w(t), Z is a k-dimensional vector
of state variables, o;(Z,t) is a bounded function taking values in R, G;(Z,t) is a
bounded function taking values in R®"*+* while «;(Z,t) > —1 is a non-random function
taking values in R.

Defining the matrix G, as the n x (n + k) dimensional matrix whose i-th row is
G;(Z,t), we further assume that GG' is positive definite. For further reference we
define o as the n dimensional vector such that o; = o;(Z,t) and define K similarly'’.

The evolution of assets given in (2.5) follows the approach taken in Ahn and
Thompson [2]. The state variable Z is a k-dimensional vector process that evolves

according to:
dZ(t) = [pz(Z,t)dt — M(Z,t)Az(Z,t))dt + ¥ ,(Z,t)dw(t) + Az(Z,t)dg(t) (2.6)

where u(Z,t) and Az(Z,t) are hounded function taking values in ® and V ,(Z,1) is

a bounded k x (n + k) matrix valued function.

1In this paper, we will use A to denote a vector or vector valued function and A to denote the
corresponding matrix or matrix valued function that results from vertically stacking 4;'s.
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We consider a world with a single consumption good. There is a representative
agent ! from each country. An agent from country ¢ can purchase one unit of con-
sumption for Pi(t) units of the country 0 currency, where Fi(t) is a stochastic process

in # that evolves according to the dynamics:

dA(t) = [w — MZ,t)kp]dt + gpdw(t) + £pdq(t) (2.7)
P(t) |

where 1y and kp, > —1 are constants in R and gp, is a constant in R"**. Allowing
differeut countries to purchase consumption at different prices allews us to capture
deviations from purchasing power parity.

In addition to the equity assets, there are also assets which are in zero net supply,
such as bank deposits denominated in various currencies, forward contracts, and
option contracts. Our objective will be to characterize the dynamics of such zero net
supply securities, which will also follow jump-diffusion processes due to the generalized
It6 theorem for jump-diffusions. Given this fact, we can write down the price processes
for these assets as follows:

ar®) _

Fit) (3 = MZ, t)kp,)dt + Hidw{i) + krdg(t) (2.8)

where 4; and sy, take values in R and H; is in R"**. The value of 3;, K, and H, at
each point in time will be endogenously determined in equilibrium It is important to
note that we are simply providing notation for entities that w~ will later examine in
detail. We are not exogenously specifying the price processes since we allow 3;(t) and
kr,(t) and H;(t) to be randoni functions of time. We will be particularly interested in
the price process of various currencies in terms of the measurement currency and the
value of a bank account in the different countries again in terms of the measurement.
currency. We develop further notation for these assets. The spot exchange rate [,

measured in units of currency 0 per unit of currency [, evolves according to:

—d.ng(tt))' = [ol(t) - /\(Z, t)lie‘] dt + L,(t)dlu(t) -+ K'el(t)dQ(t) (2'9)
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An individual can also invest in ap instantaneously risk-less bank account in country

0 whose valve By evolves according to:

dBo(t) = 7'o(t)Bo(t)dt (2.10)

The country [ bank account B; in units of the country-l currency evolves similarly to
the equation above except with rate of growth equal to r((t). In units of the country

0 currency, this implies that:

‘f"((t‘)) = [n(t) + 6u(t) = Mm(B)] dt + Ve dw() + ey da() (211

Note that the diffusion and jump increments of the country ! bank account are the
same as those of that country’s exchange rate. In this model exchange rates are simply
the rates at which returns on country [ assets are translated into other currencies for
purposes of consumption. Thus, by determining the equilibrium drift on the country !/
bank account measured in currency 0, we are in effect also determining the equilibrium
drift 6; of the exchange rate. For simplicity of notation, we will simply refer to rq as
r for the rest of this paper. We will also treat the country 0 bank account separately
from the rest of the zero net supply assets and will not include it among the assets

referred to as F'.

2.2.1 Individual Optimization

We first consider the problem of an individual investor. An agent from country /

seeks to maximize
E [ /o e PU(Ci(2))dt| (2.12)

subject to conditions given below, where Ci(t), is flow consumption. The proportion
of wealth invested by agent [ in the positive net supply assets will be denoted a;, where
a; is an N-vector, while the proportion in the zero net supply assets will be denoted
h, where b is a k vector. Using 1), to denote an M-vector of ones, the remaining

proportion of wealth 1 — ajly — b1, (possibly negative) will be put into the country
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0 bank account. Thus the nominal wealth of agent [, W follows the jump diffvsion

process:
awy = [(r +ay[a—-rly]+ b [_/_3_ - r_l_n]) wy
~CiP = A (We (aiss, + bieerr) )| dt
+ [Wr (aiG + BH)] dw(t) + [Wr (ajsy + Yier)] da(?)
= (nwe — Mowg) Wodt + Weoweduw(t) + Wokwpda(t) (2.13)
where:

pwe = (r+ajla—rly]+4[8 - rL]) - CP/W?
uG + bH

Kwe = aQf,+bsp (2.14)

ag wlo

We will solve the consumers’ optimization problem, and characterize the resulting
equilibrium using ihe Bellman optimality principle. The agent selects a trading strat-
egy {ai(t),bi(t)} and consumption plan {Ci(t)} so as to maximize (2.12). We make
the standard assumption that the agent restricts attention to the class of admissible
feedback controls.!? At this point, we can make a simplifying re-normalization by
expressing the wealth process in units of the consumption good. By a simple appli-
cation of Itd’s lemma, we find that the wealth of agent ! in units of the consumption

good W, evolves according to:

dW, = W, (ﬂW,° - pp = A ("iwp - K,p‘) + (f},lap, - U;,V'o(fp) dt
Kwp — Kp
+W, (aW,o - ap,) dw(t) + ( T Kﬁ—) dq(t)
= Wi(uw, — Aew,) dt + Wiow,dw(t) + Wikw,dq(t) (2.15)

12See Fleming and Rishel [16].
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where:

pw, = Bwp — e — A (NW,° - np,) + 0pop — 0’{4/’00'}3
ow, = 0W,° —0Op
Kwe — Kp, .
Kw, = —t (2.16)
1+ kp

Because we have assumed in (2.7) that the price of consumption for each country
(in units of the country 0 currency) follows a geometric jump diffusion, the real
wealth process now becomes a Markov system. This is checked by verifying that the
parameters given in (2.16) can all be written as at most a function of time and W,.
Thus W, becomes a sufficient statistic for W and P, for the individual solving the
investment consumpticn problem. The variables that affect the maximum attainable
value of (2.12) at any given point in time, however, include not only W, and Z, but
also W; for all k # | as well. This is because one investor’s wealth will affect the
equilibrium rate of return required of the zero net supply assets and consequently will
affect the objective function of other investors.!> For notational simplicity, we define
Y; as the vertically stacked vector of Z and {Wj}xx. The elements of this vector are
in essence the relevant non-wealth state variables for agent /. Further define py, as
the vertically stacked vector of p'z and Wipuw, for k # I, oy as the vertically stacked
matrix of 0z and Wyow, for k # I, and Az as the vertically stacked vector of Az and
Wikw, for k # 1.

Define the maximum attainable value of (2.12) as J!(W,, ..., W1, Z,t). Under these
conditions, a necessary condition for optimality of the controls is given by the Bellman
equation:

i 1 _
max [£J' + U(C)] + =0 (2.17)

where L is the differential generator associated with the processes {{Wi}/z,, Z} so

13magine in a world with decreasing relative risk aversion that all investors except one became
rich. Then the rate of return offered on the zero net supply assets will tend to fall. The poor investor
would be even worse off because the rate of return on these assets has fallen.
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that:

L) = [uw, — Mw] Widy, + [uy, — My Jy,
1
+§ [‘/Vfaw,a'MJ{%Wl -+ 20Wl0';;l.]w‘y‘ + tr (O'yldgr‘.]y,y,)]

We assume that the solution J' is twice continuously differentiable and concave in W,
and once differentiable in t. The first order conditions resulting from the maximization
in (2.17) are:

Jw =U"(C) (2.19)

a-rly = Ri(GCu+GHb)
+ (1 - R() ga}, - gdyll-‘g

1\ (I
- Ak, [(1 T NP,) (Jw,) - 1] (2.20)

B-rlk = Ri(HHb+HGa)
+ (1 - R)) Hop, + Hoy T

1\ (3
Ak [(1 + NPI) (Jw;) - 1} (2.21)

where:
1
R = _Jww W (2.22)
Jw,
Jl
I, = Wiy, (2.23)
Jw,
JVT’L _ J{;V‘(VVJ(I‘FKW‘),Y%’AY”‘E)_ (2.24)
JW[ J‘V,(‘/Vl)),ht) '

Before aggregating the above quantities, it is worth making a few remarks about

the implications for asset pricing. The first line of equations (2.20) and (2.21) to the
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right of the equals sign are the risk premiums that result due to direct diffusion wealth

risk. The second line reflects the premiums that result due to individuals desire to

hedge against the diffusion risk of the consumption price fluctuating as well as other

state variables. The third line represents the premium resulting from jump risk. Just

as with the diffusion part of price risk, the premium does not disappear in the case
+

J . e
of risk neutrality ( 7% = 1) unless kp, = 0 (which corresponds in the diffusion case to
i

where op, = 0).

2.2.2 World Equilibrium

World equilibrium is characterized by the conditions:

L L
Iy (z wza,) YW, (2.25)
=0 =0

L
Y Wb =0 (2.26)
=0

This simply says that all the world wealth must be stored in the positive net supply
assets and that the net position in zero net supply assets must be zero. It is important
to note that this does not imply b, = 0. It is possible that some countries will hold
a positive or negative amount of a zero net supply asset-one country can be a net
borrower, like the U.S., or a net lender, like Taiwan.

Our objective will be to derive a testable version of (2.21). We follow Adler and
Dumas [1] and take a weighted sum of (2.21) over ! using the weights:

w

R’y
O - (2.27)
2[{;:0 ‘_[4-{,-:.

It will also be useful to defire R as the aggregate world relative risk aversion:
_ L1\~
R= (Z W,—) (2.28)
=0 Ry
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where:
T Wi
W, = — b (2.29)
Eﬁ:o ‘/Vk
By multiplying (2.21) by m; and summing over [, the b, terms disappear because of
(2.26) and we obtain:
Lemma 1: The rate of return of the zero net supply asset in the international

economy can be erpressed as:

Yol — Ry )YWop
Yieo(l— R7YW,

J+
moy, [t — Ak [(2 m ( o EP) vai) - 1] (2.30)
{ i

We can also obtain a familiar result from Cox, Ingersoll and Ross [13], Ahn and

B-rlg = é

a(-W?-f-g[l—ﬁ]

g

Thompson (2] and Bates [4] in our international jump-diffusion context:
Lemma 2: The rates of return on all securities in this economy that can be

written in the form 1°(S, Wy, ..W}, Z,t) can be represented as:
(ﬂp —’I'J_.K)F = [@s,q)wo,...,q)wb,(l’z] [FS,FWm---yFWL’FZ] /\AF[(S— 1] 2 31

where:

‘I)s = SO‘S\I’
(Dl = VVz[a,G+b_]\1’
‘I’z = O'Z\I’
Zz-o )VVIUP =
v = RS GaW,+|1- L+ » moyl
§ Wit (1R S W, T

AF = F(S(+ ks), Wo(1 + kwp), s WL(1 + kw, ), Z + Az, )
_F(S,W,, .. W,, Z,t)

5= Som () 2 (2.32)
- l=0‘ 1+kp ) Jw, '

By applying Itd’s lemma to F(S, Wy, ..., W, Z,t) and equating the resulting drift

of F with that obtained in Lemma 2, we find the differential-difference equation that
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must be satisfied by these assets:

L
rF = F,+ FsS[r — Mokg] + Z Fw,Wi[r — Ci/W; — Mokw,)
=0

.....

+AAF (2.33)

where V'V (F) is short-hand for the second order terms in the Itd expansion of F'.
By using an argument along the lines of Merton (28, Appendix] and Bates [4]

this differential-difference equation allows us to deterrnine the process that prices will

follow under the equivalent martingale pricir.g measure (cf. Harrison and Kreps [18]).
Lemma 3: The processes under the equivalent martingale pricing measure Q

evolves according to:

dS = S[r— MNkgldt + Sosdw®(t) + Sksdq(t) (2.34)
dW, = Wir — Ci/W; — Nkw,|dt + Wiowdw®(t) + Wikw,dg(t)  (2.35)
dZ = [pz — @z — MAZ]dt + ozdw*(t) + Azdg(t) (2.36)

where under Q, w*(t) is a Wiener process and q(t) is Poisson process that increases
by 1 with probability \* = A\ per unit time.

This result will greatly facilitate our empirical implementation since the only
parameters we can directly recover from option prices are the parameters of the
equivalent martingale pricing measure. Combining Lemmas 1, 2, and 3 we obtain:

'Theorem: The pure diffusion part of the price process has an ezpected rate of

return which by definition is equal to f — Akp. In equilibrium, this can be written as:

ZIL=0(1 - Rl—-l)WlaPI
EIL=0(1 - er)”/l

L
B-Akp = tlx+RHY GaWi+H[1-F
=0
L
+£Z1r¢0y‘ﬁ - NKp (2.37)
=0

where \* is the Poisson jump probability of the equivalent martingale pricing measure
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given in Lemma 8. This can also be written wn the follouwnng form:

B; — /\ICF' =r + R Cove (dWworld dE)

Wuorta ' Fi
(1- R7HYW, dP, dF;
1-R L C
“ ]z(ao(l—m )W) e (P: F)
dF; \
+ Zm Cove | Iy;'dY;, —=* 7 T — Akp (2.38)
=0 i

where Wyoria s world wealth and Covc(%, “‘—Y) is the covariance of the pure diffusion

component of X andY.

2.2.3 Some Testable Cases

The asset pricing models presented so far will be difficult to implement empirically

unless we make further assumptions on the utility function. Our first step will be to

assume that all agents have the same utility functions reflecting constant relative risk
l--y_l

aversion or Ui(C) = Q—l—— for all I. In this case, it is straightforward to verify that

JW,Y) = f(Y)U(W) + g(Y) so that R; = v. In this case (2.37) reduces to:

—_ dWworld dE dF 1 (lF
Bi— Akp, =1 + 'yCovc(mew,E_) 1 'y]ZWICovC(P F)
L dF;
Z OVC (IY d}/[, F ) F[()’l) /\'KIF' (2.39)
=0

Applying the above result to the case where the asset in question is the country [
bank account, by (2.11) we can rewrite the rate of return on the pure diffusion part

of the currency exchange as:

bs, — Ay =1 -1 + 'yCovC(m )+[1—-7]ZV[ Cov((n 9:)
L Lo dS)
Z W COVC (Iy‘ dY(, S ) F[(Yl) /\’Ii[ (2.4())
=0

In the case where v = 1, or in other words U(C) = In(C), it can be verified that
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J(W,Y) = In(W)/p+ g(Y), so that:

B; — /\&Fi =71+ Covg (QWW_E%, dFF‘l) - /\*K'Fi (241)
wor i

and for currencies:

Os, — Ay =1 —1+ Covc( ,
! Wworld Sl

Note that (2.42) gives an expression for equilibrium expected depreciation along
a continuous path of the exchange rate, that is, the sort of path which is actually
observed during a peso problem period. Hence, it is natural to use this expression
for expected depreciation given that no jumps occur to conduct exchange rate pricing
tests which are robust to the peso problem. The right hand side of (2.42) depends
on the risk-neutral parameters of the jump process but not the true distributional
parameters. This is convenient since it is precisely the risk-neutral parameters which

can be recovered from observed option prices.

2.3 Empirical Implementation

2.3.1 One—Month Exchange Rate Dynamics

When log-utility of investors is assumed, the instantaneous expected depreciation of
the country ! exchange rate S;, measured in units of currency 0 per unit of currency

I, is given by (2.42). Thus, dropping the subscript [ for simplicity, defining r* = 7,

and ¢ = Cove (%ﬂr’;{f, 4-3‘-9-), we can write the instantaneous dynamics of the exchange
rate as

dS

= = [r —7* + ¢ — Nkldt + o(t)dz(t) + x(t)dq(t) (2.43)

Note that we have also made the substitution V (t)dw(t) = o(t)dz(t), where o is

scalar and z(t) is a one-dimensional standard Wiener process.
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Since instantaneous returns are not observed, we must integrate (2.43) over some
discrete time interval to derive an empirically testable equation. In order to do the
integration, we shall make further assumptions about how the parameters of the
exchange rate process evolve over time. Suppose that there is a time interval [ty, T
which has been divided into N subintervals [to, 1], [t1, 2], ...[t~v—1, T], each of length
T = t;+1 — t;, where 7 is taken to be one month. The parameters o, A, and k are
assumed to be constant over the course of the month, as is the interest differential.
Because we wish to concentrate on the ”peso problem” effect of a time-varying jump
expectation, the diffusion risk premium ¢ is assumed constant over the entire interval
[to, T). Given these assumptions about the parameters, we can integrate to find the

log exchange rate depreciation over month i:

2 1
AS; = log [:9%] = [(ri—7])+0¢— 503 — AjKi]T —

+  0i[z(tis1) — 2(t:)] + nilog(l + k;) (2.44)

The subscript 7 indicates that although the parameters and interest rates are assumed
constant over a given month, it is nonetheless possible that they may vary from month
to month. This allows us to capture possible non-stationarities in the exchange rate
process.

We can decompose the one-month depreciation into continuous and discontinuous

components in the same way that we did for the risk-neutral example of section 2.1:
AS;, = AeS;i + AS; (2.45)

where

1
AcS, = [ri—r1/+0- 503 — N + ailz(tiv) — 2(t:))

AsSi = n;log(l + ki)

If jumps have low probability, during most months no jumps will occur (n, = 0),

so that the observed depreciation AS, is equal to the continuous component A S,.
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The continuous depreciations will be made up of (i) the interest differential, (ii) the

mean zero Wiener error term, and (iii) an extra drift term d; = (¢ — 307 — Ajri]7.
The quantity ¢ is the premium investors demand for bearing the diffusion risk due
to normal daily movement of the exchange rate. Similarly, —Afk; is the extra drift
demanded by investors along the no-jump path in compensation for the possibility

of occasional large jumps. The final term jo? is due to Ito’s lemma or Jensen’s

i
inequality and arises when we continuously compound the instantaneous exchange
depreciation over a discrete interval.' It follows that during a period with few or no
jumps, regressions of er post depreciation on the interest differential will be subject
to a bias due to omission of the term d;. If d; is negatively correlated with the interest
differential, the regression coefficient will be biased downward, as is commonly found
in the empirical literature. This suggests that, if the term d; can be estimated, we

can eliminate or at least reduce the bias by running a regression of the following form:
1
AcS; + [A:K«i + -2'0'?]7' = ¢7 + ,B(Ti - 7‘;)7’ + €; (2.46)

Again, the diffusion risk premium term ¢ is treated as time-invariant and hence is
part of the intercept in the regression.'s

Below we present evidence that, for the $/DM exchange rate, the option-implied
“peso problem” term A!x; indeed has significant positive correlation with the interest
differential. This does not hold for the $/Yen rate, however, which shows a slight
negative correlation of jump expectations with the interest differential. The option-

implied Jensen-Ito term %a? is shown to be small and have slight negative correlation

14The Jensen-Ito term will typically be very small, perhaps 50 annualized basis points. Nonethe-
less, as Bekaert and Hodrick [11] point out, this term is likely to be time-varying and correlated
with the interest differential in some way, and hence is a priori a potential source of bias in forward
discount regressions. They account for this possible bias using a GARCH model for o? and Monte
Carlo simulation and find that little if any bias can be attributed to the Ito-Jensen term. Our
conclusion using the option-implied o7 is essentially the same.

15A time-varying diffusion risk premium ¢; could in principle be estimated using daily data on
a world equity index along with daily exchange rate data. We do not pursue this because (i) we
wish to concentrate on the time-varying "peso problem” term, and (ii) previous attempts to explain
the forward discount bias using risk premia such as this, i.e., covariances with world wealth, have
typically found that the resulting risk premia do not vary enough to explain the forward discount.
See, for example, Lewis [24] for a survey of evidence on this point.
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with the interest differential for both the DM and the Yen, so that it cannot account
for any of the forward discount bias. Note that the exchange depreciation A¢S; on
the left hand side of the regression is the continuous depreciation, which is equal to
observed depreciation during most months. However, if the sample contains a few
months during which jumps actually occur, the monthly return must be “de-jumped”
in some way. Details of this de-jumping are treated in section 2.4.

Because 307, and Ak; are estimated quantities, we have moved them to the left-
hand side of the regression to avoid the error-in-variables problem. Thus, the regres-
sion error term ¢; will be made up of estimation error as well as the normal white
noise exhibited by the exchange rate along its continuous, or “no-jump” path.

We emphasize once again that to conduct the test in (2.46) we do not need an es-
timate of the true jump frequency J\;, but rather an estimate of the “risk-neutralized”
jump frequency A;. This is fortuitous because it is precisely the risk-neutralized pa-
rameters which can be estimated from options prices. Under our assumption of a
non-stochastic jump size k;, the risk-neutral jump size is equal to the actual jump
size. It is also the case that the risk-neutral o; is equal to the true o;, since it is
an “almost sure” property of the exchange rate path and hence is preserved under
the change to the equivalent martingale measure. In the next section we discuss the
method used to estimate the option-implied parameters. In Section 2.3.3 we examine
the properties of the option-implied parameters and in Section 2.4 we discuss the final
result of running the peso-problem-resistant test of exchange rate dynamics given by

(2.46).

2.3.2 Estimation of Option-Implied Parameters

The options data used are from the Philadelphia Stock Exchange (PHLX) and consist
of transactions data on foreign currency options traded between January 1984 and
December 1993. Options on the Deutschemark and Yen were considered because they
are the most heavily traded. PHLX currency options are written on the underlying
cash market on the respective foreign currencv—not the futures market as is the case

in the Chicago markets. Each observation consists of the pri - - 7 r the option, the

80




Telerate spot exchange rate at the time of the transaction, and the term to maturity
and strike price of the option. The options data for June through November of 1985
cannot be used due to severe errors in reporting during that period.

Because the majority of currency option transactions on the PHLX are of Amer-
ican style options (96% of the Deutschemark option transactions are American—
almost all transactions were American prior to 1991), we chose to work with the
American options in order that we do not run out of observations in many of the
years prior to 1991. A drawback of using American options is that there exists no
analytic closed form formula for the price of an American option. One must either
use a finite difference backward marching scheme or rely on an analytic approxima-
tion of the American option price. Because the non-linear least squares regression
we use to invert the options prices is an iterative method, relying on finite difference
methods would make the whole procedure prohibitively time consuming. Instead, we
rely on an analytic approximation proposed by Bates [6] which extends the work of
Darone-Adesi and Whaley [5] and MacMillan [27] to the case where the underlying
asset price follows a jump-diffusion process.

As pointed out by Bates [6], theoretical pricing of PHLX options must also take
account of delivery lags. According to PHLX contractual agreements, an American
option is settled in 5 days after expiration and 7 days (5 business days) after carly
exercise. Given these contractual specifications aud the equilibrium « change rate
dynamics described by (2.43), one can arrive at the following approximation to the

American put or call price:

Ug(pe) + (£)" [pe- (678" — e K) - Ui(pe)] if S < 5°
pe- (eS8 — e K) if $ > S*
(2.47)

where pc takes the value 1 if the option is a call and —1 if it is a put, S is the value of

W 4(pc) =

the underlying exchange rate, K is the strike price, 75 is the delivery lag after carly

exercise, and S* is the level of the exchange rate at which it is optimal to exercise
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early and hence satisfies the following equation:'®

S )q [pc . (e..r"rgst _ C—rnl{) _ \I’E(PC)] (2.48)

S* = argmaxg. (§ |

while the parameter of curvature g satisfies:

1 1
502(12 +(r—r*- 502 - X'K)q —

o +A1+6)T-X=0 (2.49)
and U g(pc) is the corresponding European option price, as shown in Merton (28] and

Jones [20]:

Vp(pe) = e+ S P(n) - pe- [Se TN (pe - dyy) — KN(pe- dy)|  (2.50)

n=0

where:
—=A"T(\*.-\N
P(n)=£—-(-;\—1 (2.51)
n!

and 7 is the deli .ry lag after expiration, N(.) denotes the cumulative normal distri-
bution and:

by =7—71"-- ANk +nlog(l+k)/T (2.52)

log(S/K) + (r — r*)1y + (ba + 02/2)T

din = 0\/7_'
5 -r - - o2
d2n = lgtg(s/K) + (7‘ ‘:\/);l 4 (bn 4 /2)T (253)

M
1=1

A set of observed option prices {y;},_, will ir. all likelihood not fit the parametric
specification. A set of three options along with the price of the underlying asset. and
the othe. observable inputs to the option pricing function will uniqueiy determine
A*, % and 6. Any other set of three options will probably produce another set of AR
and . 'This is a probiem common t¢ all option pricing models. The likely reasons for

this is thai (i) the assumed modei is misspecified, (ii) some options are thinly traded

16The first order condition of this maximization is equivalent to the smooth pasting condition
derived i Baces.



and trades d» not take place at “true values”, (iii) trades take place at bid and ask
prices instead of at the “true value,” (iv) investors make errors in evaluating the “true
value” of the options. All four reasons are likely play a role. We will assume that our
specification is approximately correct and that, the majority of the errors come from
factors (ii), (iii) and (iv). We further assume that the deviations of the observed prices
from the “true values” can be expressed in terms of a mean zero random variable that
is independent of the arguments entering the option pricing formula.

By taking a set of options traded during a given day, we can “invert” these options
to find the implicit parameters used by option traders during that day.'” A consis-
tent estimate of A\*, k and o is obtained by the following non-linear least squares

regression:'®
M

{/\",’ ka a} = argmink‘.n,a Z (yi - \I"i(pc))g (254)

i=1

Due to the over-abundance of data in many months, we construct a sub-sample of
the data as follows. Our objective was to pick one trading day in a given month
and take options trading in that day that all had the same expiration date. We also
wanted at least 50 options. We start with the first trading day of a given month and
find the expiration date that was less than 120 days away with the most options. If

that set contained at least 50 options we used that set. Otherwise we proceeded to

the next trading day.

2.3.3 Jump Expectation Estimates

For the $/DM rate, the results of the monthly non-lincar least squares regressions
along with the asymptotic approximations to the standard errors are reported in
Tables 2.5 through 2.9 appended to the end of this chapter, while the monthly time
series for the jump expectation of the $/DM exchange rate A*« is shown in Figure
2-1. Although the estin.ates for A\*+- are of a tairly reasonable ordcr of magnitude,

the estimates of the individual components A* and k are somewhat less believable. In

17While conceptually straightforward, the process of inverting for the option-implied parameters
is computationally challenging. The appendix describes some of the computational techniques used.
18Consistency is achieved as the number of options M — oo.
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the space of \* and & (for a fixed value of total variance'?) there is an approximate
hyperbolic ridge in the least squares objective function—the objective function 1s
peaked for one value or A* x k.2 The individual estimates of A\* and &, however,
are not well estimated because the peak of the ridge is not very well identified - the
objective function takes on similar value for all points on the ridge.?'

The jump expectation is quoted in annualized terms. Hence, 0.05, or 5 per cent,
corresponds to a expected depreciation of 0.425 per cent over a single month (A* is
measured in a scale of probability per unit of time while x has no time dimension).
except for the case in which investors are risk-neutral, this is not the depreciation Ax
due to jumps which is expected by market participants. Rarher it is the equivalent
martingale or risk-neutral jump expectation A\*x, and as such may be interpreted as
the extra drift which the market demands along a no-jump path in compensation
for the possibility of jump depreciation with expected value Ax. Nonetheless, it will
likely be the case that the true jump expectation and the equivalent martingale jump
expectation are highly correlated, so that we may think of one as a proxy for the
other. It is certainly true that the estimated equivalent martingale jump expectation
is of an economically reasonable magnitude.

The time series of A*4 seems to agree with the qualitative stories told about the
dollar in the 1980’s and 1990’s. During the mid-1980’s when the dollar was thought
to be overvalued it was indeed the case that participants in the options market were
expecting dollar depreciations due to jumps. These results are in gencral accord
with those of Bates [4],[5] who also found substantial expected jump depreciations for

his sample of 1984-87 using CME options on Deutschemark futures.?* Interestingly,

19The objective function is maximized for one value of total variance, v, almost regardless of the
other parameters.

20The estimates for x can sometimes be quite large especially when A* is small. This is not
surprising since when X* is very small, & does not much influence the pricing functioa. This is the
reason why the standard errors can be very large for x when A is small.

21 There were also two months out of the total 114 for which the non-linear least squares procedure
did not converge. For the yen there was one month that did not converge.

221t ig unfortunate that the PHLX options price data are completely contaminated and hence
unusable for the months June-November 1985 which includes the post-Plaza Accord crash of the
dollar. The expected depreciation for April 1985 is large, perhaps indicating anticipation of the
eventual decision of the G-5 to bring the dollar down.
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Figure 2-1: Jump Expectations A*x for the DM

occasional fears of dollar depreciation due to jumps persisted until the late 1980’s, even
though the dollar was on a steady downward path during this entire period. January
1990 marks the start of a new period during which there are many months when
the market was calm, with essentially no expected depreciation due to jumps. These
calm months are interspersed with months when there are fairly dramatic expected
appreciations.?® This later period coincides with the time that the economic problems
associated with the reunification of Germany became apparent. Market observers
claimed that the tight monetary policy implemented by the German government
could not be sustained given the severe recession in the former East Germany. It
was believed the Bundesbank would eventually have to lower its rate and would
consequently send the Deutschemark tumbling.?!.

It is interesting to note that the two months with the most dramatic jump expecta-
tions are October 1987, when a crash occurred in the U.S. stock market, and October

1992, the period of the ERM crisis. In October 1987 there was a 6.7% expected

%3Bates [6] estimates option-implied exchange rate parameters under an assumption of time-
invariance of the parameters over the entire period 1984-1091 and concludes that there is no statis-
tically significant jump component in the dollar-DM exchange rate. There arc at least two ways to
reconcile this result with ours and with Bates' results. First, because Bates assumes time-invariance
of the parameters in [6], the fact that the jump expectations shown in Figure 2-1 arc large and
time-varying may be masked. Second. Bates allows for stochastic volatility of the continuous com-
ponent. of exchange rates while we do not, so that we may be imputing skewness of the exchange
rate process to the jump component, when it is in fact due to stochastic volatility of the continnous
component.

24Gee Dornbusch [14]

85



dollar depreciation while in October 1992 there was a 16.7% expected Deutschemark
depreciation. In both cases, the currency of the country in crisis was expected to

jump down.

- Jump Expectation - Interest Differential
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8a 85 @85 87 83 @ 90 91 92 a3
Year

Figure 2-2: A\*x for the DM & U.S.-German Interest Differential

The broad picture presented by the option-implied jump expectations is one of
expected depreciation due to jumps during 1984-1989 and expected appreciation
thereafter. As Figure 2-2 shows, this pattern of expected jump depreciation closely
tracks the behavior of the U.S.~German one month interest differential. During the
earlier period of expected depreciations, the inteiest differential is positive (i.c., a
dollar forward discount), while in the latter period of expected appreciations the
differential is negative. The correlation between the interest differential and the
jump expectation is 0.30. As the first row of Table 2.1 indicates, a linear regression
of the jump expectation on the interest differential yields a statistically significant
slope coefficient of 0.19, indicating that when the interest differential widens by 100
annualized basis points, fears of iump depreciation increase by 19 basis points.?

As was pointed out in section 2.3.1, during a period when jumps are expected
but few or none occur, regressions of er post depreciation on the interest differsitial
will be biased downward if the differential and the extra drift term d; are negatively

correlated. Since —\}k; figures prominently in the drift term d;, the fact that, for the

2 Excluding the two outliers October 1992 and October 1987 does not change this significant
positive relationship between the jump expectation and the interest differential. Throwing out the
outliers gives a slope coefficient of 0.11 with an OLS standard error of 0.04.
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Table 2.1: Option-Implied Parameters and the Interest Differential: $/DM

LHS Variable | Constant Slope

AlKi -0.00196 | 0.19038
(0.00209) | (.05666)

507 0.00782 | -0.01384

(0.00028) | (0.00767)
Nk + 107 0.00586 | 0.17655
(0.00210) | (0.05672)

Standard errors in parentheses. OLS regressions of the jump expectation, the Jensen-Ito term, and
the sum of the two on the one-month U.S.-German Eurocurrency interest differential. Run on a
sample of N=111 months during the 1984-1993 period, excluding June-November 1985 and months
with thin trading in options.

$/DM rate, A}x; is strongly positively correlated with the interest differential means
that the “peso problem” will be responsible for some of the forward discount bias
if few or no jumps occur in-sample. Of course this does not necessarily mean that
there will be too few jumps in the sample. In section 2.4 we will consider evidence
which suggests that while jump expectations were economicaily significant during
1984-1993, “enough” jumps occurred in the $/DM sample, so that the peso problem
is not an explanation of the forward discount bias in this period.

Figure 2-3 gives the monthly time series of the option-implied continuous volatility
;. The volatility figure, which is annualized, varies from a high of about 18 per cent
during the summer of 1985 to lows which are below 10 per cent duriug many months in
the sample. The correlation of the Ito-Jensen term ;o7 with the interest differential
is small and negative, about -0.17, so that this term is unlikely to help explain the
forward discount bias. This accords with the conclusion of Bekaert and Hodrick [11],
who use GARCH estimation and Monte Carlo methods to simulate a time-varying
,:-,a,? and find that it has no explanatory power in forward discount regressions. Of
course, as the regression (2.46) shows, it is the relationship of the composite term
Ak; + 107 to the inerest differential which is of ultimate interest. The final row of

Table 2.1 shows that the positive relationship of the jump expecration to the interest

differential dominates, as the composite term has a significant and positive slope
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coefficient in a regression on the differential.
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Figure 2-3: Diffusion Volatility for the DM

Turning to the $/Yen rate, Figure 2-4 displays the jump expectations while Tables
2.10 through 2.14 appended to this chapter show the estimates and standard errors.
There are some similarities here to the $§/DM case. In the period from 1984 to
1985 there are fears of dollar depreciations from jumps. Again it 1s possibie that
market participants feared the coordinated attempt by the G-5 to bring dowr. the
dollar that ultimately ook place in late 1985. After this period, from 1986 to late
1988 there remained fears of a dollar depreciation although much smaller than what
was expected earlier. From 1989 to late 1990 there are months with dollar expected
depreciations interspersed with months of large expected dollar appreciations. After
1990, any similarity to the DM-dollar jump expectations end. From 1991 to mid
1992, there are consistent fears of dollar depreciation. Starting in mid-1992, trading
in Yen options became so thin on the PHLX that for many months there was not a
single day during which more than 50 options with the same maturity were traded.
From July 1992 to December 1993, 10 of the 18 months did not have enough options.
Given the thin-ness of trading, it is not surprising the estimates are so erratic even
in months which meet our minimal standards for inclusion in the sample. It may be
that, with such small trading volum.., options traded at prices far from their “true”
value.

Figure 2-5 displays the time series of the yen jump expectation together with the
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Figure 2-4: Jump Expectations A*x for the Yen
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Figure 2-5: A\*k for the Yen & U.S.-Japan Interest Differential
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Table 2.2: Option-Implied Parameters and the Interest Differential: $/Yen

LHS Variable | Constant | Slope |

A ki 0.01150 | -0.05844
(0.00649) | (0.23259)
T 0.00621 | -0.02013

(0.00041) | (0.01477)
N+ Lo? 0.01771 | -0.07854
(0.00652) | (0.23376)

Standard errors in parentheses. OLS regressions of the jump expectation, the Jensen-Ito term, and
the sum of the two on the one-month U.S.-Japan Eurocurrency interest differential. Run on a sample
of N=99 menths during the 1984-1993 period, excluding June-November 1985 and montls with thin
trading in options.

U.S.-Japan one month interest differential. The $/Yen rate presents a stark contrast
to the case of the $/DM rate. The jump expectation has a weak negative relationship
with the interest differential. The correlation between the interest differential and
the jump expectation is -0.03. The first row of Table 2.2 shows that a regression
of the jump expectation on the interest differential yields a slope coefficient of -0.06
and an OLS standard error of 0.23.26 Hence, we must conclude that, even during
periods when few or no jumps occur, the “peso problem” jump expectation term
cannot explain the forward discount in the $/Yen rate.

The option implied estimates for the yen’s continuous volatility are plotted in
Figure 2-6. As is the case for the DM, the Jensen-[to term %0? has a negative though
insignificant relationship with the interest differential. The regression in the middle
row of Table 2.2 shows a slope coefficient of -0.020 with standard error of 0.015.
The composite term A}k; + 307 also has a negative but weak relation to the interest

differential, and hence can have no power in explaining the forward discount bias.

26This weak negative relationship holds even when the suspect estimates from post- 1992 are
excluded. In this case, the correlation is -0.0012 and the regression coefficient is -0.0013 with an
OLS standard error of 0.12.
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Figure 2-6: Diffusion Volatility for the Yen

2.4 A Peso Problem Resistant Test

The results of the previous section suggest that the peso problem may account for
some of the forward discount bias in the $§/DM exchange rate, provided that few
jumps occur in sample, but that it canno. account for any of the bias in the $/Yen

exchange rate.

The first row of Table 2.3 reports the results of a simple UIP regression of monthly
ez post exchange depreciations on the one-month U.S.-German Eurocurrency inter-
est differential and a constant. The estimation period is 1984-1993. Because we
will be comparing the results from this benchmark regression to those of the peso
problem resistant test, those months in 1985 for which options data are misineasured
(June-October) have been excluded. The benchmark is typical of forward discount
regressions in that the iuterest differential coefficient B = 0.245 is less than one,
although this is not statistically significant.

The peso problem resistant test involves running the following regression:

1
AcSi + M kiTi + 50,-% =a+¢r+B(ri— )T+ e (2.55)

The test is motivated by the obsecrvation that during peso problem periods most or
all of the realized exchange depreciations are of tlL.. continuous type A¢S;, so that

it is natural to conduct exchange pricing tests which address the dynamics of the
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Ta' te 2.3: Peso Problem Resistant Regression: §/1DM Exchange Rate

Jumps | MID | MJA | a+¢r Jé)

Benchmark - - - 0.00237 | 0.24500

(0.00337) | (1.0802)

f=38 0 - - | 0.00286 | 0.40179

| (0.00340) | (1.0914)
f=5 1 [0.0454| - | 0.00247 | 0.32715
(0.00347) | (1.1148)
f=4 3 [ 0.0454 [ 0.0250 | 0.00306 ! 0.02130
(0.00352) | (1.1310)
| f=35 9 [0.0149 [ 0.0142 | 0.00372 | -0.2512
(0.00353) | (1.1355)

f=325 20 | 0.0149 | 0.0137 | 0.00440 [ -0.31226

(0.00348) | (1.1170)

Standard errors in parentheses. OLS regressions cun on a sample of N=111 months during the
1984-1993 period, excluding June-November 1985 and months with thin trading in options. The
; Benchmark regression in the first row is the standard UIP regression of ez post monthly depreciation
§ on the one-month U.S.-German Eurocurrency interest differential. The rest of the rows in the table
are the peso problem resistant regressions performed with monthly depreciations de-jumped at filter
level f. The column “Jumps” reports how many of 2,316 business daily returns in the sample were
deemed to be jumps at filter level f. MJD and MJA report the smallest daily depreciztion and the
smallest daily appreciation deemed to have a “jump” component at filter level f.
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exchange rate along the continuous path. While conceptually straightforward, the
decomposition into continuous and jump components may be difficult to implement

during periods when it is not clear whether jumps occurred or not. Jumps must be

identified and extracted before the regression (2.55) can be run, since it involves only
the continuous one month depreciations A¢S;.

We use daily exchange rate data from the Bank for International Settlements to
identify jumps.?” An ideal jump filter would use information about all of the impor-
tant parameters of the exchange race process, namely oy, A;, and &;, to identify which
daily movements are most likely to be jumps and which are not. Unfortunately, while
we have an option-implied o;, we have only an estimate of the equivalent martingale
jump frequency A} and not the true distributional frequency A;. Further, as was dis-
cussed in section 2.3.3, although the estimate of the product Af«; is well-identified
and of an economically reasonable order of magnitude, the estimates of the individ-
ual parameter x; are somewhat unbelievable. There are many months in which &;
is well in excess of 10 per cent in absolute value. Keep in mind that x; is the in-
stantaneous per cent depreciation if a jump occurs, and that there were no one-day
depreciations greater than 4.5 per cent in the entire 1984-1993 sample. Hence, using
the option-implied k; in a dejumping exercise will give misleading results. In the
absence of plausible estimates of A; and &;, we opted for the following compromise.
The exchange rate depreciation for a given day was termed a “jump” if it satisfied

the criterion
Dail 1 .
| AGYY — (ri —r{)Ta + (-2-0,2 + ATk)Ta | > foi/Tu (2.56)
where 7, is onc day during the business weck and three days for weekend depreciations
which take place between mid-day Friday and mid-day Monday. The integer ¢ indexes

the month in which the given daily rxchange depreciation took place. The quantity

on the left hand side of the inequality is the daily exchange rate appreciation in

27The higher the frequency of the data, the easier it will be to identify jumps. In the limiting
case of continuous time sample paths of the exchange rate, once could presumably distinguish the
discontinuous jump movements from the continuous Wiener increments by inspection.
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excess of the drift implied by our model.?2 The filter level f is a positive number.
For f = 2, a daily depreciation will be called a jump if in absolute value it is two
option-implied standard deviations away from zero, the mean of the continuous excess
return. Thus, while we are not using any information about the individual jump
process parameters k; and );, our filter is nonetheless reasonable in the sense that it
identifies daily movements which are unlikely to have come solely from the continuous
component. Once the jumps have been identified, a de-jumped monthly return Ac.S;
can be calculated. The assumption of a geometric jump-diffusion process allows us
to add up the daily log exchange rate differences to obtain the monthly depreciation,
excluding the excess return for any days in which jumps occurred.

The second row of Table 2.3 reports the result of regression (2.55) using filter level
f = 8, or 8 option-implied standard deviations from zero. At this filter level there are
no jumps in the sample, so that AgS; = AS; for all months. The interest differential
coefficient is 8 = 0.4018, which is closer to one than is the case for the benchmark
regression, although the estimate is not significantly different from either zero or one.
Thus, if we believe that the option-implied jump expectations reflect. fears of jumps
so large that in fact none occurred during the 1984-1993 sample, we could conclude
that the “peso problem” is responsible for a portion of the downward bias in the
point estimate of 8. Note that the option-implied estimates of «; do little to disabuse
us of the idea that the expected jumps were of catastrophic size. The majority of
the estimated x;’s are in excess of 0.10 in absolute value, indicating instantaneous
appreciations or depreciations in excess of 10 per cent if the jump occurs. This is
at odds with the fact that were no daily movements in the 1984-1993 sample greater
than 4.5 per cent.

The remaining rows of Table 8 give the results of regression (2.55) for progressively
lower values of the filter level f. For each value of f the table reports how many

of 2316 business daily depreciations in the sample were deemed to be jumps. The

28The drift is included for the sake of correctness. However, at daily frequency the dritt. will not
be very important relative to the the continuous Wiener innovation, since the latter is of order of V1)
and the drift is of order o(t). Note that the filter (2.56) implicitly sets the constant diffusion risk
premium ¢ to be equal to zero.
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columns MJD and MJA report the smallest daily depreciation and the smallest daily
appreciation which were deemed to be jumps at filter level f. For example, there
was only one daily movement in the sample more than 5 option-implied standard
deviations away from zero. ifor f = 5, the S coefficient is still larger than in the
benchmark regression, though not dramatically so.

For f of 4 and lower, the estimated § coefficient is smaller than in the benchmark
regression. Hence, if it is the case that a filter level of 4 or smaller is “correct” in
the sense that it identifies movements which are truly jumps, then the peso prublem
cannot account for any of the downward bias in the ccefiicient 8. While this can hardly
be the last word on the matter, it seems a priori reasonable to consider movements
which are 3.25 option-implied standard deviations from zero as “jumps.” If this is the
case, we must conclude that, while jump expectations were significant during 1984-
1993, “enough” jumps actually occurred, so that the peso problem is not a problem
for this sample. This does not rule out the existence of sub-periods where jumps were
expected but did not occur. Moreover, the demonstrated strong positive ccrrelation
of expected $/DM jump depreciation with the interest differential indicates that the
peso problem will indeed account for some of the forward discount bias during such
sub-periods.

The $/Yen rate poses an even greater challenge to the UIP intuition than does the
$/DM, in the sense that the benchmark g coefficient is in fact negative, and nearly
significantly so, as shown in Table 2.4, Unfortunately, it has already been shown
that, for the $/Yen exchange rate, the composite option-implied term A} + 207 has
a slight negative correlation with the interesi differential and hence will be unable to
explain any of the substantial forward discount bias. This is true independent of the
method used to de-jump the monthly returns. Table 2.4 confirms this. For c.ch of
the filter levels between f = 3.25 and f = 8 considered, the peso problen: resistant
B is in fact more negative than the benchmark value of § = —3.0117. In most of
these cases the coefficient 3 is significantly different from one and very near to being

significantly different from zero.
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2.5 Conclusion

The most interesting and robust empirical finding in this paper is the strong positive
correlation between the monthly option-implied jump expectation and the one-month
U.S.-German interest differential. This positive correlation implies that, during sam-
ple periods when few or no jumps occur, regressions of ez post depreciation on the
interest differential will have coefficients biased downward. However, one cannot con-
clude that the peso problem causes bias in a regression over the entire 1984-1993
sample unless it is the case that too few jumps occurred during this sample. More-
over, the positive relationship between expected jump depreciation and the interest
differential does not hold universally, as the $/Yen case shows.

Because the final results of the peso problem resistant test are sensitive to the
de-jumping method, it is inevitable that prior beliefs about what is a jump and what
is not must enter our analysis. If one believes that option-implied jump expectations
referred to events which were so rare that none or almost none occurred during 1984-
1993, then the peso problem resistant regressions for the $/DM exchange rate can
be taken as evidence that the peso problem was a reality in this period. However,
it may be more reasonable to identify daily movements 3.25 option-implied standard
deviations from zero as “jumps.” This leads to the conclusion that “enough” jumps
occurred in the 1984-1993 period to render the peso problem a non-problem for the
$/DM exchange rate. For the case of the the $/Yen rate, the peso problem must be

deemed a non-problem regardless of the method of de-jumping which is used.
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Appendix: Computational Considerations

In theory, the inversion process is straightforward given the setup above. The actual implementation
of this procedure however presents many computational challenges and consumed most of our time.
We spend some time here on the problems that came up and the method we used to tackle them.
Some of the techniques we present should be useful even to options researchers who are not planning
on inverting for jump diffusion parameters.

First, one must come to terms with the problem of calculating the European jump diffusion
option price ¥g(.) which is expressed in closed form only as an infinite series. This European
formula is an integral part of the analytic approximations used for the American formula. The
standard approach used to calculate this formula is to simply determine a cut off level for the
number of terms in the sum based on the parameters. We found that such a method would require
a very large number of terms and would make the inversion process extremely time consuming.
We noticed, however, that the number of terms required for accuracy was much less for the puts
compared to the calls when s was positive. The reverse was true when x was negative. One can
take advantage of this tc reduce the computation time for all options using put-call parity. We will
return to this shortly. The reason why fewer terms are needed for the puts relative to the calls when
& > 0 can be understood by taking the simplified case of 2 pure jump process. The put price in this

case (ignoring delivery lags) would be:

e i P(n) (K — eV RTS(1 + n)")+ (2.57)
n=0

Each term of the sum inside the (.)* reflects the final payoff conditional on n jumps occurring. If
k is positive 1 + & is greater than one so that (1 + k)" is increasing in n—or in other words, each
jump is pushing the option out of the money. So for sufficiently large M, (K — e MRS (1 + K.)")+
will be equal to 0 for all n > M. It is also clear that deeper in the money puts require more terms
since more jumps are needed until the put goes out of the money. On the other hand, the call price
is equal to:

e f: P(n) (e~*""s.,(1 + k)" — K)+ (2.58)

n=0
Thus when « > 0, each jump pushes the option deeper into the money. This mneans that the payoff
is increasing in n. The infinite sum will still converge since the probabilities are dying out at the
rate of 1/n!, but many more terms will be required before the product is insignificant. With the put

and the call, the price can be written:

i Rpin (2.56)
=0

where h,, is the product of the probability and e~"" and i, is the payoff at expiration. When & is
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positive, h, and i, are both decreasing for the call while for the put although h,, is decreasing, 1,,
is increasing. So clearly, calculating the put in this case requires much fewer terms. A similar logic
can be applied to show that the call is faster to converge when & is negative. A similar argument
holds for the case when there is diffusion on top of the jump process.

So to calculate a call price when x > 0, one can first calculate the corresponding put price and
use put—call parity to find the call price. When k < 0 one can do the reverse. The put-call parity

relation with proportional dividends r* and delivery lag 7, can be written:
C(S,K)+e "UtTK = P(S K)+e " (TtT)g (2.60)

We then selected the number of terms to equal the minimum of 8 and 6 * A* * 7 plus 8 times
the moneyness in excess of 0.05.2° This procedure gave us values for the option price that were
accurate to within 1 x 107!° for all parameter values that we tried and typically required only 8
to 10 terms. We found that this technique had its greatest positive impact when we used the same
basic technique to calculate the partial derivatives of the pricing formulas with respect to the jump
diffusion parameters—a necessary step when actually doing the non-linear least squares minimization.

Second, to calculate the analytic approximation to the American price one must solve for S*
using equation 2.48. Again in theory this procedure is straightforward, but in practice requires
great care. The second derivative of the objective function of S*, (2.48), can be very erratic and
necessitates the use of a bisection algorithm in combination with Newton-Raphson algorithm in
solving for S*. The first derivative is not even monotonic. In other words, the objective function
(2.48) is not well approximated by a quadratic function. If one started with the standard Newton
Raphson procedure without the bisection algorithm the procedure would not converge in many cases.
The problem is especially acute for shorter term options.

Third, to do the actual parameter inversion, we use the Levenberg—Marquardt procedure that
takes advantage of the approximate local quadratic property of the objective function around the
maxima in a non-linear least squares regression.3 This procedure however, requires that we be
able to calculate the derivative of the function ¥ 4(.) with respect to the parameters. Whether
one takes this derivative analytically or calculates it numerically, one can save considerable time
by noting the following. The partial derivative of ¥4 with respect to the parameters is the sum
of the derivative of ¥ g with respect to the parameter and the partial derivative of the American

premium, the second piece in the formula for ¥ 4, with respect to the parameters. The derivative of

2%In other words, we added more terms if the option was more than five percent in the money.
We did not take away terms if it was less than five percent in the money.

30To stem any possible confusion, note that here we are referring to the approximate quadratic
property of the sum of squared residual objective function and not the objective function for S*
which we were referring to in the above paragraph.
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the American premium, call it 4P, with respect to the generic parameter 3 is:

0AP QAP + JAP 88" (2.61)
9B ap Keeping s- fixed a5+ ap '
All the terms involved are straightforward to calculate except the very last one, %. However, one

finds that this term need not be calculated because %’g— is equal to zero since S* is the maximizer

of AP. Thus:
0AP QAP

o8 ~ 08 Keeping s- fixed (262)
This is a consequence of the envelope theorem. This fact greatly simplifies the calculations of the
derivative.

Fourth, one can drastically reduce the required computing time by noting as did Bates[6] that
S* for a fixed 7,r and r* is homogeneous in K. In other words, given the same 7,r and r*, if S} is
the solution to the objective function (2.48) with K equal to K, then S; for K equal to K, is equal
to S{T’?‘n Since we are using only one day’s worth of data and one maturity for each given month,
7,r, and 7* will all be the same. So we only need to calculate one S* for the puts and one S* for
the calls for each set of parameters that we try.

Fifth, we use the innovation of Bates [6] and minimize the least squares objective function by

searching over the transformed variables:

{B1, B2, B3} = {log(v), N7 (f),log(1 + K)} (2.63)
where:

v = A(log(l+k))?+a°
f = /\‘(log(l+n))2/u

These last two parameters v and f are the total variance of the process and the proportion of
the variance coming from jumps respectively. This effectively reduces the dimension of the search
because the estimate of v takes on roughly the same value regardless of the other two parameters.
Because the objective function has multiple minima, six starting guesses were used in each monthly

regression to ensure that the global minimum was found.
Lastly, all the programming was coded in Fortran to make the procedures as fast as possible.
We initially coded the whole procedure in the matrix programming language Matlab, but found that,

one set of regressions for one country would take a month tc run.
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Table 2.5: Deutschemark Option Implied Parameters: 1984-1985

AR A B E Obs.
1084: 1 .01484 .08719 17016 .08613 90

( .00669) | ( .07636) (.07920) ( .00234)
1984: 2 [ Did Not | Did Not Did Not Did Not | 186
Converge | Converge | Converge | Converge

1084: 3 | .01498 | .00476 3.14405 10575 | 232
(.00193) | (.01064) | (6.68264) | (.00082)

1984: 4 | -.00960 | .04837 -19847 10107 | 98
(.00315) | (.02140) | (.02693) | (.00144)

1084: 5 | -.02795 | .21475 -13017 10552 | 74

( .00804) | ( .11855) ( .03535) ( .00183)
1984: 6 | Did Not | Did Not Did Not Did Not | 50
Converge | Converge | Converge | Converge

1084: 7 | .03088 | .20895 14778 10959 | 66
(.00855) | (.10361) | (.03362) | (.00270)

1984: 8 | 00617 | .00863 71437 12175 | 92
(.00296) | (.02291) | (1.55910) | (.00120)

1084: 9 | 01465 | .05411 27080 13588 | 200

(.00464) | (.03883) | (.10986) | (.00163)
1084:10 | 01362 | .00027 | 51.30559 | .16473 | 180
(.00179) | (.00029) | ( 61.07282) | (.00092)

1084:11 | 04755 | .46536 10219 12575 | 106
(.02218) | (.40677) | (.04227) | (.00408)

1084:12 | 03054 | .17536 17418 12805 | 70
(.00863) | (.08457) | (.03569) | (.00292)

1085: 1 | .01180 | .03493 33777 12397 | 178

(.00265) | (.02530) | (.17165) | (.00103)
1985: 2 | .00613 | .00059 1046990 | .14278 | 161
( .00146) | (.00107) | ( 17.15566) | (.00097)

1085: 3 | .00925 | .00023 39.69226 16270 | 108
(.00264) | (.00119) | (194.66454) | ( .00148)

1085: 4 | 03016 | .14128 21344 17445 | 208
(.01891) | (.18842) | (.15230) | (.00392)

1085: 5 | -.00040 | .00042 -.93878 18639 | 159
(.00249) | (.00058) | (6.23759) | (.00112)

1085: 6 | NA NA NA NA NA

1085: 7 | NA NA NA NA NA

1085: 8 | NA NA NA NA NA

1085: 9 | NA NA NA NA NA

1085:10 | NA NA NA NA NA

1085:11 | NA NA NA NA NA

1085:12 | .00000 | .00000 -.56572 11402 | 52
(.00163) | (.00299) | (>999.0) | (.00129)

Non-linear least squares regression results. The PHLX options data from June to November 1985 is
completely contaminated and unusable.
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Table 2.6: Deutschemark Option Implied Parameters: 1986-1987

AR A & G Obs.

1986: 1 | -.00043 | .00135 31532 12024 | 53
(.00380) | (.01353) | (.34790) | ( .00200)

1986: 2 | .00000 | .00000 -.79293 11568 | 72
(.00278) | (.00350) | ( 39.26578) | ( .00162)

1986: 3 | .02069 | .00781 2.64869 15837 | 80
(.01839) | (.23834) | ( 78.56580) | ( .00297)

1986: 4 | -.00403 | .01936 -.20814 16844 | 54
(.00774) | (.05842) | (.24846) | ( .00244)

1986: 5 | -.03729 | .29739 -12540 16162 | 186
(.01867) | (.29031) | (.06140) | ( .00293)

1986: 6 | .00451 00598 75401 15083 | 66
(.01234) | (.10801) | ( 11.57873) | ( .00318)

1986: 7 | -.00642 | .02706 ~23729 14274 | 142
(.00282) | (.02083) | (.08263) | (.00109)

1986: 8 | .00953 102432 39158 11554 | 104
(.02321) | (.48734) | (6.91109) | ( .00375)

1986: 9 | -.00023 | .00027 -.84269 14148 | 74
(.00323) | (.00479) | ( 3.07188) | ( .00116)

1986:10 | .00531 00134 3.95616 11797 | 135
(.00137) | (.00324) | (9.00849) | ( .00066)

1986:11 | -.00024 | .00032 -.76092 11013 | 120
(.00149) | ( .00068) | ( 4.30859) | ( .00086)

1086:12 | .00849 01332 63757 00958 | 54
(.00722) | (.08385) | ( 3.48390) | (.00221)

1987: 1 | .00000 .00000 -.94836 15024 | 114
(.00135) | (.00143) | (>999.0) | (.00100)

1987: 2 | -.00001 | .00001 -.83040 13676 | 68
(.00371) | ( .00547) | ( 79.36450) | ( .00158)

1987: 3 | .01001 00317 3.15459 09536 | 64
(.01198) | ( .26659) | ( 261.41756) | ( .00232;

1987: 4 | 03031 26422 11470 10875 | 74
(.02227) | (.42957) | (.10268) | ( .00415)

1987: 5 | -.00180 | .00514 -.35018 10106 | 64
(.00221) | (.00778) | (.10603) | ( .00094)

1987: 6 | -.00349 | .01275 -.27387 10354 | 106
(.00473) | (.02132) | (.09612) | (.00138)

1987: 7 | -.00092 | .00372 24731 08463 | 96
(.01066) | ( .04996) | ( .46636) | ( .00340)

1987: 8 | .00772 00183 4.22075 08862 | 59
(.01006) | ( .24168) | ( 552.29952) | ( .00196)

1987: 9 | 00000 00000 43907 10107 | 85
(.00227) | ( .00541) | ( 177.24395) | ( .00081)

1987:10 | .06731 96552 06972 09548 | 207
(.03825) | (.90560) | ( .02595) | ( .00660)

1987:11 | .01234 102030 60778 12996 | 160
(.01199) | (.19690) | ( 5.31675) | ( .00248)

1987:12 | .00000 | .00000 -87268 13706 | 56
(.00349) | ( .00407) | ( 550.46510) | ( .00177)

Non-linear least squares regression results.
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Table 2.7: Deutschemark Opticn Implied Parameters: 1988-1989

AR A* R K Obs.

1988: 1 | .00830 .00359 2.30816 15023 | 75
(.01296) | ( .16189) | ( 100.44408) | ( .00305)

1988: 2 | -.00222 | .00707 -.31387 11247 | 124
(.00584) | (.02299) | (.20471) | (.00157)

1988: 3 | -.00750 | .03821 -.19636 11763 54
(.00351) | (.02674) | (.04943) | ( .00097)

1988: 4 | .00451 .00325 1.38643 09590 | 68
(.00991) | (.16842) | ( 68.78617) | ( .00253)

1988: 5 | -.00795 | .12253 -.06487 08375 | 64
(.01452) | (.37374) | (.08213) | (.00242)

1988: 6 | .00141 00151 93783 07634 | 156
(.01726) | ( .43298) | ( 258.00673) | ( .00349)

1988: 7 | -.00573 | .02338 24522 11556 | 114
(.00249) | ( .01414) | (.04644) | ( .00105)

1988: 8 | .00000 .00000 -.82776 13646 | 80
(.00271) | ( .00335) | ( 150.01432) | ( .00101)

1988: 9 | -.00240 | .03317 -.07240 09998 | 60
(.02759) | ( .58711) | ( .45082) | ( .00487)

1988:10 | .01577 00641 2.46070 10255 | 112
(.01625) | ( .37136) | ( 140.05107) | ( .06269)

1988:11 | -.00065 | .00271 -.23887 11758 | 81
(.00357) | (.01715) | (.19786) | (.00117)

1088:12 [ -.00276 | .00816 -.33858 10791 80
(.00389) | (.01395) | (.10774) | ( .00114)

1989: 1 | -.00002 | .00003 -.57049 12280 | 63
(.00571) | (.01053) | ( 10.05064) | ( .00142)

1989: 2 | -.00113 | .00412 - 27480 10615 | 102
(.00486) | (.02036) | (.18302) | (.00124)

1989. 3 | -.01204 [ 09562 -.12589 08693 | 120
(.00548) | (.06818) | (.03608) | (.00163)

1989: 4 | -.00004 | .00004 -.98091 08637 | 84
(.00103) | (.00104) | (.33548) | (.00052)

1989: 5 | -.00345 | .01170 -.29524 10332 | 118
(.00274) | (.01142) | (.06005) | ( .00084)

1989: 6 | -.01138 | .02998 -.37967 14726 | 106
(.00446) | (.01884) | (.09755) | ( .00120)

1989: 7 | -.01358 | .12088 -.11238 13891 56
(.01911) | ( .32964) | (.15023) | ( .00280)

1989: 8 | -.00694 | .01366 -.50775 13919 | 104
(.00375) | (.01040) | (.12397) | (.00110)

1989: 9 [ .00766 01693 45231 14053 | 160
(.01267) | (.18861) | (4.29296) | (.00222)

1989:10 | .01990 05569 35743 15820 | 208
(.01263) | (.17253) | (.88607) | ( .00195)

1089:11 | .00514 01170 43905 11777 | 111
(.00326) | ( .03926) | (1.21001) | ( .00078)

1989:12 [ -.00056 | .00984 -.97222 10422 | 62
(.00926) | ( .01054) | (.11016) | ( .00319)

Non-linear least squares regression results.
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Table 2.8: Deutschemark Option Implied Parameters: 1990-1991

AR A* P P Obs.

1990: 1 | -.00338 00756 44744 12041 | 171
(.00289) | (.00897) | (.16802) | ( .00080)

1990: 2 | -.01102 11507 -.09578 10894 | 57
(.02397) | (.51201) | (.21991) | ( .00430)

1990: 3 | .14049 1.62874 08626 07188 | 104
(.04097) | (1.23116) | (.04114) | (.00827)

1990: 4 | -.00205 .00260 78637 09786 | 50
(.00191) | (.00132) | (.90770) | ( .00060)

1990: 5 | -.00536 01969 -.27206 09711 | 90
(.00344) | (.02479) | (.18080) | (.00108)

1990: 6 | -.02970 31751 -.09353 08474 | 124
(.01229) | (.25365) | (.03609) | (.00281)

1990: 7 | -.00039 01104 ~85019 09320 | 63
(.00258) | (.00454) | (.13549) | (.00091)

1990: 8 | -.01010 06434 -.15697 10858 | 79
(.00575) | (.09625) | (.15066) | (.00120)

1990: 9 | .01908 .16466 11587 12206 | 132
(.02156) | (.42718) | (.17017) | ( .00346)

1990:10 | .00195 01902 10265 12339 | 57
(.02960) | (.52756) | ( 1.29871) | ( .00469)

1990:11 | .00613 00667 91910 10769 | 87
(.00268) | (.00820) | (.81890) | (.00075)

1990:12 | -.01488 07115 -.20018 09591 56
(.02426) | (.65924) | (1.60055) | ( .00358)

1991: 1 | -.02524 12348 -.20445 15027 | 118
(.01286) | (.18296) | (.20026) | ( .00248)

1991: 2 | -.04675 | 1.20746 ~.03872 00900 | 165
(.07526) | ( 3.05838) | (.03600) | (.00749)

1991: 3 | .00254 100296 85849 13413 | 304
(.00241) | (.00386) | (.34841) | (.00103)

1991: 4 | .00099 00100 199304 13006 | 149
(.00336) | (.00425) | (.88923) | (.00115)

1991: 5 | -.00687 02617 -.26240 12813 | 184
(.00949) | (.16277) | (1.27403) | ( .00186)

1991: 6 | -.01243 07889 -15756 12677 | 73
(.00865) | (.13996) | (.17925) | ( .00178)

1991: 7 | .03408 58149 05860 12208 | 101
(.06329) | (1.76487) | (.06938) | ( .00693)

1991: 8 | .00000 .00000 3.59082 16069 | 233
(.00198) | (.00062) | ( 756.39840) | ( .00083)

1991: 9 | .00516 102604 10819 13138 | 91
(.00497) | (.03771) | (.10481) | (.00114)

1991:10 | .00002 00001 1.96951 12261 | 152
(.00398) | (.00229) | (47.61608) | ( .00127)

1991:11 | -.00556 01114 -.49923 12680 | 206
(.00775) | (.11378) | (4.43558) | (.00190)

1991:12 | .00002 100001 3.92008 12889 | 87
(.01118) | (.00330) | ( 350.78826) | ( .00296)

Non-linear least squares regression results.
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Table 2.9: Deutschemark Option Implied Parameters: 1992-1993

AK A* K g Obs.
1992: 1 .00003 .00003 94545 .15158 126
( .00256) | ( .00304) ( 10.21535) | ( .00101)
1992: 2 .00000 .00000 2.36471 .16069 286
(.00272) | ( .00126) (>999.0) ( .00096)
1992: 3 .00000 .00000 1.06865 13121 151
(.00198) | ( .00199) (>999.0) ( .00969)
1992: 4 | -.05395 .74915 -.07202 .10904 122
(.06067) | ( 1.47157) ( .06089) ( .00918)
1992: 5 .00000 .00000 71729 .11186 127
(.00501) | (.00758) | (656.56762) | ( .00142)
1992: 6 | -.01702 .34640 -.04913 .10228 62
(.05288) | ( 1.71758) ( .09185) ( -00650)
1992: 7 1 -.00791 .04123 -.19183 .13790 151
(.01211) | (.18133) ( .55535) ( .00251)
1992: 8 .00397 .01467 .27059 11351 68
(.00363) | (.01797) ( .08844) ( .00109)
1992: 9 .00060 .00000 2.49346 17208 482
(.00319) | (.00140) (>999.0) ( .00157)
1992:10 | -.16642 2.52705 -.06585 17717 83
( .25648) | ( 6.07613) ( .05708) ( .02382)
1992:11 .00000 .00000 1.27870 14722 121
(.00300) | (.00258) | ( 333.24275) | { .00132)
1992:12 | -.00691 .01103 -.62631 .14696 74
(.01379) | ( .21915) ( 11.20695) | ( .00248)
1993: 1 .00000 .00000 1.87472 12674 89
(.00329) | ( .00194) (>999.0) ( .00154)
1993: 2 .00021 .00010 2.19512 .12529 138
( .00554) | ( .00296) (9.96525) | (.00215)
1993: 3 .00374 .01450 .25814 11871 75
( .00320) | (.01610) ( .07016) ( .00101)
1993: 4 .00000 .00000 2.18133 12791 77
(.00365) | (.00182) (>999.0) ( .00122)
1993: 5 .01398 .10291 13582 .11908 71
(.00732) | (.09498) ( -05920) (.00171)
1993: 6 .00000 .00000 1.85153 11491 69
(.00255) | ( .00149) (>999.0) ( .00112)
1993. 7 00000 .00000 1.59380 11363 95
(.00292) | (.00198) (>999.0) ( .00094)
1993: 8 | -.05959 2.05367 -.02902 .10670 116
(.34878) | ( 18.75430) ( .09534) ( .02281)
1993: 9 | -.02495 .19716 -.12654 .12706 75
(.02896) | ( .48754) (.17134) ( .00612)
1993:10 | .00003 .00001 1.78686 .11858 82
(.00382) | (.00243) (34.71422) | ( .00132)
1993:11 .00000 .00000 2.35403 10579 53
(-00289) | ( .00133) (>999.0) ( .00246)
1993:12 | .00000 .00000 1.16309 10678 74
(.00273) | ( .00252) (>999.0) ( .00105)

Non-linear least squares regression results.
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Table 2.10: Yen Option Implied Parameters: 1984-1985

AR A* R & Obs.
1984: 1 .08212 3.15364 .02604 .05810 56
(.132091) | (7.79196) | (.02223) | (.01428)
1984: 2 -.00742 .04428 -.16765 .06398 96
( .00262) ( .02426) ( -05233) ( .00148)
1984: 3 01694 .00312 5.42420 .09149 144
(.00593) | (.01137) | (18.81884) | (.00355)
1984: 4 .03663 .74849 .04894 .07520 72
( .03501) (1.17786) (.03048) ( .00534)
1984: 5 .02739 .39900 .06864 .06815 68
( .01553) ( .42303) (.03512) ( .00334)
1984: 6 .01047 11341 .09232 .08142 72
( .01165) (.22428) ( .08069) ( .00265)
1984: 7 .00370 .00081 4.56073 .09071 52
(.00472) (.05402) | ( 298.09819) | (.00177)
1984: 8 .01572 .03255 148312 .09501 56
( .01365) ( .24142) (3.17482) { .00330)
1984: 9 .12838 1.97365 06505 .02369 58
( .00364) ( .12750) ( .00241) ( .00599)
1984:10 .05890 87614 .06722 .10204 57
( .07608) (1.84122) ( .05477) (.01177)
1984:11 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1984:12 .00266 .00078 3.41530 .09489 66
( .00254) ( .00597) ( 23.13685) ( .00101)
1985: 1 .01407 .20630 .06819 .09069 54
( .02233) ( .53834) ( .07006) ( .00383)
1985: 2 | Insufficient | Insufficient | Insufficient | Insufficient T
Data Data Data Data
1985: 3 Did Not Did Not Did Not Did Not 56
Converge Converge Converge Converge
1985: 4 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1985: 5 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1985: 6 NA NA NA NA [ NA
1985: 7 NA NA NA NA NA
1985: 8 NA NA NA NA NA
1985: 9 NA NA NA NA A
1985:10 NA NA NA NA NA
1985:11 NA NA NA NA NA |
1985:12 .00520 .00088 5.94526 07909 73
( .00224) (.00242) ( 14.62967) (.00111)

Non-linear least squares regression results. The PHLX options data from June to November 1435 is

completely contaminated and unusable.
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Table 2.11: Yen Option Implied Parameters: 1986-1987

R X 3 & Obs.
1986: 1 | .00690 | .00179 3.85742 06842 | 67
(.00269) | (.00892) | (18.26340) | ( .00130)
1986: 2 | .02062 | .08305 35659 10324 | 183
(.02348) | (.54621) | ( 2.06382) | ( .00367)
1086: 3 | 02500 | .00990 2.52690 13005 | 86
(.00693) | (.05928) | ( 14.77603) | ( .00205)
1986: 4 | .01261 | .01837 68611 11860 | 61
(.01688) | (.30525) | ( 10.49026) | ( .00295)
1086: 5 | 01135 | .00425 2.66946 18439 | 118
(.00834) | (.06009) | ( 35.90711) | (.00192)
1986: 6 | .01659 | .06838 24255 13759 | 70
(.01960) | (.32138) | (.85664) | (.00336)
1086: 7 | 01798 | .00943 1.90733 13295 | 84
(.01115) | (.13700) | ( 26.56515) | ( .00239)
1986: 8 | .00000 | .00000 -.67848 12405 | 94
(.00055) | (.00084) | ( 640.98433) | ( .00051)
1986: 9 | .00786 | .00838 93775 13427 | 59
(.01193) | (.15237) | ( 15.66880) | ( .00186)
1986:10 | -.00255 | .01015 -.25093 07521 | 50
(.00337) | (.01746) | (.12168) | ( .00115)
1086:11 | -.00198 | .00289 -.68369 08195 | 81
(.00363) | (.00860) | (.84117) | (.00125)
1086:12 | 03041 | .34378 108845 07022 | 66
(.02630) | (.52862) | (.06020) | (.00674)
1087: 1| .01696 | .00298 5.69500 12558 | 67
(.00434) | (.02693) | ( 50.13680) | ( .00138)
1087: 2 | .00000 | .00001 -49415 08749 | 51
(.00641) | (.01365) | ( 56.30940) | ( .00321)
1087: 3 | 01201 | .07528 15953 08354 | 63
(.00950) | (.13427) | (.15891) | ( .00309)
1987: 4 | .00000 | .00000 -77584 13402 | 71
(.00237) | (.00312) | (>999.0) | (.00128)
1087: 5 | .00000 | .00001 ~75898 11185 | 57
- | (.00540) | (.00734) | ( 29.84215) | (.00171)
1087: ¢ | -.01554 | .08151 ~19066 09712 | 95
(.00773) | (.06710) | (.07090) | ( .00214)
1087: 7 | .00384 | .00232 1.65217 09550 | 87
(.00802) | (.12980) | ( 88.93422) | ( .00199)
1087: 8 | -.01149 | .06805 -.16882 10124 | 114
(.00454) | (.04984) | (.06261) | (.00135)
1987: 9 | 00054 | .03510 27164 10827 | 61
(.00927) | (.10919) | (.58256) | ( .00296)
1087:10 | .02150 | .00953 2.25621 13700 | 97
(.03350) | (.59411) | ( 137.15446) | ( .00531)
1987:11 | -.00629 | .01649 -.38148 12804 | 71
(.00385) | (.01440) | (.11520) | ( .00146)
1087:.12 | .00000 | .00000 -.69553 12601 | 87
(.00217) | (.00321) | ( 201.59369) | ( .00123)

Non-linear least squares regression results.
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Table 2.12: Yen Option Implied Parameters: 1988-1989

& A" & G Obs.

1088: 1 | .00786 | .00219 3.59400 14967 | 116
(.01487) | ( .20083) | ( 323.39196) | ( .00317)

1988: 2 | -.00839 | .07202 11656 11009 | 61
(.00725) | (.10621) | (.07669) | ( .00159)

1088: 3 | .00784 100614 1.27671 11899 | 58
(.01467) | ( .24201) | ( 47.95901) | (.00230)

1088: 4 | 00954 | .05471 17431 07569 | 70
(.01054) | (.25390) | (.61913) | (.00256)

1088: 5 | -.00521 | .03709 ~14055 08210 | 97
(.00303) | (.03411) | (.05042) | (.00071)

1088: 6 | -.00588 | .06010 09777 07180 | 59
(.00365) | (.06369) | (.04470) | (.00094)

1088: 7 | .00173 | .00054 3.22901 11724 | 52
(.00729) | (.07713) | ( 450.48254) | ( .00192)

1088: 8 | .00473 | .00£77 53974 11456 | 123
(.01371) | (.25460) | ( 14.13426) | ( .00256)

1088: 9 | .06478 | .03314 1.95459 12064 | 96
(.08370) | ( 3.88565) | ( 226.64914) | ( .00599)

1088:10 | .00773 | .00394 1.96253 00211 | 86
(.03057) | (.82853) | ( 405.14342) | ( .00491)

1088:11 | .00658 | .00933 70476 10909 | 95
(.00722) | (.12720) | (8.84578) | (.00149)

1988:12 | -.01910 | .24786 ~.07705 00135 | 88
(.01099) | (.25040) | (.03447) | (.00175)

1080: 1 | -.01900 | .25313 ~07506 10074 | 68
(.01699) | (.39895) | (.05172) | ( .00238)

1980: 2 | .00000 | .00000 ~ 44272 08915 | 117
(.00059) | (.00139) | (>999.0) | (.00040)

1089: 3 | -.02360 | .29758 -.07931 08171 | o4
(.01414) | (.31677) | (.03721) | (.00294)

1980: 4 | .00598 | .01189 50306 07589 | 64
(.00629) | (.18072) | ( 7.12420) | (.00115)

1089: 5 | -.00374 | .02721 -13745 08998 | 63
(.00333) | (.03179) | (.04029) | (.00099)

1080: 6 | .00534 | .00125 4.28192 13639 | 85
(.03231) | (.53078) | (>999.0) | (.00596)

1980: 7 | -.06112 | 1.24579 ~.04906 11725 | 111
(.09608) | ( 2.91522) | (.03774) | ( .01090)

1980: 8 | -.04394 | .75621 ~05811 12563 | 58
(.06987) | (1.93430) | ( .05651) | (.00748)

1989: 9 | -.00001 | .00001 -67954 13282 | 87
(.00490) | ( .00750) | ( 15.19774) | ( .00125)

1080:10 | .01087 | .01270 85611 14775 | 78
(.02830) | ( .42155) | ( 26.21976) | ( .00415)

1980:11 | 01156 | .07254 15942 00635 | 67
(.00225) | (.03561) | (.04911) | (.00075)

1080:12 | .00997 | .08570 11638 08039 | 57
(.01308) | (.20233) | (.12369) | (.00469)

Non-linear least squares regression results.

108




Table 2.13: Yen Option Implied Parameters: 1920-1991

I x* & & Obs.

1090: 1 | -.00950 | .07633 -12446 07486 | 100
(.00343) | (.05173) | (.04025) | (.00094)

1990: 2 | .00000 | .00000 _87911 07794 | 69
(.00027) | (.00031) | (>999.0) | (.00039)

1990: 3 | .00346 | .00634 54601 09514 | 65
( .00068) | (.00400) | (.27202) | (.00050)

1990: 4 | -.01859 | .19674 -.09451 11107 | 56
(.05183) | (1.25051) | ( .33883) | (.00598)

1000: 5 | 01043 | .03152 33088 08906 | 86
(.01193) | (.26171) | (2.37447) | (.00229)

1990: 6 | .01308 | .07740 16893 08321 | 56
(.00928) | (.23832) | (.40099) | (.00190)

1990: 7 | 01283 | .04299 20853 00446 | 50
(.01682) | ( .40429) | ( 2.41862) | (.00230)

1090: 8 | -.00010 | .00013 -.78554 10660 | 108
(.00301) | (.00304) | (4.82423) | ( .00099)

1990: 9 | -.01497 | .15679 -.09550 12318 | 66
(.02092) | (.40698) | (.11601) | (.00372)

1990:10 | .00012 | .00008 1.64992 | .13129 | 57
(.00243) | (.00176) | (6.38384) | (.00108)

1990:11 | .00798 | .01273 162663 12602 | 59
(.00501) | (.02515) | (.88381) | (.00118)

1000:12 | -.06525 | 1.18222 | -.05519 10876 | 52
(.05253) | ( 1.48748) | (.02558) | (.00699)

1991: 1 | -.00701 | .03341 ~20997 | .14991 | 98
(.00399) | (.03971) | (.13074) | (.00111)

1991: 2 | .00976 | .10095 109663 11124 | 67
(.02630) | (.56309) | (.28090) | (.00365)

1991: 3 | .00020 | .00007 281099 | .12399 | 82
(.00263) | (.00116) | (8.97184) | (.00107)

1001: 4 | .04602 | .84656 105436 11721 | 85
(.09270) | (2.78979) | (.06987) | ( .00980)

1001: 5 | 03627 | .47701 107605 00150 | 59
(.02345) | (.71177) | (.06458) | (.00320)

1991: 6 | .00619 | .01847 33513 09635 | 62
(.00412) | (.02204) | (.20759) | (.00107)

1991: 7 | -.00370 | .01282 ~.28863 09232 | 50
(.00638) | (.11647) | (2.13481) | (.00150)

1091: 8 | -.02388 | .29460 ~.08106 08697 | 62
(.01700) | (.36249) | (.04289) | (.00350)

1091: 9 | 01572 | .00899 1.74951 11575 | 106
(.01910) | (.04433) | (6.83855) | (.00297)

1001:10 | .01264 | .10296 12274 08400 | 50
(.00891) | (.17847) | (.13266) | (.00175)

1991:11 | .00001 100002 62737 00461 | 110
(.00441) | (.00774) | ( 27.37423) | ( .00136)

1991:12 | .01637 | .02120 77220 07605 | 77
(.00350) | (.01537) | ( .41439) | ( .00090)

Non-linear least squares regression results.
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Table 2.14: Yen Option Implied Parameters: 1992-1993

AR A* & G Obs.
1992: 1 .02642 .07248 .36449 .11287 67
( .00557) ( .04426) ( .16151) ( .00135)
1992: 2 .01677 .08418 .19923 .08618 53
(.01418) ( .23841) ( .41017) ( .00249)
1992: 3 .06118 1.46273 .04182 .08236 60
( .04152) ( 1.60499) (.01767) ( .00536)
1992: 4 -.00999 .08510 -.11742 .08291 63
( .01806) ( .54355) ( .53892) ( .00297)
1992: 5 .05827 1.07681 .05411 .09023 78
(.08929) | (3.22003) | (.07956) | ( .01050)
1992: 6 -.23637 11.46564 -.02062 .06379 79
(.60844) | ( 44.50849) ( .02708) ( .05437)
1992: 7 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992: 8 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992: 9 .00147 .00020 7.36968 .10741 91
( .01320) ( .00344) ( 60.87501) ( .00513)
1992:10 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1992:11 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
[ 1992:12 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993: 1 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993: 2 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993: 3 .28880 9.98507 .02892 11136 50
(.18452) | (11.88631) ( .01639) (.01132)
1993: 4 .18450 3.49497 .05279 13775 73
( .08072) ( 3.53775) { .03157) ( .00567)
1993: 5 .11460 .09908 1.15672 14630 51
(.35797) | ( 21.53421) | ( 247.81432) | ( .01511)
1993: 6 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993: 7 -.06242 23227 -.26875 .16269 51
(.11364) ( 2.84634) ( 2.81383) (.01232)
1993: 8 .02087 .06251 .33388 .19786 52
( .09179) ( 1.76734) ( 7.98880) ( .00852)
1993: 9 .01038 .00430 2.41485 16930 56
( .01497) (.13419) ( 72.12596) (.00188)
1993:10 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data
1993:11 -.02878 .03301 -.87190 .10029 64
(.01131) | (.04712) (.94528) | (.00157)
1993:12 | Insufficient | Insufficient | Insufficient | Insufficient 0
Data Data Data Data

Non-linear least squares regression results.
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Chapter 3

Intervention and Jumps
in the Dollar Exchange Rate

3.1 Introduction

Floating exchange rates take extraordinary movements, or “jumps,” from time to
time. In a colloquial sense, “jumps” are the infrequently observed daily foreign ex-
change returns of 2, 3, or even 5 percent which occur in response to extraordinary news
events. The term “jump” can also be given a more precise statistical definition as a
return realization which is so large that it is unlikely to have come from a stationary
normal distribution. For some periods and currencies, returns exhibit leptokurtosis,
indicating that outliers may be exceptionally large appreciations or depreciations.
Early studies documenting leptokurtosis in high-frequency FX returns include West-
erfield [33], and Friedman and Vandersteel [21]. Skewness has also been found in FX
returns by Calderon-Rossell [11] and So [31], indicating occasional directional bias to
the extreme exchange rate movements.

The nonparametric evidence of skewness and leptokurtosis has led to the estima-
tion of parametric models which can account for these features of the data, including
(i) stationary models with fat tails, such as the stable Paretian, (ii) models with
time-varying moments, most notably the autoregressive conditional heteroskedastic-
ity (ARCH) process, which as Engle [18] has shown, can exhibit leptokurtosis, and
(iii) mixed jump-diffusion processes, in which exchange rate returns are the sum of a

continuous component and a discontinuous “jump.”
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Recent work points toward a tentative consensus in favor of the mixed jump-
diffusion process as a model of FX returns. Akgiray and Booth [2] and Tucker and
Pond [32] find that the jump-diffusion process dominates the pure diffusion and stable
Paretian models in explaining the returns of the major trading currencies during the
floating rate period. Studies such as Engle and Bollerslev [19], and Hsieh [23] find
that, while there are significant ARCH effects, they do not completely account for
the observed discontinuities in FX returns.! In an important study, Jorion [25] nests
the ARCH and jump specifications in a single model. He finds that the ARCH-jump
model dominates the pure ARCH model in explaining floating exchange rates.?

The post-1973 regime of floating is best characterized as a “dirty float,” in whick
exchange markets are subject to occasional interventions by national governments.
Given the empirical regularity of exchange rate jumps, it is interesting to examine
the relationship between jumps and U.S. intervention activity. Jorion [25] found that
CRSP stock index returns do not exhibit the same marked jump behavior as exchange
rate returns.®> He suggested that government intervention in the foreign exchange
markets (which has no analogue in the U.S. equity markets), may be responsible
for jumps. Dominguez [14] notes that average daily FX volume in April 1992 was
$192 billion, while the average daily intervention operation was on the order of $350
million. Although the amounts of currency actually bought and sold in interventions
are small relative to the total market volume, there is a school of thought which

suggests that, provided the intervention is sensitively timed, it can still have large

!See Bollerslev, Chou, and Kroner [10] for a survey of ARCH estimation of exchange rate returns.

20Option pricing studies provide further evidence that jumps are important in FX markets. For
example, Bodurtha and Courtadon [9] find that the simple Black-Scholes option pricing formula
makes systematic errors when used to price out-of-the-money foreign exchange options, and that
those errors are consistent with market expectations of large jumps in the underlying currency. In
a series of papers, Bates [4], [5], [6] ,{7] shows that option prices can be used to uncover market.
expectations of jumps and that such expectations are significant for the dollar-DM exchange rate in
the early 1980’s.

3Note that “jump behavior” does not necessarily imply greater volatility, as measured by the
standard deviation of returns. For example, the annualized standard deviations of weekly CRSP
stock returns is, as noted by Jorion, about 15%, while for the weekly $/DM returns it is 10%.
Nonetheless, exchange rates are better characterized by “jump behavior” in the sense that there are
occasional returns which are very large compared to the returns in normal diffusion, or “non-jump”
weeks.
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effects.* Another possibility is that, rather than causing jumps, intervention happens
in response to jumps, presumably in an attempt to offset them. This is an example
of the so-called “leaning against the wind” which governments profess to practice in
their FX interventions. Data on daily U.S. intervention activity, which is now being
made publicly available to researchers with a one-year lag, allows a direct examination
of the relationship between intervention and jumps in exchange rates. A simultaneity
problem makes empirical work in this area particularly challenging. If the government
intervenes in support of the dollar precisely when some separate factor is operating to
depreciate the dollar, it may be difficult to discern the effect on the FX return which
is due solely to intervention. Empirical results on the return-intervention relationship
must be interpreted in light of this potential simultaneity.

The objectives of this paper are three-fold: (i) to affirm that “jump” behavior is
important in explaining the $/DM and $/Yen exchange rates for the sample period
1980-1993, (ii) to identify jumps in the daily and weekly FX return time series, and
(iii) to explore the relationship between jumps in the exchange rate and U.S. inter-
vention activity. In section 3.2, nonparametric evidence of jumps in high frequency
exchange returns is presented, and the intervention data are also summarized. In
section 3.3, a two-jump-ARCH model is fitted to the exchange rate data. It is shown
that jumps are important in explaining skewed and leptokurtotic behavior which can-
not be accounted for by ARCH effects. The two-jump-ARCH model extends previous

applications of the jump model to FX returns by allowing jumps to be either depreci-

4For a discussion of the fine art of timing intervention operations, see Mulford [30]. Skeptics of the
efficacy of FX intervention note that such intervention is not only small but is routinely sterilized.
That is, sales of foreign exchange are offset by open market purchases of domestic bonds, leaving
the domestic money base unaffected. Nonetheless, there are at least two channels through which
even sterilized interventions might affect the exchange rate. One, the so-called portfolio balance
channel, hinges on the imperfect substitutability of domestic and foreign bonds. Under imperfect
substitability, sterilized intervention operations lead to a rebalancing of portfolio shares between
foreign and domestic bonds. In order for this rebalancing to take place in equilibrium, the exchange
rate or the interest differential or both must change. See, for example, Dominguez and Frankel [16].
A second possible channel is the so-called expectations channel. Current exchange rates depend on
expectations of future rates. Thus, intervention might affect the current exchange rate by affecting
expectations, for example, expectations of future monetary policy. See Kaminsky and Lewis [27]
and Ghosh [22] for evidence that such “signalling” of future monetary policy is important. Edison
[17] gives a very thorough survey of the literature on intervention efficacy in general.
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ations or appreciations. Section 3.4 uses a maximum likelihood technique to identify
jumps in the data. This technique characterizes “jumps” as being daily movements
in excess of about 1% or, at weekly frequency, movements in excess of 2%. In Section
3.5, the relationship between exchange rate movements and intervention is examined.
There is strong evidence of “leaning against the wind” behavior: the U.S. intervenes
in an attempt to smooth out exchange rate fluctuations, buying dollars during and
after a dollar depreciation and selling dollars during and after an appreciation. This
“leaning against the wind” takes place in response to small, or “non-jump” exchange
rate movements, and seems to have a statistically significant effect in the desired
direction at both the weekly and daily frequency, although this effect operates with
a lag. There seems to be no statistically significant relationship between “jump”
movements and imervention activity. The statistical insignificance of intervention in
response to jumps may well be a result of simultaneity bias. For example, it may
well be the case that, in the days around a dollar sale, some factor separate from the
intervention operates to appreciate the dollar. Taken together, the separate factor
and the intervention “wash out” so that there is no statistically significant net effect
on the probability of a jump in the exchange rate. However, had the dollar sale not
occurred, there would be a higher probability of a jump appreciation due to the effect
of the separate factor. Thus, the conclusion that intervention in response to jumps is
ineffective, and hence should not be pursued, is not necessarily warranted. The con-
clusions of this study are in the same spirit as those of recent work by, among others,
Dominguez and Frankel [15], who also find, using similar data, that intervention can
play a limited but important role in influencing the FX markets. This conclusion
contrasts with earlier work from the 1980’s, as typified by the Jurgensen report [26],

which concluded that sterilized FX intervention has little effect on exchange rates.

3.2 Data

The sample of business daily $/DM and $/Yen exchange rates is from the Bank for

International Settlements and covers the period from January 4, 1980 to Decmber,
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31, 1993. The DM data are sampled at 1 p.m. Frankfurt time and the Yen data are
Tokyo closing rates. Figure 3-1 shows the two time series. For purposes of this study,
the sample has been subdivided into three regimes. Regime 1 runs until January 31,
1985, and includes the “laissez faire” period of 1982-1984 in which the U.S. pursued an
explicit policy of nonintervention in the exchange markets.> Perhaps coincidentally,
the dollar appreciated strongly against most of the major trading currencies during
this time. The dollar reached a peak against the Deutschernark in February of 1985,
when the accession of James Baker to the post of Treasury Secretary signalled a more
activist policy with respect to the exchange rate.® Accordingly, Regime 2 runs from
February 1, 1985 until December, 1988, and hence includes the September 22, 1985
Plaza Accord, in which the G-5 countries agreed to intervene actively to bring the
dollar down from what was perceived to be an unsustainably high level. Regime 2
also includes the February 22, 1987 Louvre Accord, in which the G-5 generally agreed
that the dollar had come down enough, and that it would be desirable to maintain
exchange rates at their then-current levels. Regime 3 runs from January 1, 1989 until
December 31, 1993.

Letting S; denote the exchange rate at time ¢ in terms of dollars per unit of foreign
currency, returns are computed as AS; = log (-;;’—5), the logarithm of the business
day-to-business day exchange rate ratio. Weekly returns are calculated by sampling
the business daily data on the Wednesday of each week.

Tables 3.1 and 3.2 report summary statistics for the daily and weekly exchange
rate returns. Keep in mind that the exchange rates are measured in dollars per unit
of foreign currency, so that a positive return indicates a depreciation of the dollar.
The returns for this sample exhibit the classic pattern of skewness and leptokurtosis
noted in previous studies. Both currencies exhibit excess kurtosis over each of the
three regimes in the sample. For the $/Yen rate, there is skewness in the direction

of dollar depreciation over the entire sample, while for the $/DM rate there is depre-

5However, the Bundesbank and Bank of Japan were both active in exchange markets during this
time, as is discussed below.
6See Destler and Henning [13], pp. 41-42 and Dominguez and Frankel [15], pp. 11-13.
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Figure 3-1: Dollar Exchange Rate against DM and Yen

ciation skewness in Regimes 1 and 2, and skewness in the direction of appreciation
during Regimes 3. For both currencies, leptokurtosis is less for weekly than for daily
returns. This suggests the presence of some ARCH-like effects at daily frequency:
large movements followed by large movements of either sign, so that there may be
some cancelling out under time aggregation. For the $/Yen rate, skewness is greater
for weeckly returns than daily, suggesting that there also weeks in which jumps of the
same sign tend to cluster together.

To get an idea of how large the largest “jumps” might be, note that at daily fre-
quency the largest dollar appreciations are about 4%, while the largest depreciations
are about 5%. At weekly frequency, the maximum movements are as large as 7% or
8% in either direction.

The data on U.S. intervention are from the Federal Reserve Board, and report,
daily operations in the Yen and DM markets by the Federal Reserve of New York, as
authorized by the U.S. Treasury. The intervention data distinguish between customer
and non-customer transactions. The former are transactions initiated not by the New

York Fed but by a customer who would have otherwise carried out the transaction
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Table 3.1: Daily Exchange Rate Returns: Summary Statistics

1/4/80- 2/1/85- 1/1/89- Whole
DM 1/31/85 | 12/31/88 | 12/31/93 | sample
mean -0.000479 | 0.000588 | 0.000019 | 0.000002
standard deviation | 0.007316 | 0.007898 | 0.007822 | 0.007671
skewness 0.607095 | 0.551690 | -0.285425 | 0.260478
kurtosis 5.94774 7.19684 4.64176 5.84896
observations 1281 979 1256 3516
minimum -0.0266 -0.0317 -0.0406 -0.0406
maximum 0.0457 0.0575 0.0307 0.0575

1/4/80- 2/1/85- 1/1/89- Whole
Yen 1/31/85 | 12/31/88 | 12/31/93 | sample
mean -0.000066 | 0.000726 | 0.000084 | 0.000212
standard deviation | 0.006405 | 0.006927 | 0.006424 | 0.006571
skewness 0.392483 | 0.614086 | 0.323402 | 0.453208
kurtosis 4.884076 | 7.684604 | 6.370940 | 6.380511
observations 1266 975 1237 3478
minimum -0.0265 -0.0293 -0.0336 -0.0366
maximum 0.0314 0.0504 0.0422 0.0504

Data is from Bank for International Settlements. Business daily frequency. $/DM rate is sampled
at 1 p.m. Frankfurt time, $/Yen at noon Tokyo time. Returns are calculated as AS; = l' g ( s_,SiT)
where S; and S, are the exchange rates in terms of dollars per unit of foreign currency in succesive

periods. Note that an increase in S; corresponds to a dollar depreciation.

Table 3.2: Weekly Exchange Rate Returns: Summary Statistics

1/4/80- 2/1/85- 1/1/89- Whole
DM 1/31/85 | 12/31/88 | 12/31/93 | sample
mean -0.002378 | 0.003095 | 0.000170 | 0.000022
standard deviation | 0.015338 | 0.017042 | 0.017518 | 0.016730
skewness 0.262011 | 0.264306 | -0.208739 | 0.100362
kurtosis 3.68038 3.45499 4.71049 4.09167
observations 257 195 251 703
minimum -0.0471 -0.038S -0.0683 -0.0683
maximum 0.0467 0.0688 0.0723 0.0723

1/4/80- 2/1/85- 1/1/89- Whole
Yen 1/31/85 | 12/31/88 | 12/31/93 | sample
mean -0.000257 | 0.003783 | 0.000443 | 0.001093
standard deviation | 0.014389 | 0.015427 | 0.014865 | 0.014941
skewness 0.738150 | 0.815521 | 0.624087 | 0.727711
kurtosis 3.63642 5.54660 | 6.609423 | 5.322392
observations 254 197 247 698
minimum -0.0307 -0.0369 -0.0414 -0.0414
maximum 0.0491 0.0739 0.0827 0.0827
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in the open market. Customer transactions are sometimes referred to as “passive”
interventions because they are not initiated by the Fed. Nonetheless, as Dominguez
and Frankel note [15], even such “passive” interventions can signal important infor-
mation to the market. This study defines intervention as “total” intervention, that is,
the sum of customer and non-customer transactions. In practice, the non-customer
and total measures are quite close. None of the material conclusions of this study
would be affected by using non-customer rather than “total” transactions. A more
important drawback of this study is that only U.S. intervention data are used. The
Bank of Japan and the Bundesbank do not make their daily intervention data pub-
licly available.” This is a particularly serious problem for the 1982-84 period, when
the U.S. was not heavily involved in FX intervention but it is known that Germany
and Japan were. For the other time periods in the 1980-1993 sample it is perhaps
less problematic, since interventions are often coordinated. Thus, Bank of Japan and
Bundesbank interventions are typically in the same direction as U.S. interventions.

Tables 3.3 and 3.4 summarize the daily intervention data and weekly interven-
tion as measured by cumulative daily intervention. The intervention is measured in
millions of dollars sold in support of either the DM or Yen. Note that intervention
is a fairly infrequent event, occurring in the DM market in about 12% of the days
in the sample, and in the Yen market for about 6% of the days in the sample. The
largest daily purchases and sales are on the order of $700 or $800 million and the
average purchase or sale is about $100 million. There was net selling of dollars over
the 1980-1993 period, about $16 billion on net in support of the DM and $5.5 billion
on net in support of the Yen. Looking at the weekly data, it is clear that the average
weekly purchases and sales are larger than the daily, indicating that it is common
for the Fed to intervene during several days in a week when it does intervene, and to
intervene in the same direction during each day of that week.

Figure 3-2 shows the daily intervention along with the daily return data. The

relationship between jumps and intervention is hard to discern with the naked eye.

"See, however, Dominguez and Frankel [15] who were allowed to use BOJ and Bundesbank data
in their studies on the condition they repo:t only summary results.
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Table 3.3: Daily Dollar Sales (Millions) In Support of Foreign Currency

1/4/80- | 2/1/85- | 1/1/89- | Whole
DM 1/31/85 | 12/31/88 | 12/31/93 | sample
mean 4.3 3.7 5.4 4.6
mean sale 53.6 147.5 137.6 91.2
mean purchase -84.9 -123.5 -135.7 -110.4
largest sale 295.0 797 695 797
largest purchase | -386.3 -395 -400 -400
total sales 28,811
total purchases -12,812
sale days 181 55 80 316
purchase days 149 36 31 116
total days 1280 979 1256 3515
1/4/80- [ 2/1/85- [ 1/1/89- | Whole
Yen 1/31/85 | 12/31/88 | 12/31/93 | sample
mean 0.3 -74 9.2 1.3
me: . sale 19.2 38.1 152.7 101.9
mean purchase -27.4 -139.7 -286.2 -147.0
largest sale 50 211 555 555
largest purchase | -50.2 -720.2 -492 -720.2
total sales 14,770
[ total purchases -10,287
| sale days 20 41 84 145
[[ purchase days 2 63 5 70
| total days 265 975 1237 3477

Federal Reserve Board data. Intervention measured as sum of customer and noncustomer transac-
tions.
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Table 3.4: Weekly Dollar Sales (Millions) In Support of Foreign Currency

1/4/80- | 2/1/85- | 1/1/89- | Whole
DM 1/31/85 | 12/31/88 | 12/31/93 | sample
mean 21.6 21.0 31.3 24.9
mean sale 185.4 324.5 320.3 261
mean purchase -170.0 -192.2 -308.2 -210.4
largest sale 800.7 1306 1480 1480
largest purchase | -706.9 -687 -986 -986
total sales 28,811
total purchases -12,812
sale weeks 50 25 37 112
purchase weeks 22 21 13 56
total weeks 256 195 251 702

1/4/80- | 2/1/85- | 1/1/89- | Whole
Yen 1/31/85 | 12/31/88 | 12/31/93 | sample
mean 1.3 -36.2 47.2 7.0
mean sale 34.9 77.0 335.5 212.5
mean purchase -274 -292.0 -357.8 -284.6
largest sale 84 328.5 1723.5 1723.5
largest purchase | -50.2 -1712 -692 -1712
tocal sales 14,770
total purchases -10,287 |
sale weeks 11 21 39 71
purchase weeks 2 30 4 36
total weeks 253 197 247 697

Weekly intervention measured as cumulative daily intervention from Wednesday to Thursday of each
week.
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However, if we take “jumps” to be daily movements in excess of 1% (this definition
is confirmed in a formal statistical sense in the section below), then it seems that
there is no clear contemporaneous relationship between jumps and intervention. For
example, some jumps seem to occur even when there is no intervention activity. More
powerful statistical techniques will be employed in section 4 in an attempt to untangle
the jump-intervention relationship.

Note that, over most periods in the sample, extreme exchange rate movements can
be either appreciations or depreciations. This may be explained partly by ARCH-like
“volatility clustering,” that is, the tendency for large returns to be followed by large
returns of either sign. However, as is shown below, ARCH cannot completely account
for the extreme movements. A mixed jump-ARCH process is a promising extension.
Given the empirical fact of large movements of either sign which cannot be accounted

for by ARCH, it is important to allow for jumps of either sign.

3.3 A Two-Jump-ARCH Model of FX Returns

The skewness and leptokurtosis of FX returns suggests the use of a parametric model
which can account for these properties. Exchange rate returns, measured in dollars per

unit of foreign currency, are assumed to follow a discretized jump-diffusion process:®
AS¢ = um + 0'\/7T¢AZ + HAJK(pTg) + 0AJO(QT¢) (31)

where 7, is the lag between successive exchange rate quotes ( e.g., for business daily
data, 1 day during the business week and 3 days for weekend returns), p is the de-
terministic drift, o is the diffusion volatility, and AZ is a standard normal random
variable. The random variables AJ, and AJy are assumed to be Bernoulli, indepen-
dent of one another and of AZ. Jumps of type k occur with probability p per unit

time and jumps of type 6 with probability ¢ per unit time. The constants x and 6

8See Ball and Torous [3], who use a Taylor expansion to show that the Bernoulli jump process
may be thought of as an approximation to a continuos-time Poisson jump process. The lower is the
Poisson jump frequency, the better is the Bernoulli approximation.
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are the sizes of each type of jump, given that a jump of that type occurs. The dif-
fusion volatility o may be thought of as a measure of the exchange rate uncertainty
occurring due to normal day-to-day information arrivals, while the jump sizes x and 6
correspond to extraordinary exchange rate movements due to low-probability events.
The model considered here differs from earlier empirical applications of the jump-
diffusion to FX returns in that it allows for two independent jump processes.® Hence,
the model allows for the possibility that, in a given day or week, a large appreciation
or large depreciation may occur, as Figure 3-2 suggests is the case.

Jorion [25] notes that it is important to account for the possibility of conditional
heteroskedasticity in the diffusion process, since it could lead to “fat tails” even in
the absence of jump processes. Accordingly, we model the diffusion volatility as an

ARCH(1) process:

o2 = ap + o“(TL)(Ast_l — E[AS, 1)) (3.2)

t—1

The ARCH specification allows for “volatility clustering.” For example, for o; > 0, a
large exchange rate innovation on a given day will be associated with a large movement
(of either sign) on the following day. Note that the factor (ﬁ) accounts for the
possibility that the ¢ — 1 and ¢ innovations occur over time intervals of differing
lengths. The model was estimated on the daily and weekly exchange returns using

maximum likelihood, with log-likelihood function given by

T T (1-pn —qm) —(AS, - #)2
5 log(2m) +34 log] o/ P 2077, (3.3)
pTy —(AS, — p—K)?
+0' Tgemp( 202T¢
_ A2
+ qn exp (AS, — pn—6) ]
o\/Ty 2027,

®Aase and Guttorp [1] use a two-jump-diffusion model with no ARCH effects to study stock
returns. See Jorion [25], Akgiray and Booth [2], and Tucker and Pond [32] for FX applications
of one-jump models. Das [12] applies a one-jump-ARCH model in his study of interest rates, and
Friedman and Laibson (20] and Jarrow and Rosenfeld [24] study stock returns with a one-jump
model.
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Tables 3.5 and 3.6 report the parameter estimates of the two-jump-ARCH model as
well as those for a pure ARCH model, estimated under the constraints p =0, x = 0,
g =0, and § = 0. For the daily returns, there is evidence of ARCH effects in the
DM for Regime 1, with a; > 0 and significantly so. For the Yen, ARCH effects
are most significant in Regimes 2 and 3. The jump probabilities and jump sizes are
highly significant for most of the sub-periods. Jumps are fairly rare, occurring with
probabilities of anywhere from 0.02 to 0.08 per business day. The jump sizes are
about 1% in either direction, although they are somewhat larger for jump deprecz'(z-
tions during Regime 2. This is a reflection of the large one-day depreciations which
occurred in response to the Plaza Accord in September 1985. The final column of
table 3.5 reports the likelihood ratio test statistic of the null hypothesis that jumps
are irrelevant in explaining daily exchange returns: (p =0,k = 0,9 = 0,0 = 0). The
statistic is distributed x?, with 0.99 critical level of 13.25. Thus, the statistics in the
final column present overwhelming evidence that jumps are important, even when
ARCH effects are allowed for.

In order to preserve degrees of freedom, the weekly data were estimated on just
two subperiods: that before the Louvre accord of February 1987, and the period after
the Louvre. ARCH effects seem to be less important at weekly frequency than at
daily frequency. This confirms the suspicion that there are large daily movements
of conflicting sign during the course of a week, which “wash out” in aggregation to
weekly frequency. For the DM, the ARCH coefficient o is not significantly different
from zero for any of the sub-periods. This differs from the findings of Jorion [25] who
found significant ARCH effects in weekly $/DM returns for the period 1974-1985. For
the $/Yen rate, ARCH effects are significant for the pre-Louvre period but not for the
post-Louvre. Not surprisingly, the individual jump size and probability coefficients are
also less significant at weekly frequency then they are at daily. However, the likelihood
ratio test still indicates rejection of the hypothesis (p =0,k =0,q = 0,0 = 0) at the
0.99 level for both subperiods and both currencies. Jump sizes are generally larger
at weekly frequency, greater than 2% per week and as large as 8% per week. It is

interesting to note that for the $/DM rate in the pre-Louvre period, both « and 6 are
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Table 3.5: ML Estimates: Daily Exchange Returns

DM m ap ay p K q [} Log-Like X5
1/4/80- -0.00037 0.00006 0.02357 4277.1
1/31/85 | (-6.766) | (36.016) [ (12.162)
T=1279 -0.00001 0.00003 0.18714 | 0.15289 -0.00917 0.08773 | 0.01105 4395.4 236.6
(-1.6404) | (21.469) | (11.007) | (8.175) | (-22.530) | (6.673) | (25.587)
2/1/85- 0.00037 0.00009 -0.02771 3146.0
12/31/88 | (5.350) | (63.179) | (-1.203)
T=978 0.00105 0.00006 -0.01648 | 0.08731 -0.01336 0.00203 | 0.05182 3250.4 208.8
(14.980) | (29.089) | (-0.082) | (5.150) | (-19.980) [ (1.415) | (10.012)
1/1/89- | 0.00007 | 0.00009 | 0.04976 4012.0
12/31/93 | (1.183) | (48.572) | (1.890)
T=1257 -0.00020 0.00004 -0.02279 | 0.05567 -0.01567 0.10828 | 0.01290 4196.6 369.2
(-3.276) (33.325) | (-2.381) | (6.307) | (-34.533) | (7.778) [ (81.571)
Whole 0.000005 0.00008 0.12722 11430.0
Sample | (0.0146) | (86.682) | (10.586)
T=3515 0.000003 0.00004 0.09396 | 0.07939 | -0.012349 | 0.07454 | 0.01312 11804.7 { 750.0
(0.078) | (72.415) | (10.384) | (10.565) | (-42.895) | (11.270) | (44.014)
Yen N ao ay p K q [] Log-Like X4
1/4/80- 0.00003 0.00006 0.01183 4286.6
1/31/85 | (0.532) | (52.875) | (0.563)
T=1264 -0.00058 0.00003 0.01559 | 0.02651 -0.01239 0.07476 | 0.01385 4465.2 357.2
(-11.815) | (32.188) | (0.768) | (3.620) | (-19.869) | (7.253) | (40.731)
2/1/85- 0.00045 0.00007 0.18114 3205.8
12/31/88 | (7.730) | (74.925) [ (5.360)
T=974 0.00036 0.00004 0.06821 0.02374 -0.01519 0.02553 | 0.02112 3344.2 276.7
(6.660) | (43.677) | (2.109) | (3.452) | (-23.638) | (3.997) | (40.067)
1/1/89- -0.00004 0.00006 0.19726 4226.5
12/31/93 | (-0.866) | (52.281) | (6.980)
T=1238 -0.00027 | 0.00003 0.0686 | 0.03692 | -0.01263 | 0.07734 | 0.01176 4351.9 | 250.1
(-5.565) | (35.474) | (a.711) | (4.580) | (-25.898) | (6.636) | (29.197)
[ Whole 0.00012 0.00006 0.10737 11720.1

Sample (4.092) | (113.064) | (7.396)

T=3477 -0.00026 0.00003 0.03076 | 0.02529 -0.01381 0.0594 0.01446 12155.2 | 870.3
(-8.912) | (92.822) | (3.311) | (6.543) | (-41.048) | (10.813) | (60.737)

Business daily observations. Asymptotic t-statistics in parentheses. Maximum likelihood estimates,
with asymptotic variance-covariance matrix calculated using the method of Berndt et als (1974).
First row for each sample period reports coefficients of the pure ARCH-diffusion model, second row
the two-jump-ARCH -diffusion model. The final column reports the value of the LR statistic in
the test of the hypothesis that jumps are irrelevant:(p = 0,x = 0,q = 0,6 = 0). The statistic is
distributed x? with 4 degrees of freedom. The 0.990 and 0.995 confidence levels of the x3 are 13.25
and 14.86.
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Table 3.6: ML Estimates: Weekly Exchange Returns

DM m ag ay P K q [] Log-Like | xi
Pre- 0.00006 } 0.00030 0.00027 967.3
Louvre | (0.711) | (16.135) (0.005)
T=371 | -0.00066 | 0.00020 | -0.01496 | 0.16458 | 0.02795 | 0.00222 | 0.07073 976.0 17.4
(-6.750) | (13.110) | (-0.987) | (3.768) | (10.100) | (0.633) | (0.183)
Post- 0.00020 | 0.00028 | -0.00752 873.3
Louvre | (2.200) | (16.484) | (-0.106)
T=331 | -0.00005 | 0.00021 -0.00036 | 0.00912 | -0.04918 | 0.04610 | 0.02944 880.0 13.5
(-0.482) | (10.969) | (-0.007) | (0.964) [ (-1.685) | (1.283) | (5.990)
Whole 0.00013 | 0.00029 | -0.00504 1850.4
Sample | (2.043) | (23.092) | (-0.133)
T=702 | -0.00017 | 0.00018 0.00610 0.03599 | -0.02868 | 0.09047 | 0.02771 1864.8 28.8
(-2.225) | (13.887) | (0.230) | (1.175) | (-5.977) | (3.019) | (11.406)
Yen N ag ay p K q [] Log-Like | x§
Pre- 0.00005 | 0.00017 0.27512 1020.0
Louvre | (0.557) | (14.927) | (3.506)
T=370 | 0.00015 | 0.00008 0.19964 | 0.25345 | -0.01212 | 0.09361 | 0.02553 1032.8 25.5
(1.714) | (z.117) | (2.688) | (3.437) | (-5.765) | (4.112) | (10.918)
Post- 0.00017 | 0.00025 | -0.01510 882.6
Louvre | (2.041) | (28.198) | (-0.3873)
T=327 | 0.00023 | 0.00018 0.00886 | 0.03499 | -0.02720 | 0.00313 | 0.07941 908.5 51.6
(2.528) | (13.812) | (0.209) | (0.993) | (-5.065) | (0.991) | (0.046)
Whole 0.00013 0.00022 0.09937 1907.1
Sample | (2.141) | (34.447) | (3.328)
T=697 0.00018 0.00015 0.13368 0.06900 | -0.01817 | 0.01397 | 0.04762 1940.3 66.4
(2.931) | (15.822) | (2.970) | (2.165) | (-5.546) | (2.556) | (19.399)

Weekly observations. Asymptotic t-statistics in parentheses. Maximum likelihood estimates, with
asymptotic variance-covariance matrix calculated using the method of Berndt et als (1974). First
row for each sample period reports coefficients of the pure ARCH-diffusion model, second row the
two-jump-ARCH -diffusion model. The final column reports the value of the LR statistic in the test
of the hypothesis that jumps are irrelevant:(p = 0,k = 0,g = 0,8 = 0). The statistic is distributed
x? with 4 degrees of freedom. The 0.990 and 0.995 confidence levels of the x? are 13.25 and 14.86.
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positive. The best-fitting model is characterized by fairly frequent jump depreciations
of about 2.8%, and less frequent but larger jump depreciations of about 7%. Thus,
while fitting of the two-jump-ARCH model to FX returns usually leads to x and 6 of

opposite sign, this need not necessarily be the case.

3.4 Identifying Jumps

Given the demonstrated importance of jump behavior in high frequency FX returns,
it is interesting to ask which of the daily and weekly returns are “jump” movements
and which are not. In order to do this, we employ a likelihood ratio technique, akin
to those used in Das [12], Aase and Guttorp [1], and Friedman and Laibson [20].
Consider the following conditional density functions of the FX return AS;:

SN (S, a0, 00, 1,8,%,0,0) = —bameap (S5 =4)%) (3.4)

—(AS;—u—x)2
ftn(AStaam oy, 4Py K, q, 0) = \/27:6?7‘&’1:‘19( ( 2:,.?:.: ) )

- —p—0)2
fta(ASh Qp, 01, i, Dy K, 4, 0) = \/%lamexp (_LA%?’?LOL)

These give the density if there is no jump at time ¢, if there is a jump of type &,
and if there is a jump of type . These densities are used to form the following
likelihood ratios, which can be evaluated at the parameter values dy, c, [, p, K, 4,

and 6, obtained by maximum likelihood estimation:

LR} = log [ff(AS, do, 61, 1B, . ,0)] — log [f¥7 (AS,, do, cu, 1, B, %,4,6)] (3.5)
LRto = log [fto(ASta dO’ dl’ ﬂ" ﬁ’ R’a éa é)] - log [ftNJ(ASt’ dOa dla ﬂ'a ﬁ, ’:"'1 q, é)]

Intuitively, the ratio LRf should be large on those days when the return has a
jump component of type k, and LR? should be large for those days most likely to

have a jump of type 6. It is known that there are, on average, pT" jumps of type
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k and ¢T jumps of type 6 in a sample of size T. Hence, given maximum likelihood

estimates of the jump probabilites, we identify the pT" days in the sample for which

LRY is largest as x-jump days, and the §T days for which LR? is largest as 6-jump

days.'?
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Figure 3-3: Daily Dollar Returns and Returns on Jump Days

Figure 3-3 shows graphically the result of applying the foregoing jump identifica-

tion technique to the daily returns. The parameter estimates used are those obtained

by estimation on the whole sample period 1980-1993. The top part of the graph

shows the entire daily return series, and the lower part shows just the jumps, with

the diffusion movements filtered out. For the $/DM rate, there are k-type jump ap-

preciations in 279 of the 3515 days in the sample, and f-type jump depreciations for

262 days. For the $/Yen there are 88 jump appreciations in 3477 total days, and

10The real numbers T and ¢T are rounded to the nearest integer.
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208 jump depreciations. Typical jumps for both currencies are on the order of 1%
or 2%, as the ML estimates would suggest they should be, although there are also
jump days with movements as large as 5%. The jumps are, generally speaking, the
largest one-day exchange rate returns in the sample, although there are some fairly
large one-day returns which, because they are preceded by other large returns, are
imputed to the ARCH component of the diffusion.

Figure 3-4 shows the result of the jump-identification on the weekly returns. For
the $/DM, there are 25 jump appreciation weeks in 702 total weeks, and 66 jump
depreciations. For the $/Yen, there are 48 jump appreciations in 697 weeks, and 10

jump depreciations.

3.5 Intervention and Jumps

Now we turn to an examination of how jump behavior in FX returns is related to
intervention. It is well know that central banks profess to “lean against the wind,”
intervening in support of a currency precisely when that currency is depreciating,
presumably due to factors separate from the intervention itself. This may of course
lead to a simultaneity bias in the contemporaneous reiationship between intervention
and the exchange rate. See, for example, Loopesko [28] for evidence of a high degree
of contemporaneous interaction between exchange rates and intervention. OLS re-
gressions of FX returns on same-day intervention reported by Dominguez and Frankel
[15] reveal a statistically significant relationship, but with the wrong sign: interven-
tions in support of the dollar are associated with dollar depreciations. This is strong
evidence that simultaneity bias is actually present.

This simultaneity may be partially unraveled by considering the relationship of
FX returns to leads and lags of intervention as well as contemporaneous intervention.
Table 3.7 reports results of an OLS regression of daily FX returns on the two-day
lead, one-day lead, contemporaneous, one-day lag, and two-day lag of interventiou, as
measured by billions of dollars sold. There is a statistically significant pattern which

holds for both the DM and Yen rates and for both the pre- and post-Louvre peri-
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Table 3.7: OLS Estimates: Daily Exchange Returns and Intervention

DM a B B2 B3 Ba Bs T

Pre- 0.00084 -0.00323 -0.0213 -0.0206 0.0158 0.00010 | 1857

Louvre | (0.463) (-0.632) (-3.951)%** | (-3.829)*** | (2.929)*** (0.197)

Post- 0.00010 -0.00667 -0.01885 -0.00144 0.00349 0.01160 | 1654

Louvre | (0.535) (-1.910)* | (-5.147)*** | (-0.0396) (0.952) (3.320)***

Whole | 0.00008 -0.00537 -0.01992 -0.00764 0.00739 0.00864 | 3511

sample | (0.603) (-1.847)* | (-6.520)*** | (-2.512)** | (2.420)** | (2.974)***

Yen o B B2 B3 B4 Bs T

Pre- 0.00025 -0.00523 -0.01547 -0.00854 0.01516 0.00426 | 1840

Louvre | (1.635) (-0.826) (-2.356)** (-1.372) (2.309)** (0.672)

Post- 0.00021 -0.01387 -0.01540 -0.00151 0.01291 0.00598 | 1633

Louvre | (1.302) | (-3.548)*** | (-3.727)*** (-0.361) (3.125)*** (1.529)

Whole | 0.00023 -0.01095 -0.01574 -0.00421 0.00139 0.00588 | 3473

sample | (2.072)** | (-3.296)*** | (-4.159)*** (-1.220) (3.987)*** | (1.769)*
Asymptotic t-statistics in parentheses. OLS regression of the form

AS; =a+ b INTy2+ B2INT 4 + B3INT, + B4 INT, . + BsINT,_5 + ¢ (3.6)

where INT; measures daily intervention in terms of billions of dollars sold. (*), (**), and (***)
indicate significance at the 90%, 95%, and 99% level.

ods. The coeflicients 8, and (3, are typically significantly negative, indicating that,
in the two days before a dollar sale (purchase), the dollar appreciates (depreciates).
Thus, the U.S. does indeed seem to “lean against the wind” entering the market in
an attempt to smooth exchange rate fluctutations of the previous two days. The con-
temporaneous coefficient (3 is either significantly negative or insignificantly different.
from zero, depending on the currency and subperiod considered. This is of course
also consistent with “leaning against the wind:” same-day dollar sales occur in the
face of dollar appreciation, sometimes with little overall effect on that day’s return.
Finally, the coeflicients 4 and 5 are positive and typically significantly so. This in-
dicates that, in the two days following a dollar sale (purchase), the dollar depreciates
(appreciates), as the monetary authorities would hope.

To see if the intervention-return relationship operates differently at the weekly
horizon, consider the coefficients, reported in table 3.8, of an OLS regression of the
weekly FX returns on one-week lead, same-week, and one-week lagged intervention.

The pattern is similar, and again is robust across currencies and subperiods. The
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Table 3.8: OLS Estimates: Weekly Excliange Returns and Intervention

DM a B B2 B3 T
Pre- 0.00033 -0.00923 -0.0325 0.0183 370
Louvre | (0.377) (-1.199) (-3.752)*** | (2.348)**

Post- 0.00056 -0.01233 -0.01460 0.01567 | 330
Louvre | (0.621) | (-2.466)** [ (-2.770)*** | (3.156)***
Whole 0.00039 -0.01154 -0.01968 0.01632 700
sample | (0.631) | (-2.744)*** | (-4.350)*** | (3.883)***

Yen a B B2 B3 T
Pre- 0.00135 0.00041 -0.01856 0.0106 369
Louvre | (1.700)* (0.046) (-1.772)* (1.186)

Post- 0.00110 -0.02085 -0.00841 0.01407 326
Louvre | (1.403) | (-3.933)*** | (-1.375) (2.655)***
Whole 0.00119 -0.01471 -0.01129 0.01276 695
sample | (2.139)** | (-3.161)*** | (-2.091)** | (2.740)***

Asymptotic t-statistics in parentheses. OLS regression of the form
AS; =a+ P INTy + BINT, + B3INT,— + ¢ (3.7

where INT, measures weekly intervention in terms of billions of dollars sold. (*), (**), and (***)
indicate significance at the 90%, 95%, and 99% level.

coefficients §; and [, are either significantly negative or insignificant from zero, which
may be taken as evidence that dollar sales (purchases) are conducted in response
to dollar appreciation (depreciation) in the week of the intervention and the week
preceding the intervention. The coefficient §3 is significantly positive, indicating that
interventions work to move the exchange rate in the desired direction, albeit with a
one week lag.

While suggestive, the foregoing OLS regressions do not allow us to distinguish
whether the relationship between intervention and returns differs according to whether
the return is a “jump” or not. To this end, we parameterize the two-jump-ARCH
model to depend on lead, lag, and contemporaneous values of daily intervention. The

drift, which represents the average FX return in “non-jump” days, is given by
o = po + i INTy o + poI NTypy + p3INT, + pyINT, + psINT; (3.8)

where INT, measures intervention during day ¢ in terms of billions of dollars sold.
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The jump probabilites p and ¢ are allowed to depend on intervention in a logistic

fashion:
1
P = (3.9)
1+ exp (—'Yo - Taml NTs—i+z)
1
(3.10)

Q=
1+ezp(—¢o — T2y HiINTs 1)
The “base jump probabilites,” or jump probabilities for a day with zero interven-

tion action in an immediate five-day window, are given by p = and § =

1
1+-ezxp(—o)

1
1+ezp(—¢o)”
Tables 3.9 and 3.10 report the coefficients obtained by maximum likelihood estima-

tion on the daily data for the pre-Louvre and post-Louvre periods. The post-Louvre
period is of particular interest given the size and frequency of U.S. intervention ac-
tivity during that time. The pre-Louvre period saw some U.S. intervention activity
in the DM market but very little in the Yen market. The columns labeled “BJP”
give the base jump probabilites for each type of jump. The jump sizes and the base
jump probabilities are quite precisely estimated for both the DM and Yen. The jump
sizes of about 1% or 1.5% in absolute value are comparable to those estimated in the
previous sections of this paper. The x-type and 6-type jumps take opposite signs for
each of the currencies and sub-periods except the pre-Louvre $/DM, which exhibits
rare jump depreciations of 3.6% and more frequent jump depreciations of about 1.8%.

The parameters of the drift process u; re-eal a pattern similar to the one in the
foregoing OLS regressions: dollar sales at day ¢ are usually associated with dollar
appreciation in day t and the two preceding days, while dollar sales in day ¢ lead to
dollar depreciation in the two days following the intervention. This pattern is more
marked and more significant statistically for the post-Louvre period than it is for the
pre-Louvre, which is not surprising given the relative infrequency of intervention in
the earlier period, particularly for the $,/Yen rate. We can conclude that the U.5.
“leans against the wind” for small drift movements in the exchange rate, and that it
has some success in doing so, though the effect of intervention operates with a one or

two day lag. The sum ¥°2_, u;, which is reported near the bottom of Tables 3.9 and
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Table 3.9: Pre-Louvre Period: Daily FX Returns and Intervention

DM Parameter T-Stat BJP Yen Parameter | T-Stat BJP
a0 0.000036 | (29.95)** a0 0.000019 | (24.93)**
o 0.0708 | (3.948)** o 0.1368 | (4.864)**
o ~0.00028 | (-3.451)** o -0.00022 | (-2.095)*
Ly -0.00248 (0.1310) I -0.00193 (-0.3023)
12 -0.01486 | (-2.916)** 1 ~0.01275 | (-2.946)**
la -0.01391 | (-5.078)** lis -0.00160 | (-0.4299)
Ba 0.00939 (2.286)* m 0.006771 (1.310)
s -0.00105 | (-0.3856) s 0.002372 | (0.4246)
% 5461 | (-11.17)** | 0.0042 | o 4305 | (-9.930)** | 0.0133
" ~5.661 (.0035) " 1.361 (0.0138)
Y2 0.0824 (-0.3691) 72 2.143 (0.0315)
s -1.516 (1.585) s 3.534 (0.1276)
Y 0.2922 (-1.196) Y 0.4942 | (-0.0070)
7 20.9924 | (-0.0923) P 1.0272 | (0.0163)
P’ 0.0360 | (14.41)** P’ 200132 | (-11.14)**
$o -4.548 (-9.683)** | 0.0105 do -3.3633 (-15.06)** | 0.0335
b1 -4.240 (-1.376) o1 2.484 (0.1002)
b2 0.1132 (-0.0951) b2 4.008 (0.3334)
b3 -1.418 (-0.597) b3 -3.668 | (-0.4962)
4 0.2651 (0.4674) Pa 4.774 (0.3788)
b5 -1.024 (0.5861) b5 2.805 (0.1067)
] 00179 | (11.91)** ] 0.01368 | (19.51)**
S mi | 00229 | (-3.4621)** Y0 ui | -0.0057 | (-0.7055)
Log-Like 6439.5 6722.7
T 1859 1842

Business daily observations. Asymptotic t-statistics in parentheses. Maximum likelihood estimates,
with asymptotic variance-covariance matrix calculated using the method of Berndt et als (1974).
The column “BJP” reports the base jump probabilities p = m—'}(_—w; and § = yozr=gey- (*) and
(**) denote significance at the 95% and 99% levels.
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Table 3.10: Post-Louvre Period: Daily FX Returns and Intervention

DM Parameter T-Stat BJP Yen Parameter T-Stat BJP
ag 0.000032 | (26.00)** ap 0.000020 (23.45)**

a) 0.0464 (2.002)* a; 0.1222 (4.958)**

o 0.00007 (0.5582) Ho -0.00016 (-1.434)

1 -0.00397 (-1.214) 11 -0.00687 | (-2.592)**

12 -0.0157 | (-5.655)** U2 -0.00134 (-4.518)**

U3 -0.0036 (-1.441) U3 -0.00500 (-1.538)

I -0.0040 (1.573) I 0.00743 (2.750)**

15 0.0081 | (3.234)** s 0.00011 | (0.0507)

Y -4.817 (-12.77)** | 0.008 o -5.090 (-8.266)** | 0.006
T 3.594 (0.2538) " 0.7626 (0.0283)

Y2 2.323 (0.2743) Y2 0.7472 (0.0265)

73 -8.174 (-2.376)* 3 -0.0672 (-0.0088 )

Y4 -2.849 | (-0.4442) 4 0.4407 (0.0197)

pos -1.334 | (-0.1717) s 0.3586 (0.0115)

K -0.0218 (-13.14)** K -0.01554 (-9.840)**

do -4.513 (-5.342)** | 0.0108 do -3.593 (-14.13)** | 0.0268
é1 -0.1518 (-0.0276) o 0.3619 (0.1026)

b2 6.455 (1.736) b2 1.746 (0.3780)

3 2.600 (0.7085) 3 0.9004 (0.2718)

P4 -5.746 (-0.5434) P4 2.668 (1.388)

o5 2.178 (0.2866) o5 2.679 (1.027)

[} 0.0147 (7.950)** [} 0.01350 (15.90)**

_Z_?El i -0.0112 (-2.663)** Z?Ex Wi -0.0178 (-4.3017)**
Log-Like | 5825.8.0 5991.2

T 1656 1635

Business daily observations. Asymptotic t-statistics in parentheses. Maximum likelihood estimates,
with asymptotic variance-covariance matrix calculated using the method of Berndt et als (1974).
The column “BJP” reports the base jump probabilities § = ﬁmﬁ-—m and g = Ti-‘é‘z',‘:("—’m' (*) and
(**) denote significance at the 95% and 99% levels.
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3.10, can be interpreted as follows. Suppose that there is a dollar sale of average size,
say $0.15 billion, in support of the DM during some day ¢ in the post-Louvre period.
Suppose further that the sale is the only intervention which occurs during the five-
day window around t. Then the exchange rate drift (movement exclusive of jumps)
during the five day window will differ from the base drift of 5ug by 0.15 x Y0, y1; =
0.15 x (—0.0012) = —0.00018. The sum ¥>_, y; is negative for both the DM and
Yen rates, indicating that dollar sales are associated with extra drift appreciation
over the five-day intervention window, a counterintuitive result which is again likely
due to simultaneity of dollar sales with some exogenous factor which works in the
direction of dollar appreciation. However, we have decomposed this five day extra
drift movement into a three-day period of extra appreciation followed by a two day
period in which intervention moves the exchange rate in the “desired” direction.
Now consider the estimates of y; and ¢;, which measure the effect of intervention
on the jump probabilities. The estimates of v, and 7, are not significantly different
from zero for either of the currencies or sub-periods. Because of the simultaneity
problem, there are several ways to interpret this result. One might say that, in the
two days before a dollar sale, the dollar is neither more nor less likely to undergo a
jump appreciation. Thus, we might take the coefficients as evidence that the U.S.
does not attempt to offset large appreciations with subsequent dollar sales. This may
reflect a belief on the part of the government that it is futile to attempt to offset very
large movements in the exchange rate !! Alternatively, and perhaps less plausibly,
it may be the case that during the two days before the dollar sale some exogenous
factor acts, ceteris paribus, to increase the probability of a jump appreciation, but
because market participants anticipate the eventual dollar sale, the effect of the ex-
ogenous factor is cancelled out, so that there is no net effect on the probability of a

jump appreciation. ‘A similar argument holds for the coefficients ¢, and ¢, which are

'The futility of intervention in the face of very sharp movements in the exchange rate of course
says nothing about why such movements occur. The movements may be purely irrational and
eventually self-correcting, in which case a wise government would not waste FX reserves in offsetting
them. Or the movements may represent the bursting of an irrational bubble and hence a return to
“fundamentals,” in which case a policy of “standing pat” would also make the most sense.
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also insignificantly different from zero. This may be interpreted as evidence that the
U.S. does not respond to jump depreciations with dollar purchases, or as evidence
that, during times of exogenous stress, dollar purchases are anticipated by market
participants and the anticipation helps calm jump depreciation fears before the fact.
The contemporaneous coefficients y3 and ¢5 are insignificantly different from zero for
all currencies and subperiods except 73 for the post-Louvre $/DM, which is signifi-
cantly negative. This may be taken as evidence that, for this currency and subperiod,
same-day dollar purchases actually increased the probability of a jump appreciation.
This is an example of “leaning with the wind” operations which cause large move-
ments in the exchange rate.!? Finally, for both periods and currencies, the coefficients
74, ¥s, G4, and ¢s on lagged intervention are all insignificant. Again, this result may
be interpreted in at least two ways: (i) intervention at date ¢ is ineffective in calming
jump fears during the following two days, or (ii) because some exogenous factor is
driving jump fears during the two days after the intervention, the calming effect of
the intervention “washes out” with the exogenous factor, leaving jump probabilities
unchanged. If this second explanation is true, it would be dangerous to conclude that,
intervention in response to jumps is ineffective.

To see whether the intervention-return relationshin operates differently at longer
horizons, an analogous estimation was performed for the weekly data, with the drift
and jump probabilites parameterized to depend on the one-week lead, contempora-
neous, and one-week lagged intervention, again measured in billions of dollars sold.
The results are reported in Tables 3.11 and 3.12.

As the sign and significance of the drift coefficients u,, uo, and pj indicate, the
relationship of intervention to small movements in the exchange rate mirrors that of
the weekly OLS regression reported in Table 3.8. For both currencies in the post-
Louvre period, the coefficients p;, and p, are negative and significant, indicating
that dollar purchases in week t are associated with dollar drift depreciation during

that week and the preceding week. Again, for small drift movements, the exchange

124 large movement of this sort may result when a well-timed and well-publicized intervention is
used to burst an existing speculative bubble.
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Table 3.11: Pre-Louvre: Weekly Exchange Rate and Intervention

DM Parameter T-Stat BJP Yen Parameter T-Stat BJP
a0 0.00015 | (11.84)** a0 0.00008 | (8.432)**

a 0.00215 | (-1.412) a 02222 | (3.421)**

o 20.00439 | (-5.277)** 1o 20.00295 | (-4.434)%*

i 70.00195 | (-0.242) i 20.00621 | (-0.5258)

2 70.0332 | (-4.270)** 12 00124 | (-1.266)

13 00156 | (1.522) 13 20.00137 | (-0.0106)

g 1.554 | (4.116)* | 0016 | 7 4654 | (-5.508)** | 0.0004
- 4074 | (-1.414) " 2,605 | (-0.1370)

P 04153 | (0.134) P 17.27 | (1.940)*

o 1.026 (0.476) g 5.076 | (-0.3215)

K 0.0265 | (-11.68)* 3 0.0517 | (5.331)**

o 6.078 | (-1.400) | 0.198 | o 1863 | (-4.111)** | 0.1344
o 1267 | (0.0128) 3 2504 | (0.3184)

6 0.9505 | (0.0073) 2 4931 | (-0.4776)

3 -0.4943 | (-0.0029) 3 1274 | (0.9328)

9 0.0751 | (0.3428) 9 0.0217 | (8.597)%*

Yo _ i | -00196 | (-1.626) S | 00200 | (-1.1251)

Log-Like | 1002.4 1047.4.3

T 371 370

Wednesday-to-Wednesday returns. Asymptotic t-statistics in parentheses. Maximum likelihood
estimates, with asymptotic variance-covariance matrix calculated using the method of Berndt et als
(1974). “BJP” reports the base jump probabilities p = m and § = H—ez;‘(_—%;. (*) and (**)
denote significance at the 95% and 99% levels.
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Table 3.12: Post-Louvre: Weekly Exchange Rate and Intervention

DM Parameter T-Stat BJP Yen Parameter T-Stat BJP
ag 0.00019 (10.79)** g 0.00012 (10.96)**

a; 0.00926 (0.1581) a 0.00604 (0.179)

1o 0.01025 (1.286) 1o 0.00080 (1.205)

m -0.01263 | (-2.602)** I -0.0160 (-2.996)**

o -0.01056 | (-3.428)** o -0.0192 (-3.182)**

u3 0.01249 (2.561)* U3 0.0129 (2.248)*

Yo -4.3826 (-5.545)** | 0.0123 Yo -3.636 (-1.951)* | 0.0257
"M 1.3206 (0.0678) T 0.6194 (-0.0389)

Y2 -1,.1453 (-0.3354) Y2 -0.9717 (-0.163)

3 -3.4674 (-1.419) 3 -2.223 (-0.731)

K -0.04862 | (-6.145)** K -0.0263 (-3.456)**

do -5.5296 (-2.907)** | 0.004 do -3.624 (-7.170)** | 0.0260
o1 1.7044 (0.1315) " -1.177 (-0.476)

b2 0.46644 (0.0246) 1)) 3.185 (1.522)

b3 0.56670 (0.0205) d3 -0.1824 (-0.046)

6 0.06013 (4.271)** 0 0.0373 (8.329)**

Z?:l HBi -0.01521 | (-2.4563)* }:?El Wi -0.0233 (-3.386)**
Log-Like 899.6 942.3

T 331 327

Wednesday-to-Wednesday returns. Asymptotic t-statistics in parentheses. Maximum likelihood
estimates, with asymptotic variance-covariance matrix calculated using the method of Berndt et als
(1974). “BJP” reports the base jump probabilities = Hu—;(_,m; and 7 = m. (*) and (**)
denote significance at the 95% and 99% levels.

rate moves in the desired direction in the week following the intervention. A similar
pattern holds for the pre-Louvre period, though the response of the exchange rate
to intervention is not as significant as in the pre-Louvre. As is the case for the
daily returns, the effects of intervention on jump probabilities, as measured by the
coefficients 7; and ¢;, ¢ = 1...5, are in general insignificant. The same simultaneity
caveats hold in interpreting this “insignificance” result at the weekly horizon as did

for the daily case.

3.6 Conclusion

We have shown that daily and weekly dollar exchange rates are well-characterized by

a jump-diffusion model in which regular daily drift returns of a few basis points each
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are interspersed with occasional “jumps” of 1% or more. The FX return data exhibit
significant “jump” behavior even when ARCH effects are allowed for. The exchange
rate drift movements are related to leads and lags of intervention in a systematic
pattern which may be interpreted as evidence that the U.S. “leans against the wind” in
response to small exchange rate changes, and that such “wind-leaning” does have some
effect, with a lag, at the daily and weekly horizons. However, there seems to be no
strong relationship between jump movements in the exchange rate and interventions.
Although this result must be interpreted in light of a potential simultaneity problem,
one possible explanation is that the U.S. does not in general respond to large exchange
rate movements with offsetting intervention activity, because intervention in response

to large movements is ineffective.
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